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Abstract

Baggerly (1998) showed that empirical likelihood is the only member in the Cressie-Read power

divergence family to be Bartlett correctable. This paper strengthens Baggerly’s result by showing

that in a generalized class of the power divergence family, which includes the Cressie-Read family

and other nonparametric likelihood such as Schennach’s (2005, 2007) exponentially tilted empirical

likelihood, empirical likelihood is still the only member to be Bartlett correctable.

1 Introduction

Since Owen (1988), empirical likelihood has been used as a device to construct nonparametric likelihood

for numerous statistical problems and models as surveyed by Owen (2001). In spite of its nonparametric

construction based on observed data points, empirical likelihood shares similar properties to parametric

likelihood. For example, the empirical likelihood ratio statistic obeys the chi-squared limiting distri-

bution, so-called Wilks’ phenomenon. Another distinguishing feature of empirical likelihood is that it

admits Bartlett correction, a second-order refinement based on a mean adjustment. This point was

first made by DiCiccio, Hall and Romano (1991) and extended to other contexts, such as quantiles

(Chen and Hall, 1993), time series models (Kitamura, 1997; Monti, 1997), local linear smoothers (Chen

and Qin, 2001), among others. Also Bartlett correctability has been studied for other constructions of

nonparametric likelihood. Jing and Wood (1996) showed that exponential tilting (or empirical entropy)

likelihood is not Bartlett correctable. Corcoran (1998) constructed some Bartlett correctable nonpara-

metric likelihood based on a Taylor expansion of empirical likelihood. Baggerly (1998) strengthened
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Jing and Wood’s (1996) result by showing that empirical likelihood is the only member in the Cressie

and Read (1984) power divergence family to be Bartlett correctable.

The Cressie-Read type nonparametric likelihood is computed by choosing a tuning constant to define

both the shape of the criterion function and the form of weights allocated to data points. Schennach

(2005, 2007) suggested to choose different tuning constants for the shape of the criterion and the form

of weights, and proposed a more general class of nonparametric likelihood. In particular, Schennach

(2005) showed that exponentially tilted empirical likelihood (where the criterion is log-likelihood but

the weights are computed by exponential tilting) can emerge as a valid likelihood function for Bayesian

inference by a limiting argument. Also Schennach (2007) argued that when generalized estimating

equations are misspecified, the point estimator based exponentially tilted empirical likelihood shows

some robustness compared to the one based on empirical likelihood. Given this background, it is of

interest to extend Baggerly’s (1998) analysis to accommodate such new likelihood constructions and to

study their Bartlett correctability.

In this paper, we confirm that in a generalized class of the power divergence family containing

two tuning constants, empirical likelihood is still the only member to be Bartlett correctable. This

result not only includes Baggerly’s (1998) result as a special case, but also implies Schennach’s (2005,

2007) exponentially tilted empirical likelihood is not Bartlett correctable. Technically we follow a

conventional approach based on the Edgeworth expansion (DiCiccio, Hall and Romano, 1991). We

focus on characterizing the third and fourth order joint cumulants of the signed root of the test statistic

based on the generalized power divergence family, and shows that those cumulants vanish at sufficiently

fast rates only when we employ the empirical likelihood statistic.

2 Generalized power divergence family

We begin by introducing the generalized power divergence statistic. Consider a scalar random variable

X from an unknown distribution F0 with mean µ0. Following Owen (1988), the log-empirical likelihood

ratio statistic for the mean is written as

ℓEL (µ0) = −2 max
p1,...,pn

n
∑

i=1

log (npi) , subject to
n

∑

i=1

pi = 1,
n

∑

i=1

piXi = µ0.

It is known that under suitable regularity conditions the statistic ℓEL (µ0) converges in distribution to

the χ2
1 distribution (Owen, 1988) and admits Bartlett correction, which yields a confidence interval with

coverage error of size n−2 (DiCiccio, Hall and Romano, 1991).

