
 
LEVERAGE AND DEFAULT IN BINOMIAL ECONOMIES: 

A COMPLETE CHARACTERIZATION 
 
 

By 
 

Ana Fostel and John Geanakoplos 
 
 
 

September 2012 
Revised March 2015 

 
 
 
 
 
 

COWLES FOUNDATION DISCUSSION PAPER NO. 1877RRR 
 
 
 
 
 
 
 
 
 
 
 
 
 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 
YALE UNIVERSITY 

Box 208281 
New Haven, Connecticut 06520-8281 

 
 http://cowles.econ.yale.edu/  

http://cowles.econ.yale.edu/


Leverage and Default in Binomial Economies: A
Complete Characterization.

Ana Fostel∗ John Geanakoplos†‡

February, 2015

Abstract

Our paper provides a complete characterization of leverage and default
in binomial economies with financial assets serving as collateral. Our Bino-
mial No-Default Theorem states that any equilibrium is equivalent (in real
allocations and prices) to another equilibrium in which there is no default.
Thus actual default is irrelevant, though the potential for default drives the
equilibrium and limits borrowing. This result is valid with arbitrary prefer-
ences and endowments, contingent or non-contingent promises, many assets
and consumption goods, production, and multiple periods. We also show that
no-default equilibria would be selected if there were the slightest cost of using
collateral or handling default. Our Binomial Leverage Theorem shows that
equilibrium Loan to Value (LTV ) for non-contingent debt contracts is the ra-
tio of the worst-case return of the asset to the riskless gross rate of interest. In
binomial economies leverage is determined by down risk and not by volatility.
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1 Introduction

The recent financial crisis might well be understood as the bottom of a leverage cycle
in which leverage, asset prices and investment crashed together. It was preceded by
years in which asset prices, investment and the amount of leverage in the financial
system increased dramatically. What determines leverage in equilibrium? Do these
levels involve default?

Our paper provides a complete characterization of leverage and default in binomial
economies with financial assets serving as collateral. Binomial economies are the
simplest economies in which uncertainty matters. It is not surprising therefore that
they have played a central role in finance, such as in Black-Scholes pricing. With
our characterization, the binomial model also becomes a tractable tool to study the
effect of endogenous leverage on asset prices, consumption, and investment.

Our first result, the Binomial No-Default Theorem, states that in binomial economies
with financial assets serving as collateral, any equilibrium is equivalent (in real al-
locations and prices) to another equilibrium of the same economy in which there
is no default. Thus potential default has a dramatic effect on equilibrium, but ac-
tual default does not. The Binomial No-Default Theorem is valid in a very general
context with arbitrary preferences and endowments, contingent and non-contingent
promises, many assets, many consumption goods, multiple periods, production, and
with pyramiding (in which collateralized promises can serve as collateral for further
promises).

The Binomial No-Default Theorem does not say that equilibrium is unique, only
that each equilibrium can be replaced by another equivalent equilibrium in which
there is no default. In particular, it proves the existence of a no-default equilibrium.
However, we show that among all equivalent equilibria, the equilibria which use
the least amount of collateral never involve default. These collateral minimizing
equilibria would naturally be selected if there were the slightest transactions cost in
using collateral or handling default. In these equilibria we prove that the scale of
promises per unit of collateral is unambiguously determined simply by the payoffs
of the underlying collateral, independent of preferences or other fundamentals of the
economy. Agents will promise as much as they can while assuring their lenders that
the collateral is enough to guarantee delivery.

Any equilibrium with default can trivially be reproduced by an equilibrium without
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default in a different economy in which the promises have been changed to mimic the
actual deliveries in the original equilibrium. If the original set of promises was incom-
plete, this typically would mean creating a new promise outside the cone spanned
by the original promises. The No Default Theorem presented here states something
stronger: the no default equilibrium can be obtained in the original incomplete mar-
kets economy without adding new promises. For instance, if only non-contingent debt
contracts are allowed in the original economy, then the theorem shows that there is
an equilibrium in which all agents choose to trade only the safe non-contingent debt
contract.

The No-Default Theorem has a sort of Modigliani-Miller feel to it. But the theorem
does not assert that the debt-equity ratio is irrelevant. It shows that if we start from
any equilibrium with default, we can move to an equivalent equilibrium with less
leverage, in which nobody defaults. The theorem does not say that starting from an
equilibrium with no default, one can construct another equivalent equilibrium with
even less leverage. Typically one cannot. Modigliani-Miller fails more generally in
our model simply because the issuer of the debt must hold the collateral backing it.

Our second result, the Binomial Leverage Theorem, provides a simple formula for
the Loan to Value (LTV ), the ratio between the amount borrowed and the value of
the asset used as collateral. It shows that when promises are non-contingent, as they
typically are for the bulk of collateralized loans, the LTV on each financial asset in
any collateral minimizing equilibrium is given by:

LTV = worst case rate of return

riskless gross rate of interest
.

The Binomial Leverage Theorem shows that leverage is endogenously determined in
equilibrium by the Value at Risk equals zero rule, often assumed in the literature.
Though simple and easy to calculate, this formula provides interesting insights. First,
it explains which assets are easiest to leverage: the assets whose future value has the
least down risk can be leveraged the most. Second, it explains why changes in down
risk can have such a big effect on equilibrium even if they hardly change expected
payoffs: they change leverage. The theorem suggests that one reason leverage might
have plummeted from 2006-2009 is because the worst case return that lenders imag-
ined got much worse.

Many papers have assumed a link between volatility and leverage. The Binomial
Leverage Theorem indeed shows that as the world becomes more dangerous, leverage
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goes down. But volatility is not in general an appropriate measure of danger. We
show that it is possible to give examples in which higher volatility assets are leveraged
more (because their volatility comes from upside risk and not down side risk). In
the binomial world, down risk, not volatility, determines leverage.

Leverage is genuinely endogenous in Collateral Equilibrium. Equilibrium determines
a menu, called the Credit Surface, specifying for each LTV from 0% up to 100%
the lowest interest rate at which the market will lend. Borrowers are free to choose
whichever leverage they want. In the classical model of perfect competition, where
full delivery on promises is guaranteed by assumption, the Credit Surface is flat:
each agent believes she could borrow as much as she likes at the same interest rate.
In Collateral Equilibrium the Credit Surface is flat as long as the collateral is big
enough to guarantee delivery for sure, but is upward sloping once LTV surpasses
a threshold, not because of oligopoly or market power effects, and not because of
asymmetric information or other cash flow problems, but rather because the market
understands that the same collateral does not as reliably back a bigger promise. If
agents choose on the flat part of the Credit Surface, we say that leverage is demand
determined. But if agents are choosing on the strictly increasing part of the Credit
Surface, then we say that leverage is supply determined, since the agents would like
to borrow more at the equilibrium interest rates, but do not because lenders would
raise the rate.

The Binomial Leverage Theorem states that we can always assume that all agents
are choosing the same point on the Credit Surface, namely the kink between the
flat and the increasing part of the Credit Surface. The choice of leverage turns out
to be independent of agent preferences, but determined exclusively by shocks to
anticipated asset returns. Agents can borrow more than our LTV formula specifies,
but they all choose not to do so because they do not want to pay a higher interest
rate. Although agents are free to choose any leverage they still may feel leverage
constrained.

If an agent is choosing an LTV on the flat segment of the Credit Surface, she would
be indifferent to moving right to the kink without paying any higher interest simply
by increasing the LTV on a smaller amount of collateral. This observation is the
easy part of the proof of the Binomial No-Default Theorem, that we do not need to
consider LTV s to the left of the kink. Thus an agent who is choosing the LTV at
the kink of the Credit Surface may or may not be collateral constrained. For this
reason, it is important to keep in mind another notion of leverage that we call diluted
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investor LTV , namely the ratio of total borrowing by an agent to her total asset
value (including identical assets not used as collateral).

All our results depend on two key assumptions. First, we only consider financial
assets, that is, assets that do not give direct utility to their holders, and which yield
dividends that are independent of who holds them. Second, we assume that the
economy is binomial, and that all loans are for one period.1 A date-event tree in
which loans last for just one period and every state is succeeded by exactly two nodes
suggests a world with very short maturity loans and no big jumps in asset values.
Binomial models might thus be taken as good models of Repo markets, in which the
assets do seem to be purely financial, and the loans are extremely short term, usually
one day.

The No-Default Theorem shows that there is a tremendous difference between phys-
ical collateral that generates contemporaneous utility and backs long term promises,
and financial collateral that gives utility only through dividends or other cash flows,
and backs very short term promises. Our result might explain why there are some
markets (like mortgages) in which defaults are to be expected while in others (like
Repos) margins are set so strictly that default is almost ruled out.2 The No-Default
Theorem implies that if we want to study consumption or production or asset price
effects of actual default (as opposed to studying the effect of leverage), we must do
so in models that either include non-financial assets (like houses or asymmetrically
productive land) or that depart from binomial models.

Our results also show why Brownian motion economies are not appropriate models to
study supply determined leverage, though they can still be quite useful in modeling
collateral equilibrium. Imagine a multiperiod binomial economy with a stochasti-
cally growing asset that can be used as collateral to back one period non-contingent
promises. It is well known that by taking shorter and shorter time periods, binomial
economies converge to Brownian motion economies. As the period grows shorter, the
one period volatility goes to zero and the one period worst case return approaches
the riskless return. From the Binomial Leverage Theorem we conclude that the LTV
on the shorter and shorter one period loans converges to 100%. Thus in the limit,

1We could also allow for a long term loan with one payment date, provided that all the states
at that date could be partitioned into two events, on each of which the loan promise and the asset
value is constant.

2Even in 2007-2009 during the worst financial crisis of the last 70 years, Repo defaults, including
of the Bear Sterns hedge funds, seem to have totaled a few billion dollars out of the trillions of
dollars of Repo loans.
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investors with a tiny bit of money can buy all the assets they want without running
into a collateral constraint.

The paper is organized as follows. Section 2 discusses the related literature. Section
3 presents a static model of endogenous leverage and debt with one asset and proves
the main results in this simple case. Section 4 presents the general model of endoge-
nous leverage and proves the general theorems. Section 5 presents two examples to
illustrate our theoretical results.

