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Abstract

The method of sieves has been widely used in estimating semiparametric and nonparametric
models. In this paper, we �rst provide a general theory on the asymptotic normality of plug-in sieve
M estimators of possibly irregular functionals of semi/nonparametric time series models. Next, we
establish a surprising result that the asymptotic variances of plug-in sieve M estimators of irregular
(i.e., slower than root-T estimable) functionals do not depend on temporal dependence. Nevertheless,
ignoring the temporal dependence in small samples may not lead to accurate inference. We then
propose an easy-to-compute and more accurate inference procedure based on a �pre-asymptotic�
sieve variance estimator that captures temporal dependence. We construct a �pre-asymptotic�Wald
statistic using an orthonormal series long run variance (OS-LRV) estimator. For sieve M estimators
of both regular (i.e., root-T estimable) and irregular functionals, a scaled �pre-asymptotic�Wald
statistic is asymptotically F distributed when the series number of terms in the OS-LRV estimator
is held �xed. Simulations indicate that our scaled �pre-asymptotic�Wald test with F critical values
has more accurate size in �nite samples than the usual Wald test with chi-square critical values.
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1 Introduction

Many economic and �nancial time series (and panel time series) are nonlinear and non-Gaussian;

see, e.g., Granger (2003). For policy and welfare analysis, it is important to uncover complicated

nonlinear economic relations in dynamic structural models. Unfortunately, it is di¢ cult to correctly

parameterize nonlinear dynamic functional relations. Even if the nonlinear functional relation among

the observed variables is correctly speci�ed by economic theory or by chance, misspecifying distributions

of nonseparable latent variables could lead to inconsistent estimates of structural parameters of interest.

These reasons, coupled with the availability of larger data sets, motivate the growing popularity of

semiparametric and nonparametric models and methods in economics and �nance.

The method of sieves (Grenander, 1981) is a general procedure for estimating semiparametric and

nonparametric models, and has been widely used in economics, �nance, statistics and other disciplines.

In particular, the method of sieve extremum estimation optimizes a random criterion function over

a sequence of approximating parameter spaces, sieves, that becomes dense in the original in�nite

dimensional parameter space as the complexity of the sieves grows to in�nity with the sample size

T . See, e.g., Chen (2007, 2011) for detailed reviews of some well-known empirical applications of the

method and existing theoretical properties of sieve extremum estimators.

In this paper, we consider inference on possibly misspeci�ed semi-nonparametric time series models

via the method of sieves. We focus on sieve M estimation, which optimizes a sample average of a

criterion function over a sequence of �nite dimensional sieves whose complexity grows to in�nity with the

sample size T . Prime examples include sieve quasi maximum likelihood, sieve (nonlinear) least squares,

sieve generalized least squares, and sieve quantile regression. For general sieve M estimators with

weakly dependent data, White and Wooldridge (1991) establish the consistency, and Chen and Shen

(1998) establish the convergence rate and the
p
T asymptotic normality of plug-in sieve M estimators

of regular (i.e.,
p
T estimable) functionals. To the best of our knowledge, there is no published work

on the limiting distributions of plug-in sieve M estimators of irregular (i.e., slower than
p
T estimable)

functionals. There is also no published inferential result for general sieve M estimators of regular or

irregular functionals for possibly misspeci�ed semi-nonparametric time series models.

We �rst provide a general theory on the asymptotic normality of plug-in sieve M estimators of

possibly irregular functionals in semi/nonparametric time series models. This result extends that of

Chen and Shen (1998) for sieve M estimators of regular functionals to sieve M estimators of irregular

functionals. It also extends that of Chen and Liao (2008) for sieve M estimators of irregular functionals

with iid data to time series settings. The asymptotic normality result is rate-adaptive in the sense that

researchers do not need to know a priori whether the functional of interest is
p
T estimable or not.

For weakly dependent data and for regular functionals, it is known that the asymptotic variance

expression depends on the temporal dependence and is usually equal to the long run variance (LRV) of
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a scaled moment (or score) process. It is often believed that this result would also hold for sieve esti-

mators of irregular functionals such as the evaluation functionals and weighted integration functionals.

Contrary to this common belief, we show that under some general conditions the asymptotic variance

of the plug-in sieve estimator for weakly dependent data is the same as that for iid data. This is a very

surprising result, as sieve estimators are often regarded as global estimators, and hence autocorrelation

is not expected to vanish in the limit (as T !1).
Our asymptotic theory suggests that, for weakly dependent time series data with a large sam-

ple size, temporal dependence could be ignored in making inference on irregular functionals via the

method of sieves. This resembles the earlier well-known asymptotic results for time series density and

regression functions estimated via kernel and local polynomial regression methods. See, e.g., Robinson

(1983), Fan and Yao (2003), Li and Racine (2007), Gao (2007) and the references therein. However,

simulation studies indicate that inference procedures based on asymptotic variance estimates ignoring

autocorrelation may not perform well when the sample size is small (relatively to the degree of temporal

dependence). See, e.g., Conley, Hansen and Liu (1997) and Pritsker (1998) for earlier discussion of this

problem with kernel density estimation for interest rate data sets.

In this paper, for both regular and irregular functionals of semi-nonparametric time series models, we

propose computationally simple, accurate and robust inference procedures based on estimates of �pre-

asymptotic�sieve variances capturing temporal dependence. That is, we treat the underlying triangular

array sieve score process as a generic time series and ignore the fact that it becomes less temporally

dependent when the sieve number of terms in approximating unknown functions grows to in�nity as T

goes to in�nity. This �pre-asymptotic�approach enables us to conduct easy-to-compute and accurate

inference on semi-nonparametric time series models by adopting any existing autocorrelation robust

inference procedures for (misspeci�ed) parametric time series models.

For semi-nonparametric time series models, we could compute various �pre-asymptotic�Wald sta-

tistics using various existing LRV estimators for regular functionals of (misspeci�ed) parametric time

series models, such as the kernel LRV estimators considered by Newey and West (1987), Andrews

(1991), Jansson (2004), Kiefer and Vogelsang (2005), Sun (2011b) and others. Nevertheless, to be

consistent with our focus on the method of sieves and to derive a simple and accurate asymptotic

approximation, we compute a �pre-asymptotic�Wald statistic using an orthonormal series LRV (OS-

LRV) estimator. The OS-LRV estimator has already been used in constructing autocorrelation robust

inference on regular functionals of parametric time series models; see, e.g., Phillips (2005), Müller

(2007), Sun (2011a), and the references therein. We extend these results to robust inference on both

regular and irregular functionals of semi-nonparametric time series models.1

For both regular and irregular functionals, we show that the �pre-asymptotic�t statistic and a scaled

1We thank Peter Phillips for suggesting that we consider autocorrelation robust inference for semi-nonparametric time
series models.
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Wald statistic converge to the standard t distribution and F distribution respectively when the series

number of terms in the OS-LRV estimator is held �xed; and that the t distribution and F distribution

approach the standard normal and chi-square distributions respectively when the series number of

terms in the OS-LRV estimator goes to in�nity. Our �pre-asymptotic�t and F approximations achieve

triple robustness in the following sense: they are asymptotically valid regardless of (1) whether the

functional is regular or not; (2) whether there is temporal dependence or not; and (3) whether the

series number of terms in the OS-LRV estimator is held �xed or not.

To facilitate the practical use of our inference procedure, we show that, in �nite samples and

for linear sieve M estimators, our �pre-asymptotic� sieve test statistics (i.e. t statistic and Wald

statistic) for semi-nonparametric time series models are numerically equivalent to the corresponding

test statistics one would obtain if the models are treated as if they were parametric.2 These results are

of much use to applied researchers, and demonstrate the advantage of the sieve method for inference

on semi-nonparametric time series models.

To investigate the �nite sample performance of our proposed �pre-asymptotic� robust inference

procedures on semi-nonparametric time series models, we conduct a detailed simulation study using

a partially linear regression model. For both regular and irregular functionals, we �nd that our test

using the �pre-asymptotic� scaled Wald statistic and F critical values has more accurate size than

the �pre-asymptotic�Wald test using chi-square critical values. For irregular functionals, we �nd that

they both perform better than the Wald test using a consistent estimate of the asymptotic variance

ignoring autocorrelation. These are especially true when the time series (with moderate sample size)

has strong temporal dependence and the number of joint hypotheses being tested is large. Based on

our simulation studies, we recommend the use of the �pre-asymptotic�scaled Wald statistic using an

OS-LRV estimator and F approximation in empirical applications.

The rest of the paper is organized as follows. Section 2 presents the plug-in sieve M estimator

of functionals of interest and gives two illustrative examples. Section 3 establishes the asymptotic

normality of the plug-in sieve M estimators of possibly irregular functionals. Section 4 shows the

surprising result that the asymptotic variances of plug-in sieve M estimators of irregular functionals for

weakly dependent time series data are the same as if they were for i.i.d. data. Section 5 presents the

�pre-asymptotic�OS-LRV estimator and F approximation. Section 6 proves the numerical equivalence

result. Section 7 reports the simulation evidence, and the last section brie�y concludes. Appendix A

contains all the proofs, and Appendix B discusses the properties of the hidden delta functions associated

with sieve M estimation of evaluation functionals.

Notation. In this paper, we denote fA(a) (FA(a)) as the marginal probability density (cdf) of

2Here we slightly abuse terminology and de�ne a parametric model to be a model with a �xed �nite number of unknown
parameters of interest, although the model may contain in�nite dimensional nuisance parameters that are not needed to
be estimated, such as Hansen (1982)�s GMM models.
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a random variable A evaluated at a and fAB(a; b) (FAB(a; b)) the joint density (cdf) of the random

variables A and B. We use � to introduce de�nitions. For any vector-valued A, we let A0 denote

its transpose and jjAjjE �
p
A0A, although sometimes we also use jAj =

p
A0A without too much

confusion. Denote Lp(
; d�), 1 � p < 1, as a space of measurable functions with jjgjjLp(
;d�) �
f
R

 jg(t)j

pd�(t)g1=p < 1, where 
 is the support of the sigma-�nite positive measure d� (sometimes
Lp(
) and jjgjjLp(
) are used when d� is the Lebesgue measure). For any (possibly random) positive
sequences faT g1T=1 and fbT g1T=1, aT = Op(bT ) means that limc!1 lim supT Pr (aT =bT > c) = 0; aT =
op(bT ) means that for all " > 0, limT!1 Pr (aT =bT > ") = 0; and aT � bT means that there exist two
constants 0 < c1 � c2 <1 such that c1aT � bT � c2aT . We use AT � AkT , HT � HkT and VT � VkT
to denote various sieve spaces. To simplify the presentation, we assume that dim(VT ) = dim(AT ) �
dim(HT ) � kT , all of which grow to in�nity with the sample size T .

2 Sieve M Estimation and Examples

2.1 Basic Setting

We assume that the data fZt = (Y 0t ; X 0
t)
0gTt=1 is from a strictly stationary and weakly dependent process

de�ned on an underlying complete probability space. Let the support of Zt be Z � Rdz ; 1 � dz < 1,
and let Y and X be the supports of Y and X respectively. Let (A; d) denote an in�nite dimensional
metric space. Let ` : Z � A ! R be a measurable function and E[`(Z;�)] be a population criterion.
For simplicity we assume that there is a unique �0 2 (A; d) such that E[`(Z;�0)] > E[`(Z;�)] for all
� 2 (A; d) with d(�; �0) > 0. Di¤erent models in economics correspond to di¤erent choices of the

criterion functions E[`(Z;�)] and the parameter spaces (A; d). A model does not need to be correctly
speci�ed and �0 could be a pseudo-true parameter. Let f : (A; d) ! R be a known measurable

mapping. In this paper we are interested in estimation of and inference on f(�0) via the method of

sieves.

Let AT be a sieve space for the whole parameter space (A; d). Then there is an element �T�0 2 AT
such that d (�T�0; �0) ! 0 as dim(AT ) ! 1 (with T ). An approximate sieve M estimator b�T 2 AT
of �0 solves

1

T

TX
t=1

`(Zt; b�T ) � sup
�2AT

1

T

TX
t=1

`(Zt; �)�Op("2T ); (2.1)

where the term Op("
2
T ) = op(T

�1) denotes the maximization error when b�T fails to be the exact

maximizer over the sieve space. We call f(b�T ) the plug-in sieve M estimator of f(�0).

Under very mild conditions ( see, e.g., Chen (2007, Theorem 3.1) andWhite andWooldridge (1991)),

the sieve M estimator b�T is consistent for �0: d(b�T ; �0) = Op fmax [d(b�T ;�T�0); d (�T�0; �0)]g =
op(1).
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2.2 Examples

The method of sieve M estimation includes many special cases. Di¤erent choices of criterion functions

`(Zt; �) and di¤erent choices of sieves AT lead to di¤erent examples of sieve M estimation. As an

illustration, we provide two examples below. See, e.g., Chen (2007, 2011) for additional applications.

Example 2.1 (Partially linear ARX regression) Suppose that the time series data fYtgTt=1 is
generated by

Yt = X
0
1;t�0 + h0 (X2;t) + ut; E [utjX1;t; X2;t] = 0; (2.2)

where X1;t and X2;t are d1 and d2 dimensional random vectors respectively, and X1;t could include

�nitely many lagged Yt�s. Let �0 2 � � Rd1 and h0 2 H a function space. Let �0 = (�00; h0)
0 2 A =

� �H. Examples of functionals of interest could be f(�0) = �0�0 or h0 (x2) where � 2 Rd1 and x2 is
some point in the support of X2;t.

Let Xj be the support of Xj for j = 1; 2. For simplicity we assume that X2 is a convex and bounded
subset of Rd2 . For the sake of concreteness we let H = �s(X2) (a Hölder space):

�s(X2) =
(
h 2 C [s] (X2) : sup

j�[s]
sup
x2X2

���h(j)(x)��� <1; sup
x;x02X2

��h([s])(x)� h([s]) (x0)��
jx� x0js�[s]

<1
)
;

where [s] is the largest integer that is strictly smaller than s. The Hölder space �s(X2) (with s > 0:5d2)
is a smooth function space that is widely assumed in the semi-nonparametric literature. We can then

approximate H = �s(X2) by various linear sieve spaces:

HT =

8<:h (�) : h (�) =
kTX
j=1

�jpj(�) = �0PkT (�); � 2 RkT
9=; ; (2.3)

where the known sieve basis PkT (�) could be tensor-products of splines, wavelets, Fourier series and
others; see, e.g., Newey (1997) and Chen (2007).

Let `(Zt; �) = �
�
Yt �X 0

1;t� � h (X2;t)
�2
=4 with Zt = (Yt; X 0

1;t; X
0
2;t)

0 and � = (�0; h)0 2 A = ��H.
Let AT = ��HT be a sieve for A. We can estimate �0 = (�00; h0)

0 2 A by the sieve least squares (LS)
(a special case of sieve M estimation):

b�T � (b�0T ;bhT )0 = arg max
(�;h)2��HT

1

T

TX
t=1

`(Zt; �; h). (2.4)

A functional of interest f(�0) (such as �0�0 or h0 (x2)) is then estimated by the plug-in sieve LS

estimator f(b�T ) (such as �0b�T or bhT (x2)).
This example is very similar to example 2 in Chen and Shen (1998) and example 4.2.3 in Chen

(2007). One can slightly modify their proofs to get the convergence rate of b�T and the pT -asymptotic
5



normality of �0b�T . But neither paper provides a variance estimator for �0b�T . The results in our paper
immediately lead to the asymptotic normality of f(b�T ) for possibly irregular functionals f(�0) and
provide simple, accurate inference on f(�0).

