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Abstract

This paper provides a dual characterization of the limit set of perfect public equilibrium

payoffs in stochastic games (in particular, repeated games) as the discount factor tends

to one. As a first corollary, the folk theorems of Fudenberg, Levine and Maskin (1994),

Kandori and Matsushima (1998) and Hörner, Sugaya, Takahashi and Vieille (2011) obtain.

As a second corollary, in the context of repeated games, it follows that this limit set of

payoffs is a polytope (a bounded polyhedron) when attention is restricted to equilibria in

pure strategies. We provide a two-player game in which this limit set is not a polytope when

mixed strategies are considered.
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1 Introduction

Given how much the literature on repeated and stochastic games has focused on the case

in which discounting vanishes, it might be surprising how little is known about the limiting
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equilibrium payoff set when sufficient conditions for a folk theorem are not met. In the case of

games with imperfect public monitoring, our knowledge about the limiting set of perfect public

equilibrium payoffs derives from the characterizations of Fudenberg and Levine (1994), and its

generalizations by Fudenberg, Levine and Takahashi (2007), and Hörner, Sugaya, Takahashi

and Vieille (2011) in terms of a parameterized family of nonlinear programs: whenever the

characterization applies, (i) the limit of the equilibrium payoff set is well-defined, and (ii) it is

compact, convex and semialgebraic.1

This paper provides a characterization of this limit set that gives additional insights and

results. We study the dual of the program considered in Hörner, Sugaya, Takahashi and Vieille

(2011). We show that this dual program offers several advantages over the primal: (i) it admits

a straightforward interpretation; (ii) because the constraint set depends on the parameters of

the program through the parameters’ signs only, it is easy to solve especially for repeated games;

(iii) the various sufficient conditions for a folk theorem for repeated and stochastic games with

public monitoring that are found in the literature obtain effortlessly.

To demonstrate the tractability of the dual program, we exploit it to establish that the

limit set of pure-strategy (perfect public) equilibrium payoffs in repeated games is a polytope

(whenever the characterization applies). We provide an example of a two-player game with two

signals for which the limit set of perfect public equilibrium payoffs is not a polytope when mixed

strategy equilibria are considered.

While our analysis focuses on the limit case in which the discount factor tends to one, du-

ality has already been applied to the case of repeated games by Cheng (2004), who obtains a

characterization for a fixed discount factor that is the counterpart of ours. To our knowledge,

Cheng is the first author to use duality to characterize the set of equilibrium payoffs in repeated

games. A related application of duality to incentive problems in a static context can be found

in Obara and Rahman (2010). On the other hand, duality is a standard tool in Markov decision

processes, the “one-player” version of a stochastic game.

2 The Dual Program

In this section, we provide a characterization of the limit payoff set in stochastic games

with public signals, or more precisely, another characterization of the nonlinear programs whose

1Even less is known for Nash equilibria. For instance, convergence of the equilibrium payoff set is an open
problem.
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solution is key to the description of this payoff set. We follow Hörner, Sugaya, Takahashi and

Vieille (2011, hereafter HSTV) for notation and assumptions. At each stage, the game is in

one state, and players simultaneously choose actions. Nature then determines both the current

payoff, the next state and a public signal, as a function of the current state and the action profile.

The sets S of possible states, I of players, Ai of actions available to player i, and Y of public

signals are assumed finite. Given an action profile a ∈ A := ×iA
i, and a state s ∈ S, we denote

by r(s, a) ∈ R
I the payoff (or reward) profile when in state s given a, and by p(t, y|s, a) the joint

probability of moving to state t ∈ S and of getting the public signal y ∈ Y . A repeated game is

the special case in which there is a singleton state.

At the end of each period, the only information publicly available to all players consists of

nature’s choices: the next state together with the public signal. When properly interpreting Y ,

this includes the case of perfect monitoring and the case of publicly observed payoffs.

In each period n = 1, 2, . . ., the state sn is observed, the stage game is played, the action

profile an is realized, and the public signal yn is then revealed. The stochastic game is pa-

rameterized by the initial state s1. The public history at the beginning of period n is then

hn = (s1, y1, . . . , sn−1, yn−1, sn). We set H1 := S, the set of initial states. The set of public his-

tories at the beginning of period n is therefore Hn := (S × Y )n−1 × S, and we let H :=
⋃

n≥1Hn

denote the set of all public histories. The private history for player i at the beginning of pe-

riod n is a sequence hin = (s1, a1, y1, . . . , sn−1, an−1, yn−1, sn), and we similarly define H i
1 := S,

H i
n := (S × Ai × Y )n−1 × S and H i :=

⋃

n≥1H
i
n.

