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Abstract

The method of sieves has been widely used in estimating semiparametric and nonparametric
models. In this paper, we first provide a general theory on the asymptotic normality of plug-in sieve
M estimators of possibly irregular functionals of semi/nonparametric time series models. Next, we
establish a surprising result that the asymptotic variances of plug-in sieve M estimators of irregular
(i.e., slower than root-T estimable) functionals do not depend on temporal dependence. Nevertheless,
ignoring the temporal dependence in small samples may not lead to accurate inference. We then
propose an easy-to-compute and more accurate inference procedure based on a “pre-asymptotic”
sieve variance estimator that captures temporal dependence. We construct a “pre-asymptotic” Wald
statistic using an orthonormal series long run variance (OS-LRV) estimator. For sieve M estimators
of both regular (i.e., root-T" estimable) and irregular functionals, a scaled “pre-asymptotic” Wald
statistic is asymptotically F' distributed when the series number of terms in the OS-LRV estimator
is held fixed. Simulations indicate that our scaled “pre-asymptotic” Wald test with F' critical values
has more accurate size in finite samples than the usual Wald test with chi-square critical values.
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1 Introduction

Many economic and financial time series (and panel time series) are nonlinear and non-Gaussian;
see, e.g., Granger (2003). For policy and welfare analysis, it is important to uncover complicated
nonlinear economic relations in dynamic structural models. Unfortunately, it is difficult to correctly
parameterize nonlinear dynamic functional relations. Even if the nonlinear functional relation among
the observed variables is correctly specified by economic theory or by chance, misspecifying distributions
of nonseparable latent variables could lead to inconsistent estimates of structural parameters of interest.
These reasons, coupled with the availability of larger data sets, motivate the growing popularity of
semiparametric and nonparametric models and methods in economics and finance.

The method of sieves (Grenander, 1981) is a general procedure for estimating semiparametric and
nonparametric models, and has been widely used in economics, finance, statistics and other disciplines.
In particular, the method of sieve extremum estimation optimizes a random criterion function over
a sequence of approximating parameter spaces, sieves, that becomes dense in the original infinite
dimensional parameter space as the complexity of the sieves grows to infinity with the sample size
T. See, e.g., Chen (2007, 2011) for detailed reviews of some well-known empirical applications of the
method and existing theoretical properties of sieve extremum estimators.

In this paper, we consider inference on possibly misspecified semi-nonparametric time series models
via the method of sieves. We focus on sieve M estimation, which optimizes a sample average of a
criterion function over a sequence of finite dimensional sieves whose complexity grows to infinity with the
sample size T'. Prime examples include sieve quasi maximum likelihood, sieve (nonlinear) least squares,
sieve generalized least squares, and sieve quantile regression. For general sieve M estimators with
weakly dependent data, White and Wooldridge (1991) establish the consistency, and Chen and Shen
(1998) establish the convergence rate and the VT asymptotic normality of plug-in sieve M estimators
of regular (i.e., VT estimable) functionals. To the best of our knowledge, there is no published work
on the limiting distributions of plug-in sieve M estimators of irregular (i.e., slower than v/T" estimable)
functionals. There is also no published inferential result for general sieve M estimators of regular or
irregular functionals for possibly misspecified semi-nonparametric time series models.

We first provide a general theory on the asymptotic normality of plug-in sieve M estimators of
possibly irregular functionals in semi/nonparametric time series models. This result extends that of
Chen and Shen (1998) for sieve M estimators of regular functionals to sieve M estimators of irregular
functionals. It also extends that of Chen and Liao (2008) for sieve M estimators of irregular functionals
with iid data to time series settings. The asymptotic normality result is rate-adaptive in the sense that
researchers do not need to know a priori whether the functional of interest is VT estimable or not.

For weakly dependent data and for regular functionals, it is known that the asymptotic variance

expression depends on the temporal dependence and is usually equal to the long run variance (LRV) of



a scaled moment (or score) process. It is often believed that this result would also hold for sieve esti-
mators of irregular functionals such as the evaluation functionals and weighted integration functionals.
Contrary to this common belief, we show that under some general conditions the asymptotic variance
of the plug-in sieve estimator for weakly dependent data is the same as that for iid data. This is a very
surprising result, as sieve estimators are often regarded as global estimators, and hence autocorrelation
is not expected to vanish in the limit (as 7' — 00).

Our asymptotic theory suggests that, for weakly dependent time series data with a large sam-
ple size, temporal dependence could be ignored in making inference on irregular functionals via the
method of sieves. This resembles the earlier well-known asymptotic results for time series density and
regression functions estimated via kernel and local polynomial regression methods. See, e.g., Robinson
(1983), Fan and Yao (2003), Li and Racine (2007), Gao (2007) and the references therein. However,
simulation studies indicate that inference procedures based on asymptotic variance estimates ignoring
autocorrelation may not perform well when the sample size is small (relatively to the degree of temporal
dependence). See, e.g., Conley, Hansen and Liu (1997) and Pritsker (1998) for earlier discussion of this
problem with kernel density estimation for interest rate data sets.

In this paper, for both regular and irregular functionals of semi-nonparametric time series models, we
propose computationally simple, accurate and robust inference procedures based on estimates of “pre-
asymptotic” sieve variances capturing temporal dependence. That is, we treat the underlying triangular
array sieve score process as a generic time series and ignore the fact that it becomes less temporally
dependent when the sieve number of terms in approximating unknown functions grows to infinity as T’
goes to infinity. This “pre-asymptotic” approach enables us to conduct easy-to-compute and accurate
inference on semi-nonparametric time series models by adopting any existing autocorrelation robust
inference procedures for (misspecified) parametric time series models.

For semi-nonparametric time series models, we could compute various “pre-asymptotic” Wald sta-
tistics using various existing LRV estimators for regular functionals of (misspecified) parametric time
series models, such as the kernel LRV estimators considered by Newey and West (1987), Andrews
(1991), Jansson (2004), Kiefer and Vogelsang (2005), Sun (2011b) and others. Nevertheless, to be
consistent with our focus on the method of sieves and to derive a simple and accurate asymptotic
approximation, we compute a “pre-asymptotic” Wald statistic using an orthonormal series LRV (OS-
LRV) estimator. The OS-LRV estimator has already been used in constructing autocorrelation robust
inference on regular functionals of parametric time series models; see, e.g., Phillips (2005), Miiller
(2007), Sun (2011a), and the references therein. We extend these results to robust inference on both
regular and irregular functionals of semi-nonparametric time series modelsE

For both regular and irregular functionals, we show that the “pre-asymptotic” ¢ statistic and a scaled

'"We thank Peter Phillips for suggesting that we consider autocorrelation robust inference for semi-nonparametric time
series models.



Wald statistic converge to the standard ¢ distribution and F' distribution respectively when the series
number of terms in the OS-LRV estimator is held fixed; and that the ¢ distribution and F' distribution
approach the standard normal and chi-square distributions respectively when the series number of
terms in the OS-LRV estimator goes to infinity. Our “pre-asymptotic” ¢ and F' approximations achieve
triple robustness in the following sense: they are asymptotically valid regardless of (1) whether the
functional is regular or not; (2) whether there is temporal dependence or not; and (3) whether the
series number of terms in the OS-LRV estimator is held fixed or not.

To facilitate the practical use of our inference procedure, we show that, in finite samples and
for linear sieve M estimators, our “pre-asymptotic” sieve test statistics (i.e. t statistic and Wald
statistic) for semi-nonparametric time series models are numerically equivalent to the corresponding
test statistics one would obtain if the models are treated as if they were parametricﬂ These results are
of much use to applied researchers, and demonstrate the advantage of the sieve method for inference
on semi-nonparametric time series models.

To investigate the finite sample performance of our proposed “pre-asymptotic” robust inference
procedures on semi-nonparametric time series models, we conduct a detailed simulation study using
a partially linear regression model. For both regular and irregular functionals, we find that our test
using the “pre-asymptotic” scaled Wald statistic and F' critical values has more accurate size than
the “pre-asymptotic” Wald test using chi-square critical values. For irregular functionals, we find that
they both perform better than the Wald test using a consistent estimate of the asymptotic variance
ignoring autocorrelation. These are especially true when the time series (with moderate sample size)
has strong temporal dependence and the number of joint hypotheses being tested is large. Based on
our simulation studies, we recommend the use of the “pre-asymptotic” scaled Wald statistic using an
OS-LRV estimator and F' approximation in empirical applications.

The rest of the paper is organized as follows. Section [2| presents the plug-in sieve M estimator
of functionals of interest and gives two illustrative examples. Section |3| establishes the asymptotic
normality of the plug-in sieve M estimators of possibly irregular functionals. Section [ shows the
surprising result that the asymptotic variances of plug-in sieve M estimators of irregular functionals for
weakly dependent time series data are the same as if they were for i.i.d. data. Section [5| presents the
“pre-asymptotic” OS-LRV estimator and F' approximation. Section [6] proves the numerical equivalence
result. Section [7] reports the simulation evidence, and the last section briefly concludes. Appendix A
contains all the proofs, and Appendix B discusses the properties of the hidden delta functions associated
with sieve M estimation of evaluation functionals.

Notation. In this paper, we denote fa(a) (F4(a)) as the marginal probability density (cdf) of

?Here we slightly abuse terminology and define a parametric model to be a model with a fixed finite number of unknown
parameters of interest, although the model may contain infinite dimensional nuisance parameters that are not needed to
be estimated, such as Hansen (1982)’s GMM models.



a random variable A evaluated at a and fap(a,b) (Fagp(a,b)) the joint density (cdf) of the random
variables A and B. We use = to introduce definitions. For any vector-valued A, we let A’ denote
its transpose and ||A||p = VA’A, although sometimes we also use |A| = v/A’A without too much
confusion. Denote LP(Q,du), 1 < p < oo, as a space of measurable functions with ||g|[zr(.q4u) =
{Jo lg(t)|Pdu(t)}1/P < oo, where Q is the support of the sigma-finite positive measure dyu (sometimes
LP(Q) and ||g]|zr(q) are used when dpu is the Lebesgue measure). For any (possibly random) positive
sequences {ar}7 ; and {br}7 ,, ar = Op(br) means that lim._. limsupy Pr (a7 /br > ¢) = 0; ar =
op(br) means that for all € > 0, limp_,o Pr (a7/br > €) = 0; and ar < by means that there exist two
constants 0 < ¢; < ¢ < oo such that ciar < by < caar. We use Ar = Ay, Hr = Hi, and Vr = Vg,
to denote various sieve spaces. To simplify the presentation, we assume that dim(Vr) = dim(Ar) =<

dim(Hy) < kp, all of which grow to infinity with the sample size T'.

2 Sieve M Estimation and Examples
2.1 Basic Setting

We assume that the data {Z; = (Y{, X})'}]_, is from a strictly stationary and weakly dependent process
defined on an underlying complete probability space. Let the support of Z; be Z C R%,1 < d, < oo,
and let ) and X be the supports of Y and X respectively. Let (A, d) denote an infinite dimensional
metric space. Let £ : Z x A — R be a measurable function and E[¢(Z,«)] be a population criterion.
For simplicity we assume that there is a unique g € (A, d) such that E[¢(Z, )] > E[¢(Z,a)] for all
a € (A,d) with d(a,ap) > 0. Different models in economics correspond to different choices of the
criterion functions E[¢(Z, «)] and the parameter spaces (A, d). A model does not need to be correctly
specified and «g could be a pseudo-true parameter. Let f : (A,d) — R be a known measurable
mapping. In this paper we are interested in estimation of and inference on f(«p) via the method of
sieves.

Let A7 be a sieve space for the whole parameter space (A, d). Then there is an element IIrag € Ap
such that d (IIpag, ag) — 0 as dim(Ap) — oo (with T'). An approximate sieve M estimator ar € Ap

of oy solves

T T
1 ~ 1
o > U2 ar) > sup = > U(Zy, ) — OpleT), (2.1)
=1 acAr = 45
where the term Op(¢2) = 0,(T~!) denotes the maximization error when ar fails to be the exact

maximizer over the sieve space. We call f(ar) the plug-in sieve M estimator of f(ap).

Under very mild conditions ( see, e.g., Chen (2007, Theorem 3.1) and White and Wooldridge (1991)),
the sieve M estimator @ is consistent for ap: d(ar,ap) = Op {max [d(ar, Hray), d (lIrag, ag)]} =
op(1).



2.2 Examples

The method of sieve M estimation includes many special cases. Different choices of criterion functions
U(Zy, ) and different choices of sieves Ar lead to different examples of sieve M estimation. As an

illustration, we provide two examples below. See, e.g., Chen (2007, 2011) for additional applications.

Example 2.1 (Partially linear ARX regression) Suppose that the time series data {Yt}z;1 i8
generated by
Y: = X1 400 + ho (Xoy) + ue, Elug X1, X2 =0, (2.2)

where X1 and Xoy are di and do dimensional random vectors respectively, and X1 could include
finitely many lagged Y;’s. Let 0y € © C R™ and hg € H a function space. Let ag = (0}, h)' € A =
O x H. Examples of functionals of interest could be f(ag) = Ny or ho (Ta) where A € RN and Ty is

some point in the support of Xo ;.