Example 2.2 (Possibly misspeci�ed copula-based time series model) Suppose that fYtgTt=1 is
a sample of strictly stationary �rst order Markov process generated from (FY ; C0(�; �)), where FY is the
true unknown continuous marginal distribution, and C0(�; �) is the true unknown copula for (Yt�1; Yt)
that captures all the temporal and tail dependence of fYtg. The � -th conditional quantile of Yt given
Y t�1 = (Yt�1; :::; Y1) is:

QY� (y) = F
�1
Y

�
C�12j1 [� jFY (y)]

�
;

where C2j1[�ju] � @
@uC0(u; �) is the conditional distribution of Ut � FY (Yt) given Ut�1 = u, and C

�1
2j1 [� ju]

is its � -th conditional quantile. The conditional density function of Yt given Y t�1 is

p0(�jY t�1) = fY (�)c0 (FY (Yt�1); FY (�)) ;

where fY (�) and c0(�; �) are the density functions of FY (�) and C0(�; �) respectively. A researcher speci�es
a parametric form fc(�; �; �) : � 2 �g for the copula density function, but it could be misspeci�ed in the
sense c0(�; �) =2 fc(�; �; �) : � 2 �g. Let �0 be the pseudo true copula dependence parameter:

�0 = argmax
�2�

Z 1

0

Z 1

0
c(u; v; �)c0(u; v)dudv.

Let (�00; fY )
0 be the parameters of interest. Examples of functionals of interest could be �0�0, fY (y),

FY (y) or QY0:01(y) = F
�1
Y

�
C�12j1 [� jFY (y); �0]

�
for any � 2 Rd� and some y 2 supp(Yt).

We could estimate (�00; fY )
0 by the method of sieve quasi ML using di¤erent parameterizations and

di¤erent sieves for fY . For example, let h0 =
p
fY and �0 = (�00; h0)

0 be the (pseudo) true unknown

parameters. Then fY (�) = h20 (�) =
R1
�1 h

2
0 (y) dy, and h0 2 L2(R). For the identi�cation of h0, we can

assume that h0 2 H:

H =

8<:h (�) = p0 (�) +
1X
j=1

�jpj(�) :
1X
j=1

�2j <1

9=; ; (2.5)

where fpjg1j=0 is a complete orthonormal basis functions in L2 (R), such as Hermite polynomials,
wavelets and other orthonormal basis functions. Here we normalize the coe¢ cient of the �rst basis

function p0 (�) to be 1 in order to achieve the identi�cation of h0 (�). Other normalization could also be
used. It is now obvious that h0 2 H could be approximated by functions in the following sieve space:

HT =

8<:h (�) = p0 (�) +
kTX
j=1

�jpj(�) = p0 (�) + �0PkT (�) : � 2 RkT
9=; : (2.6)
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Let Z 0t = (Yt�1; Yt), � = (�
0; h)0 2 A = ��H and

`(Zt; �) = log

(
h2 (Yt)R1

�1 h
2 (y) dy

)
+ log

(
c

 Z Yt�1

�1

h2 (y)R1
�1 h

2 (x) dx
dy;

Z Yt

�1

h2 (y)R1
�1 h

2 (x) dx
dy; �

!)
: (2.7)

Then �0 = (�00; h0)
0 2 A = ��H could be estimated by the sieve quasi MLE b�T = (b�0T ;bhT )0 2 AT =

��HT that solves:

sup
�2��HT

1

T

(
TX
t=2

`(Zt; �) + log

(
h2 (Y1)R1

�1 h
2 (y) dy

))
�Op("2T ): (2.8)

A functional of interest f (�0) (such as �0�0, fY (y) = h20 (y) =
R1
�1 h

2
0 (y) dy, FY (y) or Q

Y
0:01(y)) is

then estimated by the plug-in sieve quasi MLE f (b�T ) (such as �0b�, bfY (y) = bh2T (y) = R1�1 bh2T (y) dy,bFY (y) = R y�1 bfY (y)dy or bQY0:01(y) = bF�1Y (C�12j1 [� j bFY (y); b�])).
Under correct speci�cation, Chen, Wu and Yi (2009) establish the rate of convergence of the sieve

MLE b�T and provide a sieve likelihood-ratio inference for regular functionals including f (�0) = �0�0 or
FY (y) or QY0:01(y). Under misspeci�ed copulas, by applying Chen and Shen (1998), we can still derive

the convergence rate of the sieve quasi MLE b�T and the pT asymptotic normality of f(b�T ) for regular
functionals. However, the sieve likelihood ratio inference given in Chen, Wu and Yi (2009) is no longer

valid under misspeci�cation. The results in this paper immediately lead to the asymptotic normality

of f(b�T ) (such as bfY (y) = bh2T (y) = R1�1 bh2T (y) dy) for any possibly irregular functional f(�0) (such as
fY (y)) as well as valid inferences under potential misspeci�cation.

3 Asymptotic Normality of Sieve M-Estimators

In this section, we establish the asymptotic normality of plug-in sieve M estimators of possibly irregular

functionals of semi-nonparametric time series models. We also give a closed-form expression for the

sieve Riesz representor that appears in our asymptotic normality result.

3.1 Local Geometry

Given the existing consistency result (d(b�T ; �0) = op(1)), we can restrict our attention to a shrinking
d-neighborhood of �0. We equip A with an inner product induced norm k�� �0k that is weaker than
d(�; �0) (i.e., k�� �0k � cd(�; �0) for a constant c), and is locally equivalent to

p
E[`(Zt; �0)� `(Zt; �)]

in a shrinking d-neighborhood of �0. For strictly stationary weakly dependent data, Chen and Shen

(1998) establish the convergence rate kb�T � �0k = Op (�T ) = o �T�1=4�. The convergence rate result
implies that b�T 2 BT � B0 with probability approaching one, where

B0 � f� 2 A : k�� �0k � C�T log(log(T ))g; BT � B0 \ AT : (3.1)

Hence, we can now regard B0 as the e¤ective parameter space and BT as its sieve space.
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De�ne

�0;T � arg min
�2BT

jj�� �0jj: (3.2)

Let VT � clsp (BT ) � f�0;T g, where clsp (BT ) denotes the closed linear span of BT under k�k. Then
VT is a �nite dimensional Hilbert space under k�k. Similarly the space V � clsp (B0) � f�0g is a
Hilbert space under k�k. Moreover, VT is dense in V under k�k. To simplify the presentation, we
assume that dim(VT ) = dim(AT ) � kT , all of which grow to in�nity with T . By de�nition we have

h�0;T � �0; vT i = 0 for all vT 2 VT .
As demonstrated in Chen and Shen (1998) and Chen (2007), there is lots of freedom to choose such

a norm k�� �0k that is weaker than d(�; �0) and is locally equivalent to
p
E[`(Z;�0)� `(Z;�)]. In

some parts of this paper, for the sake of concreteness, we present results for a speci�c choice of the

norm k�k. We suppose that for all � in a shrinking d-neighborhood of �0, `(Z;�) � `(Z;�0) can be
approximated by �(Z;�0)[���0] such that �(Z;�0)[���0] is linear in ���0. Denote the remainder
of the approximation as:

r(Z;�0)[�� �0; �� �0] � 2 f`(Z;�)� `(Z;�0)��(Z;�0)[�� �0]g : (3.3)

When lim�!0[(`(Z;�0 + � [� � �0]) � `(Z;�0))=� ] is well de�ned, we could let �(Z;�0)[� � �0] =
lim�!0[(`(Z;�0 + � [� � �0]) � `(Z;�0))=� ], which is called the directional derivative of `(Z;�) at �0
in the direction [�� �0]. De�ne

k�� �0k =
p
E (�r(Z;�0)[�� �0; �� �0]) (3.4)

with the corresponding inner product h�; �i

h�1 � �0; �2 � �0i = E f�r(Z;�0)[�1 � �0; �2 � �0]g (3.5)

for any �1; �2 in the shrinking d-neighborhood of �0. In general this norm de�ned in (3.4) is weaker

than d (�; �). Since �0 is the unique maximizer of E[`(Z;�)] on A, under mild conditions k�� �0k
de�ned in (3.4) is locally equivalent to

p
E[`(Z;�0)� `(Z;�)].

For any v 2 V; we de�ne @f(�0)@� [v] to be the pathwise (directional) derivative of the functional f (�)
at �0 and in the direction of v = �� �0 2 V :

@f(�0)

@�
[v] =

@f(�0 + �v)

@�

����
�=0

for any v 2 V: (3.6)

For any vT = �T � �0;T 2 VT ; we let

@f(�0)

@�
[vT ] =

@f(�0)

@�
[�T � �0]�

@f(�0)

@�
[�0;T � �0]: (3.7)

So @f(�0)
@� [�] is also a linear functional on VT :
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Note that VT is a �nite dimensional Hilbert space. As any linear functional on a �nite dimensional
Hilbert space is bounded, we can invoke the Riesz representation theorem to deduce that there is a

v�T 2 VT such that
@f(�0)

@�
[v] = hv�T ; vi for all v 2 VT (3.8)

and that
@f(�0)

@�
[v�T ] = kv�T k

2 = sup
v2VT ;v 6=0

j@f(�0)@� [v]j2

kvk2
(3.9)

We call v�T the sieve Riesz representor of the functional
@f(�0)
@� [�] on VT .

We emphasize that the sieve Riesz representation (3.8)�(3.9) of the linear functional @f(�0)@� [�] on VT
always exists regardless of whether @f(�0)@� [�] is bounded on the in�nite dimensional space V or not.

� If @f(�0)@� [�] is bounded on the in�nite dimensional Hilbert space V, i.e.

kv�k � sup
v2V;v 6=0

�
j@f(�0)
@�

[v]j= kvk
�
<1; (3.10)

then kv�T k = O (1) (in fact kv�T k % kv�k < 1 and kv� � v�T k ! 0 as T ! 1); we say that f (�)
is regular (at � = �0). In this case, we have

@f(�0)
@� [v] = hv�; vi for all v 2 V, and v� is the Riesz

representor of the functional @f(�0)@� [�] on V.

� If @f(�0)@� [�] is unbounded on the in�nite dimensional Hilbert space V, i.e.

sup
v2V;v 6=0

�
j@f(�0)
@�

[v]j= kvk
�
=1; (3.11)

then kv�T k % 1 as T !1; and we say that f (�) is irregular (at � = �0).

As it will become clear later, the convergence rate of f(b�T )� f (�0) depends on the order of kv�T k.
3.2 Asymptotic Normality

To establish the asymptotic normality of f(b�T ) for possibly irregular nonlinear functionals, we assume:
Assumption 3.1 (local behavior of functional)

(i) sup�2BT

���f(�)� f(�0)� @f(�0)
@� [�� �0]

��� = o�T� 1
2 kv�T k

�
;

(ii)
���@f(�0)@� [�0;T � �0]

��� = o�T� 1
2 kv�T k

�
:

Assumption 3.1.(i) controls the linear approximation error of possibly nonlinear functional f (�). It
is automatically satis�ed when f (�) is a linear functional, but it may rule out some highly nonlinear
functionals. Assumption 3.1.(ii) controls the bias part due to the �nite dimensional sieve approximation

9



of �0;T to �0. It is a condition imposed on the growth rate of the sieve dimension dim(AT ), and requires
that the sieve approximation error rate is of smaller order than T�

1
2 kv�T k. When f (�) is a regular

functional, we have kv�T k % kv�k <1, and since h�0;T � �0; v�T i = 0 (by de�nition of �0;T ), we have:����@f(�0)@�
[�0;T � �0]

���� = jhv�; �0;T � �0ij = jhv� � v�T ; �0;T � �0ij � kv� � v�T k � k�0;T � �0k ;
thus Assumption 3.1.(ii) is satis�ed if

kv� � v�T k � k�0;T � �0k = o(T�1=2) when f (�) is regular, (3.12)

which is similar to condition 4.1(ii)(iii) imposed in Chen (2007, p. 5612) for regular functionals.

Next, we make an assumption on the relationship between kv�T k and the asymptotic standard
deviation of f(b�T ) � f(�0;T ): It will be shown that the asymptotic standard deviation is the limit of
the �standard deviation�(sd) norm kv�T ksd of v�T , de�ned as

kv�T k
2
sd � V ar

 
1p
T

TX
t=1

�(Zt; �0)[v
�
T ]

!
: (3.13)

Note that kv�T k
2
sd is the �nite dimensional sieve version of the long run variance of the score process

�(Zt; �0)[v
�
T ]: Since v

�
T 2 VT , the sd norm kv�T ksd depends on the sieve dimension dim(AT ) that grows

with the sample size T .

Assumption 3.2 (sieve variance) kv�T k = kv�T ksd = O (1) :

By de�nition of kv�T k given in (3.9), 0 < kv�T k is non-decreasing in dim(VT ), and hence is non-
decreasing in T . Assumption 3.2 then implies that lim infT!1 kv�T ksd > 0. De�ne

u�T �
v�T

v�T

sd (3.14)

to be the normalized version of v�T . Then Assumption 3.2 implies that ku�T k = O(1).
Let �T fg (Z)g � T�1

PT
t=1 [g (Zt)� Eg (Zt)] denote the centered empirical process indexed by the

function g. Let "T = o(T�1=2): For notational economy, we use the same "T as that in (2.1).

Assumption 3.3 (local behavior of criterion) (i) �T f�(Z;�0) [v]g is linear in v 2 V;

(ii) sup
�2BT

�T f`(Z;�� "Tu�T )� `(Z;�)��(Z;�0)[�"Tu�T ]g = Op("2T );

(iii) sup
�2BT

����E[`(Zt; �)� `(Zt; �� "Tu�T )]� jj�� "Tu�T � �0jj2 � jj�� �0jj22

���� = O("2T ):
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Assumptions 3.3.(ii) and (iii) are essentially the same as conditions 4.2 and 4.3 of Chen (2007, p.

5612) respectively. In particular, the stochastic equicontinuity assumption 3.3.(ii) can be easily veri�ed

by applying Lemma 4.2 of Chen (2007).

Assumption 3.4 (CLT)
p
T�T f�(Z;�0) [u�T ]g !d N(0; 1), where N(0; 1) is a standard normal dis-

tribution.

Assumption 3.4 is a very mild one, which e¤ectively combines conditions 4.4 and 4.5 of Chen

(2007, p. 5612). This can be easily veri�ed by applying any existing triangular array CLT for weakly

dependent data (see, e.g., White (2004) for references).

We are now ready to state the asymptotic normality theorem for the plug-in sieve M estimator.

Theorem 3.1 Let Assumptions 3.1.(i), 3.2 and 3.3 hold. Then

p
T
f(b�T )� f(�0;T )

v�T

sd =

p
T�T f�(Z;�0) [u�T ]g+ op (1) ; (3.15)

If further Assumptions 3.1.(ii) and 3.4 hold, then

p
T
f(b�T )� f(�0)

v�T

sd =

p
T�T f�(Z;�0) [u�T ]g+ op (1)!d N(0; 1): (3.16)

In light of Theorem 3.1, we call kv�T k
2
sd de�ned in (3.13) the �pre-asymptotic�sieve variance of the

estimator f(b�T ). When the functional f(�0) is regular (i.e., kv�T k = O(1)), we have kv�T ksd � kv�T k =
O(1) typically; so f(b�T ) converges to f(�0) at the parametric rate of 1=pT . When the functional f(�0)
is irregular (i.e., kv�T k ! 1), we have kv�T ksd !1 (under Assumption 3.2); so the convergence rate of

f(b�T ) becomes slower than 1=pT . Regardless of whether the �pre-asymptotic�sieve variance kv�T k2sd
stays bounded asymptotically (i.e., as T ! 1) or not, it always captures whatever true temporal
dependence exists in �nite samples.

Note that kv�T k
2
sd = V ar (�(Z;�0)[v

�
T ]) if either the score process f�(Zt; �0)[v�T ]gt�T is a martingale

di¤erence array or if data fZtgTt=1 is iid. Therefore, Theorem 3.1 recovers the asymptotic normality

result in Chen and Liao (2008) for sieve M estimators of possibly irregular functionals with iid data.

