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1 Introduction

The recent financial crises has brought the impact of leverage on financial system

stability to the forefront. The crisis might well be understood as the bottom of a

leverage cycle in which leverage and asset prices crashed together. It was preceded

by years in which asset prices and the amount of leverage in the financial system

increased dramatically. What determines leverage or margin levels in equilibrium?

Do these levels involve default? What is the effect of leverage and default on asset

prices and the real side of the economy? Needless to say, providing answers to these

questions is of key importance.

In this paper we prove a No-Default Theorem for any binomial economy with

financial assets (i.e., assets which give no direct utility to investors and pay the

same dividends no matter who owns them). We show that every equilibrium with

endogenous leverage can be replaced by another equilibrium with the same asset

prices and the same consumption by each agent, in which there is no default.1 Thus

potential default has a dramatic effect on equilibrium, but actual default does not.

The No-Default Theorem is valid in a very general context with arbitrary preferences,

contingent promises, many assets, many consumption goods, multiple periods, and

production.

The No-Default Theorem shows that for every homogeneous family of promises

that (i) use the same asset as collateral, (ii) differ only by a scalar multiplicative factor

and (iii) includes the max min promise, we can assume only the max min promise

is actively traded in equilibrium.2 The max min representative for the family is the

largest promise in the family which is sure to pay off in full, and is equal to the asset

value in at least one state. Thus even with many assets, and many homogeneous

families of contracts, there will be no default.

The No-Default Theorem not only shows that actual default is irrelevant, but also

provides very simple predictions about how leverage is determined. For example, for

the homogenous family of simple (non-contingent) debt contracts, the equilibrium

LTV of any actively traded contract can be taken to be the ratio of the worst case

return of the collateral divided by the riskless rate of interest. The upshot is that

1The choice of leverage might thus be described by a rule which sets the value at risk (VAR)
equal to zero.

2Though the promises in a homogeneous family are scalar multiples of each other, the deliveries,
which are the minimum of the collateral value and the promise, can be highly nonlinearly related.
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equilibrium leverage in binomial economies with financial assets is extremely easy to

compute.

There are two key assumptions in the theorem. First, we only consider financial

assets, that is, assets that do not give direct utility to their holders, and which

yield dividends that are independent of who holds them. Second, we assume that

the economy is binomial, and that all loans are for one period.3 A date-event tree

in which every state is succeeded by exactly two nodes suggests a world with very

short maturity loans and no big jumps in asset values, since Brownian motion can

be approximated by binary trees with short intervals. Binomial models might thus

be taken as good models of Repo markets, in which the assets do seem to be purely

financial, and the loans are extremely short term, usually one day. Repo market

loans almost never default, including during the leverage crisis of 2007-9.4

The No-Default Theorem implies that if we want to study consumption or pro-

duction or asset price effects of actual default, we must do so in models that either

include non-financial assets (like houses or asymmetrically productive land) or that

depart from the standard binomial models used in finance. This shows that there is

a tremendous difference between physical collateral that generates contemporaneous

utility and backs long term promises, and financial collateral that gives utility only

through dividends or other cash flows, and backs very short term promises. The

No-Default Theorem might explain why there are some markets (like mortgages) in

which defaults are to be expected while in others (like Repos) margins are set so

strictly that default is almost ruled out.

The No-Default Theorem has a sort of Modigliani-Miller feel to it. But the

theorem does not assert that the debt-equity ratio is irrelevant. It shows that if

we start from any equilibrium, we can move to an equivalent equilibrium, typically

with less leverage, in which only no-default contracts are traded. The theorem does

not say that starting from an equilibrium with no default, one can construct another

equivalent equilibrium with even less leverage. Typically one cannot. In the paper we

give an example with a unique equilibrium in which every borrower leverages to the

maximum amount without default, but no agent would be indifferent to leveraging

any less. In that example, Modigliani-Miller completely fails. Modigliani-Miller does

3We could also allow for a long term loan with one payment date, provided that all the states
at that date could be partitioned into two events, on each of which the loan promise and the asset
value is constant.

4Repo defaults, including of the Bear Stearns hedge funds, seem to have totaled a few billion
dollars out of the trillions of dollars of repo loans during the period 2007-2009.
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not hold in our model because issuers of debt must hold collateral, and because we

do not allow short selling of the assets. As we will explain in detail in the paper, the

proof of the No-Default Theorem relies on positive spanning, not spanning.

We begin by proving the No-Default Theorem in a very simple static model, with

two periods, one asset, and a homogeneous family of simple debt (non-contingent)

contracts. The intuition of the proof is based on two ideas. We first show that any

two portfolios that give the same payoffs in the two states must cost the same. We

then show that in equilibrium each agent is indifferent to replacing his portfolio with

another such that on each unit of collateral that he holds, he either leverages to the

maximum amount without risk of default, or does not leverage at all. It is important

to realize that the new portfolio may involve each agent holding a different amount

of the collateral asset than he did in the original equilibrium. Agents are indifferent

to switching to the new portfolio because its payoffs are the same and because of the

assumption that the asset is a financial asset. The assumption of two states implies

that the payoffs are positively spanned by the Arrow security that pays in the good

state (which can be obtained by holding the asset and shorting the max min debt

using the asset as collateral) and the max min debt contract. If there were three

states, it might be impossible for the seller to reproduce his original portfolio payoffs

from a portfolio in which he can only hold the asset and issue the max min debt.

One interesting feature of the proof is that it demonstrates the existence of state

prices that price the asset and the entire homogeneous family of contracts that use

the asset as collateral, even though short-selling is not allowed. The proof therefore

shows that even a hypothetical trader who could sell the asset short and did not

need to put up collateral could not find an arbitrage opportunity using the asset and

all the contracts in the same family. Moreover, we show that those state prices are

unique. In short, in a binomial economy with one kind of collateral and one family

of debt promises, we always get unique state (Arrow) prices but not necessarily

an Arrow-Debreu equilibrium. In binomial economies with many assets, or many

different families of loans on the same asset, the No Default Theorem still holds, but

state pricing of all contracts is typically impossible.

Another feature of the proof is that it shows that every asset has a maximum

debt capacity for each homogeneous family of contracts, given by the value of the

max min contract. This debt capacity might be far below the value of the asset. The

great advantage of a binomial model with uncertainty is that the debt capacity can

fall sharply due to an increase in volatility (that lowers the worst case and increases
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the best case scenario in the future), even if the asset value does not fall. The

loan to value ratio (of loan amount to asset value) or LTV depends not only on

first moments, but also on second moments, becoming genuinely endogenous. By

contrast, in models of collateral without uncertainty, the debt capacity of a financial

asset is always equal to the value of the asset.5

The No-Default Theorem shows that the equilibrium LTV for each family of

contracts depends on current and future asset prices, but is otherwise independent

of the utilities or the endowments of the agents. If nobody wants to borrow beyond

the debt capacity of the asset, then the collateral requirements are irrelevant, and

debt is determined by the preferences of the agents in the economy, just as in models

without collateral. In this case, we might say debt is determined by demand. On

the other hand, if collateral is scarce, and agents are borrowing against all of it, then

total borrowing is determined by the debt capacities of the assets, independently

from agent preferences for borrowing. In this case, we might say debt is determined

by the supply of debt capacity. Nonetheless, as the No-Default Theorem states, the

equilibrium LTV in each homogeneous family can be taken to be the same in both

cases.

Many papers in the literature assume the Value at Risk equals Zero rule (which

precludes default), often in contexts where the No-Default Theorem does not apply.

In the last section, we study two examples of economies extensively used in the finan-

cial literature: i) heterogeneous beliefs and ii) CAPM investors with differences in

risk aversion and endowments. First, in order to illustrate the No-Default Theorem,

we study both cases in a binomial economy, showing that in the simplest context

the No-Default Theorem and the State Pricing Theorem apply, but that in more

general binomial models, the No-Default Theorem still applies while state pricing

fails. Second, we extend the examples to three states of nature and show that the

No-Default Theorem also fails. There is still a debt capacity for each family of con-

tracts, but now the maximum possible loan almost always involves default. Agents

who choose to borrow less will use different leverage. In other words, we find two

main departures from the the No-Default Theorem. First, both examples show that

with enough heterogeneity among investors, equilibrium default is robust. Second,

we find that more than one contract can be actively traded in equilibrium on the

same collateral, that is, the asset might be bought at different LTVs by different

5In the case of financial assets, the value of the asset is the present value of future payments.
When there is only one future state, and the entire asset can be costlesly seized upon default, the
debt capacity is 100% of the value of the financial asset.
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agents. During the period 1997-2007, prime borrowers typically bought houses with

high down-payments and low interest rates while subprime borrowers were putting

almost no money down but paying a high interest rate on the same kinds of houses.

The paper is organized as follows. Section 2 presents the literature review. Section

3 presents a static model of endogenous leverage and debt with one asset and proves

the Simple No-Default and State Pricing Theorems. Section 4 presents the general

model of endogenous leverage and proves the general No-Default Theorem. Section

5 presents examples.

2 Literature

To attack the leverage endogeneity problem we follow the techniques developed by

Geanakoplos (1997). Agents have access to a menu of contracts, each of them char-

acterized by a promise in future states and one unit of asset as collateral to back the

promise. When an investor sells a contract she is borrowing money and putting up

collateral; when she is buying a contract, she is lending money. In equilibrium every

contract, as well as the asset used as collateral, will have a price. Each collateral-

promise pair defines a contract, and every contract has a leverage or loan to value

(the ratio of the price of the promise to the price of the collateral). The key is that

even if all contracts are priced in equilibrium, because collateral is scarce, only a few

will be actively traded. In this sense, leverage becomes endogenous.