Let & be the support of X for j = 1,2. For simplicity we assume that &> is a convex and bounded
subset of R92. For the sake of concreteness we let H = A*(X) (a Holder space):

. KD () — RsD (2
h(J)(l‘)’ < 00, Ssup } () — (z )‘ < o0y,
z,x! EXo ’l’ — .’L‘/|S [5]

A*(Xy) =4 he Cl (&) : sup sup
J<[s] zEX

where [s] is the largest integer that is strictly smaller than s. The Holder space A®(X3) (with s > 0.5d)
is a smooth function space that is widely assumed in the semi-nonparametric literature. We can then

approximate H = A®(Xs) by various linear sieve spaces:

Hr = h(-):h(-)=25ﬂ%() B Py (), BeR S (2.3)
j=1
where the known sieve basis Py, (-) could be tensor-products of splines, wavelets, Fourier series and
others; see, e.g., Newey (1997) and Chen (2007).
Let 6(Z, ) = — [V — X{ 0 — h (Xo,)]? /4 with Z, = (Y, X} ., X},) and a = (¢/,h) € A= O xH.
Let A7 = © x Hy be a sieve for A. We can estimate ag = (6), ho)" € A by the sieve least squares (LS)

(a special case of sieve M estimation):

T
ar = (00, hy) = (Z,,0,h). 2.4
ar = (0, hr)' = arg(é)h)e@x?—( z; ! (24)

A functional of interest f(ap) (such as Ny or hg(ZT2)) is then estimated by the plug-in sieve LS
estimator f(ar) (such as Nor or hr (T2)).

This example is very similar to example 2 in Chen and Shen (1998) and example 4.2.3 in Chen
(2007). One can slightly modify their proofs to get the convergence rate of @r and the v/T-asymptotic



normality of \ §T. But neither paper provides a variance estimator for \ §T. The results in our paper
immediately lead to the asymptotic normality of f(ar) for possibly irregular functionals f(«g) and

provide simple, accurate inference on f(ayp).

Example 2.2 (Possibly misspecified copula-based time series model) Suppose that {Y;}l_, is
a sample of strictly stationary first order Markov process generated from (Fy,Cy(-,-)), where Fy is the
true unknown continuous marginal distribution, and Cy(-,-) is the true unknown copula for (Y;—1,Y})
that captures all the temporal and tail dependence of {Y;}. The T-th conditional quantile of Y; given
Yi-l = (Y, 1,..., Y1) is:

QY () = iy (Col 1By )

where Cop1[-|u] = (%Cg(u, -) is the conditional distribution of Uy = Fy (Y:) given Uy_1 = u, and C’2|1 [T]u]

is its T-th conditional quantile. The conditional density function of Y; given Y1 is

PPV = fy (Deo (Fy (Y1), Fy (4))

where fy(-) and co(+,-) are the density functions of Fy (-) and Cy(-,-) respectively. A researcher specifies
a parametric form {c(-,+;0) : 0 € ©} for the copula density function, but it could be misspecified in the

sense co(+,-) ¢ {c(-,-;0) : 0 € O}. Let Oy be the pseudo true copula dependence parameter:

= 0) dud
0o argrgleaé(// c(u, v; 0)co(u, v)dudv.

Let (Hé,fy)l be the parameters of interest. Examples of functionals of interest could be N6y, fy (3),
Fy (1) or Qou(@) = F (Cyt (11 (0):66)) for any A € R and some 5 € supp(Y;).

We could estimate (6;, fy)/ by the method of sieve quasi ML using different parameterizations and
different sieves for fy For example, let ho = /fy and ag = (6}, ho)' be the (pseudo) true unknown
parameters. Then fy () = h3 (-)/ f y) dy, and hg € L?(R). For the identification of hg, we can
assume that hg € H:

H= +Zﬁjp] 262<oo , (2.5)

where {pj};io is a complete orthonormal basis functions in L2 (R), such as Hermite polynomials,
wavelets and other orthonormal basis functions. Here we normalize the coefficient of the first basis
function po (-) to be 1 in order to achieve the identification of kg (). Other normalization could also be

used. It is now obvious that hg € H could be approximated by functions in the following sieve space:

Hpy = h( +Z,3]p] 0(-)+B8'Pup(-): BeRFT L. (2.6)



Let Z, = (Yi-1,Y:), a = (¢,h) € A= 0O x H and

2 Yio1 2 Y; 2
K(Zt,a):log{%}—l—log{c(/m T h (y) T h (y) dy,é’)}. (2.7)

Then ag = (6}, ho)’ € A =0 x H could be estimated by the sieve quasi MLE a7 = (é\l[,ﬁ:r)’ € Ar =
© x Hr that solves:

h* (Y1)
7 {Ze (Zs, ) + log {W(y)dy}} — 0,(e2). (2.8)

—00

A functional of interest f(ap) (such as N6y, fy (7) )/ [ hd (y)dy, Fy (g) or Q%/m(*)) is
then estimated by the plug-in sieve quasi MLE f (aT) (such as N0, fy( = hT )/ 2o hg () dy,
= J7 Fr(w)dy or QY4 (@) = Fy ' (Cypf 7| Py (v): 6)).

Under correct specification, Chen, Wu and Yi (2009) establish the rate of convergence of the sieve
MLE ar and provide a sieve likelihood-ratio inference for regular functionals including f (ag) = X6y or
Fy () or QY o;(@). Under misspecified copulas, by applying Chen and Shen (1998), we can still derive
the convergence rate of the sieve quasi MLE a7 and the /T asymptotic normality of f(ar) for regular
functionals. However, the sieve likelihood ratio inference given in Chen, Wu and Yi (2009) is no longer
valid under misspecification. The results in this paper immediately lead to the asymptotic normality
of f(ar) (such as Fr () = h2 )/ y) dy) for any possibly irregular functional f(ag) (such as

fy (1)) as well as valid inferences under potentlal misspecification.

3 Asymptotic Normality of Sieve M-Estimators

In this section, we establish the asymptotic normality of plug-in sieve M estimators of possibly irregular
functionals of semi-nonparametric time series models. We also give a closed-form expression for the

sieve Riesz representor that appears in our asymptotic normality result.

3.1 Local Geometry

Given the existing consistency result (d(ar, ap) = 0p(1)), we can restrict our attention to a shrinking

d-neighborhood of ap. We equip A with an inner product induced norm || — apl| that is weaker than

d(a, ap) (ie., |l — ap|| < ed(av, ap) for a constant c), and is locally equivalent to \/E[l(Z, ag) — £(Zy, )]
in a shrinking d-neighborhood of ag. For strictly stationary weakly dependent data, Chen and Shen
(1998) establish the convergence rate ||ar — ool = Op (é7) = o (T ~1/4). The convergence rate result

implies that ap € By C By with probability approaching one, where
By={acA:|a—a <C&rlog(log(T))}; Br = ByN Ar. (3.1)

Hence, we can now regard By as the effective parameter space and By as its sieve space.



Define

Qo = arg O{rgl}gr; || — apl]. (3.2)
Let Vr = clsp (Br) — {1}, where clsp (Br) denotes the closed linear span of By under ||-||. Then
Vr is a finite dimensional Hilbert space under ||-||. Similarly the space V = clsp (By) — {ao} is a
Hilbert space under ||-||. Moreover, Vr is dense in V under ||-||. To simplify the presentation, we

assume that dim(Vr) = dim(Ar) < kp, all of which grow to infinity with 7. By definition we have
(oo, — ag,vr) =0 for all vy € V.

As demonstrated in Chen and Shen (1998) and Chen (2007), there is lots of freedom to choose such
a norm |l — ap|| that is weaker than d(«, ag) and is locally equivalent to \/E[¢(Z, ag) — £(Z,a)]. In

some parts of this paper, for the sake of concreteness, we present results for a specific choice of the
norm ||-||. We suppose that for all o in a shrinking d-neighborhood of ag, ¢(Z, o) — ¢(Z, ) can be
approximated by A(Z, ag)[a— ap] such that A(Z, ap)[ov — ey is linear in o — g Denote the remainder

of the approximation as:
r(Z,o0)[a — ag, a0 — ap] = 2{(Z, ) — U(Z,cp) — A(Z, ap)[x — v } - (3.3)

When lim,_o[({(Z, a0 + T[aw — a]) — U(Z,ap))/7] is well defined, we could let A(Z, ap)lax — ag] =
lim, _o[(4(Z, a0 + T[aw — o)) — €(Z, ap)) /7], which is called the directional derivative of {(Z, a) at ayg

in the direction [ — ag]. Define

|l — | = \/E(—T(Z,ag)[a—ao,a—ao]) (3.4)
with the corresponding inner product (-, -)
(a1 — ag,aa — ) = E{—7(Z, ap)[a1 — g, a2 — ol } (3.5)

for any aq, g in the shrinking d-neighborhood of ag. In general this norm defined in (3.4]) is weaker
than d(-,-). Since agp is the unique maximizer of E[¢(Z,a)] on A, under mild conditions |a — ay|
defined in (3.4) is locally equivalent to \/E[¢(Z, ag) — £(Z, a)].

For any v € V, we define % [v] to be the pathwise (directional) derivative of the functional f (-)

at o and in the direction of v =a —ag € V :

Of(ag), ;  Of(ag+ V)
5n [v] = 57 . for any v € V. (3.6)
For any vr = ar — oo, € V7, we let
of (a of (« of (a
! ga‘)) o] = (9(&0) lor — ag) — J;(a‘))[aw — ag). (3.7)
So %L 8(20) [[] is also a linear functional on Vp.



Note that Vr is a finite dimensional Hilbert space. As any linear functional on a finite dimensional
Hilbert space is bounded, we can invoke the Riesz representation theorem to deduce that there is a

vy € Vr such that

Of (o) [v] = (vp,v) forall v e Vp (3:8)
Oa
and that 9f(a0)
Of (o) - . - | “5a [v]]?
- Cw =oa WII” 3.9
Oa r] = oz ueVT,E)J;éO H’UHQ >

We call v} the sieve Riesz representor of the functional %H on Vr.
We emphasize that the sieve Riesz representation 1)1} of the linear functional %[-] on Vr

always exists regardless of whether %[-] is bounded on the infinite dimensional space V or not.

o If %[-] is bounded on the infinite dimensional Hilbert space V, i.e.

* 8f(0£0)
o= s {12500 ol < . (3.10)
veEV,w#0 «
then |[v}]| = O (1) (in fact ||v}| 7 [|[v*|| < oo and ||v* —v}|| — 0 as T" — o0); we say that f(-)
is reqular (at o = o). In this case, we have %[v] = (v*,v) for all v € V, and v* is the Riesz
representor of the functional %[-] on V.

o If %[-] is unbounded on the infinite dimensional Hilbert space V, i.e.

sup {\af (a0) [vn/uvu} = o, (3.11)

VEV, 040 Ja

then |[v}]| /" oo as T'— oo; and we say that f(-) is irregular (at o = ayg).
As it will become clear later, the convergence rate of f(ar) — f () depends on the order of ||v7||.

3.2 Asymptotic Normality

To establish the asymptotic normality of f(ar) for possibly irregular nonlinear functionals, we assume:

Assumption 3.1 (local behavior of functional)

(i) subues, | F(@) = flao) - 22 o~ aql| = o (T7% g )

(i) |25ea0r — aol| = o (T o7 ])

Assumption (1) controls the linear approximation error of possibly nonlinear functional f (-). It
is automatically satisfied when f () is a linear functional, but it may rule out some highly nonlinear

functionals. Assumption(ii) controls the bias part due to the finite dimensional sieve approximation



of a7 to ag. It is a condition imposed on the growth rate of the sieve dimension dim(.Ar), and requires
that the sieve approximation error rate is of smaller order than 72 |v]]. When f(-) is a regular
functional, we have |[v}.|| / |[v*|| < oo, and since (a1 — ag,v}) = 0 (by definition of ag 1), we have:

df(ao)
Ooa

o — ao]| = [(v", a0r — ao)| = [(v" = vp, a0 —ao)| < [[v* — vzl X [laor —aol,
thus Assumption 3.1} (ii) is satisfied if
|v* — o7 X o, — aol| = o(T~?) when f(-) is regular, (3.12)

which is similar to condition 4.1(ii)(iii) imposed in Chen (2007, p. 5612) for regular functionals.
Next, we make an assumption on the relationship between ||v5.| and the asymptotic standard
deviation of f(ar) — f(ao,r). It will be shown that the asymptotic standard deviation is the limit of

the “standard deviation” (sd) norm ||v}|,, of v}, defined as

2 _ 1 «
lvrllse = Var <\/T ;A(Zt’ao)[”:ro . (3.13)

Note that Hv}Hi 4 is the finite dimensional sieve version of the long run variance of the score process
A(Zt, ap)vy]. Since v} € Vr, the sd norm |[[v}||,, depends on the sieve dimension dim (A7) that grows

with the sample size T'.
Assumption 3.2 (sieve variance) |[v7|/|v}],, = O(1).

By definition of ||v5.|| given in (3.9), 0 < ||v¥| is non-decreasing in dim(Vr), and hence is non-
decreasing in T'. Assumption [3.2| then implies that lim inf7 . |07, > 0. Define
vr
(A
to be the normalized version of v}.. Then Assumption implies that ||u}|| = O(1).

