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Abstract

This paper shows that moment inequality tests that are asymptotically similar on

the boundary of the null hypothesis exist, but have very poor power. Hence, existing

tests in the literature, which are asymptotically non-similar on the boundary, are not

de�cient. The results are obtained by �rst establishing results for the �nite-sample

multivariate normal one-sided testing problem. Then, these results are shown to have

implications for more general moment inequality tests that are used in the literature on

partial identi�cation.

Keywords: Moment inequality, one-sided test, power, similar, test.

JEL Classi�cation Numbers: C12, C15.



1. Introduction

This paper is concerned with tests of moment inequalities. This has been an active

area of econometrics recently because of the usefulness of such tests in carrying out

inference in models that may be only partially identi�ed. They are also useful in other

contexts, see below. All of the tests proposed in the econometrics literature on moment

inequalities are asymptotically non-similar on the boundary (in a uniform sense) and

hence are asymptotically biased. This raises the question of whether asymptotically

similar-on-the-boundary tests exist and have desirable power properties.

We answer this question by �rst posing it in a �nite-sample setting under the assump-

tion of normality. Then, results for this case are converted into results for the asymptotic

problem. The relevant �nite-sample problem is that of testing a multivariate one-sided

null hypothesis based on a normal random vector with known covariance matrix. Sup-

pose X � N(�;�); where X;� 2 Rp and � 2 Rp�p is a known positive-de�nite matrix.
The hypotheses of interest are

H0 : � � 0 and H1 : � � 0: (1.1)

In this paper, we show that there exist similar-on-the-boundary tests of H0; but

that their power properties are very poor in the sense that their power against some

alternatives that are arbitrarily far from the null is equal to their size. These results

are established using the properties of complete su¢ cient statistics. Then, we show that

these results imply analogous asymptotic results for tests of moment inequalities. We

conclude that existing moment inequality tests are not de�cient due to their property

of asymptotic non-similarity on the boundary of the null. Rather, any test with good

overall power necessarily must be asymptotically non-similar on the boundary.

In some cases that arise in the moment inequality literature, the matrix � that arises

is singular. For example, this occurs in the missing data example in Imbens and Manski

(2004) because the lower and upper bounds are determined by the same random variable.

Also see Stoye (2009), whose �super-e¢ cient�case corresponds to a singular matrix �

asymptotically. In such cases, the results of this paper do not apply.1

The results of this paper are relevant not just to the partial-identi�cation moment

inequality literature. They also apply to (asymptotic) tests of (i) stochastic dominance,

(ii) model superiority based on predictive performance, see Hansen (2005), (iii) concavity

1This is not true of all, or even most, missing data problems.
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and other restrictions in models of consumer behavior and producer technology, and (iv)

multiperiod inequalities due to liquidity risk premiums in �nancial models. See Chen

and Szroeter (2009) for references concerning these applications.

Now we discuss some related literature. An early paper by Fraser (1952) shows

that for X � N(�; Ip) no upper con�dence bound for � = maxf�1; :::; �pg of the form
(�1; g(X)] exists whose coverage probability is 1 � � for all � 2 Rp; under some

monotonicity restrictions on g(�): Upper con�dence bounds for maxj�p �j of the form
(�1; g(X)] are obtained by inverting tests of H�

0 : � � 0 versus H�
1 : � < 0:2 These

hypotheses are not the same as the hypotheses in (1.1). For example, for p = 2; H0 can

written as H0 : �1 � 0 & �2 � 0; whereas H�
0 is H

�
0 : �1 � 0 or �2 � 0: Hence, Fraser�s

(1952) results do not apply to the hypotheses of interest in the moment inequality

literature in econometrics that is concerned with partial identi�cation.3

The paper by Blumenthal and Cohen (1968) is related to the present paper, but

it focuses on estimators, not tests. Blumenthal and Cohen (1968) establish the non-

existence of unbiased estimators of h(�) = minf�1; �2g when X � N(�; I2): Hirano and
Porter (2012) provide results that encompass this result. Their results apply when (i)

X � N(�;�) for known, positive-de�nite, p� p variance matrix �; (ii) h(�) is any non-
di¤erentiable function of �; (iii) unbiased or quantile-unbiased estimators are considered,

and/or (iv) the problem of interest has a limit experiment of the form just speci�ed.