A (behavior) strategy for player i ∈ I is a map σi : H i → ∆(Ai). Every pair of initial state

s1 and strategy profile σ generates a probability distribution over histories in the obvious way

and thus also generates a distribution over sequences of the players’ rewards. Players seek to

maximize their payoff, that is, the average discounted sum of their rewards, using a common

discount factor δ < 1. Thus, the payoff of player i ∈ I if the initial state is s1 and the players

follow the strategy profile σ is defined as

∞
∑

n=1

(1− δ)δn−1
Es1,σ[r

i(sn, an)].

A strategy σi is public if it depends on the public history only, and not on player i’s private

information. That is, a public strategy is a map σi : H → ∆(Ai). A perfect public equilibrium

(hereafter, PPE, or simply equilibrium) is a profile of public strategies such that, given any
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period n and public history hn, the strategy profile is a Nash equilibrium from that period on.

We denote by E(s, δ) ⊂ RI the (compact) set of PPE payoffs of the game with initial state s ∈ S

and discount factor δ < 1. All statements about convergence of, or equality between sets are

understood in the sense of the Hausdorff distance d(A,B) between sets A, B.

The main element of the characterization of HSTV is the solution to the following nonlinear

program, where λ ∈ R
I is fixed. Given a state s ∈ S and a map x : S × Y → R

S×I , we denote

by Γ(s, x) the one-shot game with action sets Ai and payoff function

r(s, as) +
∑

t∈S

∑

y∈Y
p(t, y|s, as)xt(s, y),

where xt(s, y) ∈ R
I is the t-th component of x(s, y).

Given λ ∈ R
I , we denote by P(λ) the maximization program

sup
v,x,α

λ · v,

where the supremum is taken over all v ∈ R
I , x : S×Y → R

S×I , and α = (αs)s ∈ (×i∈I∆(Ai))S

such that

(i) For each s, αs is a Nash equilibrium with payoff v of the game Γ(s, x);

(ii) For each T ⊆ S, for each permutation ϕ : T → T and each map ψ : T → Y , one has

λ ·
∑

s∈T xϕ(s)(s, ψ(s)) ≤ 0.

The program P(λ) is a generalization to stochastic games of the program introduced by Fuden-

berg and Levine (1994) for repeated games, based in turn on the recursive representation of the

payoff set given by Abreu, Pearce and Stacchetti (1990).

Denote by k(λ) ∈ [−∞,+∞] the value of P(λ). HSTV prove that the feasible set of P(λ) is

non-empty, so that k(λ) > −∞, and that the value of P(λ) is finite, so that k(λ) < +∞.

HSTV assume that the limit set of PPE payoffs is independent of the initial state: for all

s, t ∈ S, limδ→1 d(E(s, δ), E(t, δ)) = 0 (Assumption A). HSTV prove that, under Assumption

A and a full-dimensionality condition, the family of programs (indexed by λ) characterizes the

limit set of (perfect public) equilibrium payoffs as δ → 1,

lim
δ→1

E(s, δ) =
⋂

λ∈RI

{v ∈ R
I | λ · v ≤ k(λ)} ∀s ∈ S.
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As our focus is the program itself, we shall not need Assumption A for what follows.

For a fixed Markov strategy (αs)s, the feasible set is non-empty if and only if for all s, αs is

admissible, in the sense that, for all i, if there exists νis ∈ ∆(Ai) such that, for all (t, y),

∑

ai∈Ai

νis(a
i)p(t, y|s, ai, α−i

s ) = p(t, y|s, αs),

then
∑

ai∈Ai

νis(a
i)ri(s, ai, α−i

s ) ≤ ri(s, αs).

Indeed, it follows from Fan (1956) that there exists x : S × Y → R
S×I such that for each s, αs

is a Nash equilibrium of the game Γ(s, x) if and only if for each s, αs is admissible. Adding a

constant to each xt(s, y) that is independent of (t, y), we may assume that the equilibrium payoff

vs is independent of s. Finally, considering any i for which λi 6= 0, we may add (or subtract if

λi < 0) a constant to xit(s, y), independent of s, t, y, so that the constraint (ii) is satisfied.