2 Related Literature

Collateral General Equilibrium was introduced by Geanakoplos (1997) and Geanako-
plos and Zame (2014). The modeling strategy in Collateral General Equilibrium is
characterized by two main ideas: first it focuses on security-based leverage, and sec-
ond, it is based on the idea that default happens when the collateral is worth less
than the promise.3 Collateral equilibrium embodies the idea of payment enforceabil-
ity problems without cash flow problems. The only incentive to deliver on a promise
is that otherwise the collateral can be seized. On the other hand, it is assumed
that the cash flow from the collateral is not subject to any moral hazard or adverse
selection; in particular, it is not affected by the size of the promise.

In Geanakoplos (1997), every agent has access to the same menu of contracts, each
characterized by a promise and one unit of an asset as collateral to back the promise.
The definition of equilibrium requires that every contract will have a price, and hence
an associated LTV (the price of the contract divided by the price of its collateral),
at which every agent can buy or sell as many units as she wants. By selling any of
the contracts an investor is borrowing money and putting up collateral; by buying
any of the contracts, the investor is lending money. For each collateral, the menu of
contracts and their associated prices can always be recast as a menu of LTV s and
associated interest rates (the reciprocal of price), and is what Geanakoplos (2014)
and we here call the Credit Surface. The credit surface endogenizes leverage because
any investor can borrow or lend at any LTV she wants; if there were an LTV at
which a lender and borrower would both prefer to transact, they would do so.

Geanakoplos (1997) asserted that because collateral is scarce, even if all contracts
3Another approach would be to enforce promises through punishment as in Dubey-Geanakoplos-

Shubik (2005).
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are priced in equilibrium, only a few will be actively traded. This, however, does
not give a practical recipe for computing equilibrium leverage. Geanakoplos (2003)
introduced a binomial economy with a continuum of agents with different priors, in
which every agent was risk neutral and did not discount the future, and in which the
agents’ subjective probability of the up state increased monotonically and continu-
ously in the index of the agent. In that special environment he informally proved
a slightly stronger version of our Binomial No-Default Theorem (that equilibrium is
also unique). Fostel-Geanakoplos (2012a) formally proved that theorem. The Bino-
mial No-Default Theorem proved in this paper is more general in that it does not
depend on the number of agents, or on continuity of preferences across agents, or on
identical discount rates, or on risk neutrality, or on any assumption about endow-
ments (for example it does not assume that each agent’s endowments in terminal
periods is spanned by the asset). It includes the case where there is a finite num-
ber of agent types, as well as the case where there is a continuum of heterogeneous
agents. With our complete characterization, binomial models with financial assets
become a tractable tool to study leverage and its effect on asset prices and the real
economy (see for example Geanakoplos (2010), Fostel-Geanakoplos (2008 and 2012b,
2014a, 2014b), and Cao (2010)).

Brunnermeier and Sannikov (2013) follow the Collateral General Equilibrium tradi-
tion in a continuous time model with Brownian motion. In their model leverage is
also endogenous. However, as we discussed, an implication of our Binomial Leverage
Theorem is that collateral constraints are irrelevant in the continuous time limit of
binomial models. Hence, leverage in their model is not determined by the asset col-
lateral capacities, but by the agents’ preferences, as it would be in a model without
collateral requirements. In our terminology, their leverage is a demand-determined
leverage, where agents are all choosing on the flat part of the Credit Surface.

There are no general results that characterize leverage in the tradition of this paper
outside the binomial economies with financial assets considered here. But other
papers have already given examples in which the No-Default Theorem does not
hold. Geanakoplos (1997) gave a binomial example with a non-financial asset (a
house, from which agents derive utility), in which equilibrium leverage is high enough
that there is default. Geanakoplos (2003) gave an example with a continuum of risk
neutral investors with different priors and three states of nature in which the only
contract traded in equilibrium involves default. Simsek (2013) gave an example with
two types of investors and a continuum of states of nature with equilibrium default.
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Araujo, Kubler, and Schommer (2012) provided a two period example of an asset
which is used as collateral in two different actively traded contracts when agents
have utility over the asset. Fostel and Geanakoplos (2012a) provide an example with
three periods and multiple contracts traded in equilibrium.

Enforcement of promises through collateral has been used in many models but gen-
erally without endogenizing leverage. Mendoza (2010) assumes a fixed LTV . Gromb
and Vayanos (2002) and Garleanu and Pedersen (2011) assume a V AR = 0 rule, even
though their models are not binomial. Brunnermeier and Pedersen (2009) assume a
V AR rule. In all these papers, the Credit Surface is truncated at an arbitrary point.

In our model, cash flow problems arising from asymmetric information play no role.
This contrasts with a literature that endogenizes investor-based leverage using corpo-
rate finance techniques with asymmetric information. In Stiglitz and Weiss (1981),
Bernanke and Gertler (1989), Kiyotaki and Moore (1997), Holmstrom and Tirole
(1997), Adrian and Shin (2010), and Acharya and Viswanathan (2011), the endo-
geneity of leverage relies on moral hazard problems between lenders and borrowers.
Lenders insist that the manager puts up a portion of the investment himself in order
to maintain skin in the game. In the literature following Rothschild-Stiglitz (1976),
the endogeneity of leverage relies on adverse selection and signaling arguments. An
agent limits the amount she borrows because she does not want to reveal that her
collateral is of bad quality.

Another strand of the corporate finance literature with adverse selection, including
Myers and Maluf (1984), DeMarzo and Duffie (99), and Dang, Gorton and Holm-
strom (2011), focuses on the problem of optimal security design, where the issuer
is choosing between promises that are not collinear. They find that non-contingent
debt becomes optimal since it is less informational sensitive than equity. Our focus
is on the comparison between a non-contingent promise that always pays, and a
non-contingent promise that defaults in one state. We generalize this question to a
comparison of promises along any arbitrary ray, showing that it is optimal to issue
the maximal promise along the ray that does not default. We do not pursue the ques-
tion of comparing contracts along different rays, but we note that our proof shows
that the collateral minimizing equilibrium always uses the ray which is farthest from
the asset payoff. In particular, if Arrow securities can be issued, they will be. This
result already appears in the unpublished work of Geanakoplos and Zame. But it
shows that dropping the hypothesis of asymmetric information can lead to different
conclusions, since in our framework debt is inferior to extreme Arrow promises.
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Asymmetric information is important in loan markets for which the borrower is also
a manager who exercises control over, or has special information about, the value
of the collateral. Our work is complementary, since it does not rely on asymmetric
information. The recent crisis, however, was not centered in the corporate bond
world, but in the mortgage securities market, where the buyer/borrower generally
has no control or specialized knowledge over the cash flows of the collateral.

3 Leverage and Default in a Simple Model of Debt.

We first prove our results in a simple binomial model with only two periods, one
asset, and non-contingent debt contracts. The key ingredients and arguments can
be most easily understood in this simple framework. In Section 4 we present the
more general model and explain in detail how the results in Section 3 extend to that
framework.

3.1 Model

3.1.1 Time and Assets

We begin with a simple two-period general equilibrium model, with time t = 0, 1.
Uncertainty is represented by different states of nature s ∈ S including a root s = 0.
We denote the time of s by t(s), so t(0) = 0 and t(s) = 1,∀s ∈ ST , the set of terminal
nodes of S. Suppose there is a single perishable consumption good c and one asset
Y which pays dividends ds of the consumption good in each final state s ∈ ST . We
take the consumption good as numeraire and denote the price of Y at time 0 by p.
In the case of a binomial two-period tree ST = {U,D}. Figure 1 depicts the asset
payoff in this case.

We call the asset a financial asset because it gives no direct utility to investors, and
pays the same dividends no matter who owns it. Houses are not financial assets
because they give utility to their owners. Neither is land if its output depends on
who owns it and tills it.4

4Note that depending on the environment the same asset may be financial or not. For example,
a bond in our model would be a financial asset since it is valued exclusively because of its cash
flows. However, under asymmetric information, the same bond might not be a financial asset. The
literature on financial intermediation provides examples in which bonds (loans) owned by banks
deliver different payoffs from bonds (loans) owned by less informed agents.
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s=U 
dU 

dD 
s=D 

s=0 

Fig. 1: Asset Payoff.

3.1.2 Investors

Each investor h ∈ H is characterized by a utility, uh, a discount factor, βh, and sub-
jective probabilities, γhs , s ∈ ST . We assume that the utility function for consumption
in each state s ∈ S, uh : R+ → R, is differentiable, concave, and monotonic. The
expected utility to agent h is:5

Uh = uh(c0) + βh
∑
s∈ST

γhs u
h(cs). (1)

Investor h’s endowment of the consumption good is denoted by ehs ∈ R+ in each state
s ∈ S. Investor h’s endowment of the only asset Y at time 0 is yh0∗ ∈ R+. We assume
that the consumption good is present in every state,∑h∈H e

h
0 > 0,∑h∈H(ehs+dsyh0∗) >

0,∀s ∈ ST .
5All that matters for the results in this paper is that the utility Uh : R1+S → R depends only

on consumption (and not on portfolio holdings). The expected utility representation is done for
familiarity. Our results will not depend on any specific type of agent heterogeneity either.
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3.1.3 Collateral and Debt Contracts

The heart of our analysis involves collateral. Agents have access to an exogenously
given set of financial contracts, each consisting of a promise and the collateral back-
ing it. Agents cannot be coerced into honoring their promises except by seizing
the collateral agreed upon by the contract. In this simple model we suppose that
agents can only make non-contingent promises, backed by the asset, that we call
debt contracts.

A debt contract j promises j > 0 units of consumption good in each final state
backed by one unit of asset Y serving as collateral. The terms of the contract are
summarized by the ordered pair (j · 1̃, 1). The first component, j · 1̃ ∈ RST (the
vector of j’s with dimension equal to the number of final states) denotes the (non-
contingent) promise. The second component, 1, denotes the one unit of the asset Y
used as collateral. Let J be the set of all such available debt contracts.

