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Abstract

We analyze a nonlinear pricing model with limited information. Each buyer can purchase a large

variety, d, of goods. His preference for each good is represented by a scalar and his preference over d

goods is represented by a d-dimensional vector. The type space of each buyer is given by a compact

subset of Rd+ with a continuum of possible types. By contrast, the seller is limited to o¤er a �nite

number M of d-dimensional choices.

We provide necessary conditions that the optimal �nite menu of the social welfare maximizing prob-

lem has to satisfy. We establish an underlying connection to the theory of quantization and provide an

estimate of the welfare loss resulting from the usage of the d-dimensional M -class menu. We show that

the welfare loss converges to zero at a rate proportional to d=M2=d.

We show that in higher dimensions, a signi�cant reduction in the welfare loss arises from an optimal

partition of the d-dimensional type space that takes advantage of the correlation among the d parameters.
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1 Introduction

The primary focus in the theory of mechanism design has been to model and analyze the role of private in-

formation in economic environments. The optimal solution of mechanism design problem typically resolves

trade-o¤ between the socially e¢ cient or revenue-maximizing allocation and the constraints imposed by the

private information of the agents. However, when putting the theory of mechanism design into practice,

other theoretically important and practically important issues come into consideration, in particular the

cost of operating the mechanism. An important, but implicit, assumption in the overwhelming majority

of earlier work is the assumption that the revelation of the information and the implementation of the

associated allocation is realized with zero cost. The emphasis of the present contribution is to analyze a

canonical mechanism design problem when it is costly to reveal or to transmit the private information.

In an earlier work (Bergemann, Shen, Xu, and Yeh (2012)), we analyzed the canonical nonlinear pricing

model in which a seller o¤ers a menu with a �nite number of choices to a buyer with a continuum of possible

valuations. Within the linear-quadratic model (following a tradition established by the seminal papers in

this area, e.g. Mussa and Rosen (1978) and Maskin and Riley (1984)), we establish a link between the

classic screening model and the theory of quantization. In particular, we bound the loss that we incur

from using discretized contracts, both in terms of the social welfare and the seller�s expected revenue. A

key insight, that we shall use in present context as well, is that we can view the private information (i.e.

the individual taste parameter) as the source signal and his choice (quantity or quality available according

to the menu) as the representation level. It then follows that the relationship between type and choice

can be described in terms of the Lloyd-Max optimality conditions, a well-established result in the theory

of quantization. In the welfare maximization problem, where the private information is either publicly

observable or can be elicited by means of the Vickrey-Clarke-Groves mechanism, the central objective is

to determine the socially optimal allocation. It then follows by the above insight that the total social

welfare can be written as the mean square error between the source signal and the representation level.

A similar technique can be applied to the revenue maximization problem by reformulating it as a welfare

maximization problem, using the representation of the objective function by means of the virtual utility.

In both situations, we show that a contract with n choices, an n-class contract, converges to its continuous

counterpart at a rate proportional to 1=n2. It is worth mentioning that this is an exact result rather an

asymptotic one, i.e., the result holds for any n, small or large.

In the present contribution, we apply this approach to a (particular class of) multi-dimensional screening

problems where the consumer is facing a variety of goods and his preference over each good can be charac-
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terized by a scalar (so that his preference over all varieties is summarized by a vector). The one-dimensional

Lloyd-Max conditions can be extended to their multi-dimensional counterparts, as represented vividly by

the celebrated Voronoi diagram. Thus, even in the multi-dimensional environment, we can provide an

upper bound on the convergence rate and show that it is consistent with its one-dimensional case if we

quantize each dimension by a scalar quantizer separately. Given this, each dimension contributes the same

amount and the overall loss is represented by the summation over all d independent scalar quantization.

Yet, we can considerably improve the upper bound by using vector quantization over the entire multi-

dimensional type space. Here we rely on results from the theory of vector quantization and analyze the

advantage of vector quantization over scalar quantization when d becomes su¢ ciently large. The total gain

is shown to consist of three parts: (i) space-�lling advantage, (ii) shape advantage and (iii) dependence

advantage. Most notably, even in the extreme case when the types are distributed independently and uni-

formly across all dimensions, the vector quantization method can still reduce the welfare loss signi�cantly,

due to the space-�lling advantage.

In the past decade a number of notable contributions have analyzed nearly-optimal contracts in the

context of communication constraints. In the context of the public good provision, Ledyard and Palfrey

(2002) �nd that simple voting rules can perform su¢ ciently close to the fully exact one in the presence of

large populations. In a two-sided matching market, McAfee (2002) and Hoppe, Moldovanu, and Ozdenoren

(2010) compare the performance of coarse matching (binary segmentation of whole population on each

side) versus an exact assortative matching scheme, with or without monetary transfers or information

asymmetry. To determine the optimal rationing of service, Wilson (1989) pioneered this literature by

emphasizing the use of a �nite number of priority classes. Importantly, these contributions con�ne their

analysis to a one-dimensional space of private information. By contrast, we are explicitly focussing on the

role of multi-dimensional private information.