These results can be used to establish the non-existence of mean- and quantile-unbiased

estimators of the endpoint of an identi�ed set based on moment inequalities. The results

of the present paper also can be used to establish the non-existence of quantile-unbiased

estimators of the endpoint of an identi�ed set based on moment inequalities, see Sections

3 and 4. Asymptotically half-median-unbiased estimators of identi�ed sets have been

considered in Andrews and Shi (2007) and Chernozhukov, Lee, and Rosen (2008). The

2For a parameter � 2 R and data vector Y; an upper con�dence bound of the form (�1; L(Y )] can
be constructed by inverting one-sided tests of the form H0 : � � �� versus H1 : � < �� for arbitrary
�� 2 R: For example, if one observes Y � N(�; 1); then a test of H0 : � � �� versus H1 : � < ��

is a test that rejects H0 when Y is small. One rejects H0 if Y � �� < z� or one accepts H0 if
�� � Y � z� = Y + z1��: The latter yields the upper con�dence bound (�1; Y + z1��]: Analogously,
the tests that correspond to the upper con�dence bound (�1; g(X)] of Fraser (1952) for � = maxj�p �j
are tests of H�

0 : maxj�p �j � a versus H�
1 : maxj�p �j < a for a 2 R; which is equivalent to H�

0 : � � 0
versus H�

1 : � < 0 when a = 0:
3Fraser (1952) also considers con�dence intervals [h(X); g(X)] for which P�(h(X) � minj�p �j �

maxj�p �j � g(X)) � 1��: Note that [h(X); g(X)] is not a two-sided con�dence interval for maxj�p �j :
The hypotheses that correspond to the lower bound h(X) on minj�p �j are analogous to the hypotheses
for the upper bound g(X) on maxj�p �j : In consequence, Fraser�s (1952) results for con�dence intervals
of this type also are not relevant to the testing problem in (1.1).
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results just mentioned imply that asymptotically (fully) median-unbiased estimators do

not exist.

The results of Hirano and Porter (2012) also have implications for inference. Their

results show that there exist no locally asymptotically similar one-sided con�dence inter-

vals for parameters of the form minf�1; :::; �pg under their conditions. Their con�dence
intervals are restricted to be of the form (�1; T ] or [T;1); where T is some possibly-
randomized statistic. Although natural, this restriction rules out con�dence intervals

that are disconnected, bounded above and below, and/or randomized in complicated

ways. In contrast, our testing results (and corresponding con�dence set results) place

no restrictions on the form of the test (or corresponding con�dence interval). In conse-

quence, instead of the non-existence result in Hirano and Porter (2012), we obtain an

existence result for a test that is similar-on-the-boundary, but also show that it and all

other similar-on-the-boundary tests have very poor power. Note that the methods of

proof in Hirano and Porter (2012) and the present paper are quite di¤erent.

The results of this paper stand in contrast somewhat to results in the weak instru-

ments (IV�s) literature for the linear IV regression model. In the weak instruments

literature, it has been shown that standard tests, such as the likelihood ratio test based

on a �xed critical value, are not asymptotically similar. Nevertheless, asymptotically

similar tests exist, such as the conditional likelihood ratio test which employs the like-

lihood ratio statistic and a data-dependent critical value, see Moreira (2003, 2009). In

addition, it has been shown that the latter test has very good power properties, see

Andrews, Moreira, and Stock (2006, 2008). In the testing problems considered here,

however, tests that are similar on the boundary have poor power. See Moreira and Mor-

eira (2011) for recent results concerning tests that maximize weighted average power

among similar tests for a broad class of models.

