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Abstract

Previous research has established that the predictions made by game theory about strategic
behavior in incomplete information games are quite sensitive to the assumptions made about
the players’ infinite hierarchies of beliefs. We evaluate the severity of this robustness prob-
lem by characterizing conditions on the primitives of the model—the players’ hierarchies of
beliefs—for the strategic behavior of a given Harsanyi type to be approximated by the strate-
gic behavior of (a sequence of) perturbed types. This amounts to providing characterizations
of the strategic topologies of Dekel, Fudenberg, and Morris (2006) in terms of beliefs. We
apply our characterizations to a variety of questions concerning robustness to perturbations
of higher-order beliefs, including genericity of common priors, and the connections between
robustness of strategic behavior and the notion of common p-belief of Monderer and Samet
(1989).
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1 Introduction

A major concern with non-cooperative game theory is its reliance on details. The formal descrip-
tion of a strategic situation as a game requires minutiae that are often not available to the analyst
in real life, such as the precise order of moves, the information and actions available to the players
when they move, and the exact payoff functions and beliefs of the players. Unfortunately, game
theoretic solutions are known to depend very sensitively on those details, and the search for robust
predictions—those that are approximately correct across a range of similar models—becomes a
necessity.

Concentrating on strategic-form games with incomplete information (Harsanyi, 1967-68), we
investigate the robustness of game theoretic predictions to misspecification of the players’ subjec-
tive beliefs. We take the point of view of the analyst who posits a Harsanyi type space to model
the players’ uncertainty and recognizes that his model is only an idealization, thus being subject
to misspecification error. For example, the analyst may assume that there is common knowledge
of the underlying state of the world, but understands that such common knowledge assumption
can be at best an approximation of reality. Or, as is often the case in practice, the analyst may
posit a non-degenerate type space with a common prior, but realizes that the true common prior
distribution may be slightly different from the one assumed, or even that the players may have
slightly different priors.

What is the impact of such kinds of misspecifications on the analyst’s behavioral predictions?
We attack this question by studying the tail properties of the hierarchies of beliefs encoded in
Harsanyi types (the beliefs of a player about the payoff-relevant parameters, his beliefs about the
other players’ beliefs about the payoff-relevant parameters, and so on, ad infinitum) and their im-
plications for behavior. Our main finding is an exact characterization, in terms of the primitives of
the model (the players’ hierarchies of beliefs), of what it takes for a pair of types to display similar
strategic behaviors. Thus we find the minimum level of precision of the analyst’s information
model that is required for accurate predictions of strategic play.

To explain our results we first need to be precise about what we mean by “strategic behavior.”
Our behavioral assumption is that players play a Bayesian equilibrium on a type space (possibly
without a common prior). Thus, from the perspective of the analyst, who does not know the true
type space of the players and has a concern for robustness, the relevant solution concept is (interim
correlated) rationalizability (Dekel, Fudenberg, and Morris, 2006). Indeed, the set of actions that
are rationalizable for a type t coincides with the set of actions that can be played in some Bayesian
equilibrium on some type space, by some type that has the same hierarchy of beliefs as t (Dekel,
Fudenberg, and Morris, 2007, Remark 2). A similar perspective is taken by Bergemann and Morris
(2009) in the context of robust mechanism design. See also Aumann (1987) and Brandenburger
and Dekel (1987) for early papers pioneering this approach.

Formally, our main results are characterizations of the strategic topology and the uniform
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strategic topology of Dekel, Fudenberg, and Morris (2006). The former is the coarsest topology
on the universal type space (Mertens and Zamir, 1985)—the space of all hierarchies of beliefs—
under which the correspondence that maps each type of a player into his set of rationalizable
actions displays the same kind of continuity properties that the best-reply, Nash equilibrium and
rationalizability correspondences exhibit in complete information games.1 Thus, for any player,
a sequence of types tn converges in the strategic topology to a type t if and only if, for every
finite game and every action a of the player in the game, the following conditions are equivalent:
(a) action a is rationalizable for type t ; (b) for every " > 0 and sufficiently large n, action a is "-
rationalizable for type tn, where " is a size of sub-optimization allowed in the incentive constraints.
Convergence in the uniform strategic topology adds the requirement that the rate of convergence
in (b) be uniform across all finite games (with uniformly bounded payoffs).

As shown by Dekel, Fudenberg, and Morris (2006), a sequence of types converges in the strate-
gic topology only if it converges in the product topology: for every integer k > 1, the sequence of
k-order beliefs must converge weakly. However, the Electronic Mail game of Rubinstein (1989)
and, more generally, the structure theorem of Weinstein and Yildiz (2007), show that convergence
in the product topology does not imply strategic convergence. Our characterizations are based on
a strengthening of product convergence that requires k-order beliefs to converge at a rate that is
uniform in k.

We first explain the characterization of the uniform strategic topology, as it is simpler to state
and can serve as a benchmark for the other characterization result. For each k, endow the space of
k-order beliefs with the Prohorov distance, which is a standard distance that metrizes the topology
of weak convergence of probability measures (Billingsley, 1999). Say that a sequence of types tn

converges uniform-weakly to a type t if the k-order belief of tn converges to the k-order belief
of t and the rate of convergence is uniform in k. Our first main result, Theorem 1, states that
uniform strategic convergence is equivalent to uniform weak convergence.2 To interpret, consider
an analyst who would like to make predictions with some minimal level of accuracy, and wants to
achieve this level of accuracy uniformly across all strategic situations that the players might face.3

A tight condition for such uniformly robust prediction is that the analyst’s model of the play-
ers’ beliefs and higher-order beliefs be sufficiently precise, with the required degree of precision,
as measured by the Prohorov distance, binding uniformly over all levels of the belief hierarchy.

The content of Theorem 1 can be dissected in two parts. First, the theorem underscores the
role of uniform convergence of hierarchies of beliefs as a requirement for robustness. In light of
the structure theorem of Weinstein and Yildiz (2007), which shows that the tails of the hierarchies

1See the introduction of Dekel, Fudenberg, and Morris (2006) for a precise analogy with complete information
games.

2The partial result that uniform weak convergence implies uniform strategic convergence was proved in Chen, Di
Tillio, Faingold, and Xiong (2010). The reverse implication is new to the present paper.

3This may be the case if the analyst is a mechanism designer who will ultimately determine the game that the players
will face by his choice of a mechanism.
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of beliefs can have a large impact on strategic behavior, the role of uniform convergence should
not come as a surprise. Second, the theorem quantifies the impact of a misspecification at each
order of the hierarchy by the Prohorov distance. We view this as a nontrivial part of the theorem.
Indeed, the Prohorov distance, on which the notion of uniform weak convergence is based, is but
one of many equivalent distances that metrize the topology of weak convergence of probability
measures. For any such distance, one can consider the associated uniform distance over infinite
hierarchies of beliefs. It turns out that these distances may generate different topologies over
infinite hierarchies, even though the induced topologies over k-order beliefs coincide for each
finite k.4 Theorem 1 identifies one of these uniform distances that ultimately characterizes the
uniform-strategic topology.

The characterization of the strategic topology (Theorem 2) is also based on uniform conver-
gence and the Prohorov metric, but is more subtle. The relevant class of events for uniform weak
convergence, and a fortiori, uniform strategic convergence, is the entire Borel � -algebra of the
universal type space. By contrast, our characterization of the strategic topology highlights the
role of coarser information structures called frames. A frame is a profile of finite partitions of the
universal type space—one partition for each player—that satisfies a measurability condition: each
player’s belief concerning the events in the frame must pin down a unique atom of that player’s
partition. (We discuss the meaning of this condition below.) For any frame P and any positive
integer k, we define a distance over types, dk

P , that is analogous to the Prohorov distance over k-
order beliefs, but restricts the events for which the proximity is measured to those in the frame P .
Say that a sequence of types tn converges to a type t uniform-weakly on P if, for every positive
integer k, tn converges to t under dk

P and the rate of convergence is uniform in k. Our second
main result, Theorem 2, states that a sequence of types converges strategically if and only if it
converges uniform-weakly on every frame.

A frame can be interpreted as a coarsening of the canonical information structure of the uni-
versal type space where each player is assumed to know only his belief about the payoff-relevant
states and the events in the other players’ partitions. The measurability condition is a natural re-
quirement for a model of coarse information in a multi-agent setting: it amounts to the condition
that all interactive knowledge events (i knows j knows . . . ) are measurable with respect to the
players’ partitions. In particular, in a frame, every event concerning player j that player i can
reason about is either known to be true or known to be false by player j . Since the strategic be-
havior of a player in a game can only be affected by events that the player knows, it is intuitive
that strategic convergence should imply uniform-weak convergence only on frames and not on all
information structures.

To shed further light on the impact of higher-order beliefs, we use our characterization to

4In Chen, Di Tillio, Faingold, and Xiong (2010) we report an example of a sequence of types that converges uniform
weakly but fails to converge in the uniform topology associated with a distance (different from Prohorov) that metrizes
the topology of weak convergence of probability measures.
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investigate the connection between strategic convergence and a natural notion of uniform conver-
gence based on common p-beliefs (Monderer and Samet, 1989).5 Say that a sequence of types tn

converges in common beliefs to a type t if tn converges to t in the product topology and, for every
event E and every p > 0, the following conditions are equivalent: (i) E is common p-belief for
type t ; (ii) for every " > 0, k > 1 and sufficiently large n, type tn has common .p � "/-belief on
the event that the players have k-order beliefs that are "-close to those from E. This is the interim
analogue of the ex ante notion of convergence based on common p-beliefs that the seminal papers
of Monderer and Samet (1996) and Kajii and Morris (1998) have shown to characterize the ex
ante strategic topology for Bayesian equilibrium on countable common prior type spaces.

We establish, using the characterization of Theorem 2, that strategic convergence implies con-
vergence in common beliefs (Theorem 3). But, somewhat surprisingly, we find that the converse
fails: we exhibit a sequence of types that converges in common beliefs but does not converge
uniform-weakly on a frame (Example 5). These results highlight a fundamental difference be-
tween the common prior, equilibrium, ex ante framework of the early literature and our non-
common prior, non-equilibrium, interim framework. Nonetheless, when the limit is assumed a
finite type—a type that belongs to a finite type space—we show that convergence in common be-
liefs is equivalent to uniform weak convergence, and hence, a fortiori, to both uniform strategic
and strategic convergence (Theorem 4).

Finally, we use our characterizations to revisit, and reverse, two important genericity results
concerning the structure of the universal type space. The first result, due to Ely and Pęski (2011),
shows that critical types—those types which display discontinuous rationalizable behavior—form
a meager set under the product topology. By way of contrast, we show that they form an open
and dense set under the strategic topology (Theorem 5). Second, Lipman (2003) shows that types
consistent with a common prior are dense in the universal type space under the product topology.
Instead, we show that those types are nowhere dense under the strategic topology (Theorem 6).
We also report measure-theoretic versions of these genericity results based on the notions of preva-
lence and shyness.

The rest of the paper is organized as follows. Section 2 sets up the incomplete information
model and reviews the basic definitions and properties of type spaces, hierarchies of beliefs, com-
mon p-beliefs and the solution concept of interim correlated rationalizability. Section 3 presents
the strategic topologies of Dekel, Fudenberg, and Morris (2006) and their characterizations in
terms of beliefs, and studies their relationship with the notion of common p-belief of Monderer
and Samet (1989). Section 4 examines the genericity of critical types and common prior types
under the strategic topology and also their measure-theoretic genericity. Section 5 concludes by
discussing possible extensions for future work. All proofs are presented in the appendix.

5Recall that an event E is common p-belief for a given type if that type assigns probability at least p to E, assigns
probability at least p to the event that E obtains and the other players assign probability at least p to E, and so forth,
ad infinitum.
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2 Preliminaries

Given a measurable space S , write Å.S/ for the space of probability measures on S , equipped
with the � -algebra generated by the sets of the form f⌫ 2 Å.S/ W ⌫.E/ > pg, where E ✓ S

is a measurable set and p 2 Œ0; 1ç. Unless otherwise stated, product spaces are assumed to be
endowed with the product � -algebra, subspaces with the relative � -algebra, and finite spaces with
the discrete � -algebra.

We consider two-player games with incomplete information.6 The space ‚ of payoff-relevant
states (or just states, for short) is assumed to be finite, with #‚ > 2, and is fixed throughout
the paper. A game is a profile G D .A

i

; g

i

/

i2I

, where A
i

is a finite set of actions of player
i 2 I D f1; 2g and g

i

W A
i

⇥ A�i

⇥ ‚ ! R is his payoff function, which is extended to
Å.A

i

/⇥Å.A�i

⇥‚/ in the usual way.7 The uncertainty of the players is modeled by a type space,
that is, a profile .T

i

;�

i

/

i2I

where T
i

is a measurable space of types of player i and �
i

W T
i

!
Å.‚ ⇥ T�i

/ is a measurable map that associates, with each type t
i

of player i , his belief �
i

.t

i

/

about the payoff-relevant states and the types of player �i .

2.1 Solution Concept

Our analysis is based on the solution concept of interim correlated rationalizability, due to Dekel,
Fudenberg, and Morris (2007). The concept is an incomplete information extension of the ratio-
nalizability of Bernheim (1984) and Pearce (1984).

Given a game G D .A

i

; g

i

/

i2I

and " > 0, an action a
i

2 A

i

is an "-best reply to ⇡�i

2
Å.A�i

⇥ ‚/, written a
i

2 BR

i

.⇡�i

; G; "/, if g
i

.a

i

;⇡�i

/ > g

i

.a

0
i

;⇡�i

/ � " for all a0
i

2 A

i

.
Given a type space .T

i

;�

i

/

i2I

, a profile of correspondences &
i

W T
i

◆ A

i

, i 2 I , has the "-best-
reply property if for each i 2 I , t

i

2 T
i

and a
i

2 &
i

.t

i

/ there is a conjecture ⌫ 2 Å.‚⇥T�i

⇥A�i

/

such that the following conditions hold:

marg
‚⇥T�i

⌫ D �

i

.t

i

/;

�

marg
T�i ⇥A�i

⌫

�⇥

graph &�i

⇤ D 1;

8

a

i

2 BR
i

�

marg
A�i ⇥‚

⌫; G; "

�

:

The greatest (w.r.t. pointwise set inclusion) profile of correspondences that has the "-best-reply
property is the interim correlated "-rationalizable correspondence—or "-rationalizable corre-
spondence, for short—and is denoted R

i

.�; G; "/ W T
i

◆ A

i

.9 For a
i

2 R

i

.t

i

; G; "/, we say

6We restrict attention to two-player games for ease of notation. All our results extend to the general N -player case.
7Following standard notation, for each player i 2 I we write �i to designate the other player in I .
8When graph &

i

is not measurable, this expression is taken to mean that marg
T�i ⇥A�i

⌫

i

assigns probability one to
a measurable subset of graph &

i

.
9Such greatest profile of correspondences is well defined, because the pointwise union of any family of profiles
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that a
i

is an "-rationalizable action for type t
i

. Finally, to ease notation, for " D 0 we denote the
correspondence R

i

.�; G; 0/ simply by R
i

.�; G/ and call it the (interim correlated) rationalizable
correspondence.

2.2 Beliefs

Type spaces contain implicit descriptions of each player’s beliefs about the payoff-relevant states,
his beliefs about the other player’s beliefs about the payoff-relevant states, and so on. We formulate
this higher-order uncertainty following Mertens and Zamir (1985), whose construction we now
review. An equivalent formulation is found in Brandenburger and Dekel (1993).

A first-order belief of player i is a probability distribution over ‚, that is, an element of
T 1

i

D Å.‚/. Recursively, for k > 2, the space of k-order beliefs of player i is

T k

i

D
n

�

t

1

i

; : : : ; t

k�1

i

; t

k

i

� 2 T k�1

i

⇥Å.‚ ⇥ T k�1

�i

/ W marg
‚⇥T k�2

�i
t

k

i

D t

k�1

i

o

:

The above condition on marginal distributions implies that each element of T k

i

is uniquely de-
termined by its k-th coordinate, hence we can identify T k

i

with Å.‚ ⇥ T k�1

�i

/. The space of
hierarchies of beliefs of player i is

T
i

D ��

t

1

i

; t

2

i

; : : :/ W .t1
i

; : : : ; t

k

i

/ 2 T k

i

8k > 1

 

:

Mertens and Zamir (1985) show that for every hierarchy t
i

D .t

1

i

; t

2

i

; : : :/ 2 T
i

there is a
unique probability measure �

i

.t

i

/ 2 Å.‚ ⇥ T�i

/ that extends each of the measures t1
i

; t

2

i

; : : :.
Moreover, the map �

i

W T
i

! Å.‚ ⇥ T�i

/ is an isomorphism.10 To ease notation, for each event
E ✓ ‚ ⇥ T�i

we shall often write �
i

.Ej t
i

/ instead of the more cumbersome �
i

.t

i

/ŒEç.

The type space .T
i

;�

i

/

i2I

is called the universal type space, since any type t
i

from any ab-
stract type space .T

i

;�

i

/

i2I

uniquely induces a hierarchy of beliefs ⌧
i

.t

i

/ D .⌧

1

i

.t

i

/; ⌧

2

i

.t

i

/; : : : /

in a natural way: ⌧1

i

.t

i

/ D marg
‚

�

i

.t

i

/ and, recursively, for k > 2,

⌧

k

i

.t

i

/

⇥

✓ ⇥E⇤ D �

i

.t

i

/

h

✓ ⇥ �

⌧

k�1

�i

��1

.E/

i

for each ✓ 2 ‚ and measurable E ✓ T k�1

�i

, as shown by Mertens and Zamir (1985).

We restrict attention throughout to types that belong to the universal type space T
i

. This incurs
no loss of generality, as Dekel, Fudenberg, and Morris (2007) have shown that the "-rationalizable

of correspondences with the "-best-reply property must also have the "-best-reply property. The "-rationalizable cor-
respondence has an alternative characterization in terms of iterated elimination of actions that are never an interim
best-reply (Dekel, Fudenberg, and Morris, 2007, Claim 1) and a dual characterization in terms of iterated elimination
of strongly interim-dominated actions (Chen, Di Tillio, Faingold, and Xiong, 2010, Proposition 1).

10That is, a measurable bijection with measurable inverse.
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actions of any type are pinned down by its hierarchy of beliefs: R
i

.t

i

; G; "/ D R

i

�

⌧

i

.t

i

/; G; "

�

for
any type t

i

belonging to any type space. Thus, we take T
i

to be the domain of the correspondence
R

i

.�; G; "/.