For regular functionals of semi-nonparametric time series models, Chen and Shen (1998) and Chen

(2007, Theorem 4.3) establish that
p
T (f(b�T )� f(�0))!d N(0; �

2
v�) with

�2v� = lim
T!1

V ar

 
1p
T

TX
t=1

�(Zt; �0)[v
�]

!
= lim
T!1

kv�T k
2
sd 2 (0;1): (3.17)

Our Theorem 3.1 is a natural extension of their results to allow for irregular functionals as well.
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3.3 Sieve Riesz Representor

To apply the asymptotic normality Theorem 3.1 one needs to verify Assumptions 3.1�3.4. Once we

compute the sieve Riesz representor v�T 2 VT , Assumptions 3.1 and 3.2 can be easily checked, while
Assumptions 3.3 and 3.4 are standard ones and can be veri�ed in the same ways as those in Chen and

Shen (1998) and Chen (2007) for regular functionals of semi-nonparametric models. Although it may

be di¢ cult to compute the Riesz representor v� 2 V in a closed form for a regular functional on the

in�nite dimensional space V (see e.g., Ai and Chen (2003) for discussions), we can always compute
the sieve Riesz representor v�T 2 VT de�ned in (3.8) and (3.9) explicitly. Therefore, Theorem 3.1 is

easily applicable to a large class of semi-nonparametric time series models, regardless of whether the

functionals of interest are
p
T estimable or not.

3.3.1 Sieve Riesz representors for general functionals

For the sake of concreteness, in this subsection we focus on a large class of semi-nonparametric models

where the population criterion E[`(Zt; �; h (�))] is maximized at �0 = (�00; h0 (�))
0 2 A = ��H, � is a

compact subset in Rd� , H is a class of real valued continuous functions (of a subset of Zt) belonging to

a Hölder, Sobolev or Besov space, and AT = � �HT is a �nite dimensional sieve space. The general
cases with multiple unknown functions require only more complicated notation.

Let k�k be the norm de�ned in (3.4) and VT = Rd� � fvh (�) = PkT (�)0� : � 2 RkT g be dense
in the in�nite dimensional Hilbert space (V; k�k). By de�nition, the sieve Riesz representor v�T =

(v�0�;T ; v
�
h;T (�))0 = (v�0�;T ; PkT (�)0��T )0 2 VT of

@f(�0)
@� [�] solves the following optimization problem:

@f(�0)

@�
[v�T ] = kv�T k

2 = sup
v=(v0�;vh)

02VT ;v 6=0

���@f(�0)@�0 v� +
@f(�0)
@h [vh(�)]

���2
E (�r (Zt; �0; h0 (�)) [v; v])

= sup

=(v0�;�0)

02Rd�+kT ;
 6=0


0FkTF
0
kT




0RkT 

; (3.18)

where

FkT �
�
@f(�0)

@�0
;
@f(�0)

@h
[PkT (�)0]

�0
(3.19)

is a (d� + kT )� 1 vector,3 and


0RkT 
 � E (�r (Zt; �0; h0 (�)) [v; v]) for all v =
�
v0�; PkT (�)0�

�0 2 VT ; (3.20)

with

RkT =

�
I11 IT;12
IT;21 IT;22

�
and R�1kT :=

�
I11T I12T
I21T I22T

�
(3.21)

3When @f(�0)
@h

[�] applies to a vector (matrix), it stands for element-wise (column-wise) operations. We follow the same
convention for other operators such as �(Zt; �0) [�] and �r (Zt; �0) [�; �] throughout the paper.
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being (d�+kT )�(d�+kT ) positive de�nite matrices. For example if the criterion function `(z; �; h (�)) is
twice continuously pathwise di¤erentiable with respect to (�; h (�)), then we have I11 = E

h
�@2`(Zt;�0;h0(�))

@�@�0

i
,

IT;22 = E
h
�@2`(Zt;�0;h0(�))

@h@h [PkT (�); PkT (�)0]
i
, IT;12 = E

h
@2`(Zt;�0;h0(�))

@�@h [PkT (�)]
i
and IT;21 � I 0T;12.

The sieve Riesz representation (3.8) becomes: for all v = (v0�; PkT (�)0�)
0 2 VT ,

@f(�0)

@�
[v] = F 0kT 
 = hv

�
T ; vi = 
�0T RkT 
 for all 
 = (v0�; �

0)0 2 Rd�+kT : (3.22)

It is obvious that the optimal solution of 
 in (3.18) or in (3.22) has a closed-form expression:


�T =
�
v�0�;T ; �

�0
T

�0
= R�1kT FkT : (3.23)

The sieve Riesz representor is then given by

v�T =
�
v�0�;T ; v

�
h;T (�)

�0
=
�
v�0�;T ; PkT (�)0��T

�0 2 VT :
Consequently,

kv�T k
2 = 
�0T RkT 


�
T = F

0
kT
R�1kT FkT ; (3.24)

which is �nite for each sample size T but may grow with T .

Finally the score process can be expressed as

�(Zt; �0)[v
�
T ] =

�
��(Zt; �0; h0 (�))0;�h(Zt; �0; h0 (�))[PkT (�)0]

�

�T � SkT (Zt)0
�T :

Thus

V ar (�(Zt; �0)[v
�
T ]) = 


�0
T E

�
SkT (Zt)SkT (Zt)

0� 
�T (3.25)

and kv�T k
2
sd = 


�0
T V ar

�
1p
T

PT
t=1 SkT (Zt)

�

�T :

To verify Assumptions 3.1 and 3.2 for irregular functionals, it is handy to know the exact speed of

divergence of kv�T k
2. We assume

Assumption 3.5 The smallest and largest eigenvalues of RkT de�ned in (3.20) are bounded and

bounded away from zero uniformly for all kT .

Assumption 3.5 imposes some regularity conditions on the sieve basis functions, which is a typ-

ical assumption in the linear sieve (or series) literature. For example, Newey (1997) makes similar

assumptions in his paper on series LS regression.

Remark 3.2 Assumption 3.5 implies that

jjv�T jj2 � jj
�T jj2E � jjFkT jj2E = jj
@f(�0)

@�
jj2E + jj

@f(�0)

@h
[PkT (�)]jj2E.

Then: f(�) is regular at � = �0 if limkT jj
@f(�0)
@h [PkT (�)]jj2E < 1; f(�) is irregular at � = �0 if

limkT jj
@f(�0)
@h [PkT (�)]jj2E =1.
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3.3.2 Examples

We �rst consider three typical linear functionals of semi-nonparametric models.

For the Euclidean parameter functional f(�) = �0�, we have FkT = (�
0;00kT )

0 with 00kT = [0; :::; 0]1�kT ,

and hence v�T = (v
�0
�;T ; PkT (�)0��T )0 2 VT with v��;T = I11T �, ��T = I21T �, and

kv�T k
2 = F 0kTR

�1
kT
FkT = �

0I11T �:

If the largest eigenvalue of I11T , �max(I
11
T ), is bounded above by a �nite constant uniformly in kT ; then

kv�T k
2 � �max(I11T )� �0� <1 uniformly in T , and the functional f(�) = �0� is regular.

For the evaluation functional f(�) = h(x) for x 2 X , we have FkT = (00d� ; PkT (x)
0)0, and hence

v�T = (v
�0
�;T ; PkT (�)0��T )0 2 VT with v��;T = I12T PkT (x), ��T = I22T PkT (x), and

kv�T k
2 = F 0kTR

�1
kT
FkT = P

0
kT
(x)I22T PkT (x) :

So if the smallest eigenvalue of I22T , �min(I
22
T ), is bounded away from zero uniformly in kT , then

kv�T k
2 � �min(I22T )jjPkT (x)jj2E !1; and the functional f(�) = h(x) is irregular.
For the weighted integration functional f(�) =

R
X w(x)h(x)dx for a weighting function w(x), we

have FkT = (0
0
d�
;
R
X w(x)PkT (x)

0dx)0, and hence v�T = (v
�0
�;T ; PkT (�)0��T )0 with v��;T = I12T

R
X w(x)PkT (x)dx,

��T = I
22
T

R
X w(x)PkT (x)dx, and

kv�T k
2 = F 0kTR

�1
kT
FkT =

�Z
X
w(x)PkT (x)dx

�0
I22T

Z
X
w(x)PkT (x)dx:

Suppose that the smallest and largest eigenvalues of I22T are bounded and bounded away from zero

uniformly for all kT . Then jjv�T jj2 � jj
R
X w(x)PkT (x)dxjj

2
E . Thus f(�) =

R
X w(x)h(x)dx is regular if

limkT jj
R
X w(x)PkT (x)dxjj

2
E <1; is irregular if limkT jj

R
X w(x)PkT (x)dxjj

2
E =1.

We �nally consider an example of nonlinear functionals that arises in Example 2.2 when the para-

meter of interest is �0 = (�00; h0)
0 with h20 = fY being the true marginal density of Yt. Consider the

functional f(�) = h2 (y) =
R1
�1 h

2 (y) dy. Note that f(�0) = fY (y) = h20 (y) and h0(�) is approximated

by the linear sieve HT given in (2.6). Then FkT =
�
00d� ;

@f(�0)
@h [PkT (�)0]

�0
with

@f(�0)

@h
[PkT (�)] = 2h0 (y)

�
PkT (y)� h0 (y)

Z 1

�1
h0 (y)PkT (y)dy

�
;

and hence v�T = (v
�0
�;T ; PkT (�)0��T )0 2 VT with v��;T = I12T

@f(�0)
@h [PkT (�)], ��T = I22T

@f(�0)
@h [PkT (�)], and

kv�T k
2 = F 0kTR

�1
kT
FkT =

@f(�0)

@h
[PkT (�)0]I22T

@f(�0)

@h
[PkT (�)]:

So if the smallest eigenvalue of I22T is bounded away from zero uniformly in kT , then kv�T k
2 � const:�

jj@f(�0)@h [PkT (�)]jj2E !1; and the functional f (�) = h2 (y) =
R1
�1 h

2 (y) dy is irregular at � = �0:
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4 Asymptotic Variance of Sieve Estimators of Irregular Functionals

In this section, we derive the asymptotic expression of the �pre-asymptotic�sieve variance kv�T k
2
sd for

irregular functionals. We provide general su¢ cient conditions under which the asymptotic variance

does not depend on the temporal dependence. We also show that evaluation functionals and some

weighted integrals satisfy these conditions.

4.1 Exact Form of the Asymptotic Variance

By de�nition of the �pre-asymptotic� sieve variance jjv�T jj2sd and the strict stationarity of the data
fZtgTt=1, we have:

jjv�T jj2sd = V ar (�(Z;�0)[v�T ]) + 2
T�1X
t=1

�
1� t

T

�
E (�(Z1; �0)[v

�
T ]�(Zt+1; �0)[v

�
T ]) (4.1)

= V ar (�(Z;�0)[v
�
T ])�

"
1 + 2

T�1X
t=1

�
1� t

T

�
��T (t)

#
;

where f��T (t)g is the autocorrelation coe¢ cient of the triangular array f�(Zt; �0)[v�T ]gt�T :

��T (t) �
E (�(Z1; �0)[v

�
T ]�(Zt+1; �0)[v

�
T ])

V ar
�
�(Z;�0)[v�T ]

� : (4.2)

Loosely speaking, one could say that the triangular array f�(Zt; �0)[v�T ]gt�T is weakly dependent if

T�1X
t=1

�
1� t

T

�
��T (t) = O(1): (4.3)

Then we have jjv�T jj2sd = O fV ar (�(Z;�0)[v�T ])g.
When f(�) is irregular, we have kv�T k ! 1 as dim(VT ) ! 1 (as T ! 1). This and Assumption

3.2 imply that kv�T ksd ! 1; and so V ar (�(Z;�0)[v�T ]) ! 1 under (4.3) as T ! 1 for irregular

functionals. In this section we provide some su¢ cient conditions to ensure that, as T ! 1, although
the variance term blows up (i.e., V ar (�(Z;�0)[v�T ]) ! 1), the individual autocovariance term stays

bounded or diverges at a slower rate, and hence the sum of autocorrelation coe¢ cients becomes as-

ymptotically negligible (i.e.,
PT�1
t=1 �

�
T (t) = o(1)). In the following we denote

CT � sup
t2[1;T )

jE f�(Z1; �0)[v�T ]�(Zt+1; �0)[v�T ]gj :

Assumption 4.1 (i) kv�T k ! 1 as T ! 1, and kv�T k
2 =V ar (�(Z;�0)[v

�
T ]) = O(1); (ii) There is an

increasing integer sequence fdT 2 [2; T )g such that

(a)
dTCT

V ar
�
�(Z;�0)[v�T ]

� = o(1) and (b)

������
T�1X
t=dT

�
1� t

T

�
��T (t)

������ = o(1):
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More primitive su¢ cient conditions for Assumption 4.1 are given in the next subsection.

Theorem 4.1 Let Assumption 4.1 hold. Then:
���� kv�Tk2sd
V ar(�(Z;�0)[v�T ])

� 1
���� = o (1); If further Assumptions

3.1, 3.3 and 3.4 hold, then p
T [f(b�T )� f(�0)]q
V ar

�
�(Z;�0)[v�T ]

� !d N (0; 1) : (4.4)

Theorem 4.1 shows that when the functional f(�) is irregular (i.e., kv�T k ! 1), time series depen-
dence does not a¤ect the asymptotic variance of a general sieve M estimator f(b�T ). Similar results
have been proved for nonparametric kernel and local polynomial estimators of evaluation functionals of

conditional mean and density functions. See for example, Robinson (1983) and Masry and Fan (1997).

However, whether this is the case for general sieve M estimators of unknown functionals has been a

long standing question. Theorem 4.1 gives a positive answer. This may seem surprising at �rst sight

as sieve estimators are often regarded as global estimators while kernel estimators are regarded as local

estimators.

One may conclude from Theorem 4.1 that the results and inference procedures for sieve estimators

carry over from iid data to the time series case without modi�cations. However, this is true only when

the sample size is large. Whether the sample size is large enough so that we can ignore the temporal

dependence depends on the functional of interest, the strength of the temporal dependence, and the

sieve basis functions employed. So it is ultimately an empirical question. In any �nite sample, the

temporal dependence does a¤ect the sampling distribution of the sieve estimator. In the next section,

we design an inference procedure that is easy to use and at the same time captures the time series

dependence in �nite samples.

4.2 Su¢ cient Conditions for Assumption 4.1

In this subsection, we �rst provide su¢ cient conditions for Assumption 4.1 for sieve M estimation of

irregular functionals f(�0) of general semi-nonparametric models. We then present additional low-level

su¢ cient conditions for sieve M estimation of real-valued functionals of purely nonparametric models.

We show that these su¢ cient conditions are satis�ed for sieve M estimation of the evaluation and the

weighted integration functionals.

4.2.1 Irregular functionals of general semi-nonparametric models

Given the closed-form expressions of kv�T k and V ar (�(Z;�0)[v�T ]) in Subsection 3.3, it is easy to see
that the following assumption implies Assumption 4.1.(i).

Assumption 4.2 (i) Assumption 3.5 holds and limkT jj
@f(�0)
@h [PkT (�)]jj2E =1; (ii) The smallest eigen-

value of E [SkT (Zt)SkT (Zt)
0] in (3.25) is bounded away from zero uniformly for all kT .
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Next, we provide some su¢ cient conditions for Assumption 4.1.(ii). Let fZ1;Zt (�; �) be the joint
density of (Z1; Zt) and fZ (�) be the marginal density of Z. Let p 2 [1;1). De�ne

k�(Z;�0)[v�T ]kp � (E fj�(Z;�0)[v
�
T ]j

pg)1=p : (4.5)

By de�nition, k�(Z;�0)[v�T ]k
2
2 = V ar (�(Z;�0)[v

�
T ]). The following assumption implies Assumption

4.1.(ii)(a).

