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Abstract

Consider agents who undertake costly e¤ort to produce stochastic outputs
observable by a principal. The principal can award a prize deterministically
to the agent with the highest output, or to all of them with probabilities that
are proportional to their outputs. We show that, if there is su¢ cient diversity
in agents� skills relative to the noise on output, then the proportional prize
will, in a precise sense, elicit more output on average, than the deterministic
prize. Indeed, assuming agents know each others�skills (the complete infor-
mation case), this result holds when any Nash equilibrium selection, under the
proportional prize, is compared with any individually rational selection under
the deterministic prize. When there is incomplete information, the result is
still true but now we must restrict to Nash selections for both prizes.
We also compute the optimal scheme, from among a natural class of prob-

abilistic schemes, for awarding the prize; namely that which elicits maximal
e¤ort from the agents for the least prize. In general the optimal scheme is a
monotonic step function which lies �between�the proportional and determin-
istic schemes. When the competition is over small fractional increments, as
happens in the presence of strong contestants whose base levels of production
are high, the optimal scheme awards the prize according to the �log of the
odds�, with odds based upon the proportional prize.
JEL Classi�cation: C70, C72, C79, D44, D63, D82.

�Center for Game Theory, Department of Economics, Stony Brook University and Cowles Foun-
dation for Research in Economics, Yale University
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1 Introduction

Consider agents who undertake costly e¤ort to produce stochastic outputs that are
observable, and valued, by a principal. The principal, in exchange, has1 a �pot of
gold�that is valued by the agents. The question is: how should the principal award
the gold in order to elicit maximal expected output from the agents? Should he
give the entire pot to the best performer? Or should he a priori divide the pot
into k parts and award these as 1st; 2nd; :::; kth prizes to the agents, based upon the
rank-order of their outputs? Or is there something else the principal can do?
We propose the following simple scheme. Let the principal �market�the gold to

the agents on the understanding that they must pay for it with the output they have
produced. How the gold gets allocated is then left to market forces. Indeed, suppose
that agents 1; :::; n have put up supplies of x1; :::; xn units of output; and that the
principal has put up y units of gold on the other side of the market. The only price p,
of the output in terms of gold, which will �clear" the market is2 p = y=(x1+ � � �+xn),
and this is tantamount to handing out the gold y to the agents in proportion to the
quantities they have put up3.
Note that this scheme also makes sense when the pot is indivisible. In this event,

what is being marketed is the probability of winning the whole pot y. We shall indeed
couch our analysis in terms of the indivisible prize rather than the divisible pot of
gold (the two are isomorphic). And, for this reason, when the entire pot goes to the
highest output, we shall refer to it as the "deterministic scheme/prize", though it
is deterministic only in the outputs, and not necessarily in the e¤ort undertaken by
the contestants, since output may be a random function of e¤ort.
We �rst compare the proportional (marketed) prize �P to the deteministic prize

�D, which in turn is often better than multiple a priori �xed prizes. (see (23), and
also subsection 7.3). Our main result here is that, if there is su¢ cient diversity in
agents�characteristics, then � in a sense about to be made precise � the proportional
prize elicits more expected total output from the agents than the deterministic prize.
What is essential for our analysis is that agents� performance be susceptible

to quanti�cation in terms of some tangible output produced or, more generally, a
�score". This often obtains in practice. For instance, a manager can consider total
revenue earned as the criterion to award a badge of honor, or promotion to a higher

1To borrow the vision from (23)
2the total demand for gold is px1 + � � �+ pxn which must equal the supply y
3To continue the propaganda, the proportional scheme is the only one which is non-manipulable

in the following sense: if an agent pretends to be several agents by splitting his output to be sent
out in di¤erent names, this can be of no bene�t to him; nor can several agents bene�t by merging
their outputs and pretending to be one agent (see M.A.de Frutos (1999)).
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echelon, to the best salesman of the year. In a race, the time taken for completion
comes naturally to mind. Sometimes scores are of a more subtle structure: in a
gymnastics contest each member of a jury gives subjective scores to di¤erent aspects
of performance which are then aggregated to come up with �nal scores. (The reader
can no doubt think of many other examples.) One upshot of assigning numerical
scores, and perhaps the reason why they are so prevalent, is that they enable us to
judge not only who beat whom, but by how much. Was the race keenly contested or
one-sided? What was the margin of victory? These are questions that are often not
without meaning, and amenable to plausible answers, which is re�ected in the way
scores get de�ned in practice.
Turning to prizes based on scores, the use of the deterministic prize �D is an

established tradition, and it has been well studied by economic theorists (see the
literature survey in subsection 1.1 below). However, in principle, the prize could
be given with di¤erent probabilities to the contestants based upon the scores that
they achieve, opening up for consideration a wide class of schemes (see section 9),
of which �D is but one. The proportional prize �P , which we �rst focus on and
juxtapose with �D, is equivalent to putting up �lottery tickets" at the market, which
the contestants can �buy" with their scores. The use of lotteries to award prizes is
also extremely widespread, but it has not received much attention from theorists,
except in the context of lobbying (see, again, Section 1.1).
The proportional scheme �P is our proxy for awarding the prize in a manner that

is less drastic than the deterministic �D, and more commensurate with performance.
Any scheme close to �P (in the bounded variation norm) will inherit its properties.
So, for our purposes, the precision with which probabilities of winning the prize are
de�ned does not really matter, so long as they do not stray too far from propor-
tionality; and, in the same vein, minor di¤erences in the delineation of the scores
do not disturb our conclusions (see subsection 7.2.) Needless to say, if performances
are incapable of being sensibly quanti�ed by scores, and can only be ranked, then
the proportional scheme has no meaning and only ordinal schemes (i.e., �D and its
variants with multiple deterministic prizes) make sense. (For an excellent treatment
of the ordinal case, see (23).) In our model here, as in much of the literature, the
principal is presumed to be maximizing the total score (output) of all the agents, so
a fortiori he can observe the individual scores that make up the total. It is not so
much a matter of observability, but that the cost of observation is small enough to
be ignored. This assumption underlies our analysis.
We further assume that outputs are all that the principal can observe. He does

not have knowledge of agents�characteristics (i.e., productive skill, cost of e¤ort, val-
uation of the prize), nor even of their precise population distribution. Our purpose
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is to design a robust scheme, based on observable outputs alone4, which does well
over a wide range of possible distributions. Both the deterministic and the propor-
tional schemes are robust but, as was said, the proportional scheme inspires better
performance when there is diversity of skills.
The intuition for this result is simple and best brought out with two agents who

have complete information about each other�s characteristics. (We show, in section
8, that our results are not marred when there is incomplete information, i.e., each
agent is informed only of his own characteristics and has a probability distribution
over those of his rivals.) Suppose the deterministic prize �D is in use and that the
two agents�skills are su¢ ciently disparate so that the weak cannot produce more
than the strong, with any signi�cant probability, even if he works hard and the other
slackens. Since e¤ort is costly, the upshot is an equilibrium at which both agents
undertake low e¤ort, so that total output is also low. In contrast, the proportional
prize �P generates better incentives to work. By increasing e¤ort and producing
more output, the weak agent is able to achieve a decent increment in his probability
of winning the prize, even when his output always lags behind his rival�s. Therefore
he is inspired to work and creates the competition which also spurs his rival to work,
culminating in an equilibrium where e¤ort and output are high. That an egalitarian
scheme, which distributes rewards commensurate with output produced, will often
generate better incentives to work than an elitist scheme in which the rewards are
reserved for the top few � this, in our view, is a theme of wide-ranging application
in the presence of heterogeneous agents, and it runs like a leitmotif in the design of
mechanisms in di¤erent contexts (see, e.g., (14),(13),(12)).
On the other hand, when skills are similar (think of athletic stars competing in

the Olympics), �D will clearly elicit more e¤ort than �P . For if both work, they
come out with nearly equal probabilities of winning the prize under either scheme.
But if anyone slackens, his probability drops sharply under �D, and less so under �P .
Thus there is more to lose by slackening when �D is in use.
Now if agents�skills are picked at random from a su¢ ciently �diverse�set, and

the noise on output is not so large as to overwhelm skills and make them count for
little, then the probability that agents are similar will tend to be low. Therefore
the average output will go up when �P replaces �D. In fact we show that this is

4It is also desirable that the scheme be simple, which is a "feel" one gets about both �D and
�P . The restriction to schemes that are based on outputs alone, does help to put a lid on their
"complexity" (though we do not have a formal de�nition of this notion). Otherwise in general,
appealing to the "revelation principle", one could require agents to report their characteristics and
base the allocation of the prize on these reports, truthful or not. But the authors could not see
tractable schemes in this direction.
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the case when any Nash Equilibrium (NE) selection under �P is compared with
any individually rational (IR) selection under �D. Furthermore, when �P replaces
�D, an impoverished majority of non-elite agents, who were idle before but are now
incentivized to work, are made better o¤ at the expense of the elite coterie (see
subsection 7.1). Were the principal to ask for a vote, �P would win with a thumping
majority over �D. And indeed why would he not ask, seeing that �P elicits so much
more output for him?
In Section 8, we show that our theme remains intact when there is incomplete

information among the agents: the NE-selection under �P elicits more output com-
pared to the NE-selection under �D, as long as the noise on output is not too large
compared to the diversity of agents� skills. (We write "the NE" because, in the
more structured binary games that we examine in Section 8, NE�s do turn out to be
unique.)
So far the scheme (�P or �D) was taken to be �xed and the behavior (NE or