The price of contract j is πj. An investor can borrow πj today by selling the debt
contract j in exchange for a promise of j tomorrow. Every contract j defines a gross
rate of interest

(1 + rj) = j/πj. (2)

Notice that markets are incomplete. Agents cannot promise (dU , dD), which corre-
sponds to “selling the asset short”, nor can they promise either Arrow security. As
we shall see in Section 4, our No-Default Theorem is all the stronger because it holds
for any arbitrary set of contracts, including the complete markets case consisting of
Arrow securities. The case of incomplete markets, such as we have here, is more
surprising, since by defaulting an agent can effectively deliver (and with rational
expectations, be paid for) a promise that is not available.

3.1.4 Leverage

The Loan to Value (LTV ) associated to debt contract j is given by

LTVj = πj
p
. (3)

The margin requirement mj associated to debt contract j is 1 − LTVj, and the
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leverage associated to debt contract j is the inverse of the margin, 1/mj.

Let ϕj be the number of contracts j traded at time 0. There is no sign constraint on
ϕj; a positive (negative) ϕj indicates the agent is selling (buying) |ϕj| contracts j or
borrowing (lending) |ϕj|πj. We define the average loan to value, LTV Y for asset Y ,
as the trade-value weighted average of LTVj across all debt contracts actively traded
in equilibrium, and the diluted average loan to value, DLTV Y (which includes assets
with no leverage) by

LTV Y =
∑
h

∑
j max(0, ϕhj )πj∑

h

∑
j max(0, ϕhj )p

≥
∑
h

∑
j max(0, ϕhj )πj∑

h y
h
0∗p

= DLTV Y . (4)

Finally, leverage for investor h, LTV h, and the diluted leverage for investor h,
DLTV h are defined analogously by

LTV h =
∑
j max(0, ϕhj )πj∑
j max(0, ϕhj )p

≥
∑
j max(0, ϕhj )πj

yhp
= DLTV h. (5)

3.1.5 Default and Delivery

We assume loans are non-recourse, so the maximum borrowers can lose is their
collateral if they do not honor their promise: the actual delivery of debt contract j
in state s ∈ ST is

δs(j) = min{j, ds}. (6)

Let d = max{ds : s ∈ ST} and d = min{ds : s ∈ ST}. Observe that all the functions
δs(j) are weakly increasing in j, and at least one of the functions is strictly increasing
for 0 ≤ j ≤ d. Therefore the equilibrium πj must be strictly increasing for 0 ≤ j ≤ d.

If the promise is small enough that j ≤ d, ∀s ∈ ST , then the contract will not default
and in this case its price defines a gross riskless rate of interest (1 + rj) = (1 + r).

3.1.6 Budget Set

Given the asset and debt contract prices (p, (πj)j∈J), each agent h ∈ H chooses
consumption, c0, asset holding, y, and debt contract trades, ϕj, at time 0, and
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consumption, cs, in each state s ∈ ST , to maximize utility (1) subject to the budget
set defined by

Bh(p, π) = {(c, y, ϕ) ∈ RS
+ ×R+ ×RJ :

(c0 − eh0) + p(y − yh0∗) ≤
∑
j∈J ϕjπj

(cs − ehs ) ≤ yds −
∑
j∈J ϕjmin(j, ds),∀s ∈ ST

∑
j∈J max(0, ϕj) ≤ y}.

At time 0, expenditures on consumption and the asset, net of endowments, must
be financed by money borrowed using the asset as collateral. In the final period, at
each state s, consumption net of endowments can be at most equal to the dividend
payment minus debt repayment. Finally, those agents who borrow must hold the
required collateral at time 0. Notice that even with as many independent contracts
as there are terminal states, equilibrium might still be different from Arrow-Debreu.
Agents cannot willy nilly combine these contracts to sell Arrow securities because
they need to post collateral.6

3.1.7 Collateral Equilibrium

A Collateral Equilibrium is a set consisting of an asset price, debt contract prices, in-
dividual consumptions, asset holdings, and contract trades ((p, π), (ch, yh, ϕh)h∈H) ∈
(R+ ×RJ

+)× (RS
+ ×R+ ×RJ)H such that

1. ∑h∈H(ch0 − eh0) = 0.
6Notice that we are assuming that short selling of assets is not possible. This is in keeping with

our hypothesis of this paper that agents need to post collateral in order to back promises. The
short sale of asset Y could be modeled as the sale of a contingent promise of (dU , dD) collateralized
by some asset. In this section we do not allow for contingent promises and the only asset is Y
itself. In Section 4 we do introduce contingent promises and multiple assets, so short selling is
indeed feasible in our Collateral Equilibrium. In Fostel-Geanakoplos (2012b) we investigate the
significance of short selling and CDS for asset pricing.
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2. ∑h∈H(chs − ehs ) = ∑h∈H y
hds,∀s ∈ ST .

3. ∑h∈H(yh − yh0∗) = 0.

4. ∑h∈H ϕ
h
j = 0,∀j ∈ J.

5. (ch, yh, ϕhj ) ∈ Bh(p, π),∀h
(c, y, ϕ) ∈ Bh(p, π)⇒ Uh(c) ≤ Uh(ch),∀h.

In equilibrium, markets for the consumption good clear in all states. Markets for the
asset and debt contracts clear at time 0, and agents optimize their utility in their
budget sets. As shown by Geanakoplos and Zame (1997), equilibrium in this model
always exists under the assumptions we have made so far.7

3.1.8 The Credit Surface

Given the asset and debt contract prices (p, (πj)j∈J), each agent h ∈ H faces a menu
of co-existing debt contracts j ∈ J. As we have just seen πj must be strictly increasing
for 0 ≤ j ≤ d, hence the loan to value LTVj = πj

p
is strictly increasing in j (given the

asset price p). Thus, LTV uniquely determines the contract j, and hence the gross
interest rate (1 + rj).

We define the Credit Surface as this relationship between LTV and the gross rate
of interest. Borrowers can choose any contract on the Credit Surface, provided they
put up the collateral. Figure 2 shows the Credit Surface.

Let j∗ be the contract that promises d in every s ∈ ST . Point A in Figure 2 cor-
responds to the leverage and riskless interest rate, (LTVj∗ , r), of contract j∗. Point
B in Figure 2 corresponds to leverage and interest rate, (LTVj∗∗ , rj∗∗), of contract
j∗∗ promising d in every s ∈ ST . Since j∗∗ delivers δs(j∗∗) = ds for all s ∈ ST , in
equilibrium it must be that πj∗∗ = p, and hence LTVj∗∗ = 100%.8A critical property
of the Credit Surface is that the gross interest rate is strictly increasing in LTV

7Our notation suggests that the set H of agents needs to be finite. But we could consider
H = [0, 1] as a continuum of distinct agents, without any conceptual changes to our model. In
that case replace the summation

∑
over agents by an integral over agents, and all the optimization

conditions as holding with Lebesgue measure one. Our theorems also hold for the continuum case.
Examples of collateral equilibrium with a continuum of agents can be found in Geanakoplos (2003,
2010) and Fostel-Geanakoplos (2012a, 2012b).

8If πj∗∗ < p, then nobody would buy the asset and hence the asset market would not clear. If
πj∗∗ > p, then agents would demand an infinite amount of the asset, financing their purchases by
selling j∗∗ and again the asset market would not clear.
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1+rj 

LTV 
100% LTVj* 

1+r 
A 

B 

Fig. 2: The Credit Surface.

between points A and B. The reason is that if d ≤ j < j′ ≤ d, then δs(j′)
δs(j) ≤

j′

j

with a strict inequality for at least one state s ∈ ST . Hence, in equilibrium must be
(1 + rj′) = j′/πj′ > j/πj = (1 + rj).9

In the budget set of the classical competitive model, borrowers can take as big a loan
as they want at the riskless equilibrium interest rate r. In the collateral budget set,
borrowers are forced to pay a higher interest rate for bigger loans (unless they put
up more collateral). Thus they may choose to borrow πj at an interest rate rj, even
though they would like to borrow more, because if they tried to borrow more on the
same collateral, they would have to pay a higher interest rate.

During the Great Recession that started in 2008, many observers were perplexed
that investors were borrowing so little money even when interest rates were close
to zero. They suggested that investors could not find any projects with positive

9In the case that both contracts are actively traded in equilibrium, this is true by the same
argument used in footnote 8. If some of the contracts are not traded in equilibrium we can always
define prices so that this inequality holds. For an example of how to do this in a binomial economy
see the Binomial State Pricing Corollary in Section 3 .
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yields. The Credit Surface gives another explanation. In collateral equilibrium it
is perfectly possible that all equilibrium trades take place at a point like A, with
a riskless rate of interest that might be close to zero. Investors may see plenty of
profitable investments, but in order to undertake these projects they would have
to increase their borrowing, which would increase the interest rate they would pay
on all their borrowing. The higher interest rate that deters more borrowing might
not be observable in market transactions; only the interest rates of actively traded
contracts are observable.

3.2 The Binomial No-Default Theorem

3.2.1 The Theorem

Consider the case of a binomial tree in which ST = {U,D}. As shown in Figure 1,
asset Y pays dU units of the consumption good in state s = U and without loss of
generality 0 < dD < dU in state s = D.10 Default occurs in equilibrium if and only
if some contract j with j > dD is traded. One might imagine that some agents value
the asset much more than others, say because they attach very high probability γhU
to the U state, or because they are more risk tolerant, or because they have very low
endowments ehU in the U state, or because they put a high value βh on the future.
These agents might be expected to want to borrow a lot, promising j > dD so as
to get their hands on more money to buy more assets at time 0. Indeed it is true
that for j > j∗ = dD, agents can raise more money πj > πj∗ by selling contract
j rather than j∗. We might expect every agent to choose a different point on the
Credit Surface. Nonetheless, as the following result shows, we can assume without
loss of generality that the only debt contract traded in equilibrium will be the max
min contract j∗, on which there is no default.

Binomial No-Default Theorem:

Suppose that S = {0, U,D}, that Y is a financial asset, and that the max min debt
contract j∗ = dD ∈ J . Then given any equilibrium ((p, π), (ch, yh, ϕh)h∈H), we can
construct another equilibrium ((p, π), (ch, ȳh, ϕ̄h)h∈H) with the same asset and con-

10Without loss of generality, dU ≥ dD. If dD = 0 or dD = dU , then the contracts are perfect
substitutes for the asset, so there is no point in trading them. Sellers of the contracts could simply
hold less of the asset and reduce their borrowing to zero while buyers of the contracts could buy
the asset instead. So we might as well assume 0 < dD < dU .
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tract prices and the same consumptions, in which j∗ is the only debt contract traded,
ϕ̄hj = 0 if j 6= j∗. Hence equilibrium default can be taken to be zero.

