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Abstract

In regressions involving integrable functions we examine the limit prop-
erties of IV estimators that utilise integrable transformations of lagged
regressors as instruments. The regressors can be either I(0) or nearly inte-
grated (NI) processes. We show that this kind of nonlinearity in the regres-
sion function can significantly affect the relevance of the instruments. In
particular, such instruments become weak when the signal of the regressor
is strong, as it is in the NI case. Instruments based on integrable functions
of lagged NI regressors display long range dependence and so remain rel-
evant even at long lags, continuing to contribute to variance reduction in
IV estimation. However, simulations show that OLS is generally superior
to IV estimation in terms of MSE, even in the presence of endogeneity.
Estimation precision is also reduced when the regressor is nonstationary.
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1 Introduction

Models involving nonlinear functions of serially correlated processes arise in
various contexts, especially where economic variables and policy reaction func-
tions are formulated to depend on underlying fundamentals. In economic theory
and financial models, fundamentals are often represented in continuous time by
stochastic processes such as Brownian motion or diffusions. Examples include
the way in which fundamentals are thought to drive real macroeconomic vari-
ables such as output and productivity or financial variables such as stock prices
and exchange rates returns.
The econometric formulation of such models may involve dependencies of the

type
yt = f(xt, β) + ut, (1)

where the regressor xt is a stationary or non-stationary autoregessive process,
ut is a stationary error process, and the regressor function f is some possibly
nonlinear function of xt and the parameter vector β. In general, xt and ut will
be contemporaneously correlated, so that the equation may be interpreted as
a structural equation within a larger system. When xt is an I(1) or a Nearly
Integrated (NI) process, the equation is a nonlinear nonstationary relation and
is sometimes called a nonlinear cointegrating relation between yt and xt. Such
systems often prompt the use of instrumental variable (IV) techniques involving
lagged variables, on which Les Godfrey has written extensively, particularly in
the context of specification testing (Godfrey, 1988).
When the regression function (1) is linear the asymptotic variance of vari-

ous estimators of β is well known to be inversely related to the strength of the
regressor signal. This phenomenon is partly dependent on linearity and can be
reversed when the regression function is nonlinear. In particular, if the regression
function f is integrable, the asymptotic variance of OLS rises as the signal in xt
becomes stronger. This is true when xt is I(0) or NI. IV estimation is also sus-
ceptible to a weak instruments effect in which instruments become weaker as the
signal increases. Simulation results confirm that the mean squared error (MSE)
in IV estimation is significantly larger than that of OLS and bias gains from IV
estimation are small relative to increases in variance. Estimation precision is also

2



weaker when the regressor is non-stationary.
The focus of the present work is on the properties of IV estimators of the

β parameter given in (1) when the regression function f is integrable. The pa-
per concentrates on the case f(xt, β) = βf (xt) where it is convenient to take
a class of instrument functions for the regressor f (xt) . IV methods are usually
introduced to address issues of endogeneity that can occur in systems where the
regressor xt is contemporaneously correlated with the error ut. The class of in-
struments considered are nonlinear and are formed by taking nonlinear functions
of instrumental variables that satisfy relevance conditions with regard to xt and
orthogonality conditions with respect to ut.Within this framework, a limit theory
for IV estimation of structural models involving nonlinearities is obtained.
Limit theory for the case where xt ∼ I(0) is standard and uses well known

results for stationary ergodic or weakly dependent sequences. For xt ∼ NI the
limit distribution of the IV estimator is dependent on the distribution of the
innovations, so a full invariance principle does not apply. However, invariance
principles do apply in the limit to conventional test statistics and so inference
may be conducted in the usual fashion. This outcome is related to recent results
of Jeganathan (2006, 2008), whose findings provide a major advance in studying
sample functions of nonstationary processes involving endogeneities and general
linear process time series innovations. In particular, Jeganathan’s results en-
able a limit theory for least squares regression involving integrable functions and
endogenous nonstationary covariates, which are further discussed in work by Je-
ganathan and Phillips (2009) and Chang and Park (2009). But those results are
confined to cases of integrated regressors and they do not cover IV regression.
IV regression has some clear and well known advantages in stationary struc-

tural models. But in nonstationary systems the picture is not as straightforward.
It has recently been discovered, for instance, that conventional econometric meth-
ods that ignore simultaneity like least squares regression are consistent when the
regressor function f is integrable and xt is an integrated process (Jeganathan,
2008; Chang and Park, 2009). That result applies much more generally (that is,
beyond integrable functions) in the case of nonparametric kernel regression with
integrated and near integrated processes (Wang and Phillips, 2009b). However,
when xt is stationary, these methods are inconsistent and IV methods are needed,
involving additional complications of functional inverse problems and deconvo-
lution in the case of nonparametric regression. Of course, when least squares is
consistent it is generally more effi cient than IV estimation. So similar effi ciency
outcomes may be expected for nonlinear regression with integrated regressors
and integrable functions, where least squares is consistent irrespective of endo-
geneity, and this result is confirmed in the paper. We further investigate the
effects of adding many instruments and infinitely many instruments in nonlinear
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IV regression.
As the above discussion indicates, consistency in nonlinear structural regres-

sion relies on the properties of the regressors and the nature of the functions.
As such it may be useful to employ pre-test and related strategies in estimation
and inference that take account of the stationarity/nonstationarity of the regres-
sors and the nature of the nonlinearity in the system. Such estimation strategies
involve post-variable-diagnostic and post-model-selection inference issues, which
are well known to affect finite sample properties (Leeb and Pötscher, 2005). These
matters certainly deserve further study but go beyond the scope of the present
contribution.
The organization of the paper is as follows. Section 2 provides limit theory

for IV estimators in the context of integrable regression functions. Section 3
discusses the consequences of nonlinearity on the limit variance of both OLS and
IV estimators. Some simulation results are also provided. Section 4 considers IV
estimators that utilize many instruments and provides some results for the case
of infinitely many instruments in a special case. Section 5 concludes. Proofs and
technical material are given in the Appendix.
Before proceeding to the next section, we introduce some notation. For a

vector x = (xi) or a matrix A = (aij), |x| and |A| denote the vector and matrix
respectively of the moduli of their elements. The maximum of the moduli is
denoted by ‖.‖. For a matrix A, A > 0 denotes positive definiteness. As usual,
d
= denotes distributional equivalence. For a complex number x, x̄ is its complex
conjugate, and the Fourier transform of an integrable function f is denoted by f̃
(so that f̃(λ) =

∫
R e
−iλsf(s)ds and upon inversion f(s) = (2π)−1 ∫

R e
iλsf̃(λ)dλ).

For a (possibly matrix valued) function f , ‖.‖B denotes its supremum over the
subset B of its domain and we write Lm = Lm (−∞,∞) for the function space{
f |
∫∞
−∞ |f (x)|m dx <∞

}
. The L1 family of functions will be also written as

I. The real part of the complex number x is denoted by Re(x). Finally, for a
random variableX, we write ‖X‖p = {E |X|p}1/p and Et (X) = E(X | Ft), where
{Ft}t∈{0}∪N is an appropriate filtration.

2 IV estimation of integrable models

2.1 Limit Theory

To illustrate the main ideas, we start by reviewing the special case of the
structural equation (1)

yt = βf(xt) + ut, (2)
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where the regressor xt is either a stationary autoregressive process or an integrated
process. The error term ut is a martingale difference. Further, xt is correlated
with ut so there is endogeneity in (2). The corresponding model with an intercept,

yt = α + βf(xt) + ut, (3)

is also relevant in applied work. For stationary models, the impact of the intercept
is trivial. When xt is an integrated process the impact of the intercept on the
asymptotics depends critically on the properties of the function f and is discussed
below.
When xt is a stable autoregressive process and f(.) satisfies certain regularity

conditions, the OLS estimator β̂ of β is well known to be inconsistent with limit

β̂
p→ β +

E [f(xt)ut]

Ef(xt)2
.

