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Abstract

This paper overviews recent developments in series estimation of stochastic processes

and some of their applications in econometrics. Underlying this approach is the idea

that a stochastic process may under certain conditions be represented in terms of a set

of orthonormal basis functions, giving a series representation that involves deterministic

functions. Several applications of this series approximation method are discussed. The

�rst shows how a continuous function can be approximated by a linear combination of

Brownian motions (BMs), which is useful in the study of the spurious regressions. The

second application utilizes the series representation of BM to investigate the e¤ect of

the presence of deterministic trends in a regression on traditional unit-root tests. The

third uses basis functions in the series approximation as instrumental variables (IVs)

to perform e¢ cient estimation of the parameters in cointegrated systems. The fourth

application proposes alternative estimators of long-run variances in some econometric

models with dependent data, thereby providing autocorrelation robust inference meth-

ods in these models. We review some work related to these applications and some

ongoing research involving series approximation methods.
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1 Introduction

The explicit representation of stochastic processes has a long history in the probability

literature with many applications in asymptotic statistics. For example, in early work

Kac and Siegert (1947) showed that a Gaussian process can be decomposed as an in�nite

linear combination of deterministic functions. In fact, a much more powerful representation

theory holds for any stochastic process that is continuous in quadratic mean, a result that

was separately established in Karhunen (1946) and Loève (1955). In the modern literature,

the explicit decomposition of a stochastic process in this way is known as the Karhunen-

Loève (KL) representation or transformation. The deterministic functions used in this KL

representation are orthonormal basis functions in a Hilbert space constructed on the same

interval for which the stochastic process is de�ned.

The KL transformation was originally proposed to assist in determining the exact forms

of certain asymptotic distributions associated with Cramér-von Mises type statistics. These

asymptotic distributions typically take the form of a quadratic functional of a Brownian

motion (BM) or Brownian Bridge process, such as the integral over some interval of the

square of the process. For example, the KL transformation reveals that the integral of

the square of a Gaussian process is distributed as a weighted in�nite sum of independent

chi-square variates with one degree of freedom. Other examples are given in the work

of Anderson and Darling (1952), Watson (1961), and Stephens (1976); and Shorack and

Wellner (1988) provide an overview of results of this kind.

The theory underlying the KL representation relies on Mercer�s theorem, which repre-

sents the covariance function of any quadratic mean continuous stochastic process fXtgt2T
in terms of basis functions in a Hilbert space L2(T ) de�ned under some measure on T .
The covariance function can be viewed as an inner product of the Hilbert space L2(X)

generated by the stochastic process 1. On the other hand, by Mercer�s theorem, the co-

variance function has a representation which de�nes an inner product with respect to

another Hilbert space L2R(T ). This new Hilbert space L2R(T ) has the attractive feature
that any function in the space can be reproduced by its inner product with the covariance

function. As a result, L2R(T ) is often called a reproducing kernel Hilbert space (RKHS)
with the covariance function being the reproducing kernel. It was noted in Parzen (1959)

that the two Hilbert spaces L2(X) and L2R(T ) are isometrically isomorphic, which implies
1The Hilbert space generated by the stochastic process fXtgt2T is the completion of the space de�ned

as the linear span of any �nite elements Xt1 ; :::; Xtn , where tk 2 T , k = 1; :::; n and n = 1; 2; :::.
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that analysis of the stochastic process fXtgt2T in L2(X) can be equivalently executed in
L2R(T ). Sometimes a complicated problem in L2(X) space can be treated more easily in

the RKHS space L2R(T ). More details about the analysis of time series in RKHS space can
be found in Parzen (1959, 1961a, 1961b and 1963). Berlinet and Thomas-Agnan (2003)

provide a modern introduction to RKHS techniques and their applications in statistics and

probability.

While statisticians and probabilists have focussed on the roles of the KL representation

in determining asymptotic distributions of functionals of stochastic processes or rephrasing

time series analysis issues equivalently in di¤erent spaces, econometric research has taken

these representations in a new direction. In particular, econometricians have discovered

that empirical versions of the KL representation are a powerful tool for estimation and

inference in many econometric models. This chapter reviews some of these recent develop-

ments of the KL representation theory and its empirical application in econometrics.

First, the KL representation provides a bridging mechanism that links underlying sto-

chastic trends with various empirical representations in terms of deterministic trend func-

tions. This mechanism reveals the channel by which the presence of deterministic trends in

a regression can a¤ect tests involving stochastic trends, such as unit root and cointegration

tests. For example, Phillips (2001) showed how the asymptotic distributions of coe¢ cient

based unit root test statistics are changed in a material way as deterministic function re-

gressors continue to be added to the empirical regression model. This work used KL theory

to show that as the number of deterministic functions tends to in�nity, the coe¢ cient based

unit root tests have asymptotic normal distributions after appropriate centering and scal-

ing rather than conventional unit root distributions. These new asymptotics are useful in

revising traditional unit root limit theory and ensuring that tests have size that is robust

to the inclusion of many deterministic trend functions or trajectory �tting by deterministic

trends or trend breaks.

Secondly, the KL theory not only directly represents stochastic trends in terms of de-

terministic trends, it also provides a basis for linking independent stochastic trends. This

extension of the theory was studied in Phillips (1998) where it was established that a

continuous deterministic function can be approximated using linear combinations of inde-

pendent BMs with a corresponding result for the approximation of a continuous stochastic

process. This latter result is particularly useful in analyzing and interpreting so-called

spurious regressions involving the regression of an integrated process on other (possibly

independent) integrated processes.
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The KL theory and its empirical extensions in Phillips (1998) explain how regression

of an integrated process on a set of basis functions can successfully reproduce the whole

process when the number of basis functions expands to in�nity with the sample size. An

empirically important implication of this result that is explored in Phillips (2012) is that

trend basis functions can themselves serve as instrumental variables because they satisfy

both orthogonality and relevance conditions in nonstationary regression. For instance, in

a cointegrated system this type of trend IV estimator of the cointegrating matrix does not

su¤er from high order bias problems because the basis functions are independent of the

errors in the cointegrated system by virtue of their construction, thereby delivering natural

orthogonality. Moreover, the IV estimator is asymptotically e¢ cient because when the

number of basis functions diverges to in�nity, the integrated regressors in the cointegrating

system are reproduced by the basis functions, thereby assuring complete relevance in the

limit. In short, the long-run behavior of the endogenous variables in a cointegrated system is

fully captured through a linear projection on basis functions in the limit while maintaining

orthogonality of the instruments.

As the above discussion outlines, KL theory helps to answer questions about the asymp-

totic behavior of linear projections of integrated processes on deterministic bases. A related

question relates to the properties of similar projections of the trajectory of a stationary

process on deterministic bases. In exploring this question, Phillips (2005b) proposed a new

estimator of the long-run variance (LRV) of a stationary time series. This type of estimator

is by nature a series estimate of the LRV and has since been extensively studied in Chen,

Liao and Sun (2012), Chen, Hahn and Liao (2012), Sun (2011, 2012) and Sun and Kim

(2012a,b).

The remainder of this chapter is organized as follows. Section 2 presents the KL rep-

resentation theory for continuous stochastic processes together with some recent develop-

ments of this theory. Section 3 explores the implications of the KL theory for empirical

practice, focusing on understanding and interpreting spurious regressions in econometrics.

Section 4 investigates the implication of these representations for unit root tests when

there are deterministic trends in the model. Section 5 considers the optimal estimation of

cointegrated systems using basis functions as instruments. The optimal estimation method

discussed in section 5 assumes that the cointegration space of the cointegration system

is known from the beginning. In section 6, we present a new method which optimally

estimates the cointegration system without even knowing the cointegration rank. Series

estimation of LRVs and some of the recent applications of this theory are discussed in

4



section 7. Section 8 concludes and brie�y describes some ongoing and future research in

the �eld. Technical derivations are included in the Appendix.

2 Orthogonal Representation of Stochastic Processes

We start with a motivating discussion in Euclidean space concerned with the orthonormal

representation of �nite dimensional random vectors. Such representations provide useful

intuition concerning the in�nite dimensional case and are indicative of the construction of

orthonormal representations of stochastic processes in Hilbert space.

Suppose X is a T -dimensional random vector with mean zero and positive de�nite

covariance matrix �. Let f(�k; 'k)gTk=1 be the pairs of eigenvalues and orthonormalized
right eigenvectors of �. De�ne

Z 0T = X
0�T = [z1; :::; zT ] ;

where �T = ['1; :::; 'T ], then ZT is a T -dimensional random vector with mean zero and

covariance matrix �T = diag(�1; :::; �T ). We have the representation

X = �TZT =
TX
k=1

zk'k =
TX
k=1

�
1
2
k �k'k; (2.1)

where the �k = �
� 1
2

k zk have zero mean and covariances E [�k�k0 ] = �kk0 where �kk0 is the

Kronecker delta. When X is a zero mean Gaussian random vector, [�1; :::; �T ]
0 is simply a

T -dimensional standard Gaussian random vector. Expression (2.1) indicates that any T -

dimensional (T 2 Z+ � f1; 2; :::; g) random vector can be represented by a weighted linear

combination of T orthonormal real vectors, where the weights are random and uncorrelated

across di¤erent vectors. Moreover, (2.1) shows that the spectrum of the covariance matrix

of the random vectorX plays a key role in the decomposition ofX into a linear combination

of deterministic functions with random coe¢ cients.

The orthonormal representation of a random vector given in (2.1) can be generalized to

a stochastic process X(t) with t 2 [a; b] for1 < a < b <1, and in this form it is known as
the Kac-Siegert decomposition or KL representation. We can use heuristics based on those

used to derive (2.1) to develop the corresponding KL representation of a general stochastic

process. Without loss of generality, we assume the random variables fX(t) : t 2 [a; b]g live
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on the same probability space (
;G; P ). The �rst and second moments of X(t) for any
t 2 [a; b] are given by

E [X(t)] =

Z


X(t)dP and E

�
X2(t)

�
=

Z


X2(t)dP:

The following assumption is used to derive the KL representation of X(t).

Assumption 2.1 The stochastic process X(t) satis�es E [X(t)] = 0 and E
�
X2(t)

�
< 1

for all t 2 [a; b].

The zero mean assumption is innocuous as the process X(t) can always be recentred

about its mean. The second moment assumption is important because it allows us to embed

X(t) in a Hilbert space and use the Hilbert space setting to establish the representation.

Accordingly, let L2(X) denote the Hilbert space naturally generated by X(t) so that it is

equipped with the following inner product and semi-norm

hX1; X2i �
Z


X1X2dP and kX1k2 =

Z


X2
1dP;

for any X1; X2 2 L2(X). Let L2[a; b] be the Hilbert space of square integrable functions
on [a; b] with the following inner product and semi-norm

hg1; g2ie �
Z b

a
g1(s)g2(s)ds and kg1k2e =

Z b

a
g21(s)ds; (2.2)

for any g1; g2 2 L2[a; b].
Under Assumption 2.1, the covariance/kernel function (�; �) of the stochastic process

X(t) can be de�ned as

(s; t) � E [X(s)X(t)] (2.3)

for any s; t 2 [a; b]. Let f(�k; 'k)gk2K be the collection of all di¤erent pairs (�; ') which

satisfy the following integral equation

�'(t) =

Z b

a
(s; t)'(s)ds with k'ke = 1; (2.4)

where � and ' are called as the eigenvalue and normalized eigenfunction of the kernel (�; �)
respectively.
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Using heuristics based on the procedure involved in deriving (2.1), one might expect

to use the eigenvalues and eigenfunctions of the kernel function (�; �) to represent the
stochastic process X(t) as a sum of the form

X(t)
?
=

�KX
k=1

�Z b

a
X(t)'k(t)dt

�
'k(t) =

�KX
k=1

zk'k(t) =

�KX
k=1

�
1
2
k �k'k(t) (2.5)

where zk �
R b
a X(t)'k(t)dt and �k � �

� 1
2

k zk for k = 1; :::; �K and some (possibly in�nite)
�K: To ensure that the expression in (2.5) is indeed an orthonormal representation of X(t),

we �rst con�rm that the components �k satisfy

E [�k] = 0 and E [�k�k0 ] = �kk0 for any k; k
0 = 1; :::; �K (2.6)

where �kk0 is Kronecker�s delta, and that the process X (t) can be written as

X(t) =

�KX
k=1

�
1
2
k �k'k(t) a.s. t 2 [a; b] in quadratic mean (2.7)

The following condition is su¢ cient to show (2.6) and (2.7).