Recently, the e¤ects of limited communication have been investigated in auction environments, another

canonical model in mechanism design. Blumrosen, Nisan, and Segal (2007) analyze limited communication,

in a single-item independent-private-value environment, by assuming that the bidders, each endowed with

a continuously distributed valuation can only use message spaces of �nite cardinality. A noteworthy result

is that the welfare optimizing protocols treat the ex ante symmetric agents asymmetrically, and recently

Kos (2011) provided some generalizations. Bergemann and Pesendorfer (2007) analyze the joint design

of optimal allocation and information structures in a single item auction. They establish that coarse

partitions of the type space and asymmetry in the bidders�information structure are part of the optimal
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auction design. A number of related papers, including Rothkopf and Harstad (1994), Blumrosen and

Feldman (2006), and Blumrosen, Nisan, and Segal (2007) show that the welfare loss incurred by limited

communication in a single-parameter environment is of the order O(1=n2) where n is the number of choices

available. Our paper, in the framework of nonlinear pricing, achieves a similar bound in the one-dimensional

case and extends the convergence rate to the multi-dimensional case.

We should emphasize that the multi-dimensional screening problem does not represent a trivial exten-

sion of its one-dimensional counterpart. In many environments of interest, the preference of an individual

agent cannot be summarized by a mere scalar but is more suitably represented as a vector. A real-life

example would be a customer who has to make his choices in a supermarket where a large variety of

commodities are available. Hence, designing a smart pricing strategy (e.g., product bundling by o¤ering

a combination of several distinct products for joint sale rather than selling each item separately) is of

�rst-order concern in practice. In this respect, Wilson (1993) and Armstrong (1996) are two notable early

contributions with explicit solutions to speci�c multi-dimensional screening problems. Rochet and Chone

(1998) developed a systematic approach, coined the dual approach, to a general class of environments and

pointed to the prevalence of bunching (agents with di¤erent type pro�le making the same choices). We

refer readers to Rochet and Stole (2003) for a detailed survey of multi-dimensional screening problems.

Our analysis bypasses the issues related to an exact solution of the multi-dimensional screening problem.

We estimate the welfare loss for any arbitrarily high-dimensional case with continuously distributed types.

Armstrong (1999) is the related to this issue. He established the asymptotic optimality of a single cost-

based two-part tari¤ contract where all consumer surplus can be extracted as the number of varieties goes

to in�nity. The key assumption for his method is that the tastes are (almost) independently distributed

across multiple products. By contrast, our contribution can accommodate any form of dependence among

valuations of di¤erent products. In fact, the correlation among products implies that it is sub-optimal to

price each commodity separately. The main focus of this paper is then to design and price a �nite number

of bundles, composed of a diversity of goods.

2 Model Setup

2.1 Multi-Product Model

We consider a monopolistic �rm facing a continuum of consumers and providing d heterogeneous goods.

Each consumer�s preferences over these goods is characterized by a d-dimensional vector � = (�1; : : : ; �d) 2
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Rd+, called the consumer�s type vector, where for 1 � l � d, �l represents his preference for good l. Let

� � Rd+ denote a compact d-dimensional type space. We assume that the joint probability distribution

of �, denoted by F (�), is commonly known. If a type � consumes the bundle of goods with quantity (or

quality) vector q = (q1; : : : ; qd) by transferring a payment t (q) =
Pd
l=1 tl (ql), where tl (ql) is the payment

for good l with quantity (or quality) ql. Assuming the consumer has linear utility, his net utility is:

u (�; q)� t (q) = �T�q � t (q)

where the superscript T represents the transpose of the vector and � =
�
�ij
�
d�d is a d � d matrix which

captures the interactions among di¤erent goods. We assume that �ii > 0 for all i so that:

@2u

@�i@qi
> 0:

It turns out that no further assumptions, such as invertibility, symmetry or positive-de�niteness of �, are

needed for the analysis which follows.

The �rm incurs a quadratic cost c (q) = 1
2q
T�q by providing the bundle q. Here, � = (�ij)d�d is a

d� d symmetric positive-de�nite matrix which characterizes the interactions in the production of multiple

products. All of its diagonal elements must be positive: �ii > 0 for all i. If producing good i raises

(reduces) the marginal cost of producing good j, then we set �ij = �ji > (<) 0 and call these two goods

substitutes (complements). If �ij = �ji = 0, the technologies of producing good i and j are independent.

2.2 Multi-Agent Model

An alternative to the multi-product model is a multi-agent model, where the �rm serves one product to d

heterogeneous customers with one-dimensional linear utilities. In this case, � can be viewed as the vector

of all customers�tastes for the one product. Customer i�s utility from consuming quantity qi is �ii�iqi,

and his utility is also a¤ected by others�consumption. If customer j consumes quantity qj , he imposes

an externality on customer i by raising i�s utility by �ij�iqj . If �ij > (<) 0, the externality is positive

(negative). If �ij = 0, then customer j does not a¤ect i�s utility. Thus, �ij=�ii measures the strength of

the externality imposed by customer j relative to customer i. Note that � need not to be symmetric. In

this case, E
�
�T�q

�
quanti�es the total consumers�surplus.

Since the multi-product and the multi-agent model are mathematically equivalent, we will focus on the

multi-product interpretation in this paper.

5



3 Welfare Maximization

In the absence of information constraints, M =1, the social welfare is determined by maximizing

SW (1) = E�
�
�T�q � 1

2
qT�q

�
:

This represents a natural extension of the linear-quadratic model to the multi-dimensional case. We say

the social welfare SW (1) has a standard form if � = � = Id (the identity matrix of size d). In fact, we

show that we can always transform the social welfare into the standard form.