Assumption 4.3 (i) supt�2 sup(z;z0)2Z�Z jfZ1;Zt (z; z0) = [fZ1 (z) fZt (z0)]j � C for some constant C >

0; (ii) k�(Z;�0)[v�T ]k1 = k�(Z;�0)[v�T ]k2 = o(1).

Assumption 4.3.(i) is mild. When Zt is a continuous random variable, it is equivalent to assuming

that the bivariate copula density of (Z1; Zt) is bounded uniformly in t � 2. For irregular functionals
(i.e., kv�T k % 1), the L2(fZ) norm k�(Z;�0)[v�T ]k2 diverges (under Assumption 4.1.(i) or Assumption
4.2), Assumption 4.3.(ii) requires that the L1(fZ) norm k�(Z;�0)[v�T ]k1 diverge at a slower rate than
the L2(fZ) norm k�(Z;�0)[v�T ]k2 as kT !1. In many applications the L1(fZ) norm k�(Z;�0)[v�T ]k1
actually remains bounded as kT !1 and hence Assumption 4.3.(ii) is trivially satis�ed.

The following assumption implies Assumption 4.1.(ii)(b).

Assumption 4.4 (i) The process fZtg1t=1 is strictly stationary strong-mixing with mixing coe¢ cients
� (t) satisfying

P1
t=1 t


 [� (t)]
�

2+� <1 for some � > 0 and 
 > 0; (ii) As kT !1;

k�(Z;�0)[v�T ]k


1 k�(Z;�0)[v�T ]k2+�

�(Z;�0)[v�T ]


+12

= o (1) :

The �-mixing condition in Assumption 4.4.(i) with 
 > �
2+� becomes Condition 2.(iii) in Masry and

Fan (1997) for the pointwise asymptotic normality of their local polynomial estimator of a conditional

mean function. See also Fan and Yao (2003, Condition 1.(iii) in section 6.6.2). In the next subsection, we

illustrate that 
 > �
2+� is also su¢ cient for sieve M estimation of evaluation functionals of nonparametric

time series models to satisfy Assumption 4.4.(ii). Instead of the strong mixing condition, we could also

use other notions of weak dependence, such as the near epoch dependence used in Lu and Linton (2007)

for the pointwise asymptotic normality of their local linear estimation of a conditional mean function.

Proposition 4.2 Let Assumptions 4.2, 4.3 and 4.4 hold. Then:
PT�1
t=1 j��T (t)j = o(1) and Assumption

4.1 holds.

4.2.2 Irregular functionals of purely nonparametric models

In this subsection, we provide additional low-level su¢ cient conditions for Assumptions 4.1.(i), 4.3.(ii)

and 4.4.(ii) for purely nonparametric models where the true unknown parameter is a real-valued func-
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tion h0 (�) that solves suph2HE[`(Zt; h(Xt))]. This includes as a special case the nonparametric condi-
tional mean model: Yt = h0(Xt) + ut with E[utjXt] = 0. Our results can be easily generalized to more
general settings with only some notational changes.

Let �0 = h0 (�) 2 H and let f(�) : H ! R be any functional of interest. By the results in Subsection
3.3, f(h0) has its sieve Riesz representor given by:

v�T (�) = PkT (�)0��T 2 VT with ��T = R
�1
kT

@f(h0)

@h
[PkT (�)];

where RkT is such that

�0RkT � = E
�
�r (Zt; h0) [�0PkT ; P 0kT �]

�
= �0E

�
�er (Zt; h0 (Xt))PkT (Xt)PkT (Xt)0	�

for all � 2 RkT . Also, the score process can be expressed as

�(Zt; h0)[v
�
T ] = e�(Zt; h0 (Xt))v�T (Xt) = e�(Zt; h0 (Xt))PkT (Xt)0��T :

Here the notations e�(Zt; h0 (Xt)) and er (Zt; h0 (Xt)) indicate the standard �rst-order and second-
order derivatives of `(Zt; h(Xt)) instead of functional pathwise derivatives (for example, we have

�er (Zt; h0 (Xt)) = 1 and e�(Zt; h0 (Xt)) = [Yt � h0(Xt)] =2 in the nonparametric conditional mean
model). Thus,

kv�T k
2 = E

�
E[�er (Z; h0 (X)) jX](v�T (X))2	 = ��0T RkT ��T = @f(h0)

@h
[PkT (�)0]R

�1
kT

@f(h0)

@h
[PkT (�)];

V ar (�(Z; h0)[v
�
T ]) = E

n
E([e�(Z; h0 (X))]2jX)(v�T (X))2o :

It is then obvious that Assumption 4.1.(i) is implied by the following condition.

Assumption 4.5 (i) infx2X E[�er (Z; h0 (X)) jX = x] � c1 > 0; (ii) supx2X E[�er (Z; h0 (X)) jX =

x] � c2 <1; (iii) the smallest and largest eigenvalues of E fPkT (X)PkT (X)0g are bounded and bounded
away from zero uniformly for all kT , and limkT jj

@f(h0)
@h [PkT (�)]jj2E =1; (iv) infx2X E([e�(Z; h0 (X))]2jX =

x) � c3 > 0.

It is easy to see that Assumptions 4.3.(ii) and 4.4.(ii) are implied by the following assumption.

Assumption 4.6 (i) E fjv�T (X)jg = O(1); (ii) supx2X E
���� e�(Z; h0 (X))���2+� jX = x

�
� c4 < 1; (iii)�

Efjv�T (X)j
2g
��(2+�)(
+1)=2

Efjv�T (X)j
2+�g = o(1).

It actually su¢ ces to use ess-infx (or ess-supx) instead of infx (or supx) in Assumptions 4.5 and

4.6. We immediately obtain the following results.

18



Remark 4.3 (1) Let Assumptions 4.3.(i), 4.4.(i), 4.5 and 4.6 hold. Then:

T�1X
t=1

j��T (t)j = o(1) and

����� kv�T k
2
sd

V ar
�
�(Z;�0)[v�T ]

� � 1����� = o (1) .
(2) Assumptions 4.5 and 4.6.(ii) imply that

V ar (�(Z;�0)[v
�
T ]) � E

�
(v�T (X))

2
	
� kv�T k

2 � jj��T jj2E � jj
@f(h0)

@h
[PkT (�)]jj2E !1;

hence Assumption 4.6.(iii) is satis�ed if EfjPkT (X)0��T j
2+�g=jj��T jj

(2+�)(
+1)
E = o(1).

Assumptions 4.3.(i), 4.4.(i), 4.5 and 4.6.(ii) are all very standard low level su¢ cient conditions.

In the following, we illustrate that Assumptions 4.6.(i) and (iii) are easily satis�ed by two typical

functionals of nonparametric models: the evaluation functional and the weighted integration functional.

Evaluation functionals. For the evaluation functional f(h0) = h0(x) with x 2 X , we have
@f(h0)
@h [PkT (�)] = PkT (x), v

�
T (�) = PkT (�)0��T = PkT (�)0R

�1
kT
PkT (x). Then kv�T k

2 = P 0kT (x)R
�1
kT
PkT (x) =

v�T (x), and kv�T k
2 � jjPkT (x)jj2E !1 under Assumption 4.5.(i)(ii)(iii).

We �rst verify Assumption 4.6.(i):
R
x2X jv

�
T (x)j fX (x) dx = O(1): For the evaluation functional, we

have, for any vT 2 VT :

vT (�x) = hhT ; v�T i = E fE[�er (Z; h0 (X)) jX]vT (X)v�T (X)g
�
Z
x2X

vT (x) �T (�x; x) dx; (4.6)

where

�T (�x; x) = E[�er (Z; h0 (X)) jX = x]v�T (x) fX (x) (4.7)

= E[�er (Z; h0 (X)) jX = x]P 0kT (x)R
�1
kT
PkT (x)fX (x) :

By equation (4.6) �T (�x; x) has the reproducing property on VT , so it behaves like the Dirac delta
function � (x� �x) on VT : See Appendix B for further discussions about the properties of �T (�x; x). A
direct implication is that v�T (x) concentrates in a neighborhood around x = �x and maintains the same

positive sign in this neighborhood.

Using the de�nition of �T (�; �) in (4.7), we haveZ
x2X

jv�T (x)j fX (x) dx =
Z
x2X

sign (v�T (x))

E[�er (Z; h0 (X)) jX = x]
�T (�x; x) dx;

where sign(v�T (x)) = 1 if v
�
T (x) > 0 and sign(v

�
T (x)) = �1 if v�T (x) � 0:Denote bT (x) �

sign(v�T (x))
E[�er(Z;h0(X))jX=x] .

Then supx2X jbT (x)j � c�11 <1 under Assumption 4.5.(i) and
R
x2X jv

�
T (x)j fX (x) dx =

R
x2X bT (x)�T (�x; x) dx.
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If bT (x) 2 VT ; then we have, using equation (4.6):Z
x2X

jv�T (x)j fX (x) dx = bT (�x) =
sign (v�T (�x))

E[�er (Z; h0 (X)) jX = �x]
� c�11 = O (1) :

If bT (x) =2 VT but can be approximated by a bounded function ~vT (x) 2 VT such thatZ
x2X

[bT (x)� ~vT (x)] �T (�x; x) dx = o(1);

then, also using equation (4.6), we obtain:Z
x2X

jv�T (x)j fX (x) dx =
Z
x2X

~vT (x) �T (�x; x) dx+

Z
x2X

[bT (x)� ~vT (x)] �T (�x; x) dx

= ~vT (�x) + o(1) = O (1) :

Thus Assumption 4.6.(i) is satis�ed.

Next, we verify Assumption 4.6.(iii). Using the de�nition of �T (�; �) in (4.7), we have

E
n
jv�T (X)j

2+�
o
=

Z
x2X

jv�T (x)j
1+� sign (v�T (x))

E[�er (Z; h0 (X)) jX = x]
�T (�x; x) dx:

Using the same argument for proving
R
x2X jv

�
T (x)j fX (x) dx = O(1); we can show that under mild

conditions:

E
n
jv�T (X)j

2+�
o
� jv�T (�x)j

1+�

E[�er (Z; h0 (X)) jX = �x]
(1 + o (1)) = O

�
jv�T (�x)j

1+�
�
:

On the other hand,

E
n
jv�T (X)j

2
o
=

Z
x2X

jv�T (x)j
2 fX (x) dx =

Z
x2X

v�T (x)

E[�er (Z; h0 (X)) jX = x]
�T (�x; x) dx � v�T (�x):

Therefore �
E
n
jv�T (X)j

2
o��(2+�)(
+1)=2

E
n
jv�T (X)j

2+�
o
� jv�T (�x)j

1+��(2+�)(
+1)=2 = o(1)

if 1 + � � (2 + �)(
 + 1)=2 < 0; which is equivalent to 
 > �=(2 + �): That is, when 
 > �=(2 + �);

Assumption 4.6.(iii) holds.

The above arguments employ the properties of delta sequences, i.e. sequences of functions that

converge to the delta distribution. It follows from (4.6) that bhT (�x) = Rx2X bhT (x) �T (�x; x) dx:When the
sample size is large, the sieve estimator of the evaluation functional e¤ectively entails taking a weighted

average of observations with the weights given by a delta sequence viz. �T (�x; x) : The average is taken

over a small neighborhood around �x in the domain of X where there is no time series dependence. The

observations Xt that fall in this neighborhood are not necessarily close to each other in time. Therefore

this subset of observations has low dependence, and the contribution of their joint dependence to the

asymptotic variance is asymptotically negligible.
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Weighted integration functionals. For the weighted integration functional f(h0) =
R
X w(x)h0(x)dx

for a weighting function w(x), we have @f(h0)
@h [PkT (�)] =

R
X w(x)PkT (x)dx, v

�
T (�) = PkT (�)0��T =

PkT (�)0R
�1
kT

R
X w(x)PkT (x)dx. Suppose that the smallest and largest eigenvalues of R

�1
kT
are bounded

and bounded away from zero uniformly for all kT . Then kv�T k
2 � jj

R
X w(x)PkT (x)dxjj

2
E ; thus f(h0) =R

X w(x)h0(x)dx is irregular if limkT jj
R
X w(x)PkT (x)dxjj

2
E =1.

For the weighted integration functional, we have, for any hT 2 VT :Z
X
w(a)hT (a) da = hhT ; v�T i = E fE[�er (Z; h0 (X)) jX]hT (X)v�T (X)g

�
Z
x2X

hT (x) f
Z
X
w(a)�T (a; x) dagdx;

where

�T (a; x) = E[�er (Z; h0 (X)) jX = x]P 0kT (a)R
�1
kT
PkT (x)fX (x) :

Thus,Z
x2X

jv�T (x)j fX (x) dx =
Z
X

����fZ
X
w(a)P 0kT (a)dagR

�1
kT
PkT (x)

���� fX (x) dx
=

Z
a2X

Z
x2X

w(a)sign fw(a)�T (a; x)g
�T (a; x)

E[�er (Z; h0 (X)) jX = x]
dadx

=

Z
a2X

Z
x2X

b(a; x)�T (a; x) dadx;

where

b(a; x) � w (a) sign fw(a)�T (a; x)g
E[�er (Z; h0 (X)) jX = x]

:

If b(�; x) 2 VT ; then, under Assumption 4.5.(i),Z
x2X

jv�T (x)j fX (x) dx =
Z
x2X

b(x; x)dx � C
Z
x2X

jw (x)j dx

for some constant C: If b(�; x) =2 VT ; then under some mild conditions, it can be approximated by
~wT (�; x) 2 VT with j ~wT (a; x)j � C jb(a; x)j for some constant C andZ

a2X

Z
x2X

[b(a; x)� ~wT (a; x)] �T (a; x) dadx = o(1):

In this case, we also haveZ
x2X

jv�T (x)j fX (x) dx �
Z
x2X

~wT (x; x)dx � C
Z
x2X

jw (x)j dx:

So if
R
x2X jw (x)j dx <1; we have

R
x2X jv

�
T (x)j fX (x) dx = O (1) : Hence Assumption 4.6.(i) holds.

It remains to verify Assumption 4.6.(iii). Note that

EfjPkT (X)0��T j
2+�g

jj��T jj
(2+�)(
+1)
E

�
E
�
kPkT (X)k

2+�
E

�
k��T k

2+�
E

jj��T jj
(2+�)(
+1)
E

=
E
�
kPkT (X)k

2+�
E

�
jj��T jj

(2+�)

E

= O

24 E
�
kPkT (X)k

2+�
E

�


R
x2X w (x)PkT (x) dx



(2+�)

E

35 = o(1)
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for su¢ ciently large 
 > 1, as jj
R
x2X w (x)PkT (x) dxjjE ! 1: The minimum value of 
 may depend

on the weighting function w (x) : If supx2X kPkT (x)k
2
E = O (kT ) ; which holds for many basis functions,

and jj
R
x2X w (x)PkT (x) dxjj

2
E � kT ; then EfjPkT (X)0��T j

2+�g=jj��T jj
(2+�)(
+1)
E = o(1) for any 
 > 1: It

follows from Remark 4.3 that Assumption 4.6.(iii) holds for the weighted integration functional.

5 Autocorrelation Robust Inference

In order to apply the asymptotic normality Theorem 3.1, we need an estimator of the sieve variance

kv�T k
2
sd. In this section we propose a simple estimator of kv�T k

2
sd and establish the asymptotic distribu-

tions of the associated t statistic and Wald statistic.

