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Abstract

Theories of bounded rationality are typically characterized over an
exhaustive data set. How does one tell whether observed choices are con-
sistent with a theory if the data is incomplete? How can out-of-sample
predictions be made? What can be identified about preferences? This
paper aims to operationalize some leading bounded rationality theories
when the available data is limited, as is the case in most practical set-
tings. We also point out that the recent bounded rationality literature
has overlooked a methodological pitfall that can lead to ‘false positives’
and ‘empty’ out-of-sample predictions when testing choice theories with
limited data.
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1. Introduction

The recent literature has proposed insightful and plausible choice procedures
to explain the mounting evidence against rational choice. The axiomatic char-
acterizations offered for these new theories typically assume an exhaustive
dataset, that is, one where the choice from every possible problem is recorded.
In most cases, however, data will be limited. In empirical settings, the mod-
eler cannot control the choice problems faced by individuals. In experimental
settings, generating a complete dataset requires an overwhelming number of
decisions by subjects: there are 26 choice problems when the space of alterna-
tives contains 5 elements, 1,013 choice problems when it contains 10 elements,
and 32,752 choice problems when it contains 15 elements. In such cases, it is
important to understand when observed choices can be explained by a theory,
as well as what out-of-sample predictions can be made and what information
can be identified about the Decision Maker (henceforth DM).

Understanding the theory of rational choice in the presence of limited data
is a classic and well-understood question (Samuelson, 1948; Houthaker, 1950;
Richter, 1966; Afriat, 1967; Varian, 1982). This paper contributes to the un-
derstanding of recent theories when data is limited, bringing ideas and chal-
lenges from the classic literature into the discourse on bounded rationality.

Observed choices are consistent with a theory if there exists a choice func-
tion, defined for all choice problems, which is explained by the theory and
agrees with observed choices. One need not worry about defining choices for
out-of-sample problems when testing for rationality in its standard descrip-
tion. If one has found a complete transitive preference ordering for which
observed choices are maximal, then there is no difficulty defining choices for
out-of-sample problems in a way that is consistent with rationality: one simply
maximizes that same preference. Such extensibility need not hold for other
theories. For an obvious illustration of where things can go wrong, consider the
theory where the DM’s choices emerge through the maximization of a complete
asymmetric relation. Clearly, this is just an unusual rewriting of rationality, as
choices are defined everywhere only if the relation is also transitive. Suppose
we observe a DM picking a out of {a, b}, b out of {b, d} and d out of {a, d} (or,
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more generally, any observed choices satisfying WARP but not SARP). It may
be tempting to claim that the DM’s choices are consistent with this theory, as
they coincide in all the observed choice problems with the maximization of the
asymmetric relation P given by aPbPdPa. However, upon further reflection,
one would logically conclude otherwise: any extension of observed choices to
{a, b, d} contradicts the theory.

This point may seem quite abstract, given the nonstandard description of
rationality in the above example. However, it highlights a potentially danger-
ous methodological pitfall, as variants of this extensibility issue affect state-of-
the-art theories of bounded rationality. To illustrate, consider a theory which
imposes restrictions regarding which alternatives the DM actively considers
when maximizing his preference. For instance, Masatlioglu, Nakajima and
Ozbay (2012) posit that removing unconsidered alternatives does not change
his consideration set. The data might seem consistent with this theory if ob-
served choices are explained by the maximization of a preference over consid-
eration sets satisfying their property for observed choice problems. However,
one’s conclusions regarding the content of these consideration sets could have
contradictory implications in unobserved problems, making it impossible to
extend choices in a way that is consistent with the theory. Hence one can-
not limit the test of consistency to finding a story that explains the observed
data, without thinking about whether that story extends. We show in Section
3 that previous attempts1 to study bounded rationality theories with limited
datasets overlook out-of-sample restrictions, potentially yielding false positives
when testing consistency with the theory and precluding proper identification
and out-of-sample prediction.

Thus, despite recent progress, there is still incomplete understanding of
how to test bounded rationality theories when data is limited. Importantly,
full-data characterizations may be missing some testable implications when
applied to incomplete datasets, much in the same way that SARP provides a
fuller understanding of the empirical content of rationality than IIA. Section

1Those attempts include Manzini and Mariotti (2007, Corollary 1), Manzini and Mariotti
(2012) and Tyson (2013).
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4 shows how the empirical content of recent prominent theories of Categoriza-
tion (Manzini and Mariotti, 2012), Limited Attention (Masatlioglu, Nakajima
and Ozbay, 2012), and Rationalization (Cherepanov, Feddersen and Sandroni,
(2012) can be fully captured by the existence of an acyclic relation satisfy-
ing intuitive restrictions, highlighting testable implications that are missing in
existing full-data characterizations.

For testing rationality, Samuelson observed that the following revealed-
preference restrictions emerge: x must dominate any other option y that is
available when x is chosen. Samuelson’s Strong Axiom of Revealed Preference
(SARP) requires checking that there is an acyclic relation satisfying these
restrictions; or in other words, that Samuelson’s revealed preference is itself
acyclic. While this may still seem hard at first, there are simple procedures
allowing to solve this classic problem. For instance, start by making a guess,
called x1, as to which option is least preferred in X. Clearly this guess x1
cannot dominate another element according to Samuelson’s revealed prefer-
ence. This reduces the problem at hand, allowing to restrict attention to
X \ {x1}. Next, make a guess, x2, as to which element is least preferred in
X \ {x1}, etc. This enumeration procedure succeeds if at least one guess, an
option which does not Samuelson-dominate anything that remains, is available
in each round. Success is thus equivalent to SARP. Success is easy to check,
as it is path independent in this case: it does not depend on which guess is
chosen when there are multiple possibilities.

We show in Section 5 that this approach can generalize to theories of
bounded rationality. The restrictions derived in Section 4 simplify testing,
but are typically more elaborate than for rationality. Under Limited Atten-
tion, for instance, the data may inform us that option a is preferred to a′, or
that option b is preferred to b′, requiring a decision on the ‘or’ condition prior
to checking for acyclicity. Is testing the theory against the data thus signif-
icantly more difficult than testing rationality? Not necessarily. We observe
that there is a general class of restrictions that can be tested by enumeration,
with success being path independent, just as for rationality. Applying this
result, we find that for some theories, including those studied in Section 4,
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such a simple test exists when the dataset satisfies certain conditions. For
these theories, it may be useful to keep such results in mind to guide data
collection. In the Online Appendix, we provide several examples of bounded
rationality theories which are roughly as easy to test as rationality, regardless
of the dataset.

We show in Section 6 how our methodology can be used for identification
and out-of-sample prediction. Section 7 concludes with remarks on how our
approach can provide insight beyond the theories studied here.

2. Theories of Choice, Limited Data and Predictions

Consider a finite set X of possible alternatives. A choice problem is a
nonempty subset of X representing the set of feasible alternatives for the
DM. The set P(X) of nonempty subsets of X represents all conceivable choice
problems the DM may face. A choice function c : P(X) → X associates to
each choice problem S an element c(S) ∈ S. Different theories have been
defined to describe how a DM makes choices. Rationality, for instance, posits
that the DM picks options by maximizing some preference ordering2 P :

c(S) = arg max
P

S, for all S ∈ P(X). (1)

Choice theory has developed in recent years to better understand the mounting
evidence against rational choice. Consider the following theories, which we will
use in this paper to illustrate main points. Under Shortlisting (Manzini and
Mariotti 2007, henceforth MM07), the DM creates a shortlist of alternatives
which are undominated according to some asymmetric preference relation R1,
and picks the maximal alternative in the shortlist according to some asym-
metric relation R2:

c(S) = arg max
R2

{x ∈ S | @y ∈ S : yR1x}, for all S ∈ P(X). (2)

Under Limited Attention (Masatlioglu, Nakajima and Ozbay 2012, henceforth
MNO12), a DM facing a problem S picks the best element according to some

2We use the term relation to mean a (possibly incomplete or cyclic) binary relation, and
the term ordering for a complete, asymmetric and transitive relation. For any relation P
and any S ⊆ X, let arg maxP S = {x ∈ S | xPy, ∀y ∈ S \ {x}}.
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preference ordering P over a consideration set Γ(S) ⊆ S, with the restriction
that removing ignored alternatives does not change the consideration set:3

c(S) = arg max
P

Γ(S), for all S ∈ P(X), (3a)