IR) induced by it was examined. In Section 9, we adopt the reverse approach:
behavior is �xed at maximal e¤ort and our focus is on schemes that implement it5 as
NE. More precisely, we consider a natural class of probabilistic schemes for handing
out the prize, which includes the deterministic and proportional schemes as special
cases. Then, �xing an arbitrary domain of agents�characteristics, for each scheme
there is a threshold (possibly in�nity) such that the scheme will implement maximal
e¤ort as an NE on the domain if, and only if, the value of the prize exceeds the
threshold. Thus schemes may be ranked via their thresholds, and the one with the
smallest threshold will be optimal: it will Nash-implement maximal e¤ort whenever
any other scheme does so6. There is clearly no problem regarding the existence of
such an optimal � or, at least, nearly optimal � scheme. The challenge is to uncover
its structure. We do so for two special domains. The �rst is a binary set-up with
two agents and two e¤ort levels (low, high), in which agents�skills can be ordered so
as to exhibit �decreasing, or increasing, returns�. The optimal scheme turns out to
be a monotonic step function, whose graph lies in between those of the proportional
and the deterministic schemes. Next we analyse the binary model with the added
proviso that agents�base skills are so strong (think again of champions, or stars, or
experts) that the percentage gain in output, when an agent switches from low to high

5Implementing maximal e¤ort is consistent with maximization of expected total output if we
make the implicit assumption that the principal values outputs su¢ ciently highly compared to the
prize he must hand out to compensate agents for their e¤ort.

6In contrast, in the earlier approach (of �xed schemes and variable behavior), two schemes may
well become incomparable on account of the multiplicity of NE: either may elicit more output than
the other, depending on which pair of NE is examined.
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e¤ort, is small (even though, on the absolute scale, these gains may be substantial
enough to enable meaningful comparisons between the two agents). In this scenario
we show that the optimal scheme awards the prize according to the �log of the odds�,
with odds based upon the proportional scheme. Moreover the optimal scheme does
not depend on the distribution of skills of the agents, except insofar as they exhibit
decreasing or increasing returns.
Finally let us note that this paper is self-contained but, to round o¤ the per-

spective, we shall often allude to its expanded version (11), which contains several
variants and extensions of the results described here. (A precursor to this paper is
(10).)
Related Literature. There is a literature on lobbying, where agents put up

bids of money and are awarded the prize either via the proportional scheme or the
deterministic scheme (called often �lottery" or �all-pay auctions", respectively). See,
e.g., (29),(20),(15),(27),(28),(3),(4), (8),(9),(25),(16) and the references therein. In
much of this literature agents are assumed to have complete information about each
other, and in all of it there is no issue of �moral hazard", i.e., the bids submitted by
the agents are perfectly observable.
The literature on tournaments is vast and does often emphasize moral hazard, i.e.,

the setting in which observable outputs depend stochastically on unobservable e¤ort
("bids"). However proportional prizes do not seem to have received attention there.
For tournaments with a single prize, see (22),(19),(24),(26). Subsequent writers have
considered multiple prizes whose number and sizes are �xed prior to the contest,
and which are then awarded to the contestants based upon the rank-order of their
performance ((18),(5),(1),(7),(21),(6),(2),(23)).
In both strands of literature the focus is on analyzing Nash Equilibria (NE),

which are often unique and susceptible of being described by explicit formulae, given
the special structural assumptions of the models.
What is new in our approach is that we compare the proportional and determin-

istic prizes in the presence of moral hazard. Our setting is su¢ ciently general so as
to neither preclude multiple NE, nor guarantee pure-strategy NE. No assumptions
are made on disutility or productivity other than the fact that they are monotonic in
e¤ort in the appropriate sense; in particular they are not required to be concave or
convex. Nevertheless we are able to show that the worst NE selection under the pro-
portional prize elicits more output than the best NE under the deterministic prize.
In fact we show more, since our comparison is based on �Weak Nash Strategies" (see
subsection 5.1) and IR strategies, which are looser notions than NE (indeed IR is
so mild a reqirement that any solution concept would be expected to satisfy it). To
the extent that this constrains agents�behavior less, our comparison is that much
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stronger (more credible?). Of course, the price we pay for our generality is that we
stop at this comparison, and are unable to discern any �ner structure in agents�be-
havior, which would come to the fore were one to con�ne attention to NE, especially
in simple scenarios where they are unique (as happens in some of the structured
examples we study here in section 8, or in (11)).
The Numbering System. All de�nitions, axioms, lemmas, theorems are taken

to constitute a single series, and enumerated in the order they �rst appear. Thus the
reader will see, starting in the next section, Axiom 1, Axiom 2, Theorem 3, Axiom
4, Lemma 5 etc. Here Lemma 5 does not mean the "�fth" lemma, but the lemma
whose "name" (or "marker") in the series is 5.

2 The Model

Each agent in our model has access to a �nite subset E � [0; 1] of e¤ort levels. We
assume 0 2 E and 1 2 E. These represent no e¤ort and maximal e¤ort respectively.
An agent may choose any e¤ort x 2 E. In doing so, he incurs disutility �(x) � 0

and produces stochastic output given by a non-negative random variable �(x) with
�nite mean �(x). (We allow for the possibility that the range of �(x) is discrete,
even �nite.) E¤ort 0 incurs disutility �(0) = 0 and produces output �(0) = 0 with
certainty: it is just a proxy for �not participating�in the game.
Agents are driven to work by the lure of an indivisible prize, which is handed

out to them by a prinicpal. If an agent places valuation v > 0 on the prize, and is
awarded it with probability p, this yields him expected utility pv. (See, however, the
subsection 7.2, where it is shown that the tenor of our results remains unchanged for
a wider class of utilities.)
The triple (�; � ; v) characterizes an agent. We make throughout the following

monotonicity and boundedness assumptions on the space7 X of possible character-
istics (�; � ; v):

Axiom 1 Both �; � are weakly monotonic in x and there exist universal positive

7This space X is de�ned after �xing the domain and range of � . It will shortly be taken to be
measurable. One can con�ne attention to random variables � which are characterized by �nitely
many parameters, so that (�; � ; v) is a �nite-dimensional vector; and then the Euclidean space
generates the Borel sets. In this case the space X consists of all (�; � ; v) that satisfy (1) and (2)
of Axiom1 below, along with the aforesaid �niteness restrictions on � . More generally, without
such restrictions, the Levy-Prokhorov metric on the random variables � is understood to de�ne the
Borel sets.
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constants c; C; d;D such that, for all x 2 E n f0g;

cx < �(x) < Cx (1)

and
dx < �(x) < Dx (2)

(Note that, on account of weak monotonicity, there is no loss of generality in
supposing that all agents have the same set E of e¤ort levels. The case of an arbitrary
allocation of subsets of E across agents is automatically included, provided that 0
and 1 belong to each agent�s set.)
Suppose now that we have a �nite setN of agents with characteristics (�n; �n; vn)n2N .

The principal cannot observe these characteristics, or the e¤ort levels (en)n2N that
the agents might have undertaken; all he can see are the realizations t = (tn)n2N of
the random outputs (�n(en))n2N . Thus his allocation � of the prize is given by
a function RN

+ n f0g
��! �N where �N is the unit simplex in RN ; the component

�n(t), of the vector �(t), denotes the probability with which n 2 N is allocated the
prize. We further assume that �n(t) = 0 for all n 2 N if t = 0, otherwise agents
would be rewarded for not participating in the game.
The principal is risk-neutral and cares only about the expected total output

produced by the agents. To this end he can devise di¤erent allocation schemes �. A
full class � of such schemes will be considered later in section 9. For the present, we
focus on two particular schemes.
The deterministic scheme �D shares the prize equally among the winners

W (t) = fk 2 N : tk = maxftn : n 2 Ngg, i.e., �nD(t) = 1=jW (t)j if n 2 W (t) and
t 6= 0; and is 0 if t = 0:
(Note that �D is deterministic only in the outputs, not necessarily in the e¤ort

levels.)
The proportional scheme �P awards the prize to each agent in proportion to

his output,i.e., �nP (t) = tn=(
P

k2N t
k) if t 6= 0; and is 0 if t = 0:

3 The Strategic Game of Complete Information

As was said, the principal does not know agents�characteristics, nor even the distri-
bution of their characteristics. He wishes to compare �D versus �P over a large class
of distributions. As for the agents, we at �rst take them to be well informed. We
suppose that, in addition to knowing � = �D or �P , the agents also know each oth-
ers�characteristics (�n; �n; vn)n2N . This seems to be a tenable hypothesis if agents
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compete in close proximity with one another. (In Section 8 we consider the case
when an agent knows his own characteristics but is unsure about those of his rivals.)
Given (�n; �n; vn)n2N , a strategic game is induced among the agents by the

principal�s choice of an allocation scheme �. The set of pure strategies of each agent
n 2 N is E. Any N -tuple of pure strategies e = (en)n2N gives rise to a random vector
~t = ~t (e) = (�n(en))n2N of outputs. The expected value pk of �k(~t) represents the
probability of k winning the prize and we de�ne k�s payo¤to be F k(e) = pkvk��k(ek):
Denote by � the mixed extension of this game; and by �k the set of (mixed)

strategies of k in �, i.e. �k is just the set of probability distributions on E. (Without
confusion, F k(�) will continue to denote k�s payo¤, when the mixed strategy N -tuple
� � (�n)n2N 2

Q
n2N �

n � � is played in �.) For any �2� , denote

��n �
�
�k
�
k2Nnfng 2 �

�n �
Y

k2Nnfng
�k:

Recall that the choice �2� is called individually rational (IR) in � if

F n(�) � max
u2�n

min
w2��n

F n(u;w)

for all n 2 N ; and is called a Nash Equilibrium (NE) of � if

F n(�) = max
u2�n

F n(u; ��n)

for all n 2 N . Denote by IR(�), NE(�) the set of all strategies that are IR, NE in
the game �, and note NE(�) � IR(�).