The theoretical sieve Riesz representor v�T is not known and has to be estimated. Let k�kT denote
the empirical norm induced by the following empirical inner product

hv1; v2iT = �
1

T

TX
t=1

r(Zt; b�T )[v1; v2]; (5.1)

for any v1; v2 2 VT . We de�ne an empirical sieve Riesz representor bv��;T of the functional @f(b�T )@� [�] with
respect to the empirical norm k�kT , i.e.

@f(b�T )
@�

[bv�T ] = sup
v2VT ;v 6=0

j@f(b�T )@� [v]j2

kvk2T
<1 (5.2)

and
@f(b�T )
@�

[v] = hv; bv�T iT (5.3)

for any v 2 VT . We next show that the theoretical sieve Riesz representor v�T can be consistently

estimated by the empirical sieve Riesz representor bv�T under the norm k�k. In the following we denote
WT � fv 2 VT : kvk = 1g.

Assumption 5.1 Let f��T g be a positive sequence such that ��T = o(1).
(i) sup�2BT ;v1;v22WT

Efr(Z;�)[v1; v2]� r(Z;�0)[v1; v2]g = O(��T );
(ii) sup�2BT ;v1;v22WT

�T fr(Z;�)[v1; v2]g = Op(��T );
(iii) sup�2BT ;v2WT

���@f(�)@� [v]� @f(�0)
@� [v]

��� = O(��T ):
Assumption 5.1.(i) is a smoothness condition on the second derivative of the criterion function

with respect to �. In the nonparametric LS regression model, we have r(Z;�)[v1; v2] = r(Z;�0)[v1; v2]

for all � and v1; v2. Hence Assumption 5.1.(i) is trivially satis�ed. Assumption 5.1.(ii) is a stochastic

equicontinuity condition on the empirical process T�1
PT
t=1 r(Zt; �)[v1; v2] indexed by � in the shrinking

neighborhood BT uniformly in v1; v2 2 WT . Assumption 5.1.(iii) puts some smoothness condition on

the functional @f(�)@� [v] with respect to � in the shrinking neighborhood BT uniformly in v 2 WT .
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Lemma 5.1 Let Assumption 5.1 hold, then����� kbv�T k

v�T

 � 1
����� = Op(��T ) and kbv�T � v�T k

v�T

 = Op(�

�
T ): (5.4)

With the empirical estimator bv�T satisfying Lemma 5.1, we can now construct an estimate of the
kv�T k

2
sd ; which is the LRV of the score process �(Zt; �0)[v�T ]: Many nonparametric LRV estimators

are available in the literature. For kernel LRV estimators, see Newey and West (1987), Andrews

(1991), Jansson (2004), Kiefer and Vogelsang (2005), Sun (2011b) and the numerous references therein.

Nevertheless, to be consistent with our focus on the method of sieves and to derive a simple and accurate

asymptotic approximation, we use an orthonormal series LRV (OS-LRV) estimator in this paper. The

OS-LRV estimator has already been used in constructing autocorrelation robust inference on regular

functionals of parametric time series models; see, e.g., Phillips (2005), Müller (2007), and Sun (2011a).

Let f�mg1m=1 be a sequence of orthonormal basis functions in L2[0; 1]. De�ne the orthogonal series
projection

b�m = 1p
T

TX
t=1

�m(
t

T
)�(Zt; b�T )[bv�T ] (5.5)

and construct the direct series estimator b
m = b�2m for each m = 1; 2; :::;M where M 2 Z+: Taking a
simple average of these direct estimators yields our OS-LRV estimator jjbv�T jj2sd;T of kv�T k2sd :

kbv�T k2sd;T � 1

M

MX
m=1

b
m = 1

M

MX
m=1

b�2m; (5.6)

where M , the number of orthonormal basis functions used, is the smoothing parameter in the present

setting.

For irregular functionals, our asymptotic result in Section 4 suggests that we can ignore the temporal

dependence and estimate kv�T k
2
sd by

b�2v = T�1 TX
t=1

f�(Zt; �0)[bv�T ]g2:
However, when the sample size is small, there may still be considerable autocorrelation in the time

series �(Zt; �0)[v�T ]: To capture the possibly large but diminishing autocorrelation, we propose treating

�(Zt; �0)[v
�
T ] as a generic time series and using the same formula as in (5.6) to estimate the asymptotic

variance of T�1=2
PT
t=1�(Zt; �0)[v

�
T ]: That is, we estimate the variance based on the �nite sample

variance expression without going into deep asymptotics. We call the estimator the �pre-asymptotic�

variance estimator. With a data-driven smoothing parameter choice, the �pre-asymptotic� variance

estimator jjbv�T jj2sd;T should be close to b�2v when the sample size is large. On the other hand, when the
sample size is small, the �pre-asymptotic� variance estimator may provide a more accurate measure
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of the sampling variation of the plug-in sieve M estimator of irregular functionals. An extra bene�t

of the �pre-asymptotic�idea is that it allows us to treat regular and irregular functionals in a uni�ed

framework. So we do not distinguish regular and irregular functionals in the rest of this section.

To make statistical inference on a scalar functional f(�0), we construct a t statistic as follows:

tT �
p
T [f(b�T )� f(�0)]

bv�T

sd;T : (5.7)

We proceed to establish the asymptotic distribution of tT when M is a �xed constant. To facilitate

our development, we make the assumption below.

Assumption 5.2 Let
p
T��T �T = o(1) and the following conditions hold:

(i) sup�2[0;1] supv2WT , �2BT
1p
T

P[T� ]
t=1 (�(Zt; �) [v]��(Zt; �0) [v]� Ef�(Zt; �) [v]g) = op(1);

(ii) supv2WT , �2BT E f�(Z;�) [v]��(Zt; �0) [v]� r(Z;�0) [v; �� �0]g = O (�
�
T �T ) ;

(iii) sup�2[0;1] supv2WT

1p
T

P[T� ]
t=1 �(Zt; �0) [v] = Op(1);

(iv) 1p
T

P[T� ]
t=1 �(Zt; �0) [u

�
T ]!d W (�) where W (�) is the standard Brownian motion process.

Assumption 5.2.(i), (iii) and (iv) can be veri�ed by applying the sequential Donsker�s Theorem.

Assumption 5.2.(ii) imposes a smoothness condition on the criterion function `(Z;�) with respect to

�; and it can be veri�ed by taking the �rst order expansion of E f�(Z;�) [v]g around �0 and using the
convergence rate �T . Assumption 5.2.(iv) is a slightly stronger version of Assumption 3.4.

Theorem 5.1 Let
R 1
0 �m (r) dr = 0,

R 1
0 �m (r)�n (r) dr = 1 fm = ng and �m (�) be continuously di¤er-

entiable. Under Assumptions 3.2, 3.3, 5.1 and 5.2, we have, for a �xed �nite integer M :

kv�T k
�1
sd
b�m !d

Z 1

0
�m (�) dW (�):

If further Assumption 3.1 holds, then

tT �
p
T [f(b�T )� f(�0)]

bv�T

sd;T !d t (M) ;

where t (M) is the t distribution with degree of freedom M .

Theorem 5.1 shows that when M is �xed, the tT statistic converges weakly to a standard t distrib-

ution. This result is very handy as critical values from the t distribution can be easily obtained from

statistical tables or standard software packages. This is an advantage of using the OS-LRV estimator.

When M !1; t (M) approaches the standard normal distribution. So critical values from t (M) can

be justi�ed even if M = MT ! 1 slowly with the sample size T . Theorem 5.1 extends the result

of Sun (2011a) on robust OS-LRV estimation for parametric trend regressions to the case of general

semi-nonparametric models.
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In some economic applications, we may be interested in a vector of functionals f = (f1; : : : ; fq)
0

for some �xed �nite q 2 Z+. If each fj satis�es Assumptions 3.1�3.3 and their Riesz representor
v�T = (v

�
1;T ; : : : ; v

�
q;T ) satis�es the multivariate version of Assumption 3.4:

kv�T k
�1
sd

p
T�T f�(Z;�0) [v�T ]g !d N(0; Iq);

then

kv�T k
�1
sd

p
T [f(b�T )� f(�0)]!d N(0; Iq); (5.8)

where kv�T k
2
sd = V ar

�p
T�T�(Z;�0)[v

�
T ]
�
is a q � q matrix. A direct implication is that

T [f(b�T )� f(�0)]0 kv�T k�2sd [f(b�T )� f(�0)]!d �
2
q : (5.9)

To estimate kv�T k
2
sd ; we de�ne the orthogonal series projectionb�m = �b�(1)m ; :::; b�(q)m �0

with b�(j)m =
1p
T

TX
t=1

�m(
t

T
)�(Zt; b�T )[v̂�j;T ];

where v̂�j;T denotes the empirical sieve Riesz representor of the functional
@fj(b�T )
@� [�] (j = 1; :::; q). The

OS-LRV estimator jjbv�T jj2sd;T of the sieve variance kv�T k2sd is
kbv�T k2sd;T = 1

M

MX
m=1

b�m b�0m:
To make statistical inference on f(�0); we construct the F test version of the Wald statistic as

follows:

FT � T [f(b�T )� f(�0)]0 kbv�T k�2sd;T [f(b�T )� f(�0)] =q: (5.10)

We maintain Assumption 5.2 but replace Assumption 5.2(iv) by its multivariate version:

kv�T k
�1
sd

1p
T

[T� ]X
t=1

�(Zt; �0) [v
�
T ]!dW(�)

whereW(�) is the q-dimensional standard Brownian motion process. Using a proof similar to that for

Theorem 5.1, we can prove the theorem below.

Theorem 5.2 Let
R 1
0 �m (r) dr = 0,

R 1
0 �m (r)�n (r) dr = 1 fm = ng and �m (�) be continuously dif-

ferentiable. Let Assumptions 3.1, 3.2, 3.3, 5.1 and the multivariate version of Assumption 5.2 hold.

Then, for a �xed �nite integer M :

M � q + 1
M

FT !d Fq;M�q+1;

where Fq;M�q+1 is the F distribution with degree of freedom (q;M � q + 1).
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For
p
T estimable parameters in parametric time series models, Sun (2011b) points out that the

multiplicative modi�cation (M � q + 1) =M is a type of Bartlett correction in addition to a distribu-

tional correction (i.e. using an F approximation instead of the standard �2-approximation).

The weak convergence of the F statistic can be rewritten as

FT !d

�2q=q

�2M�q+1= (M � q + 1)
M

M � q + 1 =
d Fq;M�q+1

M

M � q + 1 :

As M !1; both �2M�q+1= (M � q + 1) and M=(M � q+1) converge to one. As a result, the limiting
distribution approaches the standard �2 distribution. That is, under the sequential limit theory in

which T ! 1 for a �xed M and then M ! 1, we obtain the standard �2 distribution as the
sequential limiting distribution. When M is not very large or the number of the restrictions q is large,

the second stage approximation in the sequential limit is likely to produce a large approximation error.

This explains why the F approximation is more accurate, especially when M is relatively small and q

is relatively large.

6 Numerical Equivalence of Asymptotic Variance Estimators

To compute the OS-LRV estimator in the previous section, we have to �rst �nd the empirical Riesz

representor bv�T ; which is not very appealing to applied researchers. In this section we show that in

�nite samples we can directly apply the formula of the OS-LRV estimation derived under parametric

assumptions and ignore the semiparametric/nonparametric nature of the model.

For simplicity, let the sieve space be AT = � � HT with � a compact subset of Rd� and HT =�
h (�) = PkT (�)0� : � 2 RkT

	
. Let �0;T = (�0; PkT (�)0�0;T ) 2 int(�) �HT . For � 2 AT = � �HT ; we

write `(Zt; �) = `(Zt; �; h (�)) = `(Zt; �; PkT (�)0�) and de�ne ~̀(Zt; 
) = `(Zt; �; PkT (�)0�) as a function of

 = (�0; �0)0 2 Rd
 where d
 = d� + d� and d� � kT . For any given Zt, we view `(Zt; �) as a functional
of � on the in�nite dimensional function space A, but ~̀(Zt; 
) as a function of 
 on the Euclidian space
Rd
 whose dimension d
 grows with the sample size but could be regarded as �xed in �nite samples.
By de�nition, for any �1 = (�01; PkT (�)0�1)

0 and �2 = (�02; PkT (�)0�2)
0 ; we have

@ ~̀(Zt; 
1)

@
0
(
2 � 
1) = �`(Zt; �1) [�2 � �1] (6.1)

where the left hand side is the regular derivative and the right hand side is the pathwise functional

derivative. By the consistency of the sieve M estimator b�T = (b�0T ; PkT (�)0b�T ) for �0;T = (�0; PkT (�)0�0;T ),
we have that b
0T � (b�0T ; b�0T ) is a consistent estimator of 
00;T = (�00; �00;T ), then the �rst order conditions
for the sieve M estimation can be represented as

1

T

TX
t=1

@ ~̀(Zt; b
T )
@


� 0: (6.2)
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These �rst order conditions are exactly the same as what we would get for parametric models with

d
-dimensional parameter space.

Next, we pretend that ~̀(Zt; 
) is a parametric criterion function on a �nite dimensional space Rd
 .
Using the OS-LRV estimator for the parametric M estimator based on the sample criterion function
1
T

PT
t=1

~̀(Zt; 
), we can obtain the typical sandwich asymptotic variance estimator for
p
T (b
T � 
0;T )

as follows: b�T = bR�1T bBT bR�1T ;
where

bRT = � 1
T

TX
t=1

@2 ~̀(Zt; b
T )
@
@
0

,

bBT = 1

M

MX
m=1

"
1p
T

TX
t=1

�m

�
t

T

�
@ ~̀(Zt; b
T )

@


#"
1p
T

TX
t=1

�m

�
t

T

�
@ ~̀(Zt; b
T )
@
0

#
:

Now suppose we are interested in a real-valued functional f0;T = f (�0;T ) = f (�0; PkT (�)0�0;T ),
which is estimated by the plug-in sieve M estimator bf = f (b�T ) = f(b�T ; PkT (�)0b�T ). We compute the
asymptotic variance of bf mechanically via the Delta method. We can then estimate the asymptotic
variance of

p
T ( bf � f0;T ) by

dV ar( bf) = bF 0kT b�T bFkT = bF 0kT bR�1T bBT bR�1T bFkT
where bFkT � �@f(b�T )@�0 ; @f(b�T )@h [PkT (�)0]

�0
. The following proposition shows that dV ar( bf) is numerically

identical to jjbv�T jj2sd;T de�ned in (5.6). The same result also holds for vector-valued functionals.
Proposition 6.1 For any sample size T , we have the numerical identity:

kbv�T k2sd;T = dV ar( bf) = bF 0kT bR�1T bBT bR�1T bFkT :
The numerical equivalence in variance estimators and point estimators (i.e., b
T ) implies that the

corresponding test statistics are also numerically identical. Hence, we can use standard statistical pack-

ages designed for (misspeci�ed) parametric models to compute test statistics for semi-nonparametric

models. However, depending on the magnitude of sieve approximation errors, statistical inference and

interpretation may be di¤erent across these two classes of models. Finally, we wish to point out that

these numerical equivalence results are established only when the same �nite dimensional linear sieve

basis PkT (�) is used in approximating both the unknown function h0(�) and the sieve Riesz representor
v�T .
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7 Simulation Study

In this section, we examine the accuracy of our inference procedures in Section 5 via Monte Carlo

experiments. We consider a partial linear model as given in (2.2):

Yt = X
0
1t�0 +

~h0( ~X2t) + ut; t = 1; :::; T

where ~X2t and ut are scalar processes, X1t is a d-dimensional vector process with independent compo-

nent Xj
1t. More speci�cally, X

0
1t =

�
X1
1t; :::; X

d
1t

�
for d = 4 and

Xj
1t = �X

j
1;t�1 +

p
1� �2"j1t; ~X2t =

1p
2d

�
X1
1t + :::+X

d
1t

�
+
etp
2

et = �et�1 +
p
1� �2"et; ut = �ut�1 +

p
1� �2"ut

where
�
"11t; :::; "

d
1t; "et; "ut

�0
are iid N(0; Id+2). Here we have normalized X

j
1t;
~X2t; and ut to have zero

mean and unit variance. We take � = �0:75 : 0:25 : 0:75:
Without loss of generality, we set �0 = 0: We consider ~h0( ~X2t) = sin( ~X2t) and cos( ~X2t): Such

choices are qualitatively similar to that in Härdle, Liang and Gao (2000, pages 52 and 139) who

employ sin(� ~X2t). We focus on ~h0( ~X2t) = cos( ~X2t) below as it is harder to be approximated by a

linear function around the center of the distribution of ~X2t, but the qualitative results are the same for
~h0( ~X2t) = sin( ~X2t):

To estimate the model using the method of sieves on the unit interval [0,1], we �rst transform ~X2t

into [0; 1]:

X2t =
exp( ~X2t)

1 + exp( ~X2t)
or ~X2t = log

�
X2t

1�X2t

�
:

Then ~h0( ~X2t) = cos(log[X2t (1�X2t)�1]) := h0 (X2t) for h0 (x2) = cos(log[x2 (1� x2)�1]): Let PkT (x2) =
[p1 (x2) ; ::::; pkT (x2)]

0 be a kT �1 vector, where fpj (x2) : j � 1g is a set of basis functions on [0; 1] :We
approximate h0 (x2) by PkT (x2)

0 � for some � = (�1; :::; �kT )
0 2 RkT : Denote Xt =

�
X 0
1t; PkT (X2t)

0� a
1� (d+ kT ) vector and X a T � (d+ kT ) matrix:

X =

0BB@
X 0
11 p1 (X21) ::: pkT (X21)

X 0
12 p1 (X22) ::: pkT (X22)
::: ::: ::: :::
X 0
1T p1 (X2T ) ::: pkT (X2T )

1CCA :=

0BB@
X1
X2
:::
XT

1CCA ;
Y = (Y1; :::; YT )

0, U = (u1; :::; uT )
0 and 
 = (�0; �0)0 : Then the sieve LS estimator of 
 is

b
T = �X0X��1X0Y:
In our simulation experiment, we use AIC and BIC to select kT .