Γ(S) ⊆ T ⊆ S ⇒ Γ(T ) = Γ(S), for all S, T ∈ P(X). (3b)

Under Categorization (Manzini and Mariotti 2012, henceforth MM12), the
DM uses an asymmetric ‘shading’ relation � defined on categories (which are
subsets of X) to eliminate alternatives belonging to an inferior category, and
then picks an option by maximizing some asymmetric preference relation P :

c(S) = arg max
P
{x ∈ S | @R,R′ ⊆ S : x ∈ R and R′ � R}, ∀S ∈ P(X) (4)

Under Rationalization (Cherepanov, Feddersen and Sandroni 2013, henceforth
CFS13), the DM maximizes an asymmetric preference relation P over the set
of ‘rationalizable’ options, those which are top-ranked for at least one of his
rationales (asymmetric relations R1, . . . , RK):

c(S) = arg max
P
{x ∈ S | ∃i : x = arg max

Ri

S}, for all S ∈ P(X). (5)

This paper considers the problem of testing whether a DM’s choice behavior
is consistent with theories such as these. Importantly, we want to allow for the
possibility that choices are observed over only some of the conceivable choice
problems. The dataset D ⊆ P(X) consists of those choice problems over
which the DM’s choice is observed. An observed choice function cobs : D → X

associates to each choice problem S ∈ D the alternative in S which has been
selected by the DM.

For a theory T , let CT be the set of (complete) choice functions that could
emerge under T . Our analysis for limited datasets is grounded on the following
principle. For observed choices to be consistent with T , it should be possible
to extend observed choices cobs into a complete choice function c ∈ CT .

Definition 1 (Consistency). An observed choice function cobs : D → X is
consistent with a theory T if there exists a choice function c ∈ CT such that

3MNO12 write Γ(S \ {x}) = Γ(S) for all x ∈ S \Γ(S) instead of (3b). As their condition
could be vacuous on limited data (which they did not study), condition (3b) is an iterated
version that captures all the restrictions consistent with their original motivation.
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cobs(S) = c(S) for every S ∈ D.

Given a theory T , there may be multiple ways of extending cobs into a choice
function in CT . Each such extension suggests an option the DM might pick in
a given out-of-sample choice problem, leading to a set of possible predictions.

Definition 2 (Prediction). Fix a theory T , observed choices cobs : D → X,
and a choice problem S 6∈ D. An option x ∈ S is a prediction for S under T
if there exists a choice function c ∈ CT that coincides with cobs on D and has
c(S) = x.

The following proposition shows that testing an out-of-sample prediction
boils down to testing the consistency of an extended observed choice function.

Proposition 1. Consider a theory T , observed choices cobs : D → X, a choice
problem S 6∈ D, and an option x ∈ S. Define D = D ∪ {S} and c̄obs : D → X

by c̄obs(T ) = cobs(T ) for all T ∈ D and c̄obs(S) = x. Then x is a prediction for
S under T if and only if c̄obs is consistent with T .

Therefore, addressing the question of out-of-sample predictions reduces to
identifying the testable implications of a theory on limited data.

3. A Potential Pitfall

As is well-known, the Independence of Irrelevant Alternatives (IIA) cap-
tures the empirical content of rationality only if the data set is rich enough
(e.g. including all choice problems of cardinality two and three). The Strong
Axiom of Revealed Preference (SARP) was identified to characterize ratio-
nality independently of the data one has collected. Similarly, more work is
needed to capture the testable implications of bounded rationality theories, as
the full-data characterizations that have been found need not apply to limited
data.

Before working towards that end in Section 4, we note that the recent
literature on bounded rationality has overlooked a potential pitfall one should
keep in mind when testing theories in the presence of limited data. To test
Categorization with limited data, MM12 (Definition 4) investigate under which
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conditions on observed choices do there exist asymmetric relations �, P such
that (4) holds for S ∈ D, instead of S ∈ P(X). Similarly, for Shortlisting,
MM07 (Corollary 1) study when there exist asymmetric relations R1, R2 such
that (2) holds for S ∈ D. To test Limited Attention, Tyson (2013) seeks
conditions guaranteeing the existence of an ordering P and a consideration
set mapping defined on D such that (3a) and (3b) hold for S, T ∈ D. In
other words, the conditions describing how choices emerge under a theory are
checked only over observed problems.

Such an approach may seem natural at first, but one has to be mindful
that it may yield ‘false positives,’ as it may be impossible to extend observed
choices into a complete choice function under the theory. This extensibility
issue affects prevalent theories of bounded rationality, leading to a potentially
dangerous methodological pitfall.

Example 1 (Categorization and Shortlisting). Take X = {a, b, d, e, f, g}, D =

{ab, bd, ad, abde, abdf, abdg}, and cobs : D → X given by:

S ab bd ad abde abdf abdg

cobs(S) a b d a b d

It may seem that this data is consistent with Categorization, since (4) holds
for S ∈ D using the shading relation �̇ defined by {e}�̇{d}, {f}�̇{a} and
{g}�̇{b}, and the preference Ṗ defined by aṖ bṖ dṖ a and xṖy for x ∈ {a, b, d}
and y ∈ {e, f, g}. However, the data is in fact inconsistent with Categoriza-
tion. To see this, suppose to the contrary that cobs can be extended to a complete
choice function c which can be derived through (4) via some shading relation
� and some preference P . Since a does not belong to a dominated category
in {a, b, d, e}, it cannot belong to a dominated category in either {a, b, d} or
{a, d}. In view of this and cobs({a, d}) = d, it must be that dPa. Applying
the symmetric reasoning for each of b and d, it must be that aPbPdPa and all
three alternatives survive elimination in {a, b, d}. This leads to a contradic-
tion, since {a, b, d} has no P -maximal element.4 A similar difficulty arises for

4As seen here, there is an extensibility problem as soon as the set of conceivable problems
contains {a, b, d} in addition to D. Thus extensibility can be an issue even if the set of
conceivable choice problems is a strict subset of P(X).
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Shortlisting: (2) holds for S ∈ D using Ṙ2 = Ṗ and Ṙ1 defined by eṘ1d, fṘ1a

and gṘ1b. However, cobs is inconsistent with Shortlisting, since consistency
with that theory implies consistency with Categorization.

Example 2 (Limited Attention). Take X = {a, b, d, e, f}, D = {ae, ef, abd, ade,
bde, bef}, and cobs : D → X given by:

S ae ef abd ade bde bef

cobs(S) e f d a b e

It may seem that this data is consistent with Limited Attention, since (3a) and
(3b) hold for S, T ∈ D using the preference ordering Ṗ defined by aṖdṖ eṖ bṖ f ,
and the consideration sets Γ̇(S) consisting of cobs(S) and its Ṗ -lower contour
set. However, cobs is in fact inconsistent with Limited Attention. To see this,
suppose to the contrary that cobs can be extended to a complete choice function
c which satisfies (3a) for some preference P and consideration set mapping Γ

satisfying (3b). We first show that d ∈ Γ({a, d, e}) and b ∈ Γ({b, e, f}), which
would then imply that aPd and ePb. Suppose instead that d 6∈ Γ({a, d, e}); the
argument for b is analogous. Property (3b) implies Γ({a, e}) = Γ({a, d, e}),
requiring the choice from {a, e} to be a, a contradiction. Consider the out-of-
sample problem {b, d}. The ranking aPd implies a 6∈ Γ({a, b, d}), which in turn
implies that Γ({b, d}) = Γ({a, b, d}). Hence the choice from {b, d} is d. At the
same time, the ranking ePb implies e 6∈ Γ({b, d, e}), which in turn implies that
Γ({b, d}) = Γ({b, d, e}). Hence the choice from {b, d} is b, a contradiction.

Being subject to this pitfall is not a weakness of a theory. Rather, the moral
is that one cannot limit the test of consistency to finding a story that explains
the observed data, without thinking whether that story extends. This extensi-
bility problem is precisely avoided (for any theory) by employing Definition 1.

4. Testable Implications of Some Leading Theories

Despite recent progress, Section 3 shows that there is still incomplete under-
standing of how to test bounded rationality theories when data is incomplete.
There is a need for a systematic test of consistency with a given theory, going
beyond the specific arguments that were tailor-made for each dataset in the
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previous section. We now address this matter for some prominent theories,
highlighting how their existing full-data characterizations are missing some
testable implications when applied to incomplete datasets.

