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Abstract

This essay is the introduction for a collection of papers by the two of us on �Robust Mech-

anism Design�to be published by World Scienti�c Publishing. The appendix of this essay lists

the chapters of the book.

The objective of this introductory essay is to provide the reader with an overview of the

research agenda pursued in the collected papers. The introduction selectively presents the main

results of the papers, and attempts to illustrate many of them in terms of a common and

canonical example, the single unit auction with interdependent values.

In addition, we include an extended discussion about the role of alternative assumptions

about type spaces in our work and the literature, in order to explain the common logic of the

informational robustness approach that uni�es the work in this volume.
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1 Introduction

This volume brings together a number of contributions on the theme of robust mechanism design

and robust implementation that we have been working on in the past decade. This work examines

the implications of relaxing the strong informational assumptions that drive much of the mechanism

design literature. It collects joint work of the two of us with each other and with coauthors Hanming

Fang, Moritz Meyer-ter-Vehn, Karl Schlag and Olivier Tercieux. We view our work with these co-

authors as thematically closely linked to the work of the two of us included in this volume.

The objective of this introductory essay is to provide the reader with an overview of the research

agenda pursued in the collected papers. The introduction selectively presents the main results of

the papers, and attempts to illustrate many of them in terms of a common and canonical example,

the single unit auction with interdependent values. It is our hope that the use of this example

facilitates the presentation of the results and that it brings the main insights within the context of

an important economic mechanism, the generalized second price auction. In addition, we include

an extended discussion about the role of alternative assumptions about type spaces in our work

and the literature, in order to explain the common logic of the informational robustness approach

that uni�es the work in this volume.

The mechanism design literature of the last thirty years has been a huge success on a number

of di¤erent levels. There is a beautiful theoretical literature that has shown how a wide range of

institutional design questions can be formally posed as mechanism design problems with a common

structure. Elegant characterizations of optimal mechanisms have been obtained. Market design

has become more important in many economic arenas, both because of new insights from theory

and developments in information and computing technologies, which enable the implementation of

large scale trading mechanisms. A very successful econometric literature has tested auction theory

in practise.

However, there has been an unfortunate disconnect between the general theory and the applica-

tions/empirical work: mechanisms that work in theory or are optimal in some class of mechanisms

often turn out to be too complicated to be used in practise. Practitioners have then often been led

to argue in favor of using simpler but apparently sub-optimal mechanisms. It has been argued that

the optimal mechanisms are not "robust" - i.e., they are too sensitive to �ne details of the speci�ed

environment that will not be available to the designer in practise. These concerns were present

at the creation of the theory and continue to be widespread today.1 In response to the concerns,

1Hurwicz (1972) discussed the need for �non-parametric�mechanisms wich are independent of the distributional
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researchers have developed many attractive and in�uential results by imposing (in a somewhat ad

hoc way) stronger solution concepts and/or simpler mechanisms motivated by robustness consid-

erations. Our starting point is the in�uential concern of Wilson (1987) regarding the robustness of

the game theoretic analysis to the common knowledge assumptions:

�Game theory has a great advantage in explicitly analyzing the consequences of trad-

ing rules that presumably are really common knowledge; it is de�cient to the extent it

assumes other features to be common knowledge, such as one agent�s probability assess-

ment about another�s preferences or information. I foresee the progress of game theory

as depending on successive reductions in the base of common knowledge required to

conduct useful analyses of practical problems. Only by repeated weakening of common

knowledge assumptions will the theory approximate reality.�

Wilson emphasized that as analysts we are tempted to assume that too much information is

common knowledge among the agents, and suggested that more robust conclusions would arise

if researchers were able to relax those common knowledge assumptions. Harsanyi (1967-68) had

the original insight that relaxing common knowledge assumptions is equivalent to working with a

type space which is larger if there is less common knowledge. A natural theoretical question then

is to ask whether it is possible to explicitly model the robustness considerations in such a way

that stronger solution concepts and/or simpler mechanisms emerge endogenously. In other words,

if the optimal solution to the planner�s problem is too complicated or too sensitive to be used

in practice, it is presumably because the original description of the planner�s problem was itself

�awed. We would like to investigate if improved modelling of the planner�s problem endogenously

generates the �robust�features of mechanisms that researchers have been tempted to assume. Our

research agenda in robust mechanism design is therefore to �rst make explicit the implicit common

knowledge assumptions and then second to weaken them.

Thus, formally, our approach suggests asking what happens to the conventional insights in

the theory of mechanism design when confronted with larger and richer type spaces with weaker

requirements regarding the common knowledge of between the designer and the agents. In this

assumptions regarding the willingness-to-pay of the agents. Wilson (1985) states that trading rules should be �belief-

free�by requiring that they �should not rely on features of the agents�common knowledge, such as their probability

assessments.�Dasgupta and Maskin (2000) seek �detail-free�auction rules �that are independent of the details - such

as functional forms or distribution of signals - of any particular application and that work will in a broad range of

circumstances."
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respect, a very important contribution is due to Neeman (2004) who showed that the small type

space assumption is of special importance for the full surplus extraction results, as in Myerson (1981)

and Cremer and McLean (1988). In particular, he showed that the full surplus extraction results

fail to hold if agents�private information doesn�t display a one-to-one relationship between each

agent�s beliefs about the other agents and his preferences (valuation). The extended dimensionality

relative to the standard model essentially allows for a richer set of higher order beliefs.

Similarly, the analysis of the �rst price auction in chapter 8 (by Hanming Fang and Morris) looks

at the role of richer type spaces by allowing private values but multidimensional types. There, each

bidder observes his own private valuation and a noisy signal of his opponent�s private valuation.

This model of private information stands in stark contrast to the standard analysis of auctions

with private values, where each agent�s belief about his competitor is simply assumed to coincide

with the common prior. In the presence of the multidimensional private signal, it is established

in chapter 8 that the celebrated revenue equivalence result between the �rst and the second price

auction fails to hold. With the richer type space, it is not even possible to rank the auction format

with respect to their expected revenue.

2 Leading Example:

Allocating a Private Good with Interdependent Values

It is the objective of this introduction to present the main themes and results of our research on

robust mechanism design through a prominent example, namely the e¢ cient allocation of a single

object among a group of agents. We are considering the following classic single good allocation

problem with interdependent values. There are I agents. Each agent i has a "payo¤ type" �i 2
�i = [0; 1]. Write � = �1 � � � � ��I . Each agent i has a quasi-linear utility function and attaches
monetary value vi : �! R to getting the object, where the valuation function vi has the following

linear form:

vi (�) = �i + 
X
j 6=i

�j .

The parameter  is a measure of the interdependence in the valuations. If  = 0, then we have the

classic private values case. If  > 0, we have positive interdependence in values, if  < 0, we have

negative interdependence. If  = 1, then we have a model of common values.

In this setting, a social choice function must specify the allocation of the object and the (ex-

pected) payments that agents make as a function of the payo¤ type pro�le. Thus a social choice
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function f can be written as f (�) = (q (�) ; y (�)) where the allocation rule determines the prob-

ability qi (�) that agent i gets the object if the type pro�le is �, with q (�) = (q1 (�) ; ::::; qI (�));

and transfer function, y (�) = (y1 (�) ; :::; yI (�)), where yi (�) determines the payment that agent i

makes to the planner.

If  < 1, then the socially e¢ cient allocation is to give the object to an agent with the highest

payo¤ type �i. Thus an e¢ cient allocation rule is given by:

q�i (�) =

8<: 1
#fj:�j��k for all kg ; if �i � �k for all k;

0; otherwise;

The speci�c form of the tie-breaking rule, here simply assumed to be uniform by construction of

q�i (�), is without importance. If  = 1, there are common values and all allocations are e¢ cient, but

the above q� continues to form an e¢ cient allocation rule. While the papers in this volume deal with

general allocation problems - and in particular, are not restricted to quasi-linear environments -

this introduction will survey our results using this example and focussing on this e¢ cient allocation

rule.

Now let us consider mechanisms for allocating the object. Suppose for the moment that we were

in a private value environment, i.e.,  = 0. Then a well-known mechanism to achieve the e¢ cient

allocation is the second price sealed bid auction. Here, each player i announces a "bid" bi 2 [0; 1],
and the object is allocated to the highest bidder who pays the second highest bid. Each agent has a

dominant strategy to bid his true payo¤ type �i and the object is allocated e¢ ciently. The second

price sealed bid mechanism is a speci�c instance of a Vickrey-Clarke-Groves mechanism which are

known to achieve e¢ ciency and incentive compatibility in dominant strategies for a large class of

allocation problems in private value environments with quasi-linear utility.

Maskin (1992) introduced a suitable generalization of the Vickrey-Clarke-Groves mechanism

to an environment with interdependent values. With interdependence, that is for  6= 0, the

�generalized�Vickrey-Clarke-Groves mechanism asks each agent i to report, or �bid� bi 2 [0; 1],
but now the rule of the �generalized�second price sealed bid auction is that agent i with the highest

report or �bid�wins, and pays the second highest bid plus  times the bid of others:

y�i (b) =

0@max
j 6=i

fbjg + 
X
j 6=i

bj

1A q�i (b) :

We observe that if  = 0, then the payment rule of the �generalized�second price sealed bid auction

reduces to the familiar rule of the second price sealed bid auction. If agents bid "truthfully," setting

5



their bid bi equal to their payo¤ type �i, then the generalized second price auction leads to the

realization of the social choice function f� (�) = (q� (�) ; y� (�)).

As long as parameter of interdependence is  � 1, ensuring that a single crossing property is

satis�ed, this social choice function is "ex post incentive compatible". That is, if an agent expected

other agents to report their types truthfully, he has an incentive to report his type truthfully.

Conditioning on truthtelling by the other agents, the utility of a winning bidder who tells the truth

is 0@�i + X
j 6=i

�j

1A�
0@max

j 6=i
f�jg+ 

X
j 6=i

�j

1A .
This expression is greater than 0 if �i > maxj 6=i f�jg and less than 0 if �i < maxj 6=i f�jg.

We observe that the winning bidder cannot a¤ect the transfer through this report; this is the

VCG aspect of the generalized second price auction. Now if his payo¤ type is larger than the payo¤

type of everybody else, he would like to win the object, and thus he cannot do better than bid

his true value. On the other hand, if agent i�s payo¤ type is lower than the highest payo¤ type

among the remaining bidders, then he would have to report a higher type to receive object, but

as �i < maxj 6=i f�jg, the resulting net utility for bidder i would be negative. If �i = maxj 6=i f�jg,
the agent would be indi¤erent between winning the object or not. We have thus established that

the e¢ cient allocation is implemented with ex post incentive compatibility conditions. Thus the

generalized second price auction ensured that, for all beliefs and higher order beliefs, there is an

equilibrium that leads to the e¢ cient allocation.