We can diagonalize the positive-de�nite matrix �: � = P T�P , where � = diag (�1; :::; �d), �i > 0 the

i-th eigenvalue of �, and P is a unitary matrix (i.e., P TP = Id). Let B = �1=2P and A = ��1=2P�T ,

where �i = diag
�
�i1; :::; �

i
d

�
, i = �1

2 . Then it is easy to show A
TB = � and BTB = �. If we introduce

the new type and quantity (or quality) vectors: �̂ = A� and q̂ = Bq, then the utility and cost function

can be written in the standard form in terms of �̂; q̂:

u (�; q) = �T�q = �TATBq = �̂
T
q̂;

c (q) =
1

2
qT�q =

1

2
qTBTBq =

1

2
q̂T q̂:

Thus, without loss of generality, we focus on the social welfare in the standard form (i.e., assuming that

� = � = Id).

When the consumer�s type vector is publicly known, it is socially optimal to provide a production vector

equal to the type vector for every consumer: q� (�) = �. The maximum social welfare equals:

SW � (1) = E�
�
�Tq� (�)� 1

2
q� (�)T q� (�)

�
=
1

2
E�
�
�T�

�
(1)

By contrast, we assume that, due to information constraints, the customer faces a discretized contract,

i.e., a �nite number M of pairs f(qm; tm)gMm=1, where qm = (qm;1; : : : ; qm;d) is the m-th quantity (or

quality) vector of goods provided by the seller, tm;l is the price paid for qm;l, and tm =
Pd
l=1 tm;l is the

total price charged for qm. Such a discretized contract or menu is called a d-dimensional M -class contract.

Let fBmgMm=1 represent a partition of the consumer�s d-dimensional type space �, i.e., Bi \ Bj = ;

if i 6= j, and [Mm=1Bm = �. A consumer with type vector � 2 Bm will choose the quantity (or quality)

vector q (�) = qm and pay the total price t (q (�)) = tm.

In this case, we choose theM -class contract fBm; qmgMm=1 so as to maximize the expected social welfare:

max
fBm;qmgMm=12LF

SW (M) = max
fBm;qmgMm=12LF

E�
�
�Tq � 1

2
qTq

�
; (2)
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where the set of all M -class contract for a given distribution F is given by:

LF =
n
fBm; qmgMm=1 : Bi \Bj = ; if i 6= j, and [

M
m=1 Bm = �

o
:

3.1 Connection to Vector Quantization

When the joint probability distribution of � is known, maximizing the social welfare is equivalent to

minimizing:

E�
�
�T� � 2�Tq + qTq

�
= E�

h
(� � q)T (� � q)

i
= E�

h
k� � qk2

i
where k�k is the Euclidean norm. In the appendix, we show that if we view � as the input and qm as

the representation point of � in the region Bm, then this becomes the d-dimensional M -region vector

quantization problem, where the partition fBm; gMm=1 and the set of representation points fqmg
M
m=1 are

chosen to minimize the mean square error (MSE):

min
fBm;qmgMm=12LF

MSE (M) = min
fBm;qmgMm=12LF

E�
h
k� � qk2

i
: (3)

In this case, fBm; qmgMm=1 can be viewed as a d-dimensional M -region vector quantizer. Therefore, the

optimal solution must satisfy the following Lloyd-Max conditions for vector quantization, see Gersho and

Gray (1992).

Theorem 1 (Lloyd-Max conditions for vector quantization) Consider the vector quantization problem (3).

The optimal partition fB�mg
M
m=1 of the type space and the set of representation points fq�mg

M
m=1 must satisfy:

q�m = E� [�j� 2 B�m] ; (4)

B�m = f� 2 S : k� � q�mk � k� � q�l k for all lg : (5)

In other words, q�m is chosen as the conditional mean of � given that � lies in the region B�m, and

fB�mg
M
m=1 is chosen as a Voronoi partition (see De�nition 5) with respect to fq�mg

M
m=1.

We now consider how the optimal d-dimensional M -class contract can approximate the performance of

the optimal continuous contract for a general joint distribution function F . Speci�cally, we quantify the

welfare loss in terms of the distribution function F , the number of classes M , and the dimension d.

De�nition 1 For any joint distribution function F , the welfare loss induced by the optimal d-dimensional

M -class contract compared with the optimal continuous contract is de�ned by:

�(F ;M ; d) � SW � (1)� SW � (M) = inf
fBm;qmgMm=12LF

[SW � (1)� SW (M)] :
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We are interested in the worst-case behavior of the welfare loss over all joint distributions over a d-

dimensional support set with positive and �nite volume. Without loss of generality, we may assume the

type space � � [0; 1]d.1 Let F be the set of all joint distribution functions in type space � � [0; 1]d. Our

main task is to quantify the worst-case behavior of �(F ;M ; d) over all distributions F 2 F .

De�nition 2 The maximum welfare loss induced by the optimal d-dimensional M -class contract over all

F 2 F is de�ned by:

�(M ; d) � sup
F2F

�(F ;M ; d)

3.2 Welfare Loss of One-Dimensional M-Class Contract

Before delving into higher dimensions, we review some basic results of the one-dimensional case as a

reference for comparison. More detailed discussion, together with rigorous proofs, can be found in our

earlier work, Bergemann, Shen, Xu, and Yeh (2012). Note that when d = 1, qm is a scalar and Bm =

[�m�1; �m) is an interval. The associated Lloyd-Max conditions in (4) and (5) now reduce to:

q�m = E
�
�j� 2

�
��m�1; �

�
m

��
;

and

��m =
q�m + q

�
m+1

2
:

That is, q�m is the conditional mean in the interval Bm, and �
�
m, which separates two neighboring intervals

Bm and Bm+1, is the arithmetic average of q�m and q�m+1. In Bergemann, Shen, Xu, and Yeh (2012) we

show that the convergence rate of the welfare loss induced by the optimal one-dimensionalM -class contract

is of order 1=M2. Speci�cally,

�(F ;M ; 1) � 1

8M2

for all F de�ned on [0; 1], and M � 1. The maximum welfare loss �(M ; 1) is upper bounded by 1
8M2 , and

lower bounded by 1
24M2 .