When xt is a I(1) process we have the following limit theory. First, suppose
that f is locally integrable and asymptotically homogeneous1 i.e.

f(λx) ≈ κ(λ)Hf (x) ,

for λ large and some functionHf (x) with continuous derivative Ḣf (x) := dHf (x) /dx.
Then the OLS estimator has limit distribution

√
nκ(
√
n)
(
β̂ − β

)
d→
[∫ 1

0

Hf (Bx(r))
2dr

]−1

×
[∫ 1

0

Hf (Bx(r)) dBu(r) + σxu

∫ 1

0

Ḣf (Bx(r)) dr

]
, (4)

where Bx is a Brownian Motion (see de Jong, 2002, Ibragimov and Phillips, 2008,
and Kasparis, 2008, for further details). Moreover, for f integrable, it follows
from Jeganathan (2008) that

4
√
n
(
β̂ − β

)
d→MN

(
0,

σ2

LBx(1, 0)
∫∞
−∞ f(r)2dr

)
, (5)

where LBx is the local time process of Bx. We therefore have the following col-
lection of different asymptotic results depending on the nature of the regressor
and function: (i) for xt ∼ I(0) OLS is inconsistent; (ii) for xt ∼ I(1) with locally
integrable f, there is second order asymptotic bias in the limit theory given by
the term σxu

∫ 1

0
Ḣf (Bx(r)) dr in (4); and (iii) for xt ∼ I(1) with integrable f the

1See Park and Phillips (1999, 2001) for more details about this family of models.
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OLS is consistent and well centred. In view of (5), IV estimation is unecessary,
when xt ∼ I(1) and f ∈ L1. Nevertheless, there is a case for pursuing IV es-
timation if one is unsure about the time series properties of the regressor such
as its degree of integration. Some robustness to the integration properties of the
regressor then seems desirable in estimation.
In this paper we study the case where regressor function f ∈ L1. Such formu-

lations arise naturally in many econometric contexts, such as discrete choice esti-
mation, where we may want to allow for nonstationary data (Park and Phillips,
2000; Hu and Phillips, 2005; Phillips, Jin and Hu, 2009). We consider estimating
(2) by instrumental variables using an integrable function g of an instrument zt
that is valid in the sense that it satisfies the usual orthogonality condition with
respect to ut and the relevance condition for xt. In particular, the instrument
zt is determined by lagged values of the covariate. Let ut be a martingale differ-
ence with respect to a filtration for which zt is measurable. Also, xt and ut are
correlated so that (2) is a structural equation. We plan to estimate β using the
nonlinear instrument g (zt) , giving

β̂ =

∑n
t=1 g (zt) yt∑n

t=1 g (zt) f(xt)
= β +

∑n
t=1 g (zt)ut∑n

t=1 g (zt) f(xt)
. (6)

For stationary, weakly dependent xt it is well known that limit theory is Gaussian.
We next consider the case where xt is a nonstationary near integrated (NI)
process. In particular, we consider xt ∼ NI (1) of the form

xt =
(

1 +
c

n

)
xt−1 + vt (7)

and vs is a martingale difference sequence with {vs}t−1
s=1 independent of ut. Note

that (7) provides a generalisation of the usual random walk model and setting c =
0 in (7) we have xt ∼ I(1). Note that under (7) zt = xt−1 is a valid instrument. We
will consider this case below. By the martingale CLT and standard nonlinear NI
asymptotics (Wang and Phillips, 2009a), the numerator of (6) has the following
limit

1

n1/4

n∑
t=1

g (zt)ut
d→MN

(
0, σ2

∫ ∞
−∞

g(s)2dsLJc(1, 0)

)
, (8)

where LJc (r, a) is the local time of the Ornstein-Uhlenbeck Jc(r) =
∫ r

0
e−c(r−s)dBx(s)

process to which the standardized process n−1/2xbnrc converges weakly and Bx

is the Brownian motion to which the standardized partial sums n−1/2
∑bnrc

t=1 vt
converge.
The next part involves a Fourier integral approach and follows some earlier

work by Borodin and Ibragimov (1995) and more recent research by Jeganathan
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(2006, 2008). Park (2002) and Miller and Park (2010) used similar methods in
analyzing asymptotics for sample autocorrelations of integrable functions of a
random walk. We briefly sketch the heuristics here and give a formal derivation
in the proof of Theorem 1. Using the fact that vt is a martingale difference,

1√
n

n∑
t=1

g (zt) f(xt) =
1√
n

n∑
t=1

g (xt−1) f
((

1 +
c

n

)
xt−1 + vt

)

=
1

2π

∫ ∞
−∞

1√
n

n∑
t=1

g (xt−1) eiλ[(1+ c
n)xt−1+vt]f̃(λ)dλ

=
1

2π

∫ ∞
−∞

1√
n

n∑
t=1

g (xt−1) eiλ[xt−1+vt]f̃(λ)dλ+ op (1)

=
1

2π

∫ ∞
−∞

1√
n

n∑
t=1

g (xt−1) eiλxt−1E
(
eiλvt

)
f̃(λ)dλ+ op (1)

d→ 1

2π

∫ ∞
−∞

∫ ∞
−∞

g (s) eiλsdsE
(
eiλvt

)
f̃(λ)dλLJc(1, 0)

=
1

2π

∫ ∞
−∞

g̃(−λ)f̃(λ)E
(
eiλvt

)
dλLJc(1, 0). (9)

Note that this limit depends on the characteristic function of vt and hence the
result is not an invariance principle (IP). However, this distributional dependence
does not prevent statistical testing, where an IP will hold as is shown below.
To proceed we simplify (9) using the convolution inversion

1

2π

∫ ∞
−∞

g̃(−λ)f̃(λ)eiλvdλ =

∫ ∞
−∞

g(s)f(s+ v)ds,

so that∫ ∞
−∞

g̃(−λ)f̃(λ)E
(
eiλvt

)
dλ = E

∫ ∞
−∞

g̃(−λ)f̃(λ)eiλvtdλ = E

(∫ ∞
−∞

g(s)f(s+ vt)ds

)
=

∫ ∞
−∞

g(s)Ef(s+ vt)ds.

Then
1√
n

n∑
t=1

g (zt) f(xt)
d→
∫ ∞
−∞

g(s)Ef(s+ vt)dsLJc(1, 0). (10)

Observe that if zt = xt then (10) reduces to the familiar result for integrable
processes. Further, the deterministic term

∫∞
−∞ g(s)Ef(s + vt)ds in the limit of
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(10) is independent of the local to unity parameter c. The parameter c features in
the limit only via the local time LJc . Thus, (10) is an extension of usual nonlinear
nonstationary theory (Park and Phillips, 1999) and the formula shows that the
limit function is real even when vt has a nonsymmetric distribution (in which
case the characteristic function E

(
eiλvt

)
is complex). Combining (8) and (10)

gives the following mixed normal (MN) limit theory

n1/4
(
β̂ − β

)
=

1
n1/4

∑n
t=1 g (zt)ut

1√
n

∑n
t=1 g (zt) f(xt)

(11)

d→MN

0,
σ2
∫∞
−∞ g(s)2ds

LJc(1, 0)
[∫∞
−∞ g̃(−λ)f̃ (λ)E (eiλvt) dλ

]2


= MN

0,
σ2
∫∞
−∞ g(s)2ds

LJc(1, 0)
[∫∞
−∞ g(s)Ef(s+ vt)ds

]2

 . (12)

We now proceed with a formal development of the theory. We consider two
cases involving an autoregressive covariate xt generated by

xt = ρnxt−1 + vt. (13)

In the first case, xt has a unit root and in the second xt is stable autoregressive.
We apply the following conditions.

Assumption 1:
The autoregressive coeffi cient ρn in (13) is defined as ρn = 1 + c

n
and x0 = 0.

Assumption 1∗:
The autoregressive coeffi cient is ρn = ρ with |ρ| < 1.

Under (13) and Assumption 1 xt is a NI process. Under Assumption 1∗ xt is a
stationary autoregression. Next, we specify the properties of the variables ut and
vt that appear in (2) and (13) respectively. Let Ft be the sigma algebra generated
by {us, vs : s ≤ t}.

Assumption 2:
(i) {vt} is iid with characteristic function E

[
eiλvt

]
= ϕ(λ) that satisfies∫

R |ϕ(λ)| dλ <∞.
(ii) {ut, Ft} is a martingale difference sequence with E [u2

t | Ft−1] = σ2 <∞
a.s.
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(iii) suptE(u4
t | Ft−1) <∞ a.s.

While vt is assumed to be iid (i), the results of the paper may be extended to the
case where vt is a stationary linear process under some additional conditions using
the approach developed in recent work by Jeganathan (2008). The martingale
difference condition (ii) is also restrictive, but it is relevant for some predictive
regression contexts, has been used in other recent work (Wang and Phillips, 2009,
Chang and Park, 2008), and may also be extended. However, relaxation of these
conditions introduces major new diffi culties that substantially complicate the
arguments, as mentioned in Remark (c) below. Such extensions are therefore left
for future work.
The limit theory for the IV estimator in the nonstationary case is given in the

following result.