Proof:

The proof is organized in three steps.

1. Payoff Cone Lemma.

The portfolio of assets and contracts that any agent h holds in equilibrium delivers
payoff vector (whU , whD) which lies in the cone positively spanned by (dU − j∗, 0) and
(j∗, j∗). The U Arrow security payoff (dU−j∗, 0) = (dU , dD)−(j∗, j∗) can be obtained
from buying the asset while simultaneously selling the max min debt contract.

Any portfolio payoff (wU , wD) is the sum of payoffs from individual holdings. The
possible holdings include debt contracts j > j∗, j = j∗, j < j∗, the asset, and the
asset bought on margin by selling some debt contract j. The debt contracts and the
asset all deliver at least as much in state U as in state D. So does the leveraged
purchase of the asset. In fact, buying the asset on margin using any debt contract
with dU > j ≥ j∗ is effectively a way of buying the U Arrow payoff (dU − j, 0). This
can be seen in Figure 3.

In short, we have that the Arrow U security and the max min debt contract positively
span all the feasible payoff space, as shown in Figure 4.

2. State Pricing Lemma.

There exist unique state prices a > 0, b > 0 such that if any agent h holds a portfolio
delivering (whU , whD), the portfolio costs awhU + bwhD.

In steps (i) and (ii) we find state prices for two securities: the asset and the max
min debt contract j∗. In steps (iii) and (iv) we use the Payoff Cone Lemma to show
that the same state prices can be used to price any other debt contract j 6= j∗ that is
traded in equilibrium. The cost of any portfolio is obtained as the sum of the costs
of its constituent parts.

(i) There exist unique a and b pricing the asset and the max min contract, that is
solving πj∗ = aj∗ + bj∗ and p = adU + bdD.

Since dU > dD the two equations are linearly independent and therefore there exists
a unique solution (a, b). It is easy to check that a = p−πj∗

dU−j∗
and b = πj∗/j

∗ − a.

Notice that a(dU − j∗) is the price of buying (dU − j∗) Arrow U securities obtained
by buying the asset Y and selling the max min contract j∗.
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Fig. 3: Creating the U Arrow security.

(ii) State prices are positive, that is, a > 0 and b > 0.

First, a > 0, otherwise agents could buy more of Arrow U at a lower cost, violating
agent optimization in equilibrium. We must also have b > 0, otherwise nobody would
hold the asset Y in equilibrium since it would be better to buy dU/j

∗ units of the
contract j∗ which delivers the same dU in the up state and more dU > dD in the
down state and costs at most the same, namely p+ b(dU − dD) ≤ p.

(iii) Suppose debt contract j with j 6= j∗ = dD is positively traded in equilibrium.
Then πj ≤ a ·min{dU , j}+ b ·min{j∗, j}.

By the Positive Cone Lemma, the delivery of contract j is positively spanned by the
Arrow U security (dU − j∗, 0) and the max min contract (j∗, j∗), both of which are
priced by a and b. Hence buyers could obtain the same deliveries by buying a positive
linear combination of the two, which would then be priced by a and b. This provides
the upper-bound for πj.

(iv) Suppose debt contract j with j 6= j∗ = dD is positively traded in equilibrium.
Then πj ≥ a ·min{dU , j}+ b ·min{j∗, j}.
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In case j ≤ j∗ = dD, the contract fully delivers j in both states, proportionally to
contract j∗. If its price were less than πj∗(j/j∗) = aj+ bj, its sellers should have sold
j/j∗ units of j∗ instead, which would have been feasible for them as it requires less
collateral.

Consider the case j > j∗. Sellers of contract j have entered into a double trade,
buying (or holding) the asset as collateral and selling contract j, at a net cost of
p−πj. Since any contract j > dU delivers exactly the same in both states as contract
j = dU , we can without loss of generality restrict attention to contracts j with
dD < j ≤ dU . Agents selling such a contract, while holding the required collateral,
receive on net dU − j in state U , and nothing in state D. The key is that sellers of
contract j are actually buyers of the Arrow U security. The cost is p − πj which,
given step (i), is at most a(dU − j). Hence

p− πj ≤ a(dU − j)

πj ≥ p− a(dU − j)
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πj ≥ adU + bdD − a(dU − j)

πj ≥ aj + bj∗ = a ·min{dU , j}+ b ·min{j∗, j}.

3. Construction of the new default-free equilibrium

Define

(whU , whD) = yh(dU , dD)−
∑
j

(min(j, dU),min(j, dD))ϕhj .

ȳh = whU − whD
dU − dD

.

ϕ̄hj∗ = [ȳhdD − whD]/j∗ = ȳh − whD/j∗.

If in the original equilibrium, yh is replaced by ȳh and ϕhj is replaced by 0 for j 6= j∗

and by ϕ̄hj∗ for j = j∗, and all prices and other individual choices are left the same,
then we still have an equilibrium.

(i) Agents are maximizing in the new equilibrium.

Note that ϕ̄hj∗ ≤ ȳh, so this portfolio choice satisfies the collateral constraint.

Using the above definitions, the net payoff in state D is the same as in the original
equilibrium,

ȳhdD − ϕ̄hj∗j∗ = whD

and the same is also true for the net payoff in state U,

ȳhdU − ϕ̄hj∗j∗ = ȳh(dU − dD) + whD = (whU − whD) + whD = whU .

Hence the portfolio choice (ȳh, ϕ̄hj∗) gives the same payoff (whU , whD). From the previ-
ous Lemmas, the newly constructed portfolio must have the same cost as well. Since
Y is a financial asset, every agent is optimizing.

(ii) Markets clear in the new equilibrium.

Summing over individuals we must get

∑
h

ȳh(dU , dD)−
∑
h

ϕ̄hj∗(j∗, j∗) =

∑
h

(whU , whD) =
∑
h

yh(dU , dD)−
∑
h

∑
j

ϕhj (min(j, dU),min(j, dD)) =
∑
h

yh(dU , dD).
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The first equality follows from step (i), the second from the definition of net payoffs
in the original equilibrium, and the last equality follows from the fact that∑h ϕ

h
j = 0

in the original equilibrium for each contract j. Hence we have that

∑
h

(ȳh − yh)(dU , dD)−
∑
h

ϕ̄hj∗(j∗, j∗) = 0.

By the linear independence of the vectors (dU , dD) and (j∗, j∗) we deduce that

∑
h

ȳh =
∑
h

yh

∑
h

ϕ̄hj∗ = 0.

Hence markets clear.�

We now call attention to an interesting corollary of the proof just given. By modifying
the equilibrium prices in the above construction for contracts that are not traded,
we can bring them into line with the state prices a, b defined in the proof of the
Binomial No-Default Theorem, without affecting equilibrium. More concretely,

Binomial State Pricing Corollary:

Under the conditions of the Binomial No-Default Theorem we may suppose that the
new no-default equilibrium has the property that there exist unique state prices a > 0
and b > 0, such that p = adU +bdD, and πj = a ·min{dU , j}+b ·min{dD, j}, ∀j ∈ J.

Proof:

The proof was nearly given in the proof of the Binomial No-Default Theorem. It is
straightforward to show that if a previously untraded contract has its price adjusted
into line with the state prices, then nothing is affected.�

3.2.2 Discussion

The Binomial No-Default Theorem shows that in any static binomial model with a
single financial asset serving as collateral, we can assume without loss of generality
that the only debt contract actively traded is the max min debt contract, on which
there is no default. In other words, we can assume that all agents choose the same
point on the Credit Surface, given by point A in the Figure 2, which corresponds to
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(LTVj∗ , r). Thus potential default has a dramatic effect on equilibrium, but actual
default does not.

The Binomial No-Default Theorem does not say that equilibrium is unique, only
that each equilibrium can be replaced by another with the same asset price and the
same consumption by each agent, in which there is no default.

The Binomial No-Default Theorem has a sort of Modigliani-Miller feel to it. But the
theorem does not assert that the debt-equity ratio is irrelevant. The theorem shows
that if we start from any equilibrium, we can move to an equivalent equilibrium in
which only max min debt is traded. If the original equilibrium had default, in the
new equilibrium, leverage will be lower. Thus starting from a situation of default,
the theorem does state that leverage can be lowered over a range until the point of
no default, while leaving all investors indifferent. The theorem does not state that
starting from a max min equilibrium, one can construct another equilibrium with still
lower leverage, or even with higher leverage. Modigliani-Miller does not fully hold
in our model because issuers of debt must hold collateral. In the traditional proof of
Modigliani-Miller, given for example by Stiglitz 1969, when the firm issues less debt,
buyers of its equity compensate by issuing debt themselves. But this argument relies
on the fact that equity holders have enough collateral. In our model, if less debt is
issued on a unit of collateral, then that collateral is wasted and there may not be
enough other free collateral to back the new debt. In Section 5 we give an example
with a unique equilibrium in which all the collateral is leveraged to the max min;
if any collateral is wasted, total debt would have to go down, and Modigliani-Miller
fails. But there is a simpler reason Modigliani-Miller can fail. In our model the firm
that issues the debt might not be able to sell off its equity because the equity is
locked inside the collateral it must hold in order to issue the debt in the first place.

In the Binomial State Pricing Corollary, the state prices a, b are like Arrow prices.
Their existence implies that there are no arbitrage possibilities in trading the asset
and the contracts. Even agents who had infinite wealth and who were allowed to
make promises without putting up any required collateral (but delivered as if they put
up the collateral) could not find a trade that made money in some state without ever
losing money. However, the equilibrium may not be an Arrow-Debreu equilibrium,
even though the state prices are uniquely defined. We shall see an example with
unique state prices but Pareto inferior consumptions (coming from the collateral
constraints) in Section 5. Finally, the existence of state prices a and b that allows us
to see that the Credit Surface is not only increasing between points A and B, but
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also concave. Notice that from equations (2) and (3) and the State Pricing Corollary
we have that 1 + rj = LTVjp−bdD

aLTVjp
.