Define the program P̃(λ) as follows:

sup
α∈(×i∆(Ai))S ,αs admissible

min
∑

s,i

λiβsr
i
(

s, α̂is, α
−i
s

)

,

where the minimum is over (α̂is)s,i for all i for which λi 6= 0, with α̂is ∈ R
Ai

,
∑

ai α̂
i
s(a

i) = 1,

α̂is(a
i) ≤ 0 if λi > 0 and αis(a

i) = 0, α̂is(a
i) ≥ 0 if λi < 0 and αis(a

i) = 0, and

p̂ (t, y|s) := p
(

t, y|s, α̂is, α−i
s

)

≥ 0,

as well as over βs ≥ 0,
∑

s βs = 1 such that (βs)s is an invariant distribution of p̂ (t× Y |s). (If

there are multiple invariant distributions, use the one that minimizes the objective function.)

The main result of this section is the following:

Theorem 1 For all λ ∈ R
I, the programs P(λ) and P̃(λ) yield the same value.

The constraints appearing in P̃(λ) have a natural interpretation: each player can only de-

viate to a strategy (α̂is)s that leads to a distribution over signals and states—via the invariant

distribution—that is the same for all players’ deviations. That is, it is as if adversarial players

were choosing the deviation strategies (α̂is)s,i in a coordinated manner, subject to the constraint
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that they cannot be told apart, whether through the public signals or through the state tran-

sitions, and the objective is to minimize the λ-weighted average payoff given those deviations.

(Notice, however, that “deviations” are defined in an unusual way so that α̂is(a
i) may take negative

values.)

One of the advantages of this dual characterization is that the weight vector λ no longer

appears in the constraints, or rather, it only appears via the signs of these weights. This makes

the program especially tractable for repeated games: for each admissible strategy profile α and

each “orthant” in which λ might lie, we are left with a linear program with variables α̂ = (α̂i)i,

where λ appears only in the objective. Hence, for each α and each orthant, there are only finitely

many candidates of α̂ to consider. This does not only make the analysis tractable, but it also

yields some qualitative results. See Section 4.

Cheng (2004)’s Theorem 5 corresponds to P̃(λ) with |S| = 1, where (βs)s collapses to the

point mass.

From the dual program P̃(λ), and given the characterization of the equilibrium payoff sets

from Fudenberg and Levine for the case of repeated games, the existing folk theorems follow

immediately. This is obvious for the sufficient conditions given by Fudenberg, Levine and Maskin

(1994). As for those of Kandori and Matsushima (1998), note that their conditions can be

stated in terms of convex cones.2 Adapting slightly their notation, let Qi(a) := {p(·|a−i, ãi)|ãi ∈
Ai \{ai}} be the set of distributions over signals as player i’s action varies over all his actions but

ai. Let C i(a) denote the convex cone with vertex 0 spanned by Qi(a)−p(·|a). Assumption A2 of

Kandori and Matsushima requires C i(a) ∩ −Cj(a) = {0} and that 0 is not a non-trivial conical

combination of Qi(a)−p(·|a), whereas Assumption A3 requires C i(a)∩Cj(a) = {0} for all i 6= j

and a ∈ Ex(A) (the set of action profiles achieving some extreme point of the feasible payoff set).

Note now that the restriction on α̂, when α = a is pure, is that p(·|α̂i, a−i) − p(·|a) ∈ −C i(a)

whenever λi > 0, and p(·|α̂i, a−i) − p(·|a) ∈ C i(a) whenever λi < 0. Assumptions A2 and A3

then imply that α̂i = ai for non-coordinate directions λ.3

Similarly, HSTV’s folk theorem for stochastic games follows immediately under their as-

sumptions F1 and F2. Our results are also reminiscent of the link between the average cost

optimality equation and linear programming formulations in Markov decision processes (see

Hernández-Lerma and Lasserre, 1999, Ch. 12), and consistent with the results of Hoffman and

2Note that the working paper of Kandori and Matsushima (1998) gives weaker conditions than the published
one, which can be seen to also follow immediately from P̃(λ).

3For coordinate directions, admissibility suffices (cf. Kandori and Matsushima’s Assumption A1).
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Karp (1966).4

As a final remark, one can characterize the limit set of pure-strategy PPE payoffs by modifying

the primal P(λ) so that the supremum is taken over pure strategies α ∈ AS. The corresponding

dual P̃(λ) is given by taking the supremum over all admissible pure strategies.

3 Proof of Theorem 1

Fix throughout some strategy (αs)s such that αs is admissible for all s. We can rewrite P(λ)

as

max
x,v

λ · v

over x and v such that, for all s, i,

∑

t,y

p (t, y|s, αs) xit (s, y)− vi = −ri (s, αs) ,

and, for all s, i, ai,

∑

t,y

[

p
(

t, y|s, ai, α−i
s

)

− p (t, y|s, αs)
]

xit (s, y) ≤ ri (s, αs)− ri
(

s, ai, α−i
s

)

,

as well as, for all T, ϕ, ψ,

λ ·
∑

s∈T
xϕ(s) (s, ψ (s)) ≤ 0.

