
 
 

NONPARAMETRIC INFERENCE BASED ON 
CONDITIONAL MOMENT INEQUALITIES 

 
 

By 
 

Donald W. K. Andrews and Xiaoxia Shi 
 
 
 

December 2011 
Revised October 2013 

 
 
 
 

COWLES FOUNDATION DISCUSSION PAPER NO. 1840RR 
 
 
 
 
 
 
 
 
 
 
 
 
 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 
YALE UNIVERSITY 

Box 208281 
New Haven, Connecticut 06520-8281 

 
 http://cowles.econ.yale.edu/  



Nonparametric Inference
Based on

Conditional Moment Inequalities

Donald W. K. Andrews�

Cowles Foundation for Research in Economics

Yale University

Xiaoxia Shi

Department of Economics

University of Wisconsin at Madison

June 2010

Revised: August 2013
�Andrews gratefully acknowledges the research support of the National

Science Foundation via grant numbers SES-0751517 and SES-1058376.



Abstract

This paper develops methods of inference for nonparametric and semiparametric pa-

rameters de�ned by conditional moment inequalities and/or equalities. The parameters

need not be identi�ed. Con�dence sets and tests are introduced. The correct uniform

asymptotic size of these procedures is established. The false coverage probabilities and

power of the CS�s and tests are established for �xed alternatives and some local al-

ternatives. Finite-sample simulation results are given for a nonparametric conditional

quantile model with censoring and a nonparametric conditional treatment e¤ect model.

The recommended CS/test uses a Cramér-von-Mises-type test statistic and employs a

generalized moment selection critical value.

Keywords: Asymptotic size, kernel, local power, moment inequalities, nonparametric
inference, partial identi�cation.
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1 Introduction

This paper considers inference for nonparametric and semiparametric parameters

de�ned by conditional moment inequalities and/or equalities. The moments are con-

ditional on Xi a.s. and Zi = z0 for some random vectors Xi and Zi: The parameters

need not be identi�ed. Due to the conditioning on Zi at a single point z0; the parameter

considered is a nonparametric or semiparametric parameter (which varies with z0): Due

to the conditioning on Xi a.s., the moment conditions are typical conditional moments

which involve an in�nite number of restrictions.

Examples covered by the results of this paper include: a nonparametric conditional

distribution with selection, a nonparametric conditional quantile with selection, an

interval-outcome partially-linear regression, an interval-outcome nonparametric regres-

sion, a semiparametric discrete-choice model with multiple equilibria, a nonparametric

revealed preference model, tests of a variety of functional inequalities, including non-

parametric average treatment e¤ects for certain sub-populations, and nonparametric

binary Roy models, as in Henry and Mouri�é (2012).

As far as we are aware, the only other paper in the literature that covers the exam-

ples described above is Chernozhukov, Lee, and Rosen (2013) (CLR). In this paper, we

employ statistics that are akin to Bierens (1982)-type model speci�cation test statistics.

In contrast, CLR employ statistics that are akin to Härdle and Mammen (1993)-type

model speci�cation statistics, which are based on nonparametric regression estimators.

These approaches have di¤erent strengths and weaknesses. Speci�cally, the tests pro-

posed in this paper have higher power against conditional moment functions that are

relatively �at (but not necessarily completely �at) as a function of x; whereas the CLR

tests have higher power against conditional moment functions that are more curved.

This is shown by the �nite-sample simulations reported here and the asymptotic local

power results reported in the Appendix, see Andrews and Shi (2013a).

For example, �at conditional moment functions arise in models with moment equal-

ities, as well as inequalities, such as entry games with complete information and pure

strategy equilibrium (which is Example 4 in Section 2.2). In addition, relatively �at

bounds arise in models with censoring (see Example 1 in Section 2.2) when the cen-

soring e¤ect is small for large values of the conditioning variable Xi: In this case, for

a continuum of values of Xi at the top end of its distribution, both inequalities are

close to binding and the bounds are relatively �at. Such a data structure is what the
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�identi�cation at in�nity� strategy for censoring models relies upon, e.g., see Lewbel

(2007). Lastly, relatively �at conditional moment functions arise in any model with

weak instrumental/conditioning variables Xi (in the sense that Xi has low correlation

with the stochastic moment functions). Weak instruments are known to arise in a variety

of economic models.

We provide con�dence sets (CS�s) and tests concerning the true parameter. The

class of test statistics used in this paper are like those used in Andrews and Guggen-

berger (2009), which are extended in Andrews and Shi (2013b,c) (AS1, AS2) to handle

moment conditions that are conditional on Xi a.s. Here the test statistics are extended

further to cover moment conditions that are conditional on Zi = z0 as well. The lat-

ter conditioning is accomplished using kernel smoothing. The critical values considered

here are generalized moment selection (GMS) and plug-in asymptotic (PA) critical val-

ues, as in Andrews and Soares (2010), which are extended to cover conditional moment

inequalities, as in AS1 and AS2.

The results of the paper are analogous to those in AS1 and AS2. In particular, we

establish the correct uniform asymptotic size of the CS�s and tests. We also determine

the asymptotic behavior of the CS�s and tests under �xed alternatives and some local

alternatives.

We provide �nite-sample simulation results for two models: a nonparametric condi-

tional quantile model with selection and a nonparametric conditional treatment e¤ect

model. The conclusions from the �nite-sample results are similar in many respects

to those from Andrews and Soares (2010), Andrews and Barwick (2012), AS1, and

AS2. Cramér-von-Mises (CvM) versions of the CS�s and tests out-perform Kolmogorov-

Smirnov (KS) versions in terms of false-coverage probabilities (FCP�s) and power and

have similar size properties. Likewise, GMS critical values out-perform PA critical val-

ues according to the same criteria. The �Gaussian asymptotic" versions of the critical

values perform similarly to the bootstrap versions in terms of size, FCP�s, and power.

The �nite-sample sizes of the CvM/GMS CS�s and tests are close to their nominal size.

The CS�s and tests show some sensitivity to the nonparametric smoothing parameter

employed, but not much sensitivity to other tuning parameters.

In the simulation results for these two models, the CI�s and tests proposed in this

paper are found to have more robust size properties than the series and local linear

CLR procedures. The CI�s and tests proposed in this paper are found to have higher

power (and lower FCP�s) for �at bound functions and lower power (and higher FCP�s)
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for peaked bound functions compared to the CLR procedures.

We note that the results given here also apply to nonparametric models based on

moments that are unconditional on Xi but conditional on Zi = z0: The results also cover

the case where di¤erent moment functions depend on di¤erent sub-vectors of Xi; e.g.,

as occurs in some panel models.1 In addition, the results can be extended to the case of

an in�nite number of moment functions along the lines of Andrews and Shi (2010).

The technical results in this paper di¤er from those in AS1 and AS2 because (i)

the conditional moment inequalities (when evaluated at the true parameter) do not

necessarily hold for values Zi that are in a neighborhood of z0; but do not equal z0; and

(ii) the sample moments do not satisfy a functional CLT with n1=2-norming due to local

smoothing, and, hence, need to be normalized using their standard deviations which are

o(1) as n!1:

Now, we discuss the related literature. The literature on inference based on uncon-

ditional moment inequalities for parameters that are partially identi�ed is now quite

large. For brevity, we do not give references here. See Andrews and Soares (2010) for

references. The literature on inference for partially-identi�ed models based on condi-

tional moment inequalities includes AS1, AS2, CLR, Fan and Park (2007), Fan (2008),

Kim (2008), Ponomareva (2010), Armstrong (2011a,b), Beresteanu, Molchanov, and

Molinari (2011), Chetverikov (2011), Hsu (2011), Lee, Song, and Whang (2011), and

Aradillas-López, Gandhi, and Quint (2013). Khan and Tamer (2009) considers con-

ditional moment inequalities in a point-identi�ed model. Galichon and Henry (2009)

considers a testing problem with an in�nite number of unconditional moment inequal-

ities of a particular type. Menzel (2009) investigates tests based on a �nite number of

moment inequalities in which the number of inequalities increases with the sample size.

Of these papers, the only one that allows for conditioning on Zi = z0; which is the key

feature of the present paper, is CLR. As noted above, the forms of the tests considered

here and in CLR di¤er. Other di¤erences are as follows. The assumptions given here

are primitive, whereas those in CLR are high-level. The present paper provides uniform

asymptotic size results, whereas CLR does not.

The remainder of the paper is organized as follows. Section 2 describes the nonpara-

metric model and discusses six examples covered by the model. Section 3 introduces

the test statistics and critical values, establishes the correct asymptotic size (in uniform

1This holds because the functions g1(x); :::; gk(x); which multiply the moment functions indexed by
1; :::; k; need not be the same, see (3.1) of Andrews and Shi (2013b).
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sense) of the CS�s, and establishes the power of the tests against �xed alternatives.

Section 4 provides Monte Carlo simulation results for two models.

An Appendix provides proofs of all of the results stated in the paper. For brevity,

the Appendix is given in Andrews and Shi (2013a). The results in the Appendix allow

for a much broader range of test statistics than is considered in the paper. Speci�-

cally, the results cover a wide variety of kernel functions K; test statistic functions S;

instrumental functions g 2 G; and weight measures Q: The Appendix provides two sets
of results for local alternatives. The �rst set considers (nbdz)�1=2-local alternatives, for

which the bound functions are asymptotically �at near their minimum, where b denotes

a bandwidth parameter and dz denotes the dimension of Zi: The tests proposed in this

paper have non-trivial power against such alternatives, whereas the tests of CLR do not.

The second set considers an-local alternatives, for which the bound functions are asymp-

totically non-�at near their minimum. Here, an ! 0 as n ! 1 at a rate slower than

(nbdz)�1=2: For such alternatives, if the functions are su¢ ciently curved then the CLR

tests have higher asymptotic local power than the tests considered here. On the other

hand, if the functions are less curved, then the tests proposed here have higher asymp-

totic power than the CLR tests. The Appendix also gives some additional simulation

results for the two models considered in the paper.

2 Nonparametric conditional moment inequalities

and equalities

2.1 Model

The nonparametric conditional moment inequality/equality model is de�ned as fol-

lows. We suppose there exists a true parameter �0 2 � � Rd� that satis�es the moment

conditions:

EF0(mj (Wi; �0) jXi; Zi = z0) � 0 a.s. [FX;0] for j = 1; :::; p and
EF0(mj (Wi; �0) jXi; Zi = z0) = 0 a.s. [FX;0] for j = p+ 1; :::; p+ v; (2.1)

where mj(�; �) for j = 1; :::; p + v are (known) real-valued moment functions, fWi =

(Y 0
i ; X

0
i; Z

0
i)
0 : i � ng are observed i.i.d. random vectors with distribution F0; FX;0 is the

marginal distribution of Xi 2 Rdx ; Zi 2 Rdz ; Yi 2 Rdy ; and Wi 2 Rdw (= Rdy+dx+dz):
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The object of interest is a CS for the true parameter �0:We do not assume that �0 is

point identi�ed. However, the model restricts the true parameter value to the identi�ed

set (which could be a singleton) that is de�ned as follows:

�F0 = f� 2 � : (2.1) holds with � in place of �0g: (2.2)

We are interested in CS�s that cover the true value �0 with probability greater than

or equal to 1�� for � 2 (0; 1): As is standard, we construct such CS�s by inverting tests
of the null hypothesis that � is the true value for each � 2 �: Let Tn(�) be a test statistic
and cn;1��(�) be a corresponding critical value for a test with nominal signi�cance level

�: Then, a nominal level 1� � CS for the true value �0 is

CSn = f� 2 � : Tn(�) � cn;1��(�)g: (2.3)

2.2 Examples

In this section, we provide several examples in which the nonparametric conditional

moment inequality/equality model arises. Note that Examples 2 and 6 below, for a

conditional quantile bound and a conditional treatment e¤ect, respectively, are used in

a simulation study in Section 4.