Finally, let us provide some intuition to the proof of the No-Default Theorem. There
are two key assumptions. First, we only consider financial assets, that is, assets that
do not give direct utility at time 0 to their holders, and which yield dividends at time
1 that are independent from who holds them at time 0. Second, we assume that the
tree is binary.

In the first step of the proof, the Payoff Cone Lemma shows that the max min
promise plus the Arrow U security (obtained by buying the asset while selling the
max min debt contract), positively spans the cone of all feasible portfolio payoffs. The
assumption of two states is crucial. If there were three states, it might be impossible
for portfolio holders to reproduce their original net payoffs from a portfolio in which
they can only hold the asset and buy or issue the max min debt.

In the second step of the proof, the State Pricing lemma shows that any two portfolios
that give the same payoffs in the two states must cost the same. One interesting
feature of the proof is that it demonstrates the existence of state prices (that price
the asset and all the debt contracts) even though short-selling is not allowed. In
general, if an asset C has payoffs that are a positive combination of the payoffs from
assets A and B, then the price of C cannot be above the positive combination of
the prices of A and B. Otherwise, buyers or holders of C could improve by instead
combining the purchase of A and B. This logic gives an upper-bound for prices of all
traded instruments. On the other hand, the price of C could be less than the price
of the positive combination of A and B (and just slightly more than the individual
prices of A and B) because there may be no agent interested in buying it, and the
sellers cannot split C into A and B. Nonetheless, we show that we can also get
a lower-bound for the price of C. The reason is that in our model, sellers of the
debt contract must own the collateral, and hence on net they are in fact buyers of
something that lies in the positive cone. This gives us an upper bound for the price
of what they buy, and hence the missing lower bound on what they sell. In short,
the crucial argument in the proof is that sellers of contracts are actually buyers of
something else that is in the payoff cone. As we will see later in Section 4, when
there are multiple assets, or multiple kinds of loans on the same asset, the sellers of
a bond in one family may not be purchasing something in the payoff cone of another
family. Each family may require different state prices. That is why the No-Default
Theorem holds more generally, but the State Pricing Corollary does not, so we can
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only show the existence of “local state prices”.

In the third step of the proof we use both lemmas to show that in equilibrium
agents are indifferent to replacing their portfolio with another such that on each unit
of collateral that they hold, they either leverage to the maximum amount without
risk of default, or do not leverage at all. The idea is as follows. If in the original
equilibrium investors leveraged their asset purchases less than the max min, they
could always leverage some of their holdings to the max min, and the others not
at all. This of course reduces the amount of asset they use for collateral. If in the
original equilibrium investors were selling more debt than the max min, defaulting
in the D state, then they could again reduce their asset holdings and their debt
sales to the max min level per unit of asset held, and still end up buying the same
amount of the Arrow U security.11 The reason they can reproduce their original net
payoffs despite issuing fewer bonds per unit of collateral is that, on net, all contracts
j > j∗ leave the collateral holders with some multiple of the Arrow U security. They
simply must compensate by leveraging a different amount of collateral. By selling
less debt per unit of collateral, they must spend more cash on each unit of the asset,
so the reduction in asset holdings should not be surprising.12 Once we see that the
debt issuers can maintain the same net payoffs even if they issue less debt per unit
of collateral, it is easy to see that their new behavior can be made part of a new
equilibrium. Let the original buyers of the original risky bond buy instead all of the
new max min debt plus all the asset that the original risky bond sellers no longer
holds. By construction the total holdings of the asset is unchanged, and the total
holdings of debt is zero, as before. Furthermore, by construction, the sellers of the
bond have the same portfolio payoff as before, so they are still optimizing. Since the
total payoff is just equal to the dividends from the asset, and that is unchanged, the
buyers of the bond must also end up with the same payoffs in the two states, so they
are optimizing as well. The new portfolio may involve agents holding a new amount
of the collateral asset, while getting the same payoff from their new portfolio of assets
and contracts. Agents are indifferent to switching to the new portfolio because of the
crucial assumption that the asset is a financial asset. If the collateral were housing
or productive land for example, the theorem would not necessarily hold.

11If they continued to hold the same assets while reducing their debt to the max min per asset,
then they would end up with more of the Arrow U security.

12To put it in other words, the debt on which they were defaulting provided deliveries that were
similar to the asset (more in the state U than in state D), so when they sell less of these they must
compensate by selling more of the asset and thus holding less.
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3.3 Equilibrium Refinements

The Binomial No-Default Theorem states that every collateral equilibrium is equiv-
alent to a “j∗-equilibrium” in which there is no default and j∗ is the only contract
traded. But the proof reveals more, namely that in the j∗-equilibrium agents use
less of the asset as collateral, with one agent using strictly less, than in any other
equivalent equilibrium. Thus, our theorem can be further sharpened if we add to
the model some cost structure associated to either default or collateral use. More
precisely, the following results hold.

No-Default Theorem Refinement 1: Default Costs.

Suppose that ε > 0 units of the consumption good are lost after default. Then in
every equilibrium only debt contracts j ≤ j∗will be traded.

Proof:

The proof follows immediately from the portfolio construction procedure in the Bino-
mial No-Default Theorem, since for all j > j∗ agents will incur unnecessary default
costs.�

The last theorem shows that if we add to the model a small cost to default, then our
No-Default theorem has more bite: now the equilibrium prediction always rules out
default. Notice, however, that the equilibrium contracts may not be unique, in the
sense that agents may be leveraging less than in the max min level. The following
results sharpens our theorem even more.

No-Default Theorem Refinement 2: Collateral Costs.

Suppose that ε > 0 units of the consumption good are lost for every unit of asset used
as collateral. Then in every equilibrium only the debt contract j∗ will be traded.

Proof:

The proof follows immediately from the portfolio construction procedure in the Bi-
nomial No-Default Theorem, since it is always the case that if j 6= j∗ is traded in
equilibrium, then some agent is using more collateral than would be required if he
only sold j∗.�

The last refinement shows that if we add to the model a small cost associated to
collateral use, then j∗ is the only contract traded in any equilibrium. This extra
assumption is arguably realistic: examples of such costs are lawyer fees, intermedia-
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tions fees, or even the more recent services provided by banks in the form of collateral
transformation.

3.4 Binomial Leverage Theorem

3.4.1 The theorem

The previous theorem gives an explicit formula for how many promises every unit
of collateral will back in equilibrium, or equivalently, how much collateral will be
needed to back each promise of one unit of consumption in the future. Leverage
is usually defined in terms of a ratio of value to value, which also admits a simple
formula. We now provide a characterization of endogenous leverage.

Binomial Leverage Theorem:

Suppose that S = {0, U,D}, that Y is a financial asset, and that the max min debt
contract j∗ = dD ∈ J . Then equilibrium LTV Y can be taken equal to

π∗j
p

= dD/(1 + rj∗)
p

= dD/p

1 + rj∗
= worst case rate of return

riskless gross rate of interest
.

Proof:

The proof follows directly from the Binomial No-Default Theorem. Since we can
assume that in equilibrium the only contract traded is j∗, then

π∗j
p

= dD/(1 + rj∗)
p

= dD/p

1 + rj∗
.�

3.4.2 Discussion

The Binomial Leverage Theorem provides a very simple prediction about equilib-
rium leverage. According to the theorem, equilibrium LTV Y for the family of non-
contingent debt contracts is the ratio of the worst case return of the asset divided
by the riskless gross rate of interest.

Equilibrium leverage depends on current and future asset prices, but is otherwise
independent of the utilities or the endowments of the agents. The theorem shows
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that in static binomial models, leverage is endogenously determined in equilibrium
by the Value at Risk equal zero rule, assumed by many other papers in the literature.

Though simple and easy to calculate, this formula provides interesting insights. First,
it explains why changes in down risk can have such a big effect on equilibrium even
if they hardly change expected payoffs: they change leverage. Hence, the theorem
suggests that one reason leverage might have plummeted from 2006-2009 is because
the worst case return that lenders imagined got much worse: down risk increased.
Second, the formula explains which assets are easier to leverage. In Section 4 we
shall allow for leverage on multiple assets. The same formula for each asset shows
that, given equal prices, the asset with the least down risk can be leveraged the most.

Borrowers fall into two categories, constrained and unconstrained. Unconstrained
borrowers are not designating all the assets they hold as collateral for their loans.
In this case they would not want to borrow any more at the going interest rates
even if they did not need to put up collateral (but were still required, by threat of
punishment, to deliver the same payoffs they would had they put up the collateral).
Their demand for loans is then explained by conventional textbook considerations
of risk and return. Constrained borrowers are posting all their assets as collateral.
In this case of scarce collateral, borrowers would typically be willing to pay a higher
interest rate to get hold of an extra dollar if they did not need to post the collateral.

At the aggregate we can therefore have three regimes. First, when all the borrowers
are unconstrained, we can say that the debt in the economy is determined by the
demand for loans, and that the rate of interest clears the loan market without con-
sideration of collateral or default. Second, when all the borrowers are constrained,
we can say the debt in the economy is determined by the supply of credit, that is,
by the maximum debt capacity of the assets (a level determined by the specter of
default). And finally, the economy could be in an intermediate situation when some
borrowers are constrained and some other borrowers are unconstrained. In this case,
the debt level in the economy is determined by supply and demand.

Our theorem shows that in binomial models with financial assets, the equilibrium
LTV Y can be taken to be the same easy to compute number, no matter in which
regime the economy is. The distinction between plentiful and scarce collateral all
supporting loans at the same LTV Y suggests that it is useful to keep track of a
second kind of leverage that we introduced in Section 3.1.4 and called diluted leverage,
DLTV Y . Consider the following example: if the asset is worth $100 and its worst
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case payoff determines a debt capacity of $80, then in equilibrium we can assume
all debt loans written against this asset will have LTV Y equal to 80%. If an agent
who owns the asset only wants to borrow $30, then she could just as well put up
only three eights of the asset as collateral, since that would ensure there would be
no default. The LTV Y would then again be $30/$37.50 or 80%. Hence, it is useful
to consider diluted DLTV Y , namely the ratio of the loan amount to the total value
of the asset, even if some of the asset is not used as collateral. The DLTV Y in this
example is 30%, because the denominator includes the $62.50 of asset that was not
used as collateral.13

If diluted leverage, DLTV Y is less than LTV Y , we know that at least one agent is
unconstrained. If DLTV Y and LTV Y are close then we can reasonably be sure that
most agent are constrained.