This mechanism is "robust" in the sense that as long as there is common knowledge of the

environment and payo¤s as we described them, there will be an equilibrium where the e¢ cient

allocation rule is followed whatever the beliefs and higher order beliefs of the agents about the

payo¤ types of the other agents. Ex post incentive compatibility is clearly su¢ cient for "partial

robust implementation," i.e., the existence of a mechanism with the property that, whatever agents�

beliefs and higher order beliefs, there is an equilibrium giving rise to the e¢ cient allocation. In

chapter 1, we study when the existence of an ex post incentive compatible direct mechanism is

necessary for partial robust implementation. But formalizing this question is delicate, and has

been the subject of some confusion in the literature. In the next section, we will discuss how the

language of type spaces can be used to formalize this and other questions and to highlight some

subtleties in the formalization.
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3 Type Spaces

We will be interested in situations where there is common knowledge of the structure of the en-

vironment described in the previous section, but the planner may not know much about each

agent�s beliefs or higher order beliefs about other agents�types. Thus rather than making the usual

"Bayesian" assumption that the planner knows some true common prior over � = �1 � � � � � �I ,
we want to be able to capture the planner�s uncertainty about agents�types, and what each agent

believes about other agents�types, by allowing richer type spaces.

It is important to study type spaces that are richer than �, because we want to allow for the

possibility that two types of an agent may be identical from a payo¤ type perspective, but have

di¤erent beliefs about, say, the payo¤ types of other agents. In addition, we want to allow for

interim type spaces, where there are no restrictions on a type�s interim belief about other agents�

types. Requiring that types�interim beliefs be derived from some prior probability distribution on

the type space, in other words that the type space constitutes a common prior type space, will

then represent an important special case. In what follows, we will focus on �nite type spaces but

our results readily extend to in�nite type spaces and some of the chapters in this book explicitly

consider such in�nite type spaces.

Agent i�s type is ti 2 Ti. A type of agent i must include a description of his payo¤ type. Thus
there is a function b�i : Ti ! �i,

with b�i (ti) being agent i�s payo¤ type when his type is ti. A type of agent i must also include

a description of his beliefs about the types of the other agents. Writing �(Z) for the space of

probability distributions on Z, there is a function

b�i : Ti ! �(T�i) ,

with b�i (ti) being agent i�s belief type when his type is ti. Thus b�i (ti) [E] is the probability that
type ti of agent i assigns to other agents�types, t�i, being an element of E � T�i. We will abuse

notation slightly by writing b�i (ti) [t�i] for the probability that type ti of agent i assigns to other
agents having types t�i. Now a type space is a collection

T =
�
Ti;b�i; b�i�I

i=1
:

The standard approach in the mechanism design literature is to assume a common knowledge

prior, p 2 �(�), on the set of payo¤ types �. This standard approach can be modelled in our
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language by identifying the set of types Ti with the payo¤ types �i and de�ning beliefs by

b�i (�i) [��i] , p (�i; ��i)P
�0�i2��i

p
�
�i; �

0
�i
� .

It is useful to distinguish two distinct, critical and strong, assumptions embedded in the standard

approach. First, it is assumed that there is a unique belief type associated with each payo¤ type.

More precisely, we will say that a type space T is a payo¤ type space if each b�i is a bijection, so
that the set of possible types is identi�ed with the set of payo¤ types. While often motivated by

analytic convenience, when maintained in particular applications, this assumption is often strong

and unjusti�ed. This assumption need not be paired with the common prior assumption, but it

often is. Type space T is a common prior type space if there exists � 2 �(T ) such thatX
t�i2T�i

� (ti; t�i) > 0 for all i and ti;

and b�i (ti) [t�i] = � (ti; t�i)P
t0�i2T�i

�
�
ti; t0�i

� .
Thus the standard approach consists of requiring both that T is a payo¤ type space and that T
is a common prior type space. We can think of this as the smallest type space that is used in the

Bayesian analysis that embeds the payo¤ environment described above. The standard approach

makes strong common knowledge assumptions of the type that Wilson (1987) and others have

argued should be expunged from mechanism design. For example, a well known implication of the

standard approach is that if the common prior p is picked generically (under Lebesgue measure), the

seller is able to fully extract the agents�surplus (Myerson (1981) and Cremer and McLean (1988)).

While the insight that correlation in agents�types can be exploited seems to be an economically

important one, it is clear that full surplus extraction is not something which can be carried out in

practise. While a number of assumptions underlying the model of full surplus extraction,2 Neeman

(2004) highlights the role of the implausible assumption that "beliefs determine preferences" (BDP),

i.e., that there is a common knowledge of a mapping that identi�es a unique possible valuation

associated with any given belief over others�types. The innocuous looking "genericity" assumption

obtains its bite by being combined with the strong common knowledge assumptions entailed by the

payo¤ type space restriction.
2Robert (1991), La¤ont and Martimort (2000) and Peters (2001) highlight the importance of risk neutrality and

unlimitied liability, absence of collusion and absence of competition, respectively.
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To illustrate the role of richer types spaces, let us consider an example from chapter 8, Fang and

Morris (2006). Suppose there are two agents whose valuations of the object are either low (vl) or

high (vh), with each valuation equally likely. In addition, each agent observes a low (l) or high (h)

signal which re�ects the other agent�s valuation with probability q � 1
2 . This situation is modelled

in the language of this essay by setting I = 2; �i = fvl; vhg; Ti = fvl; vhg � fl; lg; b�i (�i; si) = �i;

writing sj ' �i if (�i; sj) = (vl; l) or (vh; h),

b�i ((�i; si)) [(�j ; sj)] =
8>>>>><>>>>>:

q2, if si ' �j and sj ' �i;

q (1� q) , if si ' �j but not sj ' �i;

q (1� q) , if sj ' �i but not si ' �j ;

(1� q)2 , if neither si ' �j nor sj ' �i:

In this type space, there are independent private values as represented by the payo¤ types, but there

are multidimensional types. The BDP property ("beliefs determine preferences") fails because an

agent�s beliefs about others�types depend only on his signal and thus reveal no information about

his valuation.

At the other extreme from the payo¤ type space is the largest type space embedding the payo¤

relevant environment described above which places no restrictions on agents�beliefs or higher order

beliefs about other agents� payo¤ types, allowing for any beliefs and higher order beliefs about

payo¤ types. This is the universal type space of Harsanyi (1967-68) and Mertens and Zamir (1985),

allowing players to hold all possible beliefs and higher order beliefs about others�payo¤ types.3 For

much of this book, we will study a number of classic mechanism problems allowing for all possible

beliefs and higher order beliefs or, equivalently, the universal space.4 By re-working key results in

the literature under this admittedly extreme assumption, we hope to highlight the importance of

informational robustness.

However, we believe that the future of work on robust mechanism design will consist of exploring

type spaces which are intermediate between payo¤ type spaces and the universal type space. Such

3The universal space is an in�nite type space, so the language in this section must be extended appropriately to

incorporate it. In the exposition here, we maintain common certainty that each agent is certain of his own payo¤ type

and that preferences are pinned down by a pro�le of payo¤ types. These assumptions are not present in the standard

settings where universal type spaces are developed. But the standard construction can be straightforwardly adapted

to incorporate these assumptions - see, e.g., the discussion in section 2.5 of chapter 1 and Heifetz and Neeman (2006).
4As discussed in section 2.5 of chapter 1, there is a small gap between the union of all possible type spaces and the

universal space that arises from "redundant" types. We will ignore this distinction for purposes of this introductory

essay.
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intermediate type spaces embody intermediate common knowledge assumptions about higher order

beliefs. In the remainder of this section, we discuss examples of intermediate type spaces that are

discussed in this book and in the literature.

In some strands of the implementation literature, it is explicitly or implicitly assumed that there

is a true prior p over the payo¤ types which is common knowledge among the agents, but which the

planner does not know. The complete information implementation literature can subsumed in this

speci�cation. We can represent this as follows. The type space is Ti , �(�)��i; with a typical
element ti = (pi; �i). The payo¤ type is de�ned in the natural way, b�i (pi; �i) , �i: The belief type

is de�ned on the assumption that there is common knowledge of the true prior among the agents:

b�i (pi; �i) h(pj ; �j)j 6=ii ,
8<: pi (��i j�i ) , if pj = pi for all j 6= i;

0; otherwise.

Choi and Kim (1999) is a representative example of a contribution that explicitly works with this

class of type space in an incomplete information setting. Choi and Kim (1999) is also discussed in

chapter 1, where we show that in a quasi-linear environments with budget balance and two agents,

we can always partially implement allocation rules on the above type spaces, even though it is not

possible to partially implement on all type spaces.

A second classic intermediate type space is the common prior universal type space. In the

universal type space, there is no requirement that agents�beliefs be derived from some common

prior. But it makes sense to discuss the subset of the universal type space where a common prior

assumption holds. As described formally above, a type space is a common prior type space if

there is a probability measure on the type space such that the players�beliefs over other players�

types are conditional beliefs under that common prior. The common prior universal type space

embeds all such common prior type spaces. In this book, the results on partial implementation

(in chapter 1) do not depend on whether the common prior assumption is imposed or not, but

results of full implementation (in chapters 3, 4 and 7) do. Chapter 5 examines the implications for

robust full implementation of restricting attention to common prior type spaces: the results are

unchanged if there are strategic complementarities in the direct mechanism (which is true under

negative interdependence in preferences, i.e.,  < 0 in the single good example), but are drastically

changed if there are strategic substitutes (which happens with positive interdependence, i.e.,  > 0

in the single good example).

A third natural class of models to study is when many but not all beliefs are consistent with a

given payo¤ type. In particular, we can assume that there is a benchmark belief corresponding to
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each payo¤ type and his true belief must be within a small neighborhood of that benchmark belief.

More generally, suppose that if agent i is type �i, then his beliefs over the payo¤ types of others

are contained in a set 	i (�i) � �(��i). A local robustness condition is the requirement that there
is common knowledge that all types of all agents have beliefs over others�payo¤ types within such

set. Thus we �x, for each agent i, 	i : �i ! 2�(��i)
�
?. Now, in any type space, an agent�s beliefs

over others�payo¤ types are implicitly de�ned and by writing  i (ti) for those beliefs, we have that:

 i (ti) [��i] =
X

ft�i:b��i(t�i)=��ig
b�i (ti) [t�i] .