2.3 Common Beliefs

A standard approach to express assumptions about higher-order uncertainty uses the notion of
common belief, due to Monderer and Samet (1989, 1996). Let � D ‚ ⇥ T

1

⇥ T
2

and, for each
measurable set E ✓ � and each type t

i

2 T
i

, let E
ti

designate the section of E over t
i

, i.e.

E

ti
D �

.✓; t�i

/ W .✓; t
1

; t

2

/ 2 E ;

which is a measurable set by standard arguments. For each p 2 Œ0; 1ç, define

B

p

i

.E/ D �

t

i

2 T
i

W �
i

.E

ti
j t

i

/ > p

 

;

which is also measurable.11 Then, for each p D .p

1

; p

2

/ 2 Œ0; 1ç

2, define the event that E is
mutual p-belief as

B

p
.E/ D ‚ ⇥ Bp1

1

.E/ ⇥ Bp2

2

.E/;

and the event that E is common p-belief as

C

p
.E/ D B

p
.E/ \ B

p
�

E \ Bp
.E/

� \ B

p
�

E \ Bp
�

E \ Bp
.E/

�� \ � � � :

Then, the event thatE is common p-belief for player i , written C p
i

.E/, is defined as the projection
of C p

.E/ on T
i

, which is a measurable set because C p
.E/ is a rectangle.12 For notational conve-

nience, we identifyBpi

i

.E/ andC p
i

.E/with the cylinders‚⇥Bpi

i

.E/⇥T�i

and‚⇥C p
i

.E/⇥T�i

,
respectively. Thus, we can write

C

p
i

.E/ D B

pi

i

.E/ \ B

pi

i

�

E \ Bp�i

�i

.E/

� \ B

pi

i

�

E \ Bp�i

�i

�

E \ Bpi

i

.E/

�� \ � � � :

Note that for p�i

D 0 we have C p
i

.E/ D B

pi

i

.E/.

Finally, common belief has the following well known fixed-point characterization.

Lemma 1. C p
.E/ D B

p
.E \ C p

.E// and C

p
i

.E/ D B

pi

i

.E \ C p
�i

.E//.

11The measurability of Bp

i

.E/ follows from the measurability of the map t
i

7! �

i

.E

ti
j t

i

/. The class of events
�
E ✓ � W E is a measurable set such that t

i

7! �

i

.E

ti
j t

i

/ is measurable
 

can be readily verified to be a monotone class containing the algebra of finite disjoint unions of measurable rectan-
gles, which generates the product � -algebra on �. It follows that the map t

i

7! �

i

.E

ti
j t

i

/ is measurable for every
measurable E.

12The definition of Cp
.E/ is analogous to the common repeated belief of Monderer and Samet (1996), which differs

from the original definition of Monderer and Samet (1989). A similar definition appears in Ely and Pęski (2011) for the
case where E is a rectangle. We allow the event E to be any measurable set.
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3 Behavior- and Belief-Based Topologies

Two kinds of information are encapsulated in the description of a type. On one hand, a type gen-
erates an infinite hierarchy of beliefs. On the other hand, a type determines the player’s strategic
behavior in each game. Accordingly, we distinguish between belief-based topologies on types—
under which, by definition, nearby types have similar hierarchies of beliefs—and behavior-based
topologies—under which nearby types display similar strategic behaviors. In this section, we
provide belief-based characterizations of behavior-based topologies.

The product topology is the canonical belief-based topology on the universal type space T
i

.
To define it, let the (finite-dimensional) space of first-order beliefs, T 1

i

D Å.‚/, be endowed
with the Euclidean topology and, recursively, for each k > 2, let the space of k-order beliefs,
T k

i

D Å.‚⇥T k�1

�i

/, be endowed with the topology of weak convergence of probability measures
relative to the topology defined on T k�1

�i

. Then, a sequence of types tn
i

converges to a type t
i

in
the product topology if the k-order belief of tn

i

converges to the k-order belief of t
i

, for every
k > 1.13

Turning to behavior topologies, we first review the key definitions of Dekel, Fudenberg, and
Morris (2006).

Definition 1 (Strategic topology). A sequence of types tn
i

converges strategically to a type t
i

if
for every game G and every action a

i

of player i in G, the following conditions are equivalent:

(a) a
i

is rationalizable for t
i

in G;

(b) for every " > 0 there exists N such that for every n > N , a
i

is "-rationalizable for tn
i

in G.

The strategic topology is the topology of strategic convergence on T
i

.14;15

13Since ‚ is finite, the Borel � -algebra of the product topology on T
i

coincides with the � -algebra obtained in the
topology-free formulation of Section 2.2. Likewise, the Borel � -algebra on Å.‚ ⇥ T�i

/ generated by the topology of
weak convergence of probability measures (induced by the product topology on T�i

) coincides with the � -algebra of our
topology-free formulation. Finally, if we endow each T

i

with the product topology andÅ.‚⇥T�i

/with the topology of
weak convergence of probability measures, then T

i

andÅ.‚⇥T�i

/ are compact metrizable and �
i

W T
i

! Å.‚⇥T�i

/

is a homeomorphism.
14That is, by definition, a set F ✓ T

i

is closed under the strategic topology if it contains the limit points of all strate-
gically convergent sequences in F . Alternatively, the strategic topology can be defined as the topology generated by the
collection of sets having either the form ft

i

2 T
i

W a
i

… R

i

.t

i

; G; "/g or the form ft
i

2 T
i

W a
i

2 [
"

0
<"

R

i

.t

i

; G; "

0
/g

and can be shown to be metrizable.
15The definition of strategic convergence above follows Ely and Pęski (2011). The original definition of Dekel,

Fudenberg, and Morris (2006) is different, but both definitions are equivalent. Under the original definition, a sequence
t

n

i

! t

i

strategically if, for every game G, every action a
i

in G and every � > 0, the following are equivalent: (i)
a

i

2 R
i

.t

i

; G; �/; (ii) 8" > 0 9N such that 8n > N , a
i

2 R
i

.t

n

i

; G; � C "/. The 2007 working paper version of Ely
and Pęski (2011) proves the equivalence between the two definitions.
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The implication from (b) to (a)—for every game G and action a
i

of player i in G—is a form
of upper hemi-convergence of the rationalizable correspondence, and is equivalent to convergence
in the product topology (Dekel, Fudenberg, and Morris, 2006, Theorems 1 and 2). In turn, the
implication from (a) to (b) is a form of lower hemi-convergence, which, instead, does not fol-
low from convergence in the product topology, as the well known example of Rubinstein (1989)
demonstrates. Finally, if the implication from (a) to (b) holds for every game G and action a

i

of
player i inG, then the implication from (b) to (a) also holds (Dekel, Fudenberg, and Morris, 2006,
Corollary 1).

If we strengthen Definition 1 to require the rate of convergence N to be independent of the
game G (in all games with uniformly bounded payoffs), we then obtain the following definition.
Given a game G D .A

i

; g

i

/

i2I

, write jGj D max
i

max jg
i

j.

Definition 2 (Uniform strategic topology). A sequence of types tn
i

converges uniform-strategically
to a type t

i

if for every payoff bound M > 0 there exist positive integers .N
"

/

">0

such that for
every game G with jGj 6 M and every action a

i

of player i in G, the following conditions are
equivalent:

(a) a
i

is rationalizable for t
i

in G;

(b) for every " > 0 and n > N

"

, a
i

is "-rationalizable for tn
i

in G.

The uniform strategic topology is the topology of uniform strategic convergence on T
i

.

We turn to the characterizations of the strategic and the uniform-strategic topologies in terms
of beliefs. We begin with the uniform-strategic topology, as its characterization takes a simpler
form.

3.1 Characterization of the Uniform Strategic Topology

To characterize the uniform strategic topology, we use a notion of convergence of types under
which the rate of convergence is uniform across the levels of the belief hierarchy. In order to
define this uniformity, we first need to fix a distance on the space of k-order beliefs. We use the
Prohorov distance, which metrizes the topology of weak convergence of probability measures.

For each integer k > 1, we define recursively a distance dk

i

on T
i

as the Prohorov distance
over k-order beliefs assuming that the space of .k� 1/-order beliefs of player �i is endowed with
the distance dk�1

�i

. Thus, for each player i , we set d0

i

⌘ 0 and, for each integer k > 0 and types
s

i

and t
i

,

d

kC1

i

.s

i

; t

i

/ D inf
n

ı > 0 W �
i

.Ej t
i

/ 6 �

i

�

E

ı;k

�

�

s

i

� C ı for each measurable E ✓ ‚ ⇥ T�i

o

;
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where

E

ı;k D
n

.✓; s�i

/ 2 ‚ ⇥ T�i

W dk

�i

.s�i

; t�i

/ < ı for some t�i

with .✓; t�i

/ 2 E
o

:

16

We then consider the following notion of uniform convergence, introduced in Chen, Di Tillio,
Faingold, and Xiong (2010).

Definition 3 (Uniform weak convergence). A sequence of types tn
i

converges uniform-weakly to
a type t

i

if
d

UW
i

.t

n

i

; t

i

/

defD sup
k>1

d

k

i

.t

n

i

; t

i

/ ! 0 as n ! 1:

Thus, uniform weak convergence is the uniform counterpart of product convergence when the
topology of weak convergence of k-order beliefs is metrized by the Prohorov distance. In Chen, Di
Tillio, Faingold, and Xiong (2010), we showed that uniform-weak convergence implies uniform-
strategic convergence. Here we prove the reverse implication, thus establishing the equivalence:

Theorem 1. A sequence of types converges uniform-strategically if and only if it converges uniform-
weakly.

The proof of this and all other results is presented in Appendix A.

Ever since Rubinstein’s (1989) seminal paper, misspecifications of higher-order beliefs have
been recognized to have a potentially large impact on strategic predictions. The systematic treat-
ment of Weinstein and Yildiz (2007) exposed the pervasiveness of this sensitivity by showing that
the phenomenon is not peculiar to the Electronic Mail game, and hence advocated wider scrutiny
of the assumptions one makes about the players’ subjective beliefs. Theorem 1 quantifies the ex-
act impact of such assumptions (uniformly over games) by identifying the appropriate measure of
proximity of hierarchies of beliefs. In effect, the role of the Prohorov distance in the definition
of uniform weak convergence, and hence in our characterization result, turns out to be nontrivial.
For any distance that metrizes the topology of weak convergence of probability measures, one
can define an associated uniform distance over infinite hierarchies of beliefs. However, these dis-
tances may generate different topologies over infinite hierarchies, even though the induced topolo-
gies over k-order beliefs coincide for each finite k, as shown in an example in Chen, Di Tillio,
Faingold, and Xiong (2010, Section 5.2). Theorem 1 identifies one of these uniform distances that
ultimately characterizes the uniform-strategic topology.

Theorem 1 serves as a benchmark for our characterization of the strategic topology in the
next section, which is also based on uniform convergence across the orders of the hierarchy of
beliefs. Uniform weak convergence requires proximity of beliefs concerning all events in the
universal type space. As will soon become apparent, relaxing this requirement is the key to our
characterization of the strategic topology.

16Viewed as a distance on T
i

, dk

i

is only a pseudo-distance—as opposed to a standard distance—, since there exist
distinct types with the same k-order beliefs (and hence different `-order beliefs, for some ` > k).
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3.2 Characterization of the Strategic Topology

We begin with a definition that plays a central role in our characterization.

Definition 4 (Frames). A frame is a profile P D .P
i

/

i2I

, where each P
i

is a finite measurable
partition of T

i

, such that for each s
i

, t
i

2 T
i

,

�

i

.✓ ⇥Ej s
i

/ D �

i

.✓ ⇥Ej t
i

/ 8✓ 2 ‚; 8E 2 P�i

H) s

i

2 P
i

.t

i

/:

17

To interpret this condition, note that any profile of partitions induces a coarsening of the canon-
ical information structure of the universal type space, as follows. Given a profile of partitions
P D .P

i

/

i2I

(not necessarily a frame), say that a type t
i

knows an event E ✓ ‚ ⇥ T�i

(relative
to P ) if fs

i

2 T
i

W �
i

.✓ ⇥ F js
i

/ D �

i

.✓ ⇥ F jt
i

/ 8✓ 2 ‚; 8F 2 P�i

g ✓ E. Thus, in this coarse
information model, player i knows his beliefs about ‚ ⇥ P�i

(positive introspection), and that is
all he knows (hence the coarseness of the model). It is then readily verified that P is a frame if
and only if every event concerning player �i that player i can reason about is either known to be
true or known to be false by player �i .18 Equivalently, P is a frame if and only if all events of the
form “i knows �i knows . . . i knows E,” where E 2 2‚ ˝ P�i

, are measurable with respect to
P

i

.

The notion of frame is key to our characterization, so it will be useful to go over a few examples
to illustrate the definition. We begin by describing a general procedure for constructing a new
frame from a given frame. We will then make use of the procedure to discuss three canonical
examples of frames.

Given a frame P and a finite measurable partition…
i

of the finite-dimensional simplexÅ.‚⇥
P�i

/, define the partition on T
i

induced by…
i

, written T
i

=…

i

, as follows: any two types of player
i belong to the same element of T

i

=…

i

if and only if their beliefs over‚⇥P�i

belong to the same
element of …

i

. The following lemma is straightforward from the definitions:

Lemma 2. Each T
i

=…

i

is a measurable partition of T
i

, and the join .P
i

_ .T
i

=…

i

//

i2I

is a
frame.19

We now present the examples.

Example 1 (Finite-order frames). A finite-order frame is a frame whose atoms are k-order mea-
surable events, for some integer k > 1. For instance, any profile of first-order measurable parti-
tions is a (first-order) frame, as it can be readily verified from Definition 4. Examples of higher

17Following standard notation, P
i

.t

i

/ designates the atom of P
i

containing t
i

.
18That is, either player �i knows the event, or he knows its complement.
19Recall that the join of a pair of partitions, denoted by the symbol _, is the coarsest partition that is finer than both

partitions in the pair.
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order frames can be constructed by successive application of Lemma 2 beginning with an arbitrary
profile of first-order measurable partitions. For instance, given a ✓

0

2 ‚ consider the following
profile of first-order measurable bi-partitions:

P
i

D
n

�

t

i

W �
i

.✓

0

jt
i

/ 2 Q
 

;

�

t

i

W �
i

.✓

0

jt
i

/ … Q
 

o

; i 2 I;

where Q is the set of rational numbers. Then, consider the bi-partition …
1

of the simplex Å.‚ ⇥
P

2

/ into the set
n

q 2 Å.‚ ⇥ P
2

/ W q�✓
0

;

�

t

2

W �
2

.✓

0

jt
2

/ 2 Q
 �

> 1=2

o

and its complement. Thus, the join P
1

_ .T
1

=…

1

/ partitions T
1

into four second-order measurable
events, according to whether or not a type t

1

satisfies each of the following two conditions:

�

1

.✓

0

jt
1

/ 2 Q; �

1

⇣

✓

0

⇥ �

t

2

W �
2

.✓

0

jt
2

/ 2 Q
 

�

�

�

t

1

⌘

> 1=2:

The profile .P
1

_ .T
1

=…

1

/;P
2

/ is an example of a second-order frame. ⌥

Example 2 (Common belief frames). Let p D .p

1

; p

2

/ 2 .0; 1ç2 and E D ‚

0 ⇥ T
1

⇥ T
2

, where
‚

0 is a subset of ‚. The profile of bi-partitions P
i

D �

C

p
i

.E/; T
i

n C p
i

.E/

 

, i 2 I , is a frame.
Indeed, if any two types of player i agree on the probabilities over ‚⇥ P�i

, then they must agree
on the probability of the event ‚0 ⇥ C

p
�i

.E/ D E \ C

p
�i

.E/. Then, either both types assign
probability at least p

i

to E \ C

p
�i

.E/, in which case both types belong to C p
i

.E/ (by Lemma 1),
or both types assign probability less than p

i

to E \ C

p
�i

.E/, in which case both types belong to
the complement of C p

i

.E/ (again, by Lemma 1).

More generally, given any frame P and any event E ✓ � that is P -measurable,20 the join
between P

i

and
�

C

p
i

.E/; T
i

n C p
i

.E/

 

is a frame, called a common belief frame. ⌥

Example 3 (Strategic frames). Given " > 0 and a game G D .A

i

; g

i

/

i2I

, the "-strategic frame
associated with G is the profile

P
i

D �

ŒB

i

ç W ¿ ¤ B

i

✓ A

i

 

; i 2 I;

where
ŒB

i

ç D �

t

i

W R
i

.t

i

; G; "/ D B

i

 

:

(For " D 0 we call it simply the strategic frame of G.) To check that the above is indeed a frame,
suppose that s

i

and t
i

are two arbitrary types of player i that have the same beliefs concerning all
the events of the form ✓⇥ŒB�i

ç. Let us show that s
i

and t
i

have the same set of "-rationalizable ac-
tions inG. If a

i

2 R
i

.t

i

; G; "/ then, by definition, there is a conjecture ⌫ 2 Å.‚⇥T�i

⇥A�i

/ that

20This means that E is measurable with respect to the algebra 2‚ ˝ P
1

˝ P
2

on �.
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satisfies marg
‚⇥T�i

⌫ D �

i

.t

i

/, ⌫
�

graphR�i

.�; G; "/� D 1 and a
i

2 BR

i

�

marg
A�i ⇥‚

⌫; G; "

�

.
Then, define a conjecture N⌫ 2 Å.‚⇥T�i

⇥A�i

/ for type s
i

as follows: for each ✓ 2 ‚, a�i

2 A�i

and measurable E ✓ T�i

,

N⌫.✓ ⇥E ⇥ a�i

/ D
X

B�i

⌫.✓ ⇥ ŒB�i

ç ⇥ a�i

/

⌫.✓ ⇥ ŒB�i

ç/

�

i

.✓ ⇥ .E \ ŒB�i

ç/js
i

/;

where the summation ranges over allB�i

✓ A�i

such that�
i

.✓⇥.E\ŒB�i

ç/js
i

/ > 0. Notice that
N⌫ is well defined, because whenever �

i

.✓⇥.E\ ŒB�i

ç/js
i

/ > 0we must also have ⌫.✓⇥ ŒB�i

ç/ >

0, since
⌫.✓ ⇥ ŒB�i

ç/ D �

i

.✓ ⇥ ŒB�i

çjt
i

/ D �

i

.✓ ⇥ ŒB�i

çjs
i

/: (1)

By construction, we have marg
‚⇥T�i

N⌫ D �

i

.s

i

/. Also, the condition ⌫
�

graphR�i

.�; G; "/� D
1 implies that for every ✓ 2 ‚, a�i

2 A�i

and B�i

✓ A�i

,

N⌫.✓ ⇥ ŒB�i

ç ⇥ a�i

/ > 0 H) ⌫.✓ ⇥ ŒB�i

ç ⇥ a�i

/ > 0 H) a�i

2 B�i

:

Hence, N⌫� graphR�i

.�; G; "/� D 1. Finally, (1) above implies marg
A�i ⇥‚

N⌫ D marg
A�i ⇥‚

⌫.
Thus, a

i

2 BR

i

.marg
A�i ⇥‚

N⌫; G; "/, and therefore a
i

2 R

i

.s

i

; G; "/. We have thus shown that
R

i

.t

i

; G; "/ ✓ R

i

.s

i

; G; "/, and the opposite inclusion can be proved by interchanging the roles
of s

i

and t
i

in the argument above. This proves that the "-strategic frame is indeed a frame. ⌥

We emphasize that not every frame is the strategic frame of a game. For instance, in a strategic
frame, each player’s partition must contain an atom that is open in the product topology, namely,
any atom consisting of types whose set of rationalizable actions is minimal (w.r.t. set inclusion).21

General frames, however, need not contain open sets. The first-order frame in Example 1 illustrates
this fact.