Wilson (1989) arrived at a related result by using a di¤erent technique. He implicitly quantized the

distribution function of � uniformly, and then expanded the social welfare by the Taylor series around zero

up to the order of 1=M2. By contrast, we use quantization theory to solve the problem directly, by choosing

a scalar quantizer
��
q0m; �

0
m

�	M
m=1

in the type space with q0m consistent with the Lloyd-Max conditions and

1For any set � � Rd+ with positive and �nite volume, let b = sup�2S k�k. Then 0 < b <1. We normalize all type vectors

in � by the factor b so that � � [0; 1]d.
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�0m being equally distributed. We use such a quantizer to provide an upper bound on the welfare loss.

Our quantization approach is straightforward, and has the signi�cant advantage that it extends naturally,

via vector quantization, to the multi-dimensional case. In the following sections, we established that our

earlier results in one dimension can be viewed as special case of a general quantization approach in higher

dimensions.

3.3 Welfare Loss of d-Dimensional M-Class Contract

In this section, we provide our main results on how the d-dimensional M -class contract can approximate

the performance of the optimal continuous contract for a general joint distribution on the type space. We

estimate the convergence rate of the welfare loss induced by discretized contracts as the number of classes

tends to in�nity.

For any F 2 F , we have

SW (M) = E�
�
�Tq � 1

2
qTq

�
=
1

2
E�
�
�T�

�
� 1
2
MSE (M) :

Recall that the optimal continuous contract o¤ers the social welfare SW � (1) = 1
2E�

�
�T�

�
, and thus

SW � (1)� SW (M) =
1

2
MSE (M) ; (6)

where

MSE (M) = E�
h
k� � qk2

i
=

MX
m=1

Z
Bm

k� � qmk2 dF (�) :

Therefore, we have

�(F ;M ; d) = inf
fBm;qmgMm=12LF

[SW � (1)� SW (M)]

= inf
fBm;qmgMm=12LF

1

2

MX
m=1

Z
Bm

k� � qmk2 dF (�) ; (7)

and correspondingly:

�(M ; d) = sup
F2F

inf
fBm;qmgMm=12LF

1

2

MX
m=1

Z
Bm

k� � qmk2 dF (�) : (8)

Proposition 1 For any F 2 F , and any M � 1, d � 1, �(F ;M ; d) � d
2M2=d .

Proof. We can construct a vector quantizer with Kd representation points by using the same scalar

quantizer with K representation points in each of the d dimensions. It is easy to see that in this case, we
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simply choose the set of regions as orthotopes, de�ned as the Cartesian product of intervals in d dimensions.

Such a vector quantizer is called the d-dimensional repeated scalar quantizer. We will use it to prove the

upper bound. Let K =
�
M1=d

�
. For any given F 2 F , consider the K-level scalar quantizer fAk; rkgKk=1

for a random variable X 2 [0; 1] (see the Appendix for an introduction to the K-level scalar quantizer) as

follows:

Ak =

�
k � 1
K

;
k

K

�
;

rk = EX [XjX 2 Ak] ;

where fAkgKk=1 forms the uniform grid on [0; 1], and rk is the conditional mean on Ak. Construct the

corresponding repeated scalar quantizer fB0m; q0mg
Kd

m=1 over the d-dimensional type space [0; 1]
d:�

B0m
	Kd

m=1
= fAk1 � : : :�Akd : kl 2 f1; : : : ;Kg ; l = 1; : : : ; dg ;�

q0m
	Kd

m=1
= f(rk1 ; : : : ; rkd) : kl 2 f1; : : : ;Kg ; l = 1; : : : ; dg :

Note that B0i \B0j = ; if i 6= j, and [K
d

m=1B
0
m = � = [0; 1]

d, and thus fB0m; q0mg
Kd

m=1 2 LF . Since M � Kd,

and since �(�;M ; �) is a decreasing function of M according to De�nition 1,

�(F ;M ; d) � �
�
F ;Kd; d

�
� 1

2

KdX
m=1

Z
B0m

� � q0m2 dF (�)
=

1

2

dX
l=1

8<:
KdX
m=1

Z
B0m

�
�l � q0m;l

�2
dF (�)

9=; :
Based on the construction of fB0mg

Kd

m=1 and fq0mg
Kd

m=1, we have

KdX
m=1

Z
B0m

�
�l � q0m;l

�2
dF (�)

=
KX
k1=1

: : :
KX
kd=1

Z
Ak1�:::�Akd

(�l � rkl)
2 dF (�)

=
KX
k1=1

: : :

KX
kd=1

Z
Akl

(�l � rkl)
2

(Z
A�kl

dF�l (��lj�l)
)
dFl (�l)

=
KX
kl=1

Z
Akl

(�l � rkl)
2

8<:
KX
k1=1

: : :
KX

kl�1=1

KX
kl+1=1

: : :
KX
kd=1

Z
A�kl

dF�l (��lj�l)

9=; dFl (�l) ;
where

A�kl = Ak1 � : : :�Akl�1 �Akl+1 : : :�Akd ;

��l = (�1; : : : ; �l�1; �l+1; : : : ; �d) ;
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and F�l (�j�) is the conditional distribution function of ��l given �l.