Example 1 (Conditional Distribution with Censoring). The �rst example is a
missing data example. The observations are i.i.d. Let Y �

i be a variable that is subject

to censoring: it is observed only for observations i with Di = 1 and not for observations

with Di = 0: Let Zi be a vector of covariates and Xi be a vector of excluded instruments

that are independent of Y �
i conditional on Zi. Then, the conditional distribution of Y

�
i

given Zi; denoted FY �jZ ; satis�es: for �xed y0 2 R and z0 2 Supp(Zi);

E(1fY �
i � y0; Di = 1g+ 1fDi = 0g � FY �1 jZ1(y0jz0)jXi; Zi = z0) � 0

E(FY �jZ(y0jz0)� 1fY �
i � y0; Di = 1gjXi; Zi = z0) � 0: (2.4)

This model �ts into the general model (2.1) with �0 = FY �jZ(y0jz0); m1(Wi; �0) = 1fY �
i �

y0; Di = 1g+ 1fDi = 0g � �0 and m2(Wi; �0) = �0 � 1fY �
i � y0; Di = 1g:

A model similar to this one is used in Blundell, Gosling, Ichimura, and Meghir (2007)

to study the distribution of female wages. In their study, Y �
i is the potential wage of

woman i, Di is the dummy for employment status, Zi are demographic variables, and
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Xi is non-wage income. Parametric and nonparametric versions of this example are

discussed in CLR. Notice that the parametric version can be estimated using AS1. �
Example 2 (Conditional Quantile with Censoring). In some cases, it is more
useful to bound the conditional quantiles of Y �

i ; rather than its conditional distribu-

tion. Again, suppose the observations are i.i.d. Let qY �jZ(� jz0) denote the � quantile
of Y �

i given Zi = z0: Then under the conditional quantile independence assumption:

qY �jZ;X(� jz0; x) = qY �jZ(� jz0) for all x 2 Supp(X): The quantile satis�es: for �xed

� 2 (0; 1) and z0 2 Supp(Z);

E(1fY �
i � qY �jZ(� jz0); Di = 1g+ 1fDi = 0g � � jXi; Zi = z0) � 0

E(� � 1fY �
i � qY �jZ(� jz0); Di = 1gjXi; Zi = z0) � 0: (2.5)

This model �ts into the general model (2.1) with �0 = qY �jZ(� jz0); m1(Wi; �0) = 1fY �
i �

�0; Di = 1g+ 1fDi = 0g � � and m2(Wi; �0) = � � 1fY �
i � �0; Di = 1g:

If the conditional quantile independence assumption is replaced with the quantile

monotone instrumental variable (QMIV) assumption in AS1, then Example 2 becomes

a nonparametric version of the quantile selection example considered in AS1. �
Example 3 (Interval-Outcome Partially-Linear Regression). This example is a
partially-linear interval-outcome regression model. Let Y �

i be a latent dependent variable

and Y �
i = X 0

i�0+ 0(Zi)+"; E("jXi; Zi) = 0 a.s., where (Xi; Zi) are exogenous regressors

some of which may be excluded from the regression. The latent variable Y �
i is known

to lie in the observed interval [Y l
i ; Y

u
i ]: Then, the following moment inequalities hold for

�xed z0 2 Supp(Z1):

E(Y u
i �X 0

i�0 �  0(z0)jXi; Zi = z0) � 0 and
E(X 0

i�0 +  0(z0)� Y l
i jXi; Zi = z0) � 0 (2.6)

This model �ts into the general model (2.1) with �0 = (�0;  0(z0)); Wi = (Y
u
i ; Y

l
i ; Xi; Zi);

m1(Wi; �0) = Y u
i �X 0

i�0 �  0(z0); and m2(Wi; �0) = X 0
i�0 +  0(z0)� Y l

i :

Example 3 is a partially-linear version of the interval-outcome regression model con-

sidered in Manski and Tamer (2002) and widely discussed in the moment inequality

literature (e.g., see Chernozhukov, Hong and Tamer (2007), Beresteanu and Molinari

(2008), Ponomareva and Tamer (2011), and AS2). Allowing some of the regressors to

enter the regression function nonparametrically makes the model less prone to misspec-
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i�cation.

If the linear term X 0
i�0 does not appear in the model, then the model is an interval-

outcome nonparametric regression model. The results of this paper apply to this model

as well. However, a linear term X 0
i�0 often is used in practice to reduce the curse of

dimensionality (e.g., see Tamer (2008)). �
Example 4 (Semiparametric Discrete Choice Model with Multiple Equilib-
ria). Consider an entry game with two potential entrants, j = 1; 2; and possible multiple
equilibria. For notational simplicity, we suppress the observation index i for i = 1; :::; n:

The payo¤ from not entering the market is normalized to zero for both players. The

payo¤ from entering is assumed to be �j = �j0X+ j0(Z)� �j0D�j� "j; where D�j is a

dummy that equals one if the other player enters the market, �j0 > 0 is the competition

e¤ect, "j is the part of the payo¤ that is observable to both players but unobservable

to the econometrician, and (X;Z) is a vector of �rm or market characteristics. Let

F ("1; "2;�0) be the joint distribution function of ("1; "2); which is known up to the

�nite-dimensional parameter �0: Let F1 and F2 denote the marginal distributions of "1
and "2 respectively. Let Dj be the dummy that equals one if player j enters the market.

Suppose that it is a simultaneous-move static game. Then, following Andrews, Berry

and Jia (2004) and Ciliberto and Tamer (2009), we can summarize the game by moment

inequalities/equalities:

E(P00(X; �0)� (1�D1)(1�D2)jX;Z = z0) = 0;

E(P11(X; �0)�D1D2jX;Z = z0) = 0;

E(P10(X; �0)�D1(1�D2)jX;Z = z0) � 0; and
E(P01(X; �0)�D2(1�D1)jX;Z = z0) � 0; (2.7)

where �0 = ( 10(z0);  20(z0); �10; �20; �0; �10; �20) and

P00(X; �) =

1� F1(�1X +  1(z))� F2(�2X +  2(z)) + F (�1X +  1(z0); �2X +  2(z0));

P11(X; �) = F (�1X +  1(z0)� �1; �2X +  2(z0)� �2);

P10(X; �) = F1(�1X +  1(z0))� F (�1X +  1(z0); �2X +  2(z0)� �2); and

P01(X; �) = F2(�2X +  2(z0))� F (�1X +  1(z0)� �1; �2X +  2(z0)): (2.8)

7



In Andrews, Berry and Jia (2004) and Ciliberto and Tamer (2009),  j0 for j = 1; 2

are assumed to be linear functions of z0: The linear functional form may be restrictive

in many applications. It can be shown that the linear form is not essential for the

identi�cation of the model (e.g., see Bajari, Hong, and Ryan (2010)). Our method

enables one to carry out inference about the parameters while allowing for nonparametric

 j0 for j = 1; 2: �
Example 5 (Revealed Preference Model). Consider a multiple-agent discrete

choice model with J players, where each player j has a choice set Aj: Again, for nota-

tional simplicity, we suppress the i subscript. Let �(aj; a�j;W ) be the payo¤ of agent j

that depends on his own action aj; his opponents action a�j; and his own and opponents�

characteristics W: Let Ij be the information set of player j at the time of his decision.

Rationality of the agents implies the following basic rule of action:

sup
aj2Aj

E(�(aj; a�j;W )jIj) � E(�(a�j ; a�j;W )jIj) (2.9)

for j = 1; :::; J; where a�j is the observed action taken by j. For simplicity assume that

the players move simultaneously so that the players do not respond to changes in other

players�actions. Suppose that the econometrician models the payo¤ by r(aj; a�j;W )

and

r(aj; a�j;W ) = E(�(aj; a�j;W )jIj) + v1(aj) + v2(aj); (2.10)

where the error v1(aj) is unobservable to both the agents and the econometrician, while

v2(aj) is observable to the agents but not to the econometrician. Pakes (2010) proposes

several assumptions on v1 and v2 that guarantee that (2.9) implies a moment inequality

model of the following form:

E(r(a�j ; a�j;W )� r(aj; a�j;W )jW ) � 0 8aj 2 Aj: (2.11)

The model falls into our framework if we parametrize r as follows:

r(a�j ; a�j;W )� r(aj; a�j;W ) = G(a�j ; aj; a�j; �0; X;  0(Z)); (2.12)

where X and Z are subvectors of W and G is a known function. �
In this paper, we construct con�dence sets by inverting tests of the null hypothesis

that � is the true value for di¤erent � 2 �: The basis of the method is the test for
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the null hypothesis that the conditional moment inequalities/equalities (evaluated at �)

are valid. Clearly, such a test can be used directly to evaluate the validity of certain

conditional moment inequalities/equalities as described in Example 6, which follows.

Example 6 (Functional Inequalities). Tests constructed in this paper are suitable
for testing functional inequalities of the form:

H0 : uj(x; z0) � 0 for z0 2 Z and all (x; j) 2 X � f1; :::; pg; where
uj(x; z) = E(mj(Wi)jXi = x; Zi = z) (2.13)

and the observations fWi = (Yi; Xi; Zi) : i � ng are from a stationary process. When

the Zi variable is not present, the model reduces to that considered in Lee, Song and

Whang (2011).2 The current model allows one to specify the inequality hypotheses for

a subpopulation with characteristic Zi = z0: Each of Lee, Song, and Whang�s (2011)

examples extend straightforwardly to our framework. An illustration of the extension is

now given for the conditional treatment e¤ect example.

Consider a controlled experiment, where treatment is randomly assigned to a group

of subjects. Each subject is assigned the treatment with known probability �(Xi; Zi);

where (Xi; Zi) are the observed characteristics of the subject.3 The researcher observes

the treatment status Di 2 f1; 0g and the outcomes yi(1) if treated and yi(0) if not

treated. That is, the researcher observes Di and Yi = Diyi(1) + (1 � Di)yi(0): The

treatment e¤ect for the ith individual is the di¤erence between yi(1) and yi(0): The

researcher is interested in testing if the average treatment e¤ect given Xi = x is positive

for all x 2 X for the subpopulation with characteristic Zi = z0: Then, our test for the

hypotheses in (2.13) can be applied with p = 1 and

m(Wi) =
DiYi

�(Xi; Zi)
� (1�Di)Yi
1� �(Xi; Zi)

; (2.14)

where Wi = (Yi; Di; Xi; Zi) and no parameter � appears in the problem. �
2Note that the model is also covered by AS1 when Zi is not present.
3The function p(x; z) can be a constant. In this case, the assignment does not depend on observed

or unobserved characteristics.
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2.3 Parameter space

Let (�; F ) denote generic values of the parameter and distribution. Let F denote

the parameter space for (�0; F0): To specify F we need to introduce some notation.