Assumption 2.2 The stochastic process X(t) is continuous in quadratic mean (q.m.) on
[a; b], i.e., for any to 2 [a; b]

kX(t)�X(to)k2 = E
n
[X(t)�X(to)]2

o
! 0 (2.8)

as jt� toj ! 0, where we require t 2 [a; b] such that X(t) is well de�ned in (2.8).

In this assumption, continuity in q.m. is well de�ned at the boundary points a and b

because we only need to consider the limits from the right to a and limits from the left to

b. The following lemma is useful in deriving the KL representation of X(t).

Lemma 2.1 Suppose that Assumptions 2.1 and 2.2 are satis�ed. Then the kernel function
(�; �) of the stochastic process X(t) is symmetric, continuous, and bounded and it satis�esZ b

a

Z b

a
g(t)(t; s)g(s)dsdt � 0

for any g 2 L2[a; b].
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Under Assumptions 2.1 and 2.2, Lemma 2.1 implies that su¢ cient conditions for Mer-

cer�s theorem hold (see e.g., Shorack and Wellner, 1986, p. 208). Thus, we can invoke Mer-

cer�s theorem to deduce that the normalized eigenfunctions of the kernel function (�; �) are
continuous on [a; b] and form an orthonormal basis for the Hilbert space L2[a; b]. Mercer�s

theorem ensures that the kernel function (�; �) has the following series representation in
terms of this orthonormal basis

(s; t) =

1X
k=1

�k'k(s)'k(t) (2.9)

uniformly in s and t. The following theorem justi�es the orthonormal representation of

X(t) in (2.5) with �K =1 and (2.6) and (2.7) both holding.

Theorem 2.1 Suppose the stochastic process X(t) satis�es Assumptions 2.1 and 2.2.
Then X(t) has the following orthogonal expansion

X(t) =
1X
k=1

�
1
2
k �k'k(t) (2.10)

with �k = �
� 1
2

k

Z b

a
X(t)'k(t)dt,

where E [�k�k0 ] =
R b
a 'k(t)'k0(t)dt = �kk0 and �kk0 denotes the Kronecker delta, if and only

if �k and 'k (k 2 Z+) are the eigenvalues and normalized eigenfunctions of (�; �). The
series in (2.10) converges in q.m. uniformly on [a; b].

Just as a continuous function in L2 [a; b] can be represented by series involving Fourier

basis functions, Theorem 2.1 indicates that a continuous (in q.m.) stochastic process can

also be represented by orthonormal basis functions that lie in L2[a; b]. However, unlike the

series representation of a continuous function, the coe¢ cients of the basis functions in the

KL representation are random variables and uncorrelated with each other. The representa-

tion of X(t) in (2.10) converges in q.m. but may not necessarily converge pointwise2. For

this reason, the equivalence in (2.10) is sometimes represented by the symbol ���or � d=�,
signifying that the series is convergent in the L2 sense and that distributional equivalence

2Similarly, the series representation of a continuous function may not converge pointwise unless the
function has right and left derivatives at that point

8



applies. Importantly, the series (2.10) involves two sets of orthonormal components �the

orthogonal random sequence f�kg and the orthogonal basis functions f'kg.
When the continuous time stochastic process X(t) is covariance stationary, it is well-

known that X(t) has the following spectral (SP) representation

X(t) =

Z +1

�1
exp(i�t)dZ(�) (2.11)

where i is the imaginary unit and Z(�) denotes the related complex spectral process which

has orthogonal increments whose variance involve the corresponding increments in the

spectral distribution function. In expression (2.11), X(t) is represented as an uncountably

in�nite sum of the products of deterministic functions exp(i�t) and random coe¢ cients

dZ(�) at di¤erent frequencies, which di¤ers from the KL expression (2.10) in several ways.

Most importantly, (2.10) represents in quadratic mean the trajectory of the process over a

�xed interval [a; b], whereas (2.11) is a representation of the entire stochastic process X (t)

in terms of the mean square limit of approximating Riemann Stieltjes sums (e.g. Hannan,

1970, p. 41).

When the stochastic process X(t) is a BM, its KL representation has more structure.

For example, the representation in (2.10) holds almost surely and uniformly in [0; 1] and

the random coe¢ cients f�kg are iid normal. These special structures are summarized in
the following corollary.

Corollary 2.2 Let B�(t) be a BM with variance �2, then (i) B�(t) has the following

orthogonal expansion

B�(t) =
1X
k=1

�
1
2
k �k'k(t); (2.12)

where

�k = �
� 1
2

k

Z b

a
B�(t)'k(t)dt (2.13)

and the above representation converges almost surely uniformly on [a; b]; (ii) the random

sequence f�kgk is iid N(0; �2); (iii) the random sequence f�kgk de�ned by

�k =

Z b

a
'k(t)dB�(t) (2.14)

is also iid N(0; �2).
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It is easy to verify that B�(t) satis�es Assumptions 2.1 and 2.2. Thus by Theorem

2.1, B�(t) has a KL representation which converges in q.m. uniformly on [a; b]. The q.m.

convergence of the series in (2.9) is strengthened to almost sure convergence in (2.12) by

applying the martingale convergence theorem to the martingale formed by �nite sums of

(2.12). The normality of �k or �k (k 2 Z+) holds directly in view of the representations
(2.13) and (2.14) (the normal stability theorem, Loève, 1976) and the independence of the

sequence f�kg or f�kg follows by their orthogonality. It is clear that the expression in (2.10)
links the stochastic trend X(t) with a set of deterministic functions f'k(�)g1k=1 which might
be regarded as trend functions on the interval [a; b] : Since the random wandering behavior

of the stochastic trend X(t) over [a; b] is fully captured by the deterministic functions in its

KL representation, throughout this chapter we shall call f'k(�) : k 2 Z+g the trend basis
functions.

Example 2.3 Let B(�) be a standard BM on [0; 1]: Then Corollary 2.2 ensures that B(�)
has a KL representation. By de�nition, the kernel function of B(�) is (s; t) = min(s; t)

and its eigenvalues and normalized eigenfunctions are characterized by the following integral

equation

�'(t) =

Z t

0
s'(s)ds+ t

Z 1

t
'(s)ds with

Z 1

0
'2(s)ds = 1:

Direct calculation reveals that the eigenvalues and normalized eigenfunctions of (�; �) are

�k =
1

(k � 1=2)2�2 and 'k(t) =
p
2 sin [(k � 1=2)�t] (2.15)

respectively for k 2 Z+. Applying Corollary 2.2, we have the following explicit orthonormal
representation

B(t) =
p
2

1X
k=1

sin [(k � 1=2)�t]
(k � 1=2)� �k (2.16)

which holds almost surely and uniformly in t 2 [0; 1], where

�k =
p
2 (k � 1=2)�

Z 1

0
B(t) sin [(k � 1=2)�t] dt for k 2 Z+: (2.17)

Invoking Corollary 2.2, we know that f�kg1k=1 are iid standard normal random variables.

Example 2.4 Let W (�) be a Brownian bridge process corresponding to the standard BM
B(�) on [0; 1], i.e. W (t) = B(t) � tB(1) for any t 2 [0; 1]. It is easy to show that W (�) is
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continuous in q.m. on [0; 1]. Moreover, W (�) has kernel function (s; t) = min(s; t) � st,
which is continuous on [0; 1]. The eigenvalues and normalized eigenfunctions are charac-

terized by the following integral equation

�'(t) =

Z t

0
s'(s)ds+ t

Z 1

t
'(s)ds� t

2
with

Z 1

0
'2(s)ds = 1:

Direct calculation shows that the eigenvalues and normalized eigenfunctions of (�; �) are

�k =
1

k2�2
and 'k(t) =

p
2 sin(k�t);

respectively for k 2 Z+. Applying Theorem 2.1, we have the following orthonormal repre-

sentation

W (t) =
p
2
1X
k=1

sin(k�t)

k�
�k (2.18)

where

�k =
p
2k�

Z 1

0
B(t) sin(k�t)dt for k 2 Z+: (2.19)

Using similar arguments as those in Corollary 2.2, the representation in (2.18) is conver-

gent almost surely and uniformly in t 2 [0; 1]. Moreover, f�kg1k=1 are iid standard normal
random variables.

The KL representation of a BM can be used to decompose other stochastic processes

that are functionals of BMs. The simplest example is the Brownian bridge process studied

in the above example. From the representation in (2.16),

W (t) = B(t)� tB(1) =
p
2
1X
k=1

sin [(k � 1=2)�t] + (�1)kt
(k � 1=2)� �1;k

where �1;k (k 2 Z+) is de�ned in (2.17). Of course, one can also use the KL representation
of the Brownian bridge process to decompose the process B (t) into a series form, viz.,

B(t) = tB(1) +W (t) = t�2;0 +
p
2
1X
k=1

sin(k�t)

k�
�2;k (2.20)

where �2;0 = B(1) and the �2;k (k 2 Z+) are de�ned in (2.19).
The second example is the quadratic functional of a BM given by the integral [B]1 =

11



R 1
0 B

2(t)dt. Using the KL representation (2.16) the following series expression for the

functional is readily obtained

[B]1 =

Z 1

0
B2(t)dt =

1X
k=1

1

(k � 1=2)2�2 �
2
k;

which implies that the random variable [B]1 has a distribution equivalent to the weighted

sum of independent chi-square random variables, each with unit degree of freedom.

The third example is the series representation of an Ornstein�Uhlenbeck (O-U) process.

We provide two illustrations of how to construct such as series.

Example 2.5 Let Jc(t) be a stochastic process on t 2 [0; 1] satisfying the following sto-
chastic di¤erential equation

dJc(t) = cJc(t)dt+ �dB(t) (2.21)

where c and � > 0 are constants and B(�) denotes a standard BM. Set � = 1 for convenience
in what follows. It is clear that when c = 0, the process Jc(t) reduces to standard BM B(t).

Under the initial condition Jc(0) = B(0) = 0, the above di¤erential equation has the

following solution

Jc(t) = B(t) + c

Z t

0
exp[(t� s)c]B(s)ds: (2.22)

Using the series representation (2.20) and the solution (2.22), one obtains for t 2 [0; 1]

Jc(t) =
ect � 1
c

�2;0 +

1X
k=1

�p
2ect

Z t

0
e�cs cos(k�s)ds

�
�k

=
ect � 1
c

�2;0 +
p
2

1X
k=1

cect + k� sin(k�t)� c cos(k�t)
c2 + k2�2

�k; (2.23)

where �k (k 2 Z+) are iid standard normal random variables. The series representation

(2.23) involves the orthogonal sequence f�kg associated with the Brownian bridge W (t) :

An alternative representation that uses the series (2.16) is given in Phillips (1998) and in

(8.2) below.

Example 2.6 Suppose X (t) is an O-U process with covariance kernel  (s; t) = e�js�tj: In
this case the process X (t) satis�es the stochastic di¤erential equation (2.21) with c = �1
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and � =
p
2: Then the KL representation of X (t) over t 2 [0; 1] is

X (t) =
p
2
1X
k=0

sin
�
!k
�
t� 1

2

�
+
�
k + 1)�2

�	
(1 + �k)

1=2
�k; (2.24)

where �k (k 2 Z+) are iid standard normal random variables, �k = 2
�
1 + !2k

��1
; and

!0; !1; ::: are the positive roots of the equation

tan (!) = �2 !