Finally, it is often said that leverage should be related to volatility. Indeed, many
papers have assumed this link. As we will discuss in Section 4 this link is not robust.
What matter generally is down risk and not volatility.

4 A General Binomial Model.

In this section we show that the irrelevance of actual default is a much more general
phenomenon, as long as we maintain our two key assumptions: financial assets and
binary payoffs. We formally allow for the following extensions.

Arbitrary one-period contracts: previously we assumed that the only possible con-
tract promise was non-contingent debt. Now we allow for arbitrary promises (jU , jD),
provided that the max min version of the promise (λ̄jU , λ̄jD) where λ̄ = max{λ ∈
R+ : λ(jU , jD) ≤ (dU , dD)} is also available.

Multiple simultaneous kinds of one-period contracts: not only can the promises be
contingent, there can also be many different (non-collinear) types of promises co-
existing. See Figure 5.

Multiple assets: we can allow for many different kinds of collateral at the same time,
each one backing many (possibly) non-collinear promises.

13Notice that in the proof of the Binomial No-Default Theorem in moving from an old equilibrium
in which only contracts j < j∗ are traded to the new max min equilibrium, diluted leverage stays the
same, but leverage on the margined assets rises. In moving from an old equilibrium with default in
which a contract j > j∗ is traded to the new max min equilibrium, diluted leverage strictly declines,
and leverage on the margined assets also declines.
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Fig. 5: Different Types of Contingent Contracts

Production and degrees of durability: the model already implicitly includes the stor-
age technology for the asset. Now we allow the consumption goods to be durable,
though their durability may be imperfect. We also allow for intra-period produc-
tion. In fact, we allow for general production sets, provided that the collateral stays
sequestered, and prevented from being used as an input.

Multiple goods: unlike our previous model, in each state of nature there will be more
than one consumption good.

Multiple periods: we will extend our model to a dynamic model with an arbitrarily
(finite) number of periods, as long as the tree is binomial.

We also indicate that the Binomial No Default Theorem can be further extended to
pyramiding, in which contracts can serve as the collateral for further contracts, but
at the cost of too much notation to include here. It also extends to what we might
call binomial assets of any duration in non-binomial trees, as long as each (asset
payoff, contract promise) pair takes on at most two values across all the states in
which they pay.

29



4.1 Model

4.1.1 Time and Assets

Uncertainty is represented by the existence of different states of nature in a finite
tree s ∈ S including a root s = 0, and terminal nodes s ∈ ST . We denote the time
of s as t(s), so t(0) = 0. Each state s 6= 0 has a unique immediate predecessor s∗,
and each non-terminal node s ∈ S\ST has a set S(s) of immediate successors.

Suppose there are L = {1, ..., L} consumption goods ` and K = {1, ..., K} financial
assets k which pay dividends dks ∈ RL

+ of the consumption goods in each state s ∈ S.
The dividends dks are distributed at state s to the investors who owned the asset in
state s∗.

Finally, qs ∈ RL
+ denotes the vector of consumption goods prices in state s, whereas

ps ∈ RK
+ denotes the asset prices in state s.

4.1.2 Investors

Each investor h ∈ H is characterized by a utility, uh, a discount factor, βh, and
subjective probabilities γhs denoting the probability of reaching state s from its
predecessor s∗, for all s ∈ S\{0}.We assume that the utility function for consumption
in each state s ∈ S, uh : RL

+ → R, is differentiable, concave, and weakly monotonic
(more of every good is strictly better). The expected utility to agent h is

Uh = uh(c0) +
∑
s∈S\0

β
t(s)
h γ̄hs u

h(cs). (7)

where γ̄hs is the probability of reaching s from 0 (obtained by taking the product of
γhσ over all nodes σ on the path (0, s] from 0 to s).

Investor h’s endowment of the consumption good is denoted by ehs ∈ RL
+ in each state

s ∈ S. Investor h’s endowment of the assets at the beginning of time 0 is yh0∗ ∈ RK
+

(agents have initial endowment of assets only at the beginning). We assume that the
consumption goods are all present, ∑h∈H(ehs + dsy

h
0∗) >> 0,∀s ∈ S.

4.1.3 Production

We allow for durable consumption goods (inter-period production) and for intra-
period production. For each s ∈ S\{0}, let F h

s : RL
+ → RL

+ be a concave inter-period
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production function connecting a vector of consumption goods at state s∗ that h is
consuming with the vector of consumption goods it becomes in state s. In contrast
to consumption goods, it is assumed that all financial assets are perfectly durable
from one period to the next, independent of who owns them. We keep production
(of dividends) from financial asset separate from the production of commodities from
commodities so that it is unambiguous what can be seized if an asset is put up as
collateral. Implicitly we also assume that production from assets is linear, again so
that a lender can know what he will get if he is forced to seize the collateral, without
having to observe how much of the asset the borrower is holding in his entire portfolio.

For each s ∈ S, let Zh
s ⊂ RL+K denote the set of feasible intra-period production

for agent h in state s. Notice, that assets and consumption goods can enter as
inputs and outputs of the intra-period production process. Inputs appear as negative
components of zi < 0 of z ∈ Zh, and outputs as positive components zi > 0 of z.

4.1.4 Collateral and Contracts

Contract j ∈ J is a contract that promises the consumption vector js′ ∈ RL
+ in

each state s′. Each contract j defines its issue state s(j), and the asset k(j) used as
collateral. We denote the set of contracts with issue state s backed by one unit of
asset k by Jks ⊂ J. We consider one-period contracts, that is, each contract j ∈ Jks
promises deliveries only in the immediate successor states of s, i.e. js′ = 0 unless
s′ ∈ S(s). Contracts are defined extensively by their promise in each successor state.
Notice that this definition of contract allows for promises with different baskets of
consumption goods in different states. Finally, Js = ⋃k Jks and J = ⋃s∈S\ST Js.
The price of contract j in state s(j) is πj. An investor can borrow πj at s(j) by
selling contract j, that is by promising js′ ∈ RL

+ in each s′ ∈ S(s(j)), provided he
holds one unit of asset k(j) as collateral.

4.1.5 Leverage

The Loan-to-Value LTVj associated to contract j in state s(j) is given by

LTVj = πj
ps(j)k

. (8)

As before, the margin mj associated to contract j in state s(j) is 1−LTVj. Leverage
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associated to contract j in state s(j) is the inverse of the margin, 1/mj and moves
monotonically with LTVj.

Finally, as in Section 3, we define the average loan to value, LTV for asset k in state s,
as the trade-value weighted average of LTVj across all debt contracts actively traded
in equilibrium that use asset k as collateral, j ∈ Jks by all the agents h ∈ H, and the
diluted average loan to value, DLTV k

s (which includes assets with no leverage) by

LTV k
s =

∑
h

∑
j max(0, ϕhj )πj∑

h

∑
j max(0, ϕhj )ps(j)k

≥
∑
h

∑
j max(0, ϕhj )πj∑
h y

h
s(j)kps(j)k

= DLTV k
s . (9)

Similarly one can define investor leverage, LTV h
s and diluted investor leverage, DLTV h

s

as

LTV h
s =

∑
k

∑
j∈Jks max(0, ϕhj )πj∑

k

∑
j∈Jks max(0, ϕhj )psk

≥
∑
k

∑
j∈Jks max(0, ϕhj )πj∑

k y
h
skpsk

= DLTV h
s . (10)

4.1.6 Default and Delivery

As in Section 3, since the maximum borrowers can lose is their collateral if they do
not honor their promise, the actual delivery of contract j in states s′ ∈ S(s(j)) is

δs′(j) = min{qs′ · js′ , ps′k(j) + qs′ · dks′} (11)

4.1.7 Budget Set

Given consumption prices, asset prices, and contract prices (q, p, π), each agent h ∈ H
choses intra-period production plans of goods and assets, z = (zc, zy), consumption,
c, asset holdings, y, and contract sales/purchases ϕ in order to maximize utility (5)
subject to the budget set defined by

Bh(q, p, π) = {(zc, zy, c, y, ϕ) ∈ RSL ×RSK ×RSL
+ ×RSK

+ × (RJs)s∈S\ST : ∀s

qs · (cs − ehs − F h
s (cs∗)− zsc) + ps · (ys − ys∗ − zsy) ≤

qs ·
∑
k∈K d

k
sys∗k +∑j∈Js ϕjπj −

∑
k∈K
∑
j∈Jk

s∗
ϕjmin{qs · js, psk + qs · dks};

zs ∈ Zh
s ;
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∑
j∈Jks max(0, ϕj) ≤ yks ,∀k}.

In each state s, expenditures on consumption minus endowments plus any produced
consumption good (either from the previous period or produced in the current pe-
riod), plus total expenditures on assets minus asset holdings carried over from previ-
ous periods and asset output from the intra-period technology, can be at most equal
to total asset deliveries plus the money borrowed selling contracts, minus the pay-
ments due at s from contracts sold in the past. Intra-period production is feasible.
Finally, those agents who borrow must hold the required collateral.

4.1.8 Collateral Equilibrium

A Collateral Equilibrium in this economy is a set of consumption good prices, fi-
nancial asset prices and contract prices, production and consumption decisions, and
financial decisions on assets and contract holdings ((q, p, π), (zh, ch, yh, ϕh)h∈H) ∈
(RL

+)s∈S × (RK
+ ×RJs

+ )s∈S\ST × (RS(L+K) ×RSL
+ ×RSK

+ × (RJs)s∈S\ST )H such that

1. ∑h∈H(chs − ehs − F h
s (cs∗)− zhsc) = ∑h∈H

∑
k∈K y

h
s∗kd

k
s ,∀s.

2. ∑h∈H(yhs − yhs∗ − zhsy) = 0,∀s.

3. ∑h∈H ϕ
h
j = 0,∀j ∈ Js,∀s.

4. (zh, ch, yh, ϕh) ∈ Bh(q, p, π),∀h

(z, c, y, ϕ) ∈ Bh(q, p, π)⇒ Uh(c) ≤ Uh(ch),∀h.