Let FY jx;z denote the conditional distribution of Yi given Xi = x and Zi = z under

(�; F ): Let FXjz denote the conditional distribution of Xi given Zi = z under (�; F ): Let

FZ and FX denote the marginal distributions of Zi and Xi; respectively, under (�; F ):

Let �X and �Y denote some measures on R
dx and Rdy (that do not depend on (�; F )),

with supports Y and X ; respectively. Let Z0 denote some neighborhood of z0: Let �Leb
denote Lebesgue measure on Z0 � Rdz :

De�ne

mF (�; x; z) = EF (m(Wi; �)jXi = x; Zi = z)f(zjx);
�F (�; x; z) = EF (m(Wi; �)m(Wi; �)

0jXi = x; Zi = z)f(zjx); and
�2F;j(�; z) = EF (m

2
j(Wi; �)jZi = z)f(z) for j � k; (2.15)

where k = p+ v; f(zjx) is the conditional density with respect to Lebesgue measure of
Zi given Xi = x and f(z) is the density of Zi wrt Lebesgue measure �Leb on Z0; de�ned
in Assumption PS2 below.

The parameter space F is de�ned to be the collection of (�; F ) that satisfy the

following parameter space (PS) assumptions, which de�ne the model precisely.

Assumption PS1. (a) � 2 �;
(b) fWi : i � 1g are i.i.d. under F;
(c) EF (mj (Wi; �) jXi; Zi = z0) � 0 a.s. [FX ] for j = 1; :::; p; and
(d) EF (mj (Wi; �) jXi; Zi = z0) = 0 a.s. [FX ] for j = p+ 1; :::; k; where k = p+ v:

Assumption PS2. (a) FZ restricted to z 2 Z0 is absolutely continuous wrt �Leb with
density f(z) 8z 2 Z0;
(b) FX is absolutely continuous wrt �X with density f(x) 8x 2 X ;
(c) FY jx;z is absolutely continuous wrt �Y with density f(yjx; z) 8(y; x; z)2 Y �X �

Z0;
(d) FZjx is absolutely continuous wrt �Leb on Z0 with density f(zjx) 8(z; x) 2 Z0�X ;

and

(e) FXjz is absolutely continuous wrt �X on R
dx with density f(xjz) 8(x; z) 2 X�Z0:
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Let fC` : ` � 4g be some �nite constants and f�j : j � kg be some positive constants
that do not depend on (�; F ):

Assumption PS3. (a) �2F;j(�; z0) � �j;

(b) mF (�; x; z) is twice continuously di¤erentiable in z on Z0 8x 2 X with
R
Lm(x)

�f(x)d�X(x) � C1; where Lm(x) = supz2Z0 k(@2=@z@z0)mF (�; x; z)k ;
(c) supz2Z0

R
jjmF (�; x; z)jjf(x; z)d�X(x) � C2;

(d) �F (�; x; z) is Lipschitz continuous in z at z0 on Z0 8x 2 X ; i.e., jj�F (�; x; z) �
�F (�; x; z0)jj � L�(x)jjzjj; and

R
L�(x)f(x)d�X(x) � C3; and

(e) EF
�
jmj(Wi; �)j4

�� Zi = z) f(z) � C4 8z 2 Z0 8j � k:

Assumptions PS1(c) and (d) are the key partial-identi�cation conditions of the

model. Assumption PS2 speci�es some absolute continuity conditions. Assumptions

PS2(a) and (d) impose absolute continuity wrt Lebesgue measure of FZ and FZjx in a

neighborhood of z0: This is not restrictive because if FZ and FZjx have point mass at z0;

then the results of AS1 cover the model. Assumptions PS2(b), (c), and (e) are not very

restrictive because the absolute continuity is wrt arbitrary measures �X and �Y ; so the

conditions allow for continuous, discrete, and mixed random variables. Assumption PS3

bounds some variances away from zero and imposes some smoothness and moment con-

ditions. The smoothness conditions are on expectations, not on the underlying functions

themselves, which makes them relatively weak.

Let f(y; x; z) = f(yjx; z)f(xjz)f(z) and f(x; z) = f(xjz)f(z):
The k-vector of moment functions is denoted

m (Wi; �) = (m1(Wi; �); :::;mk(Wi; �))
0: (2.16)

3 Tests and con�dence sets

3.1 Test statistics

Here we de�ne the test statistic Tn(�) that is used to construct a CS. We transform

the conditional moment inequalities/equalities given Xi and Zi = z0 into equivalent

conditional moment inequalities/equalities given only Zi = z0 by choosing appropriate

weighting functions of Xi; i.e., Xi-instruments. Then, we construct a test statistic based

on kernel averages of the instrumented moment conditions over Zi values that lie in a

neighborhood of z0:

11



The instrumented conditional moment conditions given Zi = z0 are of the form:

EF0(mj (Wi; �0) gj (Xi) jZi = z0) � 0 for j = 1; :::; p and (3.1)

EF0(mj (Wi; �0) gj (Xi) jZi = z0) = 0 for j = p+ 1; :::; k; for g = (g1; :::; gk)0 2 Gc-cube;

where g = (g1; :::; gk)
0 are instruments that depend on the conditioning variables Xi

and Gc-cube is a collection of instruments de�ned in (3.6) below. The collection Gc-cube is
chosen so that there is no loss in information.

We construct test statistics based on (3.1). The sample moment functions are

mn(�; g) = n�1
nX
i=1

m(Wi; �; g; b) for g 2 Gc-cube; where

m(Wi; �; g; b) = b�dz=2Kb(Zi)m(Wi; �; g);

Kb(Zi) = 0:75maxf1� ((Zi � z0)=b)
2 ; 0g;

m(Wi; �; g) =

0BBBB@
m1(Wi; �)g1(Xi)

m2(Wi; �)g2(Xi)
...

mk(Wi; �)gk(Xi)

1CCCCA for g 2 Gc-cube; (3.2)

and b > 0 is a scalar bandwidth parameter for which b = bn = o(n�1=(4+dz)) and

nbdz ! 1 as n ! 1:4 In the scalar Zi case, we take b = b0n�2=7; where b0 = 4:68�̂z

and �̂z is the estimated standard deviation of Zi:5 ;6 The kernel employed in (3.2) is

the Epanechnikov kernel. For notational simplicity, we omit the dependence of mn(�; g)

(and various other quantities below) on b:

Note that the normalization b�dz=2 that appears in m(Wi; �; g; b) yields m(Wi; �; g; b)

to have a variance matrix that is O(1); but not o(1): In fact, under the conditions

given below, V arF (m(Wi; �; g; b)) ! V arF (m(Wi; �; g)jZi = z0)f(z0) as n ! 1 under

(�; F ) 2 F :
4The conditions on b are standard assumptions in the nonparametric density and regression litera-

ture. When these conditions are applied to a nonparametric regression or density estimator, the �rst
condition implies that the bias of the estimator goes to zero faster than the variance (and is the weakest
condition for which this holds) and the second condition implies that the estimator is asymptotically
normal (because it implies that b goes to zero su¢ ciently slowly that a Lindeberg condition holds).

5The bandwidth b is under-smoothed due to the factor n�2=7; which is the same as in Chernozhukov,
Lee, and Rosen (2013), rather than n�1=5: It is somewhat arbitrary, but seems to work well in practice.

6The de�nition of mn(�; g) in (3.2) is the same as the de�nition of mn(�; g) in AS1 except for the
multiplicand b�dz=2Kb(Zi) in m(Wi; �; g; b):
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If the sample average mn(�; g) is divided by the scalar n�1
Pn

i=1 b
�dz=2Kb(Zi) it be-

comes the Nadaraya-Watson nonparametric kernel estimator of E(m(Wi; �; g)jZi = z0):

We omit this divisor because doing so simpli�es the statistic and has no e¤ect on the

test de�ned below.7

The sample variance-covariance matrix of n1=2mn(�; g) is

b�n(�; g) = n�1
nX
i=1

(m(Wi; �; g; b)�mn(�; g)) (m(Wi; �; g; b)�mn(�; g))
0 : (3.3)

The matrix b�n(�; g)may be singular or nearly singular with non-negligible probability for
some g 2 Gc-cube. This is undesirable because the inverse of b�n(�; g) needs to be consistent
for its population counterpart uniformly over g 2 Gc-cube for the test statistics considered
below. In consequence, we employ a modi�cation of b�n(�; g); denoted �n(�; g); such
that det(�n(�; g)) is bounded away from zero:

�n(�; g) = b�n(�; g) + " �Diag(b�n(�; 1k)) for g 2 Gc-cube for " = 5=100: (3.4)

By design, �n(�; g) is a linear combination of two scale equivariant functions and hence

is scale equivariant.8 This yields a test statistic that is invariant to rescaling of the

moment functions m(Wi; �); which is an important property.

The quantity " in (3.4) is a tuning parameter that prevents the variance estimator

from being too close to singularity. For the asymptotics considered here and in An-

drews and Shi (2013b,c), " is taken to be �xed as n!1: Armstrong (2011b) provides

asymptotics when " goes to zero as n ! 1 (for the model with no conditioning on

Zi = z0): Asymptotics with " �xed are analogous to the ��xed b asymptotics�in Kiefer

and Vogelsang (2002, 2005) for test statistics based on heteroskedasticity and autocor-

relation consistent variance estimators. They also are analogous to the �xed bandwidth

asymptotics employed in Cattaneo, Crump, and Jansson (2010, 2013). In each of these

cases, the �xed bandwidth asymptotics are found to provide better approximations to

the �nite-sample behavior of the statistics being considered because the asymptotic dis-

tribution depends on the tuning parameter, whereas it does not under asymptotics in

which the tuning parameter converges to zero as n!1:

7This holds because division by n�1
Pn

i=1 b
�dz=2Kb(Zi) rescales the test statistic and critical value

identically and in consequence the rescaling cancels out.
8That is, multiplying the moment functions m(Wi; �) by a diagonal matrix, D; changes �n(�; g) into

D�n(�; g)D:
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The functions g that we consider are hypercubes on [0; 1]dX : Hence, we transform

each element of Xi to lie in [0; 1]: (There is no loss in information in doing so.) For

notational convenience, we suppose Xy
i 2 RdX denotes the untransformed IV vector and

we let Xi denote the transformed IV vector. We transform Xy
i via a shift and rotation

and then an application of the standard normal distribution function �(x): Speci�cally,

let

Xi = �(b��1=2X;n (X
y
i �X

y
n)); where �(x) = (�(x1); :::;�(xdX ))

0 for x = (x1; :::; xdX )
02RdX ;b�X;n = n�1�ni=1(X

y
i �X

y
n)(X

y
i �X

y
n)
0; and X

y
n = n�1�ni=1X

y
i : (3.5)

We consider the class of indicator functions of cubes with side lengths that are powers

of (2r)�1 for all large positive integers r and that partition [0; 1]dx for each r: This class

is countable:

Gc-cube = fga;r : ga;r(x) = 1(x 2 Ca;r) � 1k for Ca;r 2 Cc-cubeg; where

Cc-cube =
(
Ca;r =

dxY
u=1

((au � 1)=(2r); au=(2r)] 2 [0; 1]dx : a = (a1; :::; adx)0

au 2 f1; 2; :::; 2rg for u = 1; :::; dx and r = r0; r0 + 1; :::
o

(3.6)

for some positive integer r0:9 The terminology �c-cube� abbreviates countable cubes.