Let ur{g(2)}y=T7! Z;le lg (Z) — Eg(Z;)] denote the centered empirical process indexed by the
function g. Let ep = o(T -1/ 2). For notational economy, we use the same €7 as that in 1)

(3.14)

ur

Assumption 3.3 (local behavior of criterion) (i) ur {A(Z, ) [v]} is linear in v € V;

(i) SUp jir {U(Z,a + erup) = U(Z, @) = A(Z, o) [Ferui]} = Op(ed);
achbr

+ * 2 _ 2
i) sup |El0(Zea) — 0(Ze, o + eputs)] — NOEETUT Z0oll” = lle = aolP} )

aEB 2




Assumptions (ii) and (iii) are essentially the same as conditions 4.2 and 4.3 of Chen (2007, p.
5612) respectively. In particular, the stochastic equicontinuity assumption (ii) can be easily verified
by applying Lemma 4.2 of Chen (2007).

Assumption 3.4 (CLT) VTur {A(Z, ) [uh]} —a N(0,1), where N(0,1) is a standard normal dis-

tribution.

Assumption is a very mild one, which effectively combines conditions 4.4 and 4.5 of Chen
(2007, p. 5612). This can be easily verified by applying any existing triangular array CLT for weakly
dependent data (see, e.g., White (2004) for references).

We are now ready to state the asymptotic normality theorem for the plug-in sieve M estimator.

Theorem 3.1 Let Assumptions[3.1] (i), and [3.5 hold. Then

O OO T (A (Z,00) ]} + 0, (1) (315)

Hv;Hsd

If further Assumptions[3.1] (it) and[3.4] hold, then

vTLED =IO Ty (A2 00) i)} + 0, (1) =4 N(O, 1), (3.16)
07|

In light of Theorem we call ||U}H§ ; defined in the “pre-asymptotic” sieve variance of the
estimator f(ar). When the functional f(ag) is regular (i.e., ||v3|| = O(1)), we have |[v}|,, < [[v7] =
O(1) typically; so f(ar) converges to f(ag) at the parametric rate of 1/v/T. When the functional f(cy)
is irregular (i.e., [|v}| — oo), we have v ||,, — oo (under Assumption ; so the convergence rate of
f(ar) becomes slower than 1/v/T. Regardless of whether the “pre-asymptotic” sieve variance Hv}Hg 4
stays bounded asymptotically (i.e., as T — oo) or not, it always captures whatever true temporal
dependence exists in finite samples.

Note that Hv}Hid = Var (A(Z, ap)[vy]) if either the score process {A(Z;, ag)[v}] } <7 is a martingale
difference array or if data {Zt}le is iid. Therefore, Theorem recovers the asymptotic normality
result in Chen and Liao (2008) for sieve M estimators of possibly irregular functionals with iid data.

For regular functionals of semi-nonparametric time series models, Chen and Shen (1998) and Chen
(2007, Theorem 4.3) establish that VT (f(ar) — f(ap)) —a N(0,02.) with

T
1
2 . * . * (|2
o = lim Var | — A(Zy, ag)|v = lim |jv € (0, 00). 3.17
v (ﬁ; (Z1, a0 ]) Jim [lv7[l5q € (0, 00) (3.17)

T—o0

Our Theorem is a natural extension of their results to allow for irregular functionals as well.
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3.3 Sieve Riesz Representor

To apply the asymptotic normality Theorem [3.1] one needs to verify Assumptions 3.I43.4] Once we
compute the sieve Riesz representor v} € Vr, Assumptions and can be easily checked, while
Assumptions and are standard ones and can be verified in the same ways as those in Chen and
Shen (1998) and Chen (2007) for regular functionals of semi-nonparametric models. Although it may
be difficult to compute the Riesz representor v* € V in a closed form for a regular functional on the
infinite dimensional space V (see e.g., Ai and Chen (2003) for discussions), we can always compute
the sieve Riesz representor vy € Vr defined in and explicitly. Therefore, Theorem is
easily applicable to a large class of semi-nonparametric time series models, regardless of whether the

functionals of interest are v/T estimable or not.

3.3.1 Sieve Riesz representors for general functionals

For the sake of concreteness, in this subsection we focus on a large class of semi-nonparametric models
where the population criterion E[¢(Z;, 0, h(+))] is maximized at ag = (0, ho (1)) € A=0O x H, O is a
compact subset in R%, H is a class of real valued continuous functions (of a subset of Z;) belonging to
a Holder, Sobolev or Besov space, and Ar = © X Hp is a finite dimensional sieve space. The general
cases with multiple unknown functions require only more complicated notation.

Let ||-|| be the norm defined in and Vr = R% x {v, () = Py, (") : B € R} be dense
in the infinite dimensional Hilbert space (V,||-||). By definition, the sieve Riesz representor v} =
(a'rs Vi () = (vl Per (-)'B7) € Vr of %[-] solves the following optimization problem:

2

If (a Of (a
Of () i) = [[v} H2 B - fa(elo)z;g + féhO) [vr ()]
Oa ! ! v:(vg,vh)IEVT,lﬁéoE(_r (Ztﬂeo’ho ()) [’U,'l}])
IF F/
= sup M, (3.18)
v=(v},8') €R%WTFT y£0 V Ryery
where () (o) ,
o”’f (67} 8f ap
Fr, = ( 90’ Oh [PkT()/] (3'19)
is a (dp + kr) x 1 vector[| and
v Rypy = E (=1 (Z4,00,ho (-) [v,0])  for all v = (v}, Pp,.(-)'B) € Vr, (3.20)
with P
o I It . ( IF If
Ry, = ( Iro1 Iro ) and RkT = ( L_Qpl 1%2 (3.21)

*When WH applies to a vector (matrix), it stands for element-wise (column-wise) operations. We follow the same
convention for other operators such as A (Z, ao) [-] and —7r (Z¢, o) [+, -] throughout the paper.
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being (dp+ k1) % (dp+ k1) positive definite matrices. For example if the criterion function ¢(z,6,h (-)) is

twice continuously pathwise differentiable with respect to (6, h (-)), then we have I;; = F —W] ,

2 . 2 .
I = B |~ FUE00 P (), Py (V)] Iz = B | 55000 Py, (0] and T = I .
The sieve Riesz representation (3.8) becomes: for all v = (vj, Py, (-)'8)" € Vr,
df(a)
90 Y
It is obvious that the optimal solution of v in (3.18)) or in (3.22)) has a closed-form expression:

= Fj,v = (v, v) =97 Ry for all v = (vp, ') € RWFFT, (3.22)

* *1\/ —

Yr = (Ue T /) = Rk;FkT- (3.23)

The sieve Riesz representor is then given by
* * * / * *\/
Ur = (UG,,Tvvh,T (')) = (UQ,IT7P’€T('),BT) € Vr.

Consequently,

* 2 k * —

HUT” = 7T,RkT7T = FIQTRk;FkT7 (3'24)

which is finite for each sample size T' but may grow with 7.

Finally the score process can be expressed as

A(Zt7 Ozo)[?)T} (A9(Zt7 007 ho ( ))/7 Ah(Ztv 007 ho ())[PkT()/]) 7;’ = SkT (Zt)/’YT

Thus
Var (A(Zy, co)[v7]) = 77 E [Skr (Z0) Sk (Z0)] 71 (3.25)
and [[v31%, = vVar (2 01 Sk (20)) 73
To verify Assumptions [3.1] and [3.2] for irregular functionals, it is handy to know the exact speed of

divergence of [|[vk||*>. We assume

Assumption 3.5 The smallest and largest eigenvalues of Ry, defined in are bounded and

bounded away from zero uniformly for all kp.

Assumption imposes some regularity conditions on the sieve basis functions, which is a typ-
ical assumption in the linear sieve (or series) literature. For example, Newey (1997) makes similar

assumptions in his paper on series LS regression.

Remark 3.2 Assumption [3.5 implies that

12 < Il = 1 1 = 1 2200 2100 e

af( O%0)

Then: f(-) is regular at o = o if limyy, [| 572 [P, ()]|[5 < oo f() is irreqular at o = ag if

Of (a
limy,,. || 22509 [Py, (]|, = oo.
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3.3.2 Examples

We first consider three typical linear functionals of semi-nonparametric models.
For the Buclidean parameter functional f(a) = N'0, we have Fy, = (X, 0}, )" with 03 = [0,..., 0], .,
and hence v} = (vg'p, Pry (1) B7)" € Vr with vj p = I, B =121\, and

lWF|® = Fi, Ry Fip = NP,

T

If the largest eigenvalue of I%l, )\max(l%l), is bounded above by a finite constant uniformly in k7, then
31> < Amax(IH) x M\ < oo uniformly in T, and the functional f(a) = N6 is regular.

For the evaluation functional f(a) = h(Z) for T € X, we have Fy, = (0}, P,.(Z)')’, and hence
vp = (Vs Pep (1)'B7) € Vi with v5 1 = 172 Pe,. (%), B} = 17 Pry (), and

2 — — —
WFI* = Fi, Bip Frp = Py (@) 17 Py (7).

So if the smallest eigenvalue of I22, Amin(I#?), is bounded away from zero uniformly in kr, then
[v5)1% > Amin(I22)|| Py (T)||% — o0, and the functional f( ) = h(*) is irregular.

For the weighted integration functional f(a) = [, w YW x)dz for a weighting function w(z), we
have Fi.,. = (07, [ w(2)Pyy(2)'dz)’, and hence vh = (UO,T7 PkT( ) B7) withvg o = 177 [ w(x) Pr, (x)dz,
B = I2? [, w(z) Py (x)dz, and

!
||v;||2=F4TRk;FkT={ / w(z)PkT@)dm} 7 [ w@)P, @)

Suppose that the smallest and largest eigenvalues of I%Q are bounded and bounded away from zero
uniformly for all k7. Then |[v}||* < || [} w(2) P, (z)dz||3. Thus f(a) = [, w(z)h(z)dz is regular if
limy,, || [ w(2) Py (z)dz| |3 < oo; is irregular if limy, || [, w(z) Py, (z )deE = 00.

We finally consider an example of nonlinear functionals that arises in Example [2.2) when the para-

meter of interest is ag = (6 hg)’ with h2 = fy being the true marginal density of ¥;. Consider the

functional f(a) = h%(y)/ [*2 h? (y) dy. Note that f(ag) = fy (¥) = hd (y) and ho(-) is approximated
/
by the linear sieve Hp given in . Then Fy, = (0:19, Bfa(zo) [PkT(')/]> with
of(a *
L) ey (0 = 200 @) (Por®) = 10 @) [ o) Pund ).

and hence v} = (vj'y, Poy () B5) € Vr with vy 5 = 122000 [ ()], gz = 12200le0) [py ()], and

270 i (120 ()

2 _
[07l* = Fip R, Frp =

So if the smallest eigenvalue of 12? is bounded away from zero uniformly in kr, then H’U%HQ > const. X

||af ao) [Per (D)% — oo, and the functional f (a) = h? (§) / [*5 h? (y) dy is irregular at o = ay.
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4 Asymptotic Variance of Sieve Estimators of Irregular Functionals

In this section, we derive the asymptotic expression of the “pre-asymptotic” sieve variance HU}H? , for
irregular functionals. We provide general sufficient conditions under which the asymptotic variance
does not depend on the temporal dependence. We also show that evaluation functionals and some

weighted integrals satisfy these conditions.

4.1 Exact Form of the Asymptotic Variance
By definition of the “pre-asymptotic” sieve variance ||vi||2, and the strict stationarity of the data

{Z,}L |, we have:

T—-1
o1y = Var (A(Z.o)ei) + 2 X (1- 1) B (AZnaobilAZunanlis) (@)
t=1

1+2j§j_:(1—;) pi}(t)],

where {p7.(t)} is the autocorrelation coefficient of the triangular array {A(Z;, ao)[v5]} <1

E (A(Z1, 00)[vp] A(Zeg1, o) [v7])
Var (A(Z,a0)[v}]) |

= Var (A(Z, ag)[vr]) x

(4.2)

pr(t) =

Loosely speaking, one could say that the triangular array {A(Z;, ag)[v}] i< is weakly dependent if

T-1 +
1— =) ph(t) =0(). 4.3
;( 7) s =0l (43)

Then we have ||[v]|2; = O {Var (A(Z, ap)[v3])}.

When f(-) is irregular, we have [|v}| — oo as dim(Vr) — oo (as T — o00). This and Assumption
imply that [[v}[|,, — oo, and so Var (A(Z, ag)[v}]) — oo under as T — oo for irregular
functionals. In this section we provide some sufficient conditions to ensure that, as T" — oo, although
the variance term blows up (i.e., Var (A(Z, ag)[v}]) — 00), the individual autocovariance term stays
bounded or diverges at a slower rate, and hence the sum of autocorrelation coefficients becomes as-

ymptotically negligible (i.e., ZtT:_ll pr(t) = o(1)). In the following we denote

Cr = sup [E{A(Z1,0)[v7]A(Zi11, o0)[vT]}] -
te[1,T)

Assumption 4.1 (i) |[vi|| — oo as T — oo, and ||[vi||* /Var (A(Z, ao)[vE]) = O(1); (i) There is an

increasing integer sequence {dr € [2,T)} such that

drCr =, AN I
(0) 5 (A Z )il o(1) and (b) | (1 - T> pr(t)] = o(1).
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More primitive sufficient conditions for Assumption [4.1] are given in the next subsection.