Baggerly (1998) adapted the Cressie and Read (1984) power divergence family for goodness-of-fit to

the present context and considered the test statistic in the form of

ℓγ (µ0) = min
p1,...,pn

2

γ (γ + 1)

n
∑

i=1

{

(npi)
γ+1 − 1

}

, subject to

n
∑

i=1

pi = 1,

n
∑

i=1

piXi = µ0, (1)
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where γ ∈ R is a user-specified tuning constant. For the cases of γ = −1 and γ = 0, we use the continuous

limits ℓγ (µ0) = minp1,...,pn −2
∑n

i=1 log (npi) as γ → −1 and ℓγ (µ0) = minp1,...,pn 2n
∑n

i=1 pi log (npi) as

γ → 0, respectively. The empirical likelihood ratio statistic ℓEL (µ0) corresponds to the case of γ = −1.

The case of γ = 0 is often called the exponential tilting or empirical entropy statistic. Other popular

choices for γ include the Neyman’s modified χ2 (γ = 1), Hellinger or Freeman-Tukey (γ = −1
2), and

Pearson’s χ2 (γ = −2). Baggerly (1998) showed that the power divergence statistic ℓγ (µ0) converges in

distribution to the χ2
1 distribution for any γ, and that ℓγ (µ0) is Bartlett correctable only for the case

of γ = −1, the empirical likelihood ratio statistic. As Baggerly (1998) argued, a key insight of (lack of)

Bartlett correctability is that the third and fourth order cumulants of the signed root of ℓγ (µ0) do not

vanish at sufficiently fast rates when γ 6= −1.

From different perspectives, Schennach (2005, 2007) introduced the exponentially tilted empirical

likelihood statistic

ℓETEL (µ0) = −2
n

∑

i=1

log (npET,i) ,

i.e., the criterion function is defined by ℓγ (µ0) with γ = −1, where pET,1, . . . pET,n solve the minimization

problem of ℓγ (µ0) with γ = 0,

min
p1,...,pn

n
∑

i=1

pi log (npi) , subject to

n
∑

i=1

pi = 1,

n
∑

i=1

piXi = µ0.

Schennach (2007) studied asymptotic properties of a point estimator based on this statistic for general-

ized estimating equations. Also Schennach (2005) argued that the function ℓETEL (µ) can be interpreted

as a valid likelihood function for Bayesian inference. It should be noted that the statistic ℓETEL (µ0)

does not belong to the power divergence family (1). Therefore, Bartlett correctability of the statistic

ℓETEL (µ0) is an open question.

In order to address this issue, we generalize the power divergence statistic ℓγ (µ0) as follows: for

γ, φ ∈ R,

ℓγ,φ (µ0) =
2

γ (γ + 1)

n
∑

i=1

{

(npφ,i)
γ+1 − 1

}

, (2)

where pφ,1, . . . pφ,n solve

min
p1,...,pn

2

φ (φ + 1)

n
∑

i=1

{

(npi)
φ+1 − 1

}

, subject to
n

∑

i=1

pi = 1,
n

∑

i=1

piXi = µ0. (3)

Note that the shape of the criterion function in (2) is given by ℓγ (µ0) but the probability weights

{pφ,1, . . . , pφ,n} are computed by ℓφ (µ0). If γ = φ, this statistic reduces to the power divergence statistic

ℓγ (µ0). Also this statistic covers the exponentially tilted empirical likelihood statistic ℓETEL (µ0) when

γ = −1 and φ = 0 as a continuous limit.

By adapting the argument in Baggerly (1998) and Schennach (2005), we can see that the statistic

ℓγ,φ (µ0) converges in distribution to the χ2
1 distribution under the same conditions in Baggerly (1998,

Theorem 1). The goal of this paper is to study Bartlett correctability of the generalized statistic ℓγ,φ (µ0).
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3 Bartlett correctability

To investigate Bartlett correctability of the generalized power divergence statistic ℓγ,φ (µ0), we follow

the conventional recipe of DiCiccio, Hall and Romano (1991) and Baggerly (1998), among others. In

particular, we first derive the signed root of the statistic ℓγ,φ (µ0) based on a dual problem of the

minimization in (3), and then evaluate the third and fourth order cumulants of the signed root. Based

on these cumulant expressions, we verify for what values of γ and φ these cumulants vanish at sufficiently

fast rates to admit Bartlett correction.

To simplify the presentation, we focus on the case where Xi is scalar and standardized as µ0 =

E [Xi] = 0 and V ar (Xi) = 1. Although the presentation and technical argument become more com-

plicated, a similar result holds for the case where Xi is a vector and the parameter of interest is a

smooth function of the mean of Xi. Hereafter we present only the main result. Technical details for the

derivations are available from the authors upon request.