1� !2

(Pugachev, 1959; see also Bosq, 2000, p. 27).

3 New Tools for Understanding Spurious Regression

Spurious regression refers to the phenomenon that arises when �tted least squares regres-

sion coe¢ cients appear statistically signi�cant even when there is no true relationship

between the dependent variable and the regressors. In simulation studies, Granger and

Newbold (1974) showed that the phenomenon occurs when independent random walks are

regressed on one another. Similar phenomena occur in regressions of stochastic trends on

deterministic polynomial regressors, as shown in Durlauf and Phillips (1988). Phenomena

of this kind were originally investigated by Yule (1926) and the �rst analytic treatment

and explanation was provided in Phillips (1986).

As seen in the previous section, the orthonormal representation (2.10) links the random

function X(�) to deterministic basis functions 'j(�) (j 2 Z+) on the Hilbert space L2[a; b]:
This linkage provides a powerful tool for studying relations between stochastic trends and

deterministic trends, as demonstrated in Phillips (1998). The orthonormal representation

(2.10) also provides useful insights in studying relations among stochastic trends.

Consider the normalized time series Bn
�
t
n

�
= n�

1
2
Pt
s=1 us, whose components ut

satisfy the following assumption.

Assumption 3.1 For all t � 0, ut has Wold representation

ut = C(L)"t =
1X
j=0

cj"t�j,
1X
j=0

j jcj j <1 and C(1) 6= 0 (3.1)

with "t = iid(0; �2") with E (j"tj
p) <1 for some p > 2.
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Under the above assumption, one can invoke Lemma 3.1 of Phillips (2007) which shows

that in a possibly expanded probability space we have the (in probability) approximation

sup
0�t�n

����Bn� tn
�
�B�u

�
t

n

����� = op(n� 1
2
+ 1
p ) (3.2)

where B�u (�) denotes a BM with variance �2u = 2�fu(0) and fu(�) is the spectral density
of ut. Using the KL representation3 in (2.12) and the uniform approximation in (3.2), we

can deduce that

sup
0�t�n

�����Bn
�
t

n

�
�

1X
k=1

�
1
2
k'k

�
t

n

�
�k

����� = op(1) (3.3)

where f(�k; 'k(�))g1k=1 is the set of all pairs of eigenvalues and orthonormalized eigenfunc-
tions of the kernel function (s; t) = �2umin(s; t), and where �k (k 2 Z+) are independent
Gaussian random variables.

The result in (3.2) implies that the scaled partial sum Bn
�
t
n

�
= n�

1
2
Pt
s=1 us can be

uniformly represented in terms of the basis functions 'k (�) (k 2 Z+) in L2[a; b] for all t � n.
Such a uniform approximation motivates us to study empirical LS regression estimation in

which the scaled partial sum Bn
�
t
n

�
is �tted using K orthonormal basis functions 'k (�)

(k = 1; :::;K), i.e.

Bn

�
t

n

�
=

KX
k=1

bak;n'k � tn
�
+ but;K ; (3.4)

where

bAK = (ba1;n; :::;baK;n)0 = " nX
t=1

�K

�
t

n

�
�0K

�
t

n

�#�1 " nX
t=1

�K

�
t

n

�
Bn

�
t

n

�#

and �K (�) = ['1 (�) ; :::; 'K (�)]. There are several interesting questions we would like to ask
about the regression in (3.4). First, what are the asymptotic properties of the estimatorbAK? More speci�cally, if we rewrite the uniform approximation (3.3) in the form

Bn

�
t

n

�
= �K

�
t

n

�
�K�K +

1X
k=K+1

�
1
2
k'k

�
t

n

�
�k;

3The speci�c orthonormal representation of BM given in (2.16) can of course be used here. But we use
the representation in (2.12) to make the results of this section applicable to general basis functions.
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where �K � diag(�1; :::; �K) and �K = (�1; :::; �K), will the estimate bAK replicate the

random vector �K�K in the limit? In practical work an econometrician might specify

a regression that represents an integrated time series such as yt =
Pt
s=1 us in terms of

deterministic trends. Upon scaling, such a regression takes the form

Bn

�
t

n

�
= �K

�
t

n

�
Ao;K + vnk (3.5)

which may be �tted by least squares to achieve trend elimination. To test the signi�cance

of the regressors �K (�) in such a trend regression, a natural approach would be to use a
t-statistic for a linear combination of the coe¢ cients c0KAo;K ; such as

t
c0K

bAK = c0K
bAKs�

n�1
Pn
i=1 bu2t;K� c0K � nP

t=1
�K

�
t
n

�
�0K

�
t
n

���1
cK

for any cK 2 RK with c0KcK = 1: Corresponding robust versions of t
c0K

bAK using conven-

tional HAC or HAR estimates of the variance of c0K bAK might also be used, options that

we will discuss later. For now, what are the asymptotic properties of the statistic t
c0K

bAK
and how adequate is the test? Further, we might be interested in measuring goodness of

�t using the estimated coe¢ cient of determination

bR2K =
bA0K � nP

t=1
�K

�
t
n

�
�0K

�
t
n

�� bAK
n�1

Pn
t=1B

2
n

�
t
n

� :

What are the asymptotic properties of bR2K and how useful is this statistic as a measure

of goodness of �t in the regression? The following theorem from Phillips (1998) answers

these questions.

Theorem 3.1 As n!1, we have
(a) c0K bAK !d c

0
K

R 1
0 �K(r)B(r)dr

d
= N (0; c0K�KcK) ;

(b) n�
1
2 t
c0K

bAK !d c
0
K

hR 1
0 �K(r)B(r)dr

i hR 1
0 B

2
'K
(r)dr

i� 1
2
;

(c) bR2K !d 1�
hR 1
0 B

2
'K
(r)dr

i hR 1
0 B

2(r)dr
i�1

;

where B'K (�) = B(�)�
hR 1
0 B(r)�K(r)dr

i
�0K(�) is the projection residual of B(�) on �K(�).
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Theorem 3.1 explains the spurious regression phenomenon that arises when an inte-

grated process is regressed on a set of trend basis functions. Part (a) implies that the OLS

estimate bak;n has a limit that is equivalent to � 12k �k for k = 1; :::;K. Note that the weak

convergence in part (a) leads to pointwise functional limits. In particular, it leads directly

to the following pointwise functional convergence

�K(t) bAK !d

KX
k=1

�
1
2
k'k (t) �k, for any t 2 [0; 1]: (3.6)

A corresponding uniform weak approximation, i.e.

sup
t2[0;1]

������K(t) bAK �
KX
k=1

�
1
2
k'k (t) �k

����� = op(1) (3.7)

can be proved using bracketing entropy arguments and the rate of pointwise convergence

in (3.6). We leave the theoretical justi�cation of such a uniform approximation to future

research. Part (b) con�rms that trend basis functions are always signi�cant when used in

regressions to explain an integrated process because the related t-statistics always diverge

as the sample size n!1.4 From the KL representation (2.10), we observe that for large

K the Hilbert space projection residual B'K (�) is close to zero with high probability. From
Part (c), we see that in such a case, bR2K is also close to 1 with large probability.

The results in Theorem 3.1 are derived under the assumption that the number of trend

basis functions is �xed. A natural question to ask is: what are the asymptotic properties

of c0K bAK , tc0K bAK and bR2K if the number of the trend basis functions K diverges to in�nity

with the sample size n. Note that if K !1, then

�Z 1

0
B(r)�K(r)dr

�
�0K(t) =

KX
k=1

�
1
2
k �k'k (t)!a:s:

1X
k=1

�
1
2
k �k'k (t) = B(t) (3.8)

4The divergent behavior of the t-statistics might be thought to be a consequence of the use of OLS
standard errors based on n�1

Pn
i=1 bu2t;K which do not take account of serial dependence in the residuals.

However, Phillips (1998) con�rmed that divergence at a reduced rate continues to apply when HAC standard
errors are used (employing an estimate of the long run variance (LRV)). On the other hand, if HAR
estimates rather than HAC estimates are used (for example, a series LRV estimate with �xed number
of basis functions, see section 7 for details), the t-statistics no longer diverge in general. Theorem 3.1
simply illustrates the spurious regression phenomenon when standard testing procedures based on OLS are
employed.
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where the almost sure convergence follows by the martingale convergence theorem. The

convergence in (3.8) immediately implies

B'K (t) = B(t)�
�Z 1

0
B(r)�K(r)dr

�
�0K(t)!a:s: 0 (3.9)

as K !1. Now, using (3.9) and sequential asymptotic arguments, we deduce that

�K(t) bAK ! d

1X
k=1

�
1
2
k �k'k (t) = B(t); (3.10)���n� 1

2 t
c0K

bAK
��� ! p 1 and bR2K !p 1, (3.11)

as n!1 followed by K !1. The result (3.10) indicates that the �tted value �K(�) bAK
based on the OLS estimate bAK fully replicates the BM B(�) asK goes to in�nity. Moreover,

(3.10) implies that all �tted coe¢ cients are signi�cant even when in�nitely many trend basis

functions are used in (3.3). Note that when more trend basis functions are added to the

regression, the �tted coe¢ cients become more signi�cant, instead of being less signi�cant,

because the residual variance in the regression (3.4) converges to zero in probability when

both K and n diverge to in�nity. The second result in (3.11) implies that the model is

perfectly �tted when K !1, which is anticipated in view of (3.10).
The following theorem is due to Phillips (1998) and presents asymptotic properties of

c0K
bAK , tc0K bAK and bR2K under joint asymptotics when n and K pass to in�nity jointly.

Theorem 3.2 Suppose that K !1, then c0K�KcK converges to a positive constant �2c =

c0�c, where c = (c1; c2; :::), � � diag(�1; �2; :::) and c0c = 1. Moreover, if K ! 1 and

K=n ! 0 as n ! 1, then we have (a) c0K bAK !d N
�
0; �2c

�
; (b) n�

1
2 tc0KbaK diverges; and

(c) bR2K !p 1.

From Theorem 3.2 it follows that the asymptotic properties of c0K bAK , tc0K bAK and bR2K
under joint limits are very similar to their sequential asymptotic properties. Thus, the

above discussion about the results in (3.10) and (3.11) also applies to Theorem 3.2.

As this analysis shows, the KL representation is a powerful tool in interpreting regres-

sions of stochastic trends on deterministic trends. The KL representation can also link

di¤erent BMs, because di¤erent BMs can themselves each be represented in terms of the

same set of orthonormal basis functions. This intuition explains spurious regressions that

arise when an integrated process is regressed on other (possibly independent) integrated
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processes. The following theorem, again from Phillips (1998), indicates that any BM can be

represented in terms of in�nitely many independent standard BMs. This theory assists our

understanding of empirical regressions among integrated processes that may be of full rank

(or non-cointegrating). Such regressions are considered prototypical spurious regressions

following the simulation study of Granger and Newbold (1974).

Theorem 3.3 Let B�(�) be a BM on [0; 1] with variance �2 and let " > 0 be arbitrarily

small. Then we can �nd a sequence of independent BMs fB�i (�)gNi=1 that are independent
of B�(�) and a sequence of random variables fdigNi=1 de�ned on an augmented probability
space (
;F ; P ), such that as N !1,

(a) supt2[0;1]
���B�(t)�PN

i=1 diB
�
i (t)

��� < " a.s. P ;
(b)

R 1
0

h
B�(t)�

PN
i=1 diB

�
i (t)

i2
dt < " a.s. P ;

(c) B�(t)
d
=
P1
i=1 diB

�
i (t) in L

2[a; b] a.s. P:

Part (c) of Theorem 3.3 shows that an arbitrary BM B�(�) has an L2 representation
in terms of independent standard BMs with random coe¢ cients. It also gives us a model

for the classic spurious regression of independent random walks. In this model, the role

of the regressors and the coe¢ cients becomes reversed. The coe¢ cients di are random

and they are co-dependent with the dependent variable B�(t). The variables B�i (t) are

functions that take the form of BM sample paths, and these paths are independent of the

dependent variable, just like the �xed coe¢ cients in a conventional linear regression model.