« 112
o7 ]l — 1| =0(1); If further Assumptions

Theorem 4.1 Let Assumption H hold. Then: Var(AZ oo or])

[5-3 and [34 hold, then

VT [f(ar) = f(o)]

—aN(0,1). (4.4)
\/Var (A(Z, ag)[v}])

Theorem shows that when the functional f(-) is irregular (i.e., ||v}.|| — 00), time series depen-
dence does not affect the asymptotic variance of a general sieve M estimator f(ar). Similar results
have been proved for nonparametric kernel and local polynomial estimators of evaluation functionals of
conditional mean and density functions. See for example, Robinson (1983) and Masry and Fan (1997).
However, whether this is the case for general sieve M estimators of unknown functionals has been a
long standing question. Theorem [4.1] gives a positive answer. This may seem surprising at first sight
as sieve estimators are often regarded as global estimators while kernel estimators are regarded as local
estimators.

One may conclude from Theorem that the results and inference procedures for sieve estimators
carry over from iid data to the time series case without modifications. However, this is true only when
the sample size is large. Whether the sample size is large enough so that we can ignore the temporal
dependence depends on the functional of interest, the strength of the temporal dependence, and the
sieve basis functions employed. So it is ultimately an empirical question. In any finite sample, the
temporal dependence does affect the sampling distribution of the sieve estimator. In the next section,
we design an inference procedure that is easy to use and at the same time captures the time series

dependence in finite samples.

4.2 Sufficient Conditions for Assumption 4.1

In this subsection, we first provide sufficient conditions for Assumption for sieve M estimation of
irregular functionals f(ay) of general semi-nonparametric models. We then present additional low-level
sufficient conditions for sieve M estimation of real-valued functionals of purely nonparametric models.
We show that these sufficient conditions are satisfied for sieve M estimation of the evaluation and the

weighted integration functionals.

4.2.1 Irregular functionals of general semi-nonparametric models

Given the closed-form expressions of ||v}.|| and Var (A(Z, ap)[v7]) in Subsection it is easy to see
that the following assumption implies Assumption (1)

Assumption 4.2 (i) Assumption holds and limy,, Hafé(,zo) [Prr (D]]|% = oo; (i) The smallest eigen-
value of E [Sk,(Zt)Sky (Z1)'] in is bounded away from zero uniformly for all kp.
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Next, we provide some sufficient conditions for Assumption (ii). Let fz, z (-,-) be the joint
density of (Z1,Z;) and fz (-) be the marginal density of Z. Let p € [1,00). Define

1A(Z,a0) 7]l = (E{IA(Z, ao) 7] P17 (4.5)

By definition, [|A(Z, ao)[vi}]H; = Var (A(Z,ap)[v}]). The following assumption implies Assumption
4.1](ii)(a).

Assumption 4.3 (i) sup;>oSUP(, .ezxz |f21,2, (2,2") [ [f2, (2) fz, (2)]] < C for some constant C' >
0; (it) [|A(Z; a0)[vr]lly / |1A(Z; 0)[v7]]l; = o(1).

Assumption (1) is mild. When Z; is a continuous random variable, it is equivalent to assuming
that the bivariate copula density of (Z1, Z;) is bounded uniformly in ¢ > 2. For irregular functionals
(i.e., vk /" o0), the L?(fz) norm ||A(Z, ap)[v¥]||, diverges (under Assumption(i) or Assumption
, Assumption (ii) requires that the L'(fz) norm ||A(Z, ap)[v}]||, diverge at a slower rate than
the L%(fz) norm ||A(Z, ag)[v3]
actually remains bounded as kr — oo and hence Assumption [4.3](ii) is trivially satisfied.

The following assumption implies Assumption [4.1}(ii) (b).

as kr — oo. In many applications the L'(fz) norm [|A(Z, ag)[v]

I Ih

Assumption 4.4 (i) The process {Z;}§°, is strictly stationary strong-mizing with mizing coefficients
a(t) satisfying Y ;o t7 [ (t)]ﬁ < 0o for somen >0 and v > 0; (ii) As kr — oo,
IA(Z, ao)[v7 ][] 1A(Z, ao)[vT]
RENEAS]
|A(Z, a0)[v7]]3

Iy =o(l).

The a-mixing condition in Assumption(i) with v > ﬁ becomes Condition 2.(iii) in Masry and
Fan (1997) for the pointwise asymptotic normality of their local polynomial estimator of a conditional
mean function. See also Fan and Yao (2003, Condition 1.(iii) in section 6.6.2). In the next subsection, we
illustrate that v > ﬁ is also sufficient for sieve M estimation of evaluation functionals of nonparametric
time series models to satisfy Assumption (ii). Instead of the strong mixing condition, we could also
use other notions of weak dependence, such as the near epoch dependence used in Lu and Linton (2007)

for the pointwise asymptotic normality of their local linear estimation of a conditional mean function.

Proposition 4.2 Let Assumptz'ons and hold. Then: 31" |p5(t)] = o(1) and Assumption
holds.

4.2.2 Irregular functionals of purely nonparametric models

In this subsection, we provide additional low-level sufficient conditions for Assumptions [4.1}(i), 4.3} (ii)

and (ii) for purely nonparametric models where the true unknown parameter is a real-valued func-
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tion hg (-) that solves supy,cqy E[¢(Z;, h(Xy))]. This includes as a special case the nonparametric condi-
tional mean model: Y; = ho(X;) + u with Efus|X;] = 0. Our results can be easily generalized to more
general settings with only some notational changes.

Let ag = ho (-) € H and let f(-) : H — R be any functional of interest. By the results in Subsection
, f(ho) has its sieve Riesz representor given by:

W) = P (Y8} Ve with g = it 20 ()

where Ry, is such that

B'Ry,. 8 = E (=1 (Zy, ho) [8' Py, Py, 8]) = B'E { =7 (Zy, ho (Xt)) Proy (X¢) Py (X0)'} B

for all B € R*T. Also, the score process can be expressed as

A(Zus ho) 7] = A(Ze, ho (X))oi(Xe) = A(Ze ho (X2)) Pag (X2)' B
Here the notations A(Zy, ho (X)) and 7 (Z, ho (X)) indicate the standard first-order and second-
order derivatives of ¢(Z;, h(X;)) instead of functional pathwise derivatives (for example, we have
—7(Zi,ho (Xy)) = 1 and A(Zy, ho (Xy)) = [Y; — ho(X¢)] /2 in the nonparametric conditional mean
model). Thus,

2PN By ()Rt 20 Py (),

lo3II* = B {E[-7(Z, ho (X)) |X](v}(X))*} = B Rip B =

Var (A(Z, ho)lvi]) = E { E(A(Z, ho (X))2|X) (vh(X)) } .

It is then obvious that Assumption (1) is implied by the following condition.

Assumption 4.5 (i) infcxy E[—7(Z,ho (X)) |X = 2] > 1 > 0; (ii) supyex E[—7(Z,ho (X)) |X =
z] < ¢g < 00y (iii) the smallest and largest eigenvalues of E { Py, (X)Py,.(X)'} are bounded and bounded
away from zero uniformly for all kr, and limy,, Hafa(zo) [Py (D)% = 005 (iv) infex E([A(Z, ho (X))2|X =
x)>c3>0.

It is easy to see that Assumptions (ii) and (ii) are implied by the following assumption.
- 24
Assumption 4.6 (i) E {|vi(X)|} = O1); (ii) sup,ey E UA(Z, ho (X))‘ "X = x} < ¢4 < oo; (ii)

—(2+n)(v+1)/2
(B ()1}

E{|v}(X)[*"} = o(1).

It actually suffices to use ess-inf; (or ess-sup,) instead of inf, (or sup,) in Assumptions and
[4.6] We immediately obtain the following results.

18



Remark 4.3 (1) Let Assumptions[{.3 (i), [{-4} (i), and [4.6 hold. Then:

T-1

* 12
PO = o(1) and Willsa 4 — o).

pal Var (A(Z, ao)[v}])

(2) Assumptions and [4.6, (it) imply that

df(ho)
oh

Var (A(Z, a0)[v7]) = E{(vp(X))*} =< [op* = 118715 = | [Pir (I — o005

hence Assumption . (iii) is satisfied if E{| Py, (X) ﬁT\2+n}/]|BT|](2+n O+ - =o0(1).

Assumptions (i), (i), and [4.6](ii) are all very standard low level sufficient conditions.
In the following, we illustrate that Assumptions [4.6](i) and (iii) are easily satisfied by two typical

functionals of nonparametric models: the evaluation functional and the weighted integration functional.

Evaluation functionals. For the evaluation functional f(hg) = ho(ZT) with T € X, we have
af (I — * * — — * —\ P— —
352 [Py ()] = Pig (%), 05() = Peg (B = Py () Rig) Peg (¥). Then [[07]* = Pf, (@) Ry} Py, (7) =
v (), and [[vh]|* < ||Pep (Z)]|% — oo under Assumption ( )(i1) (ii).
We first verify Assumption (1): Jyex [v7(2)] fx (x) dz = O(1). For the evaluation functional, we

have, for any vy € Vp :

vr (%) = (hr,v7) = E{E[=7(Z, ho (X)) [ X]or(X)or(X)}

= / vp (z) 07 (Z, ) dx, (4.6)
zeX
where
o7 (Z,x) = E[=7(Z, ho (X)) |X = zvr () fx () (4.7)
= E[-7(Z,ho (X)) |X = 2] P, (Z) Ry, Py () fx ().

By equation d7 (Z,x) has the reproducing property on Vp, so it behaves like the Dirac delta
function § (x — z) on Vp. See Appendix B for further discussions about the properties of dp (z,z). A
direct implication is that v7 (z) concentrates in a neighborhood around « = Z and maintains the same
positive sign in this neighborhood.

Using the definition of d7 (-, -) in , we have

* _ sign (v (2) o
fo i@ @i = | e i =y @) de

where sign(v}. (z)) = 1if v}, () > 0 and sign(v; (z)) = —1if v} (x) < 0. Denote by (z) = E[_;(gnh(og((;)‘))(:x].
Then sup,cy |br(z)| < ¢! < 0o under Assumption i)and [ _y v} (2)| fx (z) de = [, 4 br(z)or (Z, ) dz.
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If b7 (z) € Vr, then we have, using equation (4.6)):

x , sign (v7 (Z)) 1
v (x z)dr = bp(Z) = — — <c¢;, =0(1).
| @ @) de = br(e) = e S <t = 0)
If bp(z) ¢ Vr but can be approximated by a bounded function o7 (z) € Vr such that
/ [br(z) — 07 (2)] 67 (%, z) dz = o(1),

zeX

then, also using equation , we obtain:
/ lvr ()| fx (z) dz = / op (x) 6 (Z,z) dz + / [br(z) — op (2)] 67 (%, z) dz
rEX reX reX
=or(Z)+0(1)=0().

Thus Assumption [4.6](i) is satisfied.
Next, we verify Assumption [4.6](iii). Using the definition of 67 (-,-) in ([4.7), we have

i _ i ()| sign (vi(z) o
E {IvT(X)y2+n} _ /mex E[i?(Z, e 00) |§ —0r (z,7) d.

Using the same argument for proving [, _. [vi(z)| fx (z) dz = O(1), we can show that under mild

conditions:

vE (T 1+n
B{ur 0P} < g I o) = 0 (@),

On the other hand,

* _ * _ U*(CC) — — ok (=
E{li(0P} = / N @P fe@de= | e T e r (5,0) de < 07 (7).

Therefore
. —(2+n)(v+1)/2 . . .
(B{lwr0P}) E{|op(X)P7} < |op (@) 1O — o(1)

if 14+n—(2+n)(y+1)/2 <0, which is equivalent to v > n/(2 + n). That is, when v > /(2 + ),
Assumption [4.6] (iii) holds.

The above arguments employ the properties of delta sequences, i.e. sequences of functions that
converge to the delta distribution. It follows from that A (Z) = [ex hr () 67 (Z, x) dz. When the
sample size is large, the sieve estimator of the evaluation functional effectively entails taking a weighted
average of observations with the weights given by a delta sequence viz. ép (Z,z). The average is taken
over a small neighborhood around Z in the domain of X where there is no time series dependence. The
observations X; that fall in this neighborhood are not necessarily close to each other in time. Therefore
this subset of observations has low dependence, and the contribution of their joint dependence to the

asymptotic variance is asymptotically negligible.
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Weighted integration functionals. For the welghted integration functional f(hg) = [, w W x)dz
for a Welghtlng function w(x), we have 8f8(20) = [y w(x)Py,(x)dz, vi(-) = PkT(-) 5T =

Pr.(+) f 2 W(x) Py (z)dz. Suppose that the smallest and largest eigenvalues of R,:Tl are bounded
and bounded away from zero uniformly for all k7. Then [vk|? < || [y w(@) Py (z)dx]|%,, thus f(ho) =
S w( x)dz is irregular if limg,, || [ w(@) Py, (z)dz||3, = co.

For the Welghted integration functional, we have, for any hp € Vp :

/Xw(a)h:r (a)da = (hr,vr) = E{E[=7(Z, ho (X)) | X]hr (X)o7 (X)}
E/ {/ a)or (a,z) da}dz,

ot (a,) = E[=7(Z,ho (X)) |X = 2] P, (a) Ry Py (2) fx (2) -

where

Thus,

| pi@ iy @as = |
/.

fx (x)dx

or (a, )
/:ceX a)sign{w(a)or (a,x)} E7 (Z.ho (X)X = ] dadz

= / / b(a,z)or (a,x) dadz,
acX JxeX

w (a) sign {w(a)dr (a,x)}
E[-7(Z,ho (X)) |X = 2]

If b(-,x) € Vp, then, under Assumption 4.5 (i),
/ b(x,z)dx < C/ |w (z)] dx
rEX zeX

[ i@l fx (@) do
reX
for some constant C. If b(-,x) ¢ Vp, then under some mild conditions, it can be approximated by

‘ / (a)da} R, Py, (z)

where

b(a,x)

Q.