Geanakoplos (2003, 2010), Fostel-Geanakoplos (2008, 2012a and 2012b), and Cao

(2010), all work with binomial models of collateral equilibrium with financial assets,

showing in their various special cases that, as the Binomial No-Default Theorem

implies, only the VaR= 0 contract is traded in equilibrium. These papers generally

show that higher leverage leads to higher asset prices.

Geanakoplos (2003) stated a slightly stronger Binomial No-Default theorem (that

equilibrium is also unique) in the special case of a continuum of agents with different

priors, in which every agent was risk neutral and did not discount the future, and

in which the agents’ subjective probability of the up state increased monotonically

and continuously in the index of the agent. Fostel-Geanakoplos (2012a) formally

proved that theorem. The Binomial No-Default Theorem proved in this paper is

more general in that it does not depend on the number of agents, or on continuity

of preferences across agents, or on identical discount rates, or on risk neutrality, or
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on any assumption about endowments (for example it does not assume that each

agent’s endowments in terminal periods is spanned by the asset). It includes the

case where there is a finite number of agent types, as well as the case where there is

a continuum of heterogeneous agents.

Other papers have already given examples in which the No-Default Theorem

does not hold. Geanakoplos (1997) gave a binomial example with a non-financial

asset (a house, from which agents derived utility), in which equilibrium leverage was

high enough that there was default. Geanakoplos (2003) gave an example with a

continuum of risk neutral investors with different priors and three states of nature

in which the only contract traded in equilibrium involved default. Simsek (2010)

gave an example with two types of investors and a continuum of states of nature

with equilibrium default. Araujo, Kubler, and Schommer (2012) provided a two

period example of an asset which is used as collateral in two different actively traded

contracts when agents have utility over the asset. Fostel and Geanakoplos (2012a)

provide an example with three states and multiple contracts traded in equilibrium.

This paper is related to a large and growing literature on collateral equilibrium

and leverage. Some of these papers focus on investor-based leverage (the ratio of an

agent’s total asset value to his total wealth) as in Acharya and Viswanathan (2011),

Adrian and Shin (2010), Brunnermeier and Sannikov (2011) and Gromb and Vayanos

(2002). Other papers, such as Brunnermeier and Pedersen (2009), Cao (2010), Fostel

and Geanakoplos (2008, 2012a and 2012b), Geanakoplos (1997, 2003 and 2010) and

Simsek (2010), focus on asset-based leverage (as defined in this paper).

Not all these models actually make room for endogenous leverage. Often an

ad hoc behavioral rule is postulated. To mention just a few, Brunnermeier and

Pedersen (2009) assume a VAR rule. Gromb and Vayanos (2002) and Vayanos and

Wang (2012) assume a max min rule that prevents default. Some other papers like

Garleanu and Pedersen (2011) and Mendoza (2010) assumed a fixed LTV .

In other papers leverage is endogenous, though the modeling strategy is not as

in our paper. In the corporate finance approach of Bernanke and Gertler (1986),

Holmstrom and Tirole (1997), Acharya and Viswanathan (2011) and Adrian and Shin

(2010) the endogeneity of leverage relies on asymmetric information and moral hazard

problems between lenders and borrowers. Asymmetric information is important in

loan markets for which the borrower is also a manager who exercises control over the

value of the collateral. Lenders may insist that the manager puts up a portion of
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the investment himself in order to maintain his skin in the game. The recent crisis,

however, was centered not in the corporate bond world, where managerial control is

central, but in the mortgage securities market, where the buyer/borrower generally

has no control or specialized knowledge over the cash flows of the collateral. Finally,

in Brunnermeier and Sannikov (2011) leverage is endogenous but is determined not

by collateral capacities but by agents risk aversion; it is a “demand-determined”

leverage that would be the same without collateral requirements. The time series

movements of LTV come there from movements in volatility because the added

uncertainty makes borrowers more scared of investing, rather than from reducing

the debt capacity of the collateral or making lenders more scared to lend.

3 The Irrelevance of Actual Default in a Simple

Model of Debt.

3.1 Model

In order to understand the upcoming No-Default Theorem more easily, we restrict

attention in this section to two periods, one asset, and non-contingent debt contracts.

3.1.1 Time and Assets

We begin with a simple two-period general equilibrium model, with time t = 0, 1.

Uncertainty is represented by different states of nature s ∈ S including a root s = 0.

We denote the time of s by t(s), so t(0) = 0 and t(s) = 1,∀s ∈ ST , the set of terminal

nodes of S. Suppose there is a single perishable consumption good c and one asset

Y which pays dividends ds of the consumption good in each final state s ∈ ST . We

call the asset a financial asset because it gives no direct utility to investors, and pays

the same dividends no matter who owns it. Financial assets are valued exclusively

because they pay dividends. Houses are not financial assets because they give utility

to their owners. Neither is land if its output depends on who owns it and tills it.

3.1.2 Investors

Each investor h ∈ H is characterized by a utility, uh, a discount factor, δh, and sub-

jective probabilities, γhs , s ∈ ST . We assume that the utility function for consumption
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in each state s ∈ S, uh : R+ → R, is differentiable, concave, and monotonic.6 The

expected utility to agent h is

Uh = uh(c0) + δh
∑
s∈ST

γhs u
h(cs). (1)

Investor h’s endowment of the consumption good is denoted by ehs ∈ R+ in each

state s ∈ S. His endowment of the only asset Y at time 0 is yh0∗ ∈ R+. We assume

that the consumption good is present,
∑

h∈H e
h
0 > 0,

∑
h∈H(ehs + dsy

h
0∗) > 0,∀s ∈ ST .

3.1.3 Collateral and Debt.

We take the consumption good as numeraire and denote the price of Y at time 0

by p. A debt contract j promises j > 0 units of consumption good in each final

state backed by one unit of asset Y serving as collateral. The terms of the contract

are summarized by the ordered pair (j · 1̃, 1). The first component, j · 1̃ ∈ RST (the

vector of j’s with dimension equal to the number of final states), denotes the (non-

contingent) promise. The second component, 1, denotes the one unit of the asset Y

used as collateral. Let J be the set of all such available debt contracts.

The price of contract j is πj . An investor can borrow πj today by selling the

debt contract j in exchange for a promise of j tomorrow. Let ϕj be the number of

contracts j traded at time 0. There is no sign constraint on ϕj; a positive (negative)

ϕj indicates the agent is selling (buying) |ϕj| contracts j or borrowing (lending)

|ϕj|πj.

We assume the loan is non-recourse, so the maximum a borrower can lose is his

collateral if he does not honor his promise: the actual delivery of debt contract j in

state s ∈ ST is min{j, ds}. If the promise is small enough that j ≤ ds,∀s ∈ ST , then

the contract will not default. In this case its price defines a riskless rate of interest

(1 + rj ) = j/πj .

The Loan to Value (LTV ) associated to debt contract j is given by

LTVj =
πj

p
. (2)

6All that matters for the No-Default Theorem is that the utility Uh : R1+S → R depends only
on consumption (and not for example on portfolio holdings). The expected utility representation
is done for familiarity, and to emphasize that components such as probabilities or discount factors
can differ across agents.
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The margin requirement mj associated to debt contract j is 1 − LTVj , and the

leverage associated to debt contract j is the inverse of the margin, 1/mj .

We define the average loan to value, LTV for asset Y , as the trade-value weighted

average of LTVj across all debt contracts actively traded in equilibrium, and the

diluted average loan to value, LTV Y
0 (which includes assets with no leverage) by

LTV Y =

∑
h

∑
j max(0, ϕhj )πj∑

h

∑
j max(0, ϕhj )p

≥
∑

h

∑
j max(0, ϕhj )πj∑

h y
h
0∗p

= LTV Y
0 .

3.1.4 Budget Set

Given the asset and debt contract prices (p, (πj )j∈J), each agent h ∈ H decides

consumption, c0, asset holding, y, debt and contract trades, ϕj, at time 0, and also

consumption, cs, in each state s ∈ ST , in order to maximize utility (1) subject to the

budget set defined by

Bh(p, π) = {(c, y, ϕ) ∈ R1+S
+ ×R+ ×RJ :

(c0 − eh0) + p(y − yh0∗) ≤
∑

j∈J ϕjπj

(cs − ehs ) ≤ yds −
∑

j∈J ϕjmin(j, ds),∀s ∈ ST

∑
j∈J max(0, ϕj) ≤ y}.

At time 0 expenditures on consumption and the asset, net of endowments, must

be financed by money borrowed, using the asset as collateral. In the final period, at

each state s, consumption net of endowments, can be at most equal to the dividend

payment minus debt repayment. Finally, those agents who borrow must hold the

required collateral at time 0.7

7Notice that we are assuming that short selling of assets is not possible. So even with two
or more contracts, equilibrium might still be different from Arrow-Debreu. We do not think the
assumption of no-short selling is implausible. It is impossible to short sell many assets in the real
world, though the CDS market is beginning to change that. In Fostel-Geanakoplos (2012b) we
investigate the significance of CDS for asset pricing.
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3.1.5 Collateral Equilibrium

A Collateral Equilibrium is a set consisting of an asset price, debt contract prices, in-

dividual consumptions, asset holdings, and contract trades ((p, π), (ch, yh, ϕh)h∈H) ∈
(R+ ×RJ

+)× (R1+S
+ ×R+ ×RJ)H such that

1.
∑

h∈H(ch0 − eh0) = 0.