Now suppose we restrict attention to type spaces with the property that  i (ti) 2 	i
�b�i (ti)� for all

agents i and types ti. If we require each payo¤ type to have only a single possible belief about others�

payo¤ types (i.e., each 	i (�i) is a singleton), this reduces to the payo¤ type restriction above. If

we put no restrictions on beliefs (i.e., each 	i (�i) = � (��i)), then we have the universal type

space. A natural "local robustness" approach is to allow 	i to consist of a benchmark belief and

a small set of beliefs which are close and versions of this approach have been pursued in a number

of settings. Lopomo, Rigotti, and Shannon (2009) and Jehiel, Meyer-Ter-Vehn, and Moldovanu

(2010) examine local robust implementation of social choice functions. Artemov, Kunimoto, and

Serrano (2010) examines locally robust (full) virtual implementation of social choice functions. In

chapter 7, we report on the e¤ect of local robustness considerations in our work on robust virtual

implementation.

These three classes of restrictions are merely representative. Other results in the literature can

be understood as re�ecting intermediate classes of type spaces in between payo¤ type spaces and

the universal type space. Gizatulina and Hellwig (2010) consider all type spaces with the restriction

that agents are informationally small in the sense of McLean and Postlewaite (2002); they show

that notwithstanding a failure of the BDP property highlighted by Neeman (2004), it is possible to

extract almost the full surplus in quasilinear environments. We follow Ledyard (1979) in restricting

attention to full support type spaces in chapter 1 (section 4.2).

Other results in the literature can be understood as allowing richer types spaces, by allowing

payo¤ perturbations outside the payo¤ type environment, but then imposing restrictions on beliefs

and higher order beliefs about (perturbed) payo¤s types. Type spaces which maintain approximate

common knowledge of benchmark type spaces are studied by Chung and Ely (2003) and Aghion,

Fudenberg, Holden, Kunimoto, and Tercieux (2009) as well as in chapter 9. Oury and Tercieux

(2011) can be interpreted as a study of type spaces which are close in the product topology to
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some set of benchmark type spaces. Allowing perturbations outside the speci�ed payo¤ type

environment are important in these results.

A �nal class of restrictions imposed on type spaces are those labelled "generic". As noted

above, a classic argument that full surplus extraction is possible on �nite type spaces relies on a

restriction to "generic" common priors to ensure that the "beliefs determine preferences" property

holds (Cremer and McLean (1988) and Neeman (2004)). Here, genericity is applied to �nite payo¤

type spaces (McAfee and Reny (1992) report an extension to in�nite payo¤ type spaces). Since

the payo¤ type space restriction entails such strong common knowledge assumptions and the BDP

property seems unnatural it is interesting to ask if the BDP property holds generically for richer

type spaces. It is important to note �rst of all that the property will fail dramatically if we look at

the (payo¤ type) universal type space: by construction, every combination of payo¤ type and beliefs

about others�types are possible, and thus BDP fails. Therefore a small literature has examined

whether BDP holds if we look at the common prior universal type space (the full surplus extraction

question is not well posed without the common prior assumption). Unfortunately, there is no

agreement or naturally compelling de�nition of "typical" or "generic" properties in in�nite type

spaces. Bergemann and Morris (2001) noted that among the (in�nite) space of all �nite common

prior types within the universal type space, one can always perturb a BDP type by a small amount

in the product topology and get a non-BDP type and conversely perturb the non-BDP type nu a

small amount to get back to a BDP type. For topological notions of genericity, answers depend on

the topology adopted and the topological de�nition of genericity employed (see results in Dekel,

Fudenberg, and Morris (2006), Barelli (2009), Chen and Xiong (2010), Chen and Xiong (2011)

and Gizatulina and Hellwig (2011)).5 Heifetz and Neeman (2006) report an approach based on

alternative geometric and generalized measure theoretic views of genericity for in�nite state spaces.

We do not consider restrictions based on "genericity" notions in this book. The work on genericity

is important but complements rather than substitutes for work which highlights transparently the

implicit common knowledge assumptions built into type spaces (such as the BDP property) and

judges the relevance of the type spaces for economic analysis based on the plausibility and relevance

of those assumptions directly.

We conclude this section by emphasizing that the "payo¤ type" framework described above is

not without loss of generality. In particular, it is assumed that all agents�utility depends only on a

vector of payo¤ types with the property that each element of the vector is known by each agent. Put

5But see Chen and Xiong (2011) for a problem in the analysis of Barelli (2009).
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di¤erently, it is assumed that the join of agents�information fully determines all agents�preferences.

This assumption is natural for private value environments and captures important interdependent

value environments, but it is restrictive. To see this, consider the single good environment where

each agent i�s valuation of the object is given by

vi = �i + 
X
j 6=i

�j : (1)

We maintain common knowledge that each agent i knows his own payo¤ type �i. What is the

content of this assumption? Summing (1) across agents gives

IX
i=1

vi = (1 +  (I � 1))
IX
i=1

�i,

and re-arranging then gives: X
j 6=i

�j =

 
1

(1 +  (I � 1))

IX
i=1

vi

!
� �i. (2)

Substituting (2) into (1) gives

�i = vi � 
X
j 6=i

�j

= vi � 
  

1

(1 +  (I � 1))

IX
i=1

vi

!
� �i

!
;

which implies

�i =
1

1� 

 
vi �



(1 +  (I � 1))

IX
i=1

vi

!

=
1

1� 

0@�1� 

(1 +  (I � 1))

�
vi +



(1 +  (I � 1))
X
j 6=i

vj

1A : (3)

Thus common knowledge of the payo¤ type environment implicitly entails the extreme sounding

assumption that there there is common knowledge that each agent i knows a particular linear

combination of the agents�values, as expressed in (3).

We nonetheless maintain the payo¤ type environment throughout the work in this book because

we are focussed on classical questions about implementing social choice functions (and correspon-

dences) which would be impossible if knowing the join of agents� information is not su¢ cient to

implement the social choice functions. In Bergemann, Morris, and Takahashi (2010), we intro-

duce a language for characterizing interdependent types in terms of revealed preference in strategic

settings. This richer language can be used to explore settings beyond the payo¤ type environment.

13



4 Robust Foundations

for Dominant and Ex Post Incentive Compatibility

In chapter 1 (Bergemann and Morris (2005)), we ask whether a planner can design a mechanism

with the property that for any belief and higher order beliefs that the agents may have, there exists

a Bayesian equilibrium of the corresponding incomplete information game where an acceptable

outcome is chosen. If we can �nd such a mechanism, then we say that we have a solution to the

robust mechanism design problem. The construction of an ex post incentive compatible mechanism

that delivers an acceptable outcome is clearly su¢ cient, but is it necessary? We call this the ex

post equivalence question.

In the special case of private values, ex post incentive compatibility reduces to dominant strate-

gies incentive compatibility. There has been an extended debate, going back to the very beginnings

of the development of mechanism design, about whether dominant strategies incentive compati-

bility should be required or whether Bayesian incentive compatibility is su¢ cient. Scholars have

long pointed out that - as a practical matter - the planner was unlikely to know the "true prior"

over the type space. Therefore, it would be desirable to have a mechanism which was going to

work independent of the prior. For a private value environment, Dasgupta, Hammond, and Maskin

(1979), Ledyard (1978) and Ledyard (1979) observed that if a direct mechanism was going to im-

plement a social choice correspondence for every prior on a �xed type space, then there must be

dominant strategies implementation. Other scholars pointed out that if the planner did not know

the prior (and the agents do) then we should not restrict attention to direct mechanisms. Rather,

we should allow the mechanism to elicit reports of the true prior from the agents. After all, since

this information is non-exclusive in the sense of Postlewaite and Schmeidler (1986), this elicitation

will not lead to any incentive problems. A formal application of this folk argument appears in the

work of Choi and Kim (1999).

Chapter 1 provides a resolution of this debate by carefully formalizing - using the type space

language above - what is and is not being assumed about what is common knowledge about beliefs.

This leads to a more nuanced answer to the prior debate about the necessity of dominant strategies

incentive compatibility, as well as the extension to an environment with interdependent values. In

particular, we show that under some circumstances, even if the planner is able to let the mechanism

depend on the agents�beliefs and higher order beliefs (and thus elicit any knowledge that agents

may have about priors on a �xed type space), it is still true that ex post incentive compatibility is
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necessary for Bayesian implementation for all possible beliefs. This is true if the planner is trying

to implement a social choice correspondence which is "separable," a property that is automatically

satis�ed by social choice functions. But for some multi-valued social choice correspondences, it is

impossible to identify an ex post incentive compatible selection from a social choice correspondence;

but nonetheless, it is possible to �nd a mechanism with an acceptable equilibrium on any type space.

We can illustrate both of these points with the single good allocation example.

Let us �rst consider the case of a social choice function f (�) = (q (�) ; y (�)) specifying the

allocation and transfers in our single good environment. For a given (large) type space T and a

given social choice function f , interim incentive compatibility on a type space T requires that:

X
t�i2T�i

240@b�i (ti) + X
j 6=i

b�j (tj)
1A qi

�b� (t)�+ yi �b� (t)�
35 b�i (ti) [t�i]

�
X

t�i2T�i

240@b�i (ti) + X
j 6=i

b�j (tj)
1A qi

�b� �t0i; t�i��+ yi �b� �t0i; t�i��
35 b�i (ti) [t�i]

for all i, t 2 T and t0i 2 Ti.
We refer here to �interim� rather than �Bayesian� incentive compatibility to emphasize that

the beliefs of agent i, b�i (ti) [t�i], are interim beliefs (without the necessity of a common prior).

Now, intuitively, the larger the type space of each agent, the more incentive constraints there are to

satisfy, and the harder it becomes to implement a given social choice function. As we consider large

type space, that is as we move from the smallest type space, the payo¤ type space, to the largest

type space, the universal type space, the incentive problems become successively more di¢ cult.