4.1 Limited Attention

Under Limited Attention, a DM maximizes a preference, but only over his
consideration set. Thus, observing that x is chosen from S does not imply
that x is better than y ∈ S, because the DM may not have paid attention
to y. One can only infer that x is revealed preferred to alternatives in his
consideration set at S, which itself must be inferred from the choice data. If
one wishes to test Limited Attention, then what is all the information about
preferences that can be recovered from observed choices?

Suppose the DM picks x out of S, but a different option when dropping z
from S. Such an IIA violation (where sets differ by one element) is consistent
with Limited Attention only if the DM pays attention to z in S and prefers x
to z (if z were ignored, then removing it would not affect choice). Studying full
datasets, MNO12 show that these choice patterns contain all the information
that can be gleaned. This need not be the case with limited data. Suppose
we only see a more general IIA violation, where cobs(S) 6= cobs(S \ {a, b}) for
two options a, b ∈ S that differ from cobs(S). Extending the reasoning above,
a or b must receive attention in S and is thus revealed worse than cobs(S).

More subtly, information can be gleaned from any WARP violation. Sup-
pose cobs(S) 6= cobs(S

′), and yet both options are in S ∩ S ′. If the DM does
not pay attention to any option in S \S ′ (resp., S ′ \S) when choosing from S

(resp., S ′), then he must choose cobs(S) (resp., cobs(S ′)) from S ∩ S ′. To avoid
a contradiction, it must be that the DM pays attention to some option of S\S ′

when choosing from S (with cobs(S) revealed preferred to it), or that he pays
attention to some option of S ′\S when choosing from S ′ (with cobs(S ′) revealed
preferred to it). This captures the theory’s behavioral content, as seen next.

To introduce the result, let RLA(cobs) be the following set of restrictions on
a relation P : for every S, S ′ ∈ D where observed choices differ and belong to
S∩S ′, we have cobs(S)Py for some y ∈ S\S ′ or cobs(S ′)Py′ for some y′ ∈ S ′\S.
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Proposition 2. The observed choice function cobs : D → X is consistent with
Limited Attention if and only if there is an acyclic relation satisfying RLA(cobs).

With a full dataset, as studied in MNO12, the content of the theory is fully
captured by those restrictions in RLA corresponding to nested choice problems
which differ by only one element; the other restrictions become redundant.

As can easily be checked, the set of restrictions RLA associated to observed
choices in Example 2 are: (i) aPd, (ii) ePb, (iii) dPb or aPe, (iv) bPd or
ePf , and (v) dPa or bPe. Clearly the first two constraints contradict the
last one, confirming our earlier observation that this dataset is not consistent
with Limited Attention. Because Proposition 2 provides a systematic test,
we can also discover something new: that observed choices in Example 1 are
consistent with Limited Attention. Indeed, it is not difficult to check that the
constraints are: (i) aPe or bPf , (ii) aPe or dPg, (iii) bPf or dPg, (iv) bPd
or bPf , (v) dPa or dPg, and (vi) aPb or aPe. Note, for instance, that all of
these restrictions are satisfied if aPe, bPf , and dPg (which is acyclic).

4.2 Categorization and Rationalization

As established in the literature, Rationalization and Categorization are
both observationally equivalent to maximizing a complete, asymmetric relation
P over a psychological filter Ψ, i.e., a consideration set mapping satisfying the
following ‘filter’ property: if the DM pays attention to an element in a set,
then he also pays attention to it in any subset in which it is contained.

Before studying the DM’s preference, we first examine what the choice
data reveals about his consideration set. In a choice problem S, the fil-
ter property implies that he certainly pays attention to all the elements in
ΨCFS(S) := {cobs(T ) | S ⊆ T, T ∈ D, cobs(T ) ∈ S}. CFS13 introduced ΨCFS

to characterize their theory under complete data. When data is limited, ΨCFS

may not qualify as a filter, as it may be empty-valued for some out-of-sample
choice problems. However, if the data is indeed consistent with Rationalization
and Categorization, then there must be some extension c of observed choices
under the theory. By the filter property, c(X) must be paid attention to in
any choice problem in which it is contained. Similarly, c(X \{c(X)}) is paid
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attention to in any subset of X\{c(X)} in which it is contained. By iteration,
we can construct a valid psychological filter by adding only the O-minimal
alternative to ΨCFS, where O ranks c(X) at the bottom, c(X \{c(X)}) right
above c(X), etc. Of course, the DM might consider additional alternatives.
Nonetheless, the next result shows that there is no loss of generality from
representing his choices using a ‘minimal’ filter constructed as above.

Lemma 1. For any complete asymmetric preference P , there exists a psycho-
logical filter Ψ such that cobs is explained by (Ψ, P ) if and only if there exists
an ordering O such that cobs is explained by (ΨO, P ), where ΨO is given by

ΨO(S) = {arg min
O
S} ∪ {cobs(T ) | S ⊆ T, T ∈ D, cobs(T ) ∈ S}, ∀S ∈ P(X).

We now turn our attention to the DM’s preference. As established in MM12
and CFS13, a choice function c is consistent with Categorization/Rationalization
if and only if it is representable using some filter and the preference P derived
from pairwise choices: xPy if c({x, y}) = x. With limited data, not all pair-
wise choices may be observed. However, even if {x, y} is not in the dataset,
we could infer under these theories that the DM would pick x from {x, y} if
y = cobs(S) ∈ R ⊂ S and cobs(R) = x, for some R, S ∈ D. This is because for
complete datasets, these theories are characterized by the weak-WARP axiom,
which requires that if y were the choice from both {x, y} and a superset thereof,
then x cannot be chosen from a choice set that is ‘in between.’ Given this, let
P ∗ be the (possibly incomplete) relation defined by xP ∗y if cobs({x, y}) = x or
the conditions y = cobs(S) ∈ R ⊂ S and x = cobs(R) hold for some R, S ∈ D.

To summarize our analysis so far, if cobs is consistent with Categoriza-
tion/Rationalization, then there exist an ordering O and a completion P of
P ∗ such that cobs is explained by (ΨO, P ). Notice that O must satisfy the
following set of restrictions, denoted RCR(cobs):

(1) for each R ∈ D and x ∈ R, if xP ∗cobs(R), then xOy for some y ∈ R;

(2) for each S, T ∈ D and x ∈ X, if P ∗ is cyclic on {x, cobs(S), cobs(T )} ⊆
S ∩ T , then xOcobs(S) or xOcobs(T ).

Necessity of (1) follows because the O-minimal element in R belongs to ΨO(R),
and thus cannot be preferred to cobs(R). As for necessity of (2), observe that if
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x were O-minimal in such a triple {x, cobs(S), cobs(T )}, then it would be impos-
sible to define the choice from that set, as all three options would be paid atten-
tion to under ΨO. Finding an acyclic relation satisfying RCR(cobs) provides a
more stringent test than weak-WARP.5 The next result shows, moreover, that
this test captures the empirical content of Categorization/Rationalization if
P ∗ is complete over the set of chosen elements (that is, if x = cobs(S) and
y = cobs(S

′) for some S, S ′, then xP ∗y or yP ∗x). This would be the case, for
instance, if D includes all binary choice problems, as assumed in MM12.

Proposition 3. If cobs is consistent with Categorization/Rationalization, then
there is an acyclic relation satisfying RCR(cobs). The converse holds when P ∗

is complete over the set of chosen elements.

As illustration, we can apply this result to confirm our earlier observation
that the data in Example 1 is not consistent with Categorization/Rationalization.
In this case, P ∗ is given by aP ∗bP ∗dP ∗a, which is indeed complete over the set
of chosen elements. Looking just at the restrictions coming from part (2) of
the definition of RCR, one obtains (i) dOa or dOb, (ii) aOb or aOd, and (iii)
bOa or bOd, which already cannot be satisfied by an acyclic relation.6 Indeed,
if such a relation exists, then the restrictions would be satisfied by an ordering
a fortiori, and there would be an element which is bottom-ranked. Yet each
of a, b and d are required to be ranked above one of the other elements. The
enumeration procedure in the next section, which provides a simple, system-
atic way of testing whether certain collections of restrictions can be satisfied
by an acyclic relation, builds on this idea.