The remainder of the paper is organized as follows. Section 2 motivates interest

in similar-on-the-boundary tests. To most clearly elucidate the results of the paper

and their proof, Section 3 considers the bivariate normal X case with known variance

matrix I2: Section 4 generalizes the results to the �nite-sample case of real interest for

the asymptotics of moment inequality tests, which is the p-variate case with known

positive-de�nite covariance matrix �: Finally, Section 5 develops the implications of the

preceding sections for general moment inequality tests, which may involve non-normal

random variables and unknown covariance matrix.
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2. Motivation

We now provide motivation for interest in similar-on-the-boundary tests from a power

perspective. For simplicity, suppose � = Ip: For illustrative purposes, consider the LR

test statistic for testing the hypotheses in (1.1). When � = Ip; it equals

LR =

pX
J=1

X2
j 1(Xj < 0): (2.1)

If one uses a non-data-dependent critical value, say cv�; where � is the signi�cance

level, then the least-favorable null parameter value is � = 0: This critical value yields a

test that is markedly non-similar on the boundary of the null hypothesis. For example,

for � = :05 and all � = (0;m2; :::;mp)
0 2 Rp with mj 2 [1:5;1) for 2 � j � p; the

��xed-critical-value� LR test has null rejection probabilities in [:020; :021] for p = 2;

in [:0029; :0032] for p = 5; and in [:00038; :00043] for p = 10:4 Note that these null

rejection probabilities are much less than the signi�cance level :05 and decrease rapidly

as p increases.

These results show that the bias of the LR test can be substantial. In consequence,

the LR test has poor power against alternatives of the form � = (�c;m2; :::;mp)
0 2 Rp

for c > 0 and mj 2 [1:5;1) for 2 � j � p: More generally, the LR test has relatively low
power for alternatives with some non-violated inequalities (SNVI), i.e., � vectors with

some negative elements and some elements that are positive and moderately large.

The reason for the non-similarity on the boundary is that the least-favorable critical

value is too large when some elements of � are positive and moderately large because

the corresponding elements of X do not contribute to the test statistic LR (with high

probability) or its distribution. Thus, the question arises: Can the critical value be

altered in a data-dependent way to reduce, or even eliminate, the non-similarity on the

boundary of the test and to improve its power against SNVI alternatives?

A moderately large positive value of X1; say, indicates that �1 > 0: So, in this case

one would want to use a critical value that is smaller than otherwise. This motivates

consideration of tests of the form: Reject H0 if

LR > m(X); (2.2)

4These results are determined via simulation using 100; 000 simulation repetitions.
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where the data-dependent critical value m(X) satis�es sup�2Rp+ P (LR > m(X)) � �:

A function m(x) that reduces the magnitude of non-similarity on the boundary and

improves the power against SNVI alternatives has the property that it is decreasing in

xj given x�j (which equals x with xj deleted) for xj large. For example, for p = 2; a

good choice of function m(x) to reduce non-similarity and bias is one that decreases

in x1 or x2 for large enough values and asymptotes to a value slightly larger than z21��
(< �21;1��) as x!1:
The �nite-sample versions of the tests in Andrews and Soares (2010), Bugni (2010),

Canay (2010), and Andrews and Barwick (2012) all are of the form in (2.2). These tests

have noticeably reduced non-similarity on the boundary of the null compared to the

�xed-critical-value LR test and higher power against SNVI alternatives. However, none

is similar on the boundary. This raises the question. Do tests that are similar on the

boundary exist? If so, do they have good power properties? These are the questions

addressed in this paper.

3. Independent Bivariate Normal Mean Model

In this section, we provide �nite-sample results for the simplest moment inequality

model� a bivariate normal model with mean � 2 R2 and variance matrix I2: Let X �
N(�; I2): We consider tests of the null hypothesis H0 : � � 0 versus the alternative

hypothesis H1 : � � 0:
The boundary of the null hypothesis is

B = f� = (�1; �2)0 : � � 0 & �1 = 0 or �2 = 0g: (3.1)

Theorem 1. Let X � N(�; I2): Any (possibly randomized) test of the null hypothesis
H0 : � � 0 that is similar on the boundary B with rejection probability � 2 (0; 1) on B
has rejection probability � for all � in B� = f� = (�1; �2)0 : �1 = 0 or �2 = 0g:

Comments. 1. Theorem 1 says that a similar-on-the-boundary test (with rejection

probability � on the boundary) has trivial power (i.e., power equal to �; which is less

than or equal to the size of the test) for all alternatives that consist of the violation of one

inequality with the other being binding, such as �1 = 0 and �2 < 0: Such alternatives

include alternatives that are arbitrarily far from the null hypothesis. In consequence,
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Theorem 1 implies that the power properties of tests that are similar on the boundary

are very poor.