4 Spaces of Games

Suppose characteristics � � (�n; �n; vn)n2N are picked from X � � � � � X � X
according to some probability distribution � on X. (Throughout, as was said, we
assume that the underlying set X satis�es Axiom 1; and that X is a Borel space as
explained in footnote 4, so that � is a measure on the Borel sets ofX;using the product
topology from X:) Fix an allocation scheme �. Then any � 2 X induces a mixed-
strategy game among the agents (as discussed in section 3), which we shall denote
��(�). We wish to extend our solution concepts to the space of games speci�ed by �.
Our focus will be on what happens for almost all � according to �, denoted a:a:�(�),
i.e., for all � except perhaps for those in a set of �-measure zero.
Let f : X! � be a measurable function. For each � 2 X, note that f (�) is an

N -tuple of mixed strategies. Denoting f (�) � (�n)n2N , the total output at � is
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T (f;�) �
X
n2N

X
x2E

�n(x)�n(x): (3)

and integrating over X according to �, the expected total output is

T (f) �
Z
X

T (f;�) d�(�) (4)

Given a prize scheme � we will say that f : X! � is an �-NE selection under �
if f is measurable and if f (�) is a Nash Equilibrium of the game ��(�) for a:a:�(�).
The notion of a �-IR selection under � is de�ned similarly.

5 Proportional Prize: Expected Total Output from
Nash Equilibria

It is clear a priori that, for any � 2 X and any scheme �, the total expected output in
��(�), at any �2�, cannot exceed jN jD since no agent produces more than D when
he chooses maximal e¤ort 1 (see Axiom 1). Also8, supposing vn = v for all n 2 N , the
total expected disutility incurred by the agents at any individually rational strategy
selection cannot exceed v, otherwise some agent is incurring negative utility and
would be better o¤ not participating in the game. But then expected total output
(see, again, Axiom 1) is at most Dv=c. Thus, the most this total can be is �of the
order of�min(v; jN j), since D and c are constants of our model.
This is the �avor of our estimate in Theorem 3 below, showing that the pro-

portional prize elicits a �decent quantum�of output from the agents. However the
theorem requires an additional assumption, which we now describe.
For � = (�n; �n; vn)n2N denote v(�) = minfvn : n 2 Ng and de�ne v to be the

essential in�mum of v(�) with respect to �.

Axiom 2 (Minimum valuation) v > DC=d

This basically says that, for any two individuals picked from the population, if
both work at maximal e¤ort and are awarded the prize proportionately, then neither
will have incentive to unilaterally quit the game � each values the prize su¢ ciently

8Given � = (�n; �n; vn)n2N , and a vector � � (�n)n2N >> 0 of positive scalars, let �(�) �
(�n�n; �n; �nvn). Then the games ��(�) and ��(�(�)) are "strategically equivalent" and all our
solution concepts remain the same for them. So w.l.o.g., scaling utilities appropriately, one could
imagine vn = v for all n 2 N .
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highly to want to stay in. Indeed, by Axiom 1 the most disadvantaged such individual
produces d, incurs disutility C, and values the prize at v (while his rival produces
D):Thus his reward is vd=(d +D) which must exceed C:Our Axiom 2 is somewhat
milder.
We now show that Nash Equilibria (NE) elicit a decent quantum of output under

the proportional prize.

Theorem 3 Suppose Axioms 1 and 2 hold. Denote emin � minfx : x 2 E n f0gg.
Let f be a �-NE selection under �P . Write a � jN jdemin and b � (dv=C)�D, and
let H � 2ab=(a+ b) denote their harmonic mean. Then

T (f) � H=2

where T (f) is the expected total output as in (4).

(The proof is in the Appendix.)

5.1 Some extensions of Theorem 3

The presence of �emin�is a dampener on our lower bound, but unavoidable given our
extremely weak assumptions. Indeed there is nothing to preclude the scenario that
every agent incurs sharply rising disutility of e¤ort as he advances above emin;while
his output hardly goes up; and then the best one can hope for is to inspire everyone
to work at emin: Were we to strengthen our assumption on productivity, requiring
output to go up in signi�cant chunks as we go up the e¤ort ladder from emin to 1,
sharper estimates could be reached by the methods of this paper. (We leave this to
the reader). Incidentally notice that, in the special case of binary e¤ort levels, i.e.,
E = f0; 1g ; we automatically have emin = 1 in Theorem 1 above, producing a sharp
bound without further ado.
With this strengthened assumption, it can further be shown (see (11) ) that under

the proportional prize, there are increasing thresholds such that, as the valuation of
the prize exceeds these thresholds, maximal e¤ort successively becomes NE, unique
NE, and �strictly dominant strategy upto error ��(i.e., maximal e¤ort is the best
reply of every agent provided his rivals�aggregate output is at least � � the threshold
obviously needing to be raised as � is lowered.) In this sense, the proportional
scheme permits more certainty (predictability) about agents�behavior at the cost of
enhancing the prize This is not a feature of the deterministic prize.
Finally, we note that Theorem 1 remains valid if we replace NE by WNS (�Weak

Nash Strategies�). WNS are de�ned just like NE, but with unilateral deviations of
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an agent restricted to shifting probabilities, albeit in whatever manner he desires,
from his current strategy onto maximal e¤ort. (Thus, in particular, the choice of
maximal e¤ort level 1 by each agent constitutes a WNS.) Since NE are clearly a
subset of WNS, this generalizes Theorem 1. (For details, see again (11).)

6 Deterministic Prize: Expected Output from In-
dividually Rational Strategies

Lemma 5 below provides the crucial insight as to why the deterministic prize �D
elicits limited output. Indeed it shows that only the most productive agent, along
with those who stand a chance of beating him, set the bound on the output at any
individually rational strategy-tuple.
Fix � = (�n; �n; vn)n2N . Denote by h an agent (the �hero") who has maximal

mean output under e¤ort level 1, i.e., for all n 2 N , we have �h(1) � �n(1) (where,
recall again, �n(x) is the mean of �n(x)). De�ne K(�) to be the set of �elite
agents�whose outputs at e¤ort 1 have a positive probability of exceeding that of
h, i.e.,

K(�) = fn 2 N : Pr[�n(1) � �h(1)] > 0g
We shall show that the output under deterministic prize is commensurate with
jK(�)j. First we need

Axiom 4

1. (Bounded relative valuations) There exists a universal constant B such
that for a:a:�(�), if � = (�n; �n; vn)n2N , then vn=vk < B for all n; k 2 N ;

2. (Stochastic dominance) If x > y in E then �n(x) � �n(y), where ��"
denotes �rst order stochastic dominance9.

Lemma 5 Suppose Axioms 1 and 4 hold. Let f be a �- IR-selection under �D; then
for a:a:�(�)

T (f;�) � 2jK(�)jB2CD=c

(The proof is in the Appendix.).

9Recall: �n(~e) � �n(e) if Probf�n(~e) � zg � Probf�n(e) � zg for all z 2 Range �n(~e)[ Range
�n(e)
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6.1 Estimation of the Average Size of the Elite Set jK(�)j
A natural scenario is that agents� characteristics are not correlated to be similar
but are su¢ ciently "diverse" (e.g., drawn i.i.d. from a large set). We shall, in fact,
require this diversity only on their productivities (�n(1))n2N under maximal e¤ort.
This is embodied in Axiom 7 below. First, a de�nition:

De�nition 6 (Normalized Density) .Let Z be a random variable taking values
in the n-cube CjN j = [d;D]

jN j. Let � denote the standard Lebesgue measure on CjN j
scaled by (D � d)�jN j. (so that �(CjN j) = 1):We say that Z has normalized density
function � if � is Borel-measurable, nonnegative and Pr(Z 2 A) =

R
A
�(x)d�(x)

for all Borel sets A � CjN j;and we de�ne the upper bound of � to be the essential
supremum of � on CjN j:

We are ready to state

Axiom 7 (Diversity of Skills)

1. There exists � > 0 such that, for a:a:�(�), if � = (�n; �n; vn)n2N , then for all
n 2 N : support �n(1) � [�n(1)� �; �n(1) + �]

2. As we vary � on X according to �; the marginal distribution of the random
variable10 (�n(1))n2N has a normalized density function with �nite upper bound
�:

Condition 2 of this assumption rules out the possibility that (�n(1))n2N is con-
centrated on the "diagonal"

�
(z; :::; z) 2 CjN j : d 5 z 5 D

	
of the cube CjN j. As the

random variables �1(1); ::::; �N(1) go from being iid, with uniform density on [d;D] ,
to being concentrated on smaller and smaller neighbourhoods of the diagonal, � rises
from 1 to 1:In this scenario � is a measure of how likely it is that the agents are
similar. We should expect a threshold ��such that �P outperforms �D if � < ��;and
�D outperforms �P if � > ��:This is not to say that high � is necessarily bad for
�P . Indeed if � were high in regions of CjN j where agents are disparate (e.g.,towards
the northwest or southeast corners of the square, when jN j = 2), this would only
accentuate the superiority of �P over �D We do not follow this general line of inquiry
here , wherein � would be allowed to become unbounded in selective regions of CjN j,
and bound only where agents are similar. Instead we consider the restricted scenario

10Recall that (�n(1))n2N 2 CjN j by (2).
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where � is universally bounded on CjN j , thereby only preventing agents from being
similar (or dissimilar!) with high probability.
Returning to the iid case, we can think of � as the size of the random noise on

output, and then the �diversity" of agents�productive skills is re�ected for us in how
small the term �� = �=(D � d)jN j is. (Diversity in skills is dampened by the noise
�: Indeed suppose noise � is symmetric across the two agents and let � grow, keeping
skills �xed. The two agents will become increasingly similar since their output will
depend essentially on the identical noise term and their skills will count for little
when � is su¢ ciently large). Lemma 1 below shows that the average size of the elite
set, is no more than 1 + �jN j� in the general setting of Axiom 7.