Turning to the characterization of strategic convergence, we introduce a notion of uniform
weak convergence of types relative to a fixed frame P . For each player i , set d0

i;P ⌘ 0 and, for
each integer k > 0 and types s

i

and t
i

, define

d

kC1

i;P .s

i

; t

i

/ D inf
n

ı > 0 W �
i

.Ej t
i

/ 6 �

i

�

E

ı;k

P

�

�

s

i

� C ı 8E 2 2‚ ˝ P�i

o

;

where

E

ı;k

P D
n

.✓; s�i

/ 2 ‚ ⇥ T�i

W dk

�i;P .s�i

; t�i

/ < ı for some t�i

with .✓; t�i

/ 2 E
o

:

Thus, the definition of dk

i;P is similar to that of dk

i

, but restricts the events for which the proximity
is measured to those in the frame P .22

21That such an atom is product-open follows from minimality and the upper hemi-coninuity of the rationalizable
correspondence.

22This restriction makes dk

i;P only a pre-distance, that is, it satisfies dk

i;P .si ; ti / > 0 and dk

i;P .ti ; ti / D 0, but it fails
symmetry and the triangle inequality.
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Definition 5 (Uniform weak convergence on frames). A sequence of types tn
i

converges to a type
t

i

uniform-weakly on a frame P if

d

UW
i;P .t

n

i

; t

i

/

defD sup
k>1

d

k

i;P .t
n

i

; t

i

/ ! 0 as n ! 1:

With this definition in place, we are ready to state our characterization.

Theorem 2. A sequence of types converges strategically if and only if it converges uniform-weakly
on every frame.

The theorem has conceptual and practical significance. First, the result deepens our under-
standing of the belief underpinnings of strategic robustness by characterizing, in terms of the
primitives of the model (hierarchies of beliefs), the class of all perturbations to which the predic-
tions of rationalizability are robust.

Second, as in Theorem 1, the result draws attention to a particular form of uniform conver-
gence across the levels of the belief hierarchy as a condition for robustness. While it is expected
that some form of uniform convergence should play a role, it is much less clear at the outset what
kind of uniformity would ultimately lead to a characterization. For instance, one might expect that
the strategically relevant notion of uniform convergence were the one that requires every event
that is common belief for the limit type to remain arbitrarly close to an event that is approximately
common belief for the types that are sufficiently far in the tail of the sequence. Indeed, an ex
ante variation of this condition characterizes the robust perturbations for Bayesian equilibrium in
countable common prior type spaces, as shown in the early papers of Monderer and Samet (1996)
and Kajii and Morris (1998). However, this is not the case in our framework, for that notion of
convergence turns out to be equivalent to uniform weak convergence on common belief frames
(c.f. Example 2), whereas the characterization above requires convergence on all frames, and the
latter turns out to be a stronger condition.

Third, the theorem highlights the role of frames as the coarse information structures that are
relevant for strategic convergence. The role of frames in the “only if” direction is intuitive. Given
a profile of partitions that is not a frame, there is always a player i who can reason about some
event E that concerns player �i such that player �i cannot know whether or not E obtains.23

But since the strategic behavior of a player can only depend on events that the player knows, it is
intuitive that failure of uniform weak convergence on a profile of partitions that is not a frame need
not imply failure of strategic convergence. As for the “if” direction, the role of frames is more
mechanical. If a sequence tn

i

converges uniform weakly on all frames, then, given an arbitrary
game, the sequence must converge uniform-weakly on the strategic frame generated by that game.
This fact, combined with the continuity of the "-best-reply correspondence in the Prohorov metric,

23The precise meanings of “reason about” and “know”, relative to the coarse information model induced by a profile
of partitions, is explained in the paragraph that follows Definition 4.
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leads naturally to an induction argument (over the levels of the hierarchy) that proves the strategic
convergence of t

i

, as in the proof presented in Appendix A.3.

Fourth, the theorem leads to a connection between the strategic topology and the early litera-
ture on robustness mentioned above, and in particular to the notion of common p-beliefs, which
plays a prominent role in that literature. In the next section, we use Theorem 2 to show that
strategic convergence implies an interim analogue of the mode of convergence based on common
p-beliefs of the early literature. We also present a striking example that shows that the converse
fails.

Fifth, the characterization enables the genericity analysis that we carry out in Section 4, where
we revisit, and reverse, two important genericity results of the recent literature (due to Ely and
Pęski (2011) and Lipman (2003)), which were carried out in the product topology.

Finally, there are instances when the characterization has practical significance. To illustrate,
we present Example 4 below, where we describe a case in which it is particularly simple to apply
the characterization to prove that a sequence converges strategically, even though the sequence
does not converge uniform weakly. Nonetheless, we do not maintain that this is a general feature
of the characterization, that is, we do not claim that our characterization has any computational
advantages over the definition of strategic convergence in general. In terms of computational
complexity, checking uniform weak convergence in every frame appears to be as hard as checking
convergence of rationalizable behavior in every game. The main point of our exercise remains to
express conditions for robustness in terms of primitives.

Example 4 (A sequence that converges uniform-weakly on all frames). To build our example, we
need a preliminary definition. Fix two distinct states ✓

0

, ✓
1

2 ‚ and define the Dirac type
space (based on f✓

0

; ✓

1

g) as the abstract type space .X
i

;�

i

/

i2I

, where each X
i

D f0; 1gN (the
space of all infinite sequences of 0’s and 1’s) and for each type x

i

D .x

i1

; x

i2

; : : :/, the be-
lief �

i

.x

i

/ assigns probability one to the singleton f.✓
xi1
; `�i

.x

i

//g, where `�i

is the left-shift
operator: `�i

�

x

i1

; x

i2

; : : :

� D .x

i2

; x

i3

; : : :/. Thus, the hierarchy of beliefs of a Dirac type
x

i

D .x

i1

; x

i2

; : : :/ assigns probability one to state ✓
xi1

, probability one to �i assigning probabil-
ity one to ✓

xi2
, probability one to �i assigning probability one to i assigning probability one to

✓

xi3
, and so on.

We now present an example of a sequence of Dirac types, sn

i

, for which it will be particularly
simple to prove uniform weak convergence on all frames, even though sn

i

will not converge uni-
form weakly. For each positive integer n, let b

n

be the finite sequence of length 2n comprising n
zeroes followed by n ones. Thus, b

1

D .0; 1/, b
2

D .0; 0; 1; 1/, and so on. Let tn
i

and sn

i

be the
Dirac types of player i such that tn

i

D .b

n

; b

nC1

; : : :/ and sn

i

D .b

1

; : : : ; b

n�1

; 0; 0; 0; : : :/. It can
be readily verified that dk

i

.s

n

i

; t

1

i

/ equals zero for k 6 n

2 and equals one for k > n

2. Therefore,
the sequence sn

i

converges to t1
i

in the product topology, but not uniform-weakly.

Let us show that sn

i

converges to t1
i

uniform weakly on every frame. First, note that `�i

.t

n

i

/
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and `�i

.s

1

i

/ D .0; 0; 0; : : :/ share the same first n � 1 coordinates (a sequence of n � 1 ze-
roes), hence dn�1

�i

.`�i

.t

n

i

/; `�i

.s

1

i

// D 0. It follows that the sequence `�i

.t

n

i

/ converges to
`�i

.s

1

i

/ in the product topology. Next, fix an arbitrary frame P . Let P 0
�i

✓ P�i

be the set
of all elements of P�i

that contain infinitely many types from the sequence `�i

.t

n

i

/. Thus,
for every n and P�i

2 P 0
�i

, there is a type in P�i

whose first n � 1 coordinates are all ze-
roes. It follows that, for every k and P�i

2 P 0
�i

, we have `�i

.s

1

i

/ 2 .P�i

/

0;k

P and, therefore,
�

i

.✓

0

⇥ .P�i

/

0;k

P js1

i

/ D 1. Furthermore, there exists N such that, for every n > N , there ex-
ists P�i

2 P 0
�i

such that `�i

.t

n

i

/ 2 P�i

and, therefore, �
i

.✓

0

⇥ P�i

jtn
i

/ D 1. It follows
that dk

i;P .s
1

i

; t

n

i

/ D 0 for every k > 1 and n > N . Finally, since sn

i

D .b

1

; : : : ; b

n�1

; s

1

i

/ and
t

1

i

D .b

1

; : : : ; b

n�1

; t

n

i

/ have the same first 2n.n C 1/ coordinates, a straightforward induction
argument shows that dkC2n.n�1/

i;P .s

n

i

; t

1

i

/ D 0 for every k > 1 and n > N . Thus, for all n > N ,
we have sup

k>1

d

k

i;P .s
n

i

; t

1

i

/ D 0, and hence the sequence sn

i

converges to t1
i

uniform-weakly
on P . As this is true for every frame P , we conclude that sn

i

converges strategically to t1
i

, as
claimed. ⌥

3.3 Convergence in Common Beliefs

Previous work on strategic topologies for Bayesian equilibrium (BE) under common priors (Mon-
derer and Samet, 1996; Kajii and Morris, 1998) has proved equivalences between an ex ante notion
of strategic convergence for BE and ex ante notions of convergence based on common beliefs. In
this section, we consider the interim version of common belief convergence, prove that it is a nec-
essary condition for convergence in the strategic topology for interim correlated rationalizability,
and demonstrate, by means of an example, that it fails to be sufficient. This highlights a fun-
damental difference between the strategic topologies in the common prior, equilibrium, ex ante
framework of Monderer and Samet (1996) and Kajii and Morris (1998) and in our non-common
prior, non-equilibrium, interim framework.

Definition 6 (Common belief convergence). A sequence of types tn
i

converges in common beliefs
to a type t

i

if for every ı > 0, every integer k > 1, every measurable set E ✓ � and every
p 2 Œ0; 1ç2 with t

i

2 C p
i

.E/, there exists N such that for every n > N , tn
i

2 C p�ı1
i

.E

ı;k

/.24

To shed light on the definition, an analogy with product convergence is useful. A necessary
and sufficient condition for a sequence of types tn

i

to converge to a type t
i

in the product topology
is that for every ı > 0, every integer k > 1, every measurable set E ✓ � and every p 2 Œ0; 1ç

2

with t
i

2 Bp

i

.E/, there exists N such that for every n > N , tn
i

2 Bp�ı1
i

.E

ı;k

/.25 There is thus

24If we modify the definition to require the equivalence between (a) and (b) to hold only for eventsE that are closed in
the product topology, then the notion of convergence remains the same. Indeed, letting E denote the product-topology
closure of E, we have Cp

i

.E/ ✓ C

p
i

.E/ and Eı;k D �
E

�
ı;k .

25This follows directly from the following two facts: (i) the Mertens-Zamir isomorphism �

i

W T
i

! Å.‚ ⇥ T�i

/

becomes a homeomorphism when each T
j

is endowed with the product topology and Å.‚ ⇥ T�i

/ is endowed with
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a formal sense in which convergence in common beliefs is the “common” analogue of product
convergence.

Notice that common belief convergence implies product convergence, because setting p D
.p; 0/ yields Bp

i

D C

p
i

. As for the connection with strategic convergence, we show:

Theorem 3. Strategic convergence implies convergence in common beliefs.

This result is useful for three reasons. First, it improves our understand of the strategic topol-
ogy by providing an easy-to-interpret “lower bound” on how strong strategic convergence is. Sec-
ond, the result (coupled with the example below), clarifies the relationship between the strategic
topology for interim rationalizability on the universal type space and the ex ante strategic topology
for BE in common prior, countable type spaces of the early literature on robustness. Third, the
result is used in our proofs of the topological genericity results of Section 4).

As mentioned, the converse of Theorem 3 fails to hold:

Example 5 (Convergence in common beliefs does not imply strategic convergence). We shall ex-
hibit a sequence of types tn

1

that converges in common beliefs to a type t
1

, but does not converge
uniform-weakly on a frame; hence, by Theorem 2, it does not converge strategically either. To
construct the sequence, fix ✓

0

2 ‚ and 0 < p < q < 1. For each player i , pick a type r
i

that
satisfies the following two conditions:

(i) r
i

assigns probability zero to state ✓
0

;

(ii) for every product-closed proper subset E ⇢ � and ⌘ > 0, r
i

… C ⌘1
i

.E/.26

Let s
i

and t
i

be the types who assign probability one to ✓
0

and whose beliefs about the other
player’s types are as specified in Figure 1 below.

t

1

q

1 � q
Q
Q

Q
r

2

t

2

p

1 � p
Q
Q

Q
r

1

s

1

p

1 � p
Q

Q
Q
r

2

s

2

p

1 � p
Q

Q
Q
r

1

t

1

Figure 1: The types s
i

and t
i

.

the topology of weak convergence (as remarked in footnote 13); (ii) the Prohorov metric on Å.‚ ⇥ T�i

/ metrizes the
topology of weak convergence.

26Types that satisfy these conditions exist. Ely and Pęski (2011, Theorem 1) show that the types that satisfy property
(ii) are precisely those types to which product convergence is equivalent to strategic convergence, called regular types.
They show that the set of regular types is a residual subset of the universal type space (in the product topology), in
particular a non-empty set. As for condition (i), note that any type of player i that assigns probability one to some
.✓; u�i

/, where u�i

is a type of player �i that satisfies property (ii), must also satisfy property (ii). This implies the
existence of types satisfying both (i) and (ii).

18



Since r
1

and r
2

satisfy property (ii) above, for every p 2 .0; 1ç

2, every product-closed proper
subset E ✓ �, and every i 2 I ,

t

i

2 C p
i

.E/ () p 6 .p; p/ and E ◆ ✓

0

⇥ fs
1

; t

1

g ⇥ fs
2

; t

2

g: (2)

In particular, no nontrivial event is common .q; p/-belief at t
1

. We exploit this fact to construct
the sequence tn

1

so that the probability assigned to .✓
0

; t

2

/ drops to q � Å > p under tn
1

, while
ensuring that all events commonly p-believed at t

1

for some p 2 .0; 1ç2 remain so at tn
1

. Because
the probability assigned to .✓

0

; t

2

/ under tn
1

and t
1

differ by a positive Å, we are able to construct
a frame on which tn

1

fails to converge to t
1

uniform-weakly.

The construction of the sequence mimics the structure in Figure 1. Fix 0 < Å 6 q�p and for
each player i define sn

i

and tn
i

as follows: let t1
1

D r

1

and, for each n > 1, let sn

2

, sn

1

, tn
2

and tnC1

1

be the types who assign probability one to ✓
0

and whose beliefs about the other player’s types are
as described in Figure 2 below.

t

nC1

1

Å

1 � q
Q
Q

Q

⌘
⌘
⌘

r

2

q �Å
t

2

t

n

2

p

1 � p
Q
Q

Q
r

1

s

n

1

p

1 � p
Q

Q
Q
r

2

s

n

2

p

1 � p
Q

Q
Q
r

1

t

n

1

Figure 2: The sequences of types sn

i

and tn
i

.

The sequence tn
1

converges to t
1

in common beliefs. To see why, first note that tn
1

! t

1

in
the product topology: by the construction in Figures 1 and 2, s1

2

has the same first-order belief
as s

2

, hence s1

1

has the same second-order belief as s
1

, which implies t1
2

has the same third-order
belief as t

2

, and so forth. Second, given an arbitrary ı > 0, by the construction in Figure 2 and the
product-convergence tn

1

! t

1

, for each integer k > 1 we have tn
1

2 Bq�Å

1

�

✓

0

⇥ ft
1

gı;k ⇥ t
2

�

for
all n large enough. Since t

2

2 C .p;p/

2

�

✓

0

⇥ fs
1

; t

1

g ⇥ fs
2

; t

2

g� and q �Å > p, it follows that for
all n large enough,

t

n

1

2 Bp

1

⇣

✓

0

⇥ ft
1

gı;k ⇥C .p;p/

2

�

✓

0

⇥ fs
1

; t

1

g⇥ fs
2

; t

2

g�
⌘

✓ C

.p;p/

1

⇣

�

✓

0

⇥ fs
1

; t

1

g⇥ fs
2

; t

2

g�ı;k

⌘

:

It follows, by (2) and footnote 24, that tn
1

! t

1

in common beliefs, as claimed.

To conclude the example, it remains to show:

Claim 1. There is a frame P such that tn
1

6! t

1

uniform-weakly on P .

This claim is proved in Appendix A.5. Here, to provide intuition, we give a proof of the weaker
but closely related statement that tn

1

does not converge to t
1

uniform-weakly. In effect, since t1
1

assigns probability zero to ✓
0

, we have d1

1

.t

1

1

; t

1

/ D 1. Then, by the constructions in Figures 1 and
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2, the fourth-order Prohorov distance between t1
2

and t
2

must also be one, that is, d4

2

.t

1

2

; t

2

/ D 1.
Therefore,

�

1

��

✓

0

⇥ t
2

�

Å;4

�

�

t

2

1

� D �

1

�

✓

0

⇥ t
2

�

�

t

2

1

� D q �Å D �

1

.✓

0

⇥ t
2

jt
1

/ �Å;

hence d5

1

.t

2

1

; t

1

/>Å. Continuing in the same fashion it can be readily verified that d9

1

.t

3

1

; t

1

/>Å,
d

13

1

.t

4

1

; t

1

/ > Å, and so forth. That is, d4n�3

1

.t

n

1

; t

1

/ > Å for all n, and hence tn
1

6! t

1

uniform-
weakly, as claimed. ⌥

This example, combined with Theorem 3, shows that strategic convergence is strictly stronger
than convergence in common beliefs. However, when the limit type is assumed a finite type—a
type that belongs to a finite type space—we show that convergence in common beliefs implies
uniform-strategic convergence. We thus have:

Theorem 4. Given a finite type t
i

and a sequence of (possibly infinite) types tn
i

, the following
statements are equivalent:

(a) tn
i

! t

i

uniform-weakly;

(b) tn
i

! t

i

uniform-strategically;

(c) tn
i

! t

i

strategically;

(d) tn
i

! t

i

uniform-weakly on every frame;

(e) tn
i

! t

i

in common beliefs.