It is then natural to ask whether there is a �belief free� solution concept that can guarantee

that a reporting strategy pro�le of the agents remains an equilibrium for all possible beliefs and

higher order beliefs. A social choice function f (�) = (q (�) ; y (�)) is ex post incentive compatible

if, for all i, � 2 �, �0i 2 �i:0@�i + X
j 6=i

��j

1A qi (�) + yi (�) �

0@�i + X
j 6=i

��j

1A qi
�
�0i; ��i

�
+ yi

�
�0i; ��i

�
Under �ex post incentive compatibility� each payo¤ type of each agent has an incentive to

tell the truth if he expects all other agents to tell the truth (whatever his beliefs about others�

payo¤ types). Now, given the above de�nitions, it is apparent that a su¢ cient condition for robust

truthful implementation is that there exists an allocation rule as a function of agents�payo¤ types

that is "ex post incentive compatible," i.e., in a payo¤ type direct mechanism, each agent has an
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incentive to announce his type truthfully whatever his beliefs about others�payo¤ types. We show

in chapter 1 that a social choice function f is interim incentive compatible on every type space T
if and only if f is ex post incentive compatible.

The above discussion applied to social choice functions. Does it extend to social choice corre-

spondences, where multiple outcomes are acceptable for the planner for any given pro�le of payo¤

types? Suppose that the planner wanted to implement an allocation rule q but did not care about

transfers - i.e., the usual setting in which e¢ cient allocations are studied. Then we would allow for

more general payment rules ey = (ey1; :::; eyI) that could depend on agents�beliefs and higher order
beliefs, with each eyi : T ! R. Thus we would ask whether for a �xed allocation rule q, could we �nd

for every type space T payment rules (ey1; :::; eyI) such that the incentive compatibility conditionX
t�i2T�i

240@b�i (ti) + X
j 6=i

b�j (tj)
1A qi

�b� (ti; t�i)�+ eyi (ti; t�i)
35 b�i (ti) [t�i]

�
X

t�i2T�i

240@b�i (ti) + X
j 6=i

b�j (tj)
1A qi

�b� �t0i; t�i��+ eyi (ti; t�i)
35 b�i (ti) [t�i] ;

for all i, t 2 T and t0i 2 Ti. By allowing the transfers to depend on the beliefs and higher order

beliefs we weaken the incentive constraints.

Now, the criticism of the classical justi�cation of dominant strategies discussed above argued

that Dasgupta, Hammond, and Maskin (1979), Ledyard (1978) and Ledyard (1979) were �awed

because they did not allow transfers to depend on beliefs. However, in this single good environment,

it turns out that allowing transfers to depend on higher order beliefs does not help. In fact, ex

post equivalence continues to hold in this environment and holds more generally in quasi-linear

environments where a planner has a unique acceptable outcome (not specifying transfers) but

does not care about transfers. Such a correspondence is a leading of example of what we call a

"separable" correspondence.

In view of these results, the notion of ex post equilibrium may be viewed as incorporating concern

for robustness to beliefs and higher-order beliefs. This "ex post equivalence" result also suggest

that the robustness requirement imposes a striking simplicity on the implementing mechanism.

The language of large, and larger, type spaces would suggest that we have to solve successively

more di¢ cult incentive problems. After all, as we demand robustness with respect to some or all

beliefs and higher-order beliefs, the number of incentive constraints are increasing. But we make

the problem more di¢ cult, we eventually have to solve the incentive constraints at every pro�le

� exactly, without reference to any expectation over payo¤ pro�les. Thus, while the incentive

16



constraints per se are demanding, the set of constraints reduces and hence the solution becomes

substantially easier to compute as we only need to verify the incentive constraints at the exact

payo¤ type pro�les � rather than the much larger set of possible types t.

But ex post equivalence does not hold in general in the case of general correspondences. In

chapter 1, we give some abstract examples to make this point. In particular, we describe a private

values example with the feature that dominant strategies implementation is impossible but interim

implementation is possible on any type space, and this seems to be the �rst example in the literature

noting this possibility. The example points to the fact that interim incentive compatibility can occur

for all type spaces, using mechanisms that elicit and respond to the beliefs of the agents, even if

ex post incentive compatibility is impossible. Here, let us report an interdependent values example

due to Jehiel, Moldovanu, Meyer-Ter-Vehn, and Zame (2006) which makes the same point in the

single good allocation problem.

Suppose now that the payo¤ type of agent i is given by �i = (�i1; �i2) 2 [0; 1]2 and that the
value of the object to agent i is then

vi (�) = �i1 + 
X
j 6=i

�j1 + "
IY
j=1

�j2. (4)

with " > 0. In the two agent case where  = 0, this example was analyzed by Jehiel et al. (2006).

In this case, the only ex post incentive compatible social choice functions are trivial ones where the

allocation of the object is independent of all agents�types. Under the assumption that the object

must always be allocated to one of the two agents, this example thus illustrates the general result

of Jehiel et al. (2006) that in generic quasi-linear environments with interdependent values and

multidimensional types, ex post implementation of non-trivial social choice functions is impossible.6

But it is straightforward to see that an almost e¢ cient allocation of the object can be robustly

implemented, since if the object is sold by a second price auction, each agent will have an incentive

to bid within " of �i1. This observation can be extended to interdependent values if interdependence

6 If there are more than two agents, or if the object is not allocated to either of two agents, then agents are assumed

indi¤erent between outcomes which violates the genericity condition in the impossibility result of Jehiel et al. (2006).

Bikhchandani (2006) discusses non-trivial ex post incentive compatible allocations that arise if the object need not

be allocated to any agent.

See Jehiel and Moldovanu (2001) for analysis of how multidimensional types already limit the possibility of e¢ cient

in standard Bayesian settings and Eso and Maskin (2002) and Jehiel, Meyer-Ter-Vehn, and Moldovanu (2008) for

more on settings with non-trivial ex post implementation with multidimensional type spaces in environments failing

genericity condition of Jehiel et al. (2006).
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is not too large, with 0 <  < 1
I�1 ; in this case, then the generalized second price auction would

implement the correspondence of almost e¢ cient allocations. We postpone until our discussion of

chapters 3 and 9 an explanation of why we need  < 1
I�1 and how much this argument generalizes.

An important class of economic environments where our separability condition fails are quasi-

linear environments where transfers are required to be budget balanced. We show in chapter 1 that

ex post equivalence holds nonetheless in some special cases: if there are two agents (proposition 2)

or if each agent has at most two types (proposition 6). The latter result highlights the importance

of allowing rich type spaces: example 3 shows that we can have partial robust implementation on

all payo¤ type spaces but not on the universal type space. This environment is important because

it includes the classic public good problem. In general ex post equivalence fails in this environment

(a detailed example was presented in a working paper version of chapter 3, Bergemann and Morris

(2005)). Thus there is not a general equivalence between dominant strategy implementation and

robust implementation for public good problems.

One implication of our results in chapter 1 is that we can distinguish settings where a restriction

to dominant strategies equilibrium (under private values) or ex post equilibrium in mechanism

design problems can or cannot be justi�ed by informational robustness arguments. Thus Dasgupta

and Maskin (2000) and Perry and Reny (2002) use ex post equilibrium as a solution concept

in studying e¢ cient auctions with interdependent values. This is equivalent to robust partial

implementation.

Our analysis in chapter 1 is limited to asking whether a �xed social choice correspondence -

mapping payo¤ type pro�les to sets of possible allocations - can or cannot be robustly partially

implemented. Thus we focus on a "yes or no" question. Many of the most interesting questions

involve asking what happens when we consider what is the best mechanism for the universal type

space when we interested in a �ner objective, and a number of recent papers have addressed this

question. Chung and Ely (2007) consider the objective of revenue maximization for the seller of a

single object (under the seller�s beliefs about agents�valuations), allowing all possible beliefs and

higher order beliefs of the agents, and show conditions under which the seller cannot do better

than using a dominant strategy mechanism. The best mechanism from the point of view of the

seller would generally allow many outcomes for any given pro�le of payo¤ type pro�les, and will

not in general be separable, and thus the results of chapter 1 do not apply. Smith (2010) and

Boergers and Smith (2011) study the classic problems of public good provision and general social

choice with rich private preferences (i.e., the Gibbard-Satterthwaite question) respectively. They
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identify simple mechanisms that perform better than dominant strategy mechanisms - in the sense

of providing weakly better outcomes on all type spaces and strictly better outcomes on some type

spaces - for each of these two problems. Yamashita (2011) identi�es a mechanism that performs

better than any dominant strategy mechanism in the classic bilateral trading problem (the notion

of robustness is di¤erent from that considered in chapter 1 but similar results would hold with our

notion of robustness). Finally, Bierbrauer and Hellwig (2011) combine the informational robustness

approach studied here with a requirement that the social objective be collusion-proof and then

obtain restrictions on the social choice function which satisfy both desiderata.

An interesting question for further analysis is the extent to which the results in chapter 1

continue to hold for more local versions of robustness. Lopomo, Rigotti, and Shannon (2009)

identify settings where local robust implementation of a social choice function is equivalent to ex

post implementation. Jehiel, Meyer-Ter-Vehn, and Moldovanu (2010) give examples illustrating

when this equivalence doesn�t hold, but nonetheless show that local robust implementation is a

very strong and, in particular, generically impossible with multidimensional payo¤ types.

5 Full Implementation

All of the above results are phrased in terms of incentive compatibility, and by use of the revelation

principle, are therefore statements about the existence of a truthtelling equilibrium in the direct

mechanism. The construction of the truthtelling equilibrium of course presumes that when we

verify the truthtelling constraint of agent i that the other agents are telling the truth as well. This

does not address - let alone exclude - the possibility of other equilibria in the direct mechanism;

equilibria in which the agents are not telling the truth, and importantly, in which the social choice

function is not realized.

As private information may enable the agents to coordinate behavior in many di¤erent ways, the

designer has to be concerned with the fact that there may exist equilibrium behavior by the agents

which does not realize his objective. The notion of full implementation, in contrast to truthful or

partial implementation, addresses this by requiring that every equilibrium in the mechanism attains

the social objective.7

7There is a large literature in economic theory - much of it building on the work of Maskin (1999) - devoted to

the problem of full implementation: When is it the case that there is a mechanism such that every equilibrium

in this mechanism is consistent with a given social choice correspondence? While elegant characterizations of im-

plementability were developed, the "augmented" mechanisms required to achieve positive results were complex and
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In chapter 2, we restrict attention to the solution concept of ex post equilibrium, and ask

what conditions are required for full ex post implementation i.e., all ex post equilibria to deliver

outcomes in the social choice correspondence? In chapter 3, we will move on to ask when is it

possible interim implement a social choice correspondence for all possible higher order beliefs. In

general, the latter is a more stringent requirement. We say that a social choice correspondence that

is interim implementable for all possible type spaces is robustly implementable.