Markets for consumption, assets and promises clear in equilibrium and agents opti-
mize their utility in their budget set.

4.2 General No-Default Theorem

It turns out that we can still assume no default in equilibrium without loss of gen-
erality in this much more general context as the following theorem shows.

Binomial No-Default Theorem:

Suppose that S is a binomial tree, that is S(s)={sU,sD} for each s ∈ S\ST . Sup-
pose that all assets are financial assets and that every contract is a one period
contract. Let ((q, p, π), (zh, ch, yh, ϕh)h∈H) be an equilibrium. Suppose that for any
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state s ∈ S\ST , any asset k ∈ K, and any contract j ∈ Jks , the max min promise
(λ̄jsU , λ̄jsD) is available to be traded, where λ̄ = max{λ ∈ R+ : λ(qsU ·jsU , qsD ·jsD) ≤
(psUk + qsU · dsU , psDk + qsD · dsD)}. Then we can construct another equilibrium
((q, p, π), (zh, ch, ȳh, ϕ̄h)h∈H) with the same asset and contract prices and the same
production and consumption choices, in which only max min contracts are traded.

Proof:

The proof of the Binomial No-Default Theorem can be applied in this more general
context state by state, asset by asset, and ray by ray. Take any s ∈ S\ST and
any asset k ∈ K. Partition Jks into Jks (r1)∪ ...∪ Jks (rn) where the ri are distinct rays
(µi, νi) ∈ R2

+ of norm 1 such that j ∈ Jks (ri) if and only if (qsU ·jsU , qsD·jsD) = λ(µi, νi)
for some λ > 0. For each agent h ∈ H, consider the portfolio (yh(s, k, i), ϕh(s, k, i))
defined by

ϕhj (s, k, i) = ϕhsj if j ∈ Jks (ri) and 0 otherwise.

yh(s, k, i) =
∑

j∈Jks (ri)
max(0, ϕhsj).

Denote the portfolio payoffs in each state by

whU(s, k, i) = yh(s, k, i)[psUk + qsUd
k
sU ]−

∑
j∈Jks (ri)

ϕhj (s, k, i) min(qsU · jsU , psUk + qsUd
k
sU).

whD(s, k, i) = yh(s, k, i)[psDk + qsDd
k
sD]−

∑
j∈Jks (ri)

ϕhj (s, k, i) min(qsD · jsD, psDk + qsDd
k
sD).

If
µi
νi
<
psUk + qsUd

k
sU

psDk + qsDdksD
.

then the combination of the Arrow U security (which can be obtained by buying
the asset k while borrowing on the max min contract of type (s, k, i)) and the max
min contract of type (s, k, i) positively spans (whU(s, k, i), whD(s, k, i)). Thus we can
apply the proof of the Binomial No-Default Theorem to replace all the above trades
of contracts in Jks (ri) with a single trade of the max min contract of type (s, k, i). If

µi
νi
>
qsUk + psUd

k
sU

qsDk + psDdksD

then exactly the same logic of the Binomial No-Default Theorem applies, but with
the Arrow D security instead of the Arrow U security. If there is equality in the
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above comparison, then the contract and the asset are perfect substitutes, so there
is no need to trade the contracts in the family at all.�

4.3 Discussion

The generalized Binomial Default Theorem applies in a far broader context than the
theorem stated in Section 3. The reason is that the proof of Section 3 did not use
the fact that the promises were non-contingent, but only that they all were on the
same ray. Furthermore, by assumption an asset can only back one loan, so the total
collateral backing promises along some ray can be considered separately from the
rest of the assets. Since in addition, all promises are one period long, the simple
proof of Section 3 can be applied state by state to each asset and each homogeneous
family of promises, (i.e. promises along a single ray) using the asset as collateral.
As in the proof in Section 3, borrowers can use less of this collateral to achieve the
same final payoffs at the same cost by using only the max min contract. Thus our
two refinements in Section 3.3 also extend to this general setting. Any positive fee
for collateral use guarantees that in every equilibrium only max min contracts are
traded. It may now be the case that sometimes the payoff cone is given by the
positive span of the max min of the family and the Arrow D security, instead of the
Arrow U security. However, the logic of the argument stays completely unaltered.

On the other hand, the State Pricing Corollary of Section 3.1 does not extend to
this more general context. For each ray, say ri, we obtain (by the same logic as
before), state prices ai and bi. However, they need not be the same as the state
prices obtained when the argument is applied to a different ray, say rj. The reason
for this is that the payoff cones associated to each ray may not completely coincide.
Hence, we only have a “local” state pricing result.

The generalization shows that the No Default Theorem holds in an important setting.
But it also allows us to reach some more conclusions. First let us consider what we
learn from multiple assets k. Suppose for now that we restrict attention to non-
contingent contracts, that is contracts j ∈ Jks for which in equilibrium qsU · jsU =
qsD ·jsD.14 The Binomial Leverage theorem presented in Section 3.4 extends to many

14These may be created by assuming there is some numeraire bundle of goods vs such that
commodity prices always satisfy qs · vs = 1 and then supposing that promises are denoted in units
of the numeraire. In the actual world, many contract promises are denoted by non-contingent
money payments.
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assets. Letting LTV k
s denote the leverage of every riskless loan collateralized by k

in state s, we must have

LTV k
s = min{psD + qsD · dksD, psU + qsU · dksU}/psk

1 + rs
.

where (1 + rs) =qsU · jsU/πj for any non-contingent contract j ∈ Js whose deliveries
are fully covered by the collateral. This formula explains which assets are easier to
leverage. The asset whose future value has the least bad downside can be leveraged
the most. The formula allows us to rank leverage of different assets at the same
state s, or even across states and across economies. When contract promises are
contingent, the Binomial No-Default Theorem tells us exactly how big the promises
of each type will be made per unit of collateral: as big as can be guaranteed not to
default. But the leverage formula for the LTV associated to non-contingent contracts
cannot so easily be extended to contingent contract promises, because it depends on
what the state prices are.

Many papers have assumed a link between volatility and leverage (see for example
Thurner et.al. (2010), and Adrian and Boyarchenko (2012)). The Binomial Leverage
Theorem indeed shows that as the world becomes more dangerous, leverage goes
down. But it also makes clear that volatility is not in general an appropriate measure
of danger, except when asset payoffs are symmetric (state prices of 1/2, 1/2) or when
all asset payoffs are perfectly correlated. Consider two assets k and k′ that are both
traded in some state s. Suppose that their one period asset returns are perfectly
correlated, so they both have a lower return in sD than in sU . Suppose that the
down risk for k′ is worse than the down risk k, so that k can be leveraged more.
Clearly the return to k′ must be higher than the return to k, otherwise nobody
would have held k′ (for then its returns would be strictly dominated and it would be
less good collateral). Hence, no matter what probabilities a > o and b > 0 we attach
to the two states, a dollar’s worth of k′ has more volatility than a dollar’s worth of k.
But if the assets are not perfectly correlated, this argument fails. Suppose now that
both assets and their bonds can be priced by the same state prices a = 2/3, b = 1/3.
Suppose their payoffs are dkU = 4, dkD = 1, dk′U = 2, dk′D = 5. Then both assets have
the same price psk = psk′ = 3, and at probabilities(a, b) = (2/3, 1/3), both have the
same volatility. But k′ has less downside risk and so can be leveraged more. In the
binomial world, down risk, not volatility, determines leverage.

The Binomial No Default Theorem compares contracts along the same ray, determin-
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ing which will be traded. In this paper we do not pursue the question of comparing
contracts along different rays. However, notice that our proof shows that the col-
lateral minimizing equilibrium always uses the rays which together with the asset
payoffs generate the biggest positive span. At most two contracts will be traded
with the same collateral. In particular, if Arrow securities can be issued, they will
be. This result about Arrow securities already appears in the unpublished work of
Geanakoplos-Zame.

The general setting described in Section 4 allows for idiosyncratic inter temporal
production of commodities. This is an important extension. Allowing for production
in collateral general equilibrium makes it possible to study the effect of an upward
sloping Credit Surface on investment. Consider an agent h can produce 2 apples
in sU and also in sD with an input of just one apple in s. She may be holding
collateral in state s that she likes (say because she is optimistic and it pays more
in sU than in sD) and that she leverages at zero rate of interest. To the outside
observer it may appear that the rate of interest in the economy is zero, and that
nobody is undertaking any investment because nobody can find an investment with
a positive rate of return. But that would be wrong. Agent h indeed has a much
more productive investment. But she cannot borrow the money to undertake it. If
she tries to borrow more money on her asset, the interest rate will go up so fast that
it is not worth it. Furthermore, she does not want to sell the asset because she is
getting to buy it for such a low price. We pursue these kind of questions in Fostel
and Geanakoplos (2014).

The extension to trees of arbitrary periods allows us to see why Brownian motion
economies are not the appropriate models to study endogenos leverage. By taking
shorter and shorter time periods, binomial economies converge to Brownian motion
economies, provided certain conditions are met. We do not have room to spell out
all the details, but one condition (familiar from the Black Scholes literature) is that
as the period grows shorter, the one period volatility and down risk of the asset price
goes to zero. From the Binomial Leverage Theorem we conclude that the LTV on the
shorter and shorter one period loans converges to 100%. Thus in the limit, investors
with a tiny bit of money can buy all the assets they want without running into a
collateral constraint. In the limit, leverage is entirely demand determined. However,
the limiting equilibrium could still be far from Arrow Debreu. Agents cannot sell
contingent promises, and they cannot borrow to consume (since even with 100%
LTV loans, the collateral they hold is at least as costly as the money they obyain by
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borrowing.15

4.4 Pyramiding and Binomial Assets

One might wonder whether the same theorem would hold if we allowed the contracts
to serve in turn as collateral for further contracts. Houses are used as collateral for
mortgages, and mortgages (after they are bundled together as securities) are used
as collateral for further loans like Repos. For simplicity, let us restrict attention to
non-contingent promises. Suppose an agent i issues a contract j > j∗ = dD backed
by an asset paying dU > j > dD, and then another agent i′ uses the j contract as
collateral to issue his own promise of j′ to some agent i′′. A moment’s reflection
reveals that the contracts j, j′ are in the positive span of the asset and j∗. Hence
exactly the same proof can be applied to derive the state pricing corollary and then
the Binomial No Default Theorem in this more general setting.