What if P ∗ is not complete over chosen elements? Then one must make an
uninformed guess as to the DM’s choice from those unobserved binary prob-
lems. Proposition 3 can be extended as follows, to apply to any dataset: cobs is
consistent with Categorization/Rationalization if and only if there is an acyclic

5Consider a weak-WARP violation with y picked from both V and {y, z}, z picked from
U , and {y, z} ⊂ U ⊂ V . This implies zP ∗yP ∗z, and leads to contradictory constraints (yOz
and zOy) when applying (2) using S = T = U with x = y and S = T = V with x = z.

6Note that (i) comes from taking S = {a, b, d, e}, T = {a, b, d, f} and x = d; (ii) comes
from taking S = {a, b, d, f}, T = {a, b, d, g} and x = a and (iii) comes from S = {a, b, d, e},
T = {a, b, d, g} and x = b.
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O satisfying RCR(cobs) for some P̄ ∗ that completes P ∗ over chosen elements.
To illustrate this last point, we will now show that observed choices from

Example 2 are consistent with Categorization/Limited Attention. In that
case, P ∗ is not complete over observed choices, as we only have fP ∗e and
eP ∗a. Pick any completion P̄ ∗ of P ∗ which is transitive. In this case, one
can trivially find an acyclic O satisfying RCR(cobs) for P̄ ∗, simply by taking
O = P̄ ∗. Indeed, part (2) of the definition of RCR does not kick in unless
there are cycles, and part (1) holds by taking y = cobs(R) in each case. A more
general result emerges here: any dataset for which P ∗ is acyclic is consistent
with Categorization/Rationalization (and even the more restrictive theory of
Order Rationalization, as seen in the Online Appendix).

5. Testing Generalized SARP Conditions By Enumeration

Section 4 presents testable implications for Limited Attention, Catego-
rization and Rationalization in terms of the existence of an acyclic relation
satisfying restrictions inferred from observed choices. This is similar in spirit
to the testing of rationality. As is well known, observed choices are consis-
tent with rationality if and only if there exists an acyclic relation P that re-
spects Samuelson’s revealed preference, that is, satisfying the set of restrictions
RR(cobs) given by: for all S ∈ D, if x = cobs(S) then xPy for all y ∈ S \ {x}.

With all restrictions of the form xPy for pairs x, y, finding whether there
exists an acyclic relation satisfyingRR boils down to checking whether Samuel-
son’s revealed preference is itself acyclic, that is, SARP. Restrictions in RLA

and RCR are more elaborate (e.g., xPy or zPw), and require taking a decision
on the ‘or’ condition prior to checking for acyclicity. Is testing these theories
thus significantly more difficult than testing rationality?

For insight into this question, consider an algorithm to test SARP. Start by
making a guess, called x1, as to which option is least preferred in X. Clearly
this guess x1 cannot dominate another element according to Samuelson’s re-
vealed preference. This reduces the problem at hand, allowing to restrict
attention to X \ {x1}. Next, make a guess, x2, as to which element is least
preferred in X \{x1}, etc. This enumeration procedure succeeds if at least one
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guess, an option which does not Samuelson-dominate anything that remains,
is available in each round. Success is thus equivalent to SARP. More gener-
ally, we can define the enumeration procedure for any guess correspondence
G : P(X) → P(X) ∪ {∅}, where G(S) ⊆ S is the set of possible guesses for
each S ⊆ X.

Definition 3 (Enumeration procedure using G). Iteratively pick an element in
G(X \{x1, . . . , xk−1}) and call it xk, for each k = 1, . . . , |X|. The enumeration
procedure succeeds if some choice of xk in each step results in an enumeration
of X, i.e. G(X \ {x1, . . . , xk−1}) is nonempty for each k.

In the case of rationality, this procedure has two desirable features which
make testing simple.7 First, determining whether there is a valid guess in
each step is easy, since each G(S) is simply the set of alternatives that do not
Samuelson-dominate any other element of S. Second, we will show that the
procedure’s success is path independent : it does not depend on which guess
is chosen when there are multiple possibilities. Formally, path independence
means that success occurs for any guess of xk ∈ G(Xk) in each step, if and
only if success occurs for some guess of xk ∈ G(Xk) in each step. Thus
an experimenter need not worry that the procedure will fail if he makes an
unlucky guess along the way, but would have succeeded had he made all the
‘right’ guesses.

At least under some conditions on the dataset, several bounded rationality
theories can be tested using an enumeration procedure with the same desirable
properties, making these theories roughly as easy to test as rationality. To
establish this result, for any collection of sets T ⊆ P(X), denote by (x, T ) the
restriction on a relation that there exists a set T ∈ T for which x is ranked
above all the alternatives in T .8 We call such restrictions elementary.

7The importance of simple tests is first discussed in Varian (1982), who uses the criterion
of computational simplicity. With these two features, the enumeration procedure requires a
number of steps which is ‘polynomial’ instead of ‘exponential’ in the size of one’s dataset.

8Finding an ordering satisfying general restrictions can be thought of as an extension of
the topological sort problem in computer science (which itself is known to be equivalent to
checking SARP). Some such extensions have been studied in the context of job-scheduling
problems with waiting conditions; see Möhring et al. (2004) who provide a fast algorithm
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Proposition 4. Let R be a collection of elementary restrictions. There is an
acyclic relation satisfying R if and only if the enumeration procedure succeeds
using the guess correspondence

G(S) = {x ∈ S | If (x, T ) ∈ R, then S ∩ T = ∅ for some T ∈ T }. (6)

Moreover, success is path independent.

The idea is that the enumeration constructs the relation from the bottom
up, by selecting in each step from the set of candidate minimal alternatives.

For Categorization and Rationalization, notice that all the restrictions in
RCR are elementary. So long as P ∗ is complete over the set of chosen elements
(e.g., the dataset contains all binary choice problems, as assumed in MM12),
these two theories can be tested using a simple enumeration procedure, just
like rationality; the test is path independent thanks to Proposition 4, and
determining whether a valid guess exists in each step is easy. Absent of condi-
tions on the dataset, however, a simple test will not always exist: Proposition
10 in the Online Appendix shows that testing consistency of observed choices
with these theories is in general NP-hard (that is, there exist worst-case sce-
nario datasets for which testing consistency is difficult). Of course, if there
are only few pairs cobs(S), cobs(S

′) for which P ∗ is incomplete, then it may well
be practical to test consistency by checking whether the enumeration proce-
dure succeeds for some extension of observed choices to those binary choice
problems.

For Limited Attention, restrictions in RLA correspond to pairs of sets that
cause a WARP violation. The restrictions are elementary when those sets
are related by inclusion, but not otherwise. However, all the non-elementary
restrictions become redundant whenever the dataset is closed under intersec-
tion (or at least contains the intersection of any two choice problems causing
a WARP violation).9 For the same reasons as above, the testing of Limited
Attention is thus tractable not only for full datasets (as in MNO12), but also

for scheduling given conditions of the type “job i comes before at least one of the jobs in a
set J .” These constraints correspond to the case where the sets in T are all singletons.

9Indeed, if S and S′ cause a WARP violation, then S ∩ S′ causes a WARP violation
with S or S′. Suppose it occurs with S. Then cobs(S) must be preferred to some element of
S \ S′, automatically satisfying the ‘or’ condition from S and S′.
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for incomplete datasets satisfying the intersection property. There is no hope,
however, of finding a tractable test that applies to all datasets: Proposition
9 in the Online Appendix shows that testing consistency of observed choices
with Limited Attention is in general NP-hard. Proposition 2 can still be useful
to test consistency of observed choices for moderate datasets, trying different
ways of resolving ‘or’ conditions before applying the enumeration procedure.

6. Identification and Out-of-Sample Predictions

Even under a given theory, there may be multiple ways to describe observed
choices (in the same way that a rational choice function may admit multiple
utility representations). Nonetheless, the data may reveal conditions that all
representations must satisfy. Under Limited Attention, for example, when can
a policymaker infer that any preference P rationalizing the data has yPx?

Our methodology is also helpful for such identification problems (in addi-
tion to allowing tests for out-of-sample predictions, thanks to Proposition 1).
Once a theory’s content is captured through the existence of an acyclic relation
O satisfying a set of restrictions R, we can check whether yOx must hold in
all representations. One simple, systematic way to do this is to test whether it
is impossible to find an acyclic relation satisfying both R and xOy. Since the
latter is an elementary restriction, identification is not any more difficult than
testing consistency. Inferences about O then translate into identification of the
related component(s) of the theory. This is straightforward, for instance, in
the case of Limited Attention where O corresponds to the DM’s preference P .
Translating inferences on O into inferences on preferences is less obvious in the
case of Categorization/Rationalization since O does not immediately relate to
the DM’s preference. However, we prove in Proposition 5 of the Appendix
that b is revealed preferred to a under these theories whenever cobs({a, b}) = b

and bOa in all acyclic O satisfying RCR(cobs).10

The next two examples illustrate identification and out-of-sample predic-
tions for the theories studied so far.