Note that Ca;r is a hypercube in [0; 1]dx with smallest vertex indexed by a and side

lengths equal to (2r)�1:

The test statistic T n;r1;n(�) is either a Cramér-von-Mises-type (CvM) or Kolmogorov-

Smirnov-type (KS) statistic. The CvM statistic is

T n;r1;n(�) =

r1;nX
r=1

(r2 + 100)�1
X

a2f1;:::;2rgdX

(2r)�dxS(n1=2mn(�; ga;r);�n(�; ga;r)); (3.7)

where S = S1; S2; or S3; as de�ned in (3.9) below, (r2 + 100)�1 is a weight function,

and r1;n is a truncation parameter. The asymptotic size and consistency results for the

CS�s and tests based on T n;r1;n(�) allow for more general forms of the weight function

and hold whether r1;n = 1 or r1;n < 1 and r1;n ! 1 as n ! 1: (No rate at which

r1;n !1 is needed for these results.) For computational tractability, we typically take

9When au = 1; the left endpoint of the interval (0; 1=(2r)] is included in the interval.
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r1;n <1:

The Kolmogorov-Smirnov-type (KS) statistic is

T n;r1;n(�) = sup
ga;r2Gc-cube;r1;n

S(n1=2mn(�; ga;r);�n(�; ga;r)); (3.8)

where Gc-cube;r1;n = fga;r 2 Gc-cube : r � r1;ng: For brevity, the discussion in this paper
focusses on CvM statistics and all results stated concern CvM statistics. Similar results

hold for KS statistics.10

The functions S1; S2; and S3 are de�ned by

S1 (m;�) =

pX
j=1

[mj=�j]
2
� +

p+vX
j=p+1

[mj=�j]
2 ;

S2 (m;�) = inf
t=(t01;0

0
v)
0:t12Rp+;1

(m� t)0��1 (m� t) ; and (3.9)

S3(m;�) = maxf[m1=�1]
2
�; :::; [mp=�p]

2
�; (mp+1=�p+1)

2; :::; (mp+v=�p+v)
2g;

wheremj is the jth element of the vectorm; �2j is the jth diagonal element of the matrix

�; and [x]� = �x if x < 0 and [x]� = 0 if x � 0; R+;1 = fx 2 R : x � 0g [ f+1g; and
Rp+;1 = R+;1 � ::: � R+;1 with p copies. The functions S1; S2; and S3 are referred to

as the modi�ed method of moments (MMM) or Sum function, the quasi-likelihood ratio

(QLR) function, and the Max function, respectively.

3.2 Critical values

3.2.1 GMS critical values

In this section we de�ne two GMS critical values. The �rst is based on the asymptotic

distribution. The second is a bootstrap version of the �rst. Both require simulation.

We �rst describe how to compute the GMS critical value that is based on the as-

ymptotic null distribution of the test statistic.

Step 1. Compute 'n(�; ga;r) for ga;r 2 Gc-cube;r1;n ; where 'n(�; ga;r) is de�ned as follows.
10Such results can be established by extending the results given in Section 13.1 of Appendix B of

AS2 and proved in Section 15.1 of Appendix D of AS2.
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For g = ga;r; let

�n(�; g) = ��1n n1=2D
�1=2
n (�; g)mn(�; g); where

Dn(�; g) = Diag(�n(�; g)); �n = (0:3 ln(n))
1=2; (3.10)

and �n(�; g) is de�ned in (3.4). The jth element of �n(�; g); denoted �n;j(�; g); measures

the slackness of the moment inequality EFmj(Wi; �; g) � 0 for j = 1; :::; p: It is shrunk
towards zero via ��1n to ensure that one does not over-estimate the slackness.

De�ne 'n(�; g) = ('n;1(�; g); :::; 'n;p(�; g); 0; :::; 0)
0 2 Rk via, for j � p;

'n;j(�; g) = �
1=2

n;j (�; g)Bn1(�n;j(�; g) > 1) and

Bn = (0:4 ln(n)= ln ln(n))
1=2; (3.11)

where b�n;j(�; g) and �n;j(�; g) denote the (j; j) elements of b�n(�; g) and �n(�; g); re-
spectively.

Step 2. Simulate a (kNg)� � reps matrix Z of standard normal random variables, where
k is the dimension of m(Wi; �); Ng =

Pr1;n
r=1(2r)

dX is the number of g functions employed

in the test statistic, and � reps is the number of simulation repetitions used to simulate

the asymptotic distribution.

Step 3. Compute the (kNg)� (kNg) covariance matrix b�n;mat(�): Its elements are the
covariances b�n(�; ga;r; g�a;r) for a 2 f1; :::; 2rgdX and r = 1; :::; r1;n; which are de�ned as
follows. For g = ga;r and g� = g�a;r; let

b�n(�; g; g�) = n�1
nX
i=1

(m(Wi; �; g; b)�mn(�; g)) (m(Wi; �; g
�; b)�mn(�; g

�))0 : (3.12)

Note that b�n(�; g); de�ned in (3.3), equals b�n(�; g; g):
Step 4. Compute the (kNg)� � reps matrix �n(�) = b�1=2n;mat(�)Z: Let �n;� (�; ga;r) denote
the k dimensional sub-vector of �n that corresponds to the k rows indexed by ga;r and

column � for � = 1; :::; � reps:

Step 5. For � = 1; :::; � reps; compute the simulated test statistic T n;r1;n;� (�) just as

T
CvM

n;r1;n
(�) or T

KS

n;r1;n
(�) is computed in (3.7) or (3.8) but with n1=2mn(�; ga;r) replaced by

�n;j(�; ga;r) + 'n(�; ga;r):

Step 6. Take the critical value cGMS;Asy
n;1�� (�) to be the 1� � + � sample quantile of the
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simulated test statistics fT n;r1;n;� (�) : � = 1; :::; � repsg plus �; where � = 10�6:11

For the bootstrap version of the GMS critical value, Steps 2 and 4-6 are replaced by

the following steps:

Step 2boot: Generate B bootstrap samples fW �
i;� : i = 1; :::; ng for � = 1; :::; B using

the standard nonparametric i.i.d. bootstrap. That is, draw W �
i;� from the empirical

distribution of fW` : ` = 1; :::; ng independently across i and � :
Step 4boot: For each bootstrap sample, transform the regressors as in (3.5) (using

the bootstrap sample in place of the original sample) and compute m�
n;� (�; ga;r) and

�
�
n;b(�; ga;r) just as mn(�; ga;r) and �n(�; ga;r) are computed, but with the bootstrap

sample in place of the original sample.

Step 5boot: For each bootstrap sample, compute the bootstrap test statistic T
�
n;r1;n;�

(�)

as T
CvM

n;r1;n
(�) (or T

KS

n;r1;n
(�)) is computed in (3.7) (or (3.8)) but with n1=2mn(�; ga;r) re-

placed by n1=2(m�
n;� (�; ga;r) �mn(�; ga;r)) + 'n(�; ga;r) and with �n(�; ga;r) replaced by

�
�
n;� (�; ga;r):

Step 6boot: Take the bootstrap GMS critical value c
GMS;Bt
n;1�� (�) to be the 1 � � + �

sample quantile of the bootstrap test statistics fT �n;r1;n;� (�) : � = 1; :::; Bg plus �; where
� = 10�6:

The CvM (or KS) GMS CS is de�ned in (2.3) with Tn(�) = T
CvM

n;r1;n
(�) (or T

KS

n;r1;n
(�))

and cn;1��(�) = cGMS;Asy
n;1�� (�) (or cGMS;Bt

n;1�� (�)): The CvM GMS test of H0 : � = �� rejects

H0 if T
CvM

n;r1;n
(��) > cGMS;Asy

n;1�� (��) (or c
GMS;Bt
n;1�� (��)): The KS GMS test is de�ned likewise

using T
KS

n;r1;n
(��) and the KS GMS critical value.

The choices of "; �n; Bn; and � above are based on some experimentation (in the

simulation results reported AS1 and AS2). The asymptotic results reported in the

Appendix allow for other choices.

The number of cubes with side-edge length indexed by r is (2r)dX ; where dX denotes

the dimension of the covariate Xi: The computation time is approximately linear in the

number of cubes. Hence, it is linear in Ng =
Pr1;n

r=1(2r)
dX : The dimension of Zi does not

11The description of the GMS critical values given here is a little di¤erent (and simpler) than
in AS1 and in the asymptotic results given in the Appendix. However, their properties are the
same. In AS1, 'n;j(�; g) is multiplied by b��1=2n;j (�; 1k) for j � p and b�n(�; g; g�) is replaced bybD�1=2
n (�)b�n(�; g; g�) bD�1=2

n (�); where bDn(�) = Diag(b�n(�; 1k)): This has no e¤ect on the distribution
of Tn;r1;n;� (�) (conditionally on the sample or unconditionally) because (i) Sj(m;�) = Sj(Dm;D�D)

for any pd diagonal k � k matrix D for j = 1; 2; 3 and (ii) V arjfWig(((1Ng�Ng

 bD�1=2

n (�))b�n;mat(�)
� (1Ng�Ng


 bD�1=2
n (�)))1=2Z� ) = V arjfWig((1Ng�Ng


 bD�1=2
n (�))b�1=2n;mat(�)Z� ); where V arjfWig(�) de-

notes the conditional variance given the sample fWi : i � ng and Z� denotes the �th column of Z:
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e¤ect the computation time.

In terms of computation time, the tests in this paper are not much di¤erent from

those in Andrews and Shi (2013b). For details on the computation times, see Section

10.2.4 of Andrews and Shi (2013b) and Section 17.3 of Andrews and Shi (2013c). To

give a general idea, to implement the test or CI for one � value, it takes less than one

second for each of the procedures (including the CLR procedures) that we implement in

the examples considered in Section 4 below.

When there are discrete variables in Xi; the sets Ca;r can be formed by taking inter-

actions of each value of the discrete variable(s) with cubes based on the other variable(s).

3.2.2 Plug-in asymptotic critical values

Next, for comparative purposes, we de�ne plug-in asymptotic (PA) critical values.

Subsampling critical values also can be considered, see Appendix B of AS2 for details.

We strongly recommend GMS critical values over PA and subsampling critical values

for the same reasons as given in AS1 plus the fact that the �nite-sample simulations in

Section 4 show better performance by GMS critical values than PA and subsampling

critical values.

PA critical values are based on the least-favorable asymptotic null distribution with

an estimator of its unknown covariance kernel plugged-in. They are computed just as

the GMS critical values are computed but with 'n(�; ga;r) = 0k (2 Rk):
The nominal 1�� PA CS is given by (2.3) with Tn(�) = T

CvM

n;r1;n
(�) (or T

KS

n;r1;n
(�)) and

the critical value cn;1��(�) equal to the PA critical value. The CvM (or KS) PA test of

H0 : � = �� rejects H0 if T
CvM

n;r1;n
(��) (or T

KS

n;r1;n
(��)) exceeds the CvM (or KS) PA critical

value evaluated at � = ��:

PA critical values are greater than or equal to GMS critical values for all n (because

'n;j(�; g) � 0 for all g 2 G for j � p and S`(m;�) is non-increasing in mI 2 Rp; where
m = (m0

I ;m
0
II)

0); for ` = 1; 2; 3): Hence, the asymptotic local power of a GMS test is

greater than or equal to that of a PA test for all local alternatives. Strict inequality typ-

ically occurs whenever the conditional moment inequality EFn(mj(Wi; �n;�)jXi; Zi = z0)

for some j = 1; :::; p is bounded away from zero as n!1 with positive Xi probability.
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3.3 Correct asymptotic size

In this section, we show that GMS and PA CS�s have correct asymptotic size (in a

uniform sense).