2. Theorem 1 also holds for the mixed equality/inequality null hypothesis H0 : �1 =
0 & �2 � 0 and the alternative H1 : �1 6= 0 or �2 < 0:5 In this case, the boundary

of the null is the null itself, i.e., B = f� = (�1; �2)
0 : �1 = 0 and �2 � 0g; and

B� = f� = (�1; �2)0 : �1 = 0g: In the mixed equality/inequality case, a similar-on-the-
boundary test has power equal to size � for all alternatives that do not involve a violation

of the equality restriction �1 = 0: For such alternatives, power equals size no matter

how far � is from the null hypothesis. Hence, in this case too, similar-on-the-boundary

tests have very poor power properties.

3. Theorem 1 also holds if the null hypothesis H0 is restricted such that its boundary
includes just the set f� : �1 = 0 & �2 2 [a2; b2]g [ f� : �2 = 0 & �1 2 [a1; b1]g
for some 0 � aj < bj < 1 for j = 1; 2:6 Furthermore, if the null hypothesis H0 is

restricted such that its boundary includes just the set f� : �1 = 0 & �2 2 [a2; b2]g
for some 0 � a2 < b2 < 1; then the result of Theorem 1 holds with B� replaced by

B�1 = f� = (�1; �2)0 : �1 = 0g: These extensions have useful implications in the moment
inequality model discussed in Section 5.

4. Theorem 1 can be used to show that median- and quantile-unbiased estimators

of � = minf�1; �2g do not exist. To see this, suppose a median-unbiased estimator b� of
� exists. By de�nition, it has the property that P�(b� � �) = 1=2 = P�(b� � �) 8� 2 R2:
For any a 2 R; consider the test of Hy

0 : � = a versus H
y
1 : � < a that rejects H

y
0 if b� � a:

This test has level � because P�(b� � a) = 1=2 for all � with � = minf�1; �2g = a: In
other words, P�(b� � a) = 1=2 8� 2 B + (a; a)0: By Theorem 1, the latter implies that

P�(b� � a) = 1=2 8� 2 B�+(a; a)0:7 In turn, for any c > 0; this gives: for �ac = (a; a�c)0
(which is in B� + (a; a)0); P�ac(b� � a) = 1=2: But, the value of � corresponding to �ac
is ��ac = minfa; a� cg = a� c: So, P�ac(b� � ��ac) = P�ac(b� � a� c) = 1=2 by median
unbiasedness. Combining these results gives P�ac(b� 2 (a � c; a]) = 0 8a 2 R;8c > 0:

That is, P�ac(b� 2 R) = 0; which is a contradiction. Hence, no median-unbiased estimator
of minf�1; �2g exists.

5The proof is essentially the same as the proof of Theorem 1.
6In the proof of Theorem 1, the smaller boundary of the null considered here implies that X2 is a

complete su¢ cient statistic for �2 in the model X2 � N(�2; 1) and �2 2 [a2; b2]: This is enough for the
rest of the proof to go through unchanged.

7More precisely, this holds by Comment 3 to Theorem 1 with the null hypothesis given by H0 : � 2 B
or its translation B + (a; a)0:
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Proof of Theorem 1. Let �(X) be a randomized test. (That is, the test � rejects
H0 with probability �(X) (2 [0; 1])): Suppose �(X) is similar on the boundary B with

rejection probability � 2 (0; 1) on B: That is,

E��(X) =

Z Z
�(x1; x2)�(x1 � �1)�(x2 � �2)dx1dx2 = � 8� 2 B; (3.2)

where � denotes the standard normal density.

For �1 = 0 and all �2 � 0; this gives

E0;�2�(X) = E�2g(X2) =

Z
g(x2)�(x2 � �2)dx2 = �; where

g(x2) =

Z
�(x1; x2)�(x1)dx1: (3.3)

In the model X2 � N(�2; 1) and �2 � 0; the random variable X2 is a complete

su¢ cient statistic for �2:
8 This, (3.3), and the de�nition of completeness give

g(x2) = � 8x2 2 X2 for some set X2 with P�2(X2 2 X2) = 1 8�2 � 0: (3.4)

By the absolute continuity of any (nondegenerate) normal distribution with respect to

any other (nondegenerate) normal distribution, we have

P�2(X2 2 X2) = 1 8�2 2 R: (3.5)

Hence, (3.3) holds for all �2 2 R: It also holds with the roles of �1 and �2 reversed and
the proof is complete. �

The result of Theorem 1 begs the question of whether any non-trivial similar-on-

the-boundary test exists. By non-trivial, we mean a level � test whose power function

is greater than � somewhere in the alternative.9 The answer is yes. We provide a

constructive proof.