Thus, instead of a spurious relationship, we have a model that serves as a representation

of one BM in terms of a collection of other BMs. The coe¢ cients in this model provide

the connective tissue that relates these random functions.

4 New Unit Root Asymptotics with Deterministic Trends

Since the mid 1980s it has been well understood that the presence of deterministic func-

tions in a regression a¤ects tests involving stochastic trends even asymptotically. This

dependence has an important bearing on the practical implementation of unit root and

cointegration tests. For example, the following model involves both an autoregressive com-

ponent and some auxiliary regressors which include a trend component

Yt = �oYt�1 + b
0
oXt + ut: (4.1)

18



Here Yt and ut are scalars and Xt is a p-vector of deterministic trends. Suppose that ut is

iid(0; �2) and Xt, Yt satisfy

Dn

bntcX
s=1

Xs !d X(t) and n
� 1
2Ybntc !d B�(t) (4.2)

for any t 2 [0; 1] as n ! 1, where Dn is a suitable p � p diagonal scaling matrix, X(�) is
a p-dimensional vector of piecewise continuous functions and B�(�) is a BM with variance

�2. By standard methods the OLS estimate b�n of �o in (4.1) has the following limiting
distribution

n(b�n � �o)!d

�Z 1

0
BX(t)dB�(t)

� �Z 1

0
B2X(t)dt

��1
,

where

BX(�) � B�(�)�X 0(�)
�Z 1

0
X(t)X 0(t)dt

��1 �Z 1

0
X(t)B�(t)dt

�
is the Hilbert space projection residual of B�(�) on X(�).

Figure 4.1 (from Phillips, 2001) depicts the asymptotic density of n(b�n � �o) with
di¤erent numbers of deterministic (polynomial) trend functions. It is clear that the shape

and location of the asymptotic density of n(b�n� �o) are both highly sensitive to the trend
degree p. This sensitivity implies that critical values of the tests change substantially

with the speci�cation of the deterministic trend functions, necessitating the use of di¤erent

statistical tables according to the precise speci�cation of the �tted model. As a result, if the

approach to modelling the time series were such that one contemplated increasing p as the

sample size n increased, and to continue to do so as n goes to in�nity, then a limit theory

in which p ! 1 as n ! 1 may be more appropriate. In fact, even the moderate degree

p � 5 produces very di¤erent results from p = 0; 1; and the large p asymptotic theory

in this case produces a better approximation to the �nite sample distribution. Entirely

similar considerations apply when the regressor Xt includes trend breaks.
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Figure 4.1. Densities of
R 1
0 BX(t)dB�(t)

.R 1
0 B

2
X(t)dt for X = (1; t; :::; tp)

As we have seen in the previous section, the KL representation (2.10) of a stochastic

process links the random function B�(t) (t 2 [a; b]) with the trend basis functions 'k(t) (k 2
Z+) of the Hilbert space L2[a; b], thereby enabling us to study the e¤ects of deterministic
functions on tests involving the stochastic trends. The present section reviews some of the

�ndings in Phillips (2001), which shows how the asymptotic theory of estimation in unit

root models changes when deterministic trends co-exist with the stochastic trend.

Speci�cally, consider the following typical autoregression with a trend component

1p
n
Yt =

b�np
n
Yt�1 +

KX
k=1

bak;n'k � tn
�
+ but;K (4.3)

where 'k (�) (k 2 Z+) are trend basis functions, b�n and bak;n are the OLS estimates by
regressing n�

1
2Yt on the lagged variable n�

1
2Yt�1 and 'k

�
t
n

�
(k = 1; :::;K). The scaling in

(4.3) is entirely innocuous and used only to assist in the asymptotics. As is apparent from

regression (3.4) and Theorem 3.1, when there is no lagged dependent variable n�
1
2Yt�1 in

(4.3), the �tted value from the trend basis
PK
k=1 bak;n'k (t) reproduces the KL componentPK

k=1 �
1
2
k �k'k(t) of the BM limit process of n�

1
2Yt as the sample size n!1.

In particular, as the scaled partial sum n�
1
2Yt satis�es the functional central limit
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theorem (FCLT) in (4.2), we can invoke (3.2) to deduce that

sup
0�t�n

����� 1pnYt �
1X
k=1

�
1
2
k'k

�
t

n

�
�k

����� = op(1): (4.4)

From the partitioned regression in (4.3) and the series representation in (4.4) we see thatb�n is the �tted coe¢ cient in the regression of n� 1
2Yt on the projection residual of n�

1
2Yt�1

on the trend basis functions 'k (�) (k = 1; :::;K). The stochastic trend variable Yt�1 and
the trend basis functions are highly correlated with large K and there is a collinearity

problem in the regression (4.3) as K ! 1 because the lagged regressor is perfectly �tted

by the trend basis. The asymptotic properties of b�n are correspondingly a¤ected by the
presence of the deterministic trends and their in�uence is severe when K !1. As a result
unit root tests and limit theory based on b�n are a¤ected by the presence of deterministic
trends, the e¤ects being su¢ ciently important as to alter the convergence rate. This point

is con�rmed in the next theorem. First, we have the following Lemma (Phillips, 2001)

which shows the e¤ect of a �nite number K of deterministic trends on the limit theory of

semiparametric Z tests (Phillips, 1987; Phillips and Perron, 1988; and Ouliaris, Park and

Phillips, 1988). These tests are either coe¢ cient based (denoted here by Z�;n) or t-ratio

tests (denoted by Zt;n). Readers may refer to the above references for their construction.

Lemma 4.1 Suppose that ut satis�es Assumption 3.1 and Yt =
Pt
s=1 us. Then the unit

root test statistic Z�;n and the t-ratio test statistic Zt;n satisfy

Z�;n !d

R 1
0 B'K (r)dB�(r)R 1
0 B

2
'K
(r)dr

and Zt;n !d

R 1
0 B'K (r)dB�(r)hR 1
0 B

2
'K
(r)dr

i 1
2

where B'K (�) = B�(�)�
hR 1
0 B�(r)�K(r)dr

i
�0K(�).

From the KL representation, we see thatZ 1

0
B2'K (r)dr =

Z 1

0

�X1

k=K+1
�
1
2
k'k (r) �k

�2
dr =

X1

k=K+1
�k�

2
k !a:s: 0 as K !1

which implies that when K is large, the asymptotic distributions of Z�;n and Zt;n are

materially a¤ected by a denominator that tends to zero and integrand in the numerator

that tends to zero. This structure explains why the asymptotic distributions of Z�;n and
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Zt;n are drawn towards minus in�nity with larger K. One may conjecture that when

K ! 1, Z�;n and Zt;n will diverge to in�nity as
R 1
0 B

2
'K
(r)dr !p 0 as K ! 1. This

conjecture is con�rmed in the following theorem from Phillips (2001).

Theorem 4.1 Suppose that ut satis�es Assumption 3.1. If K ! 1 and K4=n ! 0 as

n!1, then

K� 1
2

�
Z�;n +

�2K

2

�
!d N

�
0; �4=6

�
and

Zt;n +
�
p
K

2
!d N

�
0; �2=24

�
:

When the lagged dependent variable and deterministic trend functions are included in

the LS regression to model a stochastic trend, they are seen to jointly compete for the

explanation of the stochastic trend in a time series. In such a competition, Theorem 4.1

implies that the deterministic functions will be successful in modelling the trend even in

the presence of an autoregressive component. The net e¤ect of including K deterministic

functions in the regression is that the rate of convergence to unity of the autoregressive

coe¢ cient b�n is slowed down. In particular, the theorem implies that b�n = 1 � �2

2
K
n +

op
�
K
n

�
!p 1 as (n;K !1) : Thus, b�n is still consistent for � = 1; but has a slower rate

of approach to unity than when K is �xed. The explanation for the nonstationarity in the

data is then shared between the deterministic trend regressors and the lagged dependent

variable.

5 E¢ cient Estimation of Cointegrated Systems

The trend basis functions in the KL representation (2.10) are deterministic and accordingly

independent of any random variables. Moreover, as shown in Theorem 3.2, a stochastic

trend can be fully reproduced by its projection on the trend basis functions. These two

properties indicate that trend basis functions provide a natural set of valid instrumental

variables (IVs) to model stochastic processes that appear as endogenous regressors. This

feature of the KL basis functions was pointed out in Phillips (2012), who proposed using

trend basis functions as IVs to e¢ ciently estimate cointegrated systems. We outline the

essential features of this work in what follows.
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Consider the cointegrated system

Yt = AoXt + uy;t (5.1)

�Xt = ux;t; (5.2)

where the time series Yt is my � 1 and Xt is mx � 1 with initial conditions X0 = Op(1) at
t = 0: The composite error ut = (u0y;t; u

0
x;t)

0 is a weakly dependent time series generated as

a linear process

ut = C(L)"t =
1X
j=0

cj"t�j ;
1X
j=0

ja kcjk <1; a > 3; (5.3)

where "t = iid(0;�) with � > 0 and E [jj"tjjp] < 1 for some p > 2 and matrix norm

k�k. The long-run moving average coe¢ cient matrix C(1) is assumed to be nonsingular, so
that Xt is a full rank integrated process. Under (5.3), the scaled partial sum 1p

n

Pt
s=0 ut

satis�es the following FCLT

1p
n

bntcX
s=0

ut !d Bu(t) �
 
By(t)

Bx(t)

!
; (5.4)

for any t 2 [0; 1]. The long-run variance matrix 
 = C(1)�C 0(1) is partitioned conformably
with ut as


 =

"

yy 
yx


xy 
xx

#
:

The conditional long-run covariance matrix of uy on ux is 
yy�x = 
yy �
yx
�1xx
xy. In a
similar way we de�ne the one-sided long run covariance matrix

� =

1X
j=0

E
�
u0u

0
�j
�
=

"
�yy �yx

�xy �xx

#

The rest of this section discusses and compares several di¤erent estimates of Ao. The

comparison of di¤erent estimates helps in understanding the role that trend basis functions

play in e¢ cient estimation. For ease of notation and without loss of generality we henceforth

assume that Xt and Yt are scalar random variables. We �rst consider the OLS estimate

of Ao, which is de�ned as bAn = (Pn
t=1 YtX

0
t) (
Pn
t=1XtX

0
t)
�1. Under (5.3) it is easily seen
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that

n( bAn �Ao) = n�1
Pn
t=1 uy;tXt

n�2
Pn
t=1X

2
t

!d

R 1
0 Bx(t)dBy(t) + �yxR 1

0 B
2
x(t)dt

where Bx and By are de�ned in (5.4). In view of the contemporaneous and serial correlation

between ux;t and uy;t it is well-known that OLS estimation su¤ers from two sources of high-

order bias - endogeneity bias from the corresponding correlation of Bx and By and serial

correlation bias that manifests in the one sided long run covariance �yx:

We next consider the IV estimation of the augmented regression equation with K trend

IVs (basis functions) 'k(�) (k = 1; :::;K)

Yt = AoXt +Bo�Xt + uy�x;t; (5.5)

where Bo = 
yx
�1xx and uy�x;t = uy;t �Boux;t. For this model, it is easy to show that the
LS estimate of Ao continues to su¤er from second order bias e¤ects and the LS estimate of

Bo is not generally consistent. On the other hand, the IV estimate of Ao in the augmented

equation has optimal properties. It can be written in projection form as

bAIV = �Y 0R�X;KX� �X 0R�X;KX
��1

where Y 0 = [Y1; :::; Yn] with similar de�nitions for the observation matrices X 0 and �X, the

projector PK = �K (�
0
K�K)

�1�0K , �K = [�0K(
1
n); :::;�

0
K(1)]

0, �K(�) = ['1(�); :::; 'K(�)]
and the composite projector R�X;K = PK � PK�X (�X 0PK�X)

�1�X 0PK . Similarly,

the IV estimate of Bo can be written as

bBIV = �Y 0RX;K�X� ��X 0RX;K�X
��1

where RX;K = PK � PKX (X 0PKX)
�1X 0PK .5

The following Lemma gives the asymptotic distributions of the IV estimates bAIVK ;n
5The trend IV estimate is related to the spectral regression estimates proposed in Phillips (1991b),

although those estimates are formulated in the frequency domain. Spectral regression �rst transfers the
cointegration system (5.1) and (5.2) to frequency domain ordinates and then estimates Ao by GLS regression.
The spectral transformation projects the whole model on the deterministic function exp(i�t) at di¤erent
frequencies � 2 R, which helps to orthogonalize the projections at di¤erent frequencies. However, optimal
weights constructed using the empirical spectral density are used in this procedure. Phillips (1991b) also
gives a narrow band spectral estimation procedure which uses frequency ordinates in the neighborhood of
the origin. Trend IV estimation only projects the (endogenous) regressors on the deterministic functions
(trend IVs) and does not need optimal weighting to achieve e¢ ciency. It is more closely related to the
narrow band procedure but does not involve frequency domain techniques.
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and bBIVK ;n when the number of the trend basis functions K is �xed.