We use the following definitions

αj = E
[

X
j
i

]

, Aj =
1

n

n
∑

i=1

X
j
i − αj ,

for j = 1, 2, . . .. Note that α1 = E [Xi] = 0, α2 = V ar (Xi) = 1, and Aj = Op

(

n−1/2
)

for any j as far

as sufficiently higher order moments exist.

First, we find the signed root of ℓγ,φ (µ0) with µ0 = 0. By applying the Lagrange multiplier method,

the solution of (3) is

pφ,i =
1

n
(1 + s + tXi)

1

φ ,

where s and t solve

1

n

n
∑

i=1

(1 + s + tXi)
1

φ = 1,
1

n

n
∑

i=1

(1 + s + tXi)
1

φ Xi = 0. (4)

From Baggerly (1998), we can see that s = Op

(

n−1
)

and t = Op

(

n−1/2
)

. Expansions of (4) and

repeated substitutions yield expansions of s and t as follows

s =
1

2
φ (1 + φ)A2

1 +
1

6
φ (1 + φ) (1 − φ) α3A

3
1 −

1

2
φ (1 + φ) A2

1A2

+
1

2
φ (1 + φ) A2

1A
2
2 −

1

2
φ (1 − φ) (1 + φ)α3A

3
1A2 +

1

6
φ (1 − φ) (1 + φ) A3

1A3

+
1

8
φ

{

(1 + φ)3 + (1 − φ)2 (1 + φ)α2
3 −

1

3
(1 − φ) (1 + φ) (1 − 2φ) α4

}

A4
1 + Op

(

n−5/2
)

.

and

t = −φA1 −
1

2
φ (1 − φ) α3A

2
1 + φA1A2

−φA1A
2
2 +

3

2
φ (1 − φ)α3A

2
1A2 −

1

2
φ (1 − φ)A2

1A3

−1

2
φ

{

φ (1 + φ) + (1 − φ)2 α2
3 −

1

3
(1 − φ) (1 − 2φ) α4

}

A3
1 + Op

(

n−2
)

.
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By inserting these expressions to an expansion of ℓγ,φ (µ0),

n−1ℓγ,φ (µ0)

= A2
1 +

1

3
(1 − γ) α3A

3
1 − A2

1A2 + A2
1A

2
2 − (1 − γ)α3A

3
1A2 +

1

3
(1 − γ)A3

1A3

+

{(

1

4
+

γ

2
+

γφ

2
− φ2

4

)

+

(

1

4
− γ

2
+

γφ

2
− φ2

4

)

α2
3 +

(

− 1

12
+

γ

4
+

γ2

12
− γφ

2
+

φ2

4

)

α4

}

A4
1

+Op

(

n−5/2
)

.

Therefore, the signed root of the statistic n−1ℓγ,φ (µ0) is obtained as

n−1ℓγ,φ (µ0) =
(

R
(1)
γ,φ + R

(2)
γ,φ + R

(3)
γ,φ

)2
+ Op

(

n−5/2
)

,

where

R
(1)
γ,φ = A1, R

(2)
γ,φ = −1

2
A1A2 +

1

6
(1 − γ) α3A

2
1,

R
(3)
γ,φ =

3

8
A1A

2
2 −

5

12
(1 − γ) α3A

2
1A2 +

1

6
(1 − γ) A2

1A3

+

{(

1

8
+

γ

4
+

γφ

4
− φ2

8

)

+

(

1

9
− 2γ

9
− γ2

72
+

γφ

4
− φ2

8

)

α2
3 +

(

− 1

24
+

γ

8
+

γ2

24
− γφ

4
+

φ2

8

)

α4

}

A3
1.

Note that R
(j)
γ,φ = Op

(

n−j/2
)

for j = 1, 2, 3. We can confirm that for the empirical likelihood case (i.e.,

φ = −1 and γ = −1), this signed root expression coincides with the one in DiCiccio, Hall and Romano

(1991).