4 Genericity Analysis

We apply our characterizations to establish topological genericity results on the universal type
space concerning critical types and common prior types. We also provide analogous results for
the measure-theoretic genericity notions of finite shyness and finite prevalence.27

4.1 Genericity of Critical Types

In a recent paper, Ely and Pęski (2011) define critical types as those types to which product
convergence fails to imply strategic convergence. That is, a type t

i

is critical if there is a sequence
of types tn

i

that converges to t
i

in the product topology such that, for some " > 0 and some game

27Finite shyness strengthens the notion of shyness, originally proposed by Christensen (1974). See Anderson and
Zame (2001) for details.
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G, R
i

.t

i

; G/ › R

i

.t

n

i

; G; "/ infinitely often. Thus, from the point of view of robustness, the
critical types are the problematic types.

How “large” is the set of critical types? Ely and Pęski (2011) provide two results that address
this question. The first one is their insightful characterization of critical types in terms of common
beliefs:

Ely and Pęski (2011, Theorem 1). A type t
i

is critical if and only if t
i

2 Cp1
i

.E/ for some p > 0
and some product-closed proper subset E

i

⇢ T
i

.

It follows that all finite types are critical, and so are almost all types that belong to a type space
where there is a common prior (Ely and Pęski, 2011, Theorems 4 and 5). Thus, the set of critical
types is “large” in the sense that critical types are pervasive: virtually all types used in applications
are critical types.

An alternative approach to answer the question is based on topological genericity. There is,
however, a tension between topological genericity in the product topology and the pervasiveness
of critical types. Indeed, Ely and Pęski (2011) show that the set of critical types is topologically
small (under the product topology):

Ely and Pęski (2011, Theorem 2). The set of critical types is meager under the product topology
on T

i

(i.e., it is contained in a countable union of nowhere dense sets).

We show, however, that this tension disappears when one considers either genericity under the
strategic topology, or genericity under the measure-theoretic notion of finite prevalence:

Theorem 5. The set of critical types is open and dense in the universal type space under the
strategic topology. Furthermore, the set of critical types is finitely prevalent.

Finally, consider the following variation of the notion of critical types: a type t
i

is uniformly
critical if there is some sequence that converges to t

i

in the product topology but fails to converge
uniform-strategically. An immediate implication of our Theorem 1 is that all types are uniformly
critical, since for every type t

i

in the universal type space there is always a sequence that converges
to t

i

in the product topology but does not converge uniform-weakly.28

28To prove this, for each player i and integer k > 1 we construct two measurable functions �k

i

W T
i

! T
i

and

 

k

i

W T
i

! T
i

that satisfy dk�1

i

�
t

i

;�

k

i

.t

i

/

� D d

k�1

i

�
t

i

;  

k

i

.t

i

/

� D 0 for all t
i

2 T
i

, and
�
�

k

i

.T
i

/

�
1;k \ k

i

.T
i

/ D ¿.
To define these functions for k D 1, pick any ✓ 2 ‚ and s

i

; s

0
i

2 T
i

such that �
i

.✓ js
i

/ D 1 and �
i

.✓ js0
i

/ D 0, and
define �1

i

.t

i

/ D s

i

and  1

i

.t

i

/ D s

0
i

for all t
i

2 T
i

. Proceeding recursively, assume that the functions �k

i

and  k

i

are defined for k > 1, and define �kC1 and  kC1

i

as follows: for each t
i

2 T
i

, ✓ 2 ‚ and measurable E�i

✓ T�i

,
�

i

.✓ ⇥E�i

j�kC1

i

.t

i

// D �

i

.✓ ⇥ .�k

�i

/

�1

.E�i

/jt
i

/ and �
i

.✓ ⇥E�i

j kC1

i

.t

i

// D �

i

.✓ ⇥ . k

�i

/

�1

.E�i

/jt
i

/.
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4.2 Genericity of Common Prior Types

The common prior assumption, according to which the players’ beliefs are generated by a single
probability distribution on the state space, is a cornerstone of virtually all models of informa-
tion economics. Recall that a common prior on a countable type space .T

i

/

i2I

is a probability
distribution ⌘ 2 Å.‚⇥T

1

⇥T
2

/ such that, for every i 2 I , t
i

2 T
i

and measurable E ✓ ‚⇥T�i

,

⌘

i

.t

i

/ D .marg
Ti
⌘/.t

i

/ > 0 and ⌘

��

.✓; t

1

; t

2

/ W .✓; t�i

/ 2 E �=⌘
i

.t

i

/ D �

i

.Ejt
i

/:

A common prior type is a type that belongs to a countable type space that has a common prior.

The widespread use of common prior models, in both theoretical and applied work, begs the
question of whether the behavioral implications of the common prior assumption are robust to
misspecification errors in the assumed type space. Taking an interim perspective, Lipman (2003)
shows that (finite) common prior types are dense in the product topology, but warns that this
result should not be interpreted as a statement that the common prior assumption is without loss
of generality: Although every type can be approximated by a common prior type in the product
topology, the strategic behavior of that type can be very different from the strategic behavior of
any approximating common prior type.

The next result shows that this lack of robustness is a pervasive phenomenon in the universal
type space. The denseness result of Lipman (2003) is reversed, once we consider the strategic
topology rather than the product topology. Moreover, an analogous conclusion holds when we
look at measure-theoretic genericity.

Theorem 6. The set of common prior types is nowhere dense in the universal type space under
the strategic topology. Moreover, it is finitely shy.

5 Conclusion

Going forward, we plan to extend our analysis to incorporate plausible restrictions on the class of
games on which the strategic topology is based. Such restrictions may reflect the analyst’s a priori
knowledge of the payoff structure of the games he is interested in. He may, for example, know
that the game of interest is a supermodular game or, say, a potential game. Another important re-
striction that is worth examining is motivated by mechanism design. On a fixed mechanism design
environment (e.g., a single-unit auction environment with private values), the class of games that
the designer can span by his choice of a mechanism does not generally span the whole space of
games. We believe that an examination of the strategic impact of higher-order beliefs in restricted
games is of paramount importance, as it brings our theoretical work closer to applications.
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A Appendix

A.1 Properties of ICR

Some of the proofs in the appendix use the characterizations of ICR in terms of iterated elimination
of never interim best-replies and of iterated elimination of strongly interim dominated strategies.
We review these definitions below.

We begin with the recursive characterization of ICR in terms of iterated elimination of never
interim best-replies. Given " > 0 and a game G D .A

i

; g

i

/

i2I

, for each i 2 I and t
i

2 T
i

, let
R

0

i

.t

i

; G; "/ D A

i

and, recursively for each k > 1, let Rk

i

.t

i

; G; "/ be the set of all a
i

2 A

i

for
which there is a measurable function ��i

W ‚ ⇥ T�i

! Å.A�i

/ that satisfies:

supp ��i

.✓; t�i

/ ✓ R

k�1

�i

.t�i

; G; "/ 8.✓; t�i

/ 2 ‚ ⇥ T�i

; (3)
Z

‚⇥T�i

⇥

g

i

.a

i

; ��i

.✓; t�i

/; ✓/ � g
i

.a

0
i

; ��i

.✓; t�i

/; ✓/

⇤

d�

i

.✓; t�i

jt
i

/ > �" 8a0
i

2 A
i

:

Then,
R

i

.t

i

; G; "/ D T

k>1

R

k

i

.t

i

; G; "/:

(See Dekel, Fudenberg, and Morris (2007), Corollary 1, Claim 2.)

For future reference, a measurable function ��i

that satisfies (3) is called a .k � 1/-order "-
rationalizable conjecture; a measurable function ��i

such that supp ��i

.✓; t�i

/ ✓ R�i

.t�i

; G; "/

for every .✓; t�i

/ 2 ‚ ⇥ T�i

is called an "-rationalizable conjecture.

Finally, we review the definition of ICR in terms of iterated elimination of strongly interim
dominated actions. For each i 2 I and t

i

2 T
i

, let S0

i

.t

i

; G; "/ D A

i

and, recursively for k > 1,
define Sk

i

.t

i

; G; "/ as the set of all a
i

2 A
i

such that for every mixed deviation ˛
i

2 Å.A
i

/ there
is a conjecture ��i

W ‚ ⇥ T�i

! Å.A�i

/ that satisfies:

supp ��i

.✓; t�i

/ ✓ S

k�1

�i

.t�i

; G; "/ 8.✓; t�i

/ 2 ‚ ⇥ T�i

; and
Z

‚⇥T�i

⇥

g

i

.a

i

; ��i

.✓; t�i

/; ✓/ � g
i

.˛

i

; ��i

.✓; t�i

/; ✓/

⇤

d�

i

.✓; t�i

jt
i

/ > �": (4)

Then,
R

k

i

.t

i

; G; "/ D S

k

i

.t

i

; G; "/;

and thus,
R

i

.t

i

; G; "/ D T

k>1

S

k

i

.t

i

; G; "/:

(See Chen, Di Tillio, Faingold, and Xiong (2010), Proposition 1.) Likewise, a
i

2 R

i

.t

i

; G; "/ if
and only if, for every ˛

i

2 Å.A

i

/, there is a rationalizable conjecture ��i

W ‚ ⇥ T�i

! Å.A

i

/

that satisfies (4).
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Remark 1. In the above formulations of ICR we have chosen to work with conjectures of the
form ��i

W ‚ ⇥ T�i

! Å.A�i

/, rather than with those of the form ⌫ 2 Å.‚ ⇥ T�i

⇥ A�i

/,
marg

‚⇥T�i
⌫ D �

i

.t

i

/ , as in the definition of ICR given in Section 2.1. These two kinds of
conjetures are related by the disintegration formula:

⌫.✓ ⇥E�i

⇥ a�i

/ D
Z

E�i

��i

.✓; t�i

/Œa�i

ç �

i

.✓ ⇥ dt�i

jt
i

/;

for every ✓ 2 ‚, a�i

2 A�i

and measurable subset E�i

✓ T�i

.29

A.2 Proof of Theorem 1

The if direction is proved in Chen, Di Tillio, Faingold, and Xiong (2010). The proof of the only if
direction relies on Lemma 3, Corollary 1 and Lemma 4 below.

We begin with some useful definitions and notations. Given a game G D .A

i

; g

i

/

i2I

, say that
an action a0

i

2 A
i

is a zero action for player i if g
i

�

a

0

i

; a�i

; ✓

� D 0 for all ✓ and a�i

. An action
profile ac D .a

c

i

; a

c

�i

/ is a coordination pair if g
i

�

a

c

i

; a

c

�i

; ✓

� D maxg
i

for all ✓ and i . (In
particular, any action of player i that is part of a coordination pair is rationalizable for any type of
player i .) Finally, we write ⇡

ti ;��i
2 Å .A�i

⇥‚/ to denote the belief of type t
i

over the actions
of player �i and the payoff-relevant states, when he has a conjecture ��i

W ‚ ⇥ T�i

! Å.A�i

/;
i.e.,

⇡

ti ;��i

�

a�i

; ✓

� defD
Z

T�i

��i

.✓; t�i

/ Œa�i

ç �

i

.✓ ⇥ dt�i

jt
i

/ 8.a�i

; ✓/ 2 A�i

⇥‚:

The only if part of the theorem is a direct implication of Lemma 4 below. Lemma 3 and
Corollary 1 are intermediate results.

Lemma 3. For every " > 0, integer k > 1, player j and finite set of finite types ft
j;1

; t

j;2

; : : : ; t

j;N

g
⇢ T

j

, there is a game G D .A

i

; g

i

/

i2I

with payoffs in the interval Œ�5; 3ç, and a set of actions
fa⇤

j;1

; a

⇤
j;2

; : : : ; a

⇤
j;N

g ⇢ A

j

, such that:

(i) every player i has a zero action a0

i

2 A
i

;

(ii) there is a coordination pair ac 2 A

1

⇥ A

2

such that ac

j

… �

a

⇤
j;1

; a

⇤
j;2

; :::; a

⇤
j;N

 

and
g

i

�

a

i

; a

c

�i

; ✓

�

> �2 for every a
i

2 A
i

, ✓ 2 ‚ and i 2 I .

(iii) R
i

.�; G; �/ D R

k

i

.�; G; �/ for every i 2 I and � 2 Œ0; 1

2

/;

29Given a ⌫ that satisfies marg
‚⇥T�i

⌫ D �

i

.t

i

/, the disintegration fomula only pins down ��i

up to a set of �
i

.t

i

/-
probability zero. But, outside this null set, we can set ��i

equal to a measurable selection from the correspondence
R

k�1

�i

.�; G; "/, thus ensuring that (3) is satisfied everywhere provided ⌫.‚ ⇥ graphRk�1

�i

/ D 1 (as opposed to almost
everywhere). The fact that such a measurable selection exists follows from the upper hemi-continuity of Rk�1

�i

.�; G; "/
(in the product topology) and the Kuratowsky-Nyll-Nardzewski Selection Theorem.
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(iv) for every 1 6 n 6 N , a⇤
j;n

2 R
j

�

t

j;n

; G

�

;

(v) for every 1 6 n 6 N and s
j

2 T
j

with dk

j

�

s

j

; t

j;n

�

> ", a

⇤
j;n

… R
j

�

s

j

; G;

"

2

�

;

Proof. The proof is by induction on k. Consider first k D 1 and j D 1 (j D 2 can be similarly
proved). Fix a finite set of player 1’s types

�

t

1;1

; t

1;2

; :::; t

1;N

 

. Enumerate the nonempty subsets
of ‚ as E

1

, E
2

,..., E
L

. For each .n; `/ 2 f1; 2; : : : ; N g ⇥ f0; 1; : : : ; Lg consider the function
�

n;`

W ‚ ! Œ�1; 1ç described in the following table:

✓ 2 E
`

✓ … E
`

` D 0 0 0

` > 1 � �

1 � �
1

�

E

`

jt
1;n

��

�

1

�

E

`

jt
1;n

�

Thus, the functions �
n;`

define an auxiliary game between player 1 and Nature, where ` D 0

is a safe bet for player 1, and ` > 1 is a risky bet on the event ✓ … E

`

. The rewards of the risky
bets are such that:

✏ any type that has the same first-order beliefs as type t
1;n

is exactly indifferent between ` D 0

and any ` > 1;

✏ any type whose first-order belief is different from that of t
1;n

strictly prefers some risky bet
` > 1 than the safe bet ` D 0.

We use the functions �
n;`

to construct a game G D .A

i

; g

i

/

i2I

to prove our claim for k D 1.
In this game,

A

1

D �f1; 2; : : : ; N g ⇥ f0; 1; : : : ; Lg� P[�

a

0

1

; a

c

1

 

and A
2

D f1; 2; : : : ; N g P[ �

a

0

2

; a

c

2

 

:

Player 1’s payoffs are specified as follows:

✏ a

0

1

is a zero action for player 1;

✏ if player 1 chooses ac

1

, she gets 3 if player 2 chooses ac

2

, and gets 0 otherwise (regardless of
✓ );

✏ if player 1 chooses .n; `/ 2 f1; : : : ; N g ⇥ f0; : : : ; Lg and the state is ✓ , she gets �
n;`

.✓/ if
player 2 chooses n, and she gets �

n;`

.✓/ � 1 if player 2 chooses any action different from
n.

Player 2’s payoffs are specified as follows:

✏ Player 2 gets 3 if .ac

1

; a

c

2

/ is chosen (regardless of ✓ ), and gets 0 otherwise.
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Thus, when the state is ✓ , we can draw the payoff matrix g.�; �; ✓/ as follows:

1 2 � � � N a

0

2

a

c

2

.1; `/ �

1;`

.✓/; 0 �

1;`

.✓/ � 1; 0 � � � �

1;`

.✓/ � 1; 0 �

1;`

.✓/ � 1; 0 �

1;`

.✓/ � 1; 0
.2; `/ �

2;`

.✓/ � 1; 0 �

2;`

.✓/; 0 � � � �

2;`

.✓/ � 1; 0 �

2;`

.✓/ � 1; 0 �

2;`

.✓/ � 1; 0
:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

.N; `/ �

N;`

.✓/ � 1; 0 �

N;`

.✓/ � 1; 0 � � � �

N;`

.✓/ ; 0 �

N;`

.✓/ � 1; 0 �

N;`

.✓/ � 1; 0
a

0

1

0; 0 0; 0 � � � 0; 0 0; 0 0; 0

a

c

1

0; 0 0; 0 � � � 0; 0 0; 0 3; 3

Since �
n;`

.✓/ 2 Œ�1; 1ç for all n, ` and ✓ , gameG has payoffs bounded between �2 and 3. We
claim thatG, along with the actions a⇤

1;n

defD .n; 0/, n D 1; : : : ; N , satisfy properties (i)–(v) for k D
1. Properties (i) and (ii) clearly hold. To prove (iii), first note thatR

2

.�; G; �/ D R

1

2

.�; G; �/ D A

2

for all � > 0. Indeed, the profile of correspondences .&
i

/

i2I

, where &
2

.t

2

/ D A

2

and &
1

.t

1

/ D
�

a

0

1

; a

c

1

 

for all t
1

and t
2

, has the � -best reply property. It follows that R
1

.�; G; �/ D R

1

1

.�; G; �/
for all � > 0. Hence, (iii) holds.