Theorem 1 Let Assumptions 1 and 2 hold and suppose that:
(i) g, g2 ∈ L1,
(ii) f, f̃ , g̃f̃ ∈ L1,

(a) Then for zt = xt−1, as n→∞

1√
n

n∑
t=1

g (zt) f(xt)
d→
∫ ∞
−∞

g̃(−λ)f̃ (λ)E
(
eiλvt

)
dλLJc(1, 0).

(b) Further, if g4 ∈ L1, as n→∞ we have

n1/4
(
β̂ − β

)
d→MN

0,
σ2
∫∞
−∞ g(s)2ds

LJc(1, 0)
[∫∞
−∞ g̃(−λ)f̃ (λ)E (eiλvt) dλ

]2

 . (14)

Remarks.

(a) The smoothness condition on g includes a range of possible instrument
functions. It can be further relaxed if the methods in Wang and Phillips
(2009b) are used.

(b) Although (9) and (12) are not distributionally invariant because the limits
depend on the characteristic function and distribution of vt, hypothesis
testing on β may be conducted in the usual way with the t− statistic
constructed as

t̂ =
β̂ − β
sβ̂

, (15)
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where s2
β̂

= (n−1
∑n

t=1 û
2
t )
(∑n

t=1 g (zt)
2) / (

∑n
t=1 g (zt) f(xt))

2 and ût = yt−
β̂f(xt). Noting that

1√
n

n∑
t=1

g (zt)
2 d→

∫ ∞
−∞

g(s)2dsLJc(1, 0), n−1

n∑
t=1

û2
t →p σ

2, (16)

we have from (10) and (16)

n1/2s2
β̂

= n−1

n∑
t=1

û2
t

1√
n

∑n
t=1 g (zt)

2(
1√
n

∑n
t=1 g (zt) f(xt)

)2

d→
σ2
∫∞
−∞ g(s)2ds

LJc(1, 0)
(∫∞
−∞ g(s)Ef(s+ vt)ds

)2 . (17)

It follows by (12) and (17) that

t =
n1/4

(
β̂ − β

)
(
n1/2s2

β̂

)1/2

=
1

n1/4

∑n
t=1 g (zt)ut{

1√
n

∑n
t=1 g (zt) f(xt)

}{
n1/2s2

β̂

}1/2

d→ N (0, 1) , (18)

so that the distributional effect in the limit theory (14) scales out asymp-
totically in the t-statistic. Hence, conventional methods of inference are
possible.

(c) We remark that the least squares estimator β̂LS has the following limit

n1/4
(
β̂LS − β

)
=

1
n1/4

∑n
t=1 f (xt)ut

1√
n

∑n
t=1 f (xt)

2

d→MN

(
0,

σ2

LJc(1, 0)
∫∞
−∞ f(s)2ds

)
,

which applies even in the case of endogenous xt when (ut, vt) is an iid
sequence (Jeganathan 2006, 2008; Chang and Park, 2011). The limit dis-
tribution has a more complex form and is only a weak invariance principle
when (ut, vt) is serially dependent. In that case, the variance depends on
the distribution of (ut, vt) , as shown in Jeganathan (2008) and Jeganathan
and Phillips (2009).
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(d) Note that under Assumption 1∗, f(xt) is a strictly stationary (e.g. Ibrag-
imov and Linnik, 1971), L2 near epoch dependent sequence of size −∞
of the innovation sequence {vt} (c.f. Theorem 17.12 in Davidson, 1994).
Therefore, under Assumption 1∗ and some additional regularity conditions,
we get the well-known limit theory for IV estimation involving mixing time
series (e.g. Pötscher and Prucha, 1997; Bierens and Gallant, 1997)

√
n
(
β̂ − β

)
d→ N

(
0,

σ2Eg(xt)
2

[Ef(xt−1)g(xt)]
2

)
.

It follows that when xt is a stable autoregressive process the t-statistic of
(15) satisfies t̂ d→ N(0, 1), just as in the unit root case.

(e) For the model (3) with an intercept we have, in place of (11)

n1/4
(
β̂ − β

)
=

1
n1/4

∑n
t=1 g (zt)ut

1√
n

∑n
t=1 g (zt) f(xt)

where g (zt) = g (zt)− n−1
∑n

t=1 g (zt) . Under the assumptions of Theorem
1 it is clear that

n−1/4

n∑
t=1

g (zt)ut = n−1/4

n∑
t=1

g (zt)ut − n−1/4

(
n−1/2

n∑
t=1

ut

)(
n−1/2

n∑
t=1

g (zt)

)

= n−1/4

n∑
t=1

g (zt)ut +Op

(
n−1/4

)
,

and

n−1/2

n∑
t=1

g (zt) f(xt) = n−1/2

n∑
t=1

g (zt) f(xt)− n−1/2

(
n−1/2

n∑
t=1

f(xt)

)(
n−1/2

n∑
t=1

g(xt)

)

= n−1/2

n∑
t=1

g (zt) f(xt) +Op

(
n−1/2

)
.

The results of Theorem 1 therefore continue to hold for model (3) and for
regressions with a fitted intercept. It is readily seen that the same is true
for the t- ratio asymptotics (18).
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2.2 Choice of the Instrument Function

We next consider how limit variance is affected by choice of the instrument
function. Denote by ΩIV (g) the limit variance in (12) i.e.

ΩIV (g) =
σ2
∫∞
−∞ g(s)2ds

LJc(1, 0)
(∫∞
−∞ g(s)Ef(s+ vt)ds

)2 . (19)

As before, f is the regression function and g is the instrument function. Suppose
that the characteristic function of vt is real valued and positive i.e. E (eisvt) =
ReE (eisvt) ≥ 0. Define the measure µ(ds) = E (eisvt) ds and the energy of a
function β(s) ∈ L1 ∩ L2 by ∫ ∞

−∞

∣∣∣β̃ (s)
∣∣∣2 ds.

Further, define the relative energy of β(s) as
∫∞
−∞

∣∣∣β̃ (s)
∣∣∣2 ds/ ∫∞−∞ ∣∣∣β̃ (s)

∣∣∣2 µ(ds).2

It can be shown that ΩIV (f) ≤ ΩIV (g) a.s., for any instrument function g of
larger relative energy than that of the regression function f . We make use of the
following result.

Proposition 1: (i) Suppose that f, g ≥ 0 and the characteristic function E (eisvt) =
ReE (eisvt) ≥ 0. Then

{∫ ∞
−∞

g(s)Ef(s+ vt)ds

}2

≤
{∫ ∞
−∞

g(s)Eg(s+ vt)ds

}{∫ ∞
−∞

f(s)Ef(s+ vt)ds

}
(ii) Further, suppose that∫∞

−∞

∣∣∣f̃ (s)
∣∣∣2 ds∫∞

−∞

∣∣∣f̃ (s)
∣∣∣2 µ(ds)

≤
∫∞
−∞ |g̃ (s)|2 ds∫∞
−∞ |g̃ (s)|2 µ(ds)

. (20)

2Note that Parseval’s identity gives
∫∞
−∞

∣∣∣β̃ (s)
∣∣∣2 ds =

∫∞
−∞ |β (s)|2 ds whilst convolution

inversion gives
∫∞
−∞

∣∣∣β̃ (s)
∣∣∣2 µ(ds) =

∫∞
−∞ β (s)Eβ (s+ vt) ds (e.g. Lang (1993), pp.242-243).

Further, simple calculations show that the relative energy satisfies∫ ∞
−∞

∣∣∣β̃ (s)
∣∣∣2 ds/ ∫ ∞

−∞

∣∣∣β̃ (s)
∣∣∣2 µ(ds) ≥ 1.

12



Then, ∫∞
−∞ f(s)2ds[∫∞

−∞ f(s)Ef(s+ vt)ds
]2 ≤

∫∞
−∞ g(s)2ds[∫∞

−∞ f(s)Eg(s+ vt)ds
]2 .

Equation (20) postulates that f has smaller relative energy than g. The stated
result is a direct consequence of Proposition 1.

Corollary 1. Suppose that the conditions of Theorem 1 and Proposition 1 hold.
Then ΩIV (f) ≤ ΩIV (g) a.s.

Corollary 1 holds with strict inequality whenever part (i) of Proposition 1 holds
with strict inequality. The following conditions postulate that f and g are of
the same energy (with respect to measures ds and µ(ds)), and are suffi cient for
equality in (20):∫ ∞

−∞

∣∣∣f̃ (s)
∣∣∣2 ds =

∫ ∞
−∞
|g̃ (s)|2 ds and

∫ ∞
−∞

∣∣∣f̃ (s)
∣∣∣2 µ(ds) =

∫ ∞
−∞
|g̃ (s)|2 µ(ds).