)
wr(-,x) € Vp with |wr(a,z)| < C|b(a,x)| for some constant C' and
a

Jel o

In this case, we also have

/ lop(2)] fx (x)dx < / wr(z, z)dr < C/ |w (x)| dz.
zeX TEX zeX
So if [ oy lw(x)|dx < oo, we have [, _, [v}(z)| fx (z)dz = O (1). Hence Assumption (1) holds.

It remains to verify Assumption [4.6](iii). Note that
2+n 2+n 2+n
(1P (X85} _ E (12 CONE) 1871057 £ (1P (OIF™)

,x) — wr(a,x)]ér (a,x) dadx = o(1).

|85 Grmo+ 185 GO+ 185G
o[ 2 (1A ) .
a P d (2+m)y _O( )
foeX ey (2) ‘THE

21



for sufficiently large v > 1, as || [, ., w (x) Py, (¢) dz||p — oo. The minimum value of v may depend

on the weighting function w (x) . If sup,cx || Pi, (:C)H = O (kr) , which holds for many basis functions,
2 1)

and || [, w (%) Py (2) dal[3, < kr, then B{|Pe (XY 8517} /|185]5 0" = o(1) for any v > 1. It

follows from Remark - 3| that Assumption [4. (111) holds for the weighted integration functional.

5 Autocorrelation Robust Inference

In order to apply the asymptotic normality Theorem we need an estimator of the sieve variance
Hv}Hi ;- In this section we propose a simple estimator of Hvi}”i , and establish the asymptotic distribu-
tions of the associated ¢ statistic and Wald statistic.

The theoretical sieve Riesz representor v} is not known and has to be estimated. Let |-||,» denote

the empirical norm induced by the following empirical inner product
T
<U1,U2 Z Zt,OéT Ul,UQ] (5.1)

for any vy, v € Vp. We define an empirical sieve Riesz representor v* ;. of the functional of (zT) [-] with

0,
respect to the empirical norm ||-||,, i.e.

—~ af(ar) 2
8f(aT)[5IH = sup 7‘ Ja 2[v]| < 00 (5.2)
Oa vEV,v#£0 H’UHT
and
of(a .
O ) = o, 01 (53)

for any v € Vr. We next show that the theoretical sieve Riesz representor v} can be consistently
estimated by the empirical sieve Riesz representor 0 under the norm ||-||. In the following we denote
Wr = {v € Vr:|v]| = 1}.

Assumption 5.1 Let {€}.} be a positive sequence such that € = o(1).
(i) SUPqeBr,v1,02eWr E{T(Zv a’)[vh UQ] - T(Zv ao)[vlv 'UQ]} = 0(63“)7
(“) SUPaeBr,v1,veeWr MT {T(Zv Oé) [vla UQ]} = OP(E%);

(ii1) $UPnes, wewy | B2 o] = 22 [o]| = O(eh).

Assumption [5.1](i) is a smoothness condition on the second derivative of the criterion function
with respect to a.. In the nonparametric LS regression model, we have r(Z, a)[v1,ve] = r(Z, ap)[v1, v2]
for all @ and vy, vo. Hence Assumption [5.1](i) is trivially satisfied. Assumption [5.1}(ii) is a stochastic
equicontinuity condition on the empirical process T~ S| 7(Z;, o) [v1, v2] indexed by « in the shrinking
neighborhood Br uniformly in vy,ve € Wp. Assumption (iii) puts some smoothness condition on

the functional %(aa)[v] with respect to « in the shrinking neighborhood By uniformly in v € Wr.
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Lemma 5.1 Let Assumption [5.1] hold, then

— 0y(er) ana 12 —Y0l g ez (5.4)
HUTH

With the empirical estimator v} satisfying Lemma we can now construct an estimate of the
Hv}Hi 4» which is the LRV of the score process A(Z;, ag)[vy]. Many nonparametric LRV estimators
are available in the literature. For kernel LRV estimators, see Newey and West (1987), Andrews
(1991), Jansson (2004), Kiefer and Vogelsang (2005), Sun (2011b) and the numerous references therein.
Nevertheless, to be consistent with our focus on the method of sieves and to derive a simple and accurate
asymptotic approximation, we use an orthonormal series LRV (OS-LRV) estimator in this paper. The
OS-LRV estimator has already been used in constructing autocorrelation robust inference on regular
functionals of parametric time series models; see, e.g., Phillips (2005), Miiller (2007), and Sun (2011a).
Let {¢m},,_, be a sequence of orthonormal basis functions in Ly[0,1]. Define the orthogonal series

projection

= Z¢m A(Zy, ar)[07) (5.5)

and construct the direct series estimator Q,, = A2 for each m = 1,2,..., M where M € Z". Taking a

simple average of these direct estimators yields our OS-LRV estimator HUTH sar Of ”UTHS PE

1 M 1 M
15501200 = — Qn = 17 AZ,, (5.6)
M
m=1 m:l

where M, the number of orthonormal basis functions used, is the smoothing parameter in the present
setting.
For irregular functionals, our asymptotic result in Section [ suggests that we can ignore the temporal

dependence and estimate Hvi}”i . by

T
52 =T {A(Z, a0)[05]}2

However, when the sample size is small, there may still be considerable autocorrelation in the time
series A(Z;, ap)[v}]. To capture the possibly large but diminishing autocorrelation, we propose treating
A(Zg, op)[v7] as a generic time series and using the same formula as in to estimate the asymptotic
variance of T-V/2 "1 A(Z;, a0)[v3]. That is, we estimate the variance based on the finite sample
variance expression without going into deep asymptotics. We call the estimator the “pre-asymptotic”
variance estimator. With a data-driven smoothing parameter choice, the “pre-asymptotic” variance
estimator ||0%.]? sa.r should be close to 52 when the sample size is large. On the other hand, when the

sample size is small, the “pre-asymptotic” variance estimator may provide a more accurate measure
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of the sampling variation of the plug-in sieve M estimator of irregular functionals. An extra benefit
of the “pre-asymptotic” idea is that it allows us to treat regular and irregular functionals in a unified
framework. So we do not distinguish regular and irregular functionals in the rest of this section.

To make statistical inference on a scalar functional f(«p), we construct a ¢ statistic as follows:

tp = \/T [f(aT) - f(QO)] (57)

7|

We proceed to establish the asymptotic distribution of ¢ when M is a fixed constant. To facilitate

our development, we make the assumption below.

Assumption 5.2 Let \/TEZ}{"T = o(1) and the following conditions hold:
; TT
(i) SUPre(0.1] SUWPvewy, actr T Soint (A(Z1 @) [v] = A(Zs, o) [v] = B{A(Z, @) [o]}) = 0,(1);
(i) $UPyewy, aepr E{A(Z; @) [v] = A(Zi, ao) [v] = 7(Z, o) [v, @ — ]} = O (7€) ;
... TT
(i) SUDr (0,11 SUPuewy < Soimy A(Ze, o) [v] = Op(1);
(iv) ﬁ Zg? A(Zy, ap) [wp) —aq W(T) where W(T) is the standard Brownian motion process.

Assumption [5.2}(i), (iii) and (iv) can be verified by applying the sequential Donsker’s Theorem.
Assumption [5.2](ii) imposes a smoothness condition on the criterion function ¢(Z, @) with respect to
a, and it can be verified by taking the first order expansion of E {A(Z, «) [v]} around «ap and using the
convergence rate &p. Assumption (iv) is a slightly stronger version of Assumption

Theorem 5.1 Let fol ¢Om (r)dr =0, fol Om (1) o (1) dr = 1{m =n} and ¢, () be continuously differ-
entiable. Under Assumptions and[5.9, we have, for a fized finite integer M :
1
o2t R —a [ () W)
If further Assumption [3.1] holds, then
VT [f(@r) — f(eo)]

97| g

tr = —>dt(M)a

where t (M) is the t distribution with degree of freedom M.

Theorem [5.1] shows that when M is fixed, the ¢ty statistic converges weakly to a standard ¢ distrib-
ution. This result is very handy as critical values from the ¢ distribution can be easily obtained from
statistical tables or standard software packages. This is an advantage of using the OS-LRV estimator.
When M — oo, t (M) approaches the standard normal distribution. So critical values from ¢ (M) can
be justified even if M = Mp — oo slowly with the sample size T. Theorem extends the result
of Sun (2011a) on robust OS-LRV estimation for parametric trend regressions to the case of general

semi-nonparametric models.
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In some economic applications, we may be interested in a vector of functionals f = (f,..., fq)'
for some fixed finite ¢ € ZT. If each f; satisfies Assumptions and their Riesz representor

V= (viT, .. ,v’q':T) satisfies the multivariate version of Assumption
Vi lled VT {A(Z, a0) [v7]} —a N(0, 1),

then
IVl VT [f(@r) — f£(ao)] —a N(0, 1), (5.8)

where ||vi}|\§d =Var (\/T,LLTA(Z, ao)[v;]) is a ¢ X ¢ matrix. A direct implication is that
T [f(ar) — (o)) |[Villyd F(@r) — f(ao)] —a x;- (5.9)
we define the orthogonal series projection

A — (xw,...,x;@)’

To estimate ||VT ”sd ’

with
T

Z ZtvO‘T)[ ]T]v

=1
where 97 denotes the empirical sieve Riesz representor of the functional of ”gST) [] (=1,...,9). The

OS-LRV estimator ||vi||? . of the sieve variance ||VT”S 4 is

M

~ 2 N N

”VT”sd,T M Z AnAy,.
m=1

To make statistical inference on f(«g), we construct the F' test version of the Wald statistic as

follows:
Fr =T [f(@r) — f(ao)] |[¥3lloir [E(@r) — £(a0)] /g (5.10)
We maintain Assumption but replace Assumption (iv) by its multivariate version:

(T'7]

v jT S A%, a0) [Vi] —a W(7)
t=1

where W(7) is the g-dimensional standard Brownian motion process. Using a proof similar to that for

Theorem we can prove the theorem below.

Theorem 5.2 Let fo ém (r)dr =0, fo Gm (1) Pn (r)dr = 1{m =n} and ¢, (-) be continuously dif-
ferentiable. Let Assumptions [3.1), [3.2, [3.3, [5.1] and the multivariate version of Assumption hold.
Then, for a fixed finite integer M :
M—-qg+1
TqFT —d Fypi—qt1,

where Fy pi—q+1 is the F distribution with degree of freedom (q, M — q+1).
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For /T estimable parameters in parametric time series models, Sun (2011b) points out that the
multiplicative modification (M — g+ 1) /M is a type of Bartlett correction in addition to a distribu-
tional correction (i.e. using an F approximation instead of the standard y2-approximation).

The weak convergence of the F' statistic can be rewritten as
Xa/4 M 4 M

VR
Xiroqer/ (M —q+1) M —q+1 PETITM — g+ 1

Fr —q

As M — oo, both X?W—q—&-l/ (M —q+1)and M/(M — g+ 1) converge to one. As a result, the limiting
distribution approaches the standard x? distribution. That is, under the sequential limit theory in
which T — oo for a fixed M and then M — oo, we obtain the standard y? distribution as the
sequential limiting distribution. When M is not very large or the number of the restrictions ¢ is large,
the second stage approximation in the sequential limit is likely to produce a large approximation error.
This explains why the F' approximation is more accurate, especially when M is relatively small and ¢

is relatively large.

6 Numerical Equivalence of Asymptotic Variance Estimators

To compute the OS-LRV estimator in the previous section, we have to first find the empirical Riesz
representor v, which is not very appealing to applied researchers. In this section we show that in
finite samples we can directly apply the formula of the OS-LRV estimation derived under parametric
assumptions and ignore the semiparametric/nonparametric nature of the model.

For simplicity, let the sieve space be A = © x Hp with © a compact subset of R% and Hp =
{h(-)= Py (-VB:BER}. Let agr = (60, Pry (") Bo,r) € int(©) x Hr. For a € Ap = © x Hr, we
write £(Zs, a) = 0(Zs,0,h () = £(Z,0, Py, (-)'8) and define £(Z;,~) = £(Z4,0, Py, (-)' ) as a function of
v = (0,8 € R™ where d,, = dy + dg and dg = kr. For any given Z;, we view ¢(Z;, ) as a functional
of « on the infinite dimensional function space A, but ¢ (Z¢,7y) as a function of v on the Euclidian space
R% whose dimension d, grows with the sample size but could be regarded as fixed in finite samples.

By definition, for any a; = (6}, Py,.(-)'51) and ag = (0%, Pr,.(-)'B2)", we have

ol Zy,

) (= 0) = At(Zn ) o — (6.1)
where the left hand side is the regular derivative and the right hand side is the pathwise functional
derivative. By the consistency of the sieve M estimator ap = (§’T, Py, ()’ET) for ap 7 = (6o, Pry (1) Bo1)s
we have that 7/, = (§/T7 B{F) is a consistent estimator of v 7+ = (6, 55 1), then the first order conditions

for the sieve M estimation can be represented as

T ~ ~
1 ‘%(Ztv'YT)
— — 2~ 0. 2
E ;1 o 0 (6.2)
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These first order conditions are exactly the same as what we would get for parametric models with
d-dimensional parameter space.