It remains to prove (iv) and (v). First, .n; 0/ is rationalizable for t
1;n

, since given the conjecture
that player 2 plays n, type t

1;n

gets 0 by playing .n; `/ for any `:

�

1

�

E

`

jt
1;n

� � �� �

1 � �
1

�

E

`

jt
1;n

��� C �

1 � �
1

�

E

`

jt
1;n

�� � �
1

�

E

`

jt
1;n

� D 0;

and gets at most 0 by playing any action not in f.n; 0/; : : : ; .n; L/g. Thus, (iv) holds for a⇤
1;n

D
.n; 0/. Second, consider any type s

1

with d1

1

�

s

1

; t

1;n

�

> ". Then, there exists some 1 6 ` 6 L

such that �
1

�

E

`

jt
1;n

�

> �

1

�

E

";0

`

�

�

s

1

�C " D �

1

.E

`

js
1

/C ".30 Then, given any conjecture about
the behavior of player 2, the difference in expected payoffs between .n; `/ and .n; 0/ for type s

1

is

�

1

.E

`

js
1

/ � �� �

1 � �
1

.E

`

jt
1;n

/

�� C .1 � �
1

.E

`

js
1

// � �
1

.E

`

jt
1;n

/

D �

1

.E

`

jt
1;n

/ � �
1

.E

`

js
1

/ > ":

Hence, a⇤
1;n

D .n; 0/ is not "-rationalizable for type s
1

, which proves (v).

We now prove our claim for k C 1 assuming that it holds for k. Again, we assume j D
1, and the proof for j D 2 is similar. Let t

1;1

; : : : ; t

1;N

be arbitrary finite types of player 1.
Consider the finite set T

2

D �

t

2;1

; t

2;2

; : : : ; t

2;N

0
 

of all types of player 2 that are assigned positive
probability by some t

1;n

, for n D 1; : : : ; N . By the induction hypothesis, we can find a game
G D .A

i

; g

i

/

i2I

, a set of actions
�

a

⇤
2;1

; a

⇤
2;2

; : : : ; a

⇤
2;N

0
 ⇢ A

2

, and action profiles a0 and ac in
G, that satisfy properties (i)–(v) relative to the finite set of finite types T

2

.

Let T k

2

D �

t

k

2;1

; t

k

2;2

; : : : ; t

k

2;N

0
 

be the set of k-order beliefs of types in T
2

. Enumerate the
nonempty subsets of ‚ ⇥ T k

2

as E
1

, E
2

,..., E
L

. For each 1 6 ` 6 L, define

F

`

D
n

�

a

⇤
2;n

0 ; ✓
� W 1 6 n

0 6 N

0
;

�

✓; t

k

2;n

0
� 2 E

`

o

:

30The equality follows because d0 ⌘ 0 and ‚ is endowed with the discrete metric.
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For each .n; `/ 2 f1; : : : ; N g ⇥ f0; : : : ; Lg, define a function �
n;`

W A
2

⇥ ‚ ! Œ�1; 1ç as in the
following table:31

.a

2

; ✓/ 2 F
`

.a

2

; ✓/ … F
`

` D 0 0 0

` > 1 � �

1 � �
1

�

E

`

jt
1;n

��

�

1

�

E

`

jt
1;n

�

We use the game G and the functions �
n;`

to define a new game N
G D � N

A

i

; Ng
i

�

to prove our
claim for k C 1. In this game,

N
A

1

D A

1

P[�f1; : : : ; N g ⇥ f0; 1; : : : ; Lg� P[� Na0

1

 

and N
A

2

D A

2

⇥ f0; 1; : : : ; N g :

Player 1’s payoffs are specified as follows (see also the following table):

✏ Na0

1

is a zero action for player 1;

✏ if player 1 chooses a
1

2 A

1

and the state is ✓ , he gets g
1

.a

1

; a

2

; ✓/ if player 2 chooses
.a

2

; 0/ 2 A
2

⇥ f0g, and gets g
1

�

a

1

; a

c

2

; ✓

� � 3 otherwise.

✏ if player 1 chooses .n; `/ and the state is ✓ , he gets �n;`.a
c
2;✓

/

2

� 1 if player 2 chooses
.a

2

; 0/ 2 A
2

⇥ f0g; he gets �
n;`

.a

2

; ✓/ if player 2 chooses .a
2

; n/ 2 A
2

⇥ fng; and he gets
�

n;`

�

a

c

2

; ✓

� � 1 if player 2 chooses .a
2

; m/ 2 A
2

⇥ fmg with m ¤ n and m ¤ 0.

A

2

⇥ f0g A

2

⇥ f1g A

2

⇥ f2g � � � A

2

⇥ fN g
A

1

g

1

.a

1

; a

2

; ✓/ g

1

�

a

1

; a

c

2

; ✓

� � 3 g

1

�

a

1

; a

c

2

; ✓

� � 3 � � � g

1

�

a

1

; a

c

2

; ✓

� � 3
.1; `/

�1;`.a
c
2;✓

/

2

� 1 �

1;`

.a

2

; ✓/ �

1;`

�

a

c

2

; ✓

� � 1 � � � �

1;`

�

a

c

2

; ✓

� � 1
.2; `/

�2;`.a
c
2;✓

/

2

� 1 �

2;`

�

a

c

2

; ✓

� � 1 �

2;`

.a

2

; ✓/ � � � �

2;`

�

a

c

2

; ✓

� � 1
:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

.N; `/

�N;`.a
c
2;✓

/

2

� 1 �

N;`

�

a

c

2

; ✓

� � 1 �

N;`

�

a

c

2

; ✓

� � 1 � � � �

N;`

.a

2

; ✓/

Na0

1

0 0 0 � � � 0

Player 2’s payoffs are specified as follows:

✏ If player 2 chooses .a
2

; m/, he gets g
2

.a

2

; a

1

; ✓/ if player 1 chooses a
1

2 A
1

, and he gets
g

2

�

a

2

; a

c

1

; ✓

�

otherwise.

31Recall that we identify any measurable subset E ✓ T k

2

with the cylinder

ft
2

2 T
2

W the k-order belief of t
2

belongs to Eg:
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By the induction hypothesis, game G satisfies property (ii) and has payoffs in the interval
Œ�5; 3ç; it follows that game N

G also has payoffs in the interval Œ�5; 3ç.
We now prove that game N

G, along with the actions a⇤
1;n

defD .n; 0/, n D 1; : : : ; N , satisfy
properties (i)–(v) for kC 1. First, (i) follows because Na0

1

and .a0

2

; n/ are zero actions for players 1
and 2, respectively. Second, (ii) is satisfied by the coordination pair

�

a

c

1

;

�

a

c

2

; 0

��

: for any Na
1

2 N
A

1

and ✓ 2 ‚,

Ng
1

� Na
1

;

�

a

c

2

; 0

�

; ✓

�

> min
⇢

g

1

�

a

1

; a

c

2

; ✓

�

;min
n;`

�

n;`

�

a

c

2

; ✓

�

=2 � 1; 0
�

> �2I

moreover, Ng
2

�

.a

2

; n/ ; a

c

1

; ✓

� D g

2

�

a

2

; a

c

1

; ✓

�

> �2 for any .a
2

; n/ 2 N
A

2

and ✓ 2 ‚, and
Ng
1

�

a

c

1

;

�

a

c

2

; 0

�

; ✓

� D Ng
2

��

a

c

2

; 0

�

; a

c

1

; ✓

� D 3 for any ✓ 2 ‚.

The proof of (iii)–(v) relies on the following claim, whose proof is postponed.

Claim 2. For every integer r > 0 and � 2 Œ0; 1=2/,

1: R

r

1

��; N
G; �

� \ A
1

D R

r

1

.�; G; �/;
2: R

r

2

��; N
G; �

� D R

r

2

.�; G; �/ ⇥ f0; 1; 2; : : : ; N g.

We now prove that Claim 2 implies properties (iii)–(v).

(iii): By the induction hypothesis, R
2

.�; G; �/ D R

k

2

.�; G; �/. Thus, Claim 2 implies that
R

2

��; N
G; �

� D R

k

2

��; N
G; �

�

. This, in turn, implies R
1

��; N
G; �

� D R

kC1

1

��; N
G; �

�

and hence (iii).

(iv): Given any 1 6 n 6 N , consider the conjecture �
2

W ‚ ⇥ T

2

! Å.

N
A

2

/ such that
�

2

�

✓; t

2;n

0
� ⇥

a

⇤
2;n

0 ; n
⇤ D 1 for each n0 D 1; : : : N

0 and ✓ 2 ‚. By part 1 of Claim 2 and the
fact that G satisfies property (iv) (by the induction hypothesis), �

2

is a rationalizable conjecture in
N
G. Moreover, given such a conjecture, t

1;n

gets an expected payoff of 0 by playing .n; `/ for any
`, and gets at most 0 by playing any action in N

A

1

n f.n; 0/; : : : ; .n; L/g:

⇡

t1;n;�2

�

F

`

� � �� �

1 � �
1

�

E

`

jt
1;n

��� C �

1 � ⇡
t1;n;�2

�

F

`

�� � �
1

�

E

`

jt
1;n

�

D �

1

�

E

`

jt
1;n

� � �� �

1 � �
1

�

E

`

jt
1;n

��� C �

1 � �
1

�

E

`

jt
1;n

�� � �
1

�

E

`

jt
1;n

� D 0:

In particular, a⇤
1;n

D .n; 0/ is a best reply for t
1;n

.

(v): Fix 1 6 n 6 N and consider any type s
1

with dkC1

1

�

s

1

; t

1;n

�

> ". Then, there exists
some 1 6 ` 6 L such that

�

1

�

E

`

jt
1;n

�

> �

1

⇣

�

E

`

�

";k

�

�

�

s

1

⌘

C ":

It follows that, given any "

2

-rationalizable conjecture �
2

W ‚ ⇥ T
2

! Å.

N
A

2

/, the difference in
expected payoffs between actions .n; `/ and .n; 0/ for type s

1

is at least "=2. To prove this, we
consider two cases separately: when player 2 chooses m D n; and when player 2 chooses m ¤ n.
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First, conditional on player 2 choosing n, the expected payoff difference between actions .n; `/
and .n; 0/ for type s

1

, given an arbitrary "

2

-rationalizable conjecture �
2

, is

X

a2;✓

�

n;`

�

a

2

; ✓

�

⇡

s1;�2

�

a

2

; ✓

�

�

n

�

D ⇡

s1;�2

�

F

`

�

�

n

� � �� �

1 � �
1

�

E

`

jt
1;n

��� C �

1 � ⇡
s1;�2

�

F

`

�

�

n

�� � �
1

�

E

`

jt
1;n

�

:

But, for any .✓; s
2

/ 2 ‚ ⇥ T
2

and n0 D 1; : : : ; N

0,

�

2

.✓; s

2

/Œa

⇤
2;n

0 ; nç > 0 ) .a

⇤
2;n

0 ; n/ 2 R
2

⇣

s

2

;

N
G;

"

2

⌘

(since �
2

is
"

2

-rationalizable)

) a

⇤
2;n

0 2 R
2

⇣

s

2

; G;

"

2

⌘

(by Claim 2)

) d

k

2

.s

2

; t

2;n

0
/ 6 "; (by the induction hypothesis)

and thus, if ⇡
s1;�2.n/ > 0,

⇡

s1;�2

�

F

`

�

�

n

�

6 �

1

⇣

.E

`

/

";k

�

�

s

1

⌘

;

which implies
X

a2;✓

�

n;`

�

a

2

; ✓

�

⇡

s1;�2

�

a

2

; ✓

�

�

n

�

> �

1

⇣

.E

`

/

";k

�

�

s

1

⌘

� �� �

1 � �
1

�

E

`

jt
1;n

��� C
⇣

1 � �
1

⇣

.E

`

/

";k

�

�

s

1

⌘⌘

� �
1

�

E

`

jt
1;n

�

D �

1

�

E

`

jt
1;n

� � �
1

⇣

.E

`

/

";k

�

�

s

1

⌘

> ":

Second, conditional on player 2 choosing m ¤ n, the expected payoff difference between ac-
tions .n; `/ and .n; 0/ for type s

1

(given any conjecture) is at least �
n;`

.a

c

2

; ✓/=2 D �

1

.E

`

jt
1;n

/=2

> "=2. (This is because ac

2

¤ a

⇤
2;n

0 for all n0, and hence .ac

2

; ✓/ … F

`

for every ✓ .) We
have thus shown that, given any "=2-rationalizable conjecture, and conditional on any choice of
m D 0; : : : ; N by player 2 with ⇡

s1;�2.m/ > 0, type s
1

gains at least "=2 by deviating from .n; 0/

to .n; `/. Thus, he also gains "=2 unconditionally on m, and hence property (v) follows.

To conclude the proof, it remains to prove Claim 2. We prove it by induction on r > 0. First,
the claim is trivially true for r D 0. We now consider r > 1, assume that the claim holds for any
0 6 r

0
< r , and prove that it also holds for r .

R

r

1

.t

1

; G; �/ � R

r

1

�

t

1

;

N
G; �

� \ A
1

: Let a
1

2 Rr

1

�

t

1

;

N
G; �

� \ A

1

. Then, there is an .r � 1/-
order � -rationalizable conjecture N�

2

W ‚ ⇥ T
2

! Å

� N
A

2

�

in N
G such that for any a0

1

2 A
1

,
Z

‚⇥T2

d�

1

.✓; t

2

jt
1

/

X

.a2;n/2 N
A2

⇥ Ng
1

.a

1

; .a

2

; n/ ; ✓/ � Ng
1

.a

0
1

; .a

2

; n/ ; ✓/

⇤ N�
2

.✓; t

2

/ Œ.a

2

; n/ç > ��:

(5)
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Consider the mapping '
2

W N
A

2

! A

2

,

'

2

.a

2

; n/ D
(

a

2

, if n D 0;
a

c

2

, if n ¤ 0:

Define �
2

as the conjecture in G such that �
2

.✓; t

2

/ Œa

2

ç

defD N�
2

.✓; t

2

/

⇥

'

�1

2

.a

2

/

⇤

for any .✓; t
2

/ 2
‚⇥T

2

and a
2

2 A
2

. Since N�
2

is .r�1/-order � -rationalizable in N
G, N�

2

.✓; t

2

/ Œ.a

2

; 0/ç > 0 implies
.a

2

; 0/ 2 R

r�1

2

�

t

2

;

N
G; �

�

, and by the induction hypothesis, a
2

2 R

r�1

2

.t

2

; G; �/. Moreover, ac

2

is part of a coordination pair in G, hence ac

2

is rationalizable in G for any type. Thus, �
2

is an
.r � 1/-order � -rationalizable conjecture in G. Moreover, for any a0

1

2 A
1

,
Z

‚⇥T2

d�

1

.✓; t

2

jt
1

/

X

.a2;n/2 N
A2

⇥ Ng
1

.a

1

; .a

2

; n/ ; ✓/ � Ng
1

�

a

0
1

; .a

2

; n/ ; ✓

�⇤ N�
2

.✓; t

2

/ Œ.a

2

; n/ç

D
Z

‚⇥T2

d�

1

.✓; t

2

jt
1

/

✓

X

a22A2

⇥

g

1

.a

1

; a

2

; ✓/ � g
1

�

a

0
1

; a

2

; ✓

�⇤ N�
2

.✓; t

2

/ Œ.a

2

; 0/ç

C ⇥�

g

1

�

a

1

; a

c

2

; ✓

� � 3� � �

g

1

�

a

0
1

; a

c

2

; ✓

� � 3�⇤ N�
2

.✓; t

2

/

⇥�

.a

2

; n/ 2 N
A

2

W n > 0 ⇤
◆

D
Z

‚⇥T2

d�

1

.✓; t

2

jt
1

/

X

a22A2

⇥

g

1

.a

1

; a

2

; ✓/ � g
1

�

a

0
1

; a

2

; ✓

�⇤

�

2

.✓; t

2

/ Œa

2

ç (6)

Then, (5) and (6) imply a
1

2 Rr

1

.t

1

; G; �/.

R

r

1

.t

1

; G; �/ ⇢ R

r

1

�

t

1

;

N
G; �

� \ A
1

: Let a
1

2 R

r

1

.t

1

; G; �/. Then, there exists an .r � 1/-
order � -rationalizable conjecture �

2

W ‚ ⇥ T
2

! Å .A

2

/ in G such that for any a0
1

2 A
1

,
Z

‚⇥T2

d�

1

.✓; t

2

jt
1

/

X

a22A2

⇥

g

1

.a

1

; a

2

; ✓/ � g
1

�

a

0
1

; a

2

; ✓

�⇤

�

2

.✓; t

2

/ Œa

2

ç > ��: (7)

Define N�
2

as the conjecture in N
G such that N�

2

.✓; t

2

/ Œ.a

2

; 0/ç

defD �

2

.✓; t

2

/ Œa

2

ç for any .✓; t
2

/ 2
‚ ⇥ T

2

and a
2

2 A

2

(and thus N�
2

.✓; t

2

/ Œ.a

2

; n/ç D 0 for any n > 0). Since �
2

is .r � 1/-order
� -rationalizable in G , �

2

.✓; t

2

/ Œa

2

ç > 0 implies a
2

2 R

r�1

2

.t

2

; G; �/, and by the induction
hypothesis, .a

2

; 0/ 2 Rr�1

2

�

t

2

;

N
G; �

�

. Hence, N�
2

is .r � 1/-order � -rationalizable in G. We will
now show that a

1

is a � -best reply to N�
2

for t
1

in N
G. First, by (7) and the definition of N�

2

,
Z

‚⇥T2

d�

1

.✓; t

2

jt
1

/

X

a22A2

⇥

g

1

.a

1

; a

2

; ✓/ � g
1

�

a

0
1

; a

2

; ✓

�⇤ N�
2

.✓; t

2

/ Œ.a

2

; 0/ç > �� 8a0
1

2 A
1

:

(8)
Second, setting a0

1

D a

0

1

in (7) and recalling that � < 1=2,
Z

‚⇥T2

d�

1

.✓; t

2

jt
1

/

X

a22A2

g

1

.a

1

; a

2

; ✓/ �

2

.✓; t

2

/ Œa

2

ç > �� > �1=2:
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Since �
n;`

�

a

c

2

; ✓

�

=2 � 1 6 �1=2 for any n and `,
Z

‚⇥T2

d�

1

.✓; t

2

jt
1

/

X

a22A2

Œ Ng
1

.a

1

; a

2

; ✓/ � Ng
1

..n; `/; a

2

; ✓/ç N�
2

.✓; t

2

/ Œ.a

2

; 0/ç > 0 8n; `:
(9)

By (8) and (9), a
1

is a � -best reply to N�
2

for t
1

in N
G, and hence a

1

2 Rr

1

�

t

1

;

N
G; �

�

.