This is a linear program for (x, v). The first set of constraint ensures that αs yields the same

payoff v in all states, the second that playing αs is a Nash equilibrium, and the third is the

same constraint as (ii). Because we assumed that αs is admissible for all s, the feasible set is

non-empty, and because the value of this program is bounded above by k(λ), it is finite. We

4We may think of a Markov decision process (MDP) with irreducible transitions as a stochastic game with a
single player and no signal. In this case, take a pure optimal Markov strategy a∗ = (a∗s)s in the MDP without
discounting. The only deviations (α̂s)s that satisfy the constraints in the dual P̃(1) must improve the objective
(they must assign non-positive weights to the actions other than a∗s, and weight at least one to a∗s) so that,
minimizing over those deviations, it is best to set α̂s = a∗s for all s. It follows that (βs)s is the invariant distribution
under the optimal strategy a∗, and the value of the program is equal to the optimal expected (undiscounted)
average payoff of the MDP. One can solve the other dual P̃(−1) similarly.
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shall consider the dual of this linear program. It is

min−
∑

s,i

γisr
i (s, αs) +

∑

s,i,ai

νis(a
i)
(

ri (s, αs)− ri
(

s, ai, α−i
s

))

over νis(a
i) ≥ 0, ηTϕψ ≥ 0, γis ∈ R such that, for all s, t, y, i,

p (t, y|s, αs) γis −
∑

ai

[

p (t, y|s, αs)− p
(

t, y|s, ai, α−i
s

)]

νis(a
i) + λi

∑

T⊇{s,t},ϕ(s)=t,ψ(s)=y
ηTϕψ = 0,

and

λi = −
∑

s

γis.

There is no loss in assuming λi 6= 0 for all i (we focus on the relevant subset of players otherwise).

Define then βis := −γis/λi and ξis(a
i) := νis(a

i)/λi. We get

min
∑

s,i

λi

[

βisr
i (s, αs) +

∑

ai

(

ri (s, αs)− ri
(

s, ai, α−i
s

))

ξis(a
i)

]

over ηTϕψ ≥ 0, ξis(a
i) with ξis(a

i)sgn (λi) ≥ 0, βis ∈ R such that
∑

s β
i
s = 1 for all s, i, such that,

for all s, t, y, i,

βisp (t, y|s, αs) +
∑

ai

(

p (t, y|s, αs)− p
(

t, y|s, ai, α−i
s

))

ξis(a
i) =

∑

T⊇{s,t},ϕ(s)=t,ψ(s)=y
ηTϕψ.

Note that, taking the sum over (t, y), we have

βis =
∑

T∋s,ϕ,ψ
ηTϕψ,

and so βis =: βs is nonnegative and independent of i. Furthermore, by adding over s, we get

that
∑

T,ϕ,ψ |T |ηTϕψ = 1. Note also that, if βs = 0 for some s, then
∑

T∋s,ϕ,ψ ηTϕψ = 0, and so,

because ηTϕψ ≥ 0, it follows that

∑

ai

(

p (t, y|s, αs)− p
(

t, y|s, ai, α−i
s

))

ξis(a
i) = 0;
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Furthermore, because, given s and i, the variables ξis(a
i) all have the same sign independently

of ai, either
∑

ai ξ
i
s(a

i) 6= 0, or ξis(a
i) = 0 for all ai. Note that, in the former case, we can define

the strategy α̃is ∈ ∆(Ai) by α̃is(a
i) = ξis(a

i)/
∑

ãi ξ
i
s(ã

i), and admissibility then implies that the

corresponding term in the objective function is nonnegative, and setting ξis(a
i) = 0 for all ai

would achieve a value at least as low. Hence, if βs = 0 for some s, we can assume ξis(a
i) = 0

for all i, ai, and the terms in the objective and the constraints that involve the state s vanish.

Therefore, we might as well assume βs > 0 for all s.

Given ξis, we define α̂is ∈ R
Ai

by, for all ai,

α̂is
(

ai
)

= αis
(

ai
)

+
αis (a

i)

βs

∑

ãi

ξis(ã
i)− ξis(a

i)

βs
.