Theorem 2. Let X � N(�; I2): There exists a non-trivial test of level � 2 (0; 1) for
the null hypothesis H0 : � � 0 that is similar on the boundary B:

8As is well known, this holds because the normal distribution with unknown mean and known
variance is in the exponential family and the parameter space for �2 includes a (one-dimensional)
rectangle, see Theorem 4.3.1 of Lehmann and Romano (2005, p. 117).

9A randomized test that rejects the null with probability � regardless of the data X obviously is
similar on the boundary and level �: But, it is a trivial similar-on-the-boundary level � test.
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Comment. The result of Theorem 2 holds for any nonsingular diagonal 2 � 2 matrix
�: The same test as considered in the proof of Theorem 2 has the desired properties.10

Proof of Theorem 2. Consider the following (randomized) test

�(X1; X2) =

(
2� if (X1 � 0 & X2 � 0) or (X1 � 0 & X2 � 0)
0 elsewhere.

(3.6)

The power of this test against � is

E��(X) = 2�

Z 0

�1

Z 1

0

�(x1 � �1)�(x2 � �2)dx1dx2

+2�

Z 1

0

Z 0

�1
�(x1 � �1)�(x2 � �2)dx1dx2

= 2�(1� �(�2))�(�1) + 2��(�2)(1� �(�1))
= 2�(�(�1) + �(�2)� 2�(�1)�(�2)); (3.7)

where the second equality holds by change of variables with zj = �(xj��j) for j = 1; 2:
If �1 = 0 or �2 = 0; then the right-hand side (rhs) of (3.7) equals �: Hence, the test

�(X) is similar on the boundary.

If �2 is arbitrarily large and �1 = ��2; then the rhs of (3.7) is arbitrarily close to
2�: Hence, the test has non-trivial power.

The derivative of the test�s power with respect to �2 is negative when �1 > 0 and

vice versa:

@

@�2
[2�(�(�1) + �(�2)� 2�(�1)�(�2))] = 2��(�2)(1� 2�(�1)) < 0; (3.8)

where the inequality holds for all �1 > 0: This implies that the power of the test is

maximized under the null at the boundary and the test has level �: �

Although the test in (3.6) is level � and similar on the boundary, its power properties

are poor. The supremum of its power function is 2� and its power is � or less in the

negative orthant.

To illustrate that nonsimilar tests exist with good overall power properties, Tables

1 and 2 report the power of the the similar-on-the-boundary test in (3.6) and the (rec-

10To prove this, the proof of Theorem 2 only needs to be altered by replacing �j by �j=�j ; where �
2
j

is the variance of Xj ; for j = 1; 2:
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ommended) Andrews and Barwick (2012) re�ned moment selection (RMS) test, respec-

tively, in the N(�; I2) model for a grid of � values. Both tests have size :05: The power

of the test in (3.6) is computed via the formula in (3.7). The power of the RMS test

is computed via simulation using 500; 000 simulation repetitions (for both the critical

value calculations,

Table 1. Power of the similar-on-the-boundary test in (3.6) for the N((�1; �2)
0; I2)

model

�1

�2 -4.0 -1.0 0.0

7.0 .100 .084 0.05

5.0 .100 .084 0.05

3.0 .100 .084 0.05

2.0 .098 .083 0.05

1.0 .084 .073 0.05

.75 .077 .069 0.05

.50 .069 .063 0.05

.25 .060 .057 0.05

0.0 .050 .050 0.05

-.50 .031 .037 0.05

-1.0 .016 .027 0.05

-2.0 .002 .017 0.05

-3.0 .000 .016 0.05

-4.0 .000 .016 0.05

-5.0 .000 .016 0.05

-7.0 .000 .016 0.05

which only have to be computed once, and the rejection probability calculations).