Therefore, by Corollary 1 for any instrument function g with the same energy as
the regression function f we have ΩIV (f) ≤ ΩIV (g) a.s.

Example: Suppose that f(x) = 1/π(1+x2) and g(x) = e−x
2
/
√
π with xt−xt−1 =

vt ∼ i.i.d.N(0, σ2
v). Then we have∫ ∞

−∞

∣∣∣f̃ (s)
∣∣∣2 ds =

1

2π
,
∫ ∞
−∞

∣∣∣f̃ (s)
∣∣∣2 µ(ds) =

1√
2πσ2

v

e
2

σ2v

(
1− erf(

√
2/σ2

v)
)
,

∫ ∞
−∞
|g̃ (s)|2 ds =

1√
2π
,
∫ ∞
−∞
|g̃ (s)|2 µ(ds) =

√
1

2π(1 + σ2
v)
,

where erf (x) = 2√
π

∫ x
0
e−z

2
dz is the error function. Numerical calculations show

that in this case condition (20) is satisfied for all σ2
v > 0. Therefore, we haveΩIV (f) ≤

ΩIV (g) a.s.

Remark. The information loss arising from the use of the instrumental variable
f(xt−1) in place of the least squares instrument f(xt) is measured by the difference

1

σ2
(ΩIV − ΩLS) =

∫∞
−∞ f(s)2ds

LJc(1, 0)
[∫∞
−∞ f(s)Ef(s+ vt)ds

]2 −
1

LJc(1, 0)
∫∞
−∞ f(s)2ds

=

(∫∞
−∞ f(s)2ds

)2

−
[∫∞
−∞ f(s)Ef(s+ vt)ds

]2

LJc(1, 0)
[∫∞
−∞ f(s)Ef(s+ vt)ds

]2 ∫∞
−∞ f(s)2ds

.

13



Observe the following non-random bound∣∣∣∣∫ ∞
−∞

f(s)f(s+ vt)ds

∣∣∣∣ ≤ {∫ ∞
−∞

f(s)2ds

}1/2{∫ ∞
−∞

f(s+ vt)
2ds

}1/2

=

∫ ∞
−∞

f(s)2ds,

so that ∫ ∞
−∞

f(s)Ef(s+ vt)ds = E

∫ ∞
−∞

f(s)f(s+ vt)ds ≤
∫ ∞
−∞

f(s)2ds,

leading to the inequality ΩIV ≥ ΩLS. In general, the information loss is greater,
the greater the dispersion of the distribution of vt. This is demonstrated explicitly
in the next section.

3 Effects of Nonlinearity on Limit Variance

This section examines the effects of non-linearity on the limit variance of OLS
and IV estimators. We consider the case where the regression function f ∈ I, and
xt ∼ I(0) or xt ∼ I(1). The subsequent analysis can be generalised to the case
xt ∼ NI (1) with localizing coeffi cient c 6= 0 but for simplicity and comparisons
with other work we assume an exact unit root for the coviariate in this section.
It is well known that, for linear f, the asymptotic variance of various estima-

tors for β is inversely related to the regressor signal. This phenomenon depends
on functional form. When the regression function is an integrable one, the as-
ymptotic variance-regressor signal relationship is reversed. In particular, if the
regression function f is integrable, the asymptotic variance of OLS increases when
the signal of xt increases. This is true whether xt is I(0) or NI. The phenonomen
may be accentuated when IV techniques are employed. When the regression func-
tion has thin tails, there is an additional weak instruments effect. In particular,
instruments become weaker as the regressor signal increases. Simulation results
show that the MSE of the IV estimator is significantly larger than the MSE of the
OLS estimator in this case. Therefore, bias gains from IV estimation are small
relative to the increase in variance. Furthermore, estimation precision is reduced
when the regressor is non-stationary.

3.1 OLS estimation

For stationary xt and under exogeneity the limit variance in OLS estimation
is

ΩLS =
σ2

Ef(xt)2
.
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For various integrable functions f and for various distributions of vt (= xt−ρxt−1),
ΩLS is positively related to the variance of vt (and xt). Consider the following
example.

Example 1. Let f(x) = exp(−x2) and ρn = ρ, |ρ| < 1 with vt ∼ N(0, σ2
v). Then

Ef(xt)
2 =

√
1

1 + 2σ2
v (1− ρ2)−1 = O

(
1

σv

)
, (21)

as σ2
v → ∞. Hence, ΩLS = O (σv) → ∞ as σ2

v → ∞. In addition, estimation
precision deteriorates when the autoregressive coeffi cient approaches unity i.e.
|ρ| → 1. The latter is expected given the fact that the convergence rate under
stationary xt (viz.,

√
n) exceeds that for integrated xt (viz., 4

√
n).

For xt ∼ I(1), the limit variance of the OLS estimator is (Park and Phillips,
1999))

ΩLS =
σ2

LBx(1, 0)
∫∞
−∞ f(s)2ds

= O (σv) , (22)

as the following argument shows. Let W (r) be standard Brownian motion. The
“chronological”local time LBx(1, 0) of Bx at the origin over [0, 1] is

LBx(1, 0) = lim
ε↓0

1

2ε

∫ 1

0

1 {|Bx(r)| < ε} dr = lim
ε↓0

1

2ε

∫ 1

0

1
{∣∣∣√Ev2

tW (r)
∣∣∣ < ε

}
dr

=
1√
Ev2

t

lim
ε↓0

√
Ev2

t

2ε

∫ 1

0

1
{
|W (r)| < ε/

√
Ev2

t

}
dr =

1√
Ev2

t

lim
η↓0

1

2η

∫ 1

0

1 {|W (r)| < η} dr

=
1√
Ev2

t

LW (1, 0) = σ−1
v LW (1, 0).

The limit variance therefore has the form

ΩLS =
σ2

Lx(1, 0)
∫∞
−∞ f(s)2ds

=
σ2
√
Ev2

t

LW (1, 0)
∫∞
−∞ f(s)2ds

= O (σv) . (23)

It follows that for both stationary and nonstationary casesΩLS = O (σv). Nonethe-
less, as remarked earlier, estimation is less precise under nonstationarity due to
the slower convergence rate n1/4. This reduction in precision is manifest in sim-
ulations.
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3.2 IV estimation

We consider the limit variance of the IV estimator. In the following analysis
the instrument is zt = xt−1. Suppose xt ∼ I(0). IV can lead to significant
deterioration in estimation, as the following extension of Example 1 above shows.

Example 2. Suppose that f(x) = g(x) = exp(−x2) and ρn = ρ, |ρ| < 1

with vt ∼ N(0, σ2
v). From (21) Ef(xt)

2 = O
(

1
σv

)
, and

Ef(xt)f(xt−1) = O
(
σ−1
v

)
. (24)

Correspondingly, instrument relevance goes to zero as the signal of the regressor
(σ2

v/(1− ρ2)) approaches infinity. From (21) and (24), the limit variance is

ΩIV =
σ2Ef(xt)

2

{E [f(xt−1)f(xt)]}2 = O (σv) as σv →∞.

This expression reveals that the contrary impact of regressor signal on estimation
effi ciency is of the same order for IV as OLS estimation. In particular, Examples
1 and 2 show

ΩIV

ΩLS

= O (1) as σv →∞.

For xt ∼ I(1), the effects of nonlinearity on IV estimation are quite different to
these results for stationary models, as the following example demonstrates.

Example 3. Suppose that f(x) = g(x) = exp(−x2) and ρn = 1 with vt ∼
N(0, σ2

v). The following term captures the relevance of the instruments in the
limit: ∫ ∞

−∞
f(s)Ef(s+ vt)ds =

√
1

2π (1 + σ2
v)
. (25)

Therefore, in view of the above, (19) and the fact that Lx(1, 0) = σ−1
v LW (1, 0)

the limit variance of the IV estimator is

ΩIV =
σ2
∫∞
−∞ f(s)2ds

LBx(1, 0)
(∫∞
−∞ f(s)Ef(s+ vt)ds

)2 =
σ2
√

π
2

σ−1
v LW (1, 0) 1

2π(1+σ2v)

= σv
(
1 + σ2

v

) σ2
√

2π3/2

LW (1, 0)
= O

(
σ3
v

)
.

since
∫∞
−∞ e

−2x2dx =
√

π
2
. Further, since

ΩLS =
σ2

LBx(1, 0)
∫∞
−∞ f(s)2ds

= σv

√
2σ2

√
πLW (1, 0)

= O (σv) ,
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the ratio
ΩIV

ΩLS

=
σv (1 + σ2

v)
σ2
√

2π3/2

LW (1,0)

σv
√

2σ2√
πLW (1,0)

=
(
1 + σ2

v

)
π2 = O

(
σ2
v

)
, (26)

so that IV is substantially more dispersed as σv → ∞, which is quite different
from the behaviour reported in Example 2 for stationary regression.