Note that
KX
k1=1

: : :
KX

kl�1=1

KX
kl+1=1

: : :
KX
kd=1

Z
A�kl

dF�l (��lj�l) = 1;

for any �l. Then
KdX
m=1

Z
B0m

�
�l � q0m;l

�2
dF (�) =

KX
kl=1

Z
Akl

(�l � rkl)
2 dFl (�l) :

Therefore,

�(F ;M ; d) � 1

2

dX
l=1

8<:
KX
kl=1

Z
Akl

(�l � rkl)
2 dFl (�l)

9=; :
Since Ak =

�
k�1
K ; kK

�
and rkl = E�l [�lj�l 2 Akl ], based on the previous analysis for one-dimensional case

(see Proposition 2 in Bergemann, Shen, Xu, and Yeh (2012)),

�(F ;M ; d) � 1

2

dX
l=1

8<:
KX
kl=1

�
Fl

�
kl
K

�
� Fl

�
kl � 1
K

��
var (�lj�l 2 Akl)

9=;
� 1

2

dX
l=1

1

4K2
� 1

2

dX
l=1

1

(K + 1)2
� d

2M2=d
;

because K =
�
M1=d

�
� 1, and 2K � K + 1 �M1=d.�

In order to obtain the convergence rate for the maximum welfare loss, we establish the following lemma.

Lemma 1 Suppose the elements of the type vector, �1; : : : ; �d are i.i.d. uniform random variables, i.e.,

F (�1; : : : ; �d) =
dQ
l=1

U (�l) where U is the uniform distribution function on [0; 1]. If K̂ =
�
M1=d

�
is

su¢ ciently large, then �(F ;M ; d) � 1
8�e

d
M2=d for any d � 1.

We will prove this lemma using the analysis in Section 3:4. Proposition 1 provides a general upper

bound on the convergence rate for any joint distribution F 2 F , and Lemma 1 provides a lower bound

on the convergence rate for the i.i.d. uniform distribution, which can also be viewed as a lower bound on

�(M ; d). Hence, we have the following result.

Proposition 2 If K̂ =
�
M1=d

�
is su¢ ciently large, then 1

8�e
d

M2=d � �(M ; d) � 1
2

d
M2=d for any d � 1.

Hence, the maximal welfare loss induced by the d-dimensional M -class contract converges to zero at a

rate proportional to d
M2=d .
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We use the scalar quantization repeatedly to obtain the upper bound of the convergence rate for general

distributions in Proposition 1. However, in repeated scalar quantization, we simply partition the space

with hyperrectangles, orthotopes, and treat each dimension independently, leading to a possibly weak

bound. A natural question arises as to whether we can reduce the convergence rate if we use the optimal

vector quantization. In fact, in higher dimensions (d > 1), a signi�cant reduction of the welfare loss can

be obtained by using more subtle vector quantization methods which allows us to minimize the loss in a

manner that is impossible in a single dimension. For instance, we can choose quantization regions other

than orthotopes, and we can take advantage of the dependence among the di¤erent entries of the type

vector. This reduction in the welfare loss represents the advantage of vector quantization advantage and

is the main reason why we bundle the consumer�s preferences over d goods across the d-dimensional type

vector, instead of viewing them separately as d (one-dimensional) types.

3.4 Advantages of Vector Quantization

To simplify our analysis, we assume in this section that the elements of the type vector, �1; : : : ; �d, are

identically, but not necessarily independently distributed. Let F and f denote the joint distribution and

joint density respectively, and let F̂ and f̂ denote the marginal distribution and marginal density.

We consider two distinct scenarios. In the �rst scenario, we ignore the dependence among the con-

sumer�s preferences over d goods as if they were d independent scalar (one-dimensional) types �1; : : : ; �d.

Since in this section, �1; : : : ; �d are assumed to be identically distributed according to the marginal dis-

tribution function F̂ , the seller will o¤er d optimal one-dimensional K-class contracts which are identical

and independent. Each contract will result in the same welfare loss �
�
F̂ ;K; 1

�
. In this case, the welfare

maximization problem can be viewed as a scalar quantization problem. In the second scenario, we view

the consumer�s preferences over d goods as a d-dimensional type vector � = (�1; : : : ; �d). In this case, the

seller o¤ers a d-dimensional Kd-class contract for the type vector � with the joint distribution function

F . This contract will result in the total welfare loss �
�
F ;Kd; d

�
over d dimensions, or equivalently, the

average welfare loss 1
d�

�
F ;Kd; d

�
. Recall in this case, the welfare maximization problem can be viewed

as a vector quantization problem. To determine the vector quantization advantage, we can compare the

average welfare loss induced by the optimal d-dimensional Kd-class contract with the welfare loss induced

by the one-dimensional K-class contract.

De�nition 3 For any given joint distribution F and its marginal F̂ , the vector quantization advantage for

the social welfare GSW in d dimensions is de�ned as the ratio of the welfare loss induced by the optimal K-

12



class contract to the average welfare loss over d dimensions induced by the optimal d-dimensional Kd-class

contract:

GSW �
�
�
F̂ ;K; 1

�
1
d�(F ;K

d; d)
(9)

From the above de�nitions, we can see the larger GSW is, the more we gain from using vector quanti-

zation. For su¢ ciently large K, Lookabaugh and Gray (1989) decompose the gain into three categories as

follows.

Theorem 2 Lookabaugh and Gray (1989) If the number of regions per dimension K becomes su¢ ciently

large, then the quantization advantage for the social welfare can be decomposed into three factors:

GSW � SF (d)� S
�
f̂ ; d

�
�DP

�
f̂ ; f; d

�
where SF (d) � 1, S

�
f̂ ; d

�
� 1, and DP

�
f̂ ; f; d

�
� 1 are called the space-�lling advantage, shape

advantage and dependence advantage, given by (11), (15) and (16), respectively.