All (�1; �2) combinations in Tables 1 and 2 are in the alternative hypothesis except

the �rst nine rows of the last column. The latter entries in Table 1 show that the

test in (3.6) is similar on the boundary. In Tables 1 and 2, the distance from the null

hypothesis increases as one moves from right to left and top to bottom. The bottom

seven rows of the last column of Table 1 show that the test in (3.6) has power equal to

9



its size for all �2 when �1 = 0; which is in accord with Theorem 1. Table 1 also shows

that the similar-on-the-boundary test has very poor power in general. Its power lies in

[:00; :10]: As �1 ! �1 and �2 !1; its power approaches 2� = :10: As �1 ! �1 and

�2 ! �1; its power approaches :00:
In Table 2, the �rst nine rows of the last column show that the Andrews-Barwick

RMS test is non-similar on the boundary of the null. Its rejection probability lies in

[:029; :050] on the boundary. This causes the test to be biased, but the bias disappears

quickly as �1 decreases. It is essentially gone for �1 = �:25:
In Table 2, the power of the RMS test increases to one as �1 ! �1 and/or �2 !

�1: Not surprisingly, even for �1 = �3:0; the di¢ culty in determining whether one or
two moment inequalities are binding (which is the root cause for the nonsimilarity of the

test), causes its power to be less for �2 2 [�:5; 1:0] than for �2 2 [2;1) [ (�1;�1:0]:
The RMS test has good overall power.

Table 2. Power of the Andrews-Barwick RMS test for the N((�1; �2)
0; I2) model

�1

�2 -4.0 -3.0 -2.0 -1.5 -1.0 -.50 -.25 -.125 0.0

7.0 .99 .91 .63 .43 .25 .119 .076 .059 .046

5.0 .99 .91 .63 .43 .25 .119 .076 .059 .046

3.0 .99 .90 .62 .42 .24 .114 .073 .057 .044

2.0 .98 .88 .58 .38 .22 .099 .063 .049 .037

1.0 .98 .85 .52 .33 .18 .079 .049 .038 .029

.75 .98 .85 .52 .33 .18 .077 .049 .038 .029

.50 .98 .85 .51 .33 .18 .079 .051 .041 .032

.25 .98 .85 .52 .33 .18 .086 .057 .047 .039

0.0 .98 .85 .53 .34 .20 .099 .070 .059 .050

-.50 .98 .87 .57 .40 .25 .151 .119 .108 .098

-1.0 .99 .90 .65 .49 .35 .250 .217 .205 .195

-2.0 1.00 .96 .83 .74 .65 .573 .547 .537 .528

-3.0 1.00 .99 .96 .93 .90 .869 .858 .854 .851

-4.0 1.00 1.00 1.00 .99 .99 981 .979 .979 .978

-5.0 1.00 1.00 1.00 1.00 1.00 .999 .999 .999 .999

-7.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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For the mixed equality/inequality null hypothesis H0 : �1 = 0 and �2 � 0; it is trivial
to construct a non-trivial similar-on-the-boundary level � test. Let

�(X) = 1(jX1j > z1��=2); (3.9)

where z1��=2 is the 1�� quantile of the standard normal distribution. This test ignores
information in X2 and, hence, its power properties are not desirable. But, it is level �

and is similar on the boundary B = f� = (�1; �2)0 : �1 = 0 and �2 � 0g:

4. Multivariate Normal Mean Model

In this section, we extend the result given in Theorem 1 to dimensions p greater than

two and non-spherical variance matrices �:

Theorem 3. Let X � N(�;�); where � is a positive-de�nite p � p matrix for p � 2:
Any (possibly randomized) test of the null hypothesis H0 : � � 0 that is similar on

the boundary B = f� = (�1; :::; �p)
0 : � � 0 & �j = 0 for some j � pg with rejection

probability � 2 (0; 1) on B has rejection probability � for all � in B� = f� = (�1; :::; �p)0 :
�j = 0 for some j � pg:

Comments. 1. Theorem 3 says that a similar-on-the-boundary test (with rejection

probability � on the boundary) has trivial power (i.e., power equal �) for all alternatives

for which some inequality is satis�ed and binding, (i.e., �j = 0): Such alternatives include

a host of alternatives that are arbitrarily far from the null hypothesis. Thus, Theorem

1 implies that the power properties of tests that are similar on the boundary are very

poor.