Next, we pretend that E(Zt, 7) is a parametric criterion function on a finite dimensional space R%.
Using the OS-LRV estimator for the parametric M estimator based on the sample criterion function
P Zt L (Zs,), we can obtain the typical sandwich asymptotic variance estimator for v/T (37 — 70.7)
as follows:

St = R;'BrR;%,
where

_ _72 8 E Zta’YT
ooy

Ol Z, 0U(Zt,
Z¢m (> t:7r) Z¢m <> a;IVT)

Now suppose we are interested in a real-valued functional for = f(aor) = f (00, Pr.(-)' Bor),

ﬁz

m=1

which is estimated by the plug-in sieve M estimator f: f(ar) = f(gT, PkT(-)’BT). We compute the
asymptotic variance of f mechanically via the Delta method. We can then estimate the asymptotic
variance of VT (]?— fo,r) by

Var(f) = F}, SrFyy = B, Ry BrR; By,
i — (9f@r) 9f(@ar) n\’ : L — .
where Fj, = ( a0 —on [Prr(+) ]) . The following proposition shows that Var(f) is numerically

identical to |[o%||? s defined in 1) The same result also holds for vector-valued functionals.

Proposition 6.1 For any sample size T, we have the numerical identity:
15312, = Var(F) = BY, Ry By Ry B,

The numerical equivalence in variance estimators and point estimators (i.e., y7) implies that the
corresponding test statistics are also numerically identical. Hence, we can use standard statistical pack-
ages designed for (misspecified) parametric models to compute test statistics for semi-nonparametric
models. However, depending on the magnitude of sieve approximation errors, statistical inference and
interpretation may be different across these two classes of models. Finally, we wish to point out that
these numerical equivalence results are established only when the same finite dimensional linear sieve

basis Py, () is used in approximating both the unknown function ho(-) and the sieve Riesz representor

*

Up.
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7 Simulation Study

In this section, we examine the accuracy of our inference procedures in Section [p| via Monte Carlo

experiments. We consider a partial linear model as given in (2.2)):
Y, = X{,00 + ho(Xat) + g, t = 1,...,T

where Xo; and u; are scalar processes, X1; is a d-dimensional vector process with independent compo-
nent X{t. More specifically, X{, = (Xllt, v Xf]’t) for d = 4 and

€t

. . . - 1
Xi, = pX{,t—l + V1= pel, Xy =——= (Xllt +.ot Xfit) + 2

V2d
et = pes—1+ V1= pPect, s = pur1 + /1 — pPeus

where (e%t, ...,s‘ft,set,eut)/ are iid N(0,I;42). Here we have normalized X{t,th, and u; to have zero
mean and unit variance. We take p = —0.75:0.25: 0.75.

Without loss of generality, we set #y = 0. We consider fzg(f(gt) = sin(th) and cos(f(gt). Such
choices are qualitatively similar to that in Hirdle, Liang and Gao (2000, pages 52 and 139) who
employ sin(7r)~(2t). We focus on Bo(f(gt) = cos(f(gt) below as it is harder to be approximated by a
linear function around the center of the distribution of X, but the qualitative results are the same for
ho(Xat) = sin(Xa).

To estimate the model using the method of sieves on the unit interval [0,1], we first transform Xo

into [0, 1]:
X . X
Xop = 76}@( 23) or X9 = log < 2t > .
1+ exp(Xat) 1 — Xo

Then ho(Xar) = cos(log[Xar (1 — Xar) 1) := ho (Xaz) for hg (z9) = cos(log[zz (1 — x9) " "]). Let Py, (z2) =
[p1(x2), ..., pry (z2)] be a kr x 1 vector, where {p; (z2) : j > 1} is a set of basis functions on [0,1]. We
approximate hq (z2) by P, (x2)' 8 for some 8 = (51, ..., Bey) € RFT. Denote X; = (X{t,PkT (th)') a

1 X (d+ kr) vector and X a T x (d + kr) matrix:

X1 pr(Xo1) oo prp (Xo21) X1
X Xig pr(X2) oo prp (X22) | _ [ X2
Xir p1(Xor) ... prp (Xor) Xr

Y = (Y1,..,Y7), U= (uy,...,ur) and v = (¢, 8')". Then the sieve LS estimator of  is
Ar = (X'X) ' X'Y.

In our simulation experiment, we use AIC and BIC to select k7.
We employ our asymptotic theory to construct confidence regions for 61.; = (o1, ..., 6p;)’. Equiva-

lently, we test the null of Hy; : 01.; = 0 against the alternative Hy; : at least one element of 61 is not
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zero. Depending on the value of j, the number of joint hypotheses under consideration ranges from 1 to
d. Let Ry (j) be the first j rows of the identity matrix I, , then the sieve estimator of 61.; = Ry (j) v
is

015 =Ry (j) A, (7.1)

and so

\/T </0\1;j — 01;]') ng ( ) ()(I)()_1 X/U + Op (1)

fz (X'X) Xjus + o0, (1).

Let (4, ..., u7) = U =Y — Xip, Ag = Re (§) (X'X/T) " X}, € R and

. 1 &1 & to~ 4 ,
Qom = MmZ:l <ﬁ;¢m(T)A€t> ( 21 Am)

be the OS-LRV estimator of the asymptotic variance Q of vT' (é\l;j — Hl;j) . Using the numerical equiv-

alence result in Section @], we can construct the F-test version of the Wald statistic as:

Fo () = (VIR (1)3r) Qg (VIR () Ar) /i

We refer to the test using critical values from the Xj 2/ distribution as the chi-square test. We refer to
the test using critical value M (M —j + 1)~ ]:j7M_j+1 as the I’ test, where FT), ., is the (1—7)
quantile of the F distribution Fj ;1. Throughout the simulation, we use ¢o,,—1(z) = V2 cos 2mr,
Pam(x) = V/2sin2mrz, m = 1,..., M/2 as the orthonormal basis functions for the OS-LRV estimation.

To perform either the chi-square test or the F' test, we employ two different rules for selecting the
smoothing parameter M. Under the first rule, we choose M to minimize the asymptotic mean square

error of Qgpr. See Phillips (2005). The MSE-optimal M is given by

r[(I2 +Kj5) (2@ Q)] e T4/5
4vec(B)'vec(B) ’

t
Myse =

where B is the asymptotic bias of O M, Kjj; is the 42 x j? commutation matrix, and [-] is the ceiling
function. Under the second rule, we choose M to minimize the coverage probability error (CPE) of
the confidence region based on the conventional chi-square test. The CPE-optimal M can be derived
in the same way as that in Sun (2011b) where kernel LRV estimation is considered, with his kernel

bandwidth b = M L. Setting ¢ = 2,¢; = 0,c2 = 1,p = j in Sun (2011b)’s formula, we obtain:

1
(27 )\
4 |tr (BQ1)| ’

Wi

Mcpe =
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where X7 is the (1 — 7) quantile of ij distribution.

The parameters B and 2 in My;sr and Mopg are unknown but could be estimated by a standard
plug-in procedure as in Andrews (1991). We fit an approximating VAR(1) model to the vector process
ﬁgt and use the fitted model to estimate {2 and B.

We are also interested in making inference on hg (x). For each given z, let R, = [01xa, Pry (z)'].

Then the sieve estimator of hg (x) = R, is
h(z) = RaAr- (7.2)

We test Hy : h(z) = ho (z) against Hy : h(z) # ho (z) for £ = [1 +exp (—Z2)] * and &y = —2:0.1: 2.
Since Xy, is standard normal, this range of &5 largely covers the support of Xo;. Like the estimator for
the parametric part in ((7.1)), the above nonparametric estimator is also a linear combination of 7. As

a result, we can follow exactly the same testing procedure as described above. To be more specific, we

let , L
~ XX\
and ,
M T T
~ 1 1 t. 1 .~
Q;t = 75 — m\ 7 Aa: y— m\ 7 Aw 5
v =31 2 (e ) (5 Do)
which is the pre-asymptotic LRV estimator of v/T [R 37 — ho (x)]. Then the test statistic is
N
Fy = (VT [RAr = ho (@)]) @5ty (VT [RiAr = ho (2] (7.3)

As in the inference for the parametric part, we select the smoothing parameter M based on the MSE
and CPE criteria. It is important to point out that the approximating model and hence the data-driven
smoothing parameter M are different for different hypotheses under consideration.

In Section [@ we have shown that, for evaluation functionals, the asymptotic variance does not

depend on the time series dependence. So from an asymptotic point of view, we could also use
T
R 1 PN
:;M — T ;A:pt (Azt)

as the estimator for the asymptotic variance of /T [R,A7 — ho ()] and construct the F statistic
accordingly. Here F); is the same as F}, given in but with ﬁm M replaced by ﬁ; M-

For the nonparametric part, we have three different inference procedures. The first two are both
based on the F), statistic with pre-asymptotic variance estimator, except that one uses X% approximation
and the other uses Fi s approximation. The third one is based on the F statistic and uses the X3
approximation. For ease of reference, we call the first two tests the pre-asymptotic x? test and the pre-
asymptotic F test, respectively. We call the test based on F} and the x? approximation the asymptotic
X2 test.
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Table@ gives the empirical null rejection probabilities for testing 61.; = 0 for j = 1,2,3,4for p > 0
under the CPE criterion. The number of simulation replications is 10,000. We consider two types of
sieve basis functions to approximate h(-): the sine/cosine bases and the cubic spline bases with evenly
spaced knots. The nominal rejection probability is 7 = 5% and kp is selected by AIC. Results for BIC
are qualitatively similar. Several patterns emerge from the table. First, the F test has a more accurate
size than the chi-square test. This is especially true when the processes are persistent and the number
of joint hypotheses being tested is large. Second, the size properties of the tests are not sensitive to
the different sieve basis functions used for h(-). Finally, as the sample size increases, the size distortion
of both the F test and the chi-square test decreases. It is encouraging that the size advantage of the F
test remains even when 1" = 500.

Figures [8.2{8.4] present the empirical rejection probabilities for testing Hy : h (z) = hg (z) against
Ho : h(z) # ho (z) for £ = [1 + exp (—&9)] ' and & = —2: 0.1 : 2. As in Table the CPE criterion
is used to select the smoothing parameter M. It is clear that the asymptotic x? test that ignores the
time series dependence has a large size distortion when the process is persistent. This is true for both
sample sizes T' = 100 and 7" = 500 and for both sieve bases considered. Nevertheless, the asymptotic
x? test becomes less size-distorted as the sample size increases. This is consistent with our asymptotic
theory. Compared to the pre-asymptotic x? test, the pre-asymptotic F test has more accurate size
when the sample size is not large and the processes are persistent. This, combined with the evidence
for parametric inference, suggests that the pre-asymptotic F' test is preferred for both parametric and
nonparametric inference in practical situations.

For brevity, we do not report the simulation results when the MSE criterion is used to select the
smoothing parameter M. We note that the superior performance of the pre-asymptotic F' test relative
to the pre-asymptotic x? test and the conventional asymptotic x? test remains. This is true for inference

on both parametric and nonparametric components.

8 Conclusion

In this paper, we first establish the asymptotic normality of general plug-in sieve M estimators of
possibly irregular functionals of semi-nonparametric time series models. We then obtain a surprising
result that weak dependence does not affect the asymptotic variances of sieve M estimators of many
irregular functionals including evaluation functionals and some weighted average derivative functionals.

Our theoretical result suggests that temporal dependence can be ignored in making inference on
irregular functionals when the time series sample size is large. However, for small and moderate time
series sample sizes, we find that it is better to conduct inference using the “pre-asymptotic” sieve
variance estimation that accounts for temporal dependence.

We provide an accurate, autocorrelation robust inference procedure for sieve M estimators of both
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regular and irregular functionals. Our procedure is based on the “pre-asymptotic” scaled Wald statistic
using the OS-LRV estimation and F approximation. The “pre-asymptotic” F approximations are
asymptotically valid regardless of (1) whether the functional of interest is regular or not; (2) whether
there is temporal dependence or not; and (3) whether the orthonormal series number of terms in
computing the OS-LRV estimator is held fixed or not. Our scaled Wald statistics for possibly irregular
functionals of semi-nonparametric models are shown to be numerically equivalent to the corresponding

test statistics for regular functionals of parametric models, and hence are very easy to compute.