Lemma 5.1 Under the Assumption (5.3), we have

n( bAIV �Ao)!d

PK
k=1 �

2
x;k

PK
k=1 �x;k�y�x;k �

PK
k=1 �x;k�y�x;k

PK
k=1 �x;k�x;kPK

k=1 �
2
x;k

PK
k=1 �

2
x;k �

hPK
k=1 �x;k�x;k

i2 (5.6)

and

bBIV !d Bo +

PK
k=1 �

2
x;k

PK
k=1 �x;k�y�x;k �

PK
k=1 �x;k�y�x;k

PK
k=1 �x;k�x;kPK

k=1 �
2
x;k

PK
k=1 �

2
x;k �

hPK
k=1 �x;k�x;k

i2 ; (5.7)

where �y�x;k =
R 1
0 'k(r)dBy�x(r), and �x;k; �x;k; �y;k are de�ned by

�x;k =

Z 1

0
'k(t)Bx(t)dt; �x;k =

Z 1

0
'k(t)dBx(t); and �y;k =

Z 1

0
'k(t)dBy(t); (5.8)

for all k.

From Lemma 5.1, we see that the IV estimate bAIV of Ao in the augmented equation 5.1
is consistent, but it su¤ers second order bias when the number of the trend basis functions

K is �xed. Moreover, the IV estimate bBIV of Bo, is not consistent when K is �xed. By

Corollary 2.2, we get

�2x;k =

�Z 1

0
'k(r)dBx(r)

�2
d
= 
xx�

2
k(1) for all k 2 Z+

where 
xx is the long-run variance of ux;t and �2k(1) denotes a chi-square random variable

with degree of freedom 1. Moreover, �2k(1) is independent of �
2
k0(1) for any k 6= k0 and

k; k0 2 Z+. Using the law of large numbers, we have

1

K

KX
k=1

�Z 1

0
'k(r)dBx(r)

�2
!a:s: 
xx: (5.9)

Under sequential asymptotics, we see that

n( bAIV �Ao) = PK
k=1 �x;k�y�x;k +Op(K

�1)PK
k=1 �

2
x;k +Op(K

�1)
(5.10)
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and bBIV = Bo +Op(K�1): (5.11)

Results in (5.10) and (5.11) indicate that when the number of trend IVs diverges to in�nity,

the IV estimate bAIV of Ao may be as e¢ cient as the maximum likelihood (ML) estimate

under Gaussianity (Phillips (1991a)) and the IV estimate bBIV of Bo may be consistent.
These conjectures are justi�ed in Phillips (2012) and shown to hold under joint asymptotics.

Let b
K;n = K�1
�
Y 0 � bAIVX 0 � bBIV�X 0

�
PK

�
Y 0 � bAIVX 0 � bBIV�X 0

�0
and de�ne

By�x(t) = By(t)�BoBx(t). The following theorem is from Phillips (2012).

Theorem 5.1 Under the Assumption (5.3) and the following rate condition,

1

K
+

K

n(1�2=p)^(5=6�1=3p)
+
K5

n4
! 0 (5.12)

as n!1, we have
(a) n( bAIV �Ao)!d

hR 1
0 Bx(t)dB

0
y�x(t)

i0 hR 1
0 Bx(t)B

0
x(t)dr

i�1
;

(b) bBIV !p Bo;

(c) b
K;n !p 
yy � 
yx
�1xx
xy.

Theorem 5.1 implies that the IV estimate bAIV is consistent and as e¢ cient as the

ML estimate under Gaussian errors (see Phillips, 1991, for the latter). Moreover, the IV

estimates of the long-run coe¢ cients are also consistent. It is easy to see that

E ['k(t)Xt] = 'k(t)E [Xt] = 0

for any k 2 Z+, which implies that trend IVs do not satisfy the relevance condition in
the IV estimation literature. As a result, the fact that e¢ cient estimation using trend

IVs is possible may appear somewhat magical, especially in view of existing results on IV

estimation in stationary systems where relevance of the instruments is critical to asymptotic

e¢ ciency and can even jeopardize consistency when the instruments are weak (Phillips,

1989; Staiger and Stock, 1997). Furthermore, the results in Theorem 5.1 make it clear

that what is often regarded as potentially dangerous spurious correlation among trending

variables can itself be used in a systematic way to produce rather startling positive results.
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6 Automated E¢ cient Estimation of Cointegrated Systems

As illustrated in the previous section, the trend IV approach is very e¤ective in e¢ cient

estimation of the cointegration systems. In reality, when the cointegration systems have

the triangle representation (5.1) and (5.2), this method is very straightforward and easy

to be implemented. However, when the cointegration rank of the cointegrated system is

unknown, it is not clear how the trend IV approach can be applied to achieve optimal esti-

mation. Determination of the cointegration rank is important for estimation and inference

of cointegrated systems, because under-selected cointegration rank produces inconsistent

estimation, while over-selected cointegration rank leads to second order bias and ine¢ cient

estimation (c.f., Liao and Phillips, 2010). More recently, Liao and Phillips (2012) proposes

an automated e¢ cient estimation method for the cointegrated systems. The new method

not only consistently selects the cointegration rank and the lagged di¤erences in general

vector error correction models (VECMs) in one-step, but also performs e¢ cient estimation

of the cointegration matrix and nonzero transient dynamics simultaneously.

Liao and Phillips (2012) �rst study the following simple VECM system

�Yt = �oYt�1 + ut = �o�
0
oYt�1 + ut (6.1)

where �o = �o�0o has rank 0 � ro � m, �o and �o are m� ro matrices with full rank and
futg is an m-dimensional iid process with zero mean and nonsingular covariance matrix

u. The following assumption is imposed on �o.

Assumption 6.1 (RR) (i) The determinantal equation jI � (I +�o)�j = 0 has roots on
or outside the unit circle; (ii) the matrix �o has rank ro, with 0 � ro � m; (iii) if ro > 0,
then the matrix R = Iro + �

0
o�o has eigenvalues within the unit circle.

The unknown parameter matrix �o is estimated in the following penalized GLS esti-

mation

b�g;n = argmin
�2Rm�m

(
nX
t=1

k�Yt ��Yt�1k2b
�1u;n +
mX
k=1

n�r;k;n

jj�k(b�1st)jj! k�n;k(�)k
)
; (6.2)

where kAk2B = A0BA for any m � 1 vector A and m � m matrix B, b
u;n is some �rst-
step consistent estimator of 
u, ! > 0 is some constant, �r;k;n (k = 1; :::;m) are tuning

27



parameters that directly control the penalization, jj�k(�)jj denotes the k-th largest modulus
of the eigenvalues f�k (�)gmk=1 of the matrix � 6, �n;k(�) is the k-th row vector of Qn�,

and Qn denotes the normalized left eigenvector matrix of b�1st. The matrix b�1st is a
�rst-step (OLS) estimate of �o. The penalty functions in (6.2) are constructed based on

the so called adaptive Lasso penalty (Zou, 2006) and they play the role of selecting the

cointegrating rank in the penalized estimation. More importantly, if the cointegration rank

is simultaneously determined in the estimation of �o, the selected rank structure will be

automatically imposed on the penalized GLS estimate b�g;n. As a result, b�g;n would be
automatically e¢ cient if the true cointegration rank could be consistently selected in the

penalized GLS estimation (6.2).

The asymptotic properties of the penalized GLS estimate are given in the following

theorem from Liao and Phillips (2012).

Theorem 6.1 (Oracle Properties) Suppose Assumption 6.1 hold. If b
u;n !p 
u and

the tuning parameter satis�es n
1
2�r;k;n = o(1) and n!�r;k;n ! 1 for k = 1; :::;m, then as

n!1,
Pr
�
rank(b�g;n) = ro�! 1 (6.3)

where rank(b�g;n) denotes the rank of b�g;n. Moreover b�g;n has the same limit distribution
as the reduced rank regression (RRR) estimator which assumes the true rank ro is known.

Theorem 6.1 shows that if the tuning parameters �r;k;n (k = 1; :::;m) converge to

zero at certain rate, then the consistent cointegration selection and the e¢ cient estimation

can be simultaneously achieved in the penalized GLS estimation (6.2). Speci�cally, the

tuning parameter �r;k;n (k = 1; :::;m) should converge to zero faster than
p
n so that when

�o 6= 0, the convergence rate of b�g;n is not slower than root-n. On the other hand, �r;k;n
should converge to zero slower than n�! so that the cointegration rank ro is selected with

probability approaching one.

The iid assumption on ut ensures that �o is consistently estimated, which is usually

required for consistent model selection in the Lasso model selection literature. But Cheng

and Phillips (2009, 2012) showed that the cointegration rank ro can be consistently selected

by information criteria even when ut is weakly dependent, in particular when ut satis�es

6For any m � m matrix �, we order the eigenvalues of � in decreasing order by their moduli, i.e.
j�1 (�)j � j�2 (�)j � ::: � j�m (�)j. For complex conjugate eigenvalues, we order the eigenvalue a positive
imaginary part before the other.
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conditions such as LP below. We therefore anticipate that similar properties hold for Lasso

estimation.

Assumption 6.2 (LP) Let D(L) =
P1
j=0DjL

j, where D0 = Im and D(1) has full rank.

Let ut have the Wold representation

ut = D(L)"t =
1X
j=0

Dj"t�j, with
1X
j=0

j
1
2 jjDj jj <1; (6.4)

where "t is iid (0;�"") with �"" positive de�nite and �nite fourth moments.

It is clear that under Assumption 6.2, �o can not be consistently estimated in general.

As a result, the probability limit of the GLS estimate of �o may have rank smaller or larger

than ro. However, Liao and Phillips (2012) show that the cointegration rank ro can be

consistently selected by penalized estimation as in (6.2) even when ut is weakly dependent

and �o is not consistently estimated, thereby extending the consistent rank selection result

of Cheng and Phillips (2009) to Lasso estimation.

Theorem 6.2 Under Assumption LP, if n
1+!
2 �r;k;n = o(1) and n

1
2�r;k;n = o(1) for k =

1; :::;m, then we have

Pr
�
rank(b�g;n) = ro�! 1 as n!1: (6.5)

Theorem 6.2 states that the true cointegration rank ro can be consistently selected, even

though the matrix �o is not consistently estimated. Moreover, even when the probability

limit �1 of the penalized GLS estimator has rank less than ro, Theorem 6.2 ensures that the

correct rank ro is selected in the penalized estimation. This result is new in the Lasso model

selection literature as Lasso techniques are usually advocated because of their ability to

shrink small estimates (in magnitude) to zero in penalized estimation. However, Theorem

6.2 shows that penalized estimation here does not shrink the estimates of the extra ro� r1
zero eigenvalues of �1 to zero.