We employ our asymptotic theory to construct con�dence regions for �1:j = (�01; :::; �0j)0. Equiva-

lently, we test the null of H0j : �1:j = 0 against the alternative H1j : at least one element of �1:j is not
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zero. Depending on the value of j; the number of joint hypotheses under consideration ranges from 1 to

d: Let R� (j) be the �rst j rows of the identity matrix Id+kT , then the sieve estimator of �1:j = R� (j) 

is b�1:j = R� (j) b
T ; (7.1)

and so

p
T
�b�1:j � �1:j� = pTR� (j) �X0X��1X0U+ op (1)

=
1p
T

TX
t=1

R� (j)
�
X0X

T

��1
X0tut + op (1) :

Let (bu1; :::; buT )0 = bU = Y �Xb
T ; b��t = R� (j) (X0X=T )�1X0tbut 2 Rj and
b
�M =

1

M

MX
m=1

 
1p
T

TX
t=1

�m(
t

T
)b��t

! 
1p
T

TX
t=1

�m(
t

T
)b��t

!0

be the OS-LRV estimator of the asymptotic variance 
 of
p
T
�b�1:j � �1:j� : Using the numerical equiv-

alence result in Section 6, we can construct the F-test version of the Wald statistic as:

F� (j) =
�p
TR� (j) b
T�0 b
�1�M �pTR� (j) b
T� =j:

We refer to the test using critical values from the �2j=j distribution as the chi-square test. We refer to

the test using critical value M (M � j + 1)�1F�j;M�j+1 as the F test, where F�j;M�j+1 is the (1� �)
quantile of the F distribution Fj;M�j+1: Throughout the simulation, we use �2m�1(x) =

p
2 cos 2m�x,

�2m(x) =
p
2 sin 2m�x;m = 1; :::;M=2 as the orthonormal basis functions for the OS-LRV estimation.

To perform either the chi-square test or the F test, we employ two di¤erent rules for selecting the

smoothing parameter M: Under the �rst rule, we choose M to minimize the asymptotic mean square

error of b
�M . See Phillips (2005). The MSE-optimal M is given by

MMSE =

2666
 
tr
��
Ij2 +Kjj

�
(

 
)

�
4vec(B)0vec(B)

!1=5
T 4=5

3777 ;
where B is the asymptotic bias of b
M , Kjj is the j2 � j2 commutation matrix, and d�e is the ceiling
function. Under the second rule, we choose M to minimize the coverage probability error (CPE) of

the con�dence region based on the conventional chi-square test. The CPE-optimal M can be derived

in the same way as that in Sun (2011b) where kernel LRV estimation is considered, with his kernel

bandwidth b =M�1. Setting q = 2; c1 = 0; c2 = 1; p = j in Sun (2011b)�s formula, we obtain:

MCPE =

26666
0@ j

�
X �j + j

�
4 jtr (B
�1)j

1A
1
3

T
2
3

37777 ;
29



where X �j is the (1� �) quantile of �2j distribution.
The parameters B and 
 in MMSE and MCPE are unknown but could be estimated by a standard

plug-in procedure as in Andrews (1991). We �t an approximating VAR(1) model to the vector processb��t and use the �tted model to estimate 
 and B:
We are also interested in making inference on h0 (x) : For each given x; let Rx = [01�d; PkT (x)

0]:

Then the sieve estimator of h0 (x) = Rx
 is

bh (x) = Rxb
T : (7.2)

We test H0 : h (x) = h0 (x) against H1 : h (x) 6= h0 (x) for x = [1 + exp (�~x2)]�1 and ~x2 = �2 : 0:1 : 2:
Since ~X2t is standard normal, this range of ~x2 largely covers the support of ~X2t: Like the estimator for

the parametric part in (7.1), the above nonparametric estimator is also a linear combination of b
T : As
a result, we can follow exactly the same testing procedure as described above. To be more speci�c, we

let b�xt = Rx�X0X
T

��1
X0tbut

and b
xM =
1

M

MX
m=1

 
1p
T

TX
t=1

�m(
t

T
)b�xt! 1p

T

TX
t=1

�m(
t

T
)b�xt!0 ;

which is the pre-asymptotic LRV estimator of
p
T [Rxb
T � h0 (x)]. Then the test statistic is

Fx =
�p
T [Rxb
T � h0 (x)]�0 b
�1xM �pT [Rxb
T � h0 (x)]� : (7.3)

As in the inference for the parametric part, we select the smoothing parameter M based on the MSE

and CPE criteria. It is important to point out that the approximating model and hence the data-driven

smoothing parameter M are di¤erent for di¤erent hypotheses under consideration.

In Section 4, we have shown that, for evaluation functionals, the asymptotic variance does not

depend on the time series dependence. So from an asymptotic point of view, we could also use

b
�xM =
1

T

TX
t=1

b�xt �b�xt�0
as the estimator for the asymptotic variance of

p
T [Rxb
T � h0 (x)] and construct the F �x statistic

accordingly. Here F �x is the same as Fx given in (7.3) but with b
xM replaced by b
�xM :
For the nonparametric part, we have three di¤erent inference procedures. The �rst two are both

based on the Fx statistic with pre-asymptotic variance estimator, except that one uses �21 approximation

and the other uses F1;M approximation. The third one is based on the F �x statistic and uses the �
2
1

approximation. For ease of reference, we call the �rst two tests the pre-asymptotic �2 test and the pre-

asymptotic F test, respectively. We call the test based on F �x and the �
2
1 approximation the asymptotic

�2 test.
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Table 8.1 gives the empirical null rejection probabilities for testing �1:j = 0 for j = 1; 2; 3; 4 for � � 0
under the CPE criterion. The number of simulation replications is 10,000. We consider two types of

sieve basis functions to approximate h(�): the sine/cosine bases and the cubic spline bases with evenly
spaced knots. The nominal rejection probability is � = 5% and kT is selected by AIC. Results for BIC

are qualitatively similar. Several patterns emerge from the table. First, the F test has a more accurate

size than the chi-square test. This is especially true when the processes are persistent and the number

of joint hypotheses being tested is large. Second, the size properties of the tests are not sensitive to

the di¤erent sieve basis functions used for h(�). Finally, as the sample size increases, the size distortion
of both the F test and the chi-square test decreases. It is encouraging that the size advantage of the F

test remains even when T = 500:

Figures 8.2-8.4 present the empirical rejection probabilities for testing H0 : h (x) = h0 (x) against

H0 : h (x) 6= h0 (x) for x = [1 + exp (�~x2)]�1 and ~x2 = �2 : 0:1 : 2: As in Table 8.1, the CPE criterion
is used to select the smoothing parameter M: It is clear that the asymptotic �2 test that ignores the

time series dependence has a large size distortion when the process is persistent. This is true for both

sample sizes T = 100 and T = 500 and for both sieve bases considered. Nevertheless, the asymptotic

�2 test becomes less size-distorted as the sample size increases. This is consistent with our asymptotic

theory. Compared to the pre-asymptotic �2 test, the pre-asymptotic F test has more accurate size

when the sample size is not large and the processes are persistent. This, combined with the evidence

for parametric inference, suggests that the pre-asymptotic F test is preferred for both parametric and

nonparametric inference in practical situations.

For brevity, we do not report the simulation results when the MSE criterion is used to select the

smoothing parameter M . We note that the superior performance of the pre-asymptotic F test relative

to the pre-asymptotic �2 test and the conventional asymptotic �2 test remains. This is true for inference

on both parametric and nonparametric components.

8 Conclusion

In this paper, we �rst establish the asymptotic normality of general plug-in sieve M estimators of

possibly irregular functionals of semi-nonparametric time series models. We then obtain a surprising

result that weak dependence does not a¤ect the asymptotic variances of sieve M estimators of many

irregular functionals including evaluation functionals and some weighted average derivative functionals.

Our theoretical result suggests that temporal dependence can be ignored in making inference on

irregular functionals when the time series sample size is large. However, for small and moderate time

series sample sizes, we �nd that it is better to conduct inference using the �pre-asymptotic� sieve

variance estimation that accounts for temporal dependence.

We provide an accurate, autocorrelation robust inference procedure for sieve M estimators of both
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regular and irregular functionals. Our procedure is based on the �pre-asymptotic�scaled Wald statistic

using the OS-LRV estimation and F approximation. The �pre-asymptotic� F approximations are

asymptotically valid regardless of (1) whether the functional of interest is regular or not; (2) whether

there is temporal dependence or not; and (3) whether the orthonormal series number of terms in

computing the OS-LRV estimator is held �xed or not. Our scaled Wald statistics for possibly irregular

functionals of semi-nonparametric models are shown to be numerically equivalent to the corresponding

test statistics for regular functionals of parametric models, and hence are very easy to compute.

Table 8.1: Empirical Null Rejection Probabilities for the 5% F test and Chi-square Test
j = 1 j = 2 j = 3 j = 4

F test �2 Test F test �2 Test F test �2 Test F test �2 Test
T = 100, Cosine and Sine Basis

� = 0 0.0687 0.0882 0.0723 0.0921 0.0885 0.1151 0.1329 0.1905
� = 0:25 0.0706 0.1032 0.0825 0.1193 0.1085 0.1715 0.1679 0.2923
� = 0:50 0.0717 0.1250 0.0884 0.1485 0.1255 0.2214 0.2012 0.3880
� = 0:75 0.0744 0.1525 0.0973 0.1814 0.1458 0.2765 0.2338 0.4918

T = 100, Spline Basis
� = 0 0.0680 0.0844 0.0711 0.0887 0.0830 0.1126 0.1212 0.1791
� = 0:25 0.0647 0.0967 0.0743 0.1133 0.1011 0.1635 0.1518 0.2729
� = 0:50 0.0668 0.1174 0.0799 0.1392 0.1176 0.2138 0.1880 0.3726
� = 0:75 0.0655 0.1418 0.0867 0.1736 0.1358 0.2675 0.2137 0.4754

T = 500, Cosine and Sine Basis
� = 0 0.0549 0.0596 0.0578 0.0621 0.0605 0.0695 0.0699 0.0898
� = 0:25 0.0527 0.0593 0.0554 0.0646 0.0602 0.0798 0.0699 0.1145
� = 0:50 0.0536 0.0628 0.0576 0.0720 0.0621 0.0898 0.0736 0.1354
� = 0:75 0.0529 0.0659 0.0583 0.0789 0.0613 0.1003 0.0773 0.1651

T = 500, Spline Basis
� = 0 0.0524 0.0552 0.0559 0.0607 0.0567 0.0683 0.0648 0.0858
� = 0:25 0.0507 0.0582 0.0539 0.0625 0.0552 0.0743 0.0659 0.1078
� = 0:50 0.0485 0.0584 0.0537 0.0663 0.0573 0.0850 0.0686 0.1327
� = 0:75 0.0500 0.0614 0.0547 0.0739 0.0570 0.0964 0.0724 0.1581

Note: j is the number of joint hypotheses.
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Figure 8.1: Plot of Empirical Rejection Probabilities Against the value of X2t with Sine and Cosine
Basis Functions and T = 100
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Figure 8.2: Plot of Empirical Rejection Probabilities Against the value of X2t with Spline Basis Func-
tions and T = 100
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Figure 8.3: Plot of Empirical Rejection Probabilities Against the value of X2t with Sine and Cosine
Basis Functions and T = 500
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Figure 8.4: Plot of Empirical Rejection Probabilities Against the value of X2t with Spline Basis Func-
tions and T = 500
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9 Appendix A: Mathematical Proofs

Proof of Theorem 3.1. For any � 2 BT , denote local alternative ��u of � as

��u = �� "Tu�T = ��
"T v

�
T

v�T

sd ;

where "T = o(T�
1
2 ). It is clear that if � 2 BT , then by the de�nition of ��u; Assumption 3.2 (ku�T k =

O(1)), and the triangle inequality, we have ��u 2 BT . Since b�T 2 BT with probability approaching one,
we have that b��u;T = b�T � "Tu�T 2 BT with probability approaching one. By the de�nition of b�T , we
have

�Op("2T ) �
1

T

TX
t=1

`(Zt; b�T )� 1

T

TX
t=1

`(Zt; b��u;T )
= E[`(Zt; b�T )� `(Zt; b��u;T )] + �T ��(Z;�0) �b�T � b��u;T �	
+ �T

�
`(Z; b�T )� `(Z; b��u;T )��(Z;�0) �b�T � b��u;T �	

= E[`(Zt; b�T )� `(Zt; b��u;T )]� �T f�(Z;�0)["Tu�T ]g+Op("2T ) (9.1)

by Assumption 3.3.(i)(ii). Next, by Assumptions 3.2 and 3.3.(iii) we have:

E[`(Zt; b�T )� `(Zt; b��u;T )]
=
jjb�T � "Tu�T � �0jj2 � jjb�T � �0jj2

2
+Op("

2
T )

= �"T hb�T � �0; u�T i+ 12"2T jju�T jj2 +Op("2T )
= �"T hb�T � �0; u�T i+Op("2T ):

Combining these with the de�nition of b��u;T and the inequality in (9.1), we deduce that
�Op("2T ) � �"T hb�T � �0; u�T i � "T�T f�(Z;�0)[u�T ]g+Op("2T );

which further implies that

hb�T � �0; u�T i � �T f�(Z;�0)[u�T ]g = Op("T ) = op �T�1=2� : (9.2)

By the de�nition of �0;T , we have h�0;T � �0; vi = 0 for any v 2 VT , and hence

h�0;T � �0; u�T i = 0:

Thus ���pT hb�T � �0;T ; u�T i � pT�T f�(Z;�0) [u�T ]g��� = op(1): (9.3)