10This result holds even if P ∗ is incomplete.
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Example 3 (Limited Attention). Consider the hypothetical situation with the
same choices as in Example 2, except that the choice problem {b, e, f} is not
observed, that is

S ae ef abd ade bde

cobs(S) e f d a b

As can easily be checked, the set of restrictions RLA associated to these ob-
served choices are: (i) aPd, (ii) dPa or bPe, and (iii) dPb or aPe. By
Proposition 2, this dataset is consistent with Limited Attention, as the rela-
tion P defined by aPd, bPe, and dPb is acyclic and satisfies the restrictions.

If we were to simply apply the full-data revealed preference identified by
MNO12, then we would only conclude that the DM prefers a over d. This
corresponds to restriction (i). By using the appropriate test for limited data,
we can infer two more revealed preferences, namely that bPe and aPe. Indeed,
since aPd according to (i), restriction (ii) reduces to bPe. From (iii), either
d is preferred to b, or a is preferred to e. Even in the former case, transitivity
implies the DM prefers a to e, because he prefers a to d and prefers b to e.

As for out-of-sample prediction, observe from Proposition 2 that only b

and f qualify as possible predictions for the problem {b, e, f} (we have already
shown after Proposition 2 that choosing e is inconsistent with the theory). This
is easy to see, since choosing either b or f would not cause any additional
WARP violations, leaving the set of restrictions RLA unchanged.

Example 4 (Categorization/Rationalization). Consider the observed choices

S ab ad ae bd be de abd abe bde

cobs(S) b d a d e e b a d

We apply Proposition 3 to show that this data is consistent with Catego-
rization/Rationalization. Notice first that observed choices yield dP ∗b, bP ∗a,
aP ∗e, eP ∗d, eP ∗b, and dP ∗a, which is complete. Restrictions in RCR are given
by (i) dOa or dOb, (ii) bOa or bOe, and (iii) eOb or eOd.11 The enumeration
procedure offers a simple way to implement Proposition 3. The procedure first

11Note that (i) comes from taking R = {a, b, d} and dP ∗b; (ii) comes from taking R =
{a, b, e} and bP ∗a; and (iii) comes from taking R = {b, d, e} and eP ∗d.
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looks for an option not appearing at the ‘top’ of one of the ranking restrictions,
which will serve as the O-minimal element. In this case, a is the only possibil-
ity (that is, G({a, b, d, e}) = {a}), implying that restrictions (i) and (ii) above
count as being satisfied in the next steps. The procedure then looks among the
remaining options for one that does not appear at the top of the surviving re-
striction (iii). The possibilities are now b and d (that is, G({b, d, e}) = {b, d}).
Having satisfied the final remaining restriction, the procedure succeeds.

To illustrate identification, note that even though cobs({a, d}) = d, options
a and d are not comparable according to the revealed preference identified for
full data in CFS13. An appropriate test for limited data, however, allows us
to correctly infer that d is revealed preferred to a. We just concluded in the
paragraph above that any acyclic O satisfying RCR(cobs) must rank a at the very
bottom. The revealed preference then immediately follows from Proposition 5,
which was discussed before Example 3.

To illustrate how we can make predictions, consider the out-of-sample choice
problem {a, d, e}. Augmenting observed choices by assuming the DM picks op-
tion a (resp., d) generates one additional elementary restriction: dOa or dOe
(resp., eOa or eOd). The enumeration procedure still succeeds, just as before,
and so options a and d are each valid predictions. However, we can also infer
that the DM would not pick e. Indeed, the enumeration procedure fails in its
first step if one adds the elementary restriction aOd or aOe (as all options
would appear at the ‘top’ of at least one constraint). Notice that the weak-
WARP property is satisfied when augmenting cobs by assuming that d is picked
from {a, c, d}. There is thus a risk for wrong predictions if one is not mindful
of the fact that weak-WARP does not capture the empirical content of Catego-
rization/Rationalization when data is incomplete, as discussed in Section 3.

7. Concluding Remarks

We have studied some leading theories in this paper, first capturing their
testable implications through generalized SARP conditions, and then explor-
ing how their testing compares to that of SARP. This approach should be
applicable to other theories as well. A bounded rationality theory often in-
cludes an ordering in its description (e.g. as a preference or salience ranking)
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or may have an observationally equivalent formulation that does (as we saw
for Categorization and Rationalization). A natural starting point is to try to
express the theory’s testable implications in terms of restrictions that data
imposes on that relation, and see when they are of an elementary form.

We illustrate this approach further in the Online Appendix, where we pro-
vide characterization results for the following theories: (i) Order Rationaliza-
tion (CFS13) restricts the preference in Rationalization to be an ordering; (ii)
Consistent Reference Points posits that the DM views one alternative in each
choice problem as the reference point and maximizes a reference-dependent
preference ordering, with the consistency requirement that the reference point
in a set remains the reference in subsets; and (iii) the class of Minimal Con-
sideration theories, where each theory is indexed by a function k that maps
a choice problem S into an integer between 1 and |S|. The DM maximizes
an ordering over his consideration set Γ(S), which must contain at least k(S)

elements. The function k bounds the extent of the DM’s ‘mistakes’, and can
model, for instance, a DM who always chooses from the top quintile, or is
overwhelmed by large choice problems. For all the above theories, Proposi-
tion 4 applies, as the testable implications are captured by the existence of
an acyclic relation satisfying elementary restrictions, and consistency can be
checked using a simple enumeration procedure regardless of the dataset.
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Appendix

The simple proof of Proposition 1 is left to the reader.

Proof of Proposition 2 Necessity. The argument appears in the main text.
Sufficiency. Suppose an acyclic relation satisfying RLA(cobs) exists, and

let P be a transitive completion (so P still satisfies RLA(cobs)). We define Γ :

P(X)→ P(X). For S ∈ D, Γ(S) = {cobs(S)} ∪ {x ∈ S|cobs(S)Px}; for S 6∈ D,

Γ(S) =

{
Γ(T ) if S ⊆ T, T ∈ D, and Γ(T ) ⊆ S

S otherwise.

Clearly Γ(S) 6= ∅ for any S ∈ P(X) and the P -maximal element in Γ(S) is
cobs(S) for any S ∈ D. We show Γ is well-defined and satisfies (3b).

Suppose by contradiction that Γ is not well-defined for some S. This means
that for some S 6∈ D, there exist T, T ′ ∈ D such that S ⊆ T ∩ T ′ with
Γ(T )∪Γ(T ′) ⊆ S, but Γ(T ) 6= Γ(T ′). This implies cobs(T ) 6= cobs(T

′). Consider
any y ∈ T \ T ′. Then, since S ⊆ T ′, y ∈ T \ S. Moreover, since Γ(T ) ⊆ S, we
know y ∈ T \ Γ(T ). By definition of Γ(T ) for T ∈ D, this means yPcobs(T ).
Similarly, if y ∈ T ′ \ T , we conclude yPcobs(T ′), contradicting that P satisfies
RLA(cobs). To show Γ satisfies (3b), consider S ∈ P(X) and x ∈ S \Γ(S). We
prove Γ(S \ {x}) = Γ(S) in each of the four possible cases:

Case 1: S \{x}, S ∈ D. Since S ∈ D, and x 6∈ Γ(S), we know xPcobs(S). Sup-
pose that Γ(S\{x}) 6= Γ(S). Then cobs(S) 6= cobs(S\{x}). ApplyingRLA(cobs)

for choice problems S and S \ {x}, we conclude cobs(S)Px, a contradiction.

Case 2: S \ {x} ∈ D, S 6∈ D. Since S \ {x} ∈ D, we know Γ(S \ {x}) =

cobs(S \ {x}) ∪ {y ∈ S|cobs(S \ {x})Py}. Since S \ Γ(S) 6= ∅, there exists
T ∈ D with S ⊆ T and Γ(T ) ⊆ S. Because T ∈ D, zPcobs(T ) for all
z ∈ T \ S. Since Γ(S) = Γ(T ), we know x ∈ T \ Γ(T ). Hence xPcobs(T ). If
Γ(S\{x}) 6= Γ(S) = Γ(T ), then cobs(S\{x}) 6= cobs(T ) contradictingRLA(cobs)

for the pair of sets T and S \ {x}.