First, we introduce some notation. We de�ne the asymptotic covariance kernel,

fh2;F (�; g; g�) : g; g� 2 Gg; of n1=2mn(�; g) after normalization via a diagonal matrix

D
�1=2
F (�; z0): De�ne12

h2;F (�; g; g
�) = D

�1=2
F (�; z0)�F (�; g; g

�; z0)D
�1=2
F (�; z0); where

�F (�; g; g
�; z) = EF (m(Wi; �; g)m(Wi; �; g

�)0jZi = z)f(z) and (3.13)

DF (�; z) = Diag(�F (�; 1k; 1k; z)) (= Diag(EF (m(Wi; �)m(Wi; �)
0jZi = z)f(z))):

For simplicity, let h2;F (�) abbreviate fh2;F (�; g; g�) : g; g� 2 Gc-cubeg:
De�ne

H2 = fh2;F (�) : (�; F ) 2 Fg: (3.14)

On the space of k � k-matrix-valued covariance kernels on Gc-cube�Gc-cube; which is a
superset of H2; we use the uniform metric d de�ned by

d(h
(1)
2 ; h

(2)
2 ) = sup

g;g�2Gc-cube
jjh(1)2 (g; g�)� h

(2)
2 (g; g

�)jj: (3.15)

Correct asymptotic size is established in the following theorem.

Theorem N1. For every compact subset H2;cpt of H2; GMS and PA con�dence sets

CSn satisfy

(a) lim inf
n!1

inf
(�;F )2F :

h2;F (�)2H2;cpt

PF (� 2 CSn) � 1� � and

(b) GMS con�dence sets based on the MMM and Max functions, S1 and S3; satisfy

lim
�!0

lim inf
n!1

inf
(�;F )2F :

h2;F (�)2H2;cpt

PF (� 2 CSn) = 1� �;

where � is as in the de�nition of c(h; 1� �):

12Note that DF (�; z) = Diag(�2F;1(�; z); :::; �
2
F;k(�; z)); where �

2
F;j(�; z) is de�ned in (2.15). Also

note that the means, EFm(Wi; �; g); EFm(Wi; �; g
�); and EFm(Wi; �); are not subtracted o¤ in the

de�nitions of �F (�; g; g�; z) and DF (�; z): The reason is that the population means of the sample-size n
quantities based on m(Wi; �; g; b) are smaller than the second moments by an order of magnitude and,
hence, are asymptotically negligible. See Lemmas AN6 and AN7 in the Appendix.
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Comments. 1. Theorem N1(a) shows that GMS and PA CS�s have correct uniform

asymptotic size over compact sets of covariance kernels. Theorem N1(b) shows that

GMS CS�s based on S1 and S3 are at most in�nitesimally conservative asymptotically

(i.e., their asymptotic size is in�nitesimally close to their nominal size). The uniformity

results hold whether the moment conditions involve �weak� or �strong� instrumental

variables Xi: That is, weak identi�cation of the parameter � due to a low correlation

between Xi and the functions mj(Wi; �) does not a¤ect the uniformity results.

2. Theorem N1(b) also holds for GMS CS�s based on the QLR function S2 provided
the asymptotic distribution function of the test statistic under some �xed (�c; Fc) 2 F
with h2;Fc(�c) 2 H2;cpt is continuous and strictly increasing at its 1 � � quantile plus �

for all � > 0 su¢ ciently small and � = 0:13 This condition likely holds in most models,

but it is hard to give primitive conditions under which it holds.

3. As in AS1, an analogue of Theorem N1(b) holds for PA CS�s if EFc(mj(Wi; �c)jXi;

Zi = z0) = 0 a.s. for j � p (i.e., if the conditional moment inequalities hold as equalities

a.s.) under some (�c; Fc) 2 F . However, the latter condition is restrictive� it fails in
many applications.

4. The proofs in the Appendix cover asymptotic critical values, but not bootstrap
critical values. Extending the results to cover bootstrap critical values just requires a

suitable bootstrap empirical process result. For brevity, we do not give such a result. The

proofs in the Appendix take the transformation of the IV�s to be non-data dependent.

One could extend the results to allow for data-dependence by considering random hyper-

cubes as in Pollard (1979) and Andrews (1988). These results show that one obtains the

same asymptotic results with random hypercubes as with nonrandom hypercubes that

converge in probability to nonrandom hypercubes (in an L2 sense). Again, for brevity,

we do not do so. Finally, the asymptotic results cover non-data dependent bandwidths,

as is typical in the nonparametric and semiparametric literature.

3.4 Power against �xed alternatives

We now show that the power of GMS and PA tests converges to one as n ! 1 for

all �xed alternatives (for which the moment functions have 4+ � moments �nite). Thus,

both tests are consistent tests. This implies that for any �xed distribution F0 and any

parameter value �� not in the identi�ed set �F0 ; the GMS and PA CS�s do not include

13This condition is Assumption GMS2(a) in Section 7.4 of the Appendix.
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�� with probability approaching one. In this sense, GMS and PA CS�s based on Tn(�)

fully exploit the conditional moment inequalities and equalities. CS�s based on a �nite

number of unconditional moment inequalities and equalities do not have this property.14

The null hypothesis is

H0 : EF0(mj(Wi; ��)jXi; Zi = z0) � 0 a.s. [FX;0] for j = 1; :::; p and
EF0(mj(Wi; ��)jXi; Zi = z0) = 0 a.s. [FX;0] for j = p+ 1; :::; k; (3.16)

where �� denotes the null parameter value and F0 denotes the �xed true distribution of

the data. The alternative hypothesis is H1 : H0 does not hold. The following assumption

speci�es the properties of �xed alternatives (FA).

Let F+ denote all (�; F ) that satisfy Assumptions PS1-PS3 that de�ne F except

Assumptions PS1(c) and (d) (which impose the conditional moment inequalities and

equalities). As de�ned, F � F+: Note that F+ includes (�; F ) pairs for which � lies
outside of the identi�ed set �F as well as all values in the identi�ed set.

The set, XF (�); of values x for which the moment inequalities or equalities evaluated
at � are violated under F is de�ned as follows. For any � 2 � and any distribution F
with EF (jjm(Wi; �)jj jZi = z0) <1; let

XF (�) = fx 2 Rdx : EF (mj (Wi; �) jXi = x; Zi = z0) < 0 for some j � p or

EF (mj (Wi; �) jXi = x; Zi = z0) 6= 0 for some j = p+ 1; :::; kg: (3.17)

The next assumption, Assumption NFA, states that violations of the conditional

moment inequalities or equalities occur for the null parameter �� for Xi values in a set

with positive conditional probability given Zi = z0 under F0: Thus, under Assumption

NFA, the moment conditions speci�ed in (3.16) do not hold.

Assumption NFA. The null value �� 2 � and the true distribution F0 satisfy: (a)

PF0(Xi 2 XF0(��)jZi = z0) > 0; where XF0(��) is de�ned in (3.17), and (b) (��; F0) 2 F+:

The following Theorem shows that GMS and PA tests are consistent against all �xed

alternatives that satisfy Assumption NFA.

14This holds because the identi�ed set based on a �nite number of moment inequalities typically is
larger than the identifed set based on the conditional moment inequalities. In consequence, CI�s based
on a �nite number of inequalities include points in the di¤erence between these two identi�ed sets with
probability whose limit in�mum as n ! 1 is 1 � � or larger even though these points are not in the
identi�ed set based on the conditional moment inequalities.
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Theorem AN2. Suppose Assumption NFA holds. Then,
(a) limn!1 PF0(Tn(��) > c('n(��);bh2;n(��); 1� �)) = 1 and

(b) limn!1 PF0(Tn(��) > c(0G;bh2;n(��); 1� �)) = 1:

Comment 4 to Theorem AN1 applies also to Theorem AN2.

4 Monte Carlo simulations

This section provides simulation evidence concerning the �nite-sample properties

of the con�dence intervals (CI�s) and tests introduced in the paper. We consider two

models: a quantile selection model and a conditional treatment e¤ect model. In the

quantile selection model, we compare di¤erent versions of the CI�s introduced in the

paper. In the conditional treatment e¤ect model, the tests are used directly (rather

than to construct CI�s), and we compare di¤erent versions of the tests. In both models,

we provide comparisons of the proposed procedures with the series and local linear

procedures in CLR.

4.1 Con�dence intervals and tests considered

To be speci�c, we compare di¤erent test statistics and critical values in terms of

their coverage probabilities (CP�s) for points in the identi�ed set and their false cover-

age probabilities (FCP�s) for points outside the identi�ed set in the quantile selection

model. We compare di¤erent test statistics and critical values in terms of their rejection

probabilities under the null (NRP�s) and under alternatives (ARP�s) in the conditional

treatment e¤ect model. Obviously, one wants FCP�s (ARP�s) to be as small (large) as

possible. FCP�s are directly related to the power of the tests used to constructed the CI

and are related to the length of the CI, see Pratt (1961).

The following test statistics are considered: (i) CvM/Sum, (ii) CvM/QLR, (iii)

CvM/Max, (iv) KS/Sum, (v) KS/QLR, and (vi) KS/Max, as de�ned in Section 3. In the

conditional treatment e¤ect model, di¤erent choices of the S function (Sum, QLR and

Max) coincide because there is only one conditional moment inequality. We thus do not

distinguish them in the results. Asymptotic normal, bootstrap, and subsampling critical

values are computed. In particular, we consider PA/Asy, PA/Bt, GMS/Asy, GMS/Bt,

and Sub critical values.15 The critical values are simulated using 5001 repetitions (for

15The Sum, QLR, and Max statistics use the functions S1; S2; and S3; respectively. The PA/Asy and
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each original sample repetition). The base case values of �n; Bn; and " for the GMS

critical values are speci�ed as follows and are used in both models: �n =
p
0:3 log(n),

Bn =
p
0:4 log(n)= log(log(n)); and " = 5=100: Additional results are reported for vari-

ations of these values. The base case sample size is 250: Some additional results are

reported for n = 100 and 500: The subsample size is 20 when the sample size is 250:

Results are reported for nominal 0:95 CI�s and 0:05 tests. The number of simulation rep-

etitions used to compute CP�s and FCP�s is 5000 for all cases. This yields a simulation

standard error of 0:0031:

In the �rst model, the reported FCP�s are �CP-corrected�by employing a critical

value that yields a CP equal to 0:95 at the closest point of the identi�ed set if the CP at

the closest point is less than 0:95: If the CP at the closest point is greater than 0:95; then

no CP correction is carried out. The reason for this �asymmetric�CP correction is that

CS�s may have CP�s greater than 0:95 for points in the identi�ed set, even asymptotically,

in the present context and one does not want to reward over-coverage of points in the

identi�ed set by CP correcting the critical values when making comparisons of FCP�s.

In the second model, the ARP�s are �NRP-corrected�analogously.