Space-�lling Advantage As mentioned before, we have the freedom to select more complex region

shapes besides orthotopes in higher dimensions (d > 1). This leads to the space-�lling advantage SF (d).

Unlike the shape and dependence advantages, the space-�lling advantage is a function only of the dimension,

and provides the same gain for all distributions with the same dimension. To better understand this

advantage, we �rst introduce the following concepts.

De�nition 4 A convex polytope H is said to be a space partition polytope if Rd can be partitioned by using

the translated and rotated copies of H.

De�nition 5 A Voronoi partition with respect to a set of points X = fx1; x2; : : :g is a partition whose

regions are nearest-neighbor regions with respect to X, i.e., a point x is in the region belonging to xi if

kx� xik � kx� xjk for all j, where k�k is the Euclidean norm.

De�nition 6 The geometric centroid of a convex polytope H is de�ned as

~x (H) = argmin
y

Z
H
kx� yk2 dx

De�nition 7 An admissible polytope is a space partition polytope that can generate a Voronoi partition of

Rd with respect to the set of geometric centroids of the regions in the Voronoi partition.
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De�nition 8 The normalized inertia of a polytope H is de�ned as

I (H) =

R
H kx� ~x (H)k

2 dx

[V (H)]1+2=d

where ~x is the geometric centroid of H, and V (H) is its d-dimensional volume.

De�nition 9 The coe¢ cient of the (d-dimensional) optimal vector quantization is de�ned as

C (d) =
1

d
inf

Hd2Hd

I (Hd) =
1

d
inf

Hd2Hd

R
Hd
kx� ~x (Hd)k2 dx

[V (Hd)]
1+2=d

(10)

where Hd is the set of all admissible polytopes in Rd.

De�nition 10 The optimal admissible polytope is an admissible polytope which has the minimum inertia

of all admissible polytopes, i.e., attains the coe¢ cient of the optimal vector quantization.

Lookabaugh and Gray (1989) showed that the space-�lling advantage can be written as

SF (d) =
C (1)

C (d)
=

1

12� C (d) : (11)

Example 1 (1) For d = 1, the optimal admissible polytope is trivially the interval, so it is easy to calculate

C (1) = 1
12 , and the space-�lling advantage SF (1) = 1. Thus, there is no space-�lling advantage for one

dimensional space, where we can use only scalar quantization.

(2) For d = 2, we can show the equilateral triangle, the rectangle, and the regular hexagon are all

admissible polytopes. Furthermore, the in�mum in (10) is achieved when the regular hexagon is used,

yielding C (2) = 5
36
p
3
, and the space-�lling advantage SF (2) = 3

p
3
5 � 1:0392 Gersho (1979). In other

words, in a two-dimensional space, even if we consider only the space-�lling advantage, the welfare loss can

be reduced by 1� 1:0392�1 � 3:77% by choosing the partition based on a set of regular hexagons, instead of

a partition based on rectangles, as in the repeated scalar quantization.

To see intuitively why hexagons are better than rectangles in two dimensions, consider the i.i.d. uniform

distribution. Suppose we use the same number of hexagons or rectangles to partition the space, each of

which has the same area. Note that when the distances between points on the boundary of a region to its

centroid are more equalized, as in the hexagon, the MSE in two dimensions becomes lower. This is because

the MSE is a convex function of the distance between the boundary points and the centroid.

For d � 3, it is quite hard to �nd the optimal admissible polytope. However, it is a classic result that the

d-dimensional sphere has smaller normalized inertia than any d-dimensional convex polytope. Therefore,
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if the sphere were an admissible polytope, the in�mum in (10) would be achieved. Unfortunately, spheres

cannot be used to cover the space. However, a lower bound on C (d), or equivalently an upper bound on

SF (d) can be obtained by using the sphere Gersho (1979):

SF (d) � SFU (d) =
d+ 2

12
(Vd)

2=d ; (12)

where Vd is the volume of a unit sphere in d-dimensional Euclidean space.

Zador (1982) developed an upper bound on C (d), or equivalently a lower bound on SF (d) using random

quantization where the representation points are picked at random, and the partition is a Voronoi partition

with respect to the set of representation points:

SF (d) � SFL (d) =
d

12� (1 + 2=d)
(Vd)

2=d : (13)

Conway and Sloane (1985) further showed that

1 � SFL (d) � SFU (d) �
�e

6
;

for all d � 1, and

lim
d!1

SFL (d) = lim
d!1

SFU (d) = lim
d!1

SF (d) =
�e

6
: (14)

The above result indicates that we can choose admissible polytopes which are closer geometrically to

the sphere as the dimension d becomes larger, and the optimal admissible polytope indeed approaches the

sphere in in�nite dimensional space, with the space-�lling advantage SF (d) asymptotically approaching

�e
6 � 1:423.

From (11), we can see that the space-�lling advantage depends only on the coe¢ cient of vector quan-

tization, and hence by (10), only on the e¢ ciency with which admissible polytopes can �ll the space.

Speci�cally, it does not depend on the probability distribution of the type or the dependence among the

elements of the type vector.

Although the set of optimal admissible polytopes and their centroids determine the space-�lling ad-

vantage, they do not generate the optimal vector quantizer in general. Recall that the optimal quantizer

must satisfy the Lloyd-Max conditions and are a¤ected by the distribution of the type and the dependence

among the elements of the type. These e¤ects are captured by the shape and dependence advantages.