Case 3: S\{x} 6∈ D, S ∈ D. Since S ∈ D, Γ(S) = cobs(S)∪{y ∈ S|cobs(S)Py}.
If x ∈ S \ Γ(S) then Γ(S) ⊆ S \ {x}, so by construction Γ(S \ {x}) = Γ(S).
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Case 4: S \ {x}, S 6∈ D. Since S \ Γ(S) 6= ∅, there exists T ∈ D with S ⊆ T

and Γ(T ) ⊆ S. Since x ∈ S \ Γ(S), then Γ(T ) = Γ(S) ⊆ S \ {x} and so
Γ(S \ {x}) = Γ(T ) by construction, and equals Γ(S) by transitivity.

Proof of Lemma 1 It is easy to check that ΨO is a filter; hence suffi-
ciency follows by taking Ψ = ΨO. For necessity, let c be the extension of
cobs emerging under (Ψ, P ). Define the ordering O by xnO · · ·Ox1, where
xk = c(X \ {x1, . . . , xk−1}) for each k = 1, . . . , n. By the filter property and
the fact that one pays attention to chosen elements, ΨO(S) ⊆ Ψ(S) for all
S. This implies that for any S ∈ D, the observed choice cobs(S) remains
P -maximal in ΨO(S). To conclude, we show (ΨO, P ) deliver a well-defined
choice everywhere. Fix any T ⊂ X. Applying ΨO ⊆ Ψ to S = ΨO(T )

yields ΨO(ΨO(T )) ⊆ Ψ(ΨO(T )) ⊆ ΨO(T ). Now using the filter property,
ΨO(ΨO(T )) = ΨO(T ), and by squeezing, Ψ(ΨO(T )) = ΨO(T ). Then ΨO(T )

has a well-defined P -maximal element since Ψ(ΨO(T )) does.

Proof of Proposition 3 Necessity. The argument appears in the main text.
Sufficiency. Suppose an acyclic relation satisfying RCR(cobs) exists. Let O

be a transitive completion of this relation (hence O still satisfes RCR(cobs)).
We now complete P ∗ as follows (and use that completion in the remainder

of the proof). If there exist x, y ∈ X such that neither xP ∗y nor yP ∗x hold,
then note, by assumption on P ∗, that it cannot be that both x, y are in the
image of cobs. If one of these, say x, satisfies x = cobs(S) for some S ∈ D, then
we add xP ∗y; otherwise, we can arbitrarily add exactly one of xP ∗y or yP ∗x.

Using Lemma 1, it remains to show: (i) P ∗ is asymmetric, (ii) P ∗ has a
well-defined choice on ΨO(S) for each S ⊆ X, and (iii) this choice coincides
with the data for S ∈ D. For (i), suppose yP ∗z and zP ∗y. By construction
of (the completed) P ∗, there must exist R,R′ ∈ D such that y = cobs(R),
z = cobs(R

′), and {y, z} ⊆ R∩R′. Taking x = y in restriction (2) of RCR(cobs)

implies yOz; but taking x = z implies zOy, a contradiction. For (ii), suppose
by contradiction that P ∗ has a top-cycle on ΨO(S). By completeness, there
must be a three-cycle xP ∗yP ∗zP ∗x. Suppose without loss that x is O-minimal
in the set {x, y, z}. Since y, z ∈ ΨO(S) they must be the respective choices
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from some supersets Ty, Tz of S. Since y, z are in the image of cobs, xP ∗y could
not have arisen from completing P ∗; hence x is in the image of cobs, implying
that zP ∗x also did not arise from the completion procedure. Since {x, y, z} ⊆
S ⊆ Ty∩Tz, this contradicts O satisfying restriction (2) in RCR(cobs). For (iii),
first note that cobs(S) ∈ ΨO(S) whenever S ∈ D. Suppose by contradiction
that cobs(T )P ∗cobs(S), for some T ∈ D such that cobs(T ) ∈ S ⊆ T . But by
definition of P ∗, we also have cobs(S)P ∗cobs(T ), a contradiction to (i). Finally,
suppose by contradiction that xP ∗cobs(S) for x = arg minO S. This cannot be
from completing P ∗, and contradicts restriction (1) in RCR(cobs).

Lemma 2. Let the guess correspondence G satisfy G(T ) ∩ S ⊆ G(S) for any
S ⊆ T . Success of the enumeration procedure using G is path independent.

Proof. Suppose there exists a successful enumeration x1, . . . , xn. For any S ⊆
X, let xk be the element of minimal index in S. Then S ⊆ Xk and so xk ∈
G(Xk) implies xk ∈ G(S). Thus G is non-empty valued and the enumeration
procedure succeeds independently of the sequence of guesses made.

Proof of Proposition 4 Suppose that the enumeration procedure using G
succeeds and gives x1, . . . , xn. We check that the ordering O defined by yOx
if x precedes y in the enumeration satisfies the restrictions in R. Consider a
restriction (xj, T ) ∈ R. Since xj ∈ G(Xj), Xj ∩T = ∅ for some T ∈ T . Hence
T ⊆ {x1, . . . , xj−1}, or xjOy for all y ∈ T , and O satisfies (xj, T ), as desired.
Finally, suppose there an acyclic relation O satisfying the restrictions in R. In
this case, we can complete O into an ordering that still satisfies R. Then G(S)

is nonempty for each S ∈ P(X), since it contains the O-minimal element in S.
Hence the procedure succeeds. Path independence follows from Lemma 2.

Proposition 5. Suppose cobs is consistent with Categorization/Rationalization,
and cobs({a, b}) = b. If bOa for all acyclic relations O satisfying RCR(cobs),
then b is revealed preferred to a under these theories.

Proof. We prove the result by contraposition. Let P be a complete asymmetric
relation and Ψ a psychological filter (see the first paragraph of Section 4.2)
such that aPb and the maximization of P over the filter generates a complete
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choice function c which coincides with cobs over observed choice problems.
Consider then the following enumeration of X: x1 = c(X), x2 = c(X \ {x1}),
x3 = c(X\{x1, x2}), etc. Let also O be the complete transitive relation defined
by xnOxn−1O . . . Ox1. For convenience, let Xi = {xi, xi+1, . . . , xn}, for all i.

In this paragraph, we show that O satisfies RCR(cobs), using P ∗ inferred
from cobs. We start by checking restrictions from part (1) of RCR. Suppose
R ∈ D and x = xi ∈ R with xiP

∗cobs(R) and yOxi for all y ∈ R \ {xi}.
Hence c(Xi) = xi, R ⊆ Xi, and it must be that cobs(R)Pxi. By xiP ∗cobs(R),
either cobs({xi, cobs(R)}) = xi or xiPcobs(R). Either way, the asymmetry of P
is violated. We then check restrictions from part (2) of RCR. Suppose that P ∗

is cyclic over R = {x, cobs(S), cobs(T )} ⊆ S∩T , with cobs(S)Ox and cobs(T )Ox.
Each of the pairwise relationships in xP ∗cobs(S)P ∗cobs(T )P ∗x comes either
from a binary choice problem, or the revealed preference of CFS13. Notating
x = xi, we know R ⊆ Xi and c(Xi) = xi, so using either source of P ∗ we
must also have xiPcobs(S)Pcobs(T )Pxi. Moreover, it must be that Ψ(R) = R,
meaning that the choice from Ψ(R) using P is not well-defined.

We conclude the proof by showing, by contradiction, that aOb. Suppose
instead that bOa, and let a = xj, and b = xk with k > j. But then c(Xj) = xj,
which is a. Hence Ψ({a, b}) = {a, b} and it must be that bPa, contradicting
the original premise of the proof.
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Online Appendix

This appendix presents further results and technical details for Bounded Ra-
tionality and Limited Datasets (by Geoffroy de Clippel and Kareen Rozen).
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A Our Methodology Applied to Additional Theories
We introduce additional theories in Section A.1, and show in Section A.2
how their empirical content can be captured by generalized SARP conditions,
that is, the existence of an acyclic relation that satisfies a set of restrictions
inferred from choices. Such results thus mirror those presented in Section 3
of the paper for Limited Attention and Categorization/Rationalization. In
Section A.3, we show that, for all these additional theories, restrictions are
elementary, and that making a valid guess in each step of the enumeration is
easy. As a consequence of our results in the paper, all these theories can thus
be tested through enumeration in a way that is roughly as easy as rationality.