2. Theorem 3 also holds for the mixed equality/inequality null hypothesis H0 :

�1 = 0 & �2 � 0; where �1 2 Rp; �2 2 Rq; and q � 1; and the alternative hypothesis

H1 : �1 6= 0 or �2 � 0: In this case, the boundary of the null is the null itself, i.e.,

B = f� = (�01; �
0
2)
0 : �1 = 0 and �2 � 0g; and B� = f� = (�01; �

0
2)
0 : �1 = 0g:11

Hence, for all alternatives where the equality restriction is not violated, i.e., � = (00; �02)
0

for �2 � 0; similar-on-the-boundary tests have power equal to size �: In consequence,

similar-on-the-boundary tests have poor power properties.

11The proof is the same as the proof of Theorem 3, but with �1 being a p-vector, rather than a scalar,
with p+ q in place of p; with q in place of p� 1; and with the last paragraph of the proof deleted.

11



3. Comment 3 to Theorem 1 also applies in the context of Theorem 3. Speci�cally,

suppose the null hypothesis H0 is restricted such that its boundary includes just the

set B1 = f� : �1 = 0 & �2 2 Sg for some (nondegenerate) rectangle S in the positive
orthant of Rp�1; where � = (�1; �

0
2)
0; �1 2 R; and �2 2 Rp�1:Then, the result of Theorem

3 holds with B� replaced by B�1 = f� = (�1; �02)0 : �1 = 0g: In this situation, there are
alternative parameters � that are arbitrarily far from the null hypothesis for which power

equals size �: By symmetry, the same result holds with any element of �; say �j; in place

of the �rst element, �1; with �2 re-de�ned accordingly, and with B1 and B
�
1 by Bj and

B�j ; which are de�ned accordingly.

4. Comment 4 to Theorem 1 also applies in the context of Theorem 3. Hence,

median- and quantile-unbiased estimators of minf�1; :::; �pg do not exist when X �
N(�;�) and � is a known, positive-de�nite matrix.

5. If � is unknown and can take on more than one value, say � 2 S; then the
null hypothesis is larger than in the known � case and the similarity-on-the-boundary

condition is stronger. In consequence, in this case, the result of Theorem 1 holds for all

� 2 B�nB and all positive de�nite � 2 S.

Proof of Theorem 3. For notational convenience, for any vector v 2 Rp; we write
v = (v1; v

0
2)
0 for v1 2 R and v2 2 Rp�1:

By the Cholesky decomposition, there exists a unique nonsingular lower triangular

matrix L with positive diagonal elements such that � = LL0: Let M = L�1: Then, M is

lower triangular (triangularity is preserved under inverses) andM�M 0 = L�1LL0L�1
0
=

Ip: Let Y = MX � N(e�; Ip); where e� = M�: By the lower triangular feature of M;e�1 = M11�1 � 0; where M11 (> 0) denotes the (1; 1) element of M: Note that �1 = 0

i¤ e�1 = 0: Also, e�2 = M2�; where M2 (2 R(p�1)�p) equals M with its �rst row deleted.

M2 is full row rank.

Suppose a test �(X) is similar on the boundaryB with rejection probability � 2 (0; 1)
on B: That is,

E��(X) = � 8� 2 B: (4.1)

We can write the power of �(X) against � as

E��(X) = Ee��(M�1Y ) =

Z Z
�(M�1y)�(y1 � e�1)dy1�(y2 � e�2)dy2; (4.2)

where �(y2) = �
p�1
j=1�(y2;j) and y2 = (y2;1; :::; y2;p�1)

0:

12



For �1 = 0 and �2 � 0; (4.1), (4.2), and e�1 =M11�1 = 0 give

E0;�2�(X) = Ee�2g(Y2)
=

Z
g(y2)�(y2 � e�2)dy2

= �; where

g(y2) =

Z
�(M�1(y1; y

0
2)
0)�(y1)dy1: (4.3)

Let

� = f� 2 Rp�1 : � =M2b; b 2 Rp; & b � 0g: (4.4)

The second and third equalities in (4.3) hold for all e�2 2 � because e�2 =M2� and � is

an arbitrary element of Rp with � � 0:
Consider the model Y2 � N(�; Ip�1) for � 2 �: The N(�; Ip�1) distribution is in the

exponential family. The columns of M2 span Rp�1 (because M2 with its �rst column

removed is a full rank triangular matrix since M is). In consequence, � contains a

(p� 1)-dimensional rectangle. Hence, in this model, the random vector Y2 is a complete
su¢ cient statistic for �; e.g., see Theorem 4.3.1 in Lehmann and Romano (2005, p. 117).