R

r

2

�

t

2

;

N
G; �

� ⇢ R

r

2

.t

2

; G; �/ ⇥ f0; 1; : : : ; N g: Suppose .a
2

; m/ 2 Rr

2

�

t

2

;

N
G; �

�

. Then, there
is an .r � 1/-order � -rationalizable conjecture N�

1

W ‚ ⇥ T
1

! Å

� N
A

1

�

in N
G such that for any

�

a

0
2

; m

0� 2 N
A

2

,
Z

‚⇥T1

d�

2

.✓; t

1

jt
2

/

X

Na12 N
A1

⇥ Ng
2

..a

2

; m/ ; Na
1

; ✓/ � Ng
2

��

a

0
2

; m

0�
; Na

1

; ✓

�⇤ N�
1

.✓; t

1

/ Œ Na
1

ç > ��:

Consider the map '
1

W N
A

1

! A

1

,

'

1

. Na
1

/ D
(

Na
1

, if Na
1

2 A
1

;
a

c

1

, if Na
1

… A
1

.

Let �
1

be the conjecture inG such that �
1

.✓; t

1

/ Œa

1

ç

defD N�
1

.✓; t

1

/

⇥

'

�1

1

.a

1

/

⇤

for any .✓; t
1

/ 2 ‚⇥
T

1

and a
1

2 A
1

. Since N�
1

is .r�1/-order � -rationalizable in N
G, for any Na

1

2 A
1

, N�
1

.✓; t

1

/ Œ Na
1

ç >

0 implies Na
1

2 Rr�1

1

�

t

1

;

N
G; �

�

, and by the induction hypothesis, Na
1

2 Rr�1

1

.t

1

; G; �/. Moreover,
a

c

1

is part of a coordination pair inG, hence it is rationalizable for any type. Thus, �
1

is an .r�1/-
order � -rationalizable conjecture in G. Moreover, (5) implies that for any a0

2

2 A
2

,

�� 6
Z

‚⇥T1

d�

2

.✓; t

1

jt
2

/

X

Na12 N
A1

⇥ Ng
2

..a

2

; m/ ; Na
1

; ✓/ � Ng
2

��

a

0
2

; m

0�
; Na

1

; ✓

�⇤ N�
1

.✓; t

1

/ Œ Na
1

ç

D
Z

‚⇥T1

d�

2

.✓; t

1

jt
2

/

✓

X

a12A1

⇥

g

2

.a

2

; a

1

; ✓/ � g
2

�

a

0
2

; a

1

; ✓

�⇤ N�
1

.✓; t

1

/ Œa

1

ç

C ⇥

g

2

�

a

2

; a

c

1

; ✓

� � g
2

�

a

0
2

; a

c

1

; ✓

�⇤ N�
1

.✓; t

1

/

⇥ N
A

1

nA
1

⇤

◆

D
Z

‚⇥T1

d�

2

.✓; t

1

jt
2

/

X

a12A1

⇥

g

2

.a

2

; a

1

; ✓/ � g
2

�

a

0
2

; a

1

; ✓

�⇤

�

1

.✓; t

1

/ Œa

1

ç

Therefore, a
2

2 Rr

2

.t

2

; G; �/.

R

r

2

�

t

2

;

N
G; �

� � R

r

2

.t

2

; G; �/ ⇥ f0; 1; : : : ; N g: Let .a
2

; m/ 2 R

r

2

.t

2

; G; �/ ⇥ f0; 1; : : : ; N g.
Then, there is an .r � 1/-order � -rationalizable conjecture �

1

W ‚ ⇥ T
1

! Å .A

1

/ in G such that
for any a0

2

2 A
2

,
Z

‚⇥T1

d�

2

.✓; t

1

jt
2

/

X

a12A1

⇥

g

2

.a

2

; a

1

; ✓/ � g
2

�

a

0
2

; a

1

; ✓

�⇤

�

1

.✓; t

1

/ Œa

1

ç > ��: (10)
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Let N�
1

be the conjecture in N
G such that N�

1

.✓; t

1

/ Œa

1

ç

defD �

1

.✓; t

1

/ Œa

1

ç for any .✓; t
1

/ 2 ‚⇥T
1

and
a

1

2 A
1

(and thus N�
1

.✓; t

1

/ Œa

1

ç D 0 for any a
1

…A
1

). Since �
1

is .r � 1/-order � -rationalizable
in G, �

1

.✓; t

1

/ Œa

1

ç > 0 implies a
1

2 R

r�1

1

.t

1

; G; �/, and by the induction hypothesis, a
1

2
R

r�1

1

�

t

1

;

N
G; �

�

. Hence, N�
1

is .r � 1/-order � -rationalizable in N
G. Since Ng

2

..a

2

; m/ ; a

1

; ✓/ D
Ng
2

..a

2

; m

0
/ ; a

1

; ✓/ for any m and m0, it follows from (10) that .a
2

; m/ 2 Rr

2

�

t

2

;

N
G; �

�

. ⌅

Corollary 1. For every " > 0, player i , positive integer k and finite type t
i

2 T
i

, there exists a
game G with jGj 6 M , and an action a

i

of player i in G, such that:

(i) R
j

.�; G; �/ D R

k

j

.�; G; �/ for every � 2 Œ0;M=10/ and j 2 I ;

(ii) a
i

2 R
i

.t

i

; G/;

(iii) a
i

… Rk

i

.s

i

; G;M"=10/ for every s
i

2 T
i

with dk

i

.s

i

; t

i

/ > ".

Proof. Immediate implication of Lemma 3, upon rescaling the payoffs by a factor of M=5. ⌅

Lemma 4. For every " > 0 there exists ı > 0 such that for every i 2 I and s
i

, t
i

2 T
i

with
d

UW
i

.s

i

; t

i

/ > " there is a game G with jGj 6 M such that R
i

.t

i

; G/ › R

i

.s

i

; G; ı/.

Proof. Fix an " > 0, a player i , an integer k > 1 and types s
i

, t
i

2 T
i

with dk

i

.s

i

; t

i

/ > ". Fix
0 < ı < M"=10 and choose ⇢ > 0 small enough that

M." � ⇢/
10

� 4M⇢ > ı: (11)

Since finite types are dense in the product topology, there is a finite type t 0
i

such that dk

i

�

t

0
i

; t

i

�

< ⇢.
Then, dk

i

�

s

i

; t

0
i

�

> " � ⇢. By Corollary 1, there is some game G0 D .A

0
i

; g

0
i

/

i2I

with jG0j 6 M ,

and some action a0
i

of player i in G0, such that a0
i

2 R
i

�

t

0
i

; G

0
; 0

�

and a0
i

… Rk

i

⇣

s

i

; G

0
;

M."�⇢/

10

⌘

.

By Proposition 2 in Chen, Di Tillio, Faingold, and Xiong (2010), a0
i

2 Rk

i

.t

i

; G

0
; 4M⇢/. Then, it

follows from (i) of Corollary 1 that a0
i

2 R
i

.t

i

; G

0
; 4M⇢/ and a0

i

… R
i

⇣

s

i

; G

0
;

M."�⇢/

10

⌘

.

To conclude, consider the game G D .A

j

; g

j

/

j 2I

, defined as follows:

A

i

D A

0
i

; A�i

D A

0
�i

⇥ A0
i

;

g

i

.a

i

; .a

�i

�i

; a

i

�i

/; ✓/ D
(

g

0
i

.a

i

; a

�i

�i

; ✓/C 4M⇢ W a

i

i

D a

i

�i

g

0
i

.a

i

; a

�i

�i

; ✓/ W otherwise;

and
g�i

..a

�i

�i

; a

i

�i

/; a

i

; ✓/ D g

0
�i

.a

�i

�i

; a

i

; ✓/:

In game G, player �i is indifferent among all actions ai

�i

; moreover, player i gets an additional
payoff of 4M⇢ whenever his action matches player �i ’s choice of ai

�i

. Therefore, R
i

.�; G; �/ D
R

i

.�; G0
; � C 4M⇢/ for every � > 0. In particular, we have that a0

i

2 R

i

.t

i

; G; 0/ and a0
i

…
R

i

⇣

s

i

; G;

M."�⇢/

10

� 4M⇢
⌘

◆ R

i

.s

i

; G; ı/, where the inclusion follows from (11).32 ⌅

32If necessary, rescale the payoffs from G to ensure jGj 6 M , and rescale ı by the same factor.

32



The only if direction of Theorem 1 then follows directly from Lemma 4.

A.3 Proof of Theorem 2

We begin with the following auxiliary result about the structure of ICR.

Lemma 5. Fix a game G D .A

i

; g

i

/

i2I

and " > 0. For every integer k > 1, i 2 I and t
i

2 T
i

,
we have a

i

2 Rk

i

.t

i

; G; "/ if and only if, for every ˛
i

2 Å.A
i

/,

X

✓2‚;B✓A�i

max
a�i 2B

h

g

i

.a

i

; a�i

;✓/ � g
i

.˛

i

; a�i

; ✓/

i

⇥ �

i

⇣

✓ ⇥
n

t�i

W Rk�1

�i

.t�i

; G; "/ D B

o

�

�

�

t

i

⌘

> �": (12)

Likewise, a
i

2 R
i

.t

i

; G; "/ if and only if, for every ˛
i

2 Å.A
i

/,
X

✓2‚;B✓A�i

max
a�i 2B

h

g

i

.a

i

; a�i

;✓/ � g
i

.˛

i

; a�i

; ✓/

i

⇥ �

i

⇣

✓ ⇥
n

t�i

W R�i

.t�i

; G; "/ D B

o

�

�

�

t

i

⌘

> �": (13)

Proof. Straightforward implication of the characterization of ICR in terms of iterated dominance
(see Appendix A.1). ⌅

The if direction of the theorem is an immediate consequence of the following lemma:

Lemma 6. Fix ı > 0 and a game G D .A

i

; g

i

/

i2I

and let P denote the strategic frame associ-
ated with G. For every integer k > 0 , i 2 I and s

i

; t

i

2 T
i

,

d

k

i;P .si ; ti / < ı H) R

i

.t

i

; G/ ✓ R

k

i

.s

i

; G; 4Mı/:

In particular, for every i 2 I and s
i

, t
i

2 T
i

,

d

UW
i;P .si ; ti / < ı H) R

i

.t

i

; G/ ✓ R

i

.s

i

; G; 4Mı/:

Proof. We need only prove the first result, as the second result is a straightforward implication
of the first one. For k D 0 the result is trivially true, as R0

i

⌘ A

i

. Proceeding by induction,
we assume the result is true for k > 0 and show that it remains true for k C 1. Consider a
pair of types s

i

, t
i

with dkC1

i;P .s

i

; t

i

/ < ı. Fix an arbitrary a
i

2 R

i

.t

i

; G/ and let us show that
a

i

2 RkC1

i

.s

i

; G; 4Mı/. Given ˛
i

2 Å.A
i

/, by Lemma 5 we have
X

✓2‚;B✓A�i

Åg

i

�

✓; B

�

�

i

�

✓ ⇥ ŒBç��t
i

�

> 0; (14)
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where, for each ✓ 2 ‚ and nonempty B ✓ A�i

,

ŒBç

defD
n

t�i

W R�i

.t�i

; G/ D B

o

;

Åg

i

.✓; B/

defD max
a�i 2B

h

g

i

.a

i

; a�i

; ✓/ � g
i

.˛

i

; a�i

; ✓/

i

:

By Lemma 5, in order to prove that a
i

2 RkC1

i

.s

i

; G; 4Mı/ we need only show that
X

✓2‚;B✓A�i

Åg

i

�

✓; B

�

�

i

�

✓ ⇥ ŒŒBçç��s
i

�

> �4Mı;

where
ŒŒBçç

defD
n

t�i

W Rk

�i

�

t�i

; G; 4Mı

� D B

o

8B ✓ A�i

:

To prove this, first note that the induction hypothesis implies

ŒBç

ı;k

P ✓
[

C ◆B

ŒŒC çç 8B ✓ A�i

: (15)

Second, enumerate the elements of the finite set ‚ ⇥ �

B W ¿ ¤ B ✓ A�i

 

as
�

.✓

n

; B

n

/

 

N

nD1

(N D #‚.2#A�i � 1/) so that

Åg

i

.✓

n

; B

n

/ > Åg

i

.✓

nC1

; B

nC1

/ 8n D 1; : : : ; N � 1 (16)

and
.✓

m

D ✓

n

and B

m

◆ B

n

/ H) m 6 n:

33 (17)

33Such enumeration is possible because Åg
i

.✓; B

0
/ > Åg

i

.✓; B/ whenever B 0 ◆ B .
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Then,
X

✓2‚;B✓A�i

Åg

i

�

✓; B

�

�

i

�

✓ ⇥ ŒŒBçç��s
i

�

>
N

X

nD1

Åg

i

�

✓

n

; B

n

�

⇣

�

i

�

✓

n

⇥ ŒŒB
n

çç

�

�

s

i

� � �
i

�

✓

n

⇥ ŒB
n

ç

�

�

t

i

�

⌘

(18)

D
N �1

X

nD1

⇣

Åg

i

�

✓

n

; B

n

� �Åg
i

�

✓

nC1

; B

nC1

�

⌘

⇥
n

X

mD1

�

�

i

�

✓

m

⇥ ŒŒB
m

çç

�

�

s

i

� � �
i

�

✓

m

⇥ ŒB
m

ç

�

�

t

i

��

(19)

D
N �1

X

nD1

⇣

Åg

i

�

✓

n

; B

n

� �Åg
i

�

✓

nC1

; B

nC1

�

⌘

⇥
✓

�

i

⇣

n

[

mD1

✓

m

⇥ ŒŒB
m

çç

�

�

�

s

i

⌘

� �
i

⇣

n

[

mD1

✓

m

⇥ ŒB
m

ç

�

�

�

t

i

⌘

◆

(20)

>
N �1

X

nD1

⇣

Åg

i

�

✓

n

; B

n

� �Åg
i

�

✓

nC1

; B

nC1

�

⌘

⇥
✓

�

i

⇣⇣

n

[

mD1

✓

m

⇥ ŒB
m

ç

⌘

ı;k

P

�

�

�

s

i

⌘

� �
i

⇣

n

[

mD1

✓

m

⇥ ŒB
m

ç

�

�

�

t

i

⌘

◆

(21)

>
N �1

X

nD1

�

Åg

i

�

✓

n

; B

n

� �Åg
i

�

✓

nC1

; B

nC1

��� � ı� (22)

D ��Åg
i

�

✓

1

; B

1

� �Åg
i

�

✓

N

; B

N

��

ı

> �4Mı; (23)

where (18) follows from (14); (19) follows by a standard “integration by parts” argument; (20)
follows from the fact that

�

.✓

m

; ŒB

m

ç/

 

N

mD1

and
�

.✓

m

; ŒŒB

m

çç/

 

N

mD1

are partitions of ‚ ⇥ T�i

;
(21) follows from (15), (16) and (17); (22) follows from the assumption that dkC1

i;P .s

i

; t

i

/ 6 ı, the
fact that ŒB

m

ç 2 P�i

and (16); and (23) follows from jÅg
i

j 6 2M . ⌅

Before turning to the proof of the only if direction of Theorem 2, we introduce some notation.
First, given a frame P and a type t

i

, let �
i

.t

i

/

�

�

‚⇥P�i
denote the belief of type t

i

over the events in
‚⇥P�i

. We thus view �
i

.t

i

/

�

�

‚⇥P�i
as an element of the finite-dimensional simplexÅ.‚⇥P�i

/

(viewed as a subset of the Euclidean space R#‚�#P�i ). Second, let '
i

W Å.‚ ⇥ P�i

/ ! P
i

designate the function that maps each q 2 Å.‚ ⇥ P�i

/ into P
i

.t

i

/, where t
i

is some type with
�

i

.t

i

/

�

�

‚⇥P�i
D q. Since P is a frame, the definition of '

i

is independent of the choice of t
i

.
Third, given a game G D .A

i

; g

i

/

i2I

, for each ⇡
i

2 Å.A
i

⇥‚/ define a probability distribution
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⇡

P
i

2 Å.‚ ⇥ P
i

/ as follows:

⇡

P
i

.✓; E/

defD
X

ai 2'

�1
i .E/

⇡

i

.a

i

; ✓/ 8.✓; E/ 2 ‚ ⇥ P
i

:

The proof of the only if direction of Theorem 2 relies on Lemmas 7 and 8 and Corollary 2
below.

Lemma 7. Fix a frame P . For each ⇣ > 0 there exist " > 0 and a game G D .A

i

; g

i

/

i2I

such
that for each i 2 I ,

(i) A
i

is a finite subset of Å.‚ ⇥ P�i

/ that is
p
"-dense (relative to the Euclidean norm jj � jj)

in every element of the partition
�

'

�1

i

.E/ W E 2 P
i

 

;

(ii) for each a�i

, a0
�i

2 A�i

,

'�i

.a�i

/ D '�i

.a

0
�i

/ H) g

i

.a

i

; a�i

; ✓/ D g

i

.a

i

; a

0
�i

; ✓/ 8✓ 2 ‚; a
i

2 A
i

I

(iii) for each ⇡�i

2 Å.A�i

⇥‚/,

BR

i

.⇡�i

; G; "/ ◆ �

a

i

2 A
i

W jja
i

� ⇡P
�i

jj < p
"

 I

(iv) for each ⇡�i

, ⇡ 0
�i

2 Å.A�i

⇥‚/ with jj⇡P
�i

� ⇡ 0P
�i

jj > ⇣,

BR

i

.⇡

0
�i

; G; 2"/ \ �

a

i

2 A
i

W jja
i

� ⇡P
�i

jj < p
"

 D ¿:

Proof. Fix ⇣ > 0 and a frame P . Let 0 < " < ⇣

2

=.1 C p
3/

2. Cover the finite-dimensional
simplexÅ.‚⇥ P�i

/ by a finite union of open balls B
1

; : : : ; B

N

of diameter
p
". Select one point

from B

n

\ '

�1

i

.E/, for each n D 1; : : : ; N and E 2 P
i

, and let A
i

denote the set of selected
points. By construction, A

i

satisfies (i).