5.1 Ex Post Implementation

Chapter 1 required - for any beliefs and higher order beliefs - an equilibrium that delivered the

right outcome. This required ex post incentive compatibility or - equivalently - that truth-telling is

an ex post equilibrium of the "direct" mechanism where agents just report their payo¤ types. Now,

in chapter 2, we ask: if we take ex post equilibrium as the primitive solution concept, when can we

design a mechanism such that, not only does an ex post equilibrium deliver the right outcome, but

also every ex post equilibrium delivers the right outcome. Thus there is full implementation under

the solution concept of ex post equilibrium - and we call this ex post implementation. We show that

- in addition to ex post incentive compatibility - an ex post monotonicity condition is necessary

and almost su¢ cient. The ex post monotonicity condition neither implies nor is implied by Maskin

monotonicity (necessary and almost su¢ cient for implementation under complete information). By

"almost su¢ cient", we mean su¢ cient in economic environments and after an additional no veto

condition also su¢ cient in general environments.

In a direct mechanism, such as the generalized second price auction, undesirable behavior by

agent i is easiest interpreted as a misreport or deception �0. In a direct revelation mechanism, if

agents misreport �0 rather than truthfully report �, then the resulting social outcome is given by

f
�
�0
�
rather than f (�). The notion of ex post monotonicity guarantees that (i) a whistle-blower

(among the agents) will alert the principal of deceptive reporting �0 by receiving a reward and (ii)

a whistle-blower will not falsely report a deception.

The social choice function f = (q; y) satis�es ex post monotonicity if for every �; �0 with f (�) 6=

seemed particularly implausible. While the possibility of multiple equilibria does seem to be a relevant one in practical

mechanism design problems, particularly in the form of collusion and shill bidding, the theoretical literature so far

has not developed practical insights, with a few recent exceptions such as Ausubel and Milgrom (2005) and Yokoo,

Sakurai, and Matsubara (2004).
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f
�
�0
�
, there exist i, bqi 2 [0; 1] and byi 2 R such that0@�i + X

j 6=i
��j

1Abqi + byi >
0@�i + X

j 6=i
��j

1A qi
�
�0i; ��i

�
+ yi

�
�0i; ��i

�
;

while 0@�0i + X
j 6=i

�0�j

1A qi
�
�00i ; �

0
�i
�
+ yi

�
�00i ; �

0
�i
�
�

0@�0i + X
j 6=i

�0�j

1Abqi + byi
for all �00i .

Proposition 3 in chapter 2 then establishes that the social choice function implied by the gen-

eralized second price auction satis�es the ex post monotonicity condition. Moreover, due to the

quasi-linearity of the utility function, it also represents an economic environment, and hence can

be fully implemented in an ex post equilibrium, provided there are three or more bidders. In fact,

with interdependent values, or  6= 0, the implementation can be achieved in the direct mechanism
itself and does not need to make use of an augmented mechanism. In other words, the direct

mechanism is shown to have a unique ex post equilibrium if  6= 0. This three or more player result
contrasts with the observation of Birulin (2003) that, with only two players, there are a continua

of undominated ex post equilibria in the direct mechanism of the single good allocation problem.

5.2 Robust Implementation in the Direct Mechanism

But can the planner design a mechanism with the property that for any beliefs and higher order

beliefs that the agents may have, every equilibrium has the property that an acceptable outcome

is chosen? We call this "robust implementation" and investigate the possibility of robust imple-

mentation in chapters 3 and 4. We should immediately emphasize that the question of robust

implementation is not the same as the ex post implementation question analyzed in chapter 2: to

rule out bad equilibria in chapter 2, it was enough to make sure you could not construct a "bad" ex

post equilibrium; for robust implementation, we must rule out bad Bayesian, or interim, equilibria

on all type spaces. In chapter 3, we consider a well-behaved environment with payo¤ type spaces

represented by intervals of the real line and "aggregator single crossing" preferences. In this envi-

ronment, we give a "contraction property" - equivalent to not too much interdependence in types

- and show that if strict ex post incentive compatibility and the contraction property hold, then

robust implementation is possible in the direct mechanism. If either fails, robust implementation

is impossible in any mechanism.
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To describe the results in more detail we return to the (generalized) second price auction. We

start with the private value environment, where it is well-known that the second price auction has

many equilibria in which the agents do not tell the truth, and in consequence the allocation is not

guaranteed to be e¢ cient. The reason is that truthtelling is only a weak best response and hence

just a dominant strategy, but not a strictly dominant strategy. The good news is that we can

easily modify the original auction so that truthful bidding becomes a strictly dominant strategy.

Fix " > 0. Now, with probability 1 � ", let us allocate the object to the highest bidder and have

him pay the second highest bid. With the complementary probability ", let us randomly and

uniformly pick an agent, and allocate the object to that agent with probability bi, a probability

that is proportional to his bid. Thus the "-allocation rule (parameterized by ") is de�ned by:

q��i (�) , (1� ") q�i (�) + "qi (�) ; (5)

with

qi (�) ,
�i
I
.

This modi�ed generalized second price auction is supported by an associated set of (expected)

transfers conditional on the reported type pro�le �:

y��i (�) =
"

2I
�2i + (1� ")

�
max
j 6=i

f�jg
�
q�i (�) : (6)

The transfer rule y��i (�) supports truthtelling as an equilibrium in strictly dominant strategies,

that is bi = �i forms a strictly dominant strategy in this mechanism. The strictness is established

by making the allocation responsive to the bid of agent i even if agent i is not the highest bidder.

It follows that whatever agent i�s beliefs or higher order beliefs about ��i are, he will have a strictly

dominant strategy to set bi = �i. In our language, for any " > 0, we can guarantee the robust

implementation of the almost e¢ cient, or "�e¢ cient allocation rule q��.8

Now consider the case of interdependent values  6= 0. We can modify the generalized second
price sealed bid auction to turn the ex post equilibrium into a strict ex post equilibrium, just as

we modi�ed the second price sealed bid auction. We construct the following allocation rule q��i (�).

8 In related modi�cations of the second price auction in a private value environment, Plum (1992) considers a

convex combination of a �rst-price and a second-price auction (with a small weight on the former) and Blume and

Heidhues (2004) introduce a small reserve price in the second price auction. Either of these modi�cations render

the equilibrium outcome unique, but in contrast to the present formulation, these modi�cations do not strengthen

truth-telling from a weakly dominant to a strictly dominant strategy.
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With probability 1� ", we have the winning bidder i pay:

max
j 6=i

f�jg+ 
X
j 6=i

�j ;

and with probability ", we randomly and uniformly pick an agent, and allocate the object to that

agent with probability bi, a probability that is proportional to his bid. In the event that agent i is

assigned the object, he then pays:
1

2
�i + 

X
j 6=i

�j :

Now, in this modi�cation of the generalized second price auction, the associated transfers can be

written as, in a generalization of (6):

y��i (�) =
"

2I
�2i +

"�i
I

0@X
j 6=i

�j

1A+ (1� ")
0@max

j 6=i

8<:�j + X
j 6=i

�j

9=;
1A q�i (�) : (7)

The social choice function in this modi�ed generalized second price auction is given by a pair

of allocation and transfer functions: f�� (�) = (q�� (�) ; y�� (�)). The net utility of agent i, given a

true payo¤ pro�le � and reported payo¤ pro�le �0, is explicitly given by:0@�i + X
j 6=i

�j

1A0@"
I

0@�0i + X
j 6=i

�0j

1A+ (1� ") q�i ��0�
1A

� "

2I
�02i �

"�0i
I

X
j 6=i

�0j � (1� ")

0@max
j 6=i

8<:�0j + X
j 6=i

�0j

9=;
1A q�i

�
�0
�
.

The net utility function is a linear combination of the e¢ cient allocation rule and the proportional

allocation rule. It is straightforward to compute the best response of each agent i, given a point

belief about the payo¤ type pro�le � and reported pro�le �0�i of the remaining agents. The best

response is linear in the true valuation and in the size of the misrepresentation
�
�j � �0j

�
, downwards

or upwards, of the other agents:

�0i = �i + 
X
j 6=i

�
�j � �0j

�
. (8)

From here, it follows that the reports of agent i and agent j are strategic substitutes if  > 0 and

strategic complements if  < 0. For example, with  > 0, if agent j increases his report, then in

response agent i optimally chooses to lower his report.

From (8), we can conclude that truthtelling indeed forms a strict ex post equilibrium. But even

though we have a strict ex post incentive compatible mechanism, we cannot guarantee the robust
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implementation of q��. In fact, we shall now show that the direct mechanism robustly implements

the e¢ cient outcome if and only if the interdependence is moderate,9 or

jj < 1

I � 1 .

Moreover, no mechanism, whether it is the direct mechanism or an augmented mechanism is able

to robustly implement the e¢ cient outcome if the interdependence is too large, or:

jj � 1

I � 1 .

This necessary and su¢ cient condition for robust implementation should be compared with the

necessary and su¢ cient condition for robust partial implementation, which we earlier showed to

require the single crossing condition, namely

 � 1:

As we analyzed truthtelling in the direct mechanism for all possible beliefs and higher-order beliefs,

all we had to do was to guarantee the incentives to reveal the private information, agent by agent,

while presuming truthtelling by other agents. Now, as we seek robust implementation, we cannot

suppose the truthtelling behavior of the other agents but rather have to guarantee it. We shall

obtain this guarantee by identifying restrictions on the rational behavior of each agent, and then

use these restrictions to inductively obtain further restrictions. More formally, we shall analyze the

outcome of the mechanism under rationalizability with incomplete information. An action, which

in the direct mechanism, simply constitutes a reported payo¤ type, is called incomplete information

rationalizable if it survives the process of iteratively elimination of dominated strategies. As ratio-

nalizability with complete information, rationalizability under incomplete information de�nes an

inductive process: �rst suppose that every payo¤ type �i could send any message mi; then, second,

delete those messages mi that are not a best response to some conjecture over pairs of payo¤ type

and messages (��i;m�i) of the opponents that have not yet been deleted. The inductive procedure

is then to repeat the second step until convergence is achieved.

We observe that the notion of incomplete information rationalizability is belief free as the

candidate action needs only to be a best response to some beliefs about the other agents actions and

payo¤ types. We can focus on the notion of incomplete information rationalizability because of the
9The importance of this moderate interdependence condition arose earlier in the work of Chung and Ely (2001)

who showed that it was su¢ cient for implementing the e¢ cient outcome in the unperturbed generalized second price

auction under iterated deletion of weakly dominated strategies.
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following epistemic result: a message mi can be sent by an agent with payo¤ type �i in an interim

equilibrium on some type space if and only if mi is "incomplete information rationalizable" for

payo¤ type �i. The equivalence between robust and rationalizable implementation is an incomplete

generalization of Brandenburger and Dekel (1987) and can be seen as a special case of the incomplete

information results of Battigalli and Siniscalchi (2003). It illustrates a general point well-known

from the literature on epistemic foundations of game theory: that equilibrium solution concepts

only have bite if we make strong assumptions about type spaces, i.e., we assume small type spaces

where the common prior assumption holds.