Next, we link
p
T
f(b�T )�f(�0;T )
kv�Tksd

with
p
T�T f�(Z;�0) [u�T ]g through the inner product

p
T hb�T � �0;T ; u�T i.
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By Assumptions 3.1.(i) and 3.2, and the Riesz representation theorem,

p
T
f(b�T )� f(�0;T )

v�T

sd

=
p
T
f(b�T )� f(�0)� @f(�0)

@� [b�T � �0]

v�T

sd
�
p
T
f(�0;T )� f(�0)� @f(�0)

@� [�0;T � �0]

v�T

sd
+
p
T
@f(�0)
@� [b�T � �0]� @f(�0)

@� [�0;T � �0]

v�T

sd
=
p
T
@f(�0)
@� [b�T � �0;T ]

v�T

sd + op (1) =

p
T
hb�T � �0;T ; v�T i

v�T

sd + op (1)

=
p
T hb�T � �0;T ; u�T i+ op (1) : (9.4)

It follows from (9.3) and (9.4) that�����pT f(b�T )� f(�0;T )

v�T

sd �
p
T�T f�(Z;�0) [u�T ]g

����� = op(1); (9.5)

which establishes the �rst result of the theorem.
For the second result, under Assumption 3.1.(ii), we get

p
T
f(�0;T )� f(�0)

v�T

sd

=
p
T
f(�0;T )� f(�0)� @f(�0)

@� [�0;T � �0]

v�T

sd +
p
T
@f(�0)
@� [�0;T � �0]

v�T

sd = op(1):

This, (9.5) and Assumption 3.4 immediately imply that

p
T
f(b�T )� f(�0)

v�T

sd =

p
T�T f�(Z;�0) [u�T ]g+ op(1)!d N(0; 1):

Proof of Theorem 4.1. By Assumption 4.1.(i), we have: 0 < V ar (�(Z;�0)[v�T ])!1. By equation
(4.1) and de�nition of ��T (t), we have:

jjv�T jj2sd
V ar

�
�(Z;�0)[v�T ]

� � 1 = J1;T + J2;T :
where

J1;T = 2

dTX
t=1

�
1� t

T

�
E f�(Z1; �0)[v�T ]�(Zt+1; �0)[v�T ]g
V arf�(Z;�0)[v�T ]g

and

J2;T = 2
T�1X

t=dT+1

�
1� t

T

�
��T (t).
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By Assumption 4.1.(ii)(a), we have:

jJ1;T j �
2dTCT

V arf�(Z;�0)[v�T ]g
= o(1): (9.6)

Assumption 4.1.(ii)(b) immediately gives jJ2;T j = o(1). Thus����� jjv�T jj2sd
V ar

�
�(Z;�0)[v�T ]

� � 1����� � jJ1;T j+ jJ2;T j = o(1); (9.7)

which establishes the �rst claim. This, Assumption 4.1.(i) and Theorem 3.1 together imply the asymp-
totic normality result in (4.4).

Proof of Proposition 4.2. For Assumption 4.1.(i), we note that Assumption 4.2.(i) implies kv�T k ! 1
by Remark 3.2. Also under Assumption 4.2, we have:

kv�T k
2

V ar
�
�(Z;�0)[v�T ]

	 = 
�0T RkT 

�
T


�0T E [SkT (Z)SkT (Z)
0] 
�T

� �max (RkT )

�min (E [SkT (Z)SkT (Z)
0])
= O(1);

where �max (A) and �min (A) denote the largest and the smallest eigenvalues of a matrix A. Hence
kv�T k

2 =V ar f�(Z; h0)[v�T ]g = O(1). For Assumption 4.1.(ii)(a), we have, under Assumption 4.3.(i),

jE f�(Z1; �0)[v�T ]�(Zt; �0)[v�T ]gj

=

����Z
z12Z

Z
zt2Z

�(z1; �0) [v
�
T ]�(zt; �0) [v

�
T ] fZ1;Zt (z1; zt) dz1dzt

����
=

����Z
z12Z

Z
zt2Z

�(z1; �0) [v
�
T ]�(zt; �0) [v

�
T ]
fZ1;Zt (z1; zt)

fZ (z1) fZ (zt)
fZ (z1) fZ (zt) dz1dzt

����
� C

�Z
z12Z

j�(z1; �0) [v�T ]j fZ (z1) dz1
�2
= C k�(Z;�0)[v�T ]k

2
1 ;

which implies that
CT � C k�(Z;�0)[v�T ]k

2
1 :

This and Assumption 4.3.(ii) imply the existence of a growing dT !1 such that

dTCT

�(Z;�0)[v�T ]

22 ! 0;

thus Assumption 4.1.(ii)(a) is satis�ed. Under Assumption 4.4.(ii), we could further choose dT ! 1
to satisfy

k�(Z;�0)[v�T ]k
2
1 � dT

�(Z;�0)[v�T ]

22 = o (1) and d
T �

k�(Z;�0)[v�T ]k
2
2+�

�(Z;�0)[v�T ]

22 !1 for some 
 > 0:

It remains to verify that such a choice of dT and Assumption 4.4.(i) together imply Assumption
4.1.(ii)(b). Under Assumption 4.4.(i), fZtg is a strictly stationary and strong-mixing process, f�(Zt; �0)[v�T ] :
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t � 1g forms a triangular array of strong-mixing processes with the same decay rate. We can then
apply Davydov�s Lemma (Hall and Heyde 1980, Corollary A2) and obtain:

jE f�(Z1; �0)[v�T ]�(Zt+1; �0)[v�T ]gj � 8[�(t)]
�

2+� k�(Z;�0)[v�T ]k
2
2+� :

Then:

T�1X
t=dT

�����E f�(Z1; �0)[v�T ]�(Zt+1; �0)[v�T ]g

�(Z;�0)[v�T ]

22
�����

� 8
k�(Z;�0)[v�T ]k

2
2+�

�(Z;�0)[v�T ]

22

T�1X
t=dT

[�(t)]
�

2+�

� 8
k�(Z;�0)[v�T ]k

2
2+�

�(Z;�0)[v�T ]

22 d�
T

T�1X
t=dT

t
 [�(t)]
�

2+� = o(1)

provided that

k�(Z;�0)[v�T ]k
2
2+�

�(Z;�0)[v�T ]

22 d�
T = O(1) and

1X
t=1

t
 [�(t)]
�

2+� <1 for some 
 > 0,

which veri�es Assumption 4.1.(ii)(b). Actually, we have established the stronger result:
PT�1
t=1 j��T (t)j =

o(1):

Proof of Lemma 5.1. First, using Assumptions 5.1.(i)-(ii) and the triangle inequality, we have

sup
�2BT

sup
v1;v22VT

���T�1PT
t=1 r(Zt; �)[v1; v2]� E fr(Zt; �0)[v1; v2]g

���
kv1k kv2k

� sup
�2BT

sup
v1;v22WT

�����T�1
TX
t=1

r(Zt; �)[v1; v2]� E fr(Zt; �)[v1; v2]g
�����

+ sup
�2BT

sup
v1;v22WT

jE fr(Z;�)[v1; v2]� r(Z;�0)[v1; v2]gj = Op(��T ): (9.8)

Let � = b�T , v1 = bv�T and v2 = v. Then it follows from (9.8), the de�nitions of h�; �i and h�; �iT that���T�1PT
t=1 r(Zt; b�T )[bv�T ; v]� E fr(Zt; �0)[bv�T ; v]g���

bv�T

 kvk

=

�����hbv�T ; viT � hbv�T ; vi

bv�T

 kvk
����� = Op(��T ): (9.9)

Combining this result with Assumption 5.1.(iii) and using

@f(b�T )
@�

[v] = hbv�T ; viT and @f(�0)@�
[v] = hv�T ; vi;
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we can deduce that

Op(�
�
T ) = sup

v2VT

�����
@f(b�T )
@� [v]� @f(�0)

@� [v]

kvk

�����
= sup
v2VT

�����hbv�T ; viT � hbv�T ; vi

bv�T

 kvk kbv�T k+ hbv�T � v�T ; vikvk

�����
= sup
v2VT

����hbv�T � v�T ; vikvk

����+Op(��T kbv�T k): (9.10)

This implies that

sup
v2VT

����hbv�T � v�T ; vikvk

���� = Op(��T kbv�T k): (9.11)

Letting v = bv�T � v�T in (9.11), we get
jjbv�T � v�T jj

v�T

 = Op

 
��T
jjbv�T jj

v�T



!
: (9.12)

It follows from this result that����� kbv�T k

v�T

 � 1
����� �






 bv�T

v�T

 � v�T

v�T









=
jjbv�T � v�T jj

v�T

 = Op

 
��T
jjbv�T jj

v�T



!

= Op

 
��T

����� jjbv�T jj

v�T

 � 1
�����
!
+Op (�

�
T ) (9.13)

from which we deduce that ����� jjbv�T jj

v�T

 � 1
����� = Op(��T ): (9.14)

Combining the results in (9.12), (9.13), and (9.14), we get

jjbv�T � v�T jj

v�T

 = Op(�
�
T ); (9.15)

as desired.

Proof of Theorem 5.1. Part (i) De�ne S0 = 0 and

St =
1p
T

tX
�=1

�(Z� ; b�T )[bv�T ]:
Then

S[T� ] =
1p
T

[T� ]X
t=1

�(Zt; �0)[bv�T ] + �pTE fr(Z;�0) [bv�T ; b�T � �0]g
+

1p
T

[T� ]X
t=1

f�(Zt; b�T )[bv�T ]��(Zt; �0)[bv�T ]� E [�(Zt; b�T )[bv�T ]]g
+ �

p
TE f�(Zt; b�T )[bv�T ]� r(Z;�0) [bv�T ; b�T � �0]g :
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Using Assumption 5.2.(i)-(ii), we have

1p
T

[T� ]X
t=1

f�(Zt; b�T )[bv�T ]��(Zt; �0)[bv�T ]� E [�(Zt; b�T )[bv�T ]]g = op(kbv�T k);
and p

TE f�(Zt; b�T )[bv�T ]� r(Z;�0) [bv�T ; b�T � �0]g = Op �pT��T �T kbv�T k� :
So

S[T� ] =
1p
T

[T� ]X
t=1

�(Zt; �0)[bv�T ] + �pTE fr(Z;�0) [bv�T ; b�T � �0]g
+ op(kbv�T k) +Op �pT�2T kbv�T k�
=

1p
T

[T� ]X
t=1

�(Zt; �0)[v
�
T ] +

1p
T

[T� ]X
t=1

�(Zt; �0)[bv�T � v�T ]
� �

p
T hv�T ; b�T � �0i � �pT hbv�T � v�T ; b�T � �0i

+ op(kbv�T k) +Op �pT��T �T kbv�T k� : (9.16)

Under Assumptions 3.2 and 3.3, we can invoke equation (9.2) in the proof of Theorem 3.1 to deduce
that

p
T kv�T k

�1
sd hv

�
T ; b�T � �0i = 1p

T
kv�T k

�1
sd

TX
t=1

�(Zt; �0)[v
�
T ] + op(1): (9.17)

Using Lemma 5.1 and the Hölder inequality, we get���pT hbv�T � v�T ; b�T � �0i��� � pT kbv�T � v�T k kb�T � �0k = Op(pT kv�T k ��T �T ): (9.18)

Next, by Assumption 5.2.(iii) and Lemma 5.1,������ 1pT
[T� ]X
t=1

�(Zt; �0)[bv�T � v�T ]
������ � kbv�T � v�T k supv2WT

������ 1pT
[T� ]X
t=1

�(Zt; �0)[v]

������ = Op(kv�T k ��T ): (9.19)

Now, using Lemma 5.1, (9.16)-(9.19), Assumption 3.2 (kv�T k = O
�
kv�T ksd

�
), Assumption 5.2.(iv) andp

T��T �T = o(1), we can deduce that

kv�T k
�1
sd S[T� ] =

1p
T
kv�T k

�1
sd

[T� ]X
t=1

�(Zt; �0)[v
�
T ]�

�p
T
kv�T k

�1
sd

TX
t=1

�(Zt; �0)[v
�
T ] + op(1)

!d W (�)� �W (1) := B(�):
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We use the above result to �nish the proof. Note that

kv�T k
�1
sd
b�m = kv�T k�1sd 1p

T

TX
t=1

�m

�
t

T

�
�(Zt; b�T )[bv�T ]

= kv�T k
�1
sd

"
TX
t=1

�m

�
t

T

�
St �

TX
t=1

�m

�
t

T

�
St�1

#

= kv�T k
�1
sd

"
TX
t=1

�m

�
t

T

�
St �

T�1X
t=0

�m

�
t+ 1

T

�
St

#

=
1

T

T�1X
t=1

�
�m (t=T )� �m ((t+ 1) =T )

1=T

�
kv�T k

�1
sd St + �m (1) kv

�
T k

�1
sd ST :

Since �m is continuously di¤erentiable, we can invoke the continuous mapping theorem to obtain

kv�T k
�1
sd
b�m !d �

Z 1

0
�0m (�)B(�)d�:

Using integration by parts, we can show that

�
Z 1

0
�0m (�)B(�)d� = �

Z 1

0
B(�)d�m (�) =

Z 1

0
�m (�) dB(�):

Hence

kv�T k
�1
sd
b�m !d

Z 1

0
�m (�) dB(�) =

Z 1

0
�m (�) dW (�)

where the equality follows from the assumption that
R 1
0 �m (�) d� = 0:

Part (ii) It follows from part (i) that

kv�T k
�1
sd kbv�T k2sd;T kv�T k�1sd = 1

M

MX
m=1

�
kv�T k

�1
sd
b�m�2 !d

1

M

MX
m=1

�Z 1

0
�m (�) dB(�)

�2
: (9.20)

which, combining Theorem 3.1 and Slutsky�s Theorem, further implies that

tT =

p
T [f(b�T )� f(�0)]

v�T

sd

,
kbv�T ksd;T

v�T

sd

=

p
T [f(b�T )� f(�0)]

v�T

sd

,vuut 1

M

MX
m=1

�

v�T

�1sd b�m�2
!d

W (1)r
M�1PM

m=1

hR 1
0 �m (�) dW (�)

i2 : (9.21)

Note that both
R 1
0 �m (�) dW (�) and W (1) are normal. In addition, cov

�
W (1) ;

R 1
0 �m (�) dW (�)

�
=R 1

0 �m (�) d� = 0 and

cov

�Z 1

0
�m (�) dW (�);

Z 1

0
�n (�) dW (�)

�
=

Z 1

0
�m (�)�n (�) d� = 1 fm = ng :
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SoW (1) is independent ofM�1PM
m=1

hR 1
0 �m (�) dW (�)

i2
and

PM
m=1

hR 1
0 �m (�) dW (�)

i2
s �2M : This

implies that
W (1)r

M�1PM
m=1

hR 1
0 �m (�) dW (�)

i2 s t (M) and tT !d t (M) :

Proof of Theorem 5.2. Using similar arguments as in deriving Theorem 5.1, we can show that

kv�T k
�1
sd
b�m !d

Z 1

0
�m (�) dW(�): (9.22)

It then follows that

kv�T k
�1
sd kbv�T k2sd;T �kv�T k�1sd �0

=
1

M

MX
m=1

�
kv�T k

�1
sd
b�m��kv�T k�1sd b�m�0

!d
1

M

MX
m=1

�Z 1

0
�m (�) dW(�)

� �Z 1

0
�m (�) dW(�)

�0
: (9.23)

Using the results in (5.8), (9.23) and Slutsky�s Theorem, we have

FT = T [f(b�T )� f(�0)]0 kbv�T k�2sd;T [f(b�T )� f(�0)] =q
=
n
kv�T k

�1
sd

p
T [f(b�T )� f(�0)]o0 �kv�T k0sd kbv�T k�2sd;T kv�T ksd�

�
n
kv�T k

�1
sd

p
T [f(b�T )� f(�0)]o =q

!dW (1)0
(
1

M

MX
m=1

�Z 1

0
�m (�) dW(�)

� �Z 1

0
�m (�) dW(�)

�0)�1
W (1) =q: (9.24)

Since �m (�) ; m = 1; 2; :::;M are orthonormal and integrate to zero,

W (1)0
(
1

M

MX
m=1

�Z 1

0
�m (�) dW(�)

� �Z 1

0
�m (�) dW(�)

�0)�1
W (1) =d � 00

 
1

M

MX
m=1

�m�
0
m

!�1
�0

where �j s i:i:d N (0; Iq) for j = 0; :::; q: This is exactly the same distribution as Hotelling (1931)�s
T 2 distribution. Using the well-known relationship between the T 2 distribution and F distribution, we
have

M � q + 1
M

FT !d Fq;M�q+1

as desired.