Note that for all s, i,
∑

ai α̂
i
s (a

i) = 1 for all s, i, α̂is(a
i) ≤ 0 if λi > 0 and αis(a

i) = 0, and

α̂is(a
i) ≥ 0 if λi < 0 and αis(a

i) = 0. Conversely, given such α̂is, we can set

ξis(a
i) =Mαis(a

i)sgn(λi) + βs(α
i
s(a

i)− α̂is(a
i))

with large M so that ξis(a
i)sgn(λi) ≥ 0. Thus we can rewrite our problem as

min
∑

s,i

λiβsr
i
(

s, α̂is, α
−i
s

)

,

over (α̂is)s,i with
∑

ai α̂
i
s (a

i) = 1, α̂is(a
i) ≤ 0 if λi > 0 and αis(a

i) = 0, and α̂is(a
i) ≥ 0 if λi < 0

and αis(a
i) = 0 as well as βs ≥ 0,

∑

s βs = 1, and ηTϕψ ≥ 0, such that, for all s, t, y, i,

βsp
(

t, y|s, α̂is, α−i
s

)

=
∑

T⊇{s,t},ϕ(s)=t,ψ(s)=y
ηTϕψ. (1)

Note that if βs > 0, then it follows from (1) that p (t, y|s, α̂is, α−i
s ) is nonnegative and independent

of i. Also, if βs = 0, we can assume α̂is = αis for all i without loss in the objective function. Thus

in both cases, we can assume that p̂ (t, y|s) := p (t, y|s, α̂is, α−i
s ) ≥ 0. Also note that (βs)s is an

invariant distribution of the transition function p̂ (t× Y |s). To see this, take the sum of (1) over

s, y, and we have
∑

s

βsp̂ (t× Y |s) :=
∑

T∋t,ϕ,ψ
ηTϕψ = βt.
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Conversely, if (βs)s is an invariant distribution of p̂ (t× Y |s), then it follows from Lemma 1 of

HSTV that there exists ηTϕψ ≥ 0 that satisfies (1).5

Thus we can rewrite our problem without using ηTϕψ as follows:

min
∑

s,i

λiβsr
i
(

s, α̂is, α
−i
s

)

,

over (α̂is)s,i for all i for which λi 6= 0, with
∑

ai α̂
i
s (a

i) = 1, α̂is(a
i) ≤ 0 if λi > 0 and αis(a

i) = 0,

and α̂is(a
i) ≥ 0 if λi < 0 and αis(a

i) = 0, and

p̂ (t, y|s) := p
(

t, y|s, α̂is, α−i
s

)

≥ 0,

as well as βs ≥ 0,
∑

s βs = 1 such that (βs)s is an invariant distribution of p̂ (t× Y |s). (If there

are multiple invariant distributions, use the one that minimizes the objective function.) Taking

the supremum over admissible (αs)s, this gives us precisely P̃(λ).

4 The Structure of Equilibrium Payoffs in Repeated Games

This section focuses on repeated games with imperfect public monitoring. Throughout, the

sets of actions and signals are finite, and attention is restricted to perfect public equilibria. For

a fixed discount factor δ < 1, E(δ) denotes the set of mixed-strategy PPE payoffs, and Ep(δ)

denotes the set of pure-strategy PPE payoffs. The limits of these equilibrium payoff sets (as

δ → 1) are denoted by E = limδ→1E(δ) and Ep = limδ→1E
p(δ), respectively. We show that (i)

Ep has either empty interior or is a polytope; (ii) the result does not extend to E, which includes

mixed-strategy equilibria.

The characterization of Fudenberg and Levine (1994) implies that these limits E and Ep are

well-defined, and that E and Ep are compact, convex and semialgebraic by the Tarski-Seidenberg

theorem. (The extension by Fudenberg, Levine and Takahashi (2007) establishes that this is true

even if these limit sets have empty interior.) In addition, both E and Ep are independent of

the availability of a public randomization device. In the absence of such a device, none of these

properties (except compactness) holds for a fixed discount factor, as explained below.

Because their program is such that the vector of weights λ appears both in the constraints

5Use the indicator function of (s, t) for (xt(s)) in the notation of Lemma 1. Note that one can easily generalize
Lemma 1 to cases without irreducibility.
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and in the objective, it is difficult to obtain sharper results from the primal. In contrast, because

the constraints in the dual only involve the signs of the weights, for each admissible action profile

a ∈ A and each orthant of λ, we have finitely many linear constraints on α̂, which are independent

of λ. The result then follows since there are only finitely many candidates of α̂ that can minimize

the linear objective.