We use the Epanechnikov kernel and the bandwidth b = b0n�2=7 described in the

paragraph containing (3.2) for both simulation examples. For comparative purposes,

some results are also reported for b = 0:5b0n�2=7 and b = 2b0n�2=7:

We provide simulation comparisons of our CS�s and tests with those of CLR. To

implement the CLR tests, we follow Example C of CLR. For the quantile selection model,

for each �; we use �(x; z; �) de�ned in (4.4) of CLR as the auxiliary bound function, use

�l(z; �) = minx2X �(x; z; �) as the auxiliary parameter, and test H0 : �l(z; �) � 0 against
�l(z; �) < 0: (The CLR CI�s are obtained by inverting the CLR tests.) For the treatment

e¤ect model, described below, we use �(x; z) = E[YiDi=p� Yi(1�Di)=(1� p)j(Xi; Zi)

= (x; z)] as the auxiliary bound function, use �l(z) = minx2X �(x; z) as the auxiliary

parameter, and test H0 : �l(z) � 0 against �l(z) < 0:
We implement both the series and local linear versions of CLR�s test. We use their

GAUSS code and follow the implementation instructions in CLR whenever possible.

PA/Bt critical values are based on the asymptotic distribution and bootstrap, respectively, and likewise
for the GMS/Asy and GMS/Bt critical values. The quantity � is set to 0 because its value, provided it
is su¢ ciently small, has no e¤ect in these models. Sub denotes a (non-recentered) subsampling critical
value. It is the 0:95 sample quantile of the subsample statistics, each of which is de�ned exactly as
the full sample statistic is de�ned but using the subsample in place of the full sample. The number of
subsamples considered is 5001. They are drawn randomly without replacement.
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The models considered here, however, are more complicated than in CLR�s examples

because the nonparametric estimation of �(x; z; �) involves two regressors Xi and Zi:

The latter poses new questions about the choices of knots in the series approximation

and the choices of bandwidths in the local linear approximation. For the series version,

we use tensor product B-splines and allow di¤erent numbers of knots for Xi and Zi: The

number of knots is the (integer part of the) number chosen by cross-validation multiplied

by
p
n�1=5n2=7: The multiplicative factor is used to obtain undersmoothing. For the local

linear version, we use the optimal bandwidth formula given for multivariate local linear

regression by Yang and Tschernig (1999) (Equation A.1), and use the same plug-in rule

as CLR�s rule-of-thumb bandwidth to plug in the estimated quantities. The resulting

plug-in bandwidth is then multiplied by
p
n�1=5n2=7 to obtain undersmoothing. The

CLR CS�s and tests employ an estimated contact set.

4.2 Nonparametric quantile selection

This model extends the quantile selection model in AS1. We are interested in the

conditional � -quantile of a treatment response given the value of covariates Xi and Zi.

The results also apply to other types of response variables with selection. As in AS1, Xi

is assumed to satisfy the quantile monotone instrumental variable (QMIV) assumption.

In this paper, we add an additional covariate Zi that does not necessarily satisfy the

QMIV assumption. The results of AS1 do not cover such a model.

The model setup is as follows. The observations are i.i.d. Let yi(t) 2 Y be individual
i�s �conjectured�response variable given treatment t 2 T . Let Ti be the realization of
the treatment for individual i: The observed outcome variable is Yi = yi(Ti): Let Xi be

a covariate whose support contains an ordered set X . Let Zi be another covariate. We
observe Wi = (Yi; Xi; Zi; Ti): The parameter of interest, �; is the conditional � -quantile

of yi(t) given (Xi; Zi) = (x0; z0) for some t 2 T ; some x0 2 X ; and some z0 2 Z;
which is denoted Qyi(t)jXi;Zi(� jx0; z0): We assume the conditional distribution of yi(t)
given (Xi; Zi) = (x; z0) is absolutely continuous at its � -quantile for all x 2 X : We
assume that Xi satis�es the QMIV assumption given Zi = z0; i.e., Qyi(t)jXi;Zi(� jx1; z0) �
Qyi(t)jXi;Zi(� jx2; z0) for all x1 � x2:

AS1 describes four empirical problems that �t in their quantile selection model. All

of those problems �t in the nonparametric quantile selection model considered here if

one or more of the covariates is not a QMIV.
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The model setup above implies the following conditional moment inequalities:

E (1(Xi � x0)[1(Yi � �; Ti = t) + 1(Ti 6= t)� � ]jXi; Zi = z0) � 0 a.s. and

E (1(Xi � x0)[� � 1(Yi � �; Ti = t)]jXi; Zi = z0) � 0 a.s. (4.1)

For the simulations, we consider the following data generating process (DGP):

yi(1) = �(Xi; Zi) + � (Xi; Zi)ui; where @� (x; z) =@x � 0 and � (x; z) � 0;
Ti = 1fL (Xi; Zi) + "i � 0g; where @L (x; z) =@x � 0;

Xi; Zi � Unif [0; 2]; ("i; ui) � N(0; I2); (Xi; Zi) ? ("i; ui); Xi ? Zi;

Yi = yi(Ti); and t = 1: (4.2)

The variable yi(0) is irrelevant (because Yi enters the moment inequalities in (4.1) only

through 1(Yi � �; Ti = t)) and, hence, is left unde�ned. With this DGP, Xi satis�es

the QMIV assumption for any � 2 (0; 1) and Zi might not. We consider the median:
� = 0:5: We focus on the conditional median of yi(1) given (Xi; Zi) = (1:5; 1:0); i.e.,

� = Qyi(1)jXi;Zi(0:5jx0; z0) with (x0; z0) = (1:5; 1:0):
Some algebra shows that the conditional moment inequalities in (4.1) imply:

� � �(x; z0) := �(x; z0) + � (x; z0) �
�1 �1� [2� (L (x; z0))]�1� for x � 1:5 and

� � �� (x; z0) := �(x; z0) + � (x; z0) �
�1 �[2� (L (x; z0))]�1� for x � 1:5: (4.3)

We call �(x; z0) and �� (x; z0) the lower and upper bound functions on �; respectively.

The identi�ed set for the quantile selection model is
�
supx�x0 �(x; z0); infx�x0

�� (x; z0)
�
:

The shape of the lower and upper bound functions depends on the �; �; and L functions.

We consider three speci�cations, one that yields �at bound functions, another that

yields kinked bound functions, and a third that yields peaked bound functions. For the

�at bound DGP, �(x; z) = 2; � (x; z) = 1; and L (x; z) = 1 for x; z 2 [0; 2] : In this case,
�(x; z) = 2 + ��1

�
1� [2� (1)]�1

�
for x � 1:5 and �� (x; z) = 2 + ��1

�
[2� (1)]�1

�
for

x > 1:5: For the kinked bound DGP, �(x; z) = (x ^ 1) + (z ^ 1); � (x; z) = (x+ z) =2;

L (x; z) = x ^ 1; �(x; z) = (x ^ 1) + (z ^ 1) + (x+ z) � ��1
�
1� [2� (x ^ 1)]�1

�
=2 for

x � 1:5; and �� (x; z) = (x ^ 1) + (z ^ 1) + (x+ z) � ��1
�
[2� (x ^ 1)]�1

�
=2 for x > 1:5:

For the peaked bound function, �(x; z) = (x ^ 1) + (z ^ 1); � (x; z) = (x5 + z5) =2;

L (x; z) = x ^ 1; �(x; z) = (x ^ 1) + (z ^ 1) + (x5 + z5) ��1 (1� [2� (x ^ 1)]�1) =2 for
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x � 1:5; and �� (x; z) = (x ^ 1) + (z ^ 1) + (x5 + z5) ��1 ([2� (x ^ 1)]�1) =2 for x > 1:5:
The CP or FCP performance of a CI at a particular value � depends on the shape

of the conditional moment functions, as functions of x and z and evaluated at �: In the

present model, the conditional moment functions are

�(x; z; �) =

(
E (1(Yi � �; Ti = 1) + 1(Ti 6= 1)� 0:5j (Xi; Zi) = (x; z)) if x < 1:5

E (0:5� 1(Yi � �; Ti = 1)j (Xi; Zi) = (x; z)) if x � 1:5:
(4.4)

The conditional moment functions as functions of x at z = z0 are �at, kinked and peaked

under the three speci�cations of �; �; and L functions, respectively. The functions as a

function of z at each x also possess those three shapes at the point z = z0 depending on

the speci�cation. See Figure 1.
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Fig. 1. Nonparametric quantile selection model: conditional moment functions,
as functions of x and z. These functions are for the lower end of the identi�ed set

for �: First column: �at bound function; second column: kinked bound function;

third column: peaked bound function.

4.2.1 g functions

The g functions employed by the test statistics are indicator functions of hypercubes

in [0; 1]; i.e., intervals, as in AS1. The regressor Xi is transformed via the method
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described in Section 9 in AS1 to lie in (0; 1).16 The hypercubes have side-edge lengths

(2r)�1 for r = r0; :::; r1; where r0 = 1 and the base case value of r1 is 3:17 The base case

number of hypercubes is 12: We also report results for r1 = 2; 4; which yield 6; and 20

hypercubes, respectively.

Note that we use a smaller value of r1 as the base-case value in this paper than in

AS1. This is because the test statistic for a nonparametric parameter of interest depends

only on observations local to Zi = z0; which is a fraction of the full sample: For example,

the Epanechnikov kernel gives positive weight only to observations within distance b to

z0: When n = 250 and Z � Unif [0; 2]; observations that receive positive weight lie in

an interval centered at z0 of length about 2b = 9:36�Zn�2=7 � 0:64; which is 32% of the

support of Zi: This interval on average contains 80 e¤ective observations when n = 250:

Thus, the �nest cube when r1 = 3 contains 80=6 � 13 e¤ective observations. On the

other hand, the �nest cube when r1 = 7 contains only 80=14 � 5:7 e¤ective observations.
For this reason, a value of r1 that is smaller than that used in AS1 leads to better CP

and FCP performance of the CS�s in the nonparametric model.

4.2.2 Simulation results: con�dence intervals proposed in this paper

Tables 1-3 report CP�s and CP-corrected FCP�s for a variety of test statistics and

critical values proposed in this paper for a range of cases. The CP�s are for the lower

endpoint of the identi�ed interval in Tables 1-3 and for the �at, kinked, and peaked

bound functions. FCP�s are for points below the lower endpoint.18

Table 1 provides comparisons of di¤erent test statistics when each statistic is coupled

with PA/Asy and GMS/Asy critical values. Table 2 provides comparisons of the PA/Asy,

PA/Bt, GMS/Asy, GMS/Bt, and Sub critical values for the CvM/Max and KS/Max

test statistics. Table 3 provides robustness results for the CvM/Max and KS/Max sta-

tistics coupled with GMS/Asy critical values. The results in Table 3 show the degree of

sensitivity of the results to (i) the sample size, n; (ii) the number of cubes employed, as

indexed by r1; (iii) the choice of (�n; Bn) for the GMS/Asy critical values, (iv) the value

16This method takes the transformed regressor to be �((Xi � Xn)=�X;n); where Xn and �X;n are
the sample mean and standard deviation of Xi and �(�) is the standard normal distribution function.
17For simplicity, we let r1 denote r1;n here and below.
18Note that the DGP is the same for FCP�s as for CP�s, just the value � that is to be cov-

ered is di¤erent. For the lower endpoint of the identi�ed set, FCP�s are computed for � equal to
supx�1:5 �(x; 1) � c � (250=n)5=14; where c = :34; :78; and 1:1 in the �at, kinked, and peaked bound
cases, respectively. These points are chosen to yield similar values for the FCP�s across the di¤erent
cases considered.
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Table 1
Nonparametric quantile selection model: base-case test statistic comparisons.