2.
∑

h∈H(chs − ehs ) =
∑

h∈H y
hds,∀s ∈ ST .

3.
∑

h∈H(yh − yh0∗) = 0.

4.
∑

h∈H ϕ
h
j = 0,∀j ∈ J.

5. (ch, yh, ϕhj ) ∈ Bh(p, π),∀h
(c, y, ϕ) ∈ Bh(p, π)⇒ Uh(c) ≤ Uh(ch),∀h.

Markets for the consumption good in all states clear, assets and promises clear

in equilibrium at time 0, and agents optimize their utility in their budget sets. As

shown by Geanakoplos and Zame (1997), equilibrium in this model always exists

under the assumption we have made so far.

The set H of agents can be taken as finite (in which case we really have in

mind a continuum of agents of each of the types), or we might think of H = [0, 1]

as a continuum of distinct agents, in which case we must think of all the agent

characteristics as measurable functions of h. In the latter case we must think of

the summation
∑

over agents as an integral over agents, and all the optimization

conditions as holding with Lebesgue measure one.

3.2 The Simple Binomial No-Default Theorem

Consider the situation in which there are only two terminal states, S = {0, U,D}.
Asset Y pays dU units of the consumption good in state s = U and 0 < dD < dU in

state s = D.8 Figure 1 depicts the asset payoff. Default occurs in equilibrium if and

only if some contract j with j > dD is positively traded. One might imagine that

8Without loss of generality, dU ≥ dD. If dD = 0 or dD = dU , then the contracts are perfect
substitutes for the asset, so there is no point in trading them. Sellers of the contracts could simply
hold less of the asset and reduce their borrowing to zero while buyers of the contracts could buy
the asset instead. So we might as well assume 0 < dD < dU .
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some agents value the asset much more than others, say because they attach very

high probability γhU to the U state, or because they are more risk tolerant, or because

they have very low endowments ehU in the U state, or because they put a high value

δh on the future. These agents might be expected to want to borrow a lot, promising

j > dD so as to get their hands on more money to buy more assets at time 0. Indeed

it is true that for j > j∗ = dD, any agent can raise more money πj > πj∗ by selling

contract j rather than j∗. Nonetheless, as the following result shows, we can assume

without loss of generality that the only debt contract traded in equilibrium will be

the max min contract j∗, on which there is no default.

s=U	  

dU	  

dD	  

s=D	  

s=0	  

Figure 1: Asset payoff description.

Simple Binomial No-Default Theorem:

Suppose that S = {0, U,D}, that Y is a financial asset, and that the max min

debt contract j∗ = dD ∈ J . Then given any equilibrium ((p, π), (ch, yh, ϕh)h∈H), we

can construct another equilibrium ((p, π), (ch, ȳh, ϕ̄h)h∈H) with the same asset and

contract prices and the same consumptions, in which j∗ is the only debt contract

traded, ϕ̄hj = 0 if j 6= j∗. Hence equilibrium default can be taken to be zero, and

equilibrium LTV can be taken equal to
π∗j
p

=
dD/(1+rj∗ )

p
= dD/p

1+rj∗
.
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Proof:

The proof is organized in three steps.

1. Payoff Cone Lemma.

The portfolio of assets and contracts that any agent h holds in equilibrium

delivers payoff vector (whU , w
h
D)which lies in the cone positively spanned by (dU−

j∗, 0) and (j∗, j∗). The U Arrow security payoff (dU−j∗, 0) = (dU , dD)−(j∗, j∗)

can be obtained from buying the asset while simultaneously selling the max min

debt contract .

Any portfolio payoff (wU , wD) is the sum of payoffs from individual holdings.

The possible holdings include debt contracts j > j∗, j = j∗, j < j∗, the asset,

and the asset bought on margin by selling some debt contract j. The debt

contracts and the asset all deliver at least as much in state U as in state D. So

does the leveraged purchase of the asset. In fact, buying the asset on margin

using any debt contract with dU > j ≥ j∗ is effectively a way of buying the U

Arrow payoff (dU − j, 0). This can be seen in Figure 2.

In short, we have that the Arrow U security and the max min debt contract

positively span all the feasible payoff space, as shown in Figure 3.

2. State Pricing Lemma.

Let a > 0 be the price of the synthetic U Arrow security (created by the leveraged

purchase of the asset via the contract j∗). Let b = πj∗/j∗ − a. Then if any

agent h holds a portfolio delivering (whU , w
h
D), the portfolio costs awhU + bwhD.

In step (a) we find state prices for two securities: the asset and the max min

debt contract j∗. In step (b) we use the Payoff Cone Lemma to show that the

same state prices can be used to price any other debt contract j 6= j∗ that is

traded in equilibrium. The cost of any portfolio is obtained as the sum of the

costs of its constituent parts.

(a) Let a =
p−πj∗

dU−j∗
and b = πj∗/j∗ − a. Consider the max min debt contract

and the asset payoff shown in Figure 2. Then πj∗ = aj∗ + bj∗ and p =

adU + bdD.

Note first that

aj∗ + bj∗ = aj∗ + (πj∗/j∗ − a)j∗ = πj∗ .
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2	  

dU 

dD 

U 

D 

Family of debt contracts 
Asset Y 
Payoff 

Debt contract promise j>j* 

Arrow U 
security 

Debt contract j delivery 

45o 

Debt contract promise j* 

Figure 2: Creating the U Arrow security.

Using the definitions of πj∗ , a and j∗

adU + bdD − πj∗ = a(dU − j∗) + b(dD − j∗) = (p− πj∗ ) + 0.

And hence

adU + bdD = p.

(b) Suppose a debt contract j with j 6= j∗ = dD is positively traded in equilib-

rium. Then πj = a ·min{dU , j}+ b ·min{j∗, j}.

The actual delivery of contract j is given by (min{dU , j},min{j∗, j}). In

case j ≤ j∗ = dD, the contract fully delivers j in both states, proportion-

ally to contract j∗. If j’s price exceeded πj∗(j/j
∗) = aj + bj, its buyers

should have bought j/j∗ units of j∗ instead. Similarly, if its price were

less than πj∗(j/j
∗) = aj + bj, its sellers should have sold j/j∗ units of

j∗ instead, which would have been feasible for them as it requires less

collateral.

We are left to consider the case in which j > j∗, shown in Figure 2. By
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the Payoff Cone Lemma, the actual delivery of contract j is in the positive

span of (dU − j∗, 0) and (j∗, j∗):

(min{dU , j},min{j∗, j}) = α(dU − j∗, 0) + β(j∗, j∗)

with α, β ≥ 0.Hence, α(dU−j∗)+βj∗ = min{dU , j} and βj∗ = min{j∗, j}.
None of the buyers would have purchased j unless

πj ≤ αa(dU − j∗) + βπj∗ = a(α(dU − j∗) + βj∗) + b(βj∗) =

= a ·min{dU , j}+ b ·min{j∗, j}.

On the other hand, any seller of contract j has entered into a double trade,

buying (or holding) the asset as collateral at the same time he sold contract

j, at a net cost of p − πj. Since any contract j > dU delivers exactly the

same way in both states as contract j = dU , we can now without loss of

generality restrict attention to contracts j with dD < j ≤ dU . Any agent

selling such a contract, while holding the required collateral, receives on
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net dU − j in state U , and nothing in state D. He could have obtained

exactly the same net payoff by holding (dU − j)/(dU − j∗) < 1 units of the

asset and selling (dU − j)/(dU − j∗) < 1 units of contract j∗, at a net cost

of (p− πj∗)(dU − j)/(dU − j∗). He should have done so unless

p− πj ≤ (p− πj∗)(dU − j)/(dU − j∗)
p− πj ≤ ([adU + bj∗]− [(a+ b)j∗])(dU − j)/(dU − j∗)
p− πj ≤ a(dU − j∗)(dU − j)/(dU − j∗) = a(dU − j)

adU + bj∗ − πj ≤ a(dU − j)
aj + bj∗ ≤ πj

a ·min{dU , j}+ b ·min{j∗, j} ≤ πj.

Hence πj = a ·min{dU , j}+ b ·min{j∗, j}.

3. Construction of the new default-free equilibrium

Define

(whU , w
h
D) = yh(dU , dD)−

∑
j

(min(j, dU),min(j, dD))ϕhj .

ȳh =
whU − whD
dU − dD

.

ϕ̄hj∗ = [ȳhdD − whD]/j∗ = ȳh − whD/j∗.

If in the original equilibrium, yh is replaced by ȳh and ϕhj is replaced by 0 for

j 6= j∗ and by ϕ̄hj∗ for j = j∗, and all prices and other individual choices are

left the same, then we still have an equilibrium.

(a) Agents are maximizing in the new equilibrium.

Note that ϕ̄hj∗ ≤ ȳh, so this portfolio choice satisfies the collateral con-

straint.

Using the above definitions, the net payoff in state D is the same as in

the original equilibrium,

ȳhdD − ϕ̄hj∗j∗ = whD
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and the same is also true for the net payoff in state U,

ȳhdU − ϕ̄hj∗j∗ = ȳh(dU − dD) + whD = (whU − whD) + whD = whU .

Hence the portfolio choice (ȳh, ϕ̄hj∗) gives the same payoff (whU , w
h
D). From

the Lemmas, the newly constructed portfolio must have the same cost as

well. Hence every agent is optimizing.

(b) Markets clear in the new equilibrium.