Liao and Phillips (2012) also study the general VECM model

�Yt = �oYt�1 +

pX
j=1

Bo;j�Yt�j + ut (6.6)
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with simultaneous cointegration rank selection and lag-order selection. To achieve con-

sistent lag-order selection, the model in (6.6) has to be consistently estimable. Thus, we

assume that given p in (6.6), the error term ut is an m-dimensional iid process with zero

mean and nonsingular covariance matrix 
u. De�ne

C(�) = �o +

pX
j=0

Bo;j(1� �)�j , where Bo;0 = �Im.

The following assumption extends Assumption 6.1 to accommodate the general structure

in (6.6).

Assumption 6.3 (RR) (i) The determinantal equation jC(�)j = 0 has roots on or outside
the unit circle; (ii) the matrix �o has rank ro, with 0 � ro � m; (iii) the (m�ro)�(m�ro)
matrix

�0o;?

0@Im � pX
j=1

Bo;j

1A�o;? (6.7)

is nonsingular, where �o;? and �o;? are the orthonormal complements of �o and �o respec-

tively.

The unknown parameters (�o; Bo) are estimated by penalized GLS estimation

(b�g;n; bBg;n) = argmin
�;B1;:::;Bp2Rm�m

8><>:
nX
t=1

�Yt ��Yt�1 �
pX
j=1

Bj�Yt�j


2

b
�1u;n
+

pX
j=1

n�b;j;n

jj bBj;1stjj! kBjk+
mX
k=1

n�r;k;n

jj�k(b�1st)jj! k�n;k(�)k
9=; (6.8)

where �b;j;n and �r;k;n (j = 1; :::; p and k = 1; :::;m) are tuning parameters, bBj;1st andb�1st are some �rst step (OLS) estimates of Bo;j and �o (j = 1; :::; p) respectively. Denote
the index set of the zero components in Bo as ScB such that kBo;jk = 0 for all j 2 ScB
and kBo;jk 6= 0 otherwise. The asymptotic properties of the penalized GLS estimates

(b�g;n; bBg;n) are presented in the following theorem from Liao and Phillips (2012).

Theorem 6.3 Suppose that Assumption 6.3 is satis�ed and b
u;n !p 
u. If n
1
2 (�r;k;n +
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�b;j;n) = O(1), n!�r;k;n !1 and n
1+!
2 �b;j;n !1 (k = 1; :::;m and j = 1; :::; p), then

Pr
�
r(b�g;n) = ro�! 1 and Pr

� bBg;j;n = 0�! 1 (6.9)

for j 2 ScB as n ! 1; moreover b�g;n and the penalized GLS estimate of the nonzero
components in Bo have the same joint limiting distribution as that of the general RRR

estimate which assumes the true rank ro and true zero components in Bo are known.

From Theorem 6.1 and Theorem 6.3, we see that the tuning parameter plays an im-

portant role in ensuring that the penalized estimate is e¢ cient and the true model is

consistently selected in penalized GLS estimation. In empirical applications, the condi-

tions stated in these two theorems do not provide a clear suggestion of how to select the

tuning parameters. In the Lasso literature the tuning parameters are usually selected by

cross-validation or information criteria methods. However, such methods of selecting the

tuning parameter are computationally intensive and they do not take the �nite sample

properties of the penalized estimates into account. Liao and Phillips (2012) provide a

simple data-driven tuning parameter selection procedure based on balancing �rst order

conditions that takes both model selection and �nite sample properties of the penalized

estimates into account. The new method is applied to model GNP, consumption and in-

vestment using US data, where there is obvious co-movement in the series. The results

reveal the e¤ect of this co-movement through the presence of two cointegrating vectors,

whereas traditional information criteria fail to �nd co-movement and set the cointegrating

rank to zero for these data.

7 Series Estimation of the Long-Run Variance

Previous sections have shown how the long-run behavior of integrated processes can be fully

reproduced in the limit by simple linear projections on trend basis functions. Motivated by

this result, we are concerned to ask the following questions. First, let futg be a stationary
process and f'k(�)gk be a set of trend basis functions. What are the asymptotic properties
of the projection of futgnt=1 on 'k(�) with a �xed number K of basis functions? Further,

what are the asymptotic properties of this projection when the number of basis functions

goes to in�nity?

As �rst observed in Phillips (2005b), such projections produce consistent estimates
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of the long-run variance (LRV) of the process futg, when K goes to in�nity with the

sample size. This large K asymptotic theory justi�es the Gaussian approximation of t-

ratio statistics and Chi-square approximations of Wald statistics in �nite samples. More

recently, Sun (2011, 2012) showed that whenK is �xed, t-ratio statistics have an asymptotic

student-t distribution and Wald statistics have asymptotic F distributions. The �xed-K

asymptotic theory is argued in Sun (2012) to provide more accurate size properties for

both t-ratio and Wald statistics in �nite samples.

Formally, suppose that the process futg satis�es the following assumption.

Assumption 7.1 For all t � 0, ut has Wold representation

ut = C(L)"t =

1X
j=0

cj"t�j,
1X
j=0

ja jcj j <1 , C(1) 6= 0 and a > 3 (7.1)

with "t = iid(0; �2") with E (j"tj
p) <1 for some p > 2.

Under Assumption 7.1.(i), the scaled partial sum n�
1
2
Pt
i=1 ui satis�es the following

FCLT

Bn(�) �
P[n�]
i=1 uip
n

!d B!(�) as n!1 (7.2)

where B!(�) is a BM with variance !2 = �2"C
2(1). Note that !2 is the LRV of the process

futg.
The projection of futgnt=1 on 'k( tn) for some k 2 Z+ can be written as"

nX
t=1

'2k(
t

n
)

#�1 nX
t=1

'k(
t

n
)ut;

where
nX
t=1

'k(
t

n
)ut !d

Z 1

0
'k(r)dB!(r) as n!1 (7.3)

by standard functional limit arguments and Wiener integration, and

1

n

nX
t=1

'2k(
t

n
)!

Z 1

0
'2k(r)dr = 1 as n!1 (7.4)

by the integrability and normalization of 'k(�). From the results in (7.3) and (7.4), we
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deduce that
p
n

Pn
t=1 'k(

t
n)utPn

t=1 '
2
k(
t
n)

!d

Z 1

0
'k(r)dB!(r) as n!1:

By Corollary 2.2,
R 1
0 'k(r)dB!(r)

d
= N(0; !2) and for any k 6= k0, the two random vari-

ables
R 1
0 'k(r)dB!(r) and

R 1
0 'k0(r)dB!(r) are independent with each other. These results

motivate us to de�ne the following orthonormal series estimate of the LRV

!2K;n =
1

K

KX
k=1

"
n�

1
2

nX
t=1

'k(
t

n
)ut

#2
; (7.5)

which leads to the following t-ratio test statistic

tK;n = Bn(1)=
q
!2K;n: (7.6)

Lemma 7.1 Suppose that Assumption 7.1 is satis�ed and the number K of trend basis

functions are �xed. Then the series LRV estimate de�ned in (7.5) satis�es

!2K;n !d
!2

K
�2(K) (7.7)

where �2(K) is a chi-square random variable with degrees of freedom K. Moreover, the

t-ratio test statistic de�ned in (7.6) satis�es

tK;n !d tK (7.8)

where tK is a student-t random variable with degree of freedom K.

While Lemma 7.1 applies to univariate processes, it is readily extended to the case

where futg is a multiple time series. In that case, the series LRV estimate is de�ned as

!2K;n =
1

K

KX
k=1

Pn
t=1 'k(

t
n)ut

Pn
t=1 'k(

t
n)u

0
t

n

and the Wald-type test is de�ned as

WK;n = Bn(1)
0 �!2K;n��1Bn(1):
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Then using similar arguments to those in the proof of Lemma 7.1, we obtain

K � du + 1
Kdu

WK;n !d zdu;K�du+1;

where zdu;K�du+1 is a F random variable with degrees of freedom (du;K � du+1) and du
denotes the dimensionality of the vector ut.

The weak convergence in (7.7) implies that when the number of the trend basis functions

is �xed, the series LRV estimate !2K;n is not a consistent estimate of !
2. However, the weak

convergence in (7.8) indicates that the t-ratio test statistic is asymptotically pivotal. Using

sequential asymptotic arguments, we see from (7.7) that when K goes to in�nity, �2(K)=K

converges to 1, which implies that !2K;n may be a consistent estimate of !
2 with large K.

Similarly, from (7.7), we see that tK;n has an asymptotic Gaussian distribution under

sequential asymptotics. These sequential asymptotic results provide intuition about the

consistency of !2K;n when K goes to in�nity, as well as intuition concerning the improved

size properties of the �xed K asymptotics in �nite samples.

The following theorem from Phillips (2005b), which was proved using trend basis func-

tions of the form (2.15) but which holds more generally, shows that !2K;n is indeed a

consistent estimate of !2 under the joint asymptotics framework.

Theorem 7.1 Let u(�) denote the autocovariance function of the process futg. Suppose
that Assumption 7.1 holds and the number of trend basis functions K satis�es

n

K2
+
K

n
! 0: (7.9)

Then

(a) limn!1 n2

K2E
�
!2K;n � !2

�
= ��2

6

P1
h=�1 h

2u(h);

(b) if K = o(n4=5), then
p
K
�
!2K;n � !2

�
!d N(0; 2!

4);

(c) if K5=n4 ! 1, then n4

K4E
�
!2K;n � !2

�2
= �4

36

�P1
h=�1 h

2u(h)
�2
+ 2!4.

Theorem 7.1.(a) implies that !2K;n has bias of order K
2=n2 as shown in

E
�
!2K;n

�
= !2 � K

2

n2

"
�2

6

1X
h=�1

h2u(h) + o(1)

#
:

From (b), the variance of !2K;n is of O(K
�1). Thus, given the sample size n, increases
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in the number of the trend basis functions K increases bias and reduces variance. The

situation is analogous to bandwidth choice in kernel estimation.

The process futg studied above is assumed to be known. For example, ut could be
a function of data Zt and some known parameter �o, i.e. ut = f(Zt; �o). However, in

applications, usually we have to estimate the LRV of the process ff(Zt; �o)gt, where �o is
unknown but for which a consistent estimate b�n may be available. As an illustration, in
the rest of this section we use Z-estimation with weakly dependent data to show how the

series LRV estimate can be used to conduct auto-correlation robust inference.

The Z-estimate b�n can be de�ned as
n�

1
2

nX
t=1

m(Zt;b�n) = op("n)
where m(�; �) : Rdz � Rd� ! Rd� is a measurable function and "n is a o(1) sequence. Let

M(�) = E [m(Z; �)]. The following assumptions are convenient for the following develop-

ment and exposition.

Assumption 7.2 (i) M(�) is continuous di¤erentiable in the local neighborhood of �o and
@M(�o)
@�0

has full rank; (ii) the Z-estimate b�n is root-n normal, i.e.
p
n(b�n � �o)!d N

�
0;M�(�o)V (�o)M

0
�(�o)

�
where M�(�o) =

h
@M(�o)
@�0

i�1
and V (�o) = limn!1 V ar

h
n�

1
2
Pn
t=1m(Zt; �o)

i
; (iii) let Nn

denote some shrinking neighborhood of �o, then

sup
�2Nn

n�
1
2

nX
t=1

�k(
t

n
) fm(Zt; �)�m(Zt; �0)� E [m(Zt; �)�m(Zt; �0)]g = op(1);

(iv) the following FCLT holds

n�
1
2

nX
t=1

�k(
t

n
)m(Zt; �0)!d

Z 1

0
�k(r)dBm(r) for k = 1; :::;K;

where Bm(�) denotes a vector BM with variance-covariance matrix V (�o); (v) we have

M+;n(b�n) � n�1 nX
t=1

@m(Zt;b�n)
@�0

!p M
�1
� (�o):
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The conditions in Assumption 7.2 are mild and easy to verify. The series LRV estimate

is de�ned as

VK;n(b�n) = 1

K

KX
k=1

�k;n�
0
k;n; (7.10)

where �k;n �
Pn
t=1 �k(

t
n)m(Zt;

b�n) (k = 1; :::;K). Under Assumption 7.2, we have the

following lemma, which generalizes Lemma 7.1 to vector stochastic processes with unknown

parameters.