Corollary 1 Assume that Ep has non-empty interior. Then Ep is a polytope.6

Before proving this result, let us briefly mention what is known about Ep(δ) and E(δ) for fixed

δ < 1. Most of the results are for the case of perfect monitoring. For the case in which a public

randomization device is allowed, Abreu and Sannikov (2011) show that the equilibrium payoff

set Ep(δ) is a polytope, when there are only two players and monitoring is perfect. Furthermore,

they show that the set of vertices is no more than thrice the number of action profiles. It is not

known whether their results generalize to mixed strategies, more players or imperfect monitoring

(see below, however). If no public randomization device is assumed, neither E(δ) nor Ep(δ) need

be convex: non-convexity is shown by Sorin (1986), and Yamamoto (2010) provides an example

in which this is true for discount factors arbitrarily close to one. More generally, the set of

equilibrium payoffs E(δ) need not be semialgebraic. See Berg and Kitti (2010) for examples of

the fractal nature of Ep(δ), which generalizes easily to mixed strategies for low enough discount

factors.

Proof. Since Ep has non-empty interior, by Fudenberg and Levine (1994), Fudenberg, Levine

and Takahashi (2007), and our dual characterization applied to pure-strategy equilibria, we have

Ep =
⋂

λ∈RI

{v ∈ R
I | λ · v ≤ kp(λ)},

where kp(λ) is the solution to the following program:

max
a∈A, admissible

min
α̂∈D(a,sgn(λ))

λ · r(a, α̂),

where sgn(λ) = (sgn(λi))i, r(a, α̂) = (ri(α̂i, a−i))i, and for each profile of signs ζ = (ζ i)i ∈
{−1, 0, 1}I , D(a, ζ) is the set of profiles α̂ = (α̂i)i ∈ ×i∈IR

Ai such that for each i ∈ I with

6If Ep has empty interior, neither the primal nor the dual program applies. The primal has been generalized
by Fudenberg, Levine and Takahashi (2007) to include this case, but we have not explored the dual of their
program. Clearly, with two players, the result extends to the case in which Ep has empty interior, as the set Ep

must then be either a line segment or a point.
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ζ i 6= 0,
∑

ãi∈Ai α̂i(ãi) = 1, α̂i(ãi) ≤ 0 if ζ i = 1 and ãi 6= ai, α̂i(ãi) ≥ 0 if ζ i = −1 and ãi 6= ai, and

p(y|α̂i, a−i) ≥ 0 is independent of i such that ζ i 6= 0. Our proof further exploits the following two

properties of the dual characterization: (1) D(a, sgn(λ)) depends on λ only through the profile

of signs of λi, and (2) D(a, sgn(λ)) is a convex polytope.

The proof will use the following standard results (see Rockafellar, 1970): (i) any polyhedron

D admits a finite subset D∗ such that any linear function on D is minimized at some point in

D∗; (ii) the convex hull of a finite union of polyhedral cones is a polyhedral cone; (iii) the polar

cone of a polyhedral cone is a polyhedral cone.7

For each ζ ∈ {−1, 0, 1}I , we define

Λ(ζ) = {λ ∈ R
I | sgn(λ) = ζ}.

We also define Λ̄(ζ) as the closure of Λ(ζ)

Λ̄(ζ) = {λ ∈ R
I | ∀i ∈ I, sgn(λi) ∈ {0, ζ i}}.

Taking the closure simplifies our exposition by allowing us to use standard results on polyhedra

and polyhedral cones, which are defined by weak inequalities.

For each ζ ∈ {−1, 0, 1}I and λ ∈ Λ̄(ζ), we have

kp(λ) ≤ max
a admissible

min
α̂∈D(a,ζ)

λ · r(a, α̂)

since if ζ i 6= 0 but λi = 0, then the constraint set D(a, sgn(λ)) is less restrictive than D(a, ζ).

Therefore, we have

Ep =
⋂

λ∈RI

{v ∈ R
I | λ · v ≤ kp(λ)}

=
⋂

ζ∈{−1,0,1}I

⋂

λ∈Λ(ζ)
{v ∈ R

I | λ · v ≤ kp(λ)}

=
⋂

ζ∈{−1,0,1}I

⋂

λ∈Λ̄(ζ)

{v ∈ R
I | λ · v ≤ kp(λ)}.

7To clarify our terminology, a polyhedron is the intersection of finitely many closed half-spaces, which is
generated by finitely many points and directions. A polytope is the convex hull of finitely many points, which is
equivalent to a bounded polyhedron. A cone is polyhedral if and only if it is generated by finitely many directions.
See Rockafellar (1970, Section 19 and Theorem 19.1).
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Since Ep is bounded, it is enough to show that for each ζ ∈ {−1, 0, 1}I ,

Ep(ζ) =
⋂

λ∈Λ̄(ζ)

{v ∈ R
I | λ · v ≤ kp(λ)}

is a polyhedron.