The No-Default Theorem allows for two further extensions, both showing that it re-
ally depends on binomial assets rather than binomial trees. First, it can be extended
to more than two successor states, provided that for each financial asset the states
can be partitioned into two subsets on each of which the collateral value (including
dividends of the asset) and the promise value of each contract written on the asset
are constant. Second, it can also be extended to contracts with longer maturities.
Suppose all the contracts written on some financial asset come due in the same pe-
riod and that the states in that period can be partitioned into two subsets on each
of which the collateral value (including dividends of the asset) and the promise value
of each contract written on the asset are constant. Suppose also that the financial
asset used as collateral cannot be traded or used for production purposes before ma-
turity. Then the proof of the Binomial No-Default Theorem shows that without loss
of generality we can assume no default in equilibrium.

5 Binomial CAPM Examples

In this section we present two examples in order to illustrate the theoretical results
presented in Sections 3 and 4. We assume one perishable consumption good and
one asset which pays dividends dU > dD of the consumption good. Consider two

15See for example Brunnermeier and Sannikov (2013).
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Table 1: Collateral Equilibrium with No Default: Prices and Leverage.

Variable Notation Value
Asset Price p 0.3778
State Price a 0.3125
State Price b 0.3264

Max min Contract Price πj∗ 0.1278
Leverage LTV Y 0.3382

types of mean-variance investors, h = A,B, characterized by utilities Uh = uh(c0) +∑
s∈ST γsu

h(cs), where uh(cs) = cs− 1
2α

hc2
s, s ∈ {0, U,D}. Agents do not discount the

future. Agents have an initial endowment of the asset, yh0∗ , h = A,B. They also have
endowment of the consumption good in each state, ehs ,∀s, h = A,B. It is assumed
that all contract promises are of the form (j, j), j ∈ J, each backed by one unit of
the asset as collateral. Agents will never deliver on a promise beyond the value of
the collateral since we assume non-recourse loans.16

5.1 Binomial CAPM with Multiple Equilibria.

We assume one perishable consumption good and one asset which pays dividends
dU > dD of the consumption good. Consider two types of mean-variance investors,
h = A,B, characterized by utilities Uh = uh(c0) +∑s∈ST γsu

h(cs), where uh(cs) =
cs − 1

2α
hc2
s, s ∈ {0, U,D}. Agents do not discount the future. Agents have an initial

endowment of the asset, yh0∗ , h = A,B. They also have endowment of the consumption
good in each state, ehs ,∀s, h = A,B.

Suppose agents start with endowment of the asset, yA0∗ = 1, yB0∗ = 3. Suppose
consumption good endowments are given by eA = (eA0 , (eAU , eAD)) = (1, (1, 5)) and
eB = (eB0 , (eBU , eBD)) = (3, (5, 5)). Utility parameters are given by, γU = γD = .5 and
αA = .1 and αB = .1. Finally, asset payoffs are dU = 1 and dD = .2. Type-A agents
have a tremendous desire to buy Arrow U securities and present consumption, and
to sell Arrow D securities. But they are limited by the restriction to non-contingent
contract promises (j, j).

16This example would satisfy all the assumptions of the classical CAPM (extended to untraded
endowments), provided that we assumed agents always kept their promises, without the need of
posting collateral.
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Table 2: Collateral Equilibrium with No Default: Allocations

Asset and Collateral
Asset y Contracts ϕj∗

Type-A 3.7763 3.7763
Type-B 0.2237 −3.7763

Consumption
s = 0 s = U s = D

Type-A 0.4337 4.0211 5
Type-B 3.5663 5.9789 5.80

According to the Binomial No-Default Theorem, in searching for equilibrium we
never need to look beyond the max min promise j∗ = .2, for which there is no default.
Tables 1 and 2 present this max min collateral equilibrium. Type-A agents buy most
of the assets in the economy, yA = 3.7763, and use their holdings as collateral to
sell the max min contract, promising (.2)(3.7763) in both states U and D. Type-B
investors sell most of their asset endowment and lend to type-A investors.17

As indicated by the Binomial State Pricing Corollary, all the contracts j 6= j∗, as
well as j = j∗, can be priced by state prices a = 0.3125 and b = 0.3264. By the
No-Default Theorem, we do not need to investigate trading in any of the contracts
j 6= j∗. Indeed it is easy to check that this is a genuine equilibrium, and that no
agent would wish to trade any of these contracts j 6= j∗ at the prices given by a, b.
Every agent who leverages chooses to sell the same max min contract, hence asset
leverage and contract leverage are the same and described in the table. We can easily
check that the LTV Y satisfies the formula given in the Binomial Leverage Theorem,
so that

LTV Y = dD/p

1 + rj∗
= .2/.3778

1.56 = .3382.

17To find the equilibrium we guess the regime first and we solve for three variables, p, πj∗
and φj∗, a system of three equations. The first equation is the first order condition for lend-
ing corresponding to the B-investor:π = qU (1−αBcBU )dD+qD(1−αBcBD)dD

1−αBcB0
.The second equation is

the first order condition of the A-investor for purchasing the asset via the max min contract,
p − π = qU (1−αAcAU )(dU−dD)+qD(1−αAcAD)(dD−dD)

1−αAcA0
. The third equation is the first order condition

for B-investor for holding the asset, p = γU (1−αBcBU )dU+γD(1−αBcBD)dU
1−αBcB0

. Finally, we check that the
regime is genuine, confirming that the A-investor really wants to leverage to the max, for this to
be the case, π > γU (1−αAcAU )dD+γD(1−αAcAD)dD

1−αAcA0
.
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Table 3: Collateral Equilibrium with Default: Prices and Leverage

Variable Notation Value
Asset Price p 0.3778

Promise j 0.2447
Contract j Price πj 0.1418

Leverage LTV Y 0.3753

Table 4: Collateral Equilibrium with Default: Allocations.

Asset and Collateral
Asset y Collateral ϕj

Type-A 4 4
Type-B 0 −4

Consumption
s = 0 s = U s = D

Type-A 0.4337 4.0211 5
Type-B 3.5663 5.9789 5.80

This equilibrium is essentially unique, but not strictly unique. In fact, there is
another equilibrium with default as shown in Tables 3 and 4, in which the type-A
agents borrow by selling the contract j = .2447 > j∗ = .2. In the default equilibrium,
leverage is higher and the asset holdings of type-A agents are higher (so diluted
leverage is much higher). They borrow more money. However, as guaranteed by
the Binomial No-Default Theorem, in both equilibria, consumption and asset and
contract prices are the same: actual default is irrelevant. Notice that in the no-default
equilibrium, 3.7763 units of the asset are used as collateral, while in the default
equilibrium 4 units of the asset are used as collateral. The no-default equilibrium
uses less collateral.

Between these two equilibria, the Modigliani-Miller Theorem holds; there is an in-
determinacy of debt issuance in equilibrium. However, leverage cannot be reduced
below the max min contract level. If type-A agents were forced to issue still less debt,
they would be strictly worse off. Thus in this example, the No-Default Theorem holds
while the Modigliani-Miller Theorem fails beyond a limited range.

Finally, both collateral equilibria are different from the Arrow-Debreu Equilibrium
and the classical CAPM equilibrium as shown in Table 5.
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Table 5: Arrow-Debreu and CAPM Equilibrium.

Asset Price p 0.3700
State Price pU 0.3125
State Price pD 0.2875

Consumption
s = 0 s = U s = D

Type-A 0.5338 4.0836 4.5569
Type-B 3.4662 5.9164 6.2431

CAPM Portfolios: Market Bond
Type-A 0.5916 1.8328
Type-B 0.4084 −1.8328

State prices in collateral equilibrium are different from the state prices in Arrow-
Debreu equilibrium. The asset price in complete markets is slightly lower than in
collateral equilibrium. In the complete markets equilibrium, investors hold shares in
the market portfolio (10, 10.8) (aggregate endowment) and in the riskless asset (1, 1).

5.2 Binomial CAPM with a Unique Equilibrium.

Consider the same CAPM model as before but with the following parameter val-
ues. Suppose agents each own one unit of the asset, yh0∗ = 1, h = A,B. Suppose
consumption good endowments are given by eA = (eA0 , (eAU , eAD)) = (1, (1, 5)) and
eB = (eB0 , (eBU , eBD)) = (3, (5, 5)). Utility parameters are given by, γU = γD = .5 and
αA = .1 and αB = .1. Finally, asset payoffs are dU = 1 and dD = .2.

Tables 6 and 7 present the max min collateral equilibrium. In the collateral equilib-
rium type-A agents buy all the asset in the economy and use all of their holdings as
collateral, leveraging via the max min contract. On the other hand, type-B investors
sell all their asset endowment and lend. As before LTV Y is characterized by down
risk.

Unlike the previous example the no-default equilibrium in this example is unique
without any need of refinements. We cannot find another equilibrium involving
default with borrowers issuing bigger promises, since there is not enough collateral
in the economy. In this case, as before, the collateral equilibrium does not coincide
with the complete markets equilibrium shown in Table 8.
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Table 6: Collateral Equilibrium with No Default: Prices and Leverage.

Variable Notation Value
Asset Price p 0.4572
State Price a 0.4027
State Price b 0.2725

Max min Contract Price πj∗ 0.1350
Leverage LTV Y 0.2952

Table 7: Collateral Equilibrium with No Default: Allocations

Asset and Collateral
Asset y Contracts ϕj∗

Type-A 2 2
Type-B 0 −2

Consumption
s = 0 s = U s = D

Type-A 0.8122 2.6 5
Type-B 3.1872 5.4 5.4

Table 8: Arrow-Debreu and CAPM Equilibrium

Asset Price p 0.4350
State Price pU 0.3750
State Price pD 0.3

Consumption
s = 0 s = U s = D

Type-A 0.8024 3.1018 4.4814
Type-B 3.1976 4.8982 5.9186

CAPM Portfolios Market Bond
Type-A 0.5749 1.4970
Type-B 0.4251 −1.4970
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