Next, to investigate Bartlett correctability of the generalized power divergence statistic, we evaluate

the third and fourth order cumulants (denoted by κ3 (γ, φ) and κ4 (γ, φ), respectively) of the signed root

Rγ,φ = R
(1)
γ,φ + R

(2)
γ,φ + R

(3)
γ,φ. In particular, if the cumulants satisfy

κ3 (γ, φ) = O
(

n−3
)

, κ4 (γ, φ) = O
(

n−4
)

, (5)

then the conventional argument based on the Edgeworth expansion guarantees Bartlett correctability

of the statistic n−1ℓγ,φ (µ0). After lengthy calculations, the third order cumulant is obtained as

κ3 (γ, φ) = E
[

R
(1)
γ,φ

]

+ 3E

[

(

R
(1)
γ,φ

)2
R

(2)
γ,φ

]

− 3E

[

(

R
(1)
γ,φ

)2
]

E
[

R
(2)
γ,φ

]

+ O
(

n−3
)

= −1

2
(1 + γ) α3

{

E
[

A4
1

]

−
(

E
[

A2
1

])2
}

+ O
(

n−3
)

= .

It is interesting to note that the third order cumulant κ3 (γ, φ) does not depend on the tuning constant

φ. From this expression, we can see that the first requirement in (5) is satisfied only when γ = −1.

Therefore, to evaluate the fourth order cumulant, we focus on the case of γ = −1. To this end, it is

useful to note that for γ = −1, it holds

R
(1)
−1,φ = R

(1)
−1,−1, R

(2)
−1,φ = R

(2)
−1,−1, R

(3)
−1,φ = R

(3)
−1,−1 −

1

8
(φ + 1)2

(

1 + α2
3 − α4

)

A3
1.
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By utilizing these relationships, the fourth order cumulant κ4 (γ, φ) with γ = −1 is obtained as

κ4 (−1, φ) = 4E

[

(

R
(1)
−1,−1

)3
R

(3)
−1,φ

]

− 12E

[

(

R
(1)
−1,−1

)2
]

E
[

R
(1)
−1,−1R

(3)
−1,φ

]

+(terms involving moments of R
(1)
−1,−1and R

(2)
−1,−1only) + O

(

n−4
)

= −1

8
(1 + φ)2

(

1 + α2
3 − α4

) (

4E
[

A6
1

]

− 12E
[

A2
1

]

E
[

A4
1

])

+ O
(

n−4
)

= .

From this expression, we can see that the second requirement in (5) is satisfied only when φ = −1.

Therefore, in the class of the generalized power divergence statistic ℓγ,φ (µ0) considered in this paper,

only empirical likelihood (i.e., the case of φ = −1 and γ = −1) is Bartlett correctable. This result also

implies that the exponentially tilted empirical likelihood statistic (i.e., the case of γ = −1 and φ = 0)

considered by Schennach (2005, 2007) is not Bartlett correctable.

4 Discussions

It is interesting to investigate other properties of the generalized statistic ℓγ,φ (µ0) for different values of

γ and φ. For example, Baggerly (1998) argued that the weight pφ,i given by (3) can be negative when

φ > 0, and Schennach (2007, p. 641) conjectured that lack of
√

n-consistency of the point estimator

under misspecified generalized estimating equations can occur for any φ ≤ 0. Also, if some weight pφ,i

takes zero, the statistic ℓγ,φ (µ0) diverges when γ ≥ −1 but is finite when γ ≤ 0. From a practical point

of view, it should be noted that the minimization in (3) has an explicit solution when φ = 1.

This paper shows that in the class of generalized power divergence family, only empirical likelihood

(φ = γ = −1) admits Bartlett correction, which yields a confidence interval with coverage error of

size Op

(

n−2
)

. This result also confirms the finding of Jing and Wood (1996), exponential tilting

likelihood (φ = γ = 0) is not Bartlett correctable. However, recent research has shown an attractive

multiplicative feature of the coverage error of the exponential tilting-based confidence interval. In

particular, Ma and Ronchetti (2011) show that in measurement error models, the coverage error of the

exponential tilting-based confidence interval takes the form of
{

1 − Fχ2 (·)
}

Op

(

n−1
)

, where Fχ2 (·) is

a distribution function of some χ2 distribution. As pointed out in Ma and Ronchetti (2011), since the

term
{

1 − Fχ2 (·)
}

is often very small in hypothesis testing, the relative error
{

1 − Fχ2 (·)
}

Op

(

n−1
)

may be potentially more meaningful than the absolute error. It is interesting to extend this study to

the generalized power divergence family considered in this paper, and determine the values of γ and φ

to admit the multiplicative form of the coverage error. This extension is currently under investigation

by the authors.
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