We now describe the inductive argument for rationalizability in the direct mechanism for the

single-unit auction. For concreteness, we shall assume here positive interdependence,  > 0, but

all the relevant arguments go through with negative interdependence, after suitably reversing the

signs. In the direct mechanism a message mi is simply a reported payo¤ type �0i. Each agent i has

some conjecture about the other agents true type pro�le ��i and and their reported type pro�le

�0�i. We denote such a conjecture by �i:

�i
�
��i; �

0
�i
�
2 �(��i ���i) .

We can then ask what is the set of reports that agent i might send for some conjecture �i
�
��i; �

0
�i
�

over his opponents� types ��i and reports �0�i in the k�th step of the inductive procedure. We
denote this set by �ki (�i). We restrict the conjectures �i

�
��i; �

0
�i
�
of agent i in step k to be of the

form that type �j can only be conjectured to send message �0j if it was rationalizable at step k� 1,
i.e. if �0j 2 �k�1i (�j).

We initialize the inductive process at step k = 0 by allowing all possible reports �0i (�i) = [0; 1].

In the context of the almost e¢ cient allocation rule f�� (�) = (q�� (�) ; y�� (�)) and the associated

ex post compatible transfer y��i (�), the expected payo¤ of agent i is quadratic in his report �
0
i. It

follows that the best response of agent i to a probability one conjecture about his opponents true

type and reported type pro�les to be
�
��i; �

0
�i
�
, is given by the linear best response �0i:

�0i = �i + 
X
j 6=i

�
�j � �0j

�
. (9)

Thus if he expects the other agents to underreport their type, i.e. �j � �0j > 0, then the best

response of agent i is to correct this by overreporting his type. We notice that the best response

has a self-correcting property. With the correction induced by the reported type �0i in (9), the
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reported valuation of agent i actually equals his true valuation:

�0i + 
X
j 6=i

�0i = �i + 
X
j 6=i

�
�j � �0j

�
+ 

X
j 6=i

�0i = �i + 
X
j 6=i

�j :

The best response (9) of agent i only corrects the valuation of agent i, the other reported valuation

continue to di¤er from the true valuations under the best response of agent i. The linear best

response property then leads to a set of best responses �ki (�i) in step k, which can be characterized

in terms of a lower and upper bound:

�ki (�i) =
h
�k
i
(�i) ; �

k
i (�i)

i
.

With the inductive procedure, the bounds
n
�k
i
(�i) ; �

k
i (�i)

o
in step k are determined by the re-

strictions identi�ed in round k � 1 :n�
��i; �

0
�i
�
: �0j 2 �k�1j (�j) ; 8j 6= i

o
.

The upper bound �
k
(�i) identi�es the largest rationalizable report by agent i with payo¤ type �i.

It is obtained by identifying a feasible point conjecture at which the sum of underreports of the

other agents, ,
P
j 6=i(�j � �0j), is maximized:

�
k
(�i) = �i +  max

f(�0�i;��i):�0j2�k�1j (�j); 8j 6=ig

X
j 6=i
(�j � �0j)g.

The largest rationalizable report for agent i, given his payo¤ type �i, arises under the conjecture

that the remaining agents maximally underreport relative to their true payo¤ type. But the lowest

reported type of payo¤ type �j is given by the lower bound obtained in the preceding step k � 1,
and thus using the lower bound �k�1

j
(�j) from step k � 1 explicitly, we get:

�
k
(�i) = �i +  max

��i2��i

X
j 6=i
(�j � �k�1j

(�j)))g.

Similarly, the lowest possible report of payo¤ type �i, the �maximal�underreport, emerges from

the point conjecture that the remaining agents are �maximally�overreporting relative to their true

type, thus:

�k
i
(�i) = �i +  max

��i2��i

X
j 6=i
(�j � �

k�1
j (�j))g.

Given the compactness of the payo¤ type set, in fact �i = [0; 1], we obtain explicit expressions for

the lower and upper bounds. In step k = 1, the conjectures about the other players are unrestricted,
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and so for every j:

max
�j2�j

(�j � �0j (�j))) = 1� 0 = 1;

and hence

�
1
(�i) = �i +  (I � 1) ;

and more generally we �nd that in step k the upper bound is given by

�
k
(�i) = �i + ( (I � 1))k ; (10)

and likewise the recursion for the lower bound yields:

�k (�i) = �i � ( (I � 1))k . (11)

We thus �nd that a reported payo¤ type �0i, di¤erent from the true type �i, can be eliminated for

su¢ ciently large k from the best response set, or

�0i 6= �i ) �0i =2 �k (�i) ;

provided that:

jj (I � 1) < 1, jj < 1

I � 1 . (12)

We then have a su¢ cient condition for robust implementation, which requires that the inter-

dependence among the agents is only moderate in this sense of the above inequality. The next

question then is whether the above su¢ cient condition is also a necessary condition for robust

implementation. Indeed, suppose that the parameter of interdependence, , were larger than the

inequality (12) requires, or:

 � 1

I � 1 .

We can use the richness of the possible type space T to identify speci�c types, in particular speci�c

belief types, under which the interim expected valuations of any two payo¤ types �i and �0i, with

�i 6= �i, are indistinguishable. Thus suppose that each payo¤ type �i is convinced, i.e. has the

point conjecture that the payo¤ type �j of agent j is given by:

�j ,
1

2
+

1

 (I � 1)

�
1

2
� �i

�
; 8j:

If we now compute the interim expected value of the object for i under the above belief, we �nd

that the interim expected value of the object for agent i is in fact independent of �i :

�i +  (I � 1)
�
1

2
+

1

 (I � 1)

�
1

2
� �i

��
=
1

2
(1 +  (I � 1)) .
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It then follows immediately that the payo¤ types cannot be distinguished in the direct mechanism,

as each payo¤ type �i assigns the same expected value to the object given his private information.

We say that the payo¤ types are indistinguishable, and in fact they are indistinguishable in any,

direct or indirect, mechanism. We have thus established that in the single unit auction, robust

implementation is possible (using the modi�ed generalized VCG mechanism) if

jj < 1

I � 1 ; (13)

and conversely that robust implementation is impossible (in any mechanism) if

jj � 1

I � 1 .

This result has to be contrasted with robust incentive compatibility condition, namely the ex post

incentive compatibility, which required (only) that  < 1.

In chapter 3, we generalize the property of moderate interdependence (13) and refer to it more

generally as a �contraction property�, as it is suggested by the contraction like property of the lower

and upper bounds, (10) and (11), respectively. We assume that preferences are single crossing with

respect to a one dimensional aggregator of agents�types. A "deception" speci�es for each payo¤

type of each agent, a set of payo¤ types that might be misreported. Our contraction property

requires that for any deception, there is at least one misreport of one type of one "whistleblowing"

agent for whom the misreports of others will not reverse the sign of the impact of the whistleblower�s

misreport on his preferences. The robust implementation result that we established above in the

context of the single unit auction can now be stated for the general environment as follows. Robust

implementation is possible in the direct (or any augmented) mechanism if and only if strict ex post

incentive compatibility and the contraction property hold.

A noteworthy aspect of the above result is that the strict separation between possibility and

impossibility not only holds for the direct mechanism but for any other, possibly augmented mech-

anism. To wit, the literature on implementation frequently uses �augmented mechanism�to obtain

su¢ cient conditions for implementation. Here, the robustness requirement implies that augmented

mechanism, relative to the simple mechanism in the form of the direct mechanism loose their force.

Hence, the more stringent requirements of robust implementation reduce the role of complex and

overly sensitive mechanisms.

The above analysis also demonstrates that while robust implementation is a strong requirement,

it is weaker than dominant strategy implementation. After all, in the environment with interde-

pendent values, a dominant strategy equilibrium does not even exist, nonetheless truthtelling in
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the direct mechanism is an ex post equilibrium, and as we showed is indeed the unique incomplete

information rationalizable outcome.

As we saw in the example of the single unit auction, the �contraction property�had a natural

interpretation in a linear valuation environment. This interpretation remains, even in a nonlinear

utility environment, provided that the aggregator remains linear. For example, a linear aggregator

for each agent i might be of the form:

hi (�) = �i +
X
j 6=i

ij�j ;

where each weight ij measures the importance of payo¤ type j for preference of agent i. In the

case of the linear aggregator, we can form an interaction matrix based on the weights ij across all

agent pairs i and j:

� ,

26666664
0 j12j � � � j1I j

j21j 0
...

...
. . .

��I�1I ��
jI1j � � �

��II�1�� 0

37777775 :

We can then give a generalized version of the moderate interdependence condition in terms of

the interaction matrix �. In chapter 3, we show that the interaction matrix has the contraction

property if and only if largest eigenvalue of the interaction matrix is less than 1.

5.3 The Robustness of Robust Implementation

In chapter 9, Moritz Meyer-ter-Vehn and Morris show that if there is a approximate common

knowledge that we are in an environment close to a strict version of that of chapter 3 (i.e., with one

dimensional interdependent values under an aggregator function and a uniformly strict contraction

property, and uniformly strict ex post incentive compatibility), then the social choice correspon-

dence consisting of almost e¢ cient allocations can be robustly implemented.

This result can be illustrated by the two dimensional perturbation of the single good allocation

problem we discussed in section 4 of this introduction. Thus suppose again that the payo¤ type of

agent i is given by �i = (�i1; �i2) 2 [0; 1]2 and that the value of the object to agent i is, as earlier
in (4):

vi (�) = �1i + 
X
j 6=i

�j1 + "

IY
j=1

�j2
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with " > 0 and  < 1
I�1 . It is an implication of the lower hemicontinuity of rationalizable outcomes

that in the modi�ed generalized second price auction of chapter 3, types (�i1; �i2) will have an

incentive to bid something in the neighborhood of �i1. The social choice correspondence of almost

e¢ cient allocations of the private good is therefore almost robustly (fully) implemented.