A.1 Additional Theories

Order Rationalization (CFS13) is simply the variant of Rationalization where
the preference is required, in addition, to be an ordering.

Under Consistent Reference Points, the DM views one alternative in each
choice problem as his reference, and picks the best alternative according to
his reference-dependent preference ordering. Reference points are assumed to
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be consistent in the following sense: if x is the reference point in a choice
problem S, then x remains the reference point in subsets of S containing
x. This theory is essentially equivalent to Rubinstein and Salant’s theory of
Triggered Rationality, where the most salient alternative triggers the rationale
used to make a choice.1 It can also be seen as capturing a form of Ariely,
Lowenstein and Prelec’s ‘coherent arbitrariness’.2

The class of Minimal Consideration theories extends rational choice by
bounding from below the number of options considered. Theories in this class
are indexed by a function k that associates to each problem S an integer
between 1 and |S|. The DM uses an ordering P to pick the best element in
his consideration set Γ(S), which must contain at least k(S) elements. The
function k, which fixes a theory, limits the extent of a DM’s ‘mistakes.’ If
k(S) = |S|−1 for all S, then the DM always picks from the top two options in
a choice problem; if k(S) = d(1 − α)|S|e for all S, then the DM always picks
from the top α-percentile. Theories in this class can also capture a DM who
becomes overwhelmed in large choice problems, with k(S) decreasing in |S|.

A.2 Testable Implications via Generalized SARP Conditions

We start by studying the testable implications of Order Rationalization. As
in Rationalization, the choice from a set is also considered in subsets. Thus y
is revealed preferred to x, denoted y �∗OR x, if y is chosen in the presence of
x, which itself is the choice from a superset.3 Let ROR(cobs) be the collection
of restrictions that y is ranked above x for any x, y with y �∗OR x. The next
result shows that CFS13’s full-data characterization of Order Rationalization
in terms of the acyclicity of �∗OR extends to limited datasets.

1Rubinstein, Ariel and Yuval Salant (2006), Two Comments on the Principle of Revealed
Preference, mimeo. In addition, studying choice from lists, Rubinstein and Salant [Theoret-
ical Economics, 1, 3 (2006)] propose a model (their Example 4) where the DM’s preference
depends on the first element presented. Consistent Reference Points can be seen as the case
where the list is unknown, or subjectively determined.

2Ariely, D., G. Loewenstein, and D. Prelec. (2003), ‘Coherent Arbitrariness’: Stable
Demand Curves Without Stable Preferences, Quarterly Journal of Economics, 118, 73–106.

3This revealed preference is identified by CFS13 when D = P(X).
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Proposition 6. The observed choice function cobs is consistent with Order
Rationalization if and only if there is an acyclic relation satisfying ROR(cobs).

We now turn our attention to Consistent Reference Points. Since the DM’s
reference point satisfies IIA, it can be interpreted as maximal for a ‘salience
ordering’ �REF . If x is the reference point in a choice problem, then it remains
the reference point in smaller problems containing it; and the DM’s choices
in those problems all arise from maximizing the same preference ordering �x.
For any choice problem S and any x ∈ S, we say that a �∗S,x b if cobs(R) = a

for some R ⊆ S that contains b and x. This is the revealed preference under
the supposition that x is the DM’s reference point in S. Observe that when
�∗S,x is cyclic, then x cannot be the reference point in S, and therefore cannot
be the most salient alternative in S. Let RREF be the following collection of
restrictions on �REF : for each S ∈ P(X) and x ∈ S such that �∗S,x is cyclic,
there is y ∈ S \ {x} with y �REF x.

Proposition 7. The observed choice function cobs is consistent with Consistent
Reference Points if and only if there is an acyclic relation satisfying RREF .

Interestingly, the proof reveals that it is without loss of generality to require
that if x is preferred to y when the reference point is y, then x is also preferred
to y when the reference point is x.4

To understand the testable implications of Minimal Consideration theories,
we start by fixing a theory in this class, which is described by a given function
k : P(X)→ N. If the DM picks x from S, then there must exist at least k(S)−1

alternatives in S that are inferior to x. These restrictions are summarized
by Rk = {(cobs(S), TS) | S ∈ D}, where TS denotes the set of subsets of
S \ {cobs(S)} with exactly k(S)− 1 elements.

Proposition 8. For each k : P(X) → N, the observed choice function cobs

is consistent with k-Minimal Consideration if and only if there is an acyclic
relation satisfying Rk.

The proofs of Propositions 6-8 appear in Section A.4 below.
4Such a reference effect is related to status quo bias; see Tversky and Kahneman [The

Quarterly Journal of Economics, 106, 1039 (1991)] and Masatlioglu and Ok [Journal of
Economic Theory, 121, 1 (2005)].
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A.3 Enumeration

In this section, we apply Proposition 4 from the paper with Propositions 6-8
to show that testing each of the theories discussed in this appendix is roughly
as easy as testing rationality.

For Order Rationalization and Minimal Consideration theories, one sees
that Proposition 4 applies since, for any cobs, all the restrictions in ROR(cobs)

and Rk(cobs) are elementary. Thus, in each case, the existence of an acyclic
relation satisfying the restrictions can be tested using a path-independent
enumeration procedure. The associated guess correspondences derived from
(6) can be written as GOR(S) = {x ∈ S | If x �∗OR y then y 6∈ S} and
Gk(S) = {x ∈ S | For all R ∈ D, if x = cobs(R) then |R \ S| ≥ k(R) − 1}, 5

and hence it is easy to determine whether a valid guess exists in each step.
Strictly speaking, restrictions associated to Consistent Reference Points

are not elementary, but become elementary when reversed. Formally, let
R∗REF (cobs) be the following set of restrictions on a relation O: for each
S ∈ P(X) and x ∈ S such that �∗S,x is cyclic, there is y ∈ S \ {x} with xOy.
Existence of an acyclic relation satisfying R∗REF (cobs) is equivalent to the ex-
istence of an acyclic relation satisfying RREF (cobs) (simply by reversing the
relation). Restrictions in R∗REF (cobs) are elementary, and hence Proposition 4
applies once again. Thus consistency can be checked using a path-independent
enumeration procedure. The associated guess correspondence derived from (6)
can be written as GREF (S) = {x ∈ S | �∗S,x is acyclic},6 and hence it is easy
to determine whether a valid guess exists in each step.

A.4 Proofs

Proof of Proposition 6 Necessity was given earlier. For sufficiency, sup-
pose there is an acyclic relation satisfying ROR, and let P be a transitive com-

5Indeed, there exists T ∈ TR such that S ∩ T = ∅ if and only if one can find k(R) − 1
elements that are in R but not S.

6To see whether x ∈ GREF (S), first note that it suffices to check only those restrictions
(x, {y}y∈R\{x}) corresponding to R ⊆ S (as there trivially exists y ∈ R \ {x} such that
S ∩ {y} = ∅ when R * S). Next, if �∗R,x is cyclic for some R ⊂ S, then so is �∗S,x, and of
course there is no y ∈ S \ {x} such that S ∩ {y} = ∅.
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pletion (hence P still satisfies ROR). Define the filter ΨP as in Lemma 1 (using
P for O). CFS13 (Section 4.1) show that a filter is the set of rationalizable
elements for some rationales {Rk}k. Let c be the choice function arising from
(P, {Rk}k) under the theory. For any S ∈ D, we show c(S) = cobs(S). Suppose
otherwise; then ΨP (S) contains at least two elements, and c(S) must be the
observed choice from some T ∈ D with S ⊂ T . This implies cobs(S) �∗OR c(S).
But then cobs(S)Pc(S), contradicting P -maximality of c(S) in ΨP (S).

Proof of Proposition 7 Necessity was given earlier. For sufficiency, sup-
pose an acyclic relation satisfying RREF exists, and let �REF be a transi-
tive completion (hence �REF still satisfies RREF ). Let xi denote the i-th
maximal element according to �REF . For each i, let �xi

be a transitive
completion of �∗Xi,xi

. Such a completion exists, because xi being �REF -
maximal in Xi = {xi, xi+1, . . . , xn} implies �∗Xi,xi

is acyclic. The choice func-
tion c : P(X)→ X generated by these primitives will now be shown to coincide
with cobs on D. Take any S ∈ D. Let k be the smallest index such that xk ∈ S.
Then S ⊆ Xk. By definition of �xk

, cobs(S) �xk
y for all y ∈ S \{cobs(S)}.