Lemma 8 Suppose the distribution � satis�es Axiom 7. Then the expected size,
under �, of the elite set K(�) is at most 1 + �jN j�.

(The proof is in the Appendix.)
We are ready to state the main conclusion of this section.

Theorem 9 Assume Axioms 1,4 and 7 hold. Let f be a �-IR-selection on X under
�D. Then

T (f) � 2B2CD

c
(1 + �jN j�)

Proof. Immediate from Lemmas 5 and 8.

7 Proportional Versus Deterministic Prizes

Theorems 3 and 9 enable an immediate comparison between the (expected total)
outputs elicited by NE, IR strategy selections under �P ; �D respectively. Fix, for
example, all the parameters c; C; d;D; b; B; v of the model and suppose that Axioms
1,2,4,7 hold. There exists a threshold �� such that, if � < ��, then for large enough N
and v, we have

T (f) > T (g)

for any �-NE-selection f under �P , and any �-IR-selection g under �D:This is so
because the lower bound on output given by Theorem 3 is independent of the noise
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�, and rises with N; v ; while the upper bound given by Theorem 9 is independent of
N; v and goes to 2B2CD=c as � goes to 0.
To get a better feel, it might help to consider a numerical example. Let B =

C = c = d = 1; D = 2; jN j = 7, v = 30, � = 0:05: Further let the set of e¤ort levels
be E = f0; 1g so that emin = 1; and let the agents�skills be picked iid with uniform
probability in the interval [d;D] = [1; 2] so that � = 1:Thus the noise term is only
5% of the skill interval and does not dampen the diversity between the two agents.
By Theorem 3, the output is bounded below (noting a = 7; b = 28 ) by 5:6 at any

NE-selection under the proportional prize. On the other hand, by Theorem 9, the
output is bounded above by (2B2CD=c)(1 + �jN j�)) = 4(1 + 7(0:05)) = 5:4 at any
IR- selection under the deterministic prize. Thus the proportional prize outperforms
the deterministic.

7.1 Welfare

For simplicity we take � = 1=(D � d)jN j in this section and the next section 8.3,
i.e., the random variables �n(1) are iid with uniform distribution on [d;D]. When
the deterministic prize is used, only the agents in the elite coterie K(�) (whose size
is 1 + [jN j�=(D � d)jN j] on average) get the prize with signi�cant probability under
any IR strategy tuple. More precisely, the remaining agents in N n K(�) get the
prize with probablity at most v(�)B

P
k2K(�) �

k(1) (See the proof of Lemma 5 in the
appendix for this estimate.)
If the proportional prize is used then, at any NE, not only does the expected total

output go up for the principal as we just saw, but each agent in N nK(�) wins the
prize with much greater probability than before (at least demin=jN jD � O(1=jN j)
each, provided deminv(�)=jN jD > Cemin, i.e., provided v(�) > CjN jD=d). Thus,
provided the minimum valuation v(�) of the prize is large enough, all the agents in
N nK(�), who constituted the impoverished majority under the deterministic scheme,
suddenly �nd their prospects brighten when the proportional scheme is introduced and
are able to become better o¤ by working hard. The elite coterie K(�), of course, loses
its status : the probabilities of winning the coveted prize drops from O(1=jK(�)j) to
O(1=jN j) for each of its members, though they still must work so as to not lag behind
the others. In short, the egalitarian distribution engendered by the proportional prize
inspires all agents to work hard and considerably raises total output.
The principal and the impoverished majorityN nK(�) should both applaud when

�P replaces �D ; indeed, the principal can count on the unconditional support of the
majority when he institutes �P instead of �D, and need only worry about having to
brook the displeasure of the tiny elite coterie K(�).
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7.2 Bounded Deviation.

Suppose that, when an agent produces a fraction x of total output, he wins the
prize with probability h(x), with h(0) = 0 and h(1) = 1; and that h is of bounded
deviation from the linear function �D, i.e., m(x� y) < h(x)� h(y) < M(x� y), for
y < x and positive constants m;M . Then a careful rereading of the proofs reveal
that the estimates of Theorems 1 and 2 survive, though in slightly weakened form:
lower bounds need to be diminished by a factor of m=M and upper bounds to be
raised by a factor of M=m. In the same vein, an agent�s utility from winning the
prize with probability p could be f(p) instead of the standard expected value pf(1):If
f is of bounded deviation from the linear expectation pf(1), we can accomodate f
just like h. Finally the quanti�cation of output can be altered without disrupting
our results, so long as the alteration is of bounded deviation.

7.3 Multiple Prizes.

One might wonder what happens when l � jN j apriori �xed deterministic prizes are
used instead of a single prize. When jN j = 2 it is evident that using two prizes
is wasteful since the loser will always get the second prize for free. In general, if
l << jN j, then again the proportional prize will perform better. The reason is as
follows. Assume everyone works hard. De�ne l �heroes" by the top l mean outputs
(as in section 7); and then de�ne the coterie K to consist of those agents whose
outputs have a positive probability of overtaking the weakest hero. Arguing as in
the proof of Lemma 5, the maximal e¤ort in K will e¤ectively bound the total IR
output, regardless of the values of the l prizes. Also, as in the previous section,
the expected size of K will be small. Thus the proportional prize will outperform l
deterministic prizes when l << jN j. We leave the case of general l for future work.

7.4 Interdependent Production

The discerning reader will notice that our analysis remains valid even if the random
output produced by an agent is in�uenced by the e¤ort (possibly factored through
output) of the others.Various assumptions will need to be recast (somewhat cumber-
somely) but the same method of proof applies. We skip the details

7.5 More General Elite.

In our de�nition of the elite set, we need not rule out the possibility that the weakest
agent can match the hero with small probability. This was done for ease of exposition.
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More generally say thatK(�) is an "(1� �)� elite" set if the probability of any agent
in N nK(�) producing output equalling or exceeding the hero�s, is at most �. (This
probability is to be of course considered under the scenario that the agent and the
hero are both at e¤ort level 1; and, in the case of interdependent production, that
everyone in K(�) is also at e¤ort level 1.) Then the Lemma 5 holds, replacing c
by c=(1� �) in the upper bound and so Theorem 9 , and hence also the comparison
being carried out in this section, holds with the same amendment.

8 The Strategic Game of Incomplete Information

Our main theme, namely that �P is better for the principal than �D when agents�
characteristics are su¢ ciently diverse, has been established under the hypothesis
that agents know each others�characteristics. Now we show that the theme remains
intact even when an agent knows only his own characteristics with certainty and has
a probability distribution over those of his rivals. This is the standard scenario of
incomplete information. Our analysis will be in terms of an illustrative binary game,
and not at the level of generality of the complete information case. But precisely
because we work with a structured example, we are able to accomplish a little bit
more. We show that there is a threshold on the random noise, below which �P
outperforms �D (as usual, from the principal�s point-of-view!), and above which �D
does better. Thus our comparison of the two schemes is more "even-handed" in
the context of our example. It points to the need for a more general study of the
incomplete information case, and in particular the speci�cation of conditions where
�P outperforms �D; or vice versa.
Let E = f0; 1g and N = f1; 2g. Let �n(1) = 1 and11 vn = v > 1 for n = 1; 2;

i.e., the uncertainty pertains only to the productivities � 1; � 2. Of course, �nz (0) = 0
as always, no matter what the �skill" z of agent n may be. Suppose that �nz (1) is
uniformly distributed on the interval [z; z + �], where � is a measure of the noise on
the output. Furthermore suppose that the skills of the agents n = 1; 2 are drawn
independently from the intervals [a1; b1] and [a2; b2], with uniform probability (and
that all this is common knowledge to the agents).
Since agent n is informed of only his own skill, a strategy for him is given by a

function �n : [an; bn]! [0; 1]
where �n(x) is the probability with which n chooses e¤ort 1 when his skill is x.
For any prize allocation scheme �, the game of incomplete information ��� is then

11If v � 1 then the only NE in ���D or �
�
�P is that both agents never work (since e¤ort 1 costs 1

which cannot be compensated by any probability of winning the prize)
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de�ned in the standard manner. (It depends not only on � but also on the parameters
v; a1; b1; a2; b2; � which we suppress because they will be understood. Our focus is on
� = �P or �D which we keep track of in our notation.)
First suppose ex-ante symmetry between the agents and no noise: [a1; b1] =