While chapter 9 delivers a robust full implementation result - by generalizing arguments in

chapter 3 - the purpose of chapter 9 is only to deliver a partial implementation result. This raises

the question of whether it is possible to get partial robust implementation of the almost e¢ cient

allocations (without full robust implementation) without the moderate interdependence condition

of  < 1
I�1 . While the argument presented in chapter 9 relies directly on the arguments of chapter

3, there is an important connection between partial and full implementation identi�ed by Oury

and Tercieux (2011), which might indicate that there is a strong link between partial and full

implementation. They show that requiring continuous, but partial, implementation in complete or

incomplete information settings implies the necessity of full implementation.

5.4 Robust Implementation in the General Mechanism

Chapter 3 restricted attention to a class of well-behaved environments. In contrast, in chapter 4, we

characterize robust implementation in general environments with general mechanisms. By robust

implementation we mean that every equilibrium on every type space T generates outcomes con-

sistent with the social choice function f . As we seek to identify necessary and su¢ cient conditions

for robust implementation, conceptually there are (at least) two approaches to obtain the condi-

tions. One approach would be to simply look at the interim implementation conditions for every

possible type space T and then try to characterize the intersection or union of these conditions for
all type spaces. But in chapter 4, we focus our analysis on a second, more elegant, approach. We

�rst establish an equivalence between robust and rationalizable implementation and then derive

the conditions for robust implementation as an implication of rationalizable implementation. The

advantage of the second approach is that after establishing the equivalence, we do not need to

argue in terms of large type spaces, but rather derive the results from a novel argument using the

iterative deletion procedure associated with rationalizability. This equivalence was already used in

chapter 3, but for the arguments in chapter 4 we allow for general (perhaps in�nite and non-compact

mechanisms), and thus new versions of the equivalence results must be developed.

As suggested by the analysis in the direct mechanism, ex post incentive compatibility and a

robust monotonicity condition are necessary and almost su¢ cient for robust implementation. And,
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in the aggregator single crossing environment of chapter 3, robust monotonicity is equivalent to the

contraction property.

5.5 Rationalizable Implementation

In chapters 3 and 4, we establish necessary and su¢ cient conditions for �robust implementation�in

environments with incomplete information. In particular, we showed that a social choice function f

can be interim (or Bayesian) equilibrium implemented for all possible beliefs and higher order beliefs

if and only if f is implementable under an incomplete information version of rationalizability. These

results prompted us to re�ne and further develop the rationalizability arguments in environments

with complete information. In chapter 10, we (together with Olivier Tercieux) establish stronger

necessary and su¢ cient conditions than in the incomplete information environment and show that

these conditions are almost equivalent to the Nash equilibrium implementation conditions when

the social choice function is responsive (a social choice function is responsive if distinct states imply

distinct social choices). With respect to the necessary conditions, we strengthen the monotonicity

condition, due to Maskin (1999), from a weak inequality to a strict inequality.

Writing the strict Maskin monotonicity condition in the context of the single good example, we

say that a social choice function f satis�es strict Maskin monotonicity if f (�) 6= f
�
�0
�
implies that

for some i; bqi and byi,0@�0i + X
j 6=i

�0�j

1Abqi + byi >
0@�0i + X

j 6=i
�0�j

1A qi (�) + yi (�) ;

and 0@�i + X
j 6=i

��j

1A qi (�) + yi (�) >

0@�i + X
j 6=i

��j

1Abqi + byi:
The latter condition requires that if the socially desired alternatives di¤er in state � and �0, then

there must exist an agent i and a reward allocation (bqi; byi) such that if the true state were �0 and
agent i were to expect the other agents to claim that the state is �, i could be o¤ered a reward

(bqi; byi) that would give him a strict incentive to �report� the deviation of the other agents, but

that the reward y would not tempt him if the true state were in fact �. The strengthening of the

monotonicity condition, commonly referred to as Maskin monotonicity, that we require is that the

reward y gives agent i a strict incentive to �report truthfully�if the true state were �. In the single

good example, the e¢ cient allocation rule f� (�) = (q� (�) ; y� (�)) fails Maskin monotonicity and
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thus strict Maskin monotonicity, because the allocation is on the boundary, but nearly e¢ cient

rules such as f�� (�) = (q�� (�) ; y�� (�)), de�ned earlier by (5) and (6), are both Maskin monotonic

and strict Maskin monotonic.

Given that we are stating the result in terms of a social choice function, rather than a so-

cial choice correspondence, the notion of full implementation is akin to requiring that the game

(generated by the mechanism) has a unique equilibrium (outcome). The implementation results

in chapter 10 then suggest that su¢ cient conditions to get a unique rationalizable outcome are

similar to those required for a unique Nash equilibrium outcome, provided that the social choice

function is responsive. This is noteworthy as the necessary and almost su¢ cient condition of

Maskin monotonicity is much weaker than the well-known conditions under which there are close

relationships between the uniqueness of Nash equilibrium and the uniqueness of the rationalizable

outcomes, such as supermodular or concave games. The present results indicate the strength of the

implementation approach to reduce the number of equilibria. By using in�nite message spaces and

stochastic allocations, we strengthen the positive implementation results under Nash equilibrium

to the weaker solution concept of rationalizability.

The techniques by which we identify necessary and almost su¢ cient "monotonicity" conditions

for robust implementation under incomplete information in chapter 4 and rationalizable implemen-

tation under complete information in chapter 10 can be extended to identify necessary and almost

su¢ cient monotonicity conditions for implementation in rationalizable strategies in standard incom-

plete information environments. These conditions are related to but stronger than the Bayesian

monotonicity conditions identi�ed by Postlewaite and Schmeidler (1986) and Jackson (1991) for

equilibrium implementation under incomplete information. These conditions are developed and

used in Oury and Tercieux (2011).

5.6 The Role of the Common Prior

In the presentation of the results thus far, we did not place any restrictions on the agents�beliefs

and higher order beliefs. In chapter 5, we investigate the impact of restricting attention to common

prior type spaces.

We recall that in the single unit auction model, the best response of agent i was of the linear

form:

�0i = �i + 
X
j 6=i

�
�j � �0j

�
. (14)

If  < 0, the negative informational interdependence gives rise to strategic complementarity in the
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reporting of the payo¤ types in the direct mechanism. Conversely, positive informational interde-

pendence in agents�types, or  > 0 gives rise to strategic substitutability in direct mechanism.

The relationship between the informational interdependence and the nature of the strategic

interaction then allows us to o¤er sharp predictions on the role of the common prior. With strategic

complements, we know that in games of complete information, there is no gap between Nash

equilibrium and rationalizable actions in the sense that there are multiple equilibria if and only if

there are multiple rationalizable actions. This is a well-known result which appeared prominently

in Milgrom and Roberts (1990). Now, with the linear best response property (14), this result

remains true with the appropriate solution concepts for games with incomplete information. In

particular, given the restriction to a common prior type space, the behavior under incomplete

information rationalizability is equivalent to behavior in the incomplete information correlated

equilibrium. In other words, there is a unique Bayes Nash equilibrium if and only if there is unique

incomplete information rationalizable outcome. Thus, provided that we are considering mechanism

with strategic complementarities, whether or not we restrict attention to common prior type spaces

makes no di¤erence, and in particular the contraction property continues to play the same role as

a necessary and su¢ cient condition for robust implementation, as described earlier.

On the other hand, if we consider environments that give rise to strategic substitutability in

the direct mechanism, then the presence of a common prior facilitates the robust implementation.

Here, it is possible to robustly implement the allocation problem, even if the contraction property

fails. In particular, in the single unit auction model we can allow the parameter of interdependence

 to satisfy:
1

I � 1 <  < 1;

and still guarantee robust implementation in the direct mechanism if we restrict attention to type

spaces satisfying the common prior assumption. This leads to the following result in chapter 5. If

the reports are strategic complements, then robust implementation with a common prior implies

robust implementation without a common prior. If the reports are strategic substitutes, then robust

implementation with a common prior fails to imply robust implementation without a common prior.

5.7 Dynamic Mechanisms

All the results discussed so far have dealt with static mechanisms. In chapter 6, we analyze the

modi�ed generalized second price auction in a dynamic mechanism. We consider the ascending (or

English) auction in a complete information environment. We ask whether the sequential mechanism
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o¤ers advantages relative to the static, direct revelation, mechanism in terms of achieving robust

implementation. The advantage of the sequential mechanism is the ability to reveal and communi-

cate private information in the course of the mechanism. The revelation of private information can

decrease the uncertainty faced by the bidders and ultimately improve the �nal allocation o¤ered

by the mechanism. In auctions, the source of the uncertainty can either be payo¤ uncertainty (un-

certainty about payo¤ relevant information) or strategic uncertainty (uncertainty about the bids of

the other agents). We show that the e¢ cient outcome is fully implemented even when

1

I � 1 <  < 1.

Recall that in this setting, we know that full robust implementation (with incomplete information)

is not possible under any mechanism and that full implementation does not occur in this direct

mechanism even with complete information. Thus we show that in at least some settings, sequential

re�nements help achieve full implementation.

This result is in the spirit of the classical results of Moore and Repullo (1988) showing the

possibility of full implementation of social choice functions even when Maskin monotonicity fails, if

subgame perfection is used as a solution concept within the dynamic mechanism. Aghion, Fuden-

berg, Holden, Kunimoto, and Tercieux (2009) show that full implementation is no longer possible,

even under subgame perfection, if the mechanism is required to work also for types close to complete

information.

More closely related to our work in chapter 6, Mueller (2009) and Penta (2011) examine the

robustness of dynamic mechanisms in environments with incomplete information. The results are

sensitive to the sequential re�nement used in this context, with Mueller (2009) obtaining very

permissive results with a stronger re�nement and Penta (2011) getting less permissive results with

a weaker re�nement. Our approach uses a version of Penta�s weaker re�nement, but results in Penta

(2011) suggest that our positive results in chapter 6 do rely heavily on the complete information

assumption.

5.8 Virtual Implementation

In complete as well as in incomplete information settings, the relaxation from "exact" implemen-

tation to "virtual" implementation leads to a signi�cant weakening of the necessary conditions for

implementation. Virtual implementation, as initially de�ned by Matsushima (1988) and Abreu

and Sen (1991), requires that the social choice function arises with probability arbitrarily close to
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1, but not necessarily equal to 1. In chapter 7, we characterize robust virtual implementation in

general environments with well-behaved, �nite or compact, mechanisms. We show that ex post

incentive compatibility and a robust measurability condition are necessary and almost su¢ cient

for robust virtual implementation. Robust measurability can also be naturally interpreted as a

restriction on the amount of interdependence of agents�types. But it neither implies nor is implied

by robust monotonicity. However, in the aggregator environment of chapter 3, robust measurability

and robust monotonicity are both equivalent to the contraction property and the only impact of

relaxing "exact" to "virtual" robust implementation is the relaxation from strict ex post incentive

compatibility in chapter 3 to weak ex post incentive compatibility.