Finally, we consider an example where the regression function f is heavy
tailed. In this case there is no weak instruments effect, and behavior of the IV
estimator is analogous to that of OLS.

Example 4 (heavy tailed regression function) Suppose that f(x) = g(x) =
1/π(1 +x2) and ρ = 1 with vt ∼ N(0, σ2

v). Then the relevance of the instruments
is given by:∫ ∞
−∞

f(s)Ef(s+vt)ds =
1√

2πσv
e

2

σ2v

(
1− erf(

√
2/σ2

v)
)

=
1√

2πσv
e

2

σ2v

(
erf c(

√
2/σ2

v)
)
,

(27)
where erf (x) = 2√

π

∫ x
0
e−z

2
dz is the error function and erf c(x) = 2√

π

∫∞
x
e−z

2
dz =

1−erf (x) is the complementary error function. Observe that ex (1− erf(x))→ 1
as x→ 0 so that∫ ∞

−∞
f(s)Ef(s+ vt)ds =

1√
2πσv

e
2

σ2v

(
1− erf(

√
2/σ2

v)
)

=
1√

2πσv
{1 + o (1)} = O

(
σ−1
v

)
,

as σ2
v → ∞. Thus, just as in (25) of Example 3, the relevance term vanishes as

σ2
v →∞ in this heavy tailed case. Further,

1

π2

∫ ∞
−∞

1

(1 + x2)2
dx =

1

2π
.

Then, since L
Bx

(1, 0) = σ−1
v LW (1, 0) we get

ΩIV =
σ2
∫∞
−∞ f(s)2ds

Lx(1, 0)
(∫∞
−∞ f(s)Ef(s+ vt)ds

)2

=
1

2π
σvσ

2

LW (1, 0)
(

1√
2πσv

e
2

σ2v

(
erf c(

√
2/σ2

v)
))2

=
σ3
vσ

2

LW (1, 0)e
4

σ2v

(
erf c(

√
2/σ2

v)
)2

= O
(
σ3
v

)
,
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as σ2
v →∞. Next, we have

ΩLS =
σ2

Lx(1, 0)
∫∞
−∞ f(s)2ds

= σv
2πσ2

LW (1, 0)
.

Then

ΩIV

ΩLS

=
σ3
vσ

2

LW (1, 0)e
4

σ2v

(
erf c(

√
2/σ2

v)
)2 ×

LW (1, 0)

2πσ2σv

∼ σ2
v

πe
4

σ2v

(
erf c(

√
2/σ2

v)
)2 ∼

σ2
v

π
→∞, as σ2 →∞.

Thus, ΩIV
ΩLS

= O (σ2
v) → ∞ as σ2

v → ∞ and the ratio has the same order as
in Example 3. Note, however, that with the heavier tailed function f(x) =
1/π(1 + x2),

ΩIV

ΩLS

∼ σ2
v

π
{1 + o (1)} <

(
1 + σ2

v

)
π2 {1 + o (1)} ,

so we may expect that IV will perform better when the regression function is
heavier in the tail.

3.3 Simulations

This section provides some brief simulation results for the MSE of the OLS
and IV estimators in a simple nonlinear model to illustrate these effects in finite
samples. We generated 10,000 replications with sample size n = 2000, of the
following model:

yt = βe−0.5x2t + ut, β = 1,

with xt = ρxt−1 + vt and[
ut
vt

]
∼ iid N

([
0
0

]
,

[
1 R× σv

R× σv σ2
v

])
, − 1 < R < 1.

The variance term takes values σ2
v = {1, 2, 3, 4, 5}. Further we consider a range

of autoregressive parameters ρ =0, 0.5 and 1.
Figures 1-6 provide plots of the LS and IV variance against various values

of R and σ2
v. It is apparent that variance increases as the error variance σ

2
v

gets larger. Further, variance increases when the autoregressive coeffi cient ρ
approaches unity. Figures 7-9 provide plots of the ratio MSEIV /MSEOLS, for
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various values of the autoregressive parameter. The OLS estimator is superior
in terms of MSE. Therefore, possible bias reduction gains from IV estimation
are relatively small compared to the deterioration in estimation precision. The
relative MSE performance of the IV estimator deteriorates as σ2

v increases.

4 IV Estimation with Many Instruments

4.1 Stationary regressor case

We start with the stationary regressor and linear model case

yt = βxt + ut

xt = ρxt−1 + vt, |ρ| < 1

and consider IV estimation that utilises K successively lagged values of xt as
instruments i.e. z′t = (xt−1, ..., xt−K). Then β̂ = (X ′PZX)−1X ′PZY where X, Y ,
and Z are observation matrices of xt, yt and zt and PZ is the projection matrix
onto the range of Z. In this case, β̂ has the following limit distribution

√
n
(
β̂ − β

)
d→ N

(
0, σ2

{
A′KΩ−1

K AK
}−1
)
, (28)

where A′K = σ2v
1−ρ2

[
ρ, ..., ρK

]
, and ΩK is Toeplitz with (j, k)’th element σ2v

1−ρ2ρ
|j−k|.

Simple calculations then show that A′KΩ−1
K AK = ρ2σ2v

1−ρ2 and the variance of the
limit distribution (28) is

σ2
{
A′KΩ−1

K AK
}−1

=
σ2

ρ2σ2
v

(
1− ρ2

)
. (29)

Thus σ2
{
A′KΩ−1

K AK
}−1

is independent of the dimension K and exceeds the vari-
ance of the limit distribution of the OLS estimator (when xt is exogenous), which
is σ

2

σ2v
(1− ρ2) for all |ρ| < 1 and all K. In this linear model case, the Markov prop-

erty of xt ensures that additional lagged values of the regressor (beyond xt−1) do
not contribute further to reducing the variance of the IV estimator beyond that
of the instrument xt−1.

4.2 Near Integrated regressor case

By comparison we now consider the use of lagged instruments in the inte-
grable function model case. In particular, suppose K lagged values of xt, i.e.
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xt−1, ..., xt−K , are used to construct instruments based on certain specified inte-
grable functions. To fix ideas we consider the IV estimator

β̂ = arg min
β∈R

Q̂n(β), (30)

where the objective function is

Qn(β) = n−1

[
n∑
t=1

Zt (yt − βf(xt))

]′
W−1
n

[
n∑
t=1

Zt (yt − βf(xt))

]
, (31)

where Z ′t = [g1(xt−1), ..., gK(xt−K)], gi ∈ L1, and Wn is some weight matrix. We
do not consider here the more general case where the nonlinear functions in Zt
may themselves depend on the unknown parameters β. Define the observation
matrices

X = [f(x1), ..., f(xn)]′ , Z = [Z1, ..., Zn]′ and Y = [y1, ..., yn]′.

The generalised IV (GIV) estimator of β from (30) and (31) is

β̂ =
[
X ′ZW−1

n Z ′X
]−1

X ′ZW−1
n Z ′Y.

WhenWn = n−1/2
∑n

t=1 ZtZ
′
t the estimator has the standard form β̂ = [X ′PZX]−1X ′PZY.

The following result gives the limit distribution of β̂ when xt ∼ NI(1)as in (7)

Theorem 2 Suppose that Assumptions 1 and 2 hold, and for k = 1, ..., K:
(i) gk, g2

k, g
4
k ∈ L1,

(ii) f, f̃ ∈ L1,
Then, as n→∞

n1/4
(
β̂ − β

)
d→MN

(
0, σ2LJc(1, 0)−1

{
A′KΩ−1

K AK
}−1
)
, (32)

where

A′K =

[∫ ∞
−∞
Ef (s+ v1) g1(s)ds, ...,E

∫ ∞
−∞

f

(
s+

K∑
i=1

vi

)
gK(s)ds

]
and

ΩK =

∫ ∞
−∞


g1(s)2 Eg1(s+ v1)g2(s) . Eg1

(
s+

∑K−1
i=1 vi

)
gK(s)

Eg2(s+ v1)g1(s) g2(s)2 .
. . .