(a) Coverage probabilities (nominal 95%)

Statistic:
CvM/

Sum

CvM/

QLR

CvM/

Max

KS/

Sum

KS/

QLR

KS/

Max

DGP Crit val

Flat bound PA/Asy :974 :974 :971 :968 :968 :963

GMS/Asy :953 :953 :951 :955 :955 :953

Kinked bound PA/Asy :998 :998 :997 :995 :995 :995

GMS/Asy :990 :990 :989 :989 :989 :987

Peaked bound PA/Asy :998 :998 :997 :995 :995 :996

GMS/Asy :992 :992 :991 :991 :991 :991

(b) False coverage probabilities (coverage probability corrected)

Flat bound PA/Asy :57 :57 :54 :67 :67 :64

GMS/Asy :45 :45 :45 :61 :61 :60

Kinked Bound PA/Asy :67 :67 :65 :67 :67 :64

GMS/Asy :49 :49 :49 :57 :57 :57

Peaked Bound PA/Asy :57 :57 :55 :60 :60 :56

GMS/Asy :50 :50 :49 :55 :55 :53

of "; upon which the variance estimator �n(�; g) depends, and (v) the bandwidth choice.

Table 3 also reports results for CI�s with nominal level :5; which yield asymptotically

half-median unbiased estimates of the lower endpoint.

Table 1 shows that all of the CI�s have coverage probabilities greater than or equal to

0:95 for all three speci�cations of the bound functions. The PA/Asy CI�s have noticeably

larger over-coverage than the GMS/Asy CI�s in all cases. The GMS/Asy CI�s have CP�s

28



Table 2
Nonparametric quantile selection model: base-case critical value comparisons.

(a) Coverage probabilities (nominal 95%)

Critical value: PA/Asy PA/Bt GMS/Asy GMS/Bt Sub

DGP Statistic

Flat bound CvM/Max :971 :971 :951 :948 :963

KS/Max :963 :963 :953 :948 :909

Kinked bound CvM/Max :997 :998 :989 :988 :990

KS/Max :995 :996 :987 :986 :959

Peaked bound CvM/Max :997 :997 :991 :990 :991

KS/Max :996 :996 :991 :990 :968

(b) False coverage probabilities (coverage probability corrected)

Flat bound CvM/Max :54 :55 :45 :44 :53

KS/Max :64 :66 :60 :57 :66

Kinked bound CvM/Max :65 :66 :49 :47 :51

KS/Max :64 :67 :57 :53 :40

Peaked bound CvM/Max :55 :54 :49 :47 :51

KS/Max :56 :55 :53 :49 :39

close to 0:95 with the �at bound DGP and larger than 0:95 with the other two DGP�s.

The CP�s are not sensitive to the choice of the test statistics.

The FCP results in Table 1 show (i) a clear advantage of the GMS-based CI�s over

the PA-based ones, (ii) a clear advantage of the CvM-based CI�s over the KS-based ones,

and (iii) little di¤erence between the test statistic functions: Sum, QLR or Max. The

comparison holds for all three types of DGP�s.

Table 2 compares the critical values PA/Asy, PA/Bt, GMS/Asy, GMS/Asy, and Sub.

The results show little di¤erence in CP�s and FCP�s between the Asy and Bt versions of

the CI�s regardless of the DGP speci�cation or the test statistic choice (CvM or KS).19

19Hall (1993) shows that undersmoothing or bias correction is necessary for consistency of the boot-

29



Table 3
Nonparametric quantile selection model with �at-bound: variations on the base case.

(a) Coverage probabilities (b) False cov probs (CPcor)

Statistic: CvM/Max KS/Max CvM/Max KS/Max

Case Crit val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base case: (n = 250; r1 = 3; :951 :953 :45 :60

" = 0:05; b = b0n�2=7)

n = 100 :950 :956 :46 :61

n = 500 :950 :953 :44 :59

r1 = 2 :951 :950 :44 :56

r1 = 4 :952 :961 :45 :63

(�n; Bn) = 1=2(�n;bc; Bn;bc) :948 :947 :46 :61

(�n; Bn) = 2(�n;bc; Bn;bc) :967 :961 :48 :62

" = 1=100 :949 :953 :45 :63

b = 0:5b0n�2=7 :960 :963 :68 :77

b = 2b0n�2=7 :950 :948 :19 :34

� = :5 :525 :516 :045 :072

� = :5 & n = 500 :517 :519 :042 :070

The GMS critical values noticeably outperform the PA counterparts in terms of

FCP�s. The CvM/Max test statistic coupled with the GMS/Asy or GMS/Bt critical val-

ues outperforms all other combinations in terms of FCP�s in all cases. The KS/Max/Sub

test under-covers noticeably in the �at bound case in Table 2, but not in the kinked and

peaked bound cases. We believe this is due to two e¤ects that cancel each other in the

latter two cases, but not in the �at bound case because one of the e¤ects is missing in

the �at bound case. The �rst e¤ect is a tendency of this test to under-cover due to �nite

sample e¤ects (because the subsampling error in coverage has order that depends on 1=b;

strap. Undersmoothing is employed in this paper. Hall (1993) also shows that in the context of
nonparametric curve estimation, the bootstrap has advantages over the Gaussian approximation in
providing a uniform con�dence band for the curve. This result does not shed light on the relative per-
formance of Asy and Bt-based tests in this paper because (i) the test statistics are not asymptotically
pivotal in the present context, whereas they are in the situation consider in Hall (1993), and (ii) we
consider inference at just one point (Z = z0) of the curve.
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not 1=n; where b << n): The second e¤ect is the over-coverage of subsampling tests as-

ymptotically when there are slack moment inequalities, see Andrews and Guggenberger

(2009). The second e¤ect applies in the kinked and peaked bound cases, but not the

�at bound case. Table 2 indicates that the CvM/Max/Sub test does not have the same

tendency to under-cover due to �nite-sample e¤ects as the KS/Max/Sub test does in

the quantile selection model.

Table 3 provides results for the CvM/Max and KS/Max statistics coupled with the

GMS/Asy critical values for several variations of the base case. The table shows that the

CI�s perform similarly at di¤erent sample sizes, with di¤erent choices of cells and with

a smaller ":20 There is some sensitivity to the magnitude of the GMS tuning parameters

(�n; Bn)� doubling their values increases both the CP�s and the FCP�s, but halving

their values does not decrease the CP�s much below 0:95: There is more sensitivity to

the kernel bandwidth� a larger bandwidth reduces the FCP drastically while keeping

the CP at around 0:95 and a smaller bandwidth does the opposite. This result is closely

related to the �atness of the bound. The bound is completely �at on the support of Zi.

It is more e¢ cient to use more of the data information by using a larger bandwidth. This

phenomenon does not occur with the kinked bound and the peaked bound as shown in

Tables A1 and A2 in the Appendix, see Andrews and Shi (2013a).

The last two rows of Table 3 show that a CI based on � = 0:5 provides a good choice

for an estimator of the identi�ed set. For example, the lower endpoint estimator based

on the CvM/Max-GMS/Asy CS with � = 0:5 is close to being median-unbiased. It is

less than the lower bound with probability 0:525 and exceeds it with probability 0:475

when n = 250:

The FCP�s reported in Tables 1-3 are computed at di¤erent � values (outside the

identi�ed set) with the three di¤erent bound functions. This is done to ensure that the

FCP�s lie in a meaningful range. However, it is also of interest to consider the same �

value for all three bounds and, hence, to see how the shape of the bound function a¤ects

FCP�s. For the CvM/Max/GMS/Asy CI, the FCP�s computed for � = 0:78 are :02; :49;

and :81 for the �at, kinked, and peaked bound functions, respectively. Thus, the FCP�s

are best (lowest) for the �at bound and highest (worst) for the peaked bound function.

In summary, we �nd that the CI�s based on the CvM/Max statistic with the GMS/Asy

20The � values at which the FCP�s are computed di¤ers from the lower endpoint of the identi�ed set
by a distance that depends on (nb)�1=2: Table 3 suggests that the "local alternatives" that give equal
FCP�s converge to the null hypothesis at a rate that is slightly faster than (nb)�1=2 for sample sizes n
in the range 100 to 500:
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critical value perform the best of those proposed in this paper in the quantile selection

example considered. Equally good are the CI�s that use the Sum or QLR statistic in

place of the Max statistic and the GMS/Bt critical value in place of the GMS/Asy

critical value. The CP�s and FCP�s of the CvM/Max-GMS/Asy CI�s are quite good

over a range of sample sizes. The �ndings echo those in AS1 in the parametric quantile

selection example.

4.2.3 Simulation results: comparisons with CLR con�dence intervals

Table 4 reports comparisons of CP�s and FCP�s of the CI�s proposed in this paper,

denoted by AS, with the series and local linear versions of the CI�s proposed in CLR.

The AS CI�s use the Max S function and GMS/Asy critical values. The CLR CI�s are

described in Section 4.1. The data generating processes considered are the same as in

Table 1.

Table 4
Nonparametric quantile selection model: CP and FCP comparisons of AS and

CLR con�dence intervals.

CP (nominal 95%) FCP (CP-corrected)

AS CLR AS CLR

DGP: CvM KS Series Loc lin CvM KS Series Loc lin

Flat .951 .953 .895 .860 .45 .60 .78 .75

Kinked .989 .987 .967 .964 .49 .57 .56 .51

Peaked .991 .991 .963 .956 .55 .53 .44 .30

Table 4 shows that the nominal 95% AS CI�s have good �nite sample CP�s, being

:951 or greater in all cases. In contrast, the series and local linear CLR CI�s under cover

in the �at bound case with CP�s being :895 and :860; respectively. The FCP�s of the AS

CI�s are noticeably less than those of the CLR CI�s in the �at bound case. The opposite

is true in the peaked bound case. In the kinked bound case, the AS and CLR CI�s have

similar FCP�s. This is consistent with the theoretical asymptotic power comparisons in

Section 11 of the Appendix, see Andrews and Shi (2013a).21

21In Table 4, the uncorrected FCP�s for the CLR CI�s are :62 and :46 in the �rst line and the same
as reported in Table 4 in the other lines. Note that without correction the FCP numbers are not
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In sum, the CvM/Max-GMS/Asy CI has more robust null rejection probabilities

than the CLR CI�s. Its FCP�s are better (i.e., lower) for the �at bound function and

worse (i.e., higher) for the peaked bound function.

4.3 Conditional treatment e¤ects

In this example, we illustrate how the proposed method can be used to test functional

inequality hypotheses.

We are interested in the e¤ect of a randomly assigned binary treatment (Di) con-

ditional on covariates Xi and Zi. The outcome variable of interest, Yi is a mixture of

two potential outcomes yi(1) and yi(0): Yi = Diyi(1) + (1 � Di)yi(0): The di¤erence

yi(1) � y(0) is the e¤ect of treatment on individual i: The treatment e¤ect for every

individual cannot be identi�ed (even partially) because yi(1) and yi(0) are never ob-

served simultaneously. Thus, one often focuses on the average treatment e¤ect of a

chosen group of individuals with certain observed characteristics. The chosen group of

individuals that we consider here is individuals with Zi = z0 2 Z and Xi 2 X , where Z
and X are the supports of Zi and Xi; respectively. We test the hypothesis:

E[yi(1)� yi(0)j(Xi; Zi) = (x; z0)] � 0 for all x 2 X : (4.5)

The framework can be extended to treatments with any �nite number of treatment

values. If the Xi variable is not present, the problem is a trivial case of (2.1) where X is

a singleton. If the Zi variable is not present, the problem �ts in the framework of AS1

and Lee, Song, and Whang (2009). The nonparametric method proposed in this paper

allows us to focus on a particular value of Zi.