Summing over individuals we must get∑
h

ȳh(dU , dD)−
∑
h

ϕ̄hj∗(j
∗, j∗) =

∑
h

(whU , w
h
D) =

∑
h

yh(dU , dD)−
∑
h

∑
j

ϕhj (min(j, dU),min(j, dD)) =
∑
h

yh(dU , dD).

The first equality follows from step (a), the second from the definition of

net payoffs in the original equilibrium, and the last equality follows from

the fact that
∑

h ϕ
h
j = 0 in the original equilibrium for each contract j.

Hence we have that

∑
h

(ȳh − yh)(dU , dD)−
∑
h

ϕ̄hj∗(j
∗, j∗) = 0.

By the linear independence of the vectors (dU , dD) and (j∗, j∗) we deduce

that ∑
h

ȳh =
∑
h

yh∑
h

ϕ̄hj∗ = 0.

Hence markets clear. Finally, the formula for equilibrium LTV follows

from the fact that the promises are non-contingent, so that the max min

contract promises dD in both states, and from the definition of LTV . The

proof is complete.�
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3.3 Simple Binomial State Pricing Theorem

We now call attention to an interesting corollary of the proof just given. By modifying

the equilibrium prices in the above construction for contracts that are not traded, we

can bring them into line with the state prices a, b defined in the proof of the Simple

Binomial No-Default Theorem, without affecting equilibrium. More concretely,

Simple Binomial State Pricing Theorem:

Suppose that S = {0, U,D}, that Y is a financial asset, and that the max min debt

contract j∗ = dD ∈ J . Then given any equilibrium ((p, π), (ch, yh, ϕh)h∈H), we can

construct another equilibrium ((p, π̄), (ch, ȳh, ϕ̄h)h∈H) with the same consumptions,

the same asset price and the same contract price for j ∗, such that every asset and

contract is priced by state prices a > 0 and b > 0 which are uniquely defined if dU 6=
dD. That is, p = adU + bdD, and for every j ∈ J, π̄j = a ·min{dU , j}+ b ·min{dD, j}.
Furthermore, j∗ is the only debt contract positively traded, ϕ̄hj = 0 if j 6= j∗.

Proof:

The proof was nearly given in the proof of the Simple Binomial No-Default The-

orem. It is straightforward to show that if a previously untraded contract has its

price adjusted into line with the state prices, then nothing is affected.�

3.4 Discussion

The Simple Binomial No-Default Theorem shows that in any static binomial model

with a single financial asset, we can assume without loss of generality that the only

debt contract actively traded is the max min debt contract (on which there is no

default). Thus in static binomial models, leverage is endogenously determined in

equilibrium by the Value at Risk equal zero rule, assumed by many other papers

in the literature. Furthermore, by the Simple Binomial State Pricing Theorem, all

the contracts (which may be arbitrarily numerous) can be priced by just two state

prices. These two theorems make it extremely easy to compute collateral equilibrium

for simple binomial collateral economies with debt contracts.

The Binomial No-Default Theorem does not say that equilibrium is unique, only

that each equilibrium can be replaced by another with the same asset price and the

same consumption by each agent, in which there is no default. Thus potential default

has a dramatic effect on equilibrium, but actual default does not.
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The Binomial No-Default Theorem has a sort of Modigliani-Miller feel to it. But

the theorem does not assert that the debt-equity ratio is irrelevant. The theorem

shows that if we start from any equilibrium, we can move to an equivalent equilibrium

in which only max min debt is traded. If the original equilibrium had default, in the

new equilibrium, leverage will be lower. Thus starting from a situation of default,

the theorem does say that leverage can be lowered over a range until the point of

no default, while leaving all investors indifferent. The theorem does not say that

starting from a max min equilibrium, one can construct another equilibrium with

still lower leverage, or even with higher leverage. Modigliani-Miller does not fully

hold in our model because issuers of debt must hold collateral, and because we do

not allow short selling of the asset. Our argument relies on positive spanning, not

spanning. In Section 5 we give an example with a unique equilibrium in which every

borrower leverages to the max min, but no agent would be indifferent to leveraging

any less. In that example Modigliani-Miller completely fails.

The Simple Binomial No-Default Theorem not only shows that actual default

is irrelevant, but also provides a very simple prediction about equilibrium leverage.

According to the theorem, equilibrium LTV for the family of non-contingent debt

contracts is the ratio of the worst case return of the asset divided by the riskless rate

of interest.

LTV =
dD/(1 + r)

p
=

dD/p

(1 + r)
.

Equilibrium leverage depends on current and future asset prices, but is otherwise

independent of the utilities or the endowments of the agents. In the extreme case

when the volatility of asset returns is zero, leverage reaches its maximum of 100%.9

Given a collection of assets with the same price, the asset whose future value has the

least bad downside can be leveraged the most.10 The No-Default Theorem suggests

that one reason leverage might have plummeted from 2006-2009 is because the worst

case return that lenders imagined got much worse.

Collateralized loans always fall into two categories. In the first category, a bor-

rower is not designating all the assets he holds as collateral for his loans. In this case

9This would be the case in any model without uncertainty in which the asset can be costlessly
seized in case of default, without moral hazard frictions.

10Suppose all the assets can be priced by the state prices a for U and b for D. Define the volatility
of a dollar of period one asset as the variance of its second period price plus dividend, computed
with respect to the probabilities (1 + r)a and (1 + r)b. Then the asset with the highest volatility
can be leveraged the least. Unfortunately even with two states, this volatility rule does not always
work, because, as we shall see, different assets may require different state prices to value them.
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he would not want to borrow any more at the going interest rates even if he did not

need to put up collateral (but was still required, by threat of punishment, to deliver

the same payoffs he would had he put up the collateral). His demand for loans is

then explained by conventional text book considerations of risk and return. If all

borrowers are in this case, then the rate of interest clears the loan market without

consideration of default. In the second category, some or all the borrowers might be

posting all their assets as collateral. In this case of scarce collateral, the loan market

clears at a level determined by the spectre of default. Our contribution is to have

proved that in binomial models with financial assets, the equilibrium LTV can be

taken to be the same easy to compute number, no matter which category the loan

is in.

The No-Default Theorem shows that the equilibrium LTV for each family of

contracts is determined by asset values, otherwise independent of the preferences or

endowments of the agents. If collateral is scarce, and agents are borrowing against

all of it, then total borrowing is also determined independently from agent charac-

teristics. On the other hand, if nobody wants to borrow beyond the debt capacity

of the asset, then the collateral requirements are irrelevant, and debt is determined

by the preferences of the agents in the economy, just as in models without collat-

eral. Nonetheless, as the No-Default Theorem states, the LTV can be taken to be

the same as that determined by the debt capacity. In short, there are two regimes.

First, when all the assets fall into the first category, we can say that the debt in the

economy is determined by the demand for loans. When all the assets and borrowers

fall into the second category, we can say the debt in the economy is determined by

the supply of credit, that is, by the maximum debt capacity of the assets.

The distinction between plentiful and scarce capital all supporting loans at the

same LTV suggests that is useful to keep track of a second kind of leverage that we

call diluted leverage. Consider the following example: if the asset is worth $100 and

its worst case payoff determines a debt capacity of $80, then in equilibrium we can

assume all debt loans written against this asset will have LTV equal to 80%. If an

agent who owns the asset only wants to borrow $30, then she could just as well put

up only three eights of the asset as collateral, since that would ensure there would be

no default. The LTV would then again be $30/$37.50 or 80%. Hence, it is useful to

consider what we call diluted LTV , namely the ratio of the loan amount to the total

value of the asset, even if some of the asset is not used as collateral. The diluted

LTV in this example is 30%, because the denominator includes the $62.50 of asset
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that was not used as collateral.

In the Simple Binomial State Pricing Theorem, the state prices a, b are like Arrow

prices. Their existence implies that there are no arbitrage possibilities in trading

the asset and the contracts. Even a trader who had infinite wealth and who was

allowed to make promises without putting up any required collateral could not find

a trade that made money in some state without ever losing money. However, the

equilibrium may not be an Arrow-Debreu equilibrium, even though the state prices

are uniquely defined. We shall see an example with unique state prices but Pareto

inferior consumptions (coming from the collateral constraints) in Section 5.

We shall see in Section 4 that the Simple Binomial No-Default Theorem continues

to hold in more complicated binomial models, but the Simple Binomial State Pricing

Theorem does not extend to more complex binomial models. In Section 5 we give

an example. These subtler binomial models can still be solved fairly easily by the

knowledge that actual default is irrelevant, but the pricing of assets and contracts

can become more interesting.

There are two key assumptions in the Binary No-Default Theorem. First, we

only consider financial assets, that is, assets that do not give direct utility at time 0

to their holders, and which yield dividends at time 1 that are independent from who

holds them at time 0. Second, we assume that the tree is binary.

In the first step of the proof, the Payoff Cone Lemma shows that the max min

promise plus the U Arrow security (obtained by buying the asset while selling the

max min debt contract), positively spans the cone of all feasible portfolio payoffs. The

assumption of two states is crucial. If there were three states, it might be impossible

for a portfolio holder to reproduce his original net payoffs from a portfolio in which

he can only hold the asset and buy or issue the max min debt.

In the second step of the proof, the State Pricing lemma shows that any two

portfolios that give the same payoffs in the two states must cost the same. One

interesting feature of the proof is that it demonstrates the existence of state prices

(that price all the assets) even though short-selling is not allowed. In general, if

an instrument (asset or bond) C has payoffs that are a positive combination of the

payoffs from instruments A and B, then the price of C cannot be above the positive

combination of the prices of A and B. Any buyer could improve on buying C by

combining the purchase of A and B. This logic gives an upper-bound for prices of all
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traded instruments. On the other hand, the price of C could be less than the price of

the positive combination of A and B because there may be sellers of this instrument,

but no agent interested in buying it, and the sellers cannot split C into A and B.