For each admissible a ∈ A and ζ ∈ {−1, 0, 1}I, note that D(a, ζ) is a polyhedron, and hence

finitely generated, i.e., there exist finitely many points β1, . . . , βm ∈ ×i∈IR
Ai and finitely many

directions βm+1, . . . , βn ∈ ×i∈IR
Ai such that any α̂ ∈ D(a, ζ) is represented as

α̂ = µ1β1 + · · ·+ µmβm + µm+1βm+1 + · · ·+ µnβn

with µ1+ · · ·+µm = 1 and µ1, . . . , µn ≥ 0. Let D∗(a, ζ) = {β1, . . . , βm}. Then for any λ ∈ Λ̄(ζ),

the minimization problem

min
α̂∈D(a,ζ)

λ · r(a, α̂)

has a solution in D∗(a, ζ). Note that D∗(a, ζ) is finite and depends on λ only through its sign ζ .

For each admissible a ∈ A, ζ ∈ {−1, 0, 1}I , and α̂ ∈ D∗(a, ζ), let Λ̄(a, α̂, ζ) be the set of all

directions λ ∈ Λ̄(ζ) such that the max-min problem

max
a admissible

min
α̂∈D∗(a,ζ)

λ · r(a, α̂)

is solved at (a, α̂). Let Φ(ζ) be the set of selections ϕ of D∗(·, ζ), i.e., the set of functions that

map each admissible action a′ to ϕ(a′) ∈ D∗(a′, ζ). Then we have

Λ̄(a, α̂, ζ) =
⋃

ϕ∈Φ(ζ)

(

Λ̄(ζ) ∩
⋂

α̂′∈D∗(a,ζ)

{λ ∈ R
I | λ · (r(a, α̂)− r(a, α̂′)) ≤ 0}

∩
⋂

a′ admissible

{λ ∈ R
I | λ · (r(a, α̂)− r(a′, ϕ(a′))) ≥ 0}

)

,

hence Λ̄(a, α̂, ζ) is a finite union of polyhedral cones, and thus its convex hull is a polyhedral

cone (Rockafellar, 1970, Theorem 19.6).
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Thus, for each ζ ∈ {−1, 0, 1}I ,

Ep(ζ) =
⋂

λ∈Λ̄(ζ)

{v ∈ R
I | λ · v ≤ kp(λ)}

=
⋂

a admissible

⋂

α̂∈D∗(a,ζ)

⋂

λ∈Λ̄(a,α̂,ζ)

{v ∈ R
I | λ · (v − r(a, α̂)) ≤ 0}.

Here, for each (a, α̂, ζ), since the convex hull of Λ̄(a, α̂, ζ) is a polyhedral cone, its polar cone

(with vertex r(a, α̂)),
⋂

λ∈Λ̄(a,α̂,ζ){v | λ · (v− r(a, α̂)) ≤ 0}, is also a polyhedral cone (Rockafellar,

1970, Corollary 19.2.2). Therefore, Ep(ζ) is a finite intersection of polyhedral cones, which is a

polyhedron.

This corollary raises a natural question: does the corollary extend to mixed strategies? This

is obviously the case when the assumptions for the folk theorem are satisfied—in particular, when

monitoring is perfect. We conclude this section with an example establishing that the answer is

negative, even in the case of two players. Consider the following 2× 2 game with payoffs

L R

U 5, 9 0,−3

D 8,−3 −5, 1

and two possible signals Y = {ȳ, y} with

p(ȳ | ·) =
L R

U .4 .5

D .41 .01

, p(y | a) = 1− p(ȳ | a).

Note that each player’s minmax payoff is 0, and the unique static Nash equilibrium is (1
4
U +

3
4
D, 5

8
L + 3

8
R), which supports payoffs (25

8
, 0). In the appendix, we sketch steps to compute E,
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v2

v1

(−5, 1)

0

(5, 9)

(8,−3)(0,−3)

E

Figure 1: Feasible and limit equilibrium payoff set (shaded area) in the example

which is equal to

E =







































(v1, v2)|

v2 ≥ max

(

0,
459811−

√
49070057089

12642
− 260783 +

√
49070057089

64500
v1

)

,

v2 ≤ min

(

4

5
v1 + 5, 29− 4v1

)

,

v2 ≤ (2
√

2(28− 5v1) +
√
2409)2

375
for v1 ≤ 811

146







































.

Clearly, this set is not a polytope. See Figure 1. As E(δ) → E, this example shows that the

bound of Abreu and Sannikov (2011) on the number of extreme points of E(δ) cannot possibly

extend to mixed strategies and imperfect monitoring.