For the i.i.d. uniform distribution, however, optimal admissible polytopes and their centroids do form the

optimal vector quantizer because the entire gain of vector quantization is captured by the space-�lling

advantage.
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Shape Advantage Lookabaugh and Gray (1989) showed that the shape advantage can be written as

S
�
f̂ ; d

�
=

�R �
f̂ (�l)

�1=3
d�l

�3
�R �

f̂ (�l)
�d=d+2

d�l

�d+2 : (15)

For any given dimension, S
�
f̂ ; d

�
depends solely on the shape of the marginal density function f̂ and

does not depend on how the random vector � is scaled (see the following example of the Gaussian density).

Royden (1968) proved that S
�
f̂ ; d

�
� 1 for all f̂ and d � 1. We consider two examples.

Example 2 (1) Suppose the marginal density is uniform on [0; 1]. Then it is easy to calculate S
�
f̂ ; d

�
= 1

for all d � 1. In other words, the vector quantizer cannot provide any shape advantage for the uniform

distribution.

(2) Suppose the marginal density is zero mean Gaussian with variance �2, i.e., f̂ (�l) = 1p
2��2

exp
�
��2l =2�2

�
.

Then we can calculate S
�
f̂ ; d

�
=
p
27=

�
d+2
d

� d+2
2 which is independent of the variance �2 Lookabaugh and

Gray (1989). It is easy to show S
�
f̂ ; 1

�
= 1, S

�
f̂ ; d+ 1

�
� S

�
f̂ ; d

�
for all d � 1, and limd!1 S

�
f̂ ; d

�
=

p
27=e � 1:912.

Dependence Advantage Lookabaugh and Gray (1989) showed that the dependence advantage can be

written as

DP
�
f̂ ; f; d

�
=

�R �
f̂ (�l)

�d=d+2
d�l

�d+2
hR
: : :
R
(f (�1; : : : ; �d))

d=d+2 d�1 : : : d�d

i(d+2)=d : (16)

Given the dimension, DP
�
f̂ ; f; d

�
depends on the joint density function and its marginal density

function, and thus implicitly on the dependence among �1; : : : ; �d. It is easy to show DP
�
f̂ ; f; d

�
= 1 if

�1; : : : ; �d are i.i.d. random variables, i.e.,

f (�1; : : : ; �d) =
dY
l=1

f̂ (�l) :

In this case, the gain over the scalar quantizer is entirely attributed to the space-�lling and shape ad-

vantages. In other cases, however, it may be quite di¢ cult to calculate it analytically, since the joint

density function and the calculation of d-dimensional integral are required. Nevertheless, we can still

obtain some intuition how vector quantization takes advantage of the probabilistic dependence from the

following example.
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Example 3 Suppose d = 2, and the joint density is f (�) = n 2 N if � = (�1; �2) 2 [ni=1
�
i�1
n ;

i
n

�2
, and

f (�) = 0 otherwise. This indicates �1 and �2 are positively correlated, representing the consumer�s types

for two complement commodities. We can show that both �1 and �2 are marginally uniformly distributed

on [0; 1] with the correlation coe¢ cient � = 1� 1
n2
. We can calculate DP

�
f̂ ; f; 2

�
= n = 1p

1�� . Note that

DP
�
f̂ ; f; 2

�
= 1 when �1 and �2 are uncorrelated, i.e., � = 0 (or n = 1). The more correlated �1 and �2

are, i.e., the larger � (or n) is, the larger DP
�
f̂ ; f; 2

�
becomes. It becomes arbitrarily large as �1 and �2

become complete positive correlated, i.e., �! 1 (or n!1).

[width=3in]�g-dep

Figure 1: An example of the Dependence Advantage

Now we compare the two-dimensional vector quantization with the scalar quantization for the above

example. Since the marginal density is uniform, we do not have any shape advantage with vector quanti-

zation. Suppose we were only allowed to use rectangles to partition the space so that we would not have

the space-�lling advantage either. In this case, the above example says we can still reduce the MSE (or

welfare loss) by a factor n via the dependence advantage. This is accomplished by partitioning only the

region [ni=1
�
i�1
n ;

i
n

�2
(with the positive density) with vector quantization, instead of partitioning the whole

space [0; 1]2 with repeated scalar quantization. Thus, the reduction results from exploiting the dependence

between �1 and �2 by vector quantization.

Based on the above analysis, we now prove Lemma 1.

Proof of Lemma 1. Let K̂ =
�
M1=d

�
. Recall that there are no shape and dependence advantages for

i.i.d. uniform random variables �1; : : : ; �d. Thus S
�
f̂ ; d

�
= DP

�
f̂ ; f; d

�
= 1. When K̂ is su¢ ciently

large,

GSW = SF (d)� S
�
f̂ ; d

�
�DP

�
f̂ ; f; d

�
= SF (d) � SFU (d) �

�e

6
:

Note that GSW =
�(F ;K̂;1)
1
d
�(F ;K̂d;d)

, and �
�
F ; K̂; 1

�
= 1

24K̂2
, as established in Bergemann, Shen, Xu, and Yeh

(2012), so we have

�(F ;M ; d) � �
�
F ; K̂d; d

�
�
6d��

�
F ; K̂; 1

�
�e

=
1

4�e

d

K̂2

� 1

4�e

d

2
�
K̂ � 1

�2 � 1

8�e

d

M2=d
,

which concludes the proof.�
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In summary, vector quantization can take advantage of dimensionality, the shape of the marginal

density, and the dependence among di¤erent elements of the type vector, whereas this is impossible with

scalar quantization. Even for the i.i.d. uniform distribution for which there are no shape and dependence

advantages, vector quantization can still o¤er the space-�lling advantage approaching to �e
6 � 1:423. That

is, vector quantization can reduce the welfare loss by roughly 1� 6
�e � 29:7% as the dimension d and the

number of regions per dimension K become su¢ ciently large. Even though vector quantization might not

improve the convergence rate of the welfare loss, it improves the coe¢ cient signi�cantly. This means that

vector quantization can provide lower welfare losses per dimension compared with the scalar quantization.