Nonetheless, we show that we can also get a lower-bound for the price of C. The

reason is that in our model, the sellers of the debt contract must own the collateral,

and hence on net are in fact buyers. What they buy is a positive linear combination

of A and B, which gives us an upper bound for the price of what they buy, and hence

the missing lower bound on what they sell. In short, the crucial argument in the

proof is that sellers are actually buyers of something else that is in the payoff cone.

As we will see later, when there are multiple assets, or multiple kinds of loans on

the same asset, the sellers of a bond in one family may not be purchasing something

in the payoff cone of another family. Each family may require different state prices.

That is why the No-Default Theorem holds more generally, but the State Pricing

Theorem does not.

In the third step of the proof we use both lemmas to show that in equilibrium

each agent is indifferent to replacing his portfolio with another such that on each

unit of collateral that he holds, he either leverages to the maximum amount without

risk of default, or does not leverage at all. The idea is as follows. If in the original

equilibrium the investor leveraged his asset purchases less than the max min, he

could always leverage some of his holdings to the max min, and the others not at

all. If in the original equilibrium the investor was selling more debt than the max

min, defaulting in the D state, then he could instead reduce his asset holdings and

his debt sales to the max min level per unit of asset held, and still end up buying the

same amount of the U Arrow security.11 Let the original buyer of the original risky

bond buy instead all of the new max min debt plus all the asset that the original

risky bond seller no longer holds. By construction the total holdings of the asset

is unchanged, and the total holdings of debt is zero, as before. Furthermore, by

construction, the seller of the bond has the same portfolio payoff as before, so he is

still optimizing. Since the total payoff is just equal to the dividends from the asset,

and that is unchanged, the buyer of the bond must also end up with the same payoffs

in the two states, so he is optimizing as well.

It is important to realize that the new portfolio may involve each agent holding

a new amount of the collateral asset, while getting the same payoff from his new

11If he continued to hold the same assets while reducing his debt to the max min per asset, then
he would end up with more of the U Arrow security.
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portfolio of assets and contracts. Agents are indifferent to switching to the new

portfolio because of the crucial assumption that the asset is a financial asset. If the

collateral were housing or productive land for example, the theorem would not hold;

it might well be that even with only two states agents would leverage in equilibrium

to the point where they would default in one of the states (as shown in an example

in Geanakoplos (1997, 2010)).

Finally, it is worth noting that in moving from an old equilibrium in which only

contracts j < j∗ are traded to the new max min equilibrium, diluted leverage stays

the same, but leverage on the margined assets rises. In moving from an old equi-

librium with default in which a contract j > j∗ is traded to the new max min

equilibrium, diluted leverage strictly declines, and leverage on the margined assets

also declines.

4 The Irrelevance of Actual Default in a General

Binomial Model of Endogenous Leverage.

In this section we show that the irrelevance of actual default is a much more gen-

eral phenomenon, as long as we maintain our two key assumptions: financial assets

and binary payoffs. We shall now present a model in which the conclusion of no

default with endogenous leverage still holds even though we allow for the following

extensions.

1. Arbitrary contracts.

Previously we assumed that the only possible contract promise was non-contingent

debt. Now we allow for arbitrary promises (jU , jD), provided that the max

min version of the promise (λ̄jU , λ̄jD) where λ̄ = max{λ ∈ R+ : λ(jU , jD) ≤
(dU , dD)} is also available.

2. Multiple kinds of contracts.

Not only can the promises be contingent, there can also be many different

(non-colinear) types of promises co-existing. See Figure 4.

3. Multiple assets.

We can allow for many different kinds of collateral at the same time, each one

backing many (possibly) non-collinear promises.
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Figure 4: Different types of contingent contracts

4. Production and degrees of durability.

The model already implicitly includes the storage technology for the asset.

Now we allow the consumption goods to be durable, though their durability

may be imperfect. We also allow for intra-period production. In fact, we allow

for general production sets, provided that the collateral stays sequestered, and

prevented from being used as an input.

5. Multiple goods.

Unlike our previous model, in each state of nature there will be more than one

consumption good.

6. Multiple periods.

We will extend our model to a dynamic model with an arbitrarily (finite)

number of periods.

7. Multiple states of nature.

In each point in time, we will allow for multiple states of nature, as long as

each (asset payoff, contract promise) pair takes on at most two values.
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4.1 Model

4.1.1 Time and Assets

Uncertainty is represented by the existence of different states of nature in a finite

tree s ∈ S including a root s = 0, and terminal nodes s ∈ ST . We denote the time

of s as t(s), so t(0) = 0. Each state s 6= 0 has a unique immediate predecessor s∗,

and each non-terminal node s ∈ S\ST has a set S(s) of immediate successors.

Suppose there are L = {1, ..., L} consumption goods ` and K = {1, ..., K} finan-

cial assets k which pay dividends dks ∈ RL
+ of the consumption goods in each state

s ∈ S. The dividends dks are distributed at state s to the investors who owned the

asset in state s∗.

Finally, qs ∈ RL
+ denotes the vector of consumption goods prices in state s,

whereas ps ∈ RK
+ denotes the asset prices in state s.

4.1.2 Investors

Each investor h ∈ H is characterized by a utility, uh, a discount factor, δh, and

subjective probabilities γhs denoting the probability of reaching state s from its

predecessor s∗, for all s ∈ S\{0}.We assume that the utility function for consumption

in each state s ∈ S, uh : RL
+ → R, is differentiable, concave, and weakly monotonic

(more of every good is strictly better). The expected utility to agent h is

Uh = uh(c0) +
∑
s∈S\0

δ
t(s)
h γ̄hs u

h(cs). (3)

where γ̄hs is the probability of reaching s fom 0 (obtained by taking the product of

γhσ over all nodes σ on the path (0, s] from 0 to s).

Investor h’s endowment of the consumption good is denoted by ehs ∈ RL
+ in each

state s ∈ S. His endowment of the assets at the beginning of time 0 is yh0∗ ∈ RK
+

(agents have initial endowment of assets only at the beginning). We assume that the

consumption goods are all present,
∑

h∈H(ehs + dsy
h
0∗) >> 0,∀s ∈ S.

4.1.3 Production

We allow for durable consumption goods (inter-period production) and for intra-

period production. For each s ∈ S\{0}, let F h
s : RL

+ → RL
+ be a concave inter-period
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production function connecting a vector of consumption goods at state s∗ that h is

consuming with the vector of consumption goods it becomes in state s. In contrast

to consumption goods, it is assumed that all financial assets are perfectly durable

from one period to the next, independent of who owns them.

For each s ∈ S, let Zh
s ⊂ RL+K denote the set of feasible intra-period production

for agent h in state s. Notice, that assets and consumption goods can enter as

inputs and outputs of the intra-period production process. Inputs appear as negative

components of zi < 0 of z ∈ Zh, and outputs as positive components zi > 0 of z.

4.1.4 Collateral and Contracts

Contract j ∈ J is a contract that promises the consumption vector js′ ∈ RL
+ in

each state s′. Each contract j defines its issue state s(j), and the asset k(j) used

as collateral. We denote the set of contracts with issue state s backed by one unit

of asset k by Jks ⊂ J. We suppose that each contract j ∈ Jks delivers only in the

immediate successor states of s, i.e. js′ = 0 unless s′ ∈ S(s). Contracts are defined

extensively by their payment in each successor state. Notice that this definition of

contract allows for promises with different baskets of consumption goods in different

states. Finally, Js =
⋃
k J

k
s and J =

⋃
s∈S\ST

Js.

The price of contract j in state s(j) is πs(j)j. An investor can borrow πs(j)j at s(j)

by selling contract j, that is by promising js′ ∈ RL
+ in each s′ ∈ S(s(j)), provided he

holds one unit of asset k(j) as collateral.

Since the maximum a borrower can lose is his collateral if he does not honor his

promise, the actual delivery of contract j in states s′ ∈ S(s(j)) is min{qs′ ·js′ , ps′k(j)+
qs′ · dks′}.

The Loan-to-Value LTVj associated to contract j in state s(j) is given by

LTVj =
πs(j)j
ps(j)k

. (4)

As before, the margin mj associated to contract j in state s(j) is 1 − LTVj .

Leverage associated to contract j in state s(j) is the inverse of the margin, 1/mj and

moves monotonically with LTVj .

Finally, as in Section 3, we define the average loan to value, LTV for asset k, as

the trade-value weighted average of LTVj across all debt contracts actively traded
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in equilibrium that use asset k as collateral, and the diluted average loan to value,

LTV k
0 (which includes assets with no leverage) by

LTV k =

∑
h

∑
j max(0, ϕhj )πs(j)j∑

h

∑
j max(0, ϕhj )ps(j)k

≥
∑

h

∑
j max(0, ϕhj )πs(j)j∑
h y

h
0∗ps(j)k

= LTV k
0 .

4.1.5 Budget Set

Given consumption prices, asset prices, and contract prices (q, p, π), each agent h ∈ H
choses intra-period production plans of goods and assets, z = (zc, zy), consumption,

c, asset holdings, y, and contract sales/purchases ϕ in order to maximize utility (3)

subject to the budget set defined by

Bh(q, p, π) = {(zc, zy, c, y, ϕ) ∈ RSL ×RSK ×RSL
+ ×RSK

+ × (RJs)s∈S\ST
: ∀s

qs · (cs − ehs − F h
s (cs∗)− zsc) + ps · (ys − ys∗ − zsy) ≤

qs ·
∑

k∈K d
k
sys∗k +

∑
j∈Js

ϕjπj −
∑

k∈K
∑

j∈Jk
s∗
ϕjmin{qs · js, psk + qs · dks};

zs ∈ Zh
s ;∑

j∈Jk
s
max(0, ϕj) ≤ yks ,∀k}.