[a2; b2] = [0; 1] (say); and � = 0
Let F n� ((p; �

0)jx) denote the payo¤ of n in the game ���, when he chooses e¤ort
1 with probability p and his skill level is x, while his rival chooses the strategy �0.
(Thus, if n�s strategy is �, his payo¤ in ��� will be F

n
� (�; �

0) =
R 1
0
F n� ((�(x); �

0)jx)dx.)
Notice that F n� ((1; �

0)jx) increases12 in x (for �xed n; �; �0), since n�s disutility of
e¤ort stays constant at 1 while his probability of winning the prize goes up13. Thus
n�s best reply to �0 is to switch from 0 to 1 at some �threshold" skill c, which solves
F n� ((1; �

0)jc) = 0 i.e., denoting by �c the strategy which assigs e¤ort 1 if x � c and
e¤ort 0 if x < c, we see that �c is a best reply to �0 in the game ��� if F

n
� ((1; �

0)jc) = 0.
We conclude that (�c; �c) is a14 (symmetric) NE in ��� if F

n
� ((1; �c)jc) = 0. The

unique c(�) that solves this equation is computed rather easily for � = �P or �D.
Indeed we have, F n�D((1; �c)jc) = cv � 1 and F n�P ((1; �c)jc) = cv +

R 1
c
( cv
x+c
)dx � 1 =

cv[1 + ln1+c
2c
]� 1 ,which gives (denoting c(�D) � cD and c(�P ) � cP )

cD =
1

v
(5)

and
v =

1

cP [1 + ln(
1+cP
2cP

)]
(6)

When cP = 0, the right hand side of (6) is in�nity by L�Hospital�s rule while at c = 1,
it is 1. Since v > 1 the solution of (6) is cP < 1, hence we have ln(1+cP2cP

) > 0. Thus,
for any v > 1, we deduce that cP > cD. In short, more agent-types are working at
NE under �P than under �D and hence �P elicits more expected output.
Now let noise increase (from 0 to in�nity), still maintaining the ex-ante symmetry

of the agents (i.e., [an; bn] = [0; 1] for n = 1; 2). Arguing as before, it is evident
that threshold strategies will once again constitute NE. But for � large enough, the
symmetry between agents will obtain even ex-post (to any desired level of accuracy)
not just ex-ante, i.e., no matter what the realization of their respective skills, the two
agents are nearly evenly matched since the large noise renders their skills irrelevant.
In this event, corroborating our intuitition from the introduction, �D will elicit more
e¤ort than �P . Indeed it is easy to verify (and we omit the routine algebra) that there

12weakly in ���D and strictly in �
�
�P

13weakly in ���D and strictly in �
�
�P

14also �the", i.e., there is only one symmetric NE as the reader may easily verify.
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exists an ~� such that cP (�) < cD(�) if � < ~� and cP (�) > cD(�) if � > ~� ;which asserts
that, unless the noise is so high as to make skills count for little �P outperforms �D
in games of incomplete information.
Next let us consider the e¤ect of allowing for ex-ante asymmetry of the incomplete

information. To this end, let [a2; b2] = [�; 1+�] for 0 < � < 115 and [a1; b1] = [0; 1],
i.e., agent 2�s skills are�-higher than 1�s, so that� denotes the degree of asymmetry.
For convenience, �x the noise � = 0. Arguing as in the ex-ante symmetric case,
there again exist thresholds cnD(�); c

n
P (�) such that (�

1
cD(�)

; �2cD(�)); (�
1
cP (�)

; �2cP (�))
constitute the symmetric NE of the games ���D ;�

�
�P
respectively; and, moreover,

cnP (�) < cnD(�)

for n = 1; 2 and all � (unless v is so small that no agent ever works in NE� we
implicitly eliminate such trivial NE by presuming v is high enough). Thus �P always
outperforms �D and, as anticipated, the superiority of �p becomes more pronounced
as the degree � of the asymmetry rises.
The exact calculations for the asymmetric case emerge from the following lemma.

Suppose an agent is informed that his rival�s output is uniformly distributed in some
interval [z; z + �] � R+ and that his own skill is x. Fix x and think of z; � as
variable. We can compute two critical values zD � zD(x; �), zP � zP (x; �) such that
the expected payo¤ of the agent is zero in ���D , �

�
�P
if he chooses e¤ort 1 and if

z = zD, z = zP respectively. Since this payo¤ varies inversely in z, the agent�s best
reponse to the rival is to choose e¤ort 1 if z < zD and e¤ort 0 if z > zD in the game
�D (or, e¤ort 1 if z < zP and 0 if z > zP , in the game �P ). The critical values zD,
zP are as follows .

Lemma 10 The critcal z-values are zD = x � �=v and zP = �
exp(�=vx)�1 � x .

Moreover we have x (v � 1)� � � zP � x (v � 1).

(The proof is in the Appendix.)
We leave it to the reader to see how our results for the asymmetric case can

be straightforwardly derived from this proposition. In fact, this proposition su¢ ces
also for the analysis of games of �partial information" which lie between what we,
following others, have called games of �complete" and �incomplete" information. To
be concrete suppose [an; bn] is partitioned into k (for simplicity, equal) subintervals

15If � > 1 then we have the trivial situation that the highest skill-type of 1 cannot beat the
lowest skill type of 2 which renders the deterministic prize ine¤ective, while the proportional still
continues to elicit e¤ort.

19



[an + i�; an + (i + 1)�] where � = (bn � an)=k and i = 0; 1; 2; :::k � 1. (When
k = 1 we have �incomplete" information and as k ! 1 we converge to �complete"
information.) Each agent is now informed of his own exact skill and of the subinterval
of [an; bn] in which his rival�s skill lies. This de�nes a game of partial information in
the obvious way (from his initial probability distribution on [an; bn], the agent can
infer conditional probabilities of his rival�s skill given the subinterval of [an; bn] in
which it lies).
We have not done the exact calculations, but it seems reasonably clear that �P

outperforms �D for every k; not just for the two extreme points k = 1 and k = 1
that have already been checked.

9 Optimal Prizes with Complete Information

Consider any class � of prize allocation schemes (i.e., maps RN
+ n f0g

��! �N and
�(0) = 0); and any set X of pre-characteristics16 � � (�n; �n)n2N on which the
disutilities of e¤ort are universally bounded from above (as in the �rst part of Axiom
1). Further assume that there exists a �� 2 � and a positive constant � such that: at
every � 2 X , if �� is in use and all agents are working at maximal e¤ort 1, and if any
one of them unilaterally deviates to some e¤ort e < 1; then the deviator�s probability
of winning the prize goes down by at least �. (In many examples, including the two
about to be presented, the proportional prize �D easily ful�ls the role of such a ��.)
With this assumption, the existence of an �optimal" (or "nearly optimal") scheme
in � for X is automatic 17, as will become obvious from the de�nitions below. Its
structure, however, is a delicate matter and will depend heavily on � and X:
The idea behind an optimal scheme in � for X is that it should Nash-implement

maximal e¤ort 1 � (1; :::; 1) on all of X for the least value of the prize, i.e., no other
scheme in � can implement 1 on X with a prize of smaller value.
More precisely,for� � (�n; �n)n2N ; let (�; v) denote (�n; �n; v)n2N :De�ne v(�;�) =

inffv 2 R+ : 1 2 NE(��(�; v))g;and v(�) = supfv(�;�) : � 2 Xg:Thus v(�) is
the smallest value v = v1 = :::: = vn of the prize which Nash-implements 1 uni-
formly over X when the scheme � is used. We de�ne �̂ to be optimal in � for X
16In this section the symbol � will be reserved for pre-characteristics, even though it is used

elsewhere for characteristics. Similarly X will denote a set of pre-characteristics.There will be no
confusion.
17The extrema (in�mum, supremum) in our de�nition of an "optimal scheme" are clearly �nite,

e.g., the scheme �� always implements maximal e¤ort for large enough v. Thus, even if the extrema
are not attained but only approached, approximately optimal schemes will exist, to any degree of
accuracy one may desire.
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if v(�̂) � v(�) for all � 2 � ,in other words, if v(�̂) = inf fv(�) : � 2 �g. (And, in
the same vein, we de�ne �̂ to be �-optimal18 in � for X if v(�̂) � v(�) + � for all
� 2 �:). An obviously equivalent de�nition would be: �̂ is optimal if, whenever any
� 2 � Nash-implements 1 on X , so does �̂:
Our goal in this section is to construct optimal schemes for two particular pairs

�, X.
Let us restrict attention to the class � of all allocation schemes which satisfy

the following four conditions:

(i) (Scale Invariance) �(rt) = �(t) for all scalars r > 0

(ii) (Anonymity) �(!t) = !(�t) for any permutation ! : N ! N

(iii)(Monotonicity) �n(t) � �k(t) whenever tn � tk

(iv) (Disbursal)
P

n2N �
n(t) = 1 if t 6= 0;and is 0 otherwise

We shall examine the binary case of two agents (i.e., N = f1; 2g) with two
e¤ort levels and deterministic output. The e¤ort levels are �shirk� (e = 1=2) and
�work� (e = 1), in addition of course to e¤ort level 0 for not participating in the
game. So E = f0; 1=2; 1g. The disutility of e¤ort is constant across � 2 X (with19

�n(1=2) = 0 and �n(1) = � for n = 1; 2). What varies with � 2 X is the skill
(productivity) of an agent. Let �(e; s) denote the deterministic output of each agent
when he exerts e¤ort e 2 f1=2; 1g and and is endowed with �skill�s 2 [k;K] (Thus
X � [k;K]2 here.)
For brevity, denote �(1=2; s) � �(s) and �(1; s) � � �(s). We make some natural

monotonicity assumptions on � and � �, along with a form of �decreasing (or,later,
increasing ) returns to skill�:

Axiom 11 (Decreasing Returns to Skill) Both � : [k;K] �! R+, � � : [k;K] �!
R+ are continuous and strictly monotonic; and � �(s)=�(s) � � �(s0)=�(s0) if s0 < s:
Also inf f� �(s)� �(s) : s 2 [k;K]g > 0.