Lemma 7.2 Suppose that the number of the trend basis functions K is �xed and the basis

functions satisfy
R 1
0 �k(r)dr = 0 (k = 1; :::;K). Then under Assumption 7.1 and Assump-

tion 7.2, we have

zn � (b�n � �o)0M+;n(b�n)V �1K;n(
b�n)M+;n(b�n)(b�n � �o)=d�

! d
K

K � d� + 1
zd�;K�d�+1;

where zd�;K�d�+1 is a F random variable with degree of freedom (d�;K � d� + 1) and d�
denotes the dimensionality of �o.

Lemma 7.2 shows that when the number of the trend basis functions K is �xed, the

series LRV estimate VK;n(b�n) is inconsistent, but the Wald-type test statistic zn is asymp-
totically pivotal. Autocorrelation robust inference about �o can be conducted using the

statistic z�n � (K � d� + 1)zn=K and the asymptotic zd�;K�d�+1 distribution. As noted
in Sun (2012), the restriction

R 1
0 �k(r)dr = 0 (k = 1; :::;K) helps to remove the estimation

e¤ect in b�n from the asymptotic distribution of VK;n(b�n). As a result, the statistic z�n
enjoys an exact asymptotic F -distribution. Using similar arguments to those in Phillips

(2005b), it can be shown that under some suitable rate condition on K the series LRV

estimate VK;n(b�n) is consistent, i.e.
VK;n(b�n) = 1

K

KX
k=1

�k;n�
0
k;n !p V (�o);

as n;K ! 1 jointly. In that case, the test statistic zn has an asymptotic chi-square
distribution with d� degrees of freedom.

Orthonormal series LRV estimates are becoming increasingly popular for autocorrela-

tion robust inference in econometric models. Sun (2011) proposed a new testing procedure
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for hypotheses on deterministic trends in a multivariate trend stationary model, where the

LRV is estimated by the series method. For empirical applications, the paper provides an

optimal procedure for selecting K in the sense that the type II error is minimized while

controlling for the type I error. Sun (2012) uses a series LRV estimate for autocorre-

lation robust inference in parametric M-estimation. This paper also shows that critical

values from the �xed-K limit distribution of the Wald-type test statistic are second-order

correct under conventional increased-smoothing asymptotics. Sun and Kim (2012a,b) use

the series LRV estimate for inference and speci�cation testing in a generalized method of

moments (GMM) setting. The series LRV estimate has also been used in inference for

semi/nonparametric econometric models with dependent data. In particular, recent work

of Chen, Hahn and Liao (2011) uses the series method to estimate the LRV of a two-step

GMM estimate when there are some in�nite dimensional parameters estimated by �rst-step

sieve M-estimation. In related work, Chen, Liao and Sun (2012) use series methods to esti-

mate the LRVs of sieve estimates of �nite dimensional and in�nite dimensional parameters

in semi/nonparametric models with weakly dependent data.

8 Concluding Remarks

As explained in previous sections, the KL representation of stochastic processes can be very

useful in modelling, estimation, and inference in econometrics. This chapter has outlined

the theory behind the KL representation and some of its properties. The applications of

the KL representation that we have reviewed belong to three categories:

(i) The link between stochastic trends and their deterministic trend representations. This
link is a powerful tool for understanding the relationships between the two forms

of trend and the implications of these relationships for practical work. As we have

discussed, the KL representation provides new insights that help explain spurious

regressions as a natural phenomena when an integrated or near integrated process is

regressed on a set of deterministic trend variables. And the representation helps to

demonstrate the e¤ect of adding deterministic trends or trend breaks to regressions

in which unit root tests are conducted;

(ii) The KL representation reveals that traditional warnings of spurious regressions as
uniformly harmful is unjusti�ed. For example, as recovered in its KL representation,
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an integrated process can be perfectly modelled by trend basis functions. This rela-

tion, which in traditional theory is viewed as a spurious regression, turns out to be

extremely useful in the e¢ cient estimation of the cointegrated systems as discussed

in section 5;

(iii) Trend basis functions may be used to �t stationary processes, leading to a novel LRV
estimation method that is simple and e¤ective because of the natural focus on long

run behavior in the trend basis. The resulting series LRV estimate is automatically

positive de�nite and is extremely easy to compute. Moreover, t-ratio and Wald-type

test statistics constructed using the series LRV estimate are found to have standard

limit distributions under both �xed-K and large-K asymptotics. These features

make the use of series LRV estimation attractive for practical work in econometrics,

as discussed in section 7.

There are many potential research directions that seem worthy of future research. We

mention some of these possibilities in what follows.

First, KL representations of non-degenerate or full rank stochastic processes7 are dis-

cussed in this chapter. It would be interesting to study KL forms of vector processes which

are of de�cient rank, such as multiple time series that are cointegrated. Phillips (2005a)

gives some discussion of this idea and introduces the concept of coordinate cointegration in

this context, which subsumes the usual cointegration concept. In this context trend basis

functions may be useful in testing for co-movement and e¢ cient estimation of co-moving

systems when system rank is unknown.

Second, trend basis representations of di¤erent stochastic processes di¤er. Such di¤er-

ences may be used to test if observed data are compatible with a certain class of stochastic

processes. For example, one may be interested in testing a BM null against an O-U process

alternative. From section 2, we known that BM has the following KL representation

B(t) =
p
2

1X
k=1

sin [(k � 1=2)�t]
(k � 1=2)� �!;k (8.1)

where �!;j are iid N(0; !
2) and !2 is the variance of B(�). Using the above representation

and the expression in (2.22), we obtain the following alternate representation of an O-U

7A full rank or non-degenerate process refers to a random sequence which upon scaling satis�es a
functional law with a non-degenerate limit process, such as a Brownian motion with positive de�nite
variance matrix.
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process (c.f. Phillips, 1998)

Jc(t) =
p
2

1X
k=1

�!;k
(k � 1=2)�

�
sin [(k � 1=2)�t] + c

Z t

0
e(t�s)c sin [(k � 1=2)�s] ds

�

=
p
2

1X
k=1

�!;k
(k � 1=2)2�2 + c2

�
cect � c cos [(k � 1=2)�t]

+ (k � 1=2)� sin [(k � 1=2)�t]g : (8.2)

If the data fXtg are projected on the trend IVs
�
sin
��
k � 1

2

�
�t
n

�
; cos

��
k � 1

2

�
�t
n

�
: k � K

	
,

then under the null, the projection will reproduce the representation in (8.1) when K !1.
However, under the alternative, as is apparent from (8.2), the projection has an asymptotic

form that is very di¤erent from (8.1) and includes the cosine and exponential functions.

It is of interest to see if signi�cance tests on the coe¢ cients in this regression can usefully

discriminate integrated and locally integrated processes which have BM and O-U process

limits after standardization.

Third, although trend basis functions are e¤ective in modeling integrated processes and

can be used to e¢ ciently estimate cointegration systems, in �nite samples it is not clear how

many trend basis functions should be used. From the KL representation of BM in (8.1), it

is apparent that the trend IVs f
p
2 sin [(k � 1=2)�t]gk have a natural ordering according

to the variances of their random coe¢ cients f �!;k
(k�1=2)�g

1
k=1. This ordering is useful in

itself for selecting trend IVs, but it would also be useful to calculate the asymptotic mean

square error (AMSE) of the trend IV estimate. Then an optimal IV selection criterion

could be based on minimizing the empirical AMSE. However, calculation of the AMSE

is complicated by the mixed normal limit theory of trend IV estimates and the presence

of functional limits in the �rst order asymptotics, so explicit formulae are not presently

available.

In other recent work Liao and Phillips (2011) propose to select trend IVs using Lasso

penalized estimation. In particular, in the notation of section 6 of the present paper, trend

IVs can be selected by means of the following penalized LS regression

min
�2RK�2mx

kZn � �K�k2 + n�n
KX
k=1

k�kk ; (8.3)
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where Z 0n = [n�
1
2X1; :::; n

� 1
2Xn], �k denotes the k-th row (k = 1; :::;K) of the K � mx

coe¢ cient matrix � and �n is a tuning parameter. The coe¢ cient vector �k is related to

the k-th trend IV 'k (�) and if �k is estimated as zero, then the k-th trend IV 'k (�) would
not be used as an instrument for the �endogenous� variable Z. The tuning parameter

�n determines the magnitude of the shrinkage e¤ect on the estimator of �k. The larger

the tuning parameter �n is, the larger the shrinkage e¤ect will be, leading to more zero

coe¢ cient estimates in �k. In consequence, the problem of trend IV selection becomes a

problem of selecting the tuning parameter �n. Liao and Phillips (2011) provide data-driven

tuning parameters in the penalty function, making Lasso IV selection fully adaptive for

empirical implementation.

Fourth, as noted in Phillips (2005a), the KL representation, when restricted to a subin-

terval of [0; 1] such as [0; r] (r 2 (0; 1)), is useful in studying the evolution of a trend process
over time. For example, the KL representation of BM on [0; r] has the following form

B(s) =

1X
k=1

'k

�s
r

�
�k(r) for any s 2 [0; r]; (8.4)

where �k(r) = r
�1 R r

0 B(s)'k
�
s
r

�
ds. It follows that B(r) =

P1
k=1 'k(1)�k(r), where B(r)

and �k(r) are both measurable with respect to the natural �ltration Fr of the BM B(�).
The process �k(r) describes the evolution over time of the coe¢ cient of the coordinate

basis 'k(�). The evolution of these trend coordinates can be estimated by recursively

regressing the sample data on the functions 'k(�) and the resulting estimates deliver direct
information on how individual trend coordinates have evolved over time.

The restricted KL representation in (8.4) may also be used for forecasting. In particular,

setting s = r in (8.4), the optimal predictor of B(r) given Fp and coordinates up to K is

E [B(r)j Fp;K] =
KX
k=1

'k(1)E [�k(r)j Fp] : (8.5)

By the de�nition of �k(�) and using explicit formulae for 'k, the conditional expectation
in (8.5) can be written as

E [�k(r)j Fp] =
1

r

Z p

0
B(s)'k

�s
r

�
ds+B(p)

p
2 cos

�
(k � 1=2) �pr

�
(k � 1=2)� : (8.6)
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Summing over k = 1; :::;K, we get

E [B(r)j Fp;K] =
KX
k=1

'k(1)

"
1

r

Z p

0
B(s)'k

�s
r

�
ds+

p
2 cos

��
k � 1

2

� �p
r

�
B(p)�

k � 1
2

�
�

#
: (8.7)

Let N = [np] and N + h = [nr] so that (8.6) and (8.7) e¤ectively provide h-step ahead

optimal predictors of these components. E [�k(r)j Fp] may be estimated from sample data

by

b�k(rjp) = NX
t=1

Xt=
p
n

N + h
'k(

t

N + h
) +

p
2 cos

h
(k � 1=2) �N

N+h

i
XN=

p
n

(k � 1=2)�

which leads to the following h-step ahead predictor of the trend in the data

bXN+h;N = KX
k=1

'k(1)

24 NX
t=1

Xt
N + h

'k(
t

N + h
) +

p
2 cos

h
(k � 1=2) �N

N+h

i
XN

(k � 1=2)�

35 :
As pointed out in Phillips (2005a), this forecasting approach can be pursued further to

construct formulae for trend components and trend predictors corresponding to a variety

of long run models for the data. Such formulae enable trend analysis and prediction in a

way that captures the main features of the trend for K small and which can be related

back to speci�c long term predictive models for large K. The approach therefore helps

to provide a foundation for studying trends in a general way, covering most of the trend

models that are presently used for economic data.