In each state s, expenditures on consumption minus endowments plus any pro-

duced consumption good (either from the previous period or produced in the current

period), plus total expenditures on assets minus asset holdings carried over from

previous periods and asset output from the intra-period technology, can be at most

equal to total asset deliveries plus the money borrowed selling contracts, minus the

payments due at s from contracts sold in the past. Intra-period production is feasible.

Finally, those agents who borrow must hold the required collateral.

4.1.6 Collateral Equilibrium

A Collateral Equilibrium in this economy is a set of consumption good prices, fi-

nancial asset prices and contract prices, production and consumption decisions, and

financial decisions on assets and contract holdings ((q, p, π), (zh, ch, yh, ϕh)h∈H) ∈
(RL

+)s∈S × (RK
+ ×RJs

+ )s∈S\ST
× (RS(L+K) ×RSL

+ ×RSK
+ × (RJs)s∈S\ST

)H such that

1.
∑

h∈H(chs − ehs − F h
s (cs∗)− zhsc) =

∑
h∈H

∑
k∈K y

h
s∗kd

k
s ,∀s.
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2.
∑

h∈H(yhs − yhs∗ − zhsy) = 0, ∀s.

3.
∑

h∈H ϕ
h
j = 0,∀j ∈ Js,∀s.

4. (zh, ch, yh, ϕh) ∈ Bh(q, p, π),∀h

(z, c, y, ϕ) ∈ Bh(q, p, π)⇒ Uh(c) ≤ Uh(ch),∀h.

Markets for consumption, assets and promises clear in equilibrium and agents

optimize their utility in their budget set.

4.2 A More General No-Default Theorem

It turns out that we can still assume no default in equilibrium without loss of gen-

erality in this much more general context as the following theorem shows.

Binomial No-Default Theorem:

Suppose that S is a binomial tree, that is S(s)={sU,sD} for each s ∈ S\ST .
Suppose that all assets are financial assets. Suppose that every contract is a one

period contract. Let ((q, p, π), (zh, ch, yh, ϕh)h∈H) be an equilibrium. Suppose that

for any state s ∈ S\ST , any asset k ∈ K, and any contract j ∈ Jks , the max

min promise (λ̄jsU , λ̄jsD) is also available to be traded , where λ̄ = max{λ ∈ R+ :

λ(qsU · jsU , qsD · jsD) ≤ (psUk + qsU · dsU , psDk + qsD · dsD)}. Then we can construct

another equilibrium ((q, p, π), (zh, ch, ȳh, ϕ̄h)h∈H) with the same consumption, asset

and contract prices and the same production and consumption choices, in which only

max min contracts are traded.

Proof:

The proof of the Simple Binomial No-Default Theorem can be applied in this more

general context state by state and ray by ray. Take any s ∈ S\ST and any asset

k ∈ K. Partition Jks into Jks (r1)∪...∪Jks (rn) where the ri are distinct rays (µi, νi) ∈ R2
+

of norm 1 such that j ∈ Jks (ri) if and only if (qsU · jsU , qsD · jsD) = λ(µi, νi) for some

λ > 0. For each agent h ∈ H, consider the portfolio (yh(s, k, i), ϕh(s, k, i)) defined by

ϕhj (s, k, i) = ϕhsj if j ∈ Jks (ri) and 0 otherwise.

yh(s, k, i) =
∑

j∈Jk
s (ri)

max(0, ϕhsj).
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Denote the portfolio payoffs in each state by

whU(s, k, i) = yh(s, k, i)[psUk + qsUd
k
sU ]−

∑
j∈Jk

s (ri)

ϕhj (s, k, i) min(qsU · jsU , psUk + qsUd
k
sU).

whD(s, k, i) = yh(s, k, i)[psDk + qsDd
k
sD]−

∑
j∈Jk

s (ri)

ϕhj (s, k, i) min(qsD · jsD, psDk + qsDd
k
sD).

If
µi
νi
<
psUk + qsUd

k
sU

psDk + qsDdksD
.

then the combination of the U Arrow security (which can be obtained by buying the

asset k while borrowing on the max min contract of type (s, k, i)) and the max min

contract of type (s, k, i) positively spans (whU(s, k, i), whD(s, k, i)). Thus we can apply

the proof of the Simple Binomial No-Default Theorem to replace all the above trades

of contracts in Jks (ri) with a single trade of the max min contract of type (s, k, i). If

µi
νi
>
qsUk + psUd

k
sU

qsDk + psDdksD

then exactly the same logic of the Simple Binomial No-Default Theorem applies, but

with the D Arrow security instead of the U Arrow security. If there is equality in the

above comparison, then the contract and the asset are perfect substitutes, so there

is no need to trade the contracts in the family at all. This concludes the proof.�

4.3 Discussion

The main idea of the proof is to apply the simple proof of Section 3 state by state

to each asset and each homogeneous family of promises using the asset as collateral.

It may now be the case that sometimes the payoff cone is given by the positive span

of the max min of the family and the D Arrow security, instead of the U Arrow

security. But the logic of the argument stays completely unaltered.

The same proof applies even if there are more than two successor states, provided

that for each financial asset the states can be partitioned into two subsets on each of

which the collateral value (including dividends of the asset) and the promise value

of each contract written on the asset are constant.

The No-Default Theorem can also be extended to contracts with longer maturi-

ties. Suppose all the contracts written on some financial asset come due in the same
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period and that the states in that period can be partitioned into two subsets on each

of which the collateral value (including dividends of the asset) and the promise value

of each contract written on the asset are constant. Suppose also that the financial

asset used as collateral cannot be traded or used for production purposes before ma-

turity. Then the proof of the Binomial No-Default Theorem shows that without loss

of generality we can assume no default in equilibrium.

Finally, notice that for each ray, say ri, we obtain (by the same logic as before),

state prices ai and bi. However, they need not be the same as the state prices

obtained when the argument is applied to a different ray, say rj. That is why,

though the No-Default Theorem still holds, the State Pricing theorem does not. We

will give examples of this in the next section.

5 Examples

In this section we study examples of two-period economies extensively used in the

financial literature: i) CAPM investors with differences in risk aversion or differences

in endowments, and ii) a continuum of risk neutral agents with heterogeneous beliefs.

The examples illustrate when the No-Default and State Pricing theorems hold and

when they fail.

5.1 Example 1: Binomial CAPM

We present two binomial examples with one financial asset in which the No-Default

Theorem and the State Pricing Theorem hold.

We assume one perishable consumption good and one asset which pays dividends

dU > dD of the consumption good. Consider two types of mean-variance investors,

h = T,A, characterized by utilities Uh = uh(c0) +
∑

s∈ST
γsu

h(cs), where uh(cs) =

cs − 1
2
αhc2s, s ∈ {0, U,D}. Agents do not discount the future. Agents have an initial

endowment of the asset, yh0∗ , h = T,A. They also have endowment of the consumption

good in each state, ehs ,∀s, h = T,A. It is assumed that all contract promises are of

the form (j, j), j ∈ J, each backed by one unit of the asset as collateral. Agents

will never deliver on a promise beyond the value of the collateral since we assume

non-recourse loans.
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Example 1.1 would satisfy all the assumptions of the classical CAPM provided

that we assumed agents always kept their promises, without the need of posting

collateral, and so would example 1.2 (extended to untraded endowments). We will

present collateral equilibria which illustrate our theorems and the differences from

classical CAPM.

5.1.1 Example 1.1: CAPM with Differences in Risk Aversion.

Agents in this case have different levels of risk aversion, so that αT < αA. Suppose

agents each own one unit of the asset, yh0∗ = 1, h = T,A. Suppose consumption good

endowments are given by eT = (eT0 , (e
T
U , e

T
D)) = (1, (1, 1)) and eA = (eA0 , (e

A
U , e

A
D)) =

(1, (1, 1)). Utility parameters are given by, γU = γD = .5 and αT = .05 and αA = .1.

Finally, asset payoffs are dU = 1 and dD = .2.

Table 1. Collateral Equilibrium with No Default: Prices and Leverage.

Variable Notation Value

Asset Price p 0.5590

State Price a 0.4585

State Price b 0.5021

Max min Contract Price πj∗ 0.1921

Leverage LTVj∗ 0.3437

According to the Simple Binomial No-Default Theorem, in searching for equilib-

rium we never need to look beyond the max min promise j∗ = .2, for which there

will be no default. Tables 1 and 2 present this max min collateral equilibrium. The

tolerant agents buy most of the asset in the economy, yT = 1.8372, and use all of

their holdings as collateral, leveraging via the max min contract, that is, by promis-

ing (.2)(1.8372) in both states U and D. The risk averse investors sell most of their

asset endowment and lend to the more tolerant investors, that is, by buying the

promises.12

12To find the equilibrium we guess the regime first and we solve for three variables, p, πj∗ and φj∗,
a system of three equations. The first equation is the first order condition for lending corresponding
to the risk averse investor:π = qU (1−αAcA

U )dD+qD(1−αAcA
D)dD

1−αAcA
0

.The second equation is the first order
condition of the tolerant investor for purchasing the asset via the max min contract, p − π =
qU (1−αT cT

U )(dU−dD)+qD(1−αT cT
D)(dD−dD)

1−αT cT
0

. The third equation is the first order condition for the risk

averse investor for holding the asset, p = γU (1−αAcA
U )dU+γD(1−αAcA

D)dU

1−αAcA
0

. Finally, we check that the
regime is genuine, confirming that the tolerant investor really wants to leverage to the max, for this
to be the case, π > γU (1−αT cT

U )dD+γD(1−αT cT
D)dD

1−αT cT
0

.
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Table 2. Collateral Equilibrium with No Default: Allocations.