Axiom 11 says that the percentage gain in output, by switching from shirk to
work, is a weakly decreasing function of the skill s 2 [k;K]. (The case of increasing
returns is entirely analogous; see Axiom 16 below.)

18Note that ��optimal schemes exist for every " > 0, thanks that the fact that v(��) is clearly
�nite under our assumptions.
19We take �n(1=2) = 0 for simplicity (recall that �n is permitted to be weakly increasing). But

our analysis remains intact if �n(1) is su¢ ciently larger than �n(1=2) > 0 (as can easily be checked.)
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Our main result (see theorem 15 below) shows that, when Axiom 11 holds, there
exists an optimal scheme which takes the form of a monotonic step function. The
location of the jump points, and the sizes of the jumps, can be computed by an
algorithm based on r; R; ~r, ~R ,i.e., on skill functions � and � � restricted to the
northeast boundary of the square [k;K]2: And, graphically speaking, this optimal
scheme lies " in between" the proportional scheme ( whose graph is linear) and the
deterministic scheme (whose graph has a single jump from 0 to 1 at 1=2 ).
To establish this result, �rst note that axiom 11 simpli�es the analysis consider-

ably, on account of:

Lemma 12 Assume Axiom 11 holds. Let s 2 (k;K) and t 2 (k;K), Then there
exist s0 2 [k;K] and t0 2 [k;K] such that

� �(s0)

� �(s0) + � �(t0)
� �(s0)

�(s0) + � �(t0)
� � �(s)

� �(s) + � �(t)
� �(s)

�(s) + � �(t)
and

�(s0)

�(s0) + � �(t0)
=

�(s)

�(s) + � �(t)

and either s0 = K or t0 = K

(The proof is in the Appendix.)
Lemma 12 implies that our goal � of incentivizing an agent (of skill s) to switch

from shirk to work, assuming his rival (of skill t) is working � will be achieved for
every (s; t) 2 [k;K]� [k;K) if it is achieved for (s;K) and (K; s) for all s 2 [k;K];
in other words, we need only worry about incentivizing the agent in the following
two extremal cases, corresponding to the north and east boundaries of the square
[k;K]2:
Case A His skill is s 2 [k;K] and his rival is working with skill K.
Case B His skill is K and his rival is working with skill s 2 [k;K]
Denote

R(s) =
� �(s)

� �(s) + � �(K)
; r(s) =

�(s)

�(s) + � �(K)
; ~R(s) =

� �(K)

� �(K) + � �(s)
; ~R(s) =

� �(K)

� �(K) + � �(s)

When an agent switches from shirk to work, his fractional output goes up from r(s)
to R(s) in Case A, ~r(s) to ~R(s) in Case B. Denote q(s) = 1� ~r(s). It is clear from
our assumptions that q > R > r and that R(s) = 1� ~R(s); R(K) = ~R(K) = 1=2
It will be useful to introduce one more function, which captures the simple form

of � 2 � when there are only two agents.

De�nition 13 ( Prize function) A prize function is a weakly increasing function
p : [0; 1] ! [0; 1] satisfying p (1� x) = 1 � p (x) for all x:The function p is said
to be e¤ective at prize level v, if 1 = (1; 1) is a Nash equilibrium for any pair
(s; t) 2 [0; K]� [0; K] of skills of the two agents in the associated game.
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(Note that our assumptions on � imply that, if jN j = 2 and � 2 �, then there
exists a prize function p such that �n(� 1; � 2) = p (�n= (� 1 + � 2)), for n 2 N , whenever
� 1 + � 2 6= 0 ,justifying our name for p). The lemma below will be handy:

Lemma 14 The prize function p is e¤ective at level v i¤ for all s 2 [0; K] we have

p (q (s))� �=v � p (R (s)) � p (r (s)) + �=v

Proof. As discussed earlier, p (x) is e¤ective i¤ p
�
~R (s)

�
� p (~r (s)) + �=v

and p (R (s)) � p (r (s)) + �=v for all s 2 [0; K] Since p
�
~R (s)

�
= 1 � p (R (s)),

p (~r (s)) = 1� p (q (s)), the �rst inequality becomes p (q (s))� �=v � p (R (s)) which
proves the result.
De�ne a sequence of points 0 = x0; x1; : : : ; xl in [0; 1=2] by xi = R (0) for i = 1;and

xi = � (xi�1) for 1 < i � l:where � (x) = min (R (r�1 (x)) ; q (R�1 (x))) and l is the
smallest index i for which r�1(xi) is unde�ned. Note that since q; R; r are all strictly
increasing functions, so is �, and therefore x1; : : : ; xl is an increasing sequence.
Now de�ne p� : [0; 1]! [0; 1] as follows ( where i = 0; 1; :::; l ):

p� (x) =

8<:
i=2l for xi � x < xi+1
1=2 for xl � x � 1=2

1� p� (1� x) for 1=2 < x � 1

We are now ready to state and prove

Theorem 15

(i) Any e¤ective scheme has prize level � 2l�; (ii) x ! p� (x) � is an e¤ective
scheme with prize 2l�:

Proof. Let p be e¤ective with prize level v. By Lemma 14 with s = 0; we get
p (x1) = p (R (0)) � p (r (0)) + �=v � �=v. Next let s = r�1 (x) or s = R�1 (x)
according as � (x) = R (r�1 (x)) or q (R�1 (x)). Then, again by Lemma 14, we get
p (� (x)) � p (x) + �=v whenever x; � (x) 2 [0; 1]. Applying this formula repeatedly
we get

1=2 = p (xl) � p (xl�1) + �=v � � � � � p (x1) + (l � 1) �=v � l�=v

which proves (i). For (ii) we �rst show that, for any s, each of the two intervals
[r (s) ; R (s)] and [R (s) ; q (s)] contains some �jump�point xi. Indeed if x = r (s) is in
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[xi�1; xi); then R (s) = R (r�1 (x)) � � (x) > � (xi�1) = xi; hence xi 2 [r (s) ; R (s)].
The argument is similar for [R (s) ; q (s)] : Now by the de�nition of p� it follows that

p� (q (s))� 1=2l � p� (R (s)) � p� (r (s)) + 1=2l,

which is precisely the condition of Lemma 14 with v = 2l�:
One might de�ne "increasing returns" as in Axiom 11 , substituting " s0 > s " in

place of "s0 < s "

Axiom 16 (Increasing Returns to Skill) Both � : [k;K] �! R+, � � : [k;K] �!
R+ are continuous and strictly monotonic; and � �(s)=�(s) � � �(s0)=�(s0) if s0 > s:
Also inf f� �(s)� �(s) : s 2 [k;K]g > 0.

With Axiom 16 in place of Axiom 11, the natural variant of Lemma 12 holds,
substituting k for K.

Lemma 17 Assume Axiom 16 holds. Let s 2 (k;K) and t 2 (k;K), Then there
exist s0 2 [k;K] and t0 2 [k;K] such that

� �(s0)

� �(s0) + � �(t0)
� �(s0)

�(s0) + � �(t0)
� � �(s)

� �(s) + � �(t)
� �(s)

�(s) + � �(t)
and

�(s0)

�(s0) + � �(t0)
=

�(s)

�(s) + � �(t)

and either s0 = k or t0 = k.

(The proof of this is the same as the proof of Lemma 12 in the Appendix, with
s��; t��; k; s0 < s in place of s+�; t+�; K; s0 > s respectively.)
Thus the whole analysis for optimal prizes can be replicated for this dual case,

focusing on the southwest boundary of the square [k;K]2; in place of the northeast
boundary. We omit the details.