EgK

(
s+

∑K−1
i=1 vi

)
gK(s) . . gK(s)2

 ds
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In this case, the relevance of each lagged instrument xt−k tends to deteriorate
as the lag k increases as we now show. In particular, we have the asymptotic
representation∫ ∞

−∞
Ef

(
s+

k∑
i=1

vi

)
gk(s)ds =

1√
2π

f̃ (0) g̃k (0)

σv
√
k

{
1 +O

(
k−1
)}
. (33)

To show (33), we proceed first under the assumption that vj ∼ iidN (0, σ2
v) as

follows

∫ ∞
−∞
Ef

(
s+

k∑
i=1

vi

)
gk(s)ds =

1

2π

∫ ∞
−∞
E

∫ ∞
−∞

eiλ{s+
∑t
j=t−k+1 vj}f̃ (λ) dλgk(s)ds

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

eisλE
{
eiλ

∑t
j=t−k+1 vj

}
f̃ (λ) dλgk(s)ds

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

eisλe−σ
2
vλ

2k/2f̃ (λ) dλgk(s)ds

=
1

2π

∫ ∞
−∞

e−σ
2
vλ

2k/2f̃ (λ)

∫ ∞
−∞

eisλgk(s)dsdλ

=
1

2π

∫ ∞
−∞

e−σ
2
vλ

2k/2f̃ (λ) g̃k (−λ) dλ (34)

=
1√
2π

f̃ (0) g̃k (0)

σv
√
k

+O
(
k−1
)
, (35)

by Laplace approximation as k →∞. This result also applies in the non Gaussian
case where vt ∼ iid (0, σ2) has characteristic function cfv (λ) and finite moments
to the third order. In this case

E
{
eiλ

∑t
j=t−k+1 vj

}
= cfv (λ)k = ekϕ(λ) = e

k
{
−λ

2σ2

2
+o(λ2)

}
= e−k

λ2σ2

2

{
1 + o

(
λ2
)}
,

since the second characteristic ϕ (λ) of vt has a valid power series expansion.
Then, by formal Laplace approximation (e.g. Bleistein and Handelsman, 1986,
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chapter 5), we again have∫ ∞
−∞
Ef

(
s+

k∑
i=1

vi

)
gk(s)ds =

1

2π

∫ ∞
−∞

ekϕ(λ)f̃ (λ) g̃k (−λ) dλ

=
1

2π

∫ ∞
−∞

e−k
σ2λ2

2

{
1 + o

(
λ2
)}
f̃ (λ) g̃k (−λ) dλ

=
1√
2π

f̃ (0) g̃k (0)

σ
√
k

{
1 +O

(
k−1
)}
. (36)

For the explicit model with f(x) = gk(x) = exp(−x2) we have

f̃ (λ) =

∫ ∞
−∞

e−isλe−s
2

ds = e
1
4
i2λ2
∫ ∞
−∞

e−(s+ 1
2
iλ)

2

ds

=
√

2πe−
1
4
λ2 (1/2)1/2

√
2π (1/2)1/2

∫ ∞
−∞

e−
2
2(s+

1
2
iλ)

2

ds

=
√
πe−

1
4
λ2 . (37)

Then by direct calculation

∫ ∞
−∞
Ef

(
s+

k∑
i=1

vi

)
f(s)ds =

1

2π

∫ ∞
−∞

e−σ
2
vλ

2k/2f̃ (λ) f̃ (−λ) dλ

=
1

2

∫ ∞
−∞

e−σ
2
vλ

2k/2e−
1
2
λ2dλ

=
1

2

∫ ∞
−∞

e−
1
2
λ2(1+σ2vk)dλ

=

√
2π

2

(1 + σ2
vk)
−1/2

√
2π (1 + σ2

vk)−1/2

∫ ∞
−∞

e−
1
2
λ2(1+σ2vk)dλ

=

√
π

2

1

(1 + σ2
vk)1/2

,

which accords with the general formula (36) above as k →∞ since f̃ (0) g̃k (0) = π
from (37). Thus, the autocovariances decay according to the power law 1/k1/2,
just like those of a fractionally integrated process with memory parameter d = 1/4
(c.f. Park, 2002).
Further, in contrast to the linear stationary case above where the Markov

property of xt ensures that IV estimator ensures that additional lagged instru-
ments beyond xt−1 do not contribute to reducing the variance, in the nonlinear
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nonstationary case reductions in the limit variance continue as K increases when
xt ∼ NI.3

4.3 IV Limit Theory when K →∞
We consider the limit behavior of the variance in (32) as the number of instru-

ment functions K → ∞. As noted above, unlike the stationary case where the
limit variance (29) is independent of K, the variance in (32) in the nonstationary
case does depend on K and is decreasing in K so that ΩK=∞

IV < ΩK=1
IV .

It is convenient to consider a special case where explicit formula are available.
Accordingly, we consider the model

yt = βf(xt) + ut, f(x) = e−x
2

xt = xt−1 + vt

with instrument functions gk (xt−k) = f (xt−k) for all k = 1, ..., K. The limit
distribution of the IV estimator β̂ is given in (32) where in this case the key
element in the limit variance is the Toeplitz form A′KΩ−1

K AK = tr
{

Ω−1
K AKA

′
K

}
whose components are the vector

A′K =

√
π

2

[
1

(1 + σ2
v)

1/2
,

1

(1 + 2σ2
v)

1/2
, ...,

1

(1 +Kσ2
v)

1/2

]
,

and Toeplitz matrix ΩK whose (i, j)th element is

γh =

√
π

2

1

(1 + |h|σ2
v)

1/2
, h = i− j.

3Write the limit variance of the IV estimator with m instruments (m < K) as

σ2LJc (1, 0)
−1
{

(A∗)
′
(Ω∗)

−1
A∗
}−1

where
A∗ = RA, Ω∗ = RΩR′, R =

[
Im 0

]
.

Set C = Ω−1/2A, D = Ω1/2R′ and PD = I −D (D′D)
−1
D′ ≥ 0. Then

0 ≤ C ′PDC

= A′Ω−1A− (A′R′) (RΩR′)
−1

(RA)

= A′Ω−1A− (A∗)
′
(Ω∗)

−1
A∗.
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We define the function fΩ corresponding to ΩK by the Fourier series constructed
from the coeffi cients γh in the Toeplitz matrix, viz.,

fΩ (x) =
1

2π

∞∑
h=−∞

γhe
−ihx =

γ0

2π
+

1

π

√
π

2

∞∑
h=1

cos (hx)

(1 + hσ2
v)

1/2

=
1

2
√

2π
+

1√
2π

∞∑
h=1

cos (hx)

(1 + hσ2
v)

1/2
,

which converges and is continuous for all x 6= 0 with the following behavior in
the neighborhood of the origin

fΩ (x) =
1

2
√

2π
+

1√
2π

∞∑
h=1

cos (hx)

(1 + hσ2
v)

1/2
(38)

∼ 1√
2πσv

Γ
(

1
2

)
sin
(
π
4

)
x1/2

+O (1) , for x ∼ 0

=
1

2σv

1

x1/2
+O (1) , for x ∼ 0 (39)

in view of the well known formula (e.g., Zygmund, 1959, p.70)
∞∑
j=1

cos (jx)

jα
=

Γ (1− α) sin
(
πα
2

)
x1−α +O (1) for x ∈ (0, π].

Similarly, the kth element of the vector AK is ak =
√

π
2

1

(1+kσ2v)1/2
and setting

a0 = 0 we have the corresponding series

a (x) =
∞∑
h=0

ahe
−ihx =

√
π

2

∞∑
h=1

cos (hx)− i sin (hx)

(1 + hσ2
v)

1/2
,

which again converges for x 6= 0, noting that
∞∑
j=1

sin (jx)

jα
=

Γ (1− α) cos
(
πα
2

)
x1−α +O (1) for x ∈ (0, π].

Thus, for x ∼ 0 we have

a (x) =

√
π

2

∞∑
h=1

cos (hx)− i sin (hx)

(1 + hσ2
v)

1/2

∼
√
π

2

Γ
(

1
2

) {
sin
(
π
4

)
− i cos

(
π
4

)}
x1/2σv

+O (1)

=
π

2

1− i
x1/2σv

+O (1) (40)
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To evaluate the quadratic form A′KΩ−1
K AK we transform the expression as

A′KUU
∗Ω−1

K UU∗AK where U∗ = U
′
is the complex conjungate transpose of U

and U is the unitary matrix with elements ujk = K−1/2eiωjk, where ωj = 2πj
K
,

j = 1, 2, ..., K. The jth element of
√
KU∗AK has the following form for large K

K∑
k=1

e−iωjkak ∼
∞∑
k=1

e−iωjkakj ∼
√
π

2

∞∑
j=1

cos (kωj)− i sin (kωj)

(1 + kσ2
v)

1/2
= a (ωj) ,

and the same transform is known to approximately diagonalize Ω−1
K with jth

diagonal element of U∗Ω−1
K U being {2πfΩ (ωj)}−1 (see Hannan and Deistler, 1988,

page 224; and, in the long memory case for unbounded spectrum at ω ∼ 0,
Dahlhaus, 1989, and Lieberman and Phillips, 2005). Then

A′KΩ−1
K AK = A′KUU

∗Ω−1
K UU∗AK '

1

2π

K∑
k=1

|a (ωj)|2

2πfΩ (ωj)

2π

K

→ 1

(2π)2

∫ π

−π

|a (ω)|2

fΩ (ω)
dω.