Asset and Collateral

Asset y Contracts ϕj∗

Tolerant 1.8372 1.8372

Averse 0.1628 −1.8372

Consumption

s = 0 s = 1 s = 2

Tolerant 0.8850 2.4698 1.000

Averse 1.1150 1.5302 1.400

By the Simple Binomial State Pricing Theorem, all the contracts j 6= j∗, as well

as j = j∗, can be priced by state prices a = 0.4585 and b = 0.5021. As mentioned

before, by the No-Default Theorem, we do not need to investigate trading in any of

the contracts j 6= j∗. Indeed it is easy to check that this is a genuine equilibrium,

and that no agent would wish to trade any of these contracts j 6= j∗ at the prices

given by a, b. Every agent who leverages chooses to sell the same max min contract,

hence asset leverage and contract leverage are the same and described in the table.

This equilibrium is essentially unique, but not strictly unique. In fact, it is easy

to check that there is another equilibrium with default as shown in Tables 3 and 4, in

which the tolerant agents borrow by selling the contract j = .2651 > j∗ = .2. In the

default equilibrium, leverage is higher and the asset holdings of the borrowers are

higher (so diluted leverage is much higher). They borrow more money. However, as

guaranteed by the Simple Binomial Default Theorem, in both equilibria consumption

and asset and contract prices are the same: actual default is irrelevant.

Table 3. Collateral Equilibrium with Default: Prices and Leverage.

Variable Notation Value

Asset Price p 0.5590

Promise j 0.2651

Contract j Price πj 0.2219

Leverage LTVj∗ 0.3969
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Table 4. Collateral Equilibrium with Default: Allocations.

Asset and Collateral

Asset y Collateral ϕj

Tolerant 2 2

Averse 0 −2

Consumption

s = 0 s = 1 s = 2

Tolerant 0.8850 2.4698 1.000

Averse 1.1150 1.5302 1.400

Between these two equilibria, the Modigliani-Miller Theorem holds; there is an

indeterminacy of debt issuance in equilibrium. However, leverage cannot be reduced

below the max min contract level. If the risk tolerant agents were forced to issue still

less debt, they would rise in anger. Thus in this example, the No-Default Theorem

holds while the Modigliani-Miller Theorem fails beyond a limited range.

Finally, the collateral equilibria do not correspond with the Arrow-Debreu Equi-

libria or the classical CAPM shown in Table 5.

Table 5. Arrow-Debreu and CAPM equilibrium.

Asset Price p 0.5629

State Price pU 0.4643

State Price pD 0.4929

Consumption

s = 0 s = 1 s = 2

Tolerant 0.8951 2.2598 1.1681

Averse 1.1049 1.7402 1.2319

CAPM Portfolios: Market Bond

Tolerant 0.6823 −0.4695

Averse 0.3177 0.4695

State prices in collateral equilibrium are different from the state prices in Arrow-

Debreu equilibrium. The asset price in complete markets is slightly higher than in

collateral equilibrium. Finally, investors hold shares in the market portfolio (4, 2.4)

(aggregate endowment) and in the riskless asset (1, 1).
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5.1.2 Example 1.2: CAPM with Differences in Wealth.

Agents in this case have different wealth. Consider the same CAPM model as before

but with the following parameter values. Suppose agents each own one unit of

the asset, yh0∗ = 1, h = T,A. Suppose consumption good endowments are given

by eT = (eT0 , (e
T
U , e

T
D)) = (1, (1, 5)) and eA = (eA0 , (e

A
U , e

A
D)) = (3, (5, 5)). Utility

parameters are given by, γU = γD = .5 and αT = .1 and αA = .1. Finally, asset

payoffs are again dU = 1 and dD = .2. In this example agent T has a tremendous

desire to buy U Arrow securities and present consumption, and to sell D Arrow

securities. But he is limited by the restriction to non-contingent contract promises

(j, j).

Tables 6 and 7 present the max min collateral equilibrium. In the collateral

equilibrium type-T agents buy all the asset in the economy and use all of their

holdings as collateral, leveraging via the max min contract. On the other hand,

type-A investors sell all their asset endowment and lend.

Table 6. Collateral Equilibrium with No Default: Prices and Leverage.

Variable Notation Value

Asset Price p 0.4572

State Price a 0.4027

State Price b 0.2725

Max min Contract Price πj∗ 0.1350

Leverage LTVj∗ 0.2952

Table 7. Collateral Equilibrium with No Default: Allocations.

Asset and Collateral

Asset y Contracts ϕj∗

Tolerant 2 2

Averse 0 −2

Consumption

s = 0 s = 1 s = 2

Tolerant 0.8122 2.6 5

Averse 3.1872 5.4 5.4

Unlike the previous example the no-default equilibrium in this example is unique.

We cannot find another equilibrium involving default with borrowers issuing bigger
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promises, since there is not enough collateral in the economy. In this case, as before,

the collateral equilibrium does not coincide with the complete markets equilibrium

shown in Table 8. Unlike before, in this case the complete market asset price is lower

than the collateral equilibrium asset price.

Table 8. Arrow-Debreu and CAPM equilibrium.

Asset Price p 0.4350

State Price pU 0.3750

State Price pD 0.3

Consumption

s = 0 s = 1 s = 2

Tolerant 0.8024 3.1018 4.4814

Averse 3.1976 4.8982 5.9186

CAPM Porfolios Market Bond

Tolerant 0.5749 1.4970

Averse 0.4251 −1.4970

It is interesting that the asset price in binomial collateral equilibrium can be

either higher or lower that the complete market price.

5.2 Example 2: Binomial Economy with Heterogeneous Pri-

ors and Two Assets

The following example taken from Fostel-Geanakoplos (2012b) shows how the No-

Default theorem holds but the State Pricing Theorem can fail even in a binomial

economy, once we add multiple assets.

There are two assets in the economy which produce dividends of the consumption

good at time 1. The riskless asset X produces dXU = dXD = 1 unit of the consumption

good in each state, and the risky asset Y produces dYU = 1 unit in state U and

0 < dYD < 1 unit of the consumption good in state D. For added simplicity, we

suppose that there is no consumption in period 0.

Each investor in the continuum h ∈ H = (0, 1) is risk neutral and characterized

by a linear utility for consumption of the single consumption good c at time 1, and

subjective probabilities, (γhU , γ
h
D = 1 − γhU). The expected utility to agent h ∈ H is

Uh(cU , cD) = γhUcU + γhDcD
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We shall suppose that γhU is strictly monotonically increasing and continuous in

h. Each investor h ∈ (0, 1) has an endowment of one unit of each asset at time 0 and

nothing else. Since only the output of Y depends on the state and 1 > dYD, higher

h denotes more optimism. Heterogeneity among the agents stems entirely from the

dependence of γhU on h.

In this economy we suppose that the risky asset Y can be used as collateral to

back any promise of the form (0, j). From the Binomial No-Default Theorem, we

know that any equilibrium is equivalent to one in which the only contract traded is

the max min contract j = dYD, that is, the contract deliveriyng (0, dYD). The Y -payoff

cone positively spanned by the asset Y , the contracts j that use Y as collateral, and

the leveraged purchases of the asset Y , is all of R2
+. In effect, the asset Y can be

tranched into arbitrary contingent promises. Of course the promise (0, dYD) is like a

D Arrow security, and by buying the asset Y and selling off the tranche (0, dYD), any

agent can obtain the U Arrow security.

By the first part of the Simple State Pricing Lemma, any contract written on the

asset Y can be priced by state prices a and b. But this does not mean that other

assets whose payoffs lie in the Y−payoff cone must also be priced by these state

prices. It might well be that asset X sells for a lower price, precisely because X

cannot be used as collateral and thus cannot be tranched into the same pieces as Y .

We calculate the equilibrium for the probabilities γhU = 1− (1− h)2 and dYD = .4.

Results are shown in Table 9.

Table 9: Collateral Equilibrium.

Asset Y Price p 1.1413

Price of Arrow U a 0.8445

Price of Arrow D b 0.7420

Marginal buyer of Arrow U h1 0.6056

Marginal buyer of Arrow D h2 0.1386

Without loss of generality, we fix the price of X to be 1 in state 0, and the price

of consumption to be 1 in states U and D. We denote the price of the asset at 0 by

p. In equilibrium there are two marginal buyers h1 and h2. All agents h > h1 will

buy all of Y , and sell the down tranche (0, dYD), hence effectively holding only the U

Arrow security. Agents h2 < h < h1 will sell all their endowment of Y and purchase
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all of the riskless asset X. Finally, agents h < h2 will sell their assets Y and X and

buy the down tranche from the most optimistic investors.

In this example the No-Default Theorem holds, and collateral equilibrium does

not involve default. But notice that in this example the Binomial State Pricing

Theorem fails. The price a = 0.8445 of the U Arrow security and the price b = 0.7420

of the D Arrow security correctly price the risky asset Y (1.1314 = .8445+(.4).7420),

and the contracts promising (0, j). But the state prices a and b do not price the

riskless asset X, whose price is equal to 1 < pU + pD = 1.5865. The reason for

this, as discussed in Section 3, is that though we have an upper bound for the price

(1.5865) given by the seller’s side, we cannot find a lower bound. The seller of X is

not on net buying anything that lies in the payoff cone, since X cannot be tranched.