4 Conclusions

Based on the information-theoretic approach developed in Bergemann, Shen, Xu, and Yeh (2012) in a

one-dimensional environment, we analyzed the welfare maximizing problem in a multi-product environ-

ment. We o¤ered two approaches to estimate a bound on the welfare loss. The �rst approach dealt with

each dimension separately and then applied scalar quantization to each dimension, similar to the one-

dimensional analysis. Such treatment ignores the dependence among the pro�le of all types. The second

approach explicitly used vector quantization to introduce an additional advantage which in turn improved

the coe¢ cient of the convergence rate of the welfare loss. This improvement becomes signi�cant when the

number of choices along each dimension becomes large. Our analysis has illustrated that a simple contract

with few choices can achieve a signi�cantly high level of welfare.
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Appendix

In this appendix, we provide a brief and self-contained introduction to the theory of quantization. We can

view scalar (one-dimensional) quantization as a process of approximating a continuous random variable

(called the input) X on � = [a; b] � R by a �nite set of discrete values Y � fykgnk=1 � R. In other words,

we can de�ne an n-level scalar (one-dimensional) quantizer as fA; Y g = fAk; ykgnk=1, where

(i) A is a partition of the input set � = [a; b] into n intervals: A � fAkgnk=1, where Ak = [xk�1; xk),

and fxkgnk=1 are often called the boundary points or endpoints which form an increasing sequence with

x0 = a, and xn = b;

(ii) Y is a set of representation points: Y = fykgnk=1 � R.

In this manner, the quantizer can be viewed as a mapping y : �! Y , so that y (x) = yk if x 2 Ak, or

equivalently:

y(x) =

nX
k=1

yk1Ak (x)

where the indicator function 1Ak (x) = 1 if x 2 Ak and 0 otherwise.

The quality of a quantizer is usually measured by the squared error e (x; y) = jx� yj2. If the random

variableX is drawn from a probability distribution function F (x), then the n-level scalar (one-dimensional)

quantization problem can be viewed as choosing the partition A = fAkgnk=1 and the set of representation

points Y = fykgnk=1 to minimize the Mean Squared Error (MSE):

min
A;Y

MSE (n) = min
fAi;yigni=1

EX [X � y (X)]2 = min
fAi;yigni=1

nX
k=1

Z
Ak

(x� yk) dF (x)

Now the question is how to determine the partition fAkgnk=1 and the representation points fykg
n
k=1

and to minimize the mean squared error. In 1957, however, Lloyd proposed optimality conditions (called

Lloyd-Max conditions) that any optimal quantizer (one with the smallest MSE) must satisfy, which can

be stated in the following way: (1) given the representation points Y = fykgnk=1, the boundary point xk is

chosen to be the midpoint between the two representation points yk and yk+1, i.e., xk = 1
2 (yk + yk+1); (2)

given the partition A = fAkgnk=1, the representation point yk corresponding to a given interval Ak must

be the conditional mean of X on that interval, i.e., yk = EX [XjX 2 Ak].

Similarly, we can view d-dimensional vector quantization as a process of approximating a d-dimensional

continuous random vector (called the input)X on � � Rd by a �nite set of discrete values Y � fymgMm=1 �

Rd. In other words, we can de�ne an d-dimensional M -region vector quantizer as fB; Y g = fBm;ymgMm=1,

where
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(i) B is a partition of the input set � into M regions: B � fBmgMm=1, where Bi \ Bj = ; if i 6= j, and

[Mm=1Bm = �;

(ii) Y is a set of representation points: Y = fymgMm=1 � Rd.

In this manner, the vector quantizer can be viewed as a mapping y : � ! Y , so that y (x) = ym if

x 2 Bm, or equivalently:

y(x) =
MX
m=1

ym1Bm (x) ;

where the indicator function 1Bm (x) = 1 if x 2 Bm and 0 otherwise.

The quality of a quantizer can be usually measured by the squared error e (x;y) = kx� yk2 =

(x� y)T (x� y), where k�k is the Euclidean norm. If the random vector X is drawn from a joint prob-

ability distribution function F (x), then the d-dimensional M -region vector quantization problem can be

viewed as choosing the partition B = fBmgMm=1 and the set of representation points Y = fymgMm=1 to

minimize the Mean Squared Error (MSE):

min
B;Y

MSE (M) = min
fBm;ymgMm=1

EX [X � y (X)]2 = min
fBm;ymgMm=1

MX
m=1

Z
Bm

(x� yk) dF (x)

The Lloyd-Max conditions that any optimal vector quantizer must satisfy can be stated in the following

way: (1) given the representation points fymgMm=1, the partition B = fBmg
M
m=1 is chosen to be the Voronoi

partition with respect to fymgMm=1, i.e., Bm = fX 2 � : kX � ymk � kX � ylk for all lg; (2) given the

partition B = fBmgMm=1, the representation points ym corresponding to a given region Bm must be the

conditional mean of X on that region, i.e., ym = EX [XjX 2 Bm].
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