Table 8.1: Empirical Null Rejection Probabilities for the 5% F test and Chi-square Test
j=1 j=2 j=3 j=4
F test x? Test F test x? Test F test x? Test F test x? Test
T = 100, Cosine and Sine Basis
p=0 0.0687 0.0882 0.0723  0.0921 0.0885 0.1151 0.1329 0.1905
p=0.25 0.0706 0.1032 0.0825 0.1193 0.1085 0.1715 0.1679  0.2923
p=0.50 0.0717 0.1250 0.0884 0.1485 0.1255 0.2214 0.2012  0.3880
p=0.75 0.0744 0.1525 0.0973 0.1814 0.1458 0.2765 0.2338  0.4918
T = 100, Spline Basis
p=0 0.0680 0.0844 0.0711  0.0887 0.0830 0.1126 0.1212  0.1791
p=0.25 0.0647 0.0967 0.0743 0.1133 0.1011  0.1635 0.1518 0.2729
p=0.50 0.0668 0.1174 0.0799 0.1392 0.1176  0.2138 0.1880 0.3726
p=20.75 0.0655 0.1418 0.0867 0.1736 0.1358  0.2675 0.2137 0.4754
T = 500, Cosine and Sine Basis
p=0 0.0549  0.0596 0.0578  0.0621 0.0605 0.0695 0.0699 0.0898
p=0.25 0.0527 0.0593 0.0554  0.0646 0.0602 0.0798 0.0699 0.1145
p=0.50 0.0636 0.0628 0.0576  0.0720 0.0621  0.0898 0.0736  0.1354
p=20.75 0.0529 0.0659 0.0583 0.0789 0.0613  0.1003 0.0773  0.1651
T = 500, Spline Basis
p=0 0.0524  0.0552 0.0559  0.0607 0.0567 0.0683 0.0648  0.0858
p=0.25 0.0507 0.0582 0.0539  0.0625 0.0552  0.0743 0.0659 0.1078
p=0.50 0.0485 0.0584 0.0537 0.0663 0.0573  0.0850 0.0686  0.1327
p=0.75 0.0500 0.0614 0.0547 0.0739 0.0570 0.0964 0.0724 0.1581

Note: j is the number of joint hypotheses.
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Figure 8.1: Plot of Empirical Rejection Probabilities Against the value of X9; with Sine and Cosine
Basis Functions and 7" = 100
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Figure 8.2: Plot of Empirical Rejection Probabilities Against the value of Xy with Spline Basis Func-
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Figure 8.3: Plot of Empirical Rejection Probabilities Against the value of X9; with Sine and Cosine
Basis Functions and T" = 500
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Figure 8.4: Plot of Empirical Rejection Probabilities Against the value of Xy with Spline Basis Func-
tions and T' = 500
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9 Appendix A: Mathematical Proofs

Proof of Theorem For any « € By, denote local alternative o of o as

€TU;

* ko
o, =aterup =a=x ,

107

where ep = O(T_%). It is clear that if & € By, then by the definition of o}, Assumption (luk|l =
O(1)), and the triangle inequality, we have o € Br. Since ar € By with probability approaching one,
we have that @, = @r £ eruy € Br with probability approaching one. By the definition of ar, we
have

T T
1 1
2 ~ ~

—0p(er) < 7 ;5(@70@) -7 ;f(zt,a

= E[E(Zt, aT) — E(Zt, &* —|— wr {A(Z, Ozo) [&T — &Z}T]}

+ur {(Z,ar) - U(Z, @, T) A(Z,o0) [ar — @} r]}

= Bl(Zs,ar) — U Zs, @, 1)) F pr {A(Z, a0)ferur]} + Op(et) (9-1)

by Assumption [3.3](i)(ii). Next, by Assumptions [3.2] and [3.3](iii) we have:

ElU(Zy, ar) — U(Zy, 0, 1)
_ |lar + eruq — aol|* — [|ar — aol|?
2

~ * 1 *
= fer(ar — ap, up) + §€2TIIUTH2 +O0p(e?)

+ Op(eT)

= ter(Gr — a0, uf) + Op(e3).
Combining these with the definition of a;;T and the inequality in , we deduce that
—0,(e%) < ter(ar — ao, up) F erpr {A(Z, a0)[ut]} + Op(e7),
which further implies that
(@r — ao,uy) - pr {A(Z, ao)ui]} = Opler) = 0, (T71/2). (92)
By the definition of ag 7, we have (a1 — ap,v) = 0 for any v € Vr, and hence
(a0, r — g, up) = 0.

Thus
VT (@r — aor,up) — VT ur {A(Z, a0) [uf]}] = o,(1). (9.3)

Next, we link \Ff(aﬂ% with VT ur {A(Z, ap) [uh]} through the inner product VT (a7 — ag 1, uk).
U
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By Assumptions m i) and m and the Riesz representation theorem,

ff(aT) flaor)

[o3]],4
_ 7 {(@1) ~ floo) — “E0@r — o)
03],
sl taon) — floo) — P lagr — oo
[v3]],4
T O20) (G — ag) — % [0, — o]
H“THsd
_ fafég()) o7 —aor] | 0, (1) = Jier = Séo,T,U% + 0y (1)
03] o W
= VT (a1 — agr, ul) + 0, (1). (9.4)
It follows from and that
Vi) = H@0r) sy (A2, 00) 3]} ] = 0p(1), (9.5)

HUTHsd

which establishes the first result of the theorem.
For the second result, under Assumption (ii), we get

/7o) = f(ao)

[EA
_ ypdleor) = flao) - Ot aor — o] \Fafazvm)[ o1 — o] _ op(1).
lorll., [V

This, (9.5) and Assumption immediately imply that

VIO —1(@0) _ /T (A7, a0) b} + 0p(1) —a N(0,1).

H”THsd
m

Proof of Theorem [4.1} By Assumption [4.1}(i), we have: 0 < Var (A(Z, ap)[v}]) — co. By equation
and definition of p.(t), we have:

o124
> -1=J Jo .
Var (A(Z,ao)[v}]) 1,T+ 2,T
where
E{ANZ A(Z, *
JIT_QZ — 1) E{A(Z1, 00) 7] A(Zi41, o) [vF]} and

Var{A(Z, ao)[v}]}

Jop =2 Z <1—> (t).

t=dpr+1
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By Assumption [1.1}(ii)(a), we have:
2drCr

Jir| < =o(1). 9.6
e e A0 S (96)
Assumption [£.1] (i) (b) immediately gives |Jo 7| = o(1). Thus
[[vF ]2 —
1 < [Jir| + | Jor| = o(1), (9.7)

Var (A(Z, ao)[v}]) B

which establishes the first claim. This, Assumption (1) and Theorem together imply the asymp-
totic normality result in (4.4). m

Proof of Proposition[4.2} For Assumption[d.1}(i), we note that Assumption[d.2}(i) implies [|v}.|| — oo
by Remark [3.2] Also under Assumption [4.2] we have:

||U;~||2 _ 7¥RkT’7} < >\max (RkT) _ 0(1)
Var {A(Z,a0)lv7]} 7 E Sk (2)Sk0 (2)17 ~ Amin (B [Skr (2) Sk (2)']) ’

where Amax (A) and Apin (A) denote the largest and the smallest eigenvalues of a matrix A. Hence

il /Var {A(Z, ho)[v%]} = O(1). For Assumption (ii)(a), we have, under Assumption (i),
|E{A(Z1, a0)[vr] A2, ao) o7 ]}

[ [ ACrao) ] A a0 i) 2, (1,2) dend
21€EZ J €2

S22 (21, 2)
~/21€Z /ZtEZ 2’1,04() UT] A(ztaao) [ ] fZ (Zl) fZ (Zt) fZ (Zl) fZ (Zt) ledZt

<C (/zlez |A(z1, ao) [v7]] fz (21) dzl) =C|A(Z, O‘O)[UT]H%,

which implies that
Cr < C||A(Z o) 7]} -

This and Assumption (ii) imply the existence of a growing dr — oo such that
drCr

.
|A(Z,a0)luz1;

I

thus Assumption [£.1](ii)(a) is satisfied. Under Assumption [4.4}(ii), we could further choose dr — oo
to satisfy

1A(Z, o)l I2,,

|A(Z, a0)lo315

1A(Z, ao)[v}}llf X dy
HA Z ao

=o(l) and dj = — oo for some vy > 0.

oill;

It remains to verify that such a choice of dy and Assumption (1) together imply Assumption
(ii)(b). Under Assumption[t.4}(i), {Z;} is a strictly stationary and strong-mixing process, {A(Zy, ag)[v}] :
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t > 1} forms a triangular array of strong-mixing processes with the same decay rate. We can then
apply Davydov’s Lemma (Hall and Heyde 1980, Corollary A2) and obtain:

|E{A(Z1, 00)[07]A(Zus1, a0) 3]} < 8[a()]77 |A(Z, a0) 053, -

Then:

= E{A(Z1,ao)[v?]A(ZtHvaO)[”;]}
2

IA(

Z,ap) vy, H2+n Z

HA (Z, a0)[vy Hz t= dT

[A(Z, ao)[vr ||2+n " Z 2+n =o(1)
HA Z CM() 'UT HQ t=dr

provided that

A(Z, ap)|v
142, a0)l T]H%Lnd_7 O(1) and Zt“’[a(t)]ﬁ < oo for some 7y > 0,
1A(Z, a0) w715

which verifies Assumption(ii) (b). Actually, we have established the stronger result: Zf;ll lpr(t)| =
o(1). m

Proof of Lemma First, using Assumptions [5.1](i)-(ii) and the triangle inequality, we have

T S (2 @for, va] = E{r(Z, c0)on, val}
sup  sup

a€Br v1,v2EVr [[oa]] vzl
T

71 Z r(Zt, @)[v1, va] — E{r(Z;, a)[v1,v2]}
t=1

+ sup  sup [EA{r(Z, a)[vi,v2] — 7(Z, a0)[v1, v2]}| = Op(er). (9.8)

aEBT v1,v2EWr

< sup sup
aEBT v1,v2EWTr

Let o = ar, v1 = v} and vy = v. Then it follows from , the definitions of (-,-) and (-, -), that

T ST (2 @)F ] - B {r(Z, 00) 0]}
(Al

_ | B = B10) | . (9.9)
AN

Combining this result with Assumption [5.1](iii) and using

df(ar) df(ao)

S fu] = (B, o)r and =22 o] = (v, o),
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we can deduce that

Op(er) = sup

veVr ]l
Vi, U U, U — U, v
:sup<T>T <T>|| ||+< T>
veVr |55} [l ]l
U — v,
= sup [SEZUR0) L o (en a5 ). (9.10)
veVr o]
This implies that
(7 — v, ) *
sup || = Op(e [[07[))- (9.11)
vEVT ||UH

Letting v = v% — v} in (9.11)), we get

55 — w3 |
Tl O (T

W}') . (9.12)

It follows from this result that

A
ozl ] ozl ezl
[[o7 = vzl « |07l
= =0
I N
=0, | ||6:}H—1 + O, (e1) (9.13)
U Mzl o |
from which we deduce that
o7 1| = Oy(er) (9.14)
¥ — p\€T)- .
[z
Combining the results in , , and , we get
PO
Bz =2rll — o), (9.15)
o7

as desired. m

Proof of Theorem 5.1} Part (i) Define Sp = 0 and

t
g (Z-,ar)[vr].

3\

Then
(T'7]

. > Al 7]+ VT {r(Z00) 7.7 — ol

S[TT] = ﬁ
[TT
Z{A Zy, ar)[vr] = A(Zy, ao)[v7] = E [A(Z, ar)[vr]]}

+ T\FE {A(Zy, ar)[0%] — 7(Z, o) [0, @ — o]}
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Using Assumption [5.2}(i)-(ii), we have

(7]
\/1? > A2 ar)[f] = A(Zs, a0)[07] — B [A(Zs, ar)[07]]} = op([071),

and
VTE {A(Z,7)[55] - r(Z, 00) [0, — aol} = Oy (VT ezt [571)) -
So
1 (T7]
Sirr) = <= > AZ, ao)[v7] + TVTE {r(Z, a0) [o5. ar — ao]}
VT =
+ 0,57 1) + O (VTR [971))
1 (T7] 1 [T7]
= —SN Az, N+ ——= S A(Zy, a)[0h — v
JT £ (Zt, o) [v7] JT £ (Zt, o) [op — 7]
— VT (vp,ap — ag) — T\/T@\; — v, Qr — ap)
+op([[31) + Op (VTerer [971]) (9.16)

Under Assumptions and we can invoke equation (9.2)) in the proof of Theorem to deduce
that

T
1
VT |[vF 5 (vFs @r — ao) = —= V5]l Y A(Zs, ao)[v7] + 0p(1). (9.17)
VT =
Using Lemma [5.1] and the Holder inequality, we get
VT (@ — v, Gr — ao)| < VT 57 = bl [@r - aoll = Op(VT o3| é3ér).  (9.18)

Next, by Assumption [5.2}(iii) and Lemma

(T'7] [T7]
1 1
A(Zs, ap)[op — vp)| < |[op —vp|| sup |—= Y A(Zi, a0)[v]| = Op(|lvr €7). 9.19
\/Tt§1 (Zt, aw0)[vr — v7]| < v THveWT \F; (Zt, o) [v] b([|v7 ]| €7) (9.19)

Now, using Lemma —, Assumption ([[v5]] = O (||lv5l,y)), Assumption (iV) and

VTesér = o(1), we can deduce that

(T'7] T
* || — 1 *1—1 * T x1—1 *
HUTHsdl Sirr) = —= 107 |5 ZA(Zt,Ozo)[UT] — —=lvrllsa ZA(ZtaOCO)[UT] + op(1)
VT P VT P

—q W(r) —7W(1) := B(7).
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We use the above result to finish the proof. Note that
ot R = 3157 \r Z¢m (7) Azanp

= Il [Zcbm( )St §Tj¢m< )st |

= o34 [‘Zj on (1) Tzl% () s

T; [qu (t/T) - 1/T<<t+ 1 /T)} |

—1 -1
[T llsa St + ém (1) lvrllsq St
Since ¢, is continuously differentiable, we can invoke the continuous mapping theorem to obtain

1
)15 R —a — / ¢ (1) B(r)dr.