Examples of the above hypothesis include: (i) whether a certain drug reduces blood

pressure for people of all ages and genders (Xi = (age, gender)) whose body mass index

(Zi) is at certain level (z0); (ii) whether students of a certain IQ score (Zi = z0) do

better in smaller classes than in bigger classes regardless of their parents�income (Xi);

and (iii) whether group liability discourages default better than individual liability in

a micro-loan program for villages of all sizes (Xi) and certain average income level

(Zi = z0).

The model setup is as follows. We assume that Di is randomly assigned and Pr(Di =

comparable across di¤erent CI�s.
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1) = � 2 (0; 1):22 Then,

E[yi(1)� yi(0)j(Xi; Zi) = (x; z0)] = E

�
YiDi

�
� Yi(1�Di)

1� �
j(Xi; Zi) = (x; z0)

�
: (4.6)

Then, the hypothesis (4.5) is equivalent to testing if � = 0 is in the identi�ed set of the

following moment inequality model:

E

�
YiDi

�
� Yi(1�Di)

1� �
� �j(Xi; Zi) = (x; z0)

�
� 0 for all x 2 X . (4.7)

For the simulations, we consider the following data generating process (DGP):

yi(0) = 0; yi(1) = �(Xi; Zi) + ui; Di = 1f"i � 0g;
Xi � Unif [0; 2]; Zi � Unif [�1; 1]; ("i; ui) � N(0; I2);

(Xi; Zi) ? ("i; ui); and Xi ? Zi: (4.8)

The function �(x; z) is the conditional treatment e¤ect function at (Xi; Zi) = (x; z):We

focus on z0 = 0:

Three di¤erent �(x; z) functions are considered, which are �at, kinked, and tilted

as a function of z; respectively. They are: �1(x; z) = �a; �2(x; z) = jxj + jzj � a; and

�3(x; z) = log(z+1)�a; where a is a constant. The hypothesis (4.5) holds if a = 0 and is
violated if a > 0: The functions �1 and �2 do not change sign in a neighborhood around

z0; whereas the tilted function �3 changes sign in any neighborhood of z0 if a = 0: The

conditional moment functions that correspond to �1; �2; and �3 are graphed in Figure

2.

Notice that there is only one conditional moment inequality in this model (i.e., p = 1

and v = 0): In consequence, the di¤erent S-functions, i.e. Sum, Max and QLR, are

identical to each other and we do not distinguish them in the results reported below.

4.3.1 g functions

The g functions employed by the test statistics are indicator functions of hypercubes

in [0; 1]; i.e., intervals, as in the example above. The regressor Xi is transformed to lie

in (0; 1) by the same method as in the example above. The hypercubes have side-edge

22It is easy to allow for �selection on observables,�i.e., to allow Di to depend on Xi and Zi: E.g., see
Imbens (2004).
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Fig. 2. Nonparametric treatment e¤ects model: conditional moment functions, as
functions of x and z. These functions are for the lower end of the identi�ed set for �:

First column: �at bound function; second column: kinked bound function; third

column: tilted bound function.

lengths (2r)�1 for r = r0; :::; r1; where r0 = 1 and the base case value of r1 is 3: The base

case number of hypercubes is 12: We also report results for r1 = 2 and 4; which yield 6

and 20 hypercubes, respectively.

4.3.2 Simulation results: tests proposed in this paper

Tables 5 and 6 report NRP�s and ARP�s, respectively, for a variety of test statistics

and critical values proposed in this paper for a range of cases. The NRP�s are for a = 0

and the ARP�s are for a > 0:23

Table 5 provides comparisons of the PA/Asy, PA/Bt, GMS/Asy, GMS/Bt, and

Sub critical values for the CvM and KS test statistics. Table 6 provides robustness

23Note that, contrary to the previous simulation example, the DGP is di¤erent for the NRP�s and for
the ARP�s. The null hypothesis stays the same. ARP�s are computed for a equal to c � (250=n)5=14;
where c = 0:25; 1:05; and 0:25 in the �at, kinked, and tilted bound cases, respectively. These points are
chosen to yield similar values for the ARP�s across the di¤erent cases considered.
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Table 5
Nonparametric conditional treatment e¤ects model: base-case comparisons.

(a) Null rejection probabilities (nominal 5%)

Critical Value: PA/Asy PA/Bt GMS/Asy GMS/Bt Sub

DGP Statistic

Flat bound CvM :040 :054 :044 :063 :106

KS :028 :039 :031 :046 :231

Kinked bound CvM :000 :000 :000 :000 :000

KS :000 :000 :000 :000 :002

Tilted bound CvM :066 :085 :072 :094 :148

KS :044 :057 :047 :064 :280

(b) Rejection probabilities under H1 (null rejection probability corrected)

Flat bound CvM :50 :57 :51 :54 :52

KS :30 :42 :30 :42 :35

Kinked bound CvM :32 :24 :52 :59 :63

KS :37 :19 :49 :53 :79

Tilted bound CvM :53 :54 :53 :53 :52

KS :36 :46 :36 :44 :35

results for the CvM and KS test statistics in the �at bound case. Table 6 shows the

degree of sensitivity of the results to (i) the sample size, n; (ii) the number of cubes

employed, as indexed by r1; (iii) the choice of (�n; Bn) for the GMS/Asy critical values,

(iv) the value of "; upon which the variance estimator �n(�; g) depends, and (v) the

bandwidth b:

Table 5 shows that tests with the Asy versions of both the PA and GMS critical

values have NRP�s less than or equal to the nominal level 0:05 with the �at bound and

kinked bound DGP�s. The tilted bound DGP is a di¢ cult case for NRP control because

the conditional mean function changes sign at z = z0 and the integral of the mean

function over any symmetric neighborhood around z0 is negative under the DGP with
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Table 6
Nonparametric conditional treatment e¤ects model with �at bound: variations on the base

case.

(a) Null rejection (b) Rej. probs. under H1

probabilities (nominal 5%) (NRP-corrected)

Statistic: CvM KS CvM KS

Case Crit val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base case: (n = 250; r1 = 3; .044 .031 .51 .30

" = 0:05; b = b0n�2=7)

n = 100 .047 .026 .50 .26

n = 500 .048 .037 .53 .34

r1 = 2 .047 .040 .51 .36

r1 = 4 .044 .024 .50 .26

(�n; Bn) = 1=2(�n;bc; Bn;bc) .052 .037 .51 .31

(�n; Bn) = 2(�n;bc; Bn;bc) .040 .028 .50 .30

" = 1=100 .046 .027 .51 .25

b = 0:5b0n�2=7 .041 .020 .28 .14

b = 2b0n�2=7 .049 .043 .78 .57

a = 0:With this di¢ cult DGP, tests with Asy critical values using the KS statistic have

NRP�s less than or equal to 0:05 and tests using the CvM statistic have NRP�s slightly

above 0:05: The tests using Bt critical values have noticeably greater over-rejection

compared to their counterparts using Asy critical values. The tests using subsampling

critical values with either the CvM or KS test statistic appear unreliable: their NRP�s

exceed 0:05 by a substantial amount with not only the tilted bound DGP but also the

�at bound DGP. Note that all tests under-reject substantially in the kinked bound case

in Table 5. This is because the conditional moment inequality is slack at all points x

except one, but is not su¢ ciently slack that the moment selection criterion is able to

ignore the moment conditions for many values of x when the GMS critical values are

computed.

The ARP comparison in Table 5 shows (i) a clear advantage of CvM-based tests

over KS-based tests, and (ii) clearly better performance of GMS-based tests compared
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to PA-based ones with the kinked bound DGP and similar performance of GMS and PA

critical values with the �at and the tilted bound DGP�s.

Table 6 provides results for the CvM and KS statistics coupled with the GMS/Asy

critical values for several variations of the base case with the �at bound function. Anal-

ogous results for the kinked and tilted bound functions are given in Tables A3 and A4

in the Appendix, see Andrews and Shi (2013a). The results in Table 6 show little sensi-

tivity to the sample size and a smaller " for the CvM-based test. The ARP performance

of the KS-based test improves noticeably with the sample size, but stays much worse

than that of the CvM-based test at all three sample sizes considered. There is some

sensitivity to the number of cubes and the magnitude of the GMS tuning parameters

(�n; Bn). Increasing the number of cubes or increasing (�n; Bn) reduces both the NRP�s

and the ARP�s. As in the quantile selection example, there is some sensitivity to the

bandwidth. A larger bandwidth leads to higher ARP�s but still keeps the NRP�s below

0:05: As discussed in the quantile selection example, this is closely related to the �atness

of the bound and the same phenomenon does not occur with the other types of bounds,

see Tables A3 and A4 in the Appendix, see Andrews and Shi (2013a).

The ARP results reported in Tables 5 and 6 are computed under DGP�s with di¤erent

a values (a > 0) with the three di¤erent bound functions. For the CvM/Max/GMS

/Asy test, the ARP�s computed for the same value a = 0:25 for all three bound functions

are :51; :00; and :53 for the �at, kinked, and peaked bound functions, respectively. Thus,

the power is highest for the �at and tilted bound functions and worst for the kinked

bound function.

In conclusion, the comparison between test statistics and critical values is largely con-

sistent with the quantile selection example, with the CvM-GMS/Asy couple performing

the best both in terms of NRP�s and ARP�s. The CvM-GMS/Bt couple has somewhat

worse NRP than CvM-GMS/Asy. The performance of CvM-GMS/Asy is quite good

over a range of sample sizes.

4.3.3 Simulation results: comparisons with CLR tests

Next, we compare NRP�s and ARP�s of the tests proposed in this paper with those

of the series and local linear tests in CLR. The sample size is n = 250: The parameter

values at which the NRP�s and ARP�s are calculated are the same as in Table 5. The

tests proposed in this paper, denoted AS, use the GMS/Asy critical values.

The results are reported in Table 7. The nominal 5% CvM AS test over-rejects
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somewhat in the tilted bound case with a NRP of :072: Its NRP in the �at and kinked

bounded cases is less than 0:05: Both CLR tests over reject the null considerably in the

�at and tilted bound cases. Speci�cally, the NRP�s of the series CLR test are :103 and

:104; respectively, while those of the local linear CLR test are :177 and :185; respectively.

The power of the CvM AS test is substantially higher than that of the two CLR tests in

the �at and tilted bound cases (being :51 versus :17 and :18 in the �at bound case and

:53 versus :16 and :16 in the tilted bound case). In the kinked bound case, the power of

the CvM AS test exceeds that of the series CLR test, but is lower than that of the local

linear CLR test.24

Table 7
Nonparametric conditional treatment e¤ects model: NRP and ARP comparisons of

AS and CLR tests.

NRP (nominal 5%) ARP (NRP-corrected)

AS CLR AS CLR

DGP: CvM KS Series Loc lin CvM KS Series Loc lin

Flat .044 .031 .103 .177 .51 .30 .17 .18

Kinked .000 .000 .011 .025 .52 .49 .37 .61

Tilted .072 .047 .104 .185 .53 .36 .16 .16

24In Table 7, the uncorrected ARP�s of the CLR tests are :29 and :52 in the �rst line, the same as
reported in Table 7 in the second line, and :29 and :53 in the third line. These uncorrected ARP�s are
not comparable across di¤erent tests.
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