5 Concluding Comments

Theorem 1 easily extends to the case with short-run players, where the supremum in P̃ (λ)

is taken over all α such that long-run players play admissible actions and short-run players play

static best responses. Similarly, Corollary 1 holds if all (both long- and short-run) players play
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pure strategies, or if all long-run players play pure strategies and for each pure action profile

of long-run players, the induced stage game for short-run players has finitely many static Nash

equilibria.

Theorem 1 and Corollary 1 also extend to games with unknown payoffs or signal distributions,

where Fudenberg and Yamamoto (2010) obtain a primal program à la Fudenberg and Levine

(1994) that characterizes the limit set of belief-free (or perfect type-contingently public ex-post)

equilibrium payoffs. Their sufficient conditions for a folk theorem obtain immediately. Example

1 of Hörner and Lovo (2009), with two players and two states, is an instance in which the limit

belief-free equilibrium payoff set in mixed strategies is not a polytope.

It is also straightforward to adapt Theorem 1 to the characterization of the limit payoff

set achieved by perfect communication equilibria for repeated games with imperfect private

monitoring, see Tomala (2009).

But our analysis leaves open many questions, among others:

- Is Ep a polytope even when its interior is empty (in the case in which there are more than

two players)?

- Is the limit set of pure-strategy equilibrium payoffs also a polytope in the case of finite

stochastic games? (The feasible limit payoff set is known to be a polytope.)

- Does the example showing that E need not be a polytope also establish the same result

for E(δ) (with a public randomization device) for high enough discount factors?

- What are the properties of the set of all Nash and sequential (rather than perfect public)

equilibrium payoffs and their limits (if they exist) as δ → 1?
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Appendix: Sketch of computations for the example

We use the dual program P̃(λ) to compute the maximum score k(λ) for each direction

λ = (λ1, λ2) ∈ R
2. In particular, we analyze 8 cases (λ1, λ2 R 0) separately.

In the case of λ = (1, 0), we achieve k(1, 0) = 8 by enforcing α = (D,L).

In the case of λ1 > 0 and λ2 = 1, we achieve (i) k(λ1, 1) = 5λ1 + 9 by enforcing α = (U, L)

if 0 < λ1 ≤ 2
5
, (ii)

k(λ1, 1) =
420(λ1)2 + 437λ1

75λ1 − 8

by enforcing

α =

(

60λ1 − 2

75λ1 − 8
U +

15λ1 − 6

75λ1 − 8
D,L

)

if 2
5
< λ1 < 4, and (iii) k(λ1, 1) = 8λ1 − 3 by enforcing α = (D,L) if λ1 ≥ 4.

In the case of λ = (0, 1), we achieve k(0, 1) = 9 by enforcing α = (U, L).

In the case of λ1 < 0 and λ2 = 1, we achieve (i) k(λ1, 1) = 5λ1 + 9 by enforcing α = (U, L)

if −4
5
≤ λ1 < 0 or (D,R), and (ii) k(λ1, 1) = −5λ1 + 1 by enforcing α = (D,R) if λ1 < −4

5
.

In the case of λ = (−1, 0), we achieve k(−1, 0) = 0 by enforcing α = (U,R).

In the case of λ1 < 0 and λ2 = −1, the south-west border of E is driven by λ1 ≈ −7.5,

where the maximal score is achieved by enforcing either α = (U,R), which attains

k((λ1,−1), (U,R)) = −250
49
λ1 − 57, or α = (D, pL+ (1− p)R) with

p =
−50λ1

−80λ1 − 50
,

which attains

k((λ1,−1), (D, pL+ (1− p)R)) = −250(λ1)2 + 507λ1 + 146

−80λ1 − 50
.

By equating the two values of k((λ1,−1), α), we have

λ1 = −260783 +
√
49070057089

64500
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and

k(λ1,−1) = −459811−
√
49070057089

12642
.

This gives the constraint

v2 ≥ 459811−
√
49070057089

12642
− 260783 +

√
49070057089

64500
v1.

In the case of λ = (0,−1), we achieve k(0,−1) = 0 by enforcing α1 = 1
4
U + 3

4
D and any

α2 6= 49
50
L+ 1

50
R.

In the case of λ1 > 0 and λ2 = −1, we achieve k(λ1,−1) = 8λ1+3 by enforcing α = (D,L).

Summarizing those computations, we obtain E = {v ∈ R
2 | λ · v ≤ k(λ) ∀λ ∈ R

2}. In

particular, the north-east boundary of E contains a smooth boundary:

v2 =
(2
√

2(28− 5v1) +
√
2409)2

375

for 325+54
√
1606

578
≤ v1 ≤ 811

146
.
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