Proof of Proposition 6.1. We �rst �nd the empirical Riesz representor

bv�T = �b��T 0; PkT (�)0 b��T�0 (9.25)
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of f(�0) on the sieve space by solving

jjbv�T jj2T = sup
v2VT ;v 6=0

j@f(b�T )@� [v]j2

� 1
T

PT
t=1fr(Zt; b�T )[v; v]g :

By de�nition

� 1
T

TX
t=1

fr(Zt; b�T )[v; v]g = �
0 1
T

TX
t=1

@2 ~̀(Zt; b
T )
@
@
0


 = 
0 bRT
:
Denote bFkT � �@f(b�T )@�0 ; @f(b�T )@h [PkT (�)0]

�0
. Then:

jjbv�T jj2T = sup

;
 6=
0;T


0 bFkT bF 0kT 

�
0

�
1
T

PT
t=1

@2 ~̀(Zt;b
T )
@
@
0

�


:

The sup is achieved at

b
�T = �b��T 0; b��0T �0 = �
"
1

T

TX
t=1

@2 ~̀(Zt; b
T )
@
@
0

#�1 bFkT = bR�1T bFkT :
Substituting this into (9.25) gives us an alternative representation of bv�T : Using this representation and
(6.1), we can rewrite b�m de�ned in (5.5) as

b�m = 1p
T

TX
t=1

�m(
t

T
)�(Zt; b�T )[bv�T ] = 1p

T

TX
t=1

�m(
t

T
)
@ ~̀(Zt; b
T )
@
0

b
�T
=

1p
T

TX
t=1

�m(
t

T
)
@ ~̀(Zt; b
T )
@
0

bR�1T bFkT = bF 0kT bR�1T 1p
T

TX
t=1

�m(
t

T
)
@ ~̀(Zt; b
T )

@

;

and also rewrite kbv�T k2sd;T de�ned in (5.6) as
kbv�T k2sd;T � 1

M

MX
m=1

b�mb�0m
= bF 0kT bR�1T 1

M

MX
m=1

(
1p
T

TX
t=1

�m(
t

T
)
@ ~̀(Zt; b
T )

@


)(
1p
T

TX
t=1

�m(
t

T
)
@ ~̀(Zt; b
T )
@
0

) bR�1T bFkT
= bF 0kT bR�1T bBT bR�1T bFkT = dV ar( bf);

which concludes the proof.

10 Appendix B: Delta Functions of SieveMEstimation of Evaluation
Functionals

Let �0 = h0 (�) 2 H be the unique maximizer of the criterion E[`(Zt; h(�))] on H. By the results
in Subsection 3.3, the sieve Riesz representor of any linear functional @f(h0)@h [v] takes the form v�T =

PkT
0��T = PkT

0R�1kT
@f(h0)
@h [PkT (�)] 2 VT .
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10.1 Delta functions for nonparametric regression type models

Let h0 (�) 2 H be the unique maximizer of the regression type criterion E[`(Zt; h(Xt))] on H. For the
evaluation functional f(h0) = h0(�x) with �x 2 X , we have v�T (�) = PkT (�)0��T = PkT (�)0R

�1
kT
PkT (�x). We

also have, for any v 2 VT :

v (�x) = E fE[�er (Z; h0 (X)) jX]v(X)v�T (X)g � Z
x2X

v (x) �T (�x; x) dx

where

�T (�x; x) = E[�er (Z; h0 (X)) jX = x]v�T (x) fX (x)

= E[�er (Z; h0 (X)) jX = x]P 0kT (�x)R
�1
kT
PkT (x)fX (x) :

Thus �T (�x; x) has the reproducing property on VT : v (�x) =
R
X �T (�x; x) v (x) dx. In particular, if 1 2 VT

then
R
X �T (�x; x) dx = 1. So �T (�x; x) behaves like the Dirac delta function � (x� �x).

To illustrate the properties of �T (�x; x) ; we consider the sieve (or series) LS regression of the non-
parametric conditional mean model: Y = h0(X) + ut with E[utjXt] = 0. Then �er (Z; h0 (X)) = 1

and
�T (�x; x) = P

0
kT
(x)
�
E
�
PkTP

0
kT

�	�1
PkT (�x)fX (x) :

We compute and graph �T (�x; x) explicitly for three di¤erent sieve basis functions:
Example 1: X is uniform on [0; 1] and pj (x) =

p
2 sin (j � 1=2)�x; j = 1; :::; kT : Some algebra

shows that

�T (�x; x) =

kTX
j=1

pj (x) pj (�x) =
sin kT� (x� �x)
2 sin �2 (x� �x)

� sin kT� (x+ �x)
2 sin �2 (x+ �x)

:

The �rst part is the familiar Dirichlet kernel, which converges weakly to the Dirac delta function
� (x� �x). By the Riemann-Lebesgue lemma, the L2([0; 1]) inner product of the second part with any
function in L1([0; 1]) \ L2([0; 1]) converges to zero as kT ! 1: So �T (�x; x) does converge weakly to
� (x� �x) in the sense that limT!1

R 1
0 �T (�x; x) v (x) dx = v (�x) :=

R 1
0 � (x� �x) v (x) dx for any v 2

L1([0; 1]) \ L2([0; 1]). It is also easy to see that

�T (�x; �x) = kT (1 + o (1)) and �T (�x; x) = O (1) when x 6= �x; (10.1)

Figure 10.1 displays the graph of �T (�x; x) =
p
kT ; a scaled version of �T (�x; x) when �x = 0:5; the center

of the distribution. The �gure supports our asymptotic result in (10.1) and our qualitative observation
that �T (�x; x) approaches the Dirac delta function as kT increases.

Example 2: X is uniform on [0; 1] and PkT (x) consists of cubic B-splines with kT evenly spaced
knots. Using the property that the B-splines have compact supports, we can show that

�T (�x; x) =

�
O (kT ) if jx� �xj � C=kT
o (1) ; if jx� �xj > C=kT

(10.2)

for some constant C: Figure 10.2 displays �T (�x; x) =
p
kT for this case. As before, both the asymptotic

result in (10.2) and graphical illustration show that �T (�x; x) collapses at �x as kT increases.
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Figure 10.1: Graph of �T (�x; x) =
p
kT when �x = 0:5; pj (x) =

p
2 sin

�
j � 1

2

�
�x for di¤erent values of

kT

Example 3: X is uniform on [�1; 1] and PkT (x) consists of orthonormal Legendre polynomials.
Then:

�T (�x; x) = P
0
kT
(x)PkT (�x) =

kTX
j=0

pj (�x) pj (x)

=
(kT + 1)p

(2kT + 1) (2kT + 3)

pkT+1 (�x) pkT (x)� pkT+1 (x) pkT (�x)
(�x� x) ;

where the last line follows from the Christo¤el-Darboux formula (c.f. Szegö, 1975). Based on this
result, Lebedev and Silverman (1972, sec 4.7, Theorem 1) has shown that

R 1
�1 �T (�x; x) v (x) dx !

[limx!�x+ v (x) + limx!�x� v (x)] =2 for any piecewise smooth function v such that
R 1
�1 v

2 (x) dx < 1:
This is entirely analogous to the result for Fourier series expansions. Figure 10.3 graphs �T (�x; x) =

p
kT

for �x = 0. Again, as kT increases, �T (�x; x) clearly becomes more concentrated at �x.

10.2 Delta functions for nonparametric likelihood models

To shed further light on the hidden delta sequence, we consider sieve ML estimation of a probability
density function fX (�) on the real line. Let fXtgTt=1 be a strictly stationary weakly dependent sample
with marginal density fX (�), we estimate h0 (�) =

p
fX (�) by the sieve MLE bhT that solves:

max
h2HT

1

T

TX
t=1

`(Zt; h), with `(Zt; h) =
1

2

�
log h2 (Xt)� log

�Z 1

�1
h2(x)dx

��
;
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Figure 10.2: Graph of �T (�x; x) =
p
kT when �x = 0:5 and pj (�) are spline bases with kT evenly spaced

knots on [0,1]
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Figure 10.3: Graph of �T (�x; x) =
p
kT when �x = 0 and pj (�) are Legendre polynomials.
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Figure 10.4: Graph of �T (�x; x) =
p
kT when �x = 0 and pj (�) are Hermite polynomials.

where

HT =

8<:h(�) = p0 (�) +
kTX
j=1

�jpj (�) : �j 2 R

9=; with pj (x) = Hj (x) exp
�
�x

2

2

�
;

and fHj : j = 0; 1; 2; :::g is an orthonormal Hermite basis in L2
�
R; exp

�
�x2

��
with the inner product

hh; giw =
R1
�1 h (x) g (x) exp

�
�x2

�
dx; see, e.g., Gallant and Tauchen (1989).

Suppose the functional of interest is f (h0) = h20 (�x) = fX (�x) for some �x 2 R. For any square
integrable function h (�) ; de�ne the functional f(h) = h2 (�x) =

R1
�1 h

2 (x) dx: We estimate f (h0) using

the plug-in sieve MLE f(bhT ): For any vT 2 VT = fv(�) =PkT
j=1 �jpj (�) : �j 2 Rg, we have

@f(h0)

@h
[vT ] =

@

@�

(
[h0 (�x) + �vT (�x)]

2R1
�1 [h0 (x) + �vT (x)]

2 dx

)�����
�=0

= 2 [h0 (�x)] vT (�x)� 2 [h0 (�x)]2E
�
vT (X)

h0 (X)

�
= 2h0 (�x)

�
PkT (�x)� h0 (�x)

Z 1

�1
h0 (x)PkT (x)dx

�0
�:
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It is not hard to show that

kvT k2 = 2
Z 1

�1
[vT (a)] vT (a) da� 2

�Z 1

�1
[h0(a)] vT (a) da

�2
= 2

"
E

�
vT (X)

h0 (X)

�2
�
�
E
vT (X)

h0 (X)

�2#
with the corresponding inner product

hg1; g2i = 2cov
�
g1
h0
;
g2
h0

�
:

Using the results in Subsection 3.3, we can show that the sieve Riesz representor of @f(h0)
@h [vT ] is

v�T (x) = v
�
T1 (x)� v�T2 (x) with v�T1 (x) = PkT (x)

0 ��T1 and v
�
T2 (x) = PkT (x)

0 ��T2 where

��T1 =

�
cov

�
PkT (X)

h0 (X)
;
PkT (X)

0

h0 (X)

���1
h0 (�x)PkT (�x) ;

��T2 =

�
cov

�
PkT (X)

h0 (X)
;
PkT (X)

0

h0 (X)

���1
[h0 (�x)]

2E

�
PkT (X)

h0 (X)

�
:

De�ne two linear functionals @f1(h0)@h [vT ] = 2h0 (�x) vT (�x) and
@f2(h0)
@h [vT ] = 2h

2
0 (�x)

R1
�1 vT (x)h0 (x) dx:

Then @f(h0)
@h [vT ] is the di¤erence of these two functionals, and v�T1 (x) and v

�
T2 (x) are their respective

sieve Riesz representors. While the �rst functional @f1(h0)@h [�] is an evaluation functional and hence is
irregular, the second functional @f2(h0)@h [�] is a weighted integration functional with a square integrable
weight function and hence is regular. Since the regular functional is

p
T estimable and the irregular

functional is slower than
p
T estimable, the asymptotic variance of the plug-in sieve estimator f(ĥT )

is determined by the irregular functional @f1(h0)@h [�]. So for the purpose of the asymptotic variance
calculation, we can focus on @f1(h0)

@h [�] from now on.

By de�nition 2h0 (�x) vT (�x) =
@f1(h0)
@h [vT ] = hvT ; v�T1i : It follows by direction calculations that

vT (�x) =
1

2

�
vT (x) ;

v�T1 (x)

h0 (�x)

�

=

Z 1

�1
vT (x)

h
v�T1 (x)� h0 (x)

�R1
�1 v

�
T1 (a)h0 (a) da

�i
h0 (�x)

dx

�
Z 1

�1
vT (x) ~�T (�x; x) dx;

where

~�T (�x; x) =
v�T1 (x)

h0 (�x)
�
h0 (x)

�R1
�1 v

�
T1 (a)h0 (a) da

�
h0 (�x)

=
v�T1 (x)

h0 (�x)
+O (1) :

Here we have used the square integrability of h0 (�) and so
R1
�1 v

�
T1 (a)h0 (a) da = O(1):

Using the orthonormality of Hj (x) with respect to the weighting function exp
�
�x2

�
and the matrix

inverse formula: �
IkT + bb

0��1 = IkT � bb0

1 + b0b
for any vector b 2 RkT ;
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we have

v�T1 (x)

h0 (�x)
= PkT (x)

0
(
E

 
PkT (X)

h0 (X)

P 0kT (X)

h0 (X)

!
�
�
E
PkT (X)

h0 (X)

�"
E
P 0kT (X)

h0 (X)

#)�1
PkT (�x)

= PkT (x)
0
(
IkT �

�
E
PkT (X)

h0 (X)

�"
E
P 0kT (X)

h0 (X)

#)�1
PkT (�x)

= PkT (x)
0 PkT (�x)�

PkT (x)
0
h
E
PkT (X)

h0(X)

i �
E
P 0kT

(X)

h0(X)

�
PkT (�x)

1 +

�
E
P 0kT

(X)

h0(X)

� h
E
PkT (X)

h0(X)

i
= PkT (x)

0 PkT (�x) +O (1)

using the square integrability of h0 (�) :
Let �T (�x; x) = PkT (x)

0 PkT (�x) + p0 (x) p0 (�x) ; then ~�T (�x; x) = �T (�x; x) +O(1): But

�T (�x; x) =

kTX
j=0

Hj (�x)Hj (x) exp

�
�
�
x2

2
+
�x2

2

��
:

It is known that
P1
j=0Hj (�x)Hj (x) exp

h
�
�
x2

2 +
�x2

2

�i
= � (x� �x) in the sense of distributions. This

follows by letting u! 1 in Mehler�s formula, valid for u 2 (�1; 1) :

1X
j=0

ujHj (�x)Hj (x) exp

�
�
�
x2

2
+
�x2

2

��
=

1p
� (1� u2)

exp

 
�1� u
1 + u

(x+ �x)2

4
� 1 + u
1� u

(x� �x)2

4

!
:

See Lebedev and Silverman (1972, Sec 4.11). Figure 10.4 demonstrates the convergence of �T (�x; x) to
the delta function.

It is important to point out that in all the examples the asymptotic behavior �T (�x; x) remains
more or less the same for other nonboundary values �x 2 X . So implicitly in the method of sieves, there
are delta sequences, i.e. sequences of functions that converge to the delta distribution. The Dirichlet
and Fejer kernels of Fourier series and the Christo¤el-Darboux and Mehler formulae for orthogonal
polynomials are examples of these delta sequences. When the sample size is large, the method of sieves
e¤ectively entails taking a weighted average of observations with the weights given by a delta sequence.
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