It follows that the limit variance of the IV estimator as K →∞ is

σ2 (2π)2

Lx(1, 0)

{∫ π

−π

a1 (ω)2 + a2 (ω)2

fΩ (ω)
dω

}−1

, (41)

where

a1 (ω) =

√
π

2

∞∑
j=1

cos (kω)

(1 + kσ2
v)

1/2
, a2 (ω) =

√
π

2

∞∑
j=1

sin (kω)

(1 + kσ2
v)

1/2
,

and fΩ (ω) is given in (38).
>From the above formulae we see thatΩK=∞

IV = O(σ2
v), whereas from Example

3 we have ΩK=1
IV = O(σ3

v), so that large K instrumentation reduces variance in
IV estimation relative to K = 1 as σ2

v increases.

5 Conclusion

The present paper concentrates on IV estimation of structural relations which
involve integrable functions of a nonstationary regressor. The instruments involve
lagged values of the regressor and the limit theory reveals how instrument rele-
vance weakens as the regressor signal strengthens leading to a deterioration in the
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performance of this type of IV regression. The relevance of instruments that are
based on integrable functions of lagged nonstationary regressors is shown to decay
slowly with the lag according to a power law like that of long range dependence
with a memory parameter d = 1/4. Hence, persistence in the regressor ensures
that instruments remain (weakly) relevant at long lags and that the contribution
to variance reduction in IV estimation continues when all such instruments are
included in the regression, reaching a well defined limit in the case of infinitely
many weak instruments.

6 Appendix

Proof of Proposition 1: First we shall show (i). Note that becauseE
(
eiλvt

)
≥

0 we can define the following measure µ(dλ) = E
(
eiλvt

)
dλ. Then write[∫ ∞

−∞
g(s)Ef(s+ vt)ds

]2

=

[∫ ∞
−∞

g̃(−λ)f̃ (λ)E
(
eiλvt

)
dλ

]2

=

[∫ ∞
−∞

g̃(−λ)f̃ (λ)µ (dλ)

]2

≤
[∫ ∞
−∞

g̃(−λ)g̃ (−λ)µ (dλ)

] [∫ ∞
−∞

f̃(λ)f̃ (λ)µ (dλ)

]
The first equality above follows from Fubini’s Theorem (which in turn holds
because the integrand is non-negative). Now, note that because f, g ∈ R, the
complex conjugate of the Fourier transforms are (e.g. Lang, 1993)

g̃ (−λ) = g̃ (−(−λ)) = g̃ (λ) and f̃ (λ) = f̃ (−λ) .

Therefore,[∫ ∞
−∞

g̃(−λ)f̃ (λ)µ (dλ)

]2

≤
[∫ ∞
−∞

g̃(−λ)g̃ (λ)E
(
eiλvt

)
dλ

] [∫ ∞
−∞

f̃(λ)f̃ (−λ)E
(
eiλvt

)
dλ

]
(by Cauchy-Schwartz)

=

[∫ ∞
−∞

g(λ)Eg(λ+ vt)dλ

] [∫ ∞
−∞

f(λ)Ef(λ+ vt)dλ

]
and this shows (i).
Next consider∫∞

−∞ g(s)2ds{∫∞
−∞ g(s)Ef(s+ vt)ds

}2 ≥
∫∞
−∞ g(s)2ds{∫∞

−∞ g(s)Eg(s+ vt)ds
}{∫∞

−∞ f(s)Ef(s+ vt)ds
} (by (i))
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=

∫∞
−∞ g(s)2ds{∫∞

−∞ f(s)Ef(s+ vt)ds
}2

∫∞
−∞ f(s)Ef(s+ vt)ds∫∞
−∞ g(s)Eg(s+ vt)ds

=

∫∞
−∞ f(s)2ds{∫∞

−∞ f(s)Ef(s+ vt)ds
}2

∫∞
−∞ g(s)2ds∫∞
−∞ f(s)2ds

∫∞
−∞ f(s)Ef(s+ vt)ds∫∞
−∞ g(s)Eg(s+ vt)ds

≥
∫∞
−∞ f(s)2ds{∫∞

−∞ f(s)Ef(s+ vt)ds
}2

where the last inquality follows from the assumption∫∞
−∞ g(s)2ds∫∞
−∞ f(s)2ds

∫∞
−∞ f(s)Ef(s+ vt)ds∫∞
−∞ g(s)Eg(s+ vt)ds

≥ 1

i.e. ∫∞
−∞ f(s)2ds∫∞

−∞ f(s)Ef(s+ vt)ds
≤

∫∞
−∞ g(s)2ds∫∞

−∞ g(s)Eg(s+ vt)ds
.

Proof of Theorem 1
(a) By Fourier inversion (e.g. Lang (1993) Theorem 5.1) we get

1√
n

n∑
t=1

g (zt) f(xt) =
1√
n

n∑
t=1

g (xt−1) f(xt−1 +
c

n
xt−1 + vt)

=
1

2π

∫ ∞
−∞

1√
n

n∑
t=1

g (xt−1) eiλ(xt−1+ c
n
xt−1+vt)f̃(λ)dλ

=
1

2π

∫ ∞
−∞

1√
n

n∑
t=1

g (xt−1) eiλ(xt−1+vt)f̃(λ)dλ+ op(1) := Sn + op(1)

The approximation shown above follows from the following:

Qn := E

∣∣∣∣∣
∫ ∞
−∞

1√
n

n∑
t=1

g (xt−1) eiλ(xt−1+ c
n
xt−1+vt)f̃(λ)dλ−

∫ ∞
−∞

1√
n

n∑
t=1

g (xt−1) eiλ(xt−1+vt)f̃(λ)dλ

∣∣∣∣∣
= E

∣∣∣∣∣
∫ ∞
−∞

1√
n

n∑
t=1

g (xt−1) eiλ(xt−1+vt)
[
eicλ

xt−1
n − 1

]
f̃(λ)dλ

∣∣∣∣∣
≤
∫ ∞
−∞
E

∣∣∣∣∣ 1√
n

n∑
t=1

g (xt−1) eiλ(xt−1+vt)
[
eicλ

xt−1
n − 1

]
f̃(λ)dλ

∣∣∣∣∣
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≤
∫ ∞
−∞
E

1√
n

n∑
t=1

∣∣∣g (xt−1) f̃(λ)
∣∣∣ ∣∣∣eicλxt−1n − 1

∣∣∣ dλ
≤
∫ ∞
−∞

∫ ∞
−∞

1√
n

n∑
t=1

∣∣∣g (√ts) f̃(λ)
∣∣∣ ∣∣∣eiλ√tsn − 1

∣∣∣ dλdt(s)ds
≤ sup

t≥1
‖dt‖R

∫ ∞
−∞

∫ ∞
−∞

1

n

n∑
t=1

(
t

n

)−1/2

|g (p)|
∣∣∣e in cλp − 1

∣∣∣ ∣∣∣f̃(λ)
∣∣∣ dλdp

≤ 2 sup
t≥1
‖dt‖R

(∫ ∞
−∞
|g (p)| dp

)(∫ ∞
−∞

∣∣∣f̃(λ)
∣∣∣ dλ) 1

n

n∑
t=1

(
t

n

)−1/2

< C <∞.

In view of the above majorization and the fact that limn→∞

∣∣∣e in cλp − 1
∣∣∣ = 0

everywhere with respect to the Lebesgue measure dλdp, we have Qn = o(1) by
dominated convergence.
Next, consider the form of Sn

Sn =
1

2π

∫ ∞
−∞

1√
n

n∑
t=1

g (xt−1) eiλxt−1E
(
eiλvt

)
f̃(λ)dλ

+
1

2π

∫ ∞
−∞

1√
n

n∑
t=1

g (xt−1) eiλxt−1
[
eiλvt − E

(
eiλvt

)]
f̃(λ)dλ

: =
1√
n

n∑
t=1

h (xt−1) +

∫ ∞
−∞

Tn(λ)dλ.

It can be easily checked that h ∈ L1. Next, using similar arguments to those in
the proof of Corollary 2.2 of Wang and Phillips (2009a) we get.