Using integration by parts, we can show that

—/Ol(blm(T)B(T)dT:—/ol )i (v /cbm )dB(r

ol R —a / b (7) dB(7 / b (7) WV (7)

Hence

where the equality follows from the assumption that fo ¢Gm (T)dT = 0.
Part (ii) It follows from part (i) that

1 M L~ 9 1 M 1 2
o 1 I = 37 3 (1t ) =y 32 | [P omrane] - 020

which, combining Theorem [3.1] and Slutsky’s Theorem, further implies that

. _ VT1f(@1) - f(eo) / 57 g
‘UTHsd

‘UTHSd
= VT [f(@r) — f(ao)]/ 1 g )
[T JMle(H o Bn)
W (1)

d = (9.21)
J M|y om () dW (7)]

Note that both fo ¢m (1) dW (1) and W (1) are normal. In addition, COV(W (1), fol ®m (T) dW(T)) =
fo Om (1) dT =0 and

</ Om (T)dW (T /qﬁn ) dW (T > /gém ) o (T)dT =1{m =n}.
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2 2
So W (1) is independent of M1 "M [fo 7)dW (T )} and Y2 M [fol G (7)dW (T)| ~ x3,. This
implies that
w(1)

SIS [ G aw )

Nt(M) and tT —>dt(M).

Proof of Theorem Using similar arguments as in deriving Theorem [5.1} we can show that
1
Vil B = [ 6 (1) AW (7). (9.22)
0
It then follows that
=1 o* 12 -1
vl 195 82z (VeI
M
1 *1—1 % *—1 % !
=57 2 (Ivild Ban) (Iv7lld B
m=1
| M
HdMZ[/qsm ) dW (T H/qsm ) AW ( )]. (9.23)
m=1
Using the results in (5.8]), (9.23) and Slutsky’s Theorem, we have
Fr =Tf(ar) - f(ao)] |[¥5llzir [f(@r) — £(a0)] /g
* (| — ! * o 1 —2
= {IvHI VT @) = £eo)l} (vl 1951537 1V la)
< { Vil VT [£@r) — £(e0)] } /g

Lwar (LS [/qjm jawio] [[[neraw] ) w2

Since ¢, (1), m = 1,2,..., M are orthonormal and integrate to zero,

W (1 { [/ém ) dW (7 H/ém ) AW ( )Hl W (1) dco< Zcmgm) ¢

where ¢; ~ i.i.d N (0,1;) for j = 0,...,q. This is exactly the same distribution as Hotelling (1931)’s
T? distribution. Using the well-known relationship between the T2 distribution and F distribution, we

h
ave M—q+1

2 LT 7 Fen—ge

as desired. m

Proof of Proposition We first find the empirical Riesz representor
~ ~ !/
o5 = (87, Py (- Br) (9.25)
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of f(ap) on the sieve space by solving

|2L8T) ) 12

Jda

107][7 = sup :
vEVT w#£0 *% thl{T(Zh ar)[v,v]}

By definition

a E Zta’YT 'S
St = /3 T,
T~ 0o
Denote Fy, = (%7%[1%@(')/]) . Then:
Y Fip Fl
H ||T_ S;Zp (1 T BQZ(ZtﬁT)
YsYFYo, T —’7 T t=1 878’7/

The sup is achieved at

3= (B, B) = -
Substituting this into ((9.25|) gives us an alternative representation of v7.. Using this representation and

1) we can rewrite /A\m defined in 1) as

T 3 ~
~ 1 t N NTekT 1 i ag(Zt,’}/T),\*
M—ﬁ;%%wamw—T;%%>M,w
T T ~ ~
1 t 0l Zy,Ar) 54 S o1 L t . 0(Z,Ar)
:ﬁz%(T) o R;'Fy, = F} Ry =2 9m(7) .

and also rewrite ||UTH5 4. defined in 1 as

nnw—fZAN

M T 5 ~ T J =
o1 1 t 0U(Z, A7) 1 t U Zy, 1) | 515
Rl - o =\ ) — (=) —— 22N RAVE
kpdlr Mmz_l{ /nggb (T) 8’7 /*TEQS (T) 8’}// T Lkr

which concludes the proof. m

10 Appendix B: Delta Functions of Sieve M Estimation of Evaluation
Functionals

Let g = ho () € H be the unique maximizer of the criterion E[K(Zt,h( ))] on ‘H. By the results
(ho)[ ]
oh

in Subsection the sieve Riesz representor of any linear functional

P BT = kT/Rk;Tl L0 [Py, ()] € Vr.

takes the form v} =
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10.1 Delta functions for nonparametric regression type models

Let ho (-) € H be the unique maximizer of the regression type criterion E[¢(Z, h(X};))] on H. For the
evaluation functional f(ho) = ho(Z) with z € X, we have v}.(-) = Py, (-) 8} = PkT(')/R;:Tlka (z). We
also have, for any v € Vp :

v(F) = B {E[-7 (Z, ho (X)) | X]o(X)wh(X)} = / 2) br (7, 7) da
where
o7 (z,2) = E[=7(Z, ho (X)) | X = avr () fx (z)
= E[=7(Z, ho (X)) |X = w]PéT(f)R;QTlPkT(x)fX ().
Thus d7 (Z, x) has the reproducing property on Vr: v (Z) = [4 o7 (Z,2) v (z) dz. In particular, if 1 € Vp

then [, 07 (Z,2)dx = 1. So 7 (&, x) behaves like the Dlrac delta function d (x — 7).

To illustrate the properties of 7 (Z,x), we consider the sieve (or series) LS regression of the non-
parametric conditional mean model: Y = ho(X) + u; with Efu|X¢] = 0. Then —7(Z,ho (X)) =1
and

51 (5,2) = Pl (2) {E (Pey Py)} ™ Py (@) fx ().

We compute and graph d7 (Z, x) explicitly for three different sieve basis functions:
Example 1: X is uniform on [0,1] and p; (z) = v2sin(j — 1/2) 7z, j = 1,..., kr. Some algebra
shows that

i . sinkpm(z—) sinkpm(z+ )
= ; (z) = - .
Pi 2sing (r—x)  2sin§ (v +7)

The first part is the familiar Dirichlet kernel, which converges weakly to the Dirac delta function
§ (x — 7). By the Riemann-Lebesgue lemma, the L2(]0,1]) inner product of the second part with any
function in L!([0, 1]) N L2([0, 1]) converges to zero as kr — oo. So or (i: a:) does converge weakly to
0 (z — Z) in the sense that limp_, fol or (Z,x)v(z)de = v( fo v (z)dz for any v €
LY([0,1]) N L2([0,1]). Tt is also easy to see that

or (z,%) =kr (14+0(1)) and dp (Z,z) = O (1) when z # Z, (10.1)

Figure [10.1| displays the graph of 6 (Z,x) //kr, a scaled version of 5T (Z,x) when T = 0.5, the center
of the dlstrlbutlon. The figure supports our asymptotic result in and our qualitative observation
that ér (Z,z) approaches the Dirac delta function as kr increases.

Example 2: X is uniform on [0, 1] and Py, (x) consists of cubic B-splines with kr evenly spaced
knots. Using the property that the B-splines have compact supports, we can show that

O(kT) if |w—:ﬁ| < C//{T

or (,2) = { o(l), if |x—2|>C/kp (10.2)

for some constant C. Figure displays o7 (Z,z) /+/kr for this case. As before, both the asymptotic
result in ((10.2)) and graphical illustration show that ér (Z,z) collapses at Z as kr increases.
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Figure 10.1: Graph of 0 (Z,z) /v/kr when = 0.5, p; (z) = v/2sin (j — &) 7z for different values of
kr

Example 3: X is uniform on [—1,1] and Py, (z) consists of orthonormal Legendre polynomials.
Then:

or (2, ) :PkT PkT ij
_ (kr +1) Prr+1 (%) Phy (2) = Php+1 (%) iy (2)
V@kr + 1) (2kr + 3) (7 — ) ’

where the last line follows from the Christoffel-Darboux formula (c.f. Szego, 1975). Based on this
result, Lebedev and Silverman (1972, sec 4.7, Theorem 1) has shown that f_ll o (Z,x)v (z)dr —
lim, 74 v (z) + limy_z— v (z)] /2 for any piecewise smooth function v such that f_ll v?(z)dr < oo.
This is entirely analogous to the result for Fourier series expansions. Figure graphs o7 (%, ) /\kr
for z = 0. Again, as kp increases, o (T, x) clearly becomes more concentrated at .

10.2 Delta functions for nonparametric likelihood models

To shed further light on the hidden delta sequence, we consider sieve ML estimation of a probability
density function fx (-) on the real line. Let {Xt}t , be a Strictly stationary Weakly dependent sample

with marginal density fx (-), we estimate hg (-) = v/ fx () by the sieve MLE hr that solves:
1 o0
max o Z@ Zi,h), with €(Z,h) = 3 {log h? (X;) — log [/_Oo hQ(x)dx] } ,
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Figure 10.4: Graph of 67 (Z,x) /vkr when Z = 0 and p; (-) are Hermite polynomials.

where
kr )
Hr = h(:-)=po(-) + Zﬁgp] (1) : B € R with p; (x) = Hj (x) exp (_a:2> 7
j=1

and {H;:j=0,1,2,...} is an orthonormal Hermite basis in L? (]R, exp (—x2)) with the inner product
(h,9)y = [Zo b () g (z) exp (—a?) da; see, e.g., Gallant and Tauchen (1989).

Suppose the functional of interest is f (ho) = h3 (Z) = fx (% ) for some T € R. For any square
integrable function h (-), define the functional f(k) = h*(z)/ [0 h?* () dz. We estimate f (ho) using

the plug-in sieve MLE f(hr). For any vy € Vp = {v(-) = ZFl ﬁjp] (- ) : Bj € R}, we have

Of(ho), ,_ O { [ho (&) + Tor ()] }
O | J22 Iho (@) + Tvr (2))* da

= 2[ho (2)]vr () — 2 [ho (2)* E [ho (jf()]

7=0

[e.o]

= 2ho (Z) <PkT (Z) — ho (a:)/ ho (x) Py, (x)dx)lﬁ.

—00
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It is not hard to show that

forl =2 [~ pr@or @da—2( [ o@]er @) da)2

£(75) - (=15

with the corresponding inner product

g1 92
2
(91, 92) = cov<h0 ho)

Using the results in Subsection we can show that the sieve Riesz representor of %[UT] is
* * * : * I % * I %
vp (@) = vpy (x) — vy () with vp, () = Pry (2) By and viy (2) = Py (x) B where

g [ <PkT (X) Py, <X>'>} e &) Py (3.

=2

ho (X) 7 ho (X)
Bre = [00?’ <]:foT ((X)) ((;;)),ﬂ o @ [Pfij ((XX))} '

Define two linear functionals aflai(}?(’)[v;p] = 2ho () v (Z) and 8%7(:0)[1)71] = 2h{ (z) [%_ vr (2) ho () da.

Then 22 B(ZO) [vr] is the difference of these two functionals, and v}, (z) and v}, (z) are their respective

sieve Riesz representors. While the first functional 8}8167(:0)[-] is an evaluation functional and hence is

irregular, the second functional of 2(}?0) [-] is a weighted integration functional with a square integrable

weight function and hence is regular. Since the regular functional is v/T estimable and the irregular

functional is slower than /T estimable, the asymptotic variance of the plug-in sieve estimator f (BT)

is determined by the irregular functional 8%7(:0)[-}. So for the purpose of the asymptotic variance

calculation, we can focus on af})i(:o)[-] from now on.

By definition 2hg (Z) vy (Z) = a]%i(,?o)[vgp] = (vp,v}y) . It follows by direction calculations that

vr (T) = % <’UT (z), it (x)>

ho (%)
B /oo . (074 (2) = ho (2) ([, 34 (a) ho (a) da)]d
Y ho (2) )
E/_ vr (z) 07 (Z, z) de,
where ( )
~ B v (m) h() (.%') f—oooo 'U}l (a> h() (a) da vx (CL’)
or (Z,2) = hTol(f) - ho (@) = hTO(sE) +0(1).

Here we have used the square integrability of ho (-) and so [*_v%, (a) ho (a) da = O(1).
Using the orthonormality of H; () with respect to the weighting function exp ( ) and the matrix
inverse formula:

1 by’

(IkT + bb’)_ = Iy, — T for any vector b € R¥T
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we have

ho () ho (X)
P\
= Fho (o) {I’“T - PR [P ((X))] o (2)

P (X)
1+ [E ,fOT(X)

Py, (X) P, (X) _
Py, (2) [E525) [E 5 } Py, ()

— Py (2) Phr (2) + O (1)

using the square integrability of hg (+) .
Let 07 (Z,7) = Py (2)' Pey (%) + po (z) po (%), then 67 (%, 2) = or (z,2) + O(1). But

It is known that » 22, H; (%) H; (x) exp [— (%2 + %)} = ¢ (z — Z) in the sense of distributions. This
follows by letting v — 1 in Mehler’s formula, valid for v € (—1,1) :

0o } i 2 2 B 1 1—u(m+§:)2 1+u(m—a‘c)2
jz_;quu)Hj(x)exp{—(ﬁg)]—W(l_uz)exp<—1+u T A )

See Lebedev and Silverman (1972, Sec 4.11). Figure demonstrates the convergence of dr (Z, ) to
the delta function.

It is important to point out that in all the examples the asymptotic behavior dr (Z,x) remains
more or less the same for other nonboundary values £ € X. So implicitly in the method of sieves, there
are delta sequences, i.e. sequences of functions that converge to the delta distribution. The Dirichlet
and Fejer kernels of Fourier series and the Christoffel-Darboux and Mehler formulae for orthogonal
polynomials are examples of these delta sequences. When the sample size is large, the method of sieves
effectively entails taking a weighted average of observations with the weights given by a delta sequence.
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