This is why in this more complicated Binomial economy with two assets, we cannot

find state prices that price all the securities. This, as explained in Fostel-Geanakoplos

(2012b), can generate asset prices bubbles.

The equilibrium is, as usual, not unique because there are other trivially equiva-

lent equilibria. Trade could have happened instead via any promise (0, j) backed by

Y with j > dYD. Such a contract would have sold for the same price as the promise

(0, dYD), and delivered the same amount.

5.3 Example 3: Binomial Economy with One Asset and Two

Families of Financial Contracts.

This example shows how the Simple State Pricing Theorem fails when two contract

types can be written on the same asset.

Suppose there are four investors h = A,B,C,D with utilities

UA(c0, cU , cD) = c0 + cU ,

UB(c0, cU , cD) = c0 + min(cU ,
cD
2

)

UC(c0, cU , cD) = c0 + min(
cU
2
, cD)

UD(c0, cU , cD) = c0 + cD

Suppose agents A and D each begin with 1/2 unit of the consumption good c0

and nothing else. So eA = (1/2, (0, 0)) = eD and yA0∗ = yD0∗ = 0. Agents B and C
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each begin with one unit of the asset Y . So eB = (0, (0, 0)) = eC and yB0∗ = yC0∗ = 1.

Suppose Y pays dU = dD = 1 of the consumption good over the two states. Finally,

suppose that there are two contract families, I and J , where the i-th contract of

family I pays i(1
2
, 1) and the j-th contract of family J pays j(1, 1

2
). It is obvious

that the max min contracts are i∗ = 1 = j∗.

Table 10. Collateral Equilibrium with No Default: Prices and Leverage.

Variable Notation Value

Asset Price p 1

Max min Contract Price πj∗ 0.5

Max min Contract Price πi∗ 0.5

Leverage LTVj∗ 0.5

Leverage LTVi∗ 0.5

Table 11. Collateral Equilibrium with No Default: Allocations.

Asset and Collateral

Asset y Contracts ϕj∗ Contracts ϕi∗

A 1 0 1

B 0 0 −1

C 0 −1 0

D 1 1 0

Consumption

s = 0 s = 1 s = 2

A 0 0.5 0

B 0.5 0.5 1

C 0.5 1 0.5

D 0 0 0.5

It is also obvious that there is an equilibrium with p = 1 and πi∗ = 1/2 = πj∗

described by Tables 10 and 11.13 Notice that the state prices (a, b) = (1, 0) are needed

to price the asset and all the j contracts, while different state prices (a, b) = (0, 1)

are needed to price the asset and all the i contracts.14 This is the case because agent

D, when selling contract j, is effectively buying the D Arrow security which is not

13This can most easily be seen by considering the two sub-economies {A,B} and {C,D} sepa-
rately, and then realizing that their equilibria can be spliced together to form an equilibrium for
the economy with all the agents {A,B,C,D}.

14The Arrow-Debreu equilibrium has state prices pU = pD = 1/4; agents B and C end up
consuming 1/2 each of c0, agent A consumes 2 units of c1, and agent D consumes 2 units of cD.
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in the positive span of the max min of the family i and the U Arrow security (the

payoff cone for that ray). On the other hand, agent A when selling contract i, is

effectively buying the U Arrow security, which is not in the positive span of the max

min of the family j and the D Arrow security (the payoff cone for that ray).

5.4 Example 4. CAPM with Default

In this example we extend example 1 to three states of the world, showing that then

the No-Default Theorem and the State Pricing theorem fail to hold. In this example

actual default matters. We retain the CAPM quadratic utilities, defined in general

in example 1. But now S = {0, U,M,D}. Asset Y pays ds units of the consumption

good in state s, where dU ≥ dM ≥ dD. Only non-contingent promises of the form

(j, j, j) are allowed, and each one is collateralized by one unit of asset Y .

We solve the equilibrium for the following parameter values: asset payoffs (dU , dM , dD) =

(3, 2, 1), asset endowments, yT0∗ = 0, yA0∗ = 1, good endowments, eT = (eT0 , (e
T
U , e

T
M , e

T
D)) =

(2, (1, 2, 2)), and eA = (eA0 , (e
A
U , e

A
M , e

A
D)) = (6, (6, 2, 2)), risk aversion αT = .1, αA =

.1, finally, probabilities, γhs = 1/3, ∀h,∀s. Tables 12 and 13 show the equilibrium.

Table 12. Collateral Equilibrium with Default: Prices and Leverage.

Variable Notation Value

Asset Price p 2.4041

Contract Price πj=dM
2.0836

Leverage LTVj=dM
0.8666

Table 13. Collateral Equilibrium with Default: Allocations.

Asset and Collateral

Asset y Contracts ϕj=dM

Tolerant 1 1

Averse 0 −1

Consumption

s = 0 s = 1 s = 2 s = 3

Tolerant 1.6795 2 2 2

Averse 6.3205 8 4 3

In equilibrium type-T agents buy all the asset in the economy and use it all

as collateral to issue contracts that promises dM = 2. On the other hand, type-A
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agents sell all their asset and lend. There is default in state D in the economy.

The No-Default theorem does not apply in this case. Borrowers do not want to

borrow any less than what they do in equilibrium. Thus the max min contract

(1, 1, 1) = (dD, dD, dD) is not traded in equilibrium, nor would agents be happy

trading it in any equilibrium of this example.

5.5 Example 5: Heterogeneous Beliefs with Default and Mul-

tiple LTVs.

This example is analogous to examples in Fostel-Geanakoplos (2012a). Consider a

continuum of risk neutral agents h ∈ H = (0, 1) with heterogeneous priors γhs over

the states s in period 1. Suppose each agent begins with one unit of asset Y, and

one unit of asset X. We suppose there is no consumption at time 0, and that there

are three states of nature instead of two. Asset Y pays off dU > dM > dD units

of the consumption good in the three states, and asset X pays off 1 unit of the

consumption good in each of the three states. Only Y can be used as collateral, and

every contract j promises a non-contingent vector (j, j, j) of the consumption good

in the three states. Not only do we find actual default, but we also find another

departure from the No-Default Theorem. This example shows that two contracts

will be traded: a risk-less contract as before that promises dD, the worst-case or max

min scenario in the future, and a risky contract that promises dM in all states but

defaults and delivers only dD in s = D.

For concreteness we display the equilibrium for the following prior probabilities

and asset payoffs: γhU = h, γhM = h(1 − h) and γhD = (1 − h)2, and dU = 3, dM = 2

and dD = 1. Notice that the higher the h, the more optimistic the agent.

Table 14 shows the results. Without loss of generality, we take the price of asset

X to be 1 in state 0, and the price of the consumption good to be 1 in each state

s = U,M,D. It turns out that the agents can be partitioned into four groups,

separated by the three marginal buyers hM , hD, hB. All agents above hM = .93 hold

only the risky asset Y , obtained by selling all their X and borrowing all they can

on their Y via the risky bond j = dM . Their total holdings of Y are then the

1 − hM they collectively held as endowments, plus the y they collectively bought,

where it turns out that 1 − hM + y = .35.15 The next most optimistic agents

15Notice that total asset holdings consist of initial endowments, 1− .93, plus new purchases, .27.
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.93 = hM > h > hD = .66 buy the remaining .65 units of the risky asset Y, obtained

by selling all their X and by selling the riskless contract j = dD. Investors with

.66 = hD > h > hB = .48 sell all their assets X and Y and simply buy (lend) in

the risky bond market, i.e. they buy all of the risky contracts j = dM . The most

pessimistic investors h < hB = .48 hold all of the X and buy (lend) in the default-free

market j = dD. Clearly the riskless contract j = dD and the asset X are perfect

substitutes, and since the most pessimistic agents are buying both, they must sell

for the same price per unit promised.

Table 14: Collateral Equilibrium with Default and Multiple Contracts.

Marginal Buyers

hM 0.9307

hD 0.6589

hB 0.4839

Prices

Asset price p 2.4197

Bond price πdM
1.7336

Asset purchases in the risky market y 0.276

When the asset can take on at most two immediate successor values, equilibrium

determines a unique actively traded promise (the max min contract) and hence lever-

age. With three or more successor values, we cannot expect just a single promise to

emerge in equilibrium. In this example there is default in equilibrium, and different

agents buy the same asset with different leverage. But equilibrium still determines

the economy-wide average leverage used to buy the asset. Equilibrium leverage is

presented in table 15. There are four securities in total, three risky securities and

one risk-less security. Columns 2 and 3 show the holdings and value of such holdings

for each of the securities. Most importantly, column 4 shows the LTV of each of the

two traded contracts. As was expected, LTV is higher for the risky contracts (they

have a higher promise), LTVj=dM
> LTVj=dD

. Finally, column 5 shows the asset

LTV Y . As defined in section 2, asset LTV is a weighted average, so it is obtained

from the total amount borrowed using all contracts, .5986 + .6547 divided by the

total value of collateral, 2.4197× 1.
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Table 15: Equilibrium Leverage.

Security Holdings Holdings Value Contract LTV Asset LTV

Y lev Medium 0.3453 0.8355 0.7165 0.5180

Y lev Min 0.6547 1.5842 0.4133

Risky Bond 0.3453 0.5986

Riskless Bond 0.6547 0.6547
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