Proof of Proposition 8 Necessity was given earlier. For sufficiency, sup-
pose an acyclic relation satisfying Rk exists, and let P be a transitive com-
pletion (P still satisfies Rk). Let Γ(S) be the (weak) P -lower contour set of
cobs(S) for S ∈ D, and Γ(S) = S otherwise. The choice function obtained by
maximizing P over Γ clearly extends cobs. Since P satisfies Rk, for any S ∈ D
there exists T ∈ TS with k(S)− 1 elements such that cobs(S)Px for all x ∈ T .
The condition |Γ(S)| ≥ k(S) thus holds for S ∈ D (it is trivial for S 6∈ D).

B Complexity Results

Proposition 9. The classic SAT problem is reducible in polynomial time into
the problem of determining whether observed choices are consistent with Lim-
ited Attention.

Proof. Fix an instance of SAT with a set L of literals and a set C of clauses.
Consider the abstract set of options X that contains all literals and their
negations, all clauses, plus three options denoted x, y, and z. Let Lc denote
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the set of literals in clause c and let the literal ¯̀ denote the negation of literal
`. Construct the following observed choice function:

S cy xz yz cxz xyz `¯̀x `¯̀xz `¯̀y cyLc

cobs(S) y x z z y ` x ¯̀ c

for all c ∈ C and all ` ∈ L. Applying Proposition 2, cobs is consistent with
Limited Attention if and only if there is an acyclic relation O on X such that:

(i) yOx, from cobs({y, z}) = z and cobs({x, y, z}) = y.

(ii) xOz, from cobs({`, ¯̀, x}) = ` and cobs({`, ¯̀, x, z}) = x.

(iii) For all c ∈ C: zOc, from cobs({x, z}) = x and cobs({c, x, z}) = z.

(iv) For all ` ∈ L: `Ox or ¯̀Oy, from cobs({`, ¯̀, x}) = ` and cobs({`, ¯̀, y}) = ¯̀.

(v) For all c ∈ C, there exists ` ∈ Lc such that cO`, from cobs({c, y}) =

y and cobs({c, y} ∪ Lc) = c.

(vi) For all ` ∈ L and c ∈ C, xO` or xO`′ or zOc, from cobs({c, x, z}) =

x and cobs({`, ¯̀, x, z}) = x.

Note that (vi) is redundant in view of (ii). These conditions are exhaustive,
since we have used all the pairs R,R′ ∈ D which cause a WARP violation.

We show SAT has a truthful assignment if and only if there exists an
accylic relation O satisfying (i)-(v). Suppose SAT has a truthful assignment.
We construct an ordering O by putting the false literals (in any order) at the
top of the ordering; then y; then x; then z; then the clauses; and then the true
literals (in any order). It is easy to check that O satisfies (i) to (v). Conversely,
suppose an acyclic relation satisfying (i)-(v) exists, and let O be a transitive
completion. We construct an assignment for SAT: if xO` then ` is true; if xO ¯̀

then ` is false; and if both `Ox and ¯̀Ox, then assign ` an arbitrary value. This
is well-defined since, by (i) and (iv), it cannot be that both xO` and xO ¯̀. By
(v), for all c ∈ C, there exists ` ∈ Lc such that cO`. Combined with (ii)-(iii),
we conclude ` is true. Hence the assignment is truthful for SAT.

Proposition 10. The classic SAT problem is reducible in polynomial time
into the problem of determining whether observed choices are consistent with
psychological filter theory.
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Proof. Fix an instance of SAT with a set L of literals and a set C of clauses.
Consider the abstract set of options X that contains all literals and their
negations, all clauses, plus options denoted w, w′, w′′, x, y, and one option zc
for each clause c. Let V be the sets of variables defining the literals, let Lc be
the set of literals appearing in clause c, and let ¯̀be the negation of the literal
`. Construct the following observed choice function:

S cx cy czc `c vx vy v̄x v̄y wx xzc cxy wxzc

cobs(S) x y c c x v v̄ y w zc c x

S vwxy vw′′xy v̄w′′xy v̄w′xy czcLc

cobs(S) x y x y zc

for all c ∈ C, all v ∈ V , and all ` ∈ Lc.
We show that SAT has a truthful assignment if and only if there exist a

filter Ψ and a relation P that generates a choice function c which coincides
with cobs on D. Suppose first that SAT has a truthful assignment. First we
pick a relation P such that yPx, xPw′′, yPw′′, and zcP`, for each clause c and
true literal ` in c, and aPb, for all a, b ∈ X such that cobs({a, b}) = a. Next we
consider the enumeration of the elements in X that starts with w′′; followed by
all true literals (in any order); followed by all clauses (in any order); followed
by x, y, w, and w′ (in that order); followed by zc for each clause c (in any
order); followed by all literals and their negations that did not already appear
(in any order). For each choice problem R, let Ψ(R) be the set containing the
first element in the enumeration that belongs to R plus any element a ∈ R

such that a = cobs(S) for some S ∈ D containing R. It is easy to check that
Ψ is a filter. It remains to show that the choice function generated by (Ψ, P )

coincides with cobs on D. This follows by definition of P on pairs. By definition
of Ψ, we have Ψ({c, x, y}) = {c} and Ψ({w, x, zc}) = {x}, and hence c = cobs

on these two choice problems as well. For each variable v, Ψ({v, w, x, y}) = {x}
or {v, x} depending on whether v comes after or before x. In either case, the
choice is x since xPv. For each variable v, Ψ({v̄, w′′, x, y}) = {w′′, x} and
Ψ({v, w′′, x, y}) = {w′′, y}. The choices are x and y, respectively, since xPw′′
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and yPw′′. For each variable v, Ψ({v̄, w′, x, y}) = {x, y} or {v̄, y} depending
on whether v̄ comes after or before x. In either case, the choice is y since yPx
and yP v̄. Finally, for each clause c, Ψ({c, zc} ∪ Lc) contains zc and a true
literals appearing in c. By definition of P , c({c, zc} ∪ Lc) = zc, as desired.

Conversely, suppose the filter Ψ and relation P generate a choice function
c which coincides with cobs on D. We can assume without loss of generality
that the DM pays attention to both options in each pair under Ψ, so that aPb
if and only if c({a, b}) = a for all a, b ∈ X. We construct an assignment for
SAT as follows. Consider the enumeration of X defined by x1 = c(X) and
xk = c(X \ {x1, . . . , xk−1}), for all k ≥ 2. Say a literal is true if it appears
before both x and y. (It need not be that every literal or its negation is true,
but that will not matter.) We show it is impossible to have both a literal and
its negation true. Suppose, on the contrary, that there is a variable v such
that both v and v̄ come before both x and y in the enumeration. Assume
that c({x, y}) = x so that xPy (a similar reasoning applies in the other case
where yPx). From the corresponding pairwise choices, we infer v̄Px and yP v̄.
Notice that x, y ∈ Ψ({v̄, x, y}) since x is picked out of {v̄, w′′, x, y} and y is
picked out of {v̄, w′, x, y}. Also, v̄ ∈ Ψ({v̄, x, y}) since v̄ is picked from the set
consisting of elements of X that succeed v̄ in the enumeration. We reach a
contradiction since P is cyclic over {v̄, x, y} and all three receive attention.

Given this well-defined truth assignment, we check that all clauses in SAT
are satisfied. Let c be a clause. Since x is picked out of {w, x, zc}, but also
zcPx and wPx, x must precede both w and zc in the enumeration. Otherwise,
the first element in {w, x, zc} appearing in the enumeration is the first element
in {w, zc} in the enumeration. That element must be paid attention when
choosing from {w, x, zc}, contradicting that x is picked. Similarly, c precedes
both x and y in the enumeration since c is picked out of {c, x, y}, xPc and yPc.
From c({c, zc}∪Lc) = zc and cPzc, we conclude that c is not the first element
of that choice problem to appear in the enumeration. If zc comes first, then zc
precedes c. This would contradict the fact that c precedes x and x precedes
zc. Hence, one of the literals in Lc appears first, and precedes c. That literal
is true since c precedes x and y. The assignment is thus truthful for SAT.
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