Finally, in general semi-parametric and nonparametric models, the series-based LRV

estimation method described earlier also requires a selection procedure to determine the

number of the trend basis functions. The test-optimal procedures proposed in Sun (2011,

2012) may be generalized to semi-parametric and nonparametric models. Moreover, current

applications of series LRV estimation methods involve semi-parametric or nonparametric

models of stationary data. It is of interest to extend this work on series LRV estimation

and associated inference procedures to econometric models with nonstationary data.

9 Appendix

Proof of Lemma 2.1. The proof of this lemma is included for completeness. The sym-

metry of (�; �) follows by its de�nition. To show continuity, note that for any to; so; t1; s1 2
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[a; b], by the triangle and Hölder inequalities

j(t1; s1)� (to; so)j = jE [X(s1)X(t1)]� E [X(so)X(to)]j

� kX(t1)k kX(s1)�X(so)k+ kX(so)k kX(t1)�X(to)k

which together with the q.m. continuity of X(�) implies that

j(t1; s1)� (to; so)j ! 0 (9.1)

for any to; so; t1; s1 2 [a; b] such that t1 ! to and s1 ! so. The convergence in (9.1) implies

that (�; �) is a continuous function on [a; b] � [a; b] with j(a; a)j < 1 and j(b; b)j < 1.
As a result, we get the following condition

max
t2[a;b]

j(t; t)j <1: (9.2)

Furthermore, we see that for any g 2 L2[a; b]Z b

a

Z b

a
g(t)(t; s)g(s)dsdt =

Z b

a

Z b

a
E [g(t)X(t)g(s)X(s)] dsdt

= E

�Z b

a
g(t)X(t)

Z b

a
g(s)X(s)dsdt

�
= E

"�Z b

a
g(t)X(t)dt

�2#
� 0 (9.3)

where the second equality is by (9.2) and Fubini�s Theorem.

Proof of Theorem 2.1. The proof of this Theorem is included for completeness. Let

Zk �
R b
a X(t)'k(t)dt: Then it is clear that

E [Zk] = E

�Z b

a
X(t)'k(t)dt

�
=

Z b

a
E [X(t)]'k(t)dt = 0 (9.4)
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and

E [ZkZk0 ] = E

�Z b

a

Z b

a
X(s)X(t)'k(t)'k0(s)dsdt

�
=

Z b

a

Z b

a
(s; t)'k(t)'k0(s)dsdt

= �k

Z b

a
'k(t)'k0(t)dt = �k�kk0 ; (9.5)

and moreover

E [ZkX(t)] = E

�
X(t)

Z b

a
X(t)'k(t)dt

�
=

Z b

a
(t; s)'k(s)dt = �k'k(t); (9.6)

for any k; k0 2 Z+. Note that the uniform bound of (�; �) and Fubini�s theorem ensure that
we can exchange the integration and expectation in (9.4)-(9.6). Let M be some positive

integer, then by de�nition, (9.6) and uniform convergence in (2.9), we deduce thatX(t)�XM

k=1
Zk'k(t)

2 = (t; t)� 2
XM

k=1
'k(t)E [ZkX(t)] +

XM

k=1
�k'

2
k(t)

= (t; t)�
XM

k=1
�k'

2
k(t)

=
X�

k=M+1
�k'

2
k(t)! 0, as M !1 (9.7)

uniformly over t 2 [a; b]; which proves su¢ ciency. Next suppose that X(t) has the following
representation

X(t) =
1X
k=1

�
1
2
k �
�
kgk(t) with E [�

�
k�
�
k0 ] =

Z b

a
gk(t)gk0(t)dt = �kk0 .

43



Then by de�nition

(s; t) = E

24 1X
j=1

�
1
2
k �
�
kgk(s)

1X
j=1

�
1
2
k �
�
kgk(t)

35
=

1X
j=1

1X
k=1

�
1
2
j �

1
2
k gj(s)gk(t)�jk

=

1X
k=1

�kgk(s)gk(t):

Hence for any k 2 Z+Z b

a
(t; s)gk(s)dt =

Z b

a

hX1

j=1
�jgj(t)gj(s)gk(s)

i
ds =

1X
j=1

�jgj(t)�jk = �kgk(t);

which implies that f(�k; gk)g1k=1 are the eigenvalues and orthonormal eigenfunctions of the
kernel function (�; �). This proves necessity.

Proof of Lemma 5.1. First, note that

n( bAK;n �Ao) = 1
nU

0
y�xR�X;KX

1
n2
X 0R�X;KX

:

We next establish the asymptotic distributions of related quantities in the above expression.

X 0PKX

n2
=

X 0�K (�
0
K�K)

�1�0KX

n2

=

Pn
t=1Xt�K(

t
n)

n
3
2

�Pn
t=1�

0
K(

t
n)�K(

t
n)

n

��1 Pn
t=1Xt�

0
K(

t
n)

n
3
2

! d

�Z 1

0
Bx(r)�K(r)dr

� �Z 1

0
Bx(r)�

0
K(r)dr

�
d
=

KX
k=1

�Z 1

0
Bx(r)'k(r)dr

�2
d
=

KX
k=1

�2x;k: (9.8)
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�X 0PK�X = �X 0�K
�
�0K�K

��1
�0K�X

=

Pn
t=1�Xt�K(

t
n)

n
1
2

�Pn
t=1�

0
K(

t
n)�K(

t
n)

n

��1 Pn
t=1�Xt�

0
K(

t
n)

n
1
2

! d

�Z 1

0
�K(r)dBx(r)

� �Z 1

0
�0K(r)dBx(r)

�
d
=

KX
k=1

�Z 1

0
'k(r)dBx(r)

�2
d
=

KX
k=1

�2x;k: (9.9)

X 0PK�X

n
=

X 0�K (�
0
K�K)

�1�0K�X

n

=

Pn
t=1Xt�K(

t
n)

n
3
2

�Pn
t=1�

0
K(

t
n)�K(

t
n)

n

��1 Pn
t=1�Xt�

0
K(

t
n)

n
1
2

! d

�Z 1

0
Bx(r)�K(r)dr

� �Z 1

0
�0K(r)dBx(r)

�
d
=

KX
k=1

Z 1

0
Bx(r)'k(r)dr

Z 1

0
'k(r)dBx(r)

d
=

KX
k=1

�x;k�x;k: (9.10)

The results in (9.8), (9.9) and (9.10) imply that

X 0R�X;KX

n2
=

X 0PKX

n2
� X

0PK�X

n

�
�X 0PK�X

��1 �X 0PKX

n

! d

KX
k=1

�k�
2
x;k �

hPK
k=1 �x;k�x;k

i2
PK
k=1 �

2
x;k

: (9.11)

Next, note that

U 0y�xPKX

n
=

U 0y�x�K (�
0
K�K)

�1�0KX

n

=

Pn
t=1 uy�x;t�K(

t
n)

n
1
2

�Pn
t=1�

0
K(

t
n)�K(

t
n)

n

��1 Pn
t=1Xt�

0
K(

t
n)

n
3
2

! d

�Z 1

0
�K(r)dBy�x(r)

�0 �Z 1

0
�0K(r)Bx(r)dr

�
d
=

KX
k=1

�x;k�y�x;k; (9.12)
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and

U 0y�xPK�X = U 0y�x�K
�
�0K�K

��1
�0K�X

=

Pn
t=1 uy�x;t�K(

t
n)

n
1
2

�Pn
t=1�

0
K(

t
n)�K(

t
n)

n

��1 Pn
t=1�Xt�

0
K(

t
n)

n
1
2

! d

�Z 1

0
�K(r)dBy�x(r)

� �Z 1

0
�0K(r)dBx(r)

�
d
=

KX
k=1

�x;k�y�x;k: (9.13)

The results in (9.9), (9.10), (9.11), (9.12) and (9.13) imply that

U 0y�xR�X;KX

n
=

U 0y�xPKX

n
� U 0y�xPK�X

�
�X 0PK�X

��1 �X 0PKX

n

! d

KX
k=1

�x;k�y�x;k �
PK
k=1 �x;k�y�x;k

PK
k=1 �x;k�x;kPK

k=1 �
2
x;k

: (9.14)

The result in (5.6) follows directly by (9.11) and (9.14).

For the second result, note that

bBK;n = Bo + U 0y�xRX;K�X

�X 0RX;K�X
:

The asymptotic distributions of the quantities in the above expression are obtained as

follows. Under (9.8), (9.9) and (9.10), we have

�X 0RX;K�X = �X 0PK�X � �X
0PKX

n

�
X 0PKX

n2

��1 X 0PK�X

n

! d

KX
k=1

�2x;k �

hPK
k=1 �x;k�x;k

i2
PK
k=1 �

2
x;k

: (9.15)
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Similarly, under (9.8), (9.12) and (9.13), we have

U 0y�xRX;K�X = U 0y�xPK�X �
U 0y�xPKX

n

�
X 0PKX

n2

��1 X 0PK�X

n

! d

KX
k=1

�x;k�y�x;k �
PK
k=1 �x;k�y�x;k

PK
k=1 �x;k�x;kPK

k=1 �
2
x;k

: (9.16)

The result in (5.6) follows directly by (9.15) and (9.16).

Proof of Lemma 7.1. By (7.3) and the continuous mapping theorem (CMT), we obtain

!2K;n !d

!2
PK
k=1

h
1
!

R 1
0 �k(r)dB!(r)

i2
K

d
=
!2

K
�2(K); (9.17)

where the equivalence in distribution follows from the fact that 1
!

R 1
0 �k(r)dB!(r) is a

standard normal random variable for any k and is independent of 1
!

R 1
0 �k0(r)dB!(r) for

any k 6= k0. From (7.2), (9.17) and the CMT, we deduce that

tK;n =
Bn(1)q
!2K;n

!d
B!(1)=!p
�2(K)=K

d
= tK ; (9.18)

where the equivalence in distribution follows by de�nition of the student-t and the fact

that B!(1) is independent of
R 1
0 �k0(r)dB!(r) for any k.

Proof of Lemma 7.2. First note that we can rewrite

n�
1
2

nX
t=1

�k(
t

n
)m(Zt;b�n)

= n�
1
2

nX
t=1

�k(
t

n
)m(Zt; �0) + n

� 1
2

nX
t=1

�k(
t

n
)E
h
m(Zt;b�n)�m(Zt; �0)i

+n�
1
2

nX
t=1

�k(
t

n
)
n
m(Zt;b�n)�m(Zt; �0)� E hm(Zt;b�n)�m(Zt; �0)io :

(9.19)
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By Assumption 7.2.(i), (ii) and
R 1
0 �k(r)dr = 0, we have

n�
1
2

nX
t=1

�k(
t

n
)E
h
m(Zt;b�n)�m(Zt; �0)i = 1

n

nX
t=1

�k(
t

n
)Op(1) = op(1): (9.20)

Hence, using the results in (9.19), (9.20) and Assumption 7.2.(iii)-(iv), we deduce that

n�
1
2

nX
t=1

�k(
t

n
)m(Zt;b�n) = n�

1
2

nX
t=1

�k(
t

n
)m(Zt; �0) + op(1)

! d

Z
�k(r)dBm(r) � �k: (9.21)

Under Assumption 7.2.(i), (ii) and (v), we get

p
nV �

1
2 (�o)M+;n(b�n)(b�n � �o)!d N(0; Id�)

d
= �0: (9.22)

Using the results in (9.21), (9.22) and the CMT, we deduce that

d�zn =
h
V �

1
2 (�o)M+;n(b�n)pn(b�n � �o)i0

�
(
1

K

KX
k=1

�
1

n
V �

1
2 (�o)�k;n�

0
k;nV

� 1
2 (�o)

�)�1
�
h
V �

1
2 (�o)M+;n(b�n)pn(b�n � �o)i

! d �
0
0

 
1

K

KX
k=1

�k�
0
k

!�1
�0;

which has Hotelling�s T 2-distribution. Using the relation between the T 2-distribution and

z-distribution, we get
K � d� + 1

K
zn !d zd�;K�d�+1;

which �nishes the argument.
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