Consider the quadratic score s
i

W Å.‚ ⇥ P�i

/ ⇥‚ ⇥ P�i

! R,

s

i

.q; ✓; E/ D 2q.✓; E/ � jjqjj2 8.q; ✓; E/ 2 Å.‚ ⇥ P�i

/ ⇥‚ ⇥ P�i

;

which can be readily shown to satisfy

s

i

.q; q/ � s
i

.q

0
; q/ D jjq0 � qjj2 q; q

0 2 Å.‚ ⇥ P�i

/: (24)

Then, define g
i

W A
i

⇥ A�i

⇥‚ ! R,

g

i

.a

i

; a�i

; ✓/ D s

i

.a

i

; ✓; '�i

.a�i

// 8.a
i

; a�i

; ✓/ 2 A
i

⇥ A�i

⇥‚;

which clearly satisfies (ii).
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Given ⇡�i

2 Å.A�i

⇥‚/ and a
i

2 A
i

with jja
i

� ⇡P
�i

jj < p
", for any a0

i

2 A
i

we have

g

i

.a

i

;⇡�i

/ � g
i

.a

0
i

;⇡�i

/

D s

i

.a

i

;⇡

P
�i

/ � s
i

.a

0
i

;⇡

P
�i

/ .by (ii)/

D s

i

.a

i

;⇡

P
�i

/ � s
i

.⇡

P
�i

;⇡

P
�i

/C s

i

.⇡

P
�i

;⇡

P
�i

/ � s
i

.a

0
i

;⇡

P
�i

/

D �jja
i

� ⇡P
�i

jj2 C jja0
i

� ⇡P
�i

jj2 .by (24)/

> �"; .by jja
i

� ⇡P
�i

jj < p
"/

hence a
i

2 BR
i

.⇡�i

; G; "/, and this proves (iii).

Turning to (iv), let ⇡�i

, ⇡ 0
�i

2 Å.A�i

⇥ ‚/ with jj⇡ 0P
�i

� ⇡

P
�i

jj > ⇣ and a
i

2 A

i

with
jja

i

� ⇡

P
�i

jj < p
". Then, jja

i

� ⇡

0P
�i

jj > ⇣ � p
" >

p
3". By (i) we can find some a0

i

2 A

i

with
jja0

i

� ⇡ 0P
�i

jj < p
". Thus,

g

i

.a

i

;⇡

0
�i

/ � g
i

.a

0
i

;⇡

0
�i

/

D s

i

.a

i

;⇡

0P
�i

/ � s
i

.a

0
i

;⇡

0P
�i

/ .by (ii)/

D s

i

.a

i

;⇡

0P
�i

/ � s
i

.⇡

0P
�i

;⇡

0P
�i

/C s

i

.⇡

0P
�i

;⇡

0P
�i

/ � s
i

.a

0
i

;⇡

0P
�i

/

D �jja
i

� ⇡ 0P
�i

jj2 C jja0
i

� ⇡ 0P
�i

jj2 .by (24)/

< �3"C " D �2"; �

by jja
i

� ⇡ 0P
�i

jj > p
3"

and jja0
i

� ⇡ 0P
�i

jj < p
"

�

and hence a
i

… BR
i

.⇡

0
�i

; G; 2"/, as required. ⌅

Lemma 8. Fix ı > 0 and a frame P . Let " > 0 and G D .A

i

; g

i

/

i2I

satisfy the properties
(i)–(iv) of Lemma 7 relative to ⇣ D ı=.#‚ � max

i

#P
i

/: Then the following statements hold:

(a) for every i 2 I and t
i

2 T
i

,

R.t

i

; G; "/ ◆
n

a

i

2 A
i

\ '�1

i

�

P
i

.t

i

/

� W ����a
i

� �
i

.t

i

/

�

�

‚⇥P�i

�

�

�

�

<

p
"

o

I

(b) for every integer k > 0, i 2 I and s
i

; t

i

2 T
i

with dk

i;P .si ; ti / > ı,

R

k

i

.s

i

; G; 2"/ \
n

a

i

2 A
i

\ '�1

i

�

P
i

.t

i

/

� W ����a
i

� �
i

.t

i

/

�

�

‚⇥P�i

�

�

�

�

<

p
"

o

D ¿:

Proof. To prove (a), we will show that the pair of correspondences &
i

W T
i

◆ A

i

, i 2 I , defined
by

&

i

.t

i

/ D
n

a

i

2 A
i

\ '�1

i

�

P
i

.t

i

/

� W ����a
i

� �
i

.t

i

/

�

�

‚⇥P�i

�

�

�

�

<

p
"

o

8t
i

2 T
i

;

which is nonempty-valued by (i) of Lemma 7, has the "-best-reply property. Indeed, given any
a

i

2 &
i

.t

i

/ and any conjecture ��i

W ‚⇥ T�i

! Å.A�i

/ with supp ��i

.✓; t�i

/ ✓ &�i

.t�i

/ for all
.✓; t�i

/ 2 ‚ ⇥ T�i

, we must have

⇡

ti ;��i

⇣

✓ ⇥ �

A�i

\ '�1

�i

.E/

�

⌘

D �

i

�

✓ ⇥Ejt
i

� 8✓ 2 ‚;E 2 P�i

;

37



and hence, jja
i

�⇡P
ti ;��i

jj D �

�

�

�

a

i

��
i

.t

i

/

�

�

‚⇥P�i

�

�

�

�

<

p
", by (i) of Lemma 7. It then follows by (iii)

of Lemma 7 that a
i

2 BR
i

.⇡

ti ;��i
; G; "/. We have thus shown that the profile of correspondences

.&

i

/

i2I

has the "-best-reply property.

Turning to (b), since d0

i;P ⌘ 0 the result is true for k D 0 (vacuously). Proceeding by
induction, assume the result is true for k > 0 and let us show that it remains true for k C 1. Fix
i 2 I and s

i

, t
i

2 T
i

with dkC1

i;P .s

i

; t

i

/ > ı. Then, there is some ✓ 2 ‚ and some E 2 P�i

such
that

�

i

�

✓ ⇥Eı;k

P

�

�

s

i

�

< �

i

�

✓ ⇥E��t
i

� � ı=.#‚ � #P�i

/: (25)

Consider an arbitrary k-order 2"-rationalizable conjecture ��i

W ‚ ⇥ T�i

! Å.A�i

/. By
the induction hypothesis, for every s�i

, t�i

2 T�i

, every ✓ 2 ‚ and every a�i

2 A�i

with
�

�

�

�

a�i

���i

.t�i

/

�

�

‚⇥Pi

�

�

�

�

<

p
", we can have ��i

.✓; s�i

/Œa�i

ç > 0 only if dk

�i;P .s�i

; t�i

/ 6 ı. In
particular, for every s�i

; t�i

2 T�i

, every ✓ 2 ‚ and every a�i

2 A�i

,
�

��i

.t�i

/

�

�

‚⇥Pi
D a�i

and d

k

�i;P .s�i

; t�i

/ > ı

� H) ��i

.✓; s�i

/Œa�i

ç D 0:

It follows that for every .✓; s�i

/ 2 ‚ ⇥ T�i

,

s�i

… Eı;k

P H) ��i

.✓; s�i

/

⇥

A�i

\ '�1

�i

.E/

⇤ D 0; (26)

since for every a�i

2 A�i

\ '

�1

�i

.E/ and every t�i

2 T�i

with ��i

.t�i

/

�

�

‚⇥Pi
D a�i

we must
have t�i

2 E. Hence, for every k-order 2"-rationalizable conjecture ��i

we have

⇡

si ;��i

⇣

✓ ⇥ �

A�i

\'�1

�i

.E/

�

⌘

D
Z

T�i

��i

.✓; s�i

/

⇥

A�i

\ '�1

�i

.E/

⇤

�

i

�

✓ ⇥ ds�i

�

�

s

i

�

D
Z

E

ı;k
P

��i

.✓; s�i

/

⇥

A�i

\ '�1

�i

.E/

⇤

�

i

�

✓ ⇥ ds�i

�

�

s

i

�

.by (26)/

6 �

i

�

✓ ⇥Eı;k

P

�

�

s

i

�

< �

i

.✓ ⇥Ejt
i

/ � ı=.#‚ � #P�i

/; .by (25)/

and thus,
�

�

�

�

⇡

P
si ;��i

� �
i

.t

i

/

�

�

‚⇥P�i

�

�

�

�

> ⇣. It follows from part (iv) of Lemma 7 that

R

kC1

i

.s

i

; G; 2"/ \
n

a

i

W ����a
i

� �
i

.t

i

/

�

�

‚⇥P�i

�

�

�

�

<

p
"

o

D ¿;

as was to be shown. ⌅

Corollary 2. For every frame P and ı > 0 there exists " > 0 and a game G with jGj 6 M such
that for every i 2 I and s

i

, t
i

2 T
i

,

d

UW
i;P .si ; ti / > ı H) R

i

.t

i

; G/ › R

i

.s

i

; G; "/:
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Proof. A straightforward implication of Lemma 8 is that for some " > 0 and some game G0 with
jG0j 6 M , for every i 2 I and s

i

, t
i

2 T
i

we have

d

UW
i;P .si ; ti / > ı H) R

i

.t

i

; G

0
; "/ › R

i

.s

i

; G

0
; 2"/:

To conclude, we can use a construction similar to the last part of the proof of Lemma 4 to obtain
a game G with R

i

.�; G; �/ D R

i

.�; G0
; � C "/ for all � > 0. ⌅

The only if direction of Theorem 2 is an immediate implication of Corollary 2.

A.4 Proof of Theorem 3

We need the following piece of notation. Given an integer m > 1, a measurable subset E ✓ �

and p 2 Œ0; 1ç2, define the event that E is m-order p-belief recursively as follows:
⇥

B

p
⇤

m

.E/

defD B

p
⇣

E \ ⇥

B

p
⇤

m�1

.E/

⌘

;

where
⇥

B

p
⇤

0

.E/

defD �. Then, the event thatE ism-order p-belief for player i , written
⇥

B

p
i

⇤

m

.E/,
is the projection of

⇥

B

p
⇤

m

.E/ onto T
i

. We these definitions in place, we have:

C

p
.E/ D

\

m > 1

⇥

B

p
⇤

m

.E/ and C

p
i

.E/ D
\

m > 1

⇥

B

p
i

⇤

m

.E/:

Lemma 9. For every integer k > 1 and ı > 0 there exists a k-order frame P such that, for every
i 2 I , every atom of P

i

has dk

i

-diameter at most ı.

Proof. For k D 1 the result is trivial, as any profile of first-order measurable partitions is a frame.
Proceeding by induction, consider k > 1, fix ı > 0 and let P be a k-order measurable frame
whose atoms all have dk

i

-diameter less than ı=2. Let…
i

be a finite partition of the simplexÅ.‚⇥
P�i

/ (viewed as a subset of the Euclidean space R#‚�#P�i ) into finitely many Borel measurable
subsets with Euclidean diameter less than ı=

p
#‚#P�i

. By Lemma 2, the join .P
i

_.…
i

=T
i

//

i2I

is a .kC 1/-order frame. We claim that every atom of P
i

_ .…
i

=T
i

/ has dkC1

i

-diameter less than
ı. Let s

i

, t
i

be a pair of types with s
i

2 �

T
i

=…

i

�

.t

i

/, let E be a measurable subset of‚⇥ T�i

and
let us show that �

i

.E

ı;kjs
i

/ > �

i

.Ejt
i

/ � ı. Since all the atoms of P�i

have dk

i

-diameter less
than ı=2, there is some F 2 2

‚ ˝ P�i

with E ✓ F ✓ E

ı=2;k . Then, j�
i

.F js
i

/ � �

i

.F jt
i

/j <
ı, because every atom of …

i

has Euclidean diameter less than ı=
p

#‚#P�i

and we have s
i

2
�

T
i

=…

i

�

.t

i

/. Thus,

�

i

.E

ı;kjs
i

/ > �

i

.F

ı=2;kjs
i

/ .by F ✓ E

ı=2;k

/

> �

i

.F js
i

/ .by F ✓ F

ı=2;k

/

> �

i

.F jt
i

/ � ı .by j�
i

.F js
i

/ � �
i

.F jt
i

/j < ı/
> �

i

.Ejt
i

/ � ı .by E ✓ F /

as claimed. ⌅
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Lemma 10. Fix ı > 0, an integer k > 1 and a k-order frame P whose atoms all have dk

i

-
diameter less than ı for every i 2 I . Then, for every m D 0; : : : ; k,

d

m

i

.s

i

; t

i

/ 6 d

m

i;P .si ; ti /Cmı 8s
i

; t

i

2 T
i

;8i 2 I:

Proof. Fix ı > 0, an integer k > 1 and a k-order frame P whose atoms all have dk

i

-diameter less
than ı, for every i 2 I . (Such a frame exists by Lemma 9.) Form D 0 the conclusion of the lemma
is trivial, as d0

i

D d

0

i;P D 0. Consider 1 6 m 6 k and assume the conclusion of the lemma holds
for m � 1. Let s

i

, t
i

2 T
i

and ⌘ > d

m

i;Pi
.s

i

; t

i

/ and let us show that dm

i

.s

i

; t

i

/ 6 ⌘ C mı.
Fix E 2 2

‚ ˝ P�i

. Since all the atoms of P�i

have dk

�i

-diameter less than ı, there is some
F 2 2‚ ˝ P�i

with E ✓ F ✓ E

ı;m�1. Then,

�

i

.E

⌘Cmı;m�1js
i

/ > �

i

.F

⌘C.m�1/ı;m�1js
i

/ .by F ✓ E

ı;m�1

/

> �

i

.F

⌘;m�1

P js
i

/ .by dm�1

�i

6 d

m�1

�i;P C .m � 1/ı/
> �

i

.F jt
i

/ � ⌘ .by ⌘ > dm

i;Pi
.s

i

; t

i

//

> �

i

.Ejt
i

/ � ⌘ �mı; .by E ✓ F /

and hence, dm

i

.s

i

; t

i

/ 6 ⌘Cmı. But since our choice of ⌘ > dm

i;Pi
.s

i

; t

i

/ was arbitrary, we have
shown that dm

i

.s

i

; t

i

/ 6 d

m

i;Pi
.s

i

; t

i

/Cmı, as required. ⌅

Lemma 11. Fix ı > 0, p 2 .0; 1ç2, an integer k > 1 and an eventE ✓ � that is measurable with
respect to a frame QP . Let P denote the common belief frame

� QP
i

_ �

C

p
i

.E/; T
i

n C p
i

.E/

 �

i2I

.
Then, for every integer ` > k,

�

C

p
i

.E/

�

ı;`

P
✓
h

B

p�ı1
i

i

`�k

�

E

ı;k

QP
� 8i 2 I:

Proof. We prove the result by induction on ` > k. First, the result is trivial for ` D k, as
⇥

B

p�ı1
i

⇤

0

.�/ ⌘ T
i

for every i . Next, suppose the result is true for ` > k and let us show that
it remains true for `C 1. Pick t

i

2 C p
i

.E/ and s
i

2 T
i

with d `C1

i;P .s

i

; t

i

/ < ı and let us show that

s

i

2 Bpi �ı

i

⇣

E

ı;k

QP \ ⇥

B

p�ı1
⇤

`�k

�

E

ı;k

QP
�

⌘

D
h

B

p�ı1
i

i

`C1�k

�

E

ı;k

QP
�

: (27)
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Indeed,34

�

i

��

E

ı;k

QP \ ⇥

B

p�ı1
⇤

`�k

�

E

ı;k

QP
��

si

�

�

s

i

�

> �

i

���

E \ C p
.E/

�

ı;`

P

�

si

�

�

s

i

�

> �

i

���

E \ C p
.E/

�

ti

�

ı;`

P

�

�

s

i

�

> �

i

��

E \ C p
.E/

�

ti

�

�

t

i

� � ı
> �

i

��

E \ C p
.E/

�

ti

�

�

t

i

� � ı
> p

i

� ı;

where the first inequality follows from the induction hypothesis and the fact that dk

i;

QP 6 d

`

i;P , the

second inequality follows from d

`

i;P .si ; ti / < ı, the third inequality follows from d

`C1

i;P .s

i

; t

i

/ < ı

and the last inequality follows from t

i

2 C p
i

.E/ D B

pi

i

.E \ C p
.E//. This proves (27). ⌅

Lemma 12. For every ı > 0, integer k > 1, p 2 .0; 1ç

2 and measurable E ✓ � there exists a
frame P such that for every s

i

, t
i

2 T
i

with d UW
i;P .si ; ti / < ı,

t

i

2 C p
i

.E/ H) s

i

2 C p�ı.kC2/1
i

�

E

ı.kC2/;k

�

:

Proof. Fix " > 0, an integer k > 1, p 2 .0; 1ç2 and a measurable set E ✓ �. Let QP be a k-order
frame whose atoms have dk

i

-diameter at most ı, for every player i . Fix i 2 I , pick F 2 2‚ ˝P�i

such that E ✓ F ✓ E

ı;k and consider the common belief frame P D � QP
j

_ �

C

p
j

.F /; T
j

n
C

p
j

.F /

 �

j 2I

. Let t
i

2 C

p
i

.E/ and consider a type s
i

with d UW
i;P .si ; ti / < ı. Since E ✓ F , we

have t
i

2 C p
i

.F /. Then,

s

i

2
\

` > k

�

C

p
i

.F /

�

ı;`

P
✓

\

m > 1

h

B

p�ı1
i

i

m

�

F

ı;k

QP
�

(by d UW
i;P .si ; ti / < ı and Lemma 11)

D C

p�ı1
i

�

F

ı;k

QP
�

(by the definition of common belief)

✓ C

p�ı1
i

�

F

.kC1/ı;k

�

(by Lemma 10)

✓ C

p�ı1
i

�

E

.kC2/ı;k

�

; (by F ✓ E

ı;k)

and hence s
i

2 C p�.kC2/ı1
i

�

E

.kC2/ı;k

�

. ⌅

Theorem 3 is an immediate implication of Lemma 12 above.