9.1 Optimal Prizes with Small Fractional Increments

There are many contests where the exertion of e¤ort causes only a small fractional
increase in output. This happens when all the contestants are very strong � experts,
champions,stars � and their base levels of output ( namely, the outputs at their
lowest e¤ort levels emin) are so high that incremental output by each contestant is a
small fraction of his base, even though these increments may have large observable
di¤erences between them on an absolute scale, enabling us to meaningfully compare
the contestants.
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We model this situation, retaining for simplicity the deterministic binary scenario
of the previous section. Here an agent�s skill may be identi�ed with his deterministic
output when he shirks. Thus we assume that an agent of skill t 2 [k;K] produces
t units of output if he shirks; and 	(t) > t units if he works, where 	(t) is non-
decreasing and continuous.
Let � = �(t; x); � = �(t; x) denote the fractions of total output produced by

an agent of skill t when he works, shirks respectively, and his rival is of skill x and
working. Given a prize function �, we de�ne I(�; t; x); the t-agent�s incentive to
work by

I(�; t; x) � �(�)� �(�)

The minimum fraction is b� = k=(k + 	(K)) while the maximum fraction is
b� = 	(K)=(k + 	(K)): Thus, in our context, we assume � : [b�; b�] 7! [0; 1] ; with
�(b�) = 0; �(b�) = 1 (and, of course, �(x) = �(1 � x)). Let � denote the class
of all such �; and let �� denote the subclass of � that consists of di¤erentiable
functions. For any � 2 �, the minimum prize that will incentivize agents to work
at all realizations (t; x) 2 [k;K] ; is given by V (�) = d=m where d is the disutility of
work and

m = min fI(�; t; x) : (t; x) 2 [k;K]g
is the minimum incentive. Thus to minimize V (�) we must maximize the minimum
incentive over � 2 �: We shall seek a � that is "continuum- optimal" in �� and
give a heuristic argument that, in fact, it is also "nearly optimal" in � : Of course
the words within quotes have to still be made precise. Let us �x � > 0 and de�ne
 (t) =  �(t) = [	(t)� t] =�: First observe that, for small enough �,

�� � '
�
d

du

�
u

u+ x

�����
u=t

�
�u =

x

(t+ x)2
( (t)�) =

x (t)

(t+ x)2
�

So, if � 2 ��,
I(�; t; x) � �(�)� �(�) ' �0(�)

x (t)

(t+ x)2
�

This motivates our next de�nition (restoring the notation � = �(t; x); and taking
the domain of the prize functions to be [k=(k +K); K=(k +K)] by supposing � to
be in�nitesimal):

De�nition 18 . � is continuum-optimal in �� if

min

�
�0(�(t; x))

x (t)

(t+ x)2
: (t; x) 2 [k;K]

�
� min

�b�0(�(t; x)) x (t)
(t+ x)2

: (t; x) 2 [k;K]
�

for all b� 2 ��.
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Although we have not formally veri�ed this, intuition suggests that: if V � denotes
the minimum prize required in �� to incentivize work (in the "�-model" wherein the
work output of the t-agent is given by t +  (t)�), and if V (�) denotes the corre-
sponding quantity for a continuum-optimal � in ��, then V �= V (�) converges to 1
as � goes to 0: In this sense, a � that is (idealistically) continuum-optimal in ��

is (realistically) nearly optimal in ��for small �: This motivates Theorem 19 below.
First recall
Strictly decreasing (increasing) returns to skill:

t+  (t)

t
is strictly decreasing (increasing) in t; i.e.,

 (t)

t
is strictly decreasing (increasing) in t

Theorem 19 Assume that  has strictly decreasing returns to skill. There is a
unique � ( that does not depend on  ) that is continuum-optimal in ��; and it is
given by:

�(x) =
1

2
+B ln

x

1� x

where 1=2 � x � K=(k + K) ( the rest of � being determined by re�ection around
1=2: �(x) = �(1 � x)) and the constant B chosen to satisfy �(K=(k + K)) = 1:
In the case of strictly increasing returns, an entirely analogous result holds with
1=2 � x � k=(k +K) in place of 1=2 � x � K=(k +K); and �(k=(k +K)) = 0 in
place of �(K=(k +K)) = 1:

(The proof is in the Appendix. An examination of that proof makes it clear that
jumps in the prize function � will raise V (�) , justifying our decision to ignore �n��
in the search of an optimal scheme.)

9.1.1 Universality of the "Log Odds" Solution

The term x=(1 � x) gives the "odds" of winning for the agent who produces the
fraction x of the total output (while his rival produces the fraction 1�x ), assuming
that lotteries are handed out in proportion to the outputs. Thus in the upper (lower
) half of its domain, the optimal � awards the prize through "log of the odds" for
strictly decreasing (increasing) returns to skill, completing � on the complementary
half by the requirement �(x) + �(1 � x) = 1. What is noteworthy is that, apart
from the type of returns (decreasing or increasing) exhibited by 	, the solution is
independent of the precise form of 	:The solution is �rst convex and then concave
for strictly decreasing returns, and the other way round for strictly increasing returns
, changing shape at the midpoint 1/2. In fact these two solutions are mirror images
of each other if we re�ect around the diagonal.
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Also worthy of note is the fact (easily veri�ed , and left to the reader) that, for
constant returns to skill, we get the strictly increasing returns solution.

9.1.2 Interpretation of the Model with Small Fractional Increments

The idea of an optimal scheme � here is not that it maximizes expected total output.
That would be much ado about nothing, since the output of each person goes up by
only �% (at an extra disutility also of the order of �%) when he switches from shirk
to work. The emphasis instead is on maximal e¤ort without regard to the ensuing
output. We have an interpretation in mind that is, quite bluntly, non-economic.
Output corresponds to a "score" that measures performance of a "players" in a
"game" (think of the average score assigned by di¤erent judges to each person in a
diving contest). The players, who are all of star quality, are being incentivized to
put in the �nal extra burst of e¤ort to perform to the best of their ability. They
value the prize enormously more than the disutility incurred for the extra e¤ort
(the fame of being winner, perhaps also the money that fame might bring in the
future). The interest is in �nding a scheme � that is optimal in the sense that it
most frugally20 creates competition and inspires maximal e¤ort, for its own sake (
for the glory of the human spirit, and the sport). The minimum value V (�) of the
prize (which implements maximal e¤ort under �) does entail signi�cant savings, even
though output rises very little: the ratio V (�0)=V (�) >> 1 when we compare the
optimal log-odds � with arbitrary �0 2 �:

Appendix

This section contains proofs that were postponed.

9.2 Theorem 3.

Proof. For brevity denote Y (�) = T (f;�) and �Y = T (f) : For 0 < p < 1, consider
the event E = fY (�) < �Y =pg. It is evident that the probability �(X n E) � p, hence
�(E) � 1 � p. For n 2 N , let Fn be the subset of � 2 E such that agent n chooses
0 e¤ort with positive probablity in f (�). If �(Fn) = 0 for all n, then (by Axiom 1)
every agent produces expected output at least demin almost everywhere in E, and so

�Y � (1� p)jN jdemin = (1� p) a > 0 (7)

20 i.e., � inspires maximal e¤ort whenever any other scheme in � does so ( as we vary disutility
of e¤ort and valuation of the prize)
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Now suppose �(Fn) > 0 for some n. Fix � 2 Fn, write f (�) =
�
�1; : : : ; �N

�
, and

let n unilaterally change his strategy by shifting his probability �n (0) from e¤ort 0
to e¤ort 1. Since n gets the prize with probability 0 when he chooses 0, and gets it
(again by Axiom 1) with probability at least d=(Y (�) + D) � d=( �Y =p + D) when
he chooses e¤ort 1, his gain in payo¤ is at least �n(0)[vd=( �Y =p +D) � C] at every
� 2 Fn. Since f is a �-NE-function, we must have vd=( �Y =p+D) � C, which gives

�Y � p

�
dv

C
�D

�
= pb > 0 (8)

(where > holds by Axiom 2). Since either (7) or (8) must occur, we see that

�Y � minf(1� p)a; pbg

for all 0 < p < 1, and hence (by a straightforward calculation)

�Y � max
0<p<1

minf(1� p)a; pbg = ab

a+ b
=
H

2

9.3 Lemma 5

Proof. Since � � (�n; �n; vn)n2N is �xed, we shall suppress it and write K � K (�).
Imagine the scenario when every agent in K chooses 1. In this scenario an j =2 K
has 0 probability of winning the prize at e¤ort level 1 and hence, by the stochastic
dominance condition of Axiom 4, at any e¤ort level. This de�nes certain probabilities
�k� > 0 for k 2 K to win the prize, and it is evident that (i)

P
k2K �

k
� = 1 and (ii)�

k
�

is independent of the mixed strategies chosen by the agents in N nK. Furthermore
for k 2 K, again by stochastic dominance, the probability that k wins can only
increase if any agents in K nfkg change to strategies other than 1. Hence we deduce
that every agent k 2 K can guarantee himself the payo¤ �k�v

k � �k(1) by playing 1.
Thus, if � 2 IR(��D(�)), the payo¤ F k(�) of k at � satis�es F k(�) � �k�v

k � �k(1)
for all k 2 K. But clearly F k(�) � ��k(�)vk (denoting ��k(�) � k�s probability of
winning the prize under �), so we have ��k(�) � �k�� (�k(1)=vk) for all k 2 K, which
implies X

k2K

��k(�) �
X
k2K

�k� �
X
k2K

�k(1)

vk
= 1�

X
k2K

�k(1)

vk
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But then, putting v � v1 and observing B�1v � vn � Bv for all n 2 N by part 1 of
Axiom 4 , we haveX

n2NnK

��n(�) = 1�
X
k2K

��k(�) �
X
k2K

�k(1)

vk
� B

v

X
k2K

�k(1)

So we obtain X
n2NnK

F n(�) =
X

n2NnK

"
��n(�)vn �

X
e2E

�n(e)�n(e)

#
� Bv

X
n2NnK

��n(�)�
X

n2NnK

X
e2E

�n(e)�n(e)

� B2
X
k2K

�k(1)�
X

n2NnK

X
e2E

�n(e)�n(e)

But each n 2 N nK can guarantee a payo¤ of at least 0 by choosing e¤ort level 0,
so each F n(�) is non-negative since � 2 IR (��D(�)), and thus

P
n2NnK F

n(�) � 0.
Combining the above two inequalities, we haveX

n2NnK

X
e2E

�n(e)�n(e) � B2
X
k2K

�k(1)

Since �k(1) � C and �n(e) � ce by Axiom 1 , we getX
n2NnK

X
e2E

�n(e)e � B2jKjC
c

Recalling also that �n(e) � De by Axiom 1, we obtainX
n2NnK

X
e2E

�n(e)�n(e) � B2jKjC
c
D

Clearly, by our de�nition of h and Axiom 1,X
k2K

X
e2E

�n(e)�k(e) � B2jKj�h(1) � B2jKjC
c
D

(using the fact that C > c in the last inequality). The above two inequalities prove
the Key Lemma.
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9.4 Lemma 8

For the proof of Lemma 8, it will be useful to �rst establish some auxiliary results.
First, some notation. Let C = [0; 1]n be the unit cube in Rn and let 0 < " < 1 be
�xed. For x = (x1; : : : ; xn) in C we de�ne

N" (x) = jfi : xi 2 [M � ";M)gj , where M = max(xi).