With respect to our leading example, the single unit auction, the transition from the generalized

second price auction to the modi�ed second price auction, can now be interpreted as the virtual

implementation of the generalized second price auction. After all, in the modi�ed generalized second

price auction, the allocation of the generalized second price auction is only chosen with probability

1�", for some " > 0. The key result in chapter 7 is a characterization of when two payo¤ types are
strategically distinguishable in the sense that they can be guaranteed to behave di¤erently in some

mechanism. The condition of robust measurability now requires that strategically indistinguishable

types are treated the same by the social choice function.

We now provide an exact characterization of strategic distinguishability in the context of the

single-unit auction. If we have sets of payo¤ types, 	1 and 	2, of agents 1 and 2, respectively, we

say that the set 	2 separates the set 	1 if knowing agent 1�s preferences and knowing that agent

1 is sure that agent 2�s type is in 	2, we can rule out at least some payo¤ type of agent 1 in 	1.

Now consider an iterative process where we start, for each agent, with all subsets of his payo¤

type set, namely the power set of �1, 2�1 , and - at each stage - delete subsets of payo¤ types that

are separated by every remaining subset of types of his opponents. A pair of types are said to be

pairwise inseparable if the set consisting of that pair of types survives this process. We show that

two types are strategically indistinguishable if and only if they are pairwise inseparable.

If there are private values and every payo¤ type is value distinguished, then every pair of types

will be pairwise separable and thus strategically distinguishable. Thus strategic indistinguishability

arises only when the degree of interdependence in preferences is large. We can illustrate this within

the context of our single-unit auction example. As the utility function ui (�) is linear in the monetary
transfer for all types and all agents, the separability must come from di¤erent valuations of the

object. For given type set pro�le 	�i of all agents but i, we can identify the set of possible
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(expected) valuations of agent i with type �i by writing:

Vi (�i;	�i) =

8<:vi 2 R+
������9�i 2 �(	�i) s.t. vi = �i + 

X
��i2	�i

�i (��i)
X
j 6=i

�j

9=;
=

24�i + X
j 6=i

min	j ; �i + 
X
j 6=i

max	j

35 , (15)

where we write with minor abuse of notation, min	j and max	j to identify the smallest and

largest real number in the set 	j , respectively. Now we say that 	�i separates 	i if and only if\
�i2	i

Vi (�i;	�i) = ?.

By the linearity of the valuation, this is equivalent to requiring that

Vi (max	i;	�i) \ Vi (min	i;	�i) = ?.

By (15), this will hold if and only if

max	i + 
X
j 6=i

min	j > min	i + 
X
j 6=i

max	j .

We can rewrite the inequality as

max	i �min	i > 
X
j 6=i

(max	j �min	j) .

Thus 	�i separates 	i if and only if the di¤erence between the smallest and the largest element in

the set 	i is larger than the weighted sum of the di¤erences of the smallest and the largest element

in the remaining sets 	j for all j 6= i. Conversely, 	�i does not separate 	i if the above inequality

is reversed, i.e.,

max	i �min	i � 
X
j 6=i

(max	j �min	j) . (16)

We write �ki for the kth level inseparable sets of player i, and we have:

�0i = 2
�i ,

and de�ne an inductive process by:

�k+1i =
n
	i 2 �ki

��� 	�i does not separate 	i, for some 	�i 2 �k�io ;
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and a (�nite) limit type set pro�le is de�ned by:

��i =
\
k�0

�ki .

Now, we can identify the k� th level inseparable set for the single unit auction example as follows.
By (16), we have

�ki =

8<:	i 2 �ki
������max	i �min	i � 

X
j 6=i

max
	j2�kj

(max	j �min	j)

9=; ;

Now by induction, we have that

�k+1i =
n
	i

���max	i �min	i � ( (I � 1))ko :
Thus if  (I � 1) < 1, ��i consists of singletons, ��i = (f�ig)�i2[0;1], while if  (I � 1) � 1, �

�
i consists

of all subsets, ��i = 2
[0;1]. In consequence, we �nd that if  < 1

I�1 , so that interdependence is not

too large, every distinct pair of types are pairwise separable. If on the other hand,  � 1
I�1 , then

every pair of payo¤ types are pairwise inseparable.

While our su¢ ciency argument for robust virtual implementation builds on Abreu and Mat-

sushima (1992), the interpretation of our results ends up being rather di¤erent. In a standard

Bayesian setting, the measurability condition of Abreu and Matsushima (1992) is arguably a weak

technical requirement. As a result, the �bottom line�of the virtual implementation literature has

been that full implementation, i.e., getting rid of undesirable equilibria, does not impose any sub-

stantive constraints beyond incentive compatibility, i.e., the existence of desirable equilibria. By

requiring the more demanding, but more plausible, robust formulation of incomplete information,

we end up with a condition that is substantive (imposing signi�cantly more structure in interde-

pendent value environments than incentive compatibility) and easily interpretable.

A conclusion that emerges from the chapters 3, 4 and 7, and that we developed here within

the single good example, is that we keep ending up with the same moderate interdependence

condition,  < 1
I�1 , as a necessary and su¢ cient condition for full implementation. In general,

though, the robust monotonicity condition of chapter 4 (and its contraction property version in

chapter 3) neither implies nor is implied by robust measurability, as we show by examples in chapter

7. Kunimoto and Serrano (2010) present a detailed discussion of these conditions and develop an

argument as to why robust monotonicity should be seen as the weaker of the independent conditions.

Artemov, Kunimoto, and Serrano (2010) characterize an analogue of robust measurability under

local robustness conditions and argue that it is a weak condition.
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In section 6.3 of chapter 7, we do brie�y re-consider the single good example under a local

robustness condition: suppose that in the single good example, each agent puts probability mass

1 � � on a uniform distribution over the payo¤ types of other agents, but that � probability may

be allocated to any beliefs. Thus if � = 0, we have a standard payo¤ type space with independent

types and if � = 1 we have the universal type space that is the focus of this book. We show that

virtual implementation is possible if and only if � < 1
I�1 . In this sense, at least within the single

good example, the path to global robustness through local robustness is smooth.

6 Open Issues

In most of the work discussed, we de�ned the allocation problem in terms of social choice function or

correspondence, which speci�ed for each pro�le of payo¤ types � a speci�c allocation. Importantly,

the social choice function was de�ned independent of the beliefs of the agents and/or the principal.

While this speci�cation accommodates many allocation problems, in particular the socially e¢ cient

allocation, it cannot represent others, such as revenue maximizing allocations. Here, the allocation

rule typically depends on the beliefs of the principal or the agents, as the optimal allocation relies

on trading o¤ outcomes across di¤erent states, where the trade-o¤s have to be evaluated with the

likelihood of each state, and hence requires the use of beliefs. In chapter 11, Karl Schlag and

Bergemann suggest a possible approach to analyze revenue maximization problems in the absence

of prior beliefs. They consider the classic monopoly problem of a seller who o¤ers a homogenous

good to buyers with privately known valuations. In the absence of a (common) prior, we require

the seller to minimize his expected regret through an optimal pricing policy. The resulting pricing

policy hedges against the uncertainty with respect to the true distribution through a uniquely

determined randomized pricing policy. And while the resulting mixed strategy can be interpreted

as the optimal pricing rule against a speci�c prior distribution, a random pricing policy is never the

uniquely optimal policy given a known prior. In fact, against a known prior, there always exists

an optimal pricing rule that is deterministic. In ongoing work, Bergemann and Schlag (2008b)

consider the problem of optimal pricing when the seller has some prior information. In this version

of the problem the seller knows that demand will be in a small neighborhood of a given model

distribution. We characterized the optimal pricing policy under two distinct, but related, decision

criteria with multiple priors: (i) maximin expected utility and (ii) minimax expected regret. The

resulting model can be interpreted as a locally robust version of the classic problem of optimal
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monopoly pricing.

A second, and related, limitation of the present work is that we were mostly concerned with

"global" notions of robustness. We allowed for any beliefs and higher order beliefs consistent

with the existing model. It would be of interest to look at "local" notions of robustness, where

more limited perturbation of the types and information structures are considered. For example, in

ongoing work, Bergemann and Morris (2011c), we consider games with incomplete information and

ask what predictions can be made with the knowledge of a common prior over the payo¤ relevant

states, and importantly in the absence of any additional information about the private information,

the type space, of the agents. Thus, we consider a common prior about the relevant state, but are

agnostic with respect to the beliefs and higher-order beliefs of the agents. In Bergemann and Morris

(2011c), we use the structure of quadratic payo¤s, and hence linear best response to analyze the

set of possible equilibrium distributions in terms of moment restrictions. In Bergemann and Morris

(2011a), we develop the associated equilibrium concept, which we refer to as Bayes correlated

equilibrium for general �nite action, �nite agent games with incomplete information and establish

how the equilibrium set depends on and changes with the private information of the agents.

A similar approach would seem to have promise in the realm of mechanism design as well.

For example, in a �rst price auction, one might attempt to �nd the set of possible equilibrium

bid distributions that are generated by all information structures consistent with a given common

prior over valuations. Likewise, one might investigate, the nature of the optimal auction when the

principal has only limited information about the nature of the private information of the agents.
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7 Appendix: Book Table of Contents

The planned chapter ordering of the book is:

1. Robust Mechanism Design (Bergemann and Morris (2005))

2. Ex Post Implementation (Bergemann and Morris (2008a))

3. Robust Implementation in Direct Mechanisms (Bergemann and Morris (2009a))

4. Robust Implementation in General Mechanisms (Bergemann and Morris (2011b))

5. The Role of the Common Prior in Robust Implementation (Bergemann and Morris (2008b))

6. An Ascending Auction for Interdependent Values: Uniqueness and Robustness to Strategic

Uncertainty (Bergemann and Morris (2007))

7. Robust Virtual Implementation (Bergemann and Morris (2009b))

8. Multidimensional Private Value Auctions (Fang and Morris (2006))

9. The Robustness of Robust Implementation (Meyer-Ter-Vehn and Morris (2011))

10. Rationalizable Implementation (Bergemann, Morris, and Tercieux (2011))

11. Pricing without Priors (Bergemann and Schlag (2008a))
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