34Recall that, for any measurable subset E ✓ � and any type t
i

of player i , E
ti

denotes the section of E over t
i

.
See Section 2.3.
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A.5 Proof of Claim 1

First we introduce some notation. For every r D .r

1

; : : : ; r

4

/ 2 .0; 1ç4, i 2 I , measurable subset
E ✓ �, let

⇥

M

r
i

⇤

0

.E/ D � and for every positive integer k, define recursively

⇥

M

r
i

⇤

k

.E/ D B

r1

i

�

E \ Br2

�i

�

E \ Br3

i

�

E \ Br4

�i

�

E \ ⇥

M

r
i

⇤

k�1

.E/

����

:

Note that
⇥

M

r
i

⇤

k

.E/ ✓ B

r1

i

⇣

E \
h

M

.r2;r3;r4;r1/

�i

i

k�1

.E/

⌘

✓ ⇥

M

r
i

⇤

k�1

.E/ 8k > 1: (28)

Next, we define the frame P . For every k > 1, let

P

k

1

D
h

M

.q;p;p;p/

1

i

k

.✓

0

/; Q

k

1

D
h

M

.p;p;q;p/

1

i

k

.✓

0

/;

P

k

2

D
h

M

.p;p;p;q/

2

i

k

.✓

0

/; Q

m

2

D
h

M

.p;q;p;p/

2

i

k

.✓

0

/

and finally,

P

i

D
1
T

kD1

P

k

i

and Q

i

D
1
T

kD1

Q

k

i

8i 2 I:

The frame P is the profile of partitions .P
i

/

i2I

where

P
i

defD �

P

i

nQ
i

;Q

i

nP
i

; P

i

\Q
i

; T
i

n.P
i

[Q
i

/

 8i 2 I:
To verify that P is a frame, note that (28) implies

P

k

1

✓ B

q

1

.✓

0

⇥ P k�1

2

/ ✓ P

k�1

1

8k > 1

and hence

P

1

D
1
T

kD2

P

k

1

✓
1
T

kD2

B

q

1

.✓

0

⇥ P k�1

2

/ D B

q

1

.✓

0

⇥ P
2

/ ✓
1
T

kD2

P

k�1

1

D P

1

:

Therefore, P
1

D B

q

1

.✓

0

⇥ P
2

/. By analogous arguments,

Q

1

D B

p

1

.✓

0

⇥Q
2

/; P

2

D B

p

2

.✓

0

⇥Q
1

/; and Q

2

D B

p

2

.✓

0

⇥ P
1

/:

Thus, for all i 2 I and t
i

2 T
i

, the element of P
i

containing t
i

is determined by the values
�

i

.✓

0

⇥P�i

jt
i

/ and �
i

.✓

0

⇥Q�i

jt
i

/, and hence, a fortiori, by the restriction of �
i

.�jt
i

/ to‚⇥P�i

.

We now prove that tn
1

6! t

1

uniform-weakly on P . Fix 0 < ı < minfp;Åg. It is enough to
show that for every positive integer n,

d

4n�3

1;P .t

n

1

; t

1

/ > ı; d

4n�2

2;P .s

n

2

; s

2

/ > ı; d

4n�1

1;P .s

n

1

; s

1

/ > ı; d

4n

2;P .t
n

2

; t

2

/ > ı: (29)

To prove this, we will show that for n D 1, the first inequality holds, and that for any n > 1, if
the first inequality holds for n, then all others also hold for n, and if the last inequality holds for
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n, then the first holds for nC 1. In the proof we will use the following facts, which are immediate
from the definition of t

1

, t
2

, s
1

, s
2

and the fact that �
i

.✓

0

jr
i

/ D 0 and P
i

[ Q

i

✓ B

p

i

.✓

0

/ for
each i 2 I :

t

1

2 P
1

; s

1

2 Q
1

; s

2

2 Q
2

; t

2

2 P
2

; r

i

… .P
i

[Q
i

/

ı;1

P 8i 2 I: (30)

Since �
1

.✓

0

jt
1

/ D 1 and �
1

.✓

0

jt1
1

/ D 0, we have d1

1;P .t
1

1

; t

1

/ D 1 > ı, which proves the first
inequality in (29) for n D 1. Now fix any n > 1 and assume the first inequality in (29) holds
for n. Then, by (30), ftn

1

; r

1

g \ .P

1

/

ı;4n�3

P D ¿. Since �
2

.✓

0

⇥ ftn
1

; r

1

gjsn

1

/ D 1 and, by
(30), �

2

.✓

0

⇥ P

1

js
2

/ D �

2

.✓

0

; t

1

js
2

/ D p, it follows that d4n�2

2;P .s

n

2

; s

2

/ > p > ı. Thus, the

second inequality in (29) holds for n. The latter implies, by (30), fsn

2

; r

2

g \ .P

2

/

ı;4n�2

P D ¿,
and since �

1

.✓

0

⇥ fsn

2

; r

2

gjsn

1

/ D 1 and, by (30), �
1

.✓

0

⇥ Q

2

js
1

/ D �

1

.✓

0

; s

2

js
1

/ D p, we
also have d4n�1

1;P .s

n

1

; s

1

/ > p > ı, i.e., the third inequality in (29) holds for n. This in turn

implies, by (30), fsn

1

; r

1

g \ .P

1

/

ı;4n�1

P D ¿, and since �
2

.✓

0

⇥ fsn

1

; r

1
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2

/ D 1 and, by (30),
�

2

.✓

0

⇥ Q

1

jt
2

/ D �

1

.✓

0

; s

1

jt
2

/ D p, we obtain d4n

2;P .t
n

2

; s

2

/ > p > ı. This proves that the

fourth inequality in (29) holds for n, and hence, by (30), that ftn
2

; r

2

g \ .P
2

/

ı;4n

P D ¿. It remains
to show that the latter implies that the first inequality in (29) holds for n C 1. Indeed, since
�

1

.✓

0

⇥ ftn
2

; r

2

gjtnC1

1

/ D 1� q CÅ and, by (30), �
1

.✓

0

⇥ P
2

jt
1

/ D �

1

.✓

0

; t

2

jt
1

/ D q, we have
d

4nC1

1;P .t

nC1

1

; t

1

/ > Å > ı, as claimed.

A.6 Proof of Theorem 4

It is enough to prove the implication .e/ ) .a/, since the implications .a/ , .b/ ) .c/ ,
.d/ ) .e/ follow from Theorems 1, 2 and 3. Fix a finite type space .T

1

; T

2

/. We will show that
there exist ⌘ > 0 and k > 1 such that for all ı 2 .0; ⌘/, n > 0, i 2 I and .t

i

; s

i

/ 2 T

i

⇥ T
i

with
d

k

i

.s

i

; t

i

/ < ı, one has

s

i

2 ⇥

B

.1�ı/1
i

⇤

n

�

‚ ⇥ T ı;k

1

⇥ T ı;k

2

� ) d

kCn

i

.s

i

; t

i

/ < 2ı : (31)

Choose k > 1 and ⌘ > 0 so that, for all i 2 I and s
i

; t

i

2 T

i

, if dk�1

i

.s

i

; t

i

/ < 2⌘ then s
i

D t

i

.
Since T

1

and T
2

are finite, such k and ⌘ exist. Fix ı 2 .0; ⌘/. Thus, for all n > 0, i 2 I , t
i

2 T
i

and E ✓ ‚ ⇥ T�i

,
E

ı;k�1 \ .‚ ⇥ T�i

/

ı;k ✓ E

ı;k

: (32)

The proof of (31) is by induction in n. Obviously, (31) holds for n D 0. Now assume that
(31) holds for some n > 0, and fix i 2 I , t

i

2 T

i

and s
i

2 T
i

with dk

i

.s

i

; t

i

/ < ı and
s

i

2 ⇥

B

.1�ı/1
i

⇤

nC1

�

‚ ⇥ T

ı;k

1

⇥ T

ı;k

2

�

. Since �
i

.‚ ⇥ T�i

jt
i

/ D 1, in order to prove that
d

kCnC1

i

.s

i

; t

i

/ < 2ı it suffices to show that �
i

.E

2ı;kCnjs
i

/ > �

i

.Ejt
i

/ � 2ı for every E ✓
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‚ ⇥ T�i

. Indeed,
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�

�

s

i

� � �
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� �
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�
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‚ ⇥ T ı;k
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⇥ T ı;k
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�

�
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� �

i

�

E

ı;k�1

�

�

s

i

� � ı � �

i

�

E
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�

t

i

� � 2ı;

where the first inequality follows from the induction hypothesis, the second from (32), the third
from s

i

2 ⇥

B

.1�ı/1
i

⇤

nC1

.T

ı;k

/ and the fourth from d

k

i

.s

i

; t

i

/ < ı.

A.7 Proof of Theorem 5

An immediate implication of Ely and Pęski (2011, Theorem 1) is that every finite type is crit-
ical. This fact, together with the denseness of finite types in the strategic topology (proved in
Dekel, Fudenberg, and Morris (2006)), implies that the set of critical types is dense in the strategic
topology.

Next, we show that the set of critical types is open in the strategic topology, or equivalently,
that the set of regular types is closed. Suppose not. Then, there is a sequence of regular types tn

i

that converges to some critical type t
i

. By Ely and Pęski (2011, Theorem 1), there is some p > 0
and some product-closed, proper subset E ⇢ � with t

i

2 C

p1
i

.E/. Then, there is an integer
k > 1 and ı 2 .0; p/ such that the dk

i

-closure of Eı;k is a proper subset of �. Moreover, by
Theorem 3, tn

i

! t

i

in common beliefs, and hence tn
i

2 C .p�ı/1
i

.E

ı;k

/ for all n large enough. It
follows, again by Ely and Pęski (2011, Theorem 1), that tn

i

is a critical type for all n large enough,
and this is a contradiction. The contradiction shows that the set of regular types is closed.

Finally, to prove that the set of critical types is finitely prevalent, given a pair of types u
i

, u0
i

and ˛ 2 .0; 1/, define

u

00
i

D ˛u

i

C .1 � ˛/u0
i

D �

�1

i

�

˛�

i

.u

i

/C .1 � ˛/�
i

.u

0
i

/

�

:

We show that u00
i

is regular if and only if u
i

and u0
i

are both regular. To prove the “only if”
part, suppose that u

i

is critical. By Ely and Pęski (2011, Theorem 1), u
i

2 C

p1
i

.E

i

/ D E

i

\
B

p

i

.C

p1
�i

.E

i

// for some product-closed proper subset E
i

⇢ T
i

, and this clearly implies u00
i

2
.E

i

[ u
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/ ⇥ B˛p

i

.C

˛p1
�i

.E

i

[ u
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i

// D C

˛p1
i

.E

i

[ u
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i

/, which implies u00
i

is critical. Conversely,
if u00

i

is critical, then, by Theorem 1 in Ely and Pęski (2011), u00
i

2 Cp

i

.E

i

/ D E

i

\Bp

i

.C

p1
�i

/ for
some product-closed proper subset E

i

⇢ T
i

and some p > 0. Since u00 D ˛u

i

C .1�˛/u0
i

, either
u

i

2 B

p

i

.C

p1
�i

.E

i

// or u0
i

2 B

p

i

.C

p1
�i

.E

i

//, thus either u
i

or u0
i

is critical. The conclusion that
the set of critical types is finitely prevalent now follows from Heifetz and Neeman (2006, Lemma
1).
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A.8 Proof of Theorem 6

The proof of the theorem uses the following lemma, a generalization of Theorem A in Monderer
and Samet (1989), which in turn generalizes Aumann’s (1976) agreement theorem. It says that if
a common prior type commonly .p; p/-believes, for some p > 0, that each player i ’s belief in a
fixed event E lies in an interval of a given size ı around some fixed value r

i

, then the difference
between the values r

1

and r
2

is bounded above by a number that vanishes for sufficiently large p
and small ı.35

Lemma 13. Let r
1

; r

2

2 Œ0; 1ç, p 2 .0; 1ç and ı 2 Œ0; 1ç. Let D ✓ ‚ ⇥ T
1

⇥ T
2

be a measurable
set and define E

i

D �

t

i

2 T
i

W ���
i

.Djt
i

/ � r

i

�

� 6 ı

 

, i 2 I . If, for some i , Cp1
i

.‚ ⇥ E
1

⇥ E
2

/

contains a common prior type of player i , then jr
1

� r
2

j 6 1 � p C 2ı.

Proof. Let F D C

p1
.‚ ⇥ E

1

⇥ E
2

/ and F
i

D C

p1
i

.‚ ⇥ E
1

⇥ E
2

/ for each player i . Suppose
F

i

\ T

i

¤ ; for some i , where .T
j

/

j 2I

is a countable common prior type space with prior ⌘.
Then, since p > 0, we must have F

i

\ T

i

¤ ; for every player i . Moreover, we have F
i

✓ E

i

.
Thus, since ⌘.�jt

i

/ D �

i

.�jt
i

/ for every t
i

2 T
i

, it follows that j⌘.DjF
i

/�r
i

j 6 ı. Similarly, since
F

i

✓ B

p

i

.F /, we have ⌘.F jF
i

/ > p. Thus, since F ✓ F

i

, for any event D0 ✓ � we get

⌘.D

0jF
i

/ > ⌘.D

0 \ F jF
i

/ D ⌘.F jF
i

/⌘.D

0jF / > p⌘.D

0jF /:

Plugging first D and then its complement for D0 in the latter expression, we obtain

r

i

C ı > ⌘.DjF
i

/ > p⌘.DjF /; r

i

� ı 6 ⌘.DjF
i

/ 6 1 � p C p⌘.DjF /;

and hence p⌘.DjF /�ı 6 r

i

6 p⌘.DjF /C1�pCı. Since the latter inequalities hold for every
player i , the result follows. ⌅

As a preliminary step, we prove the existence of a finite type t
i

that cannot be approximated
uniform weakly by any sequence of common prior types. Let ✓

1

and ✓
2

be distinct elements of‚.
Consider the type space .T

i

/

i2I

where, for each i 2 I , T
i

is a singleton, T
i

D ft
i

g, and beliefs are
such that �

i

.✓

i

; t�i

jt
i

/ D 1. Fix ı 2 .0; 1=3/. LettingD D f✓
1

g⇥T
1

⇥T
2

, p D 1� ı, r
1

D 1 and
r

2

D 0 in Lemma 13, we see that for each player i , Cp1
i

.B

p

1

.✓

1

/\Bp

2

.✓

2

// contains no common
prior types of i . Since t

i

2 C 1
.B

1

1

.✓

1

/ \ B

1

2

.✓

2

//, we conclude that that there is no sequence of
common prior types converging to t

i

in common beliefs, and hence, by Theorem 3, no sequence
of common prior types converging to t

i

uniform weakly. Thus, we can find " 2 .0; 1/ such that
d

UW
i

.t

i

; s

i

/ > " for every i and every common prior type s
i

.

Now, to show that the set of common prior types is nowhere dense in the universal type space
under the strategic topology, fix any u

i

2 T
i

. We prove the existence of a sequence of finite

35Neeman (1996) proves the claim for ı D 0, improving on the bound originally given by Monderer and Samet
(1989). Aumann (1976) proves the result for ı D 0 and p D 1.
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types, tn
i

, that converges to u
i

strategically and satisfies d UW
i

.t

n

i

; s

i

/ > "=n for every n and every
common prior type s

i

. Since each tn
i

is finite, this implies, by Theorem 4, that no tn
i

is in the
strategic closure of the set of common prior types, and hence that the complement of that closure
is dense, thus proving the nowhere denseness of common prior types. To define the sequence of
finite types tn

i

, pick an arbitrary sequence of finite types, un

i

, converging to u
i

strategically—such
sequence exists by Theorem 3 in Dekel, Fudenberg, and Morris (2006)—, and for each n define
t

n

i

by

�

i

.�jtn
i

/ D n � 1
n

�

i

.�jun

i

/C 1

n

�

i

.�jt
i

/:

Since un

i

and t
i

are finite, so is tn
i

. Moreover, d UW
i

.t

n

i

; u

n

i

/ 6 1=n for every n. Since the sequence
u

n

i

converges strategically to u
i

, we conclude by Theorem 1 that the sequence tn
i

also converges
strategically to u

i

. It remains to prove that d UW
i

.t

n

i

; s

i

/ > "=n for every n and every common prior
type s

i

. Indeed, assume, on the contrary, that d UW
i

.t

n

i

; s

i

/ 6 "=n for some n and common prior s
i

.
Then, since �

i

.t�i

jtn
i

/ > 1=n, we have �
i

.ft�i

g"=n;kjs
i

/ > .1� "/=n for every k > 1. Thus, we
also have �

i

.fs�i

2 T�i

W d UW
�i

.s�i

; t�i

/ 6 "=ngjs
i

/ D �

i

.\
k > 1

ft�i

g"=n;kjs
i

/ > .1� "/=n > 0.
Since s

i

is a common prior type of player i , �
i

.�js
i

/ is supported in the set of common prior
types of player �i . Thus, d UW

�i

.t�i

; s�i

/ 6 "=n 6 " for some common prior type s�i

. This is a
contradiction, as we have shown in the preliminary step that there is no common prior type that is
"-close to t�i

in the uniform weak distance.

We now show that the set of common prior types is finitely shy, thus concluding the proof of
the theorem. For each player i , consider the set of types defined by

T

0

i

D �

u

i

2 T
i

W �
i

.‚ ⇥ ft�i

gju
i

/ D 0

 

;

where .ft
i

g/
i2I

is the singleton type space defined in the preliminary step above. Next, for all
u

i

; u

0
i

2 T
i

and ˛ 2 .0; 1/, define

u

00
i

D ˛u

i

C .1 � ˛/u0
i

D �

�1

i

�

˛�

i

.�ju
i

/C .1 � ˛/�
i

.�ju0
i

/

�

:

The set T 0

i

is a proper face of T
i

, i.e. ˛u
i

C .1 � ˛/u

0
i

2 T 0

i

if and only if u
i

; u

0
i

2 T 0

i

. Thus, by
Heifetz and Neeman (2006, Lemma 1), the set T 0

i

is finitely shy.

We now prove that the set of common prior types is contained in T 0

i

by showing that for every
type u

i

the inequality �
i

.‚ ⇥ ft�i

gju
i

/ > 0 implies that u
i

is not a common prior type. Suppose
that u

i

is a common prior type contained in a countable common prior type space .T 0
i

/

i2I

with
prior ⌘. Since ⌘

i

.u

i

/ > 0 and �
i

.‚ ⇥ ft�i

gju
i

/ > 0, it follows that t
i

2 T 0
i

and t�i

2 T 0
�i

. Thus,
⌘

i

.t

i

/ > 0 and ⌘�i

.t�i

/ > 0. Moreover, since, �
i

.✓

i

; t�i

jt
i

/ D 1 and ��i

.✓�i

; t

i

jt�i

/ D 1, it
follows that

⌘.✓

i

; t

i

; t�i

/

⌘

i

.t

i

/

D 1 and
⌘.✓�i

; t

i

; t�i

/

⌘�i

.t�i

/

D 1: (33)

The first equality above implies that ⌘..‚ ⇥ ft
i

g ⇥ T 0
�i

/ n f.✓
i

; t

i

; t�i

/g/ D 0. In particular,

⌘ .f.✓�i

; t

i

; t�i

/g/ D 0: (34)
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The second equality in (33) implies that

⌘

��

‚ ⇥ T 0
i

⇥ ft�i

g� n f.✓�i

; t

i

; t�i

/g� D 0: (35)

It follows from (34) and (35) that ⌘ .‚ ⇥ T
i

⇥ ft�i

g/ D 0. This contradicts our earlier conclusion
that ⌘�i

.t�i

/ > 0. Thus, u
i

is not a common prior type.

Being contained in the finitely shy set T 0

i

, the set of common prior types is also finitely shy.
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