If X is a C-valued random variable with density � (x) ; we write N�
" for the random

variable
N�
" = N" (X)

If � (x) � 1 then the xi are iid with uniform density on [0; 1]. In this case we will
show that N1

" is closely related to the binomial random variable B", which counts
the number of successes in n independent trials with individual success probability
":

Pr (B" = k) =

�
n

k

�
"k(1� ")n�k:

Lemma 20 If � (x) � 1 then

Pr
�
N1
" = k

�
=

�
Pr (B" = k) if k < n� 1

Pr (B" = n� 1) + Pr (B" = n) if k = n� 1

Moreover
E
�
N1
"

�
� n" (9)

Proof. It su¢ ces to establish the �rst statement, since it implies that B" sto-
chastically dominates N1

" , which in turn implies the second statement. For the proof
of the �rst statement we note that the possible values of N1

" are 0; 1; : : : ; n� 1, while
those of B" are 0; 1; : : : ; n. Therefore it su¢ ces to prove that

Pr
�
N1
" = k

�
= Pr (B" = k) for k < n� 1

Ignoring ties, which occur with probability 0, the event N1
" = k is a disjoint union

of n
�
n�1
k

�
events, corresponding to the choice of the maximum index (in n ways) and

the choice of the next k indices (in
�
n�1
k

�
ways). By symmetry, each of these events

has probability Pr (Ek), where Ek is the event

Ek = fx1 is largestg& fx2; : : : ; xk+1 2 (x1 � "; x1)g& fxk+2; : : : ; xn 2 [0; x1 � "]g

30



Thus its su¢ ces to show that

Pr (Ek) =
Pr (B" = k)

n
�
n�1
k

� =

�
n
k

�
"k(1� ")n�k

n
�
n�1
k

� =
"k(1� ")n�k

n� k

Now writing q (x) = Pr (Ekjx1 = x) we have

Pr (Ek) =

Z 1

0

q (x) dx

Since x2; : : : ; xn are independent and uniform on [0; 1] we get

q (x) =

�
"k(x� ")n�k�1 if x > "

0 if x � "

Integrating over x, making a change of variable y = x� " ; we get, as desired

Pr (Ek) =

Z 1

"

"k(x� ")n�k�1dx = "k
Z 1�"

0

yn�k�1dy =
"k(1� ")n�k

n� k

Lemma 21 Suppose � (x) is bounded above by a constant �: Then we have

E (N�
" ) � �n".

Proof. Using (9) we get

E (N�
" ) =

Z
C

N" (x) � (x) dx � �

Z
C

N" (x) dx = �E
�
N1
"

�
� �n"

We can now prove Lemma 8
Proof. Transform Y , distributed uniformly on [d;D], to X = [Y � d] [D � d]�1

which is uniform on [0; 1]. The average size of the elite set is una¤ected by this
transformation. Thus the result follows from Lemma 21

9.5 Lemma 12

Proof. Since � � and � are strictly monotonic and continuous, there exist � > 0 and
�0 > 0 such that s0 � s+� 2 [k;K];and t0 � t+�0 2 [k;K] and

�(s0)

�(s0) + � �(t0)
=

�(s)

�(s) + � �(t)
(10)
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Hence there exists a maximal pair �;�0 satisfying (10), and then either s0 = K or
t0 = K (otherwise both � and �0 could be increased slightly, still maintaining (10),
and contradicting the maximality of �, �0).
In view of (10), to prove (b) it su¢ ces to show that

� �(s0)

� �(s0) + � �(t0)
� � �(s)

� �(s) + � �(t)
(11)

which is equivalent to
� �(t0)

� �(s0)
� � �(t)

� �(s)
(12)

as can be seen by dividing the numerator and the denominator of the LHS and RHS
of (11) by � �(s0�) and � �(s) respectively.
But a similar maneuver shows that (10) is equivalent to

� �(t0)

�(s0)
=
� �(t)

�(s)
(13)

And, since s0 > s, decreasing returns (Assumption AIV) imply

� �(s0)

� �(s)
� �(s0)

�(s)
(14)

From (13) and (14), we get

� �(s0)

� �(s)
� �(s0)

�(s)
=
� �(t0)

�(t)
(15)

establishing (12), and thereby (11)

9.6 Lemma 10

Proof. First consider �D: Then z = zD implies x = z+�=v, and thus the player wins
if the opponent�s output lies in the interval [z; z + �=v]. This event has probability
(�=v) =� = 1=v and gives expected payo¤ v (1=v)� 1 = 0:
Now consider �P : The expected payo¤ is

1

�

Z z+�

z

�
xv

x+ y

�
dy � 1 = xv

�
ln

�
x+ � + z

x+ z

�
� 1
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Setting this equal to zero and solving for z we get

z =
�

exp (�=xv)� 1 � x = zP

For the bounds on zP we note that for an opponent of skill exactly y� = x (v � 1)
the payo¤ under �P is xv

x+y� � 1 = 0. Thus if z + � < y� the payo¤ at each y in
[z; z + �] is � 0, which implies zP � y� � �. Similarly if z > y�, the payo¤s in
[z; z + �] is � 0, which implies zP � y�:

9.7 Theorem 19

Proof. First we focus on decreasing returns. Then, by Lemma 12, we need only
consider the two cases below.
Case A. Agent is at t and the rival at K:Then

I(t;K) = �0
�

t

t+K

�
K (t)

(t+K)2

Case B. Agent is at K and the rival at t:Then

I(K; t) = �0
�

K

t+K

�
t (K)

(t+K)2

Since �(x) = 1� �(1� x) for all x; we get

�0
�

t

t+K

�
= �0

�
K

t+K

�
which, in conjunction with K (t) > t (K) (decreasing returns), implies I(K; t) <
I(t;K) for all t 2 [k;K] : Thus it su¢ ces to incentivize the t� agent to switch
from shirk to work in Case B (for all t 2 [k;K] ). Since we want to maximize the
minimum incentive, we must arrange for I(K; t) = �; for some constant �, and for
all t 2 [k;K] :To see this, denote

G(t) =
t (K)

(t+K)2

and let � be a solution to the di¤erential equation, with �0(t=(t + K)) = �=G(t)
for all t 2 [k;K] :Suppose there is a scheme e� which does not satisfy the di¤erential
equation. If e�0(t1=(t1 +K) > �=G(t1) for some t1 2 [k;K], then since

R
�0(y)dy =
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R e�0(y)dy = 1=2 ( writing y = t=(t+K); and understanding the range of integration
to be from y = 1=2 to y = K=(k +K)), we see at once that there exists t2 2 [k;K]
such that e�0(t2=(t2 +K)) < �=G(t2):(Thus there always exists such a t2 for e�:) But
then the incentive (to work) at t2 under e�; which is given by e�0(t2=(t2 +K))G(t2);
is strictly less than �;which is the constant incentive under � at all t 2 [k;K] :
We conclude that the minimum incentive to work under e� is less than that under
�;establishing the superiority of � over e�: So an optimal scheme must satisfy the
following di¤erential equation (where eC is another constant):

�0
�

K

t+K

�
= eC (t+K)2

t (K)
; i.e., �0

�
K

t+K

�
=

eC
 (K)

�
t+K

t

�2
t

For x > 1=2; let x = K=(t+K) , so 1� x = t=(t+K) and t = K(1� x)=x;enabling
us to rewrite our di¤erential equation:

�0(x) =
eC

 (K)

�
1

(1� x)2

� �
K(1� x)

x

�
=

C

x(1� x)

where C is another constant and 1=2 � x � K=(k +K):The solution is

�(x) = A+B ln
x

1� x

whereA;B are determined from the boundary conditions �(1=2) = 1=2 and �(K=(k+
K)) = 1:(Thus A = 1=2.) Then, in the range (k=(k +K)) � x < 1=2;the value of �
is determined by re�ection around 1=2 , i.e., �(x) = 1� �(1� x):
The analysis for strictly increasing returns is entirely analogous. Indeed, by

Lemma 17 for increasing returns, we need only consider two cases:
Case C. Agent is at t and the rival at k;where

I(t; k) = �0
�

t

t+ k

�
k (t)

(t+ k)2

Case D. Agent is at k and the rival at t;where

I(k; t) = �0
�

k

t+ k

�
t (k)

(t+ k)2

Strictly increasing returns imply k (t) > t (k), hence I(k; t) < I(t; k) for all t 2
[k;K], from which we derive as before that �0(x) = C=(x(1�x)) where C is another
constant, x = k=(t+ k) and 1=2 � x � k=(k +K):The solution is

�(x) = A0 +B0 ln
x

1� x

for 1=2 � x � k=(k +K) and 1 � �(1 � x) for 1=2 < K=(k +K), where A0; B0 are
determined via the boundary conditions �(k=(k +K)) = 0 and �(1=2) = 1=2::
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