1√
n

n∑
t=1

h (xt−1)
p→ LJc(1, 0)

∫ ∞
−∞

h(s)ds.

In view of this it suffi ces to show that∫ ∞
−∞

Tn(λ)dλ = op(1),

which we now do.
Write z(t, λ) ≡ eiλvt − E

(
eiλvt

)
. Then,

E |Tn(λ)|2 ≡ E

∣∣∣∣∣ 1

2π

1√
n

n∑
t=1

g (xt−1) eiλxt−1z(t, λ)f̃(λ)

∣∣∣∣∣
2

=
1

n

1

2π
E

n∑
t=1

n∑
j=1

g (xt−1) g (xj−1) eiλxt−1e−iλxj−1z(t, λ)z(j, λ)f̃(λ)f̃(λ).

28



Note that z(t, λ), z(t, λ) are martingale differences w.r.t. Ft, and Et−1 |z(t, λ)|2 ≤
1. Further, by Assumption 1(ii), the density of t−1/2xt, dt(x), is uniformly
bounded (e.g. Pötscher, 2004). Hence,

E |Tn(λ)|2 =
∣∣∣f̃(λ)

∣∣∣2 1

2π

1

n
E

n∑
t=1

g2 (xt−1)Et−1 |z(t, λ)|2 ≤
∣∣∣f̃(λ)

∣∣∣2 1

n
E

n∑
t=1

g2 (xt−1)

=
∣∣∣f̃(λ)

∣∣∣2 1

2π

1

n

n∑
t=2

∫ ∞
−∞

g2(
√
t− 1x)dt−1(x)dx

≤
∣∣∣f̃(λ)

∣∣∣2 1

2π

1

n

n∑
t=1

t−1/2

∫ ∞
−∞

g2(s)dt(s/t
1/2)ds

≤ n−1/2
∣∣∣f̃(λ)

∣∣∣2 1

2π

(
2 sup
t≥1
‖dt‖R

∫ ∞
−∞

g2(s)ds+ o(1)

)
→ 0. (42)

In addition, it can be easily seen from the above that

E |Tn(λ)|2 ≤ sup
t≥1
‖dt‖R

∫ ∞
−∞

g2(s)ds
∣∣∣f̃(λ)

∣∣∣2 . (43)

In view of (42) and (43) we also get

‖Tn(λ)‖1 → 0 and
∫ ∞
−∞
‖Tn(λ)‖1 dλ ≤

√
sup
t≥1
‖dt‖R

∫ ∞
−∞

g2(s)ds

∫ ∞
−∞

∣∣∣f̃(λ)
∣∣∣ dλ <∞.
(44)

Hence, in view of (44), dominated convergence and Fubini’s Theorem we get

E

∣∣∣∣∫ ∞
−∞

Tn(λ)dλ

∣∣∣∣ ≤ E∫ ∞
−∞
|Tn(λ)| dλ =

∫ ∞
−∞
E |Tn(λ)| dλ→ 0.

(b) Consider the martingale Mn ≡ n−1/4
∑n

t=1 g (xt−1)ut. By Theorem 3.2 of
P&P we have

Mn
d→M ≡

{
LJc(1, 0)

∫ ∞
−∞

g(s)2ds

}1/2

W, (45)

whereW ∼ N(0, σ2) independent of Lx(1, 0). In addition, consider the (discrete)
quadratic variation [Mn] ≡ n−1/2

∑n
t=1 g

2 (xt−1)u2
t , ofMn. By Jacod and Shiryaev

(1986, VI Corollary 6.7) the following condition

sup
n
n−1/4E max

1≤t≤n
|g(xt−1)ut| <∞, (46)

ensures that
(Mn, [Mn])

d→ (M, [M ]) .
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Notice that for some γ > 2

n−1/4E max
1≤t≤n

|g(xt−1)ut|

≤ n−1/4

{
E

(
max
1≤t≤n

|g(xt−1)ut|
)γ}1/γ

= n−1/4

{
E

(
max
1≤t≤n

|g(xt−1)ut|γ
)}1/γ

≤ n−1/4

{
E

(
n∑
t=1

|g(xt−1)ut|γ
)}1/γ

= n−1/4

{
E

(
n∑
t=1

|g(xt−1)|γ Et−1 |ut|γ
)}1/γ

≤ n−1/4

{
CE

(
n∑
t=1

|g(xt−1)|γ
)}1/γ

≤ n−1/4

{
C

n∑
t=1

∫ ∞
−∞

gγ(
√
tx)dt(x)dx

}1/γ

≤ n−
γ−2
4γ

{
2C sup

t
‖dt‖R

∫ ∞
−∞

gγ(x)dx+ o(1)

}1/γ

→ 0,

which establishes (46). Let 〈Mn〉 ≡ n−1/2σ2
∑n

t=1 g
2 (xt−1). We have [Mn] =

〈Mn〉+ op(1), because

E |[Mn]− 〈Mn〉|

≤ n−1/2

E
(

n∑
t=1

g2 (xt−1)
(
u2
t − σ2

))2


1/2

= n−1/2

{
E

n∑
t=1

g4 (xt−1)
(
u2
t − σ2

)2

}1/2

= n−1/2

E
(

n∑
t=1

g2 (xt−1)Et−1

(
u2
t − σ2

))2


1/2

= n−1/2
(
Eu4

t − σ4
)1/2

{
E

n∑
t=1

g4 (xt−1)

}1/2

≤ n−1/4
(
Eu4

t − σ4
)1/2

{
2 sup

t
‖dt‖R

∫ ∞
−∞

g4(x)dx+ o(1)

}1/2

→ 0.

Therefore,
(Mn, 〈Mn〉)

d→ (M, 〈M〉) . (47)

Next, the IV estimator

n1/4
(
β̂ − β

)
=

n−1/4
∑n

t=1 g (xt−1)ut
n−1/2

∑n
t=1 g (xt−1) f(xt)

=
〈Mn〉

n−1/2
∑n

t=1 g (xt−1) f(xt)

n−1/4
∑n

t=1 g (xt−1)ut
〈Mn〉

≡ AnBn.

By part (a) and P&P (Theorem 3.2) we get.

An
p→

σ2
∫∞
−∞ g

2(λ)dλ∫∞
−∞ g̃(−λ)f̃ (λ)E (eiλvt) dλ

.
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In addition, by (45) and (47)

Bn
d→ σ−2

{
LJc(1, 0)

∫ ∞
−∞

g(s)2ds

}−1/2

W,

which gives the required result.

Proof of Theorem 2. Write

4
√
n
(
β̂ − β

)
=
[
n−1/2X ′PZX

]−1 1
4
√
n
X ′PZu

Then, proceeding as in the derivation of (9) and (10) and the proof of Theorem
1(i) we obtain

n−1/2X ′PZX
d→ LJc(1, 0)

{
A′KΩ−1

K AK
}
.

By the same arguments and using the martingale CLT as in the proof of Theorem
1(ii)) we have

n−1/4X ′PZu
d→
√
σ2LJc(1, 0)A′K {Lx(1, 0)ΩK}−1 {Lx(1, 0)ΩK}1/2W

=
(
σ2LJc(1, 0)

)1/2
A′KΩ

−1/2
K W

= MN
(
0, σ2LJc(1, 0)A′KΩ−1

K AK
)
,

where W is a standard normal vector independent of L(1, 0). Hence,

4
√
n
(
β̂ − β

)
d→MN

(
0, σ2LJc(1, 0)−1

{
A′KΩ−1

K AK
}−1

A′KΩ−1
K AK

{
A′KΩ−1

K AK
}−1
)

= MN
(

0, σ2LJc(1, 0)−1
{
A′KΩ−1

K AK
}−1
)
,

as required.�
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Figure 1: Variance of the OLS estimator (ρ = 0)
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Figure 2: Variance of the OLS estimator (ρ = 0.5)

34



0 0.5
1 1.5 2

2.5 3
3.5

4 4.5
5

1

0.5

0

0.5

1
0

5

10

15

20

25

σ
v
2

Variance OLS  ( ρ=1  )

R

Figure 3: Variance of the OLS estimator (ρ = 1)
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Figure 4: Variance of the IV estimator (ρ = 0)
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Figure 5: Variance of the IV estimator (ρ = 0.5)
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Figure 6: Variance of the IV estimator (ρ = 1)
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Figure 7: MSE ratio of IV vs OLS (ρ = 0)
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Figure 8: MSE ratio of IV vs OLS (ρ = 0.5)
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Figure 9: MSE ratio of IV vs OLS (ρ = 1)
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