Completeness of Y2; (4.3), and the de�nition of completeness give

g(y2) = � 8y2 2 Y2 for some set Y2 with P�(Y2 2 Y2) = 1 8� 2 �: (4.5)

By the absolute continuity of any (nondegenerate) multivariate normal distribution with

respect to any other (nondegenerate) multivariate normal distribution with the same

dimension, we have

P�(Y2 2 Y2) = 1 8� 2 Rp�1: (4.6)

Consider � = (0; �02)
0 2 Rp for arbitrary �2 2 Rp�1 (so � is not necessarily in the

null hypothesis). By the �rst two equalities in (4.3), E��(X) = Ee�2g(Y2): This, (4.5),
and (4.6) give

E��(X) = Ee�2g(Y2) = �: (4.7)

Consider any � 2 Rp with one element equal to zero, i.e., any � 2 B�: By the same
argument as above that gives (4.7), but with �1 = 0 replaced by �j = 0 for some j � p;
we obtain E��(X) = �: This completes the proof. �
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5. Tests Based on Moment Inequalities

In this section, we consider tests concerning a parameter � in a moment inequality

model. The parameter � need not be identi�ed. By inverting the tests, one can construct

con�dence sets for the true value � in the usual manner. We use Theorem 3 to show

that any test that is asymptotically similar on the boundary of the null hypothesis has

poor asymptotic power properties.

The moment inequality model is de�ned as follows. The true value �0 (2 Rd) is
assumed to satisfy the moment inequalities:

EF0mj(Wi; �0) � 0 for j = 1; :::; p; (5.1)

where fmj(�; �) : j = 1; :::; pg are known real-valued moment functions, and fWi : i �
1g are i.i.d. random vectors with true joint distribution F0: The observed sample is

fWi : i � ng: The true value �0 is not necessarily identi�ed. That is, knowledge of
EF0mj(Wi; �) for j = 1; :::; p for all � 2 � does not necessarily imply knowledge of

�0: Even knowledge of F0 does not necessarily imply knowledge of the true value �0:

To identify the true parameter �0; one may need to observe more variables than just

fWi : i � ng:
The null and alternative hypotheses are

H0 : �0 = �null and H1 : �0 6= �null (5.2)

for a speci�ed (known) value �null:

The parameter space for � is a set � � Rd: The parameter space for F given �; F�;
is the set of all F that satisfy:

(i) EFmj(Wi; �) � 0 for j = 1; :::; p;
(ii) �2F;j(�) = V arF (mj(Wi; �)) 2 (0;1) for j = 1; :::; p;
(iii) CorrF (m(Wi; �)) 2 	; and
(iv) EF jmj(Wi; �)=�F;j(�)j2+� �M for j = 1; :::; p; (5.3)

where 	 is some set of p� p correlation matrices and M <1 and � > 0 are constants.

The parameter space for F is F = [�2�F�: The set of distributions F in the null

hypothesis is F�null : Thus, the null hypothesis can be re-written as H0 : F0 2 F�null :

14



The set of distributions F that are on the boundary of the null hypothesis is

FBdy = fF 2 F�null : EFmj(Wi; �null) = 0 for some j � pg: (5.4)

Given � 2 Rp and a symmetric positive-de�nite p � p matrix �; let fFn;�;� 2 F :

n � 1g be a sequence of distributions for which

n1=2EFn;�;�m(Wi; �null)! � and V arFn;�;�(m(Wi; �null))! �: (5.5)

We consider such sequences because typical tests statistics (and data-dependent critical

values) have asymptotic distributions that depend on limn!1 n
1=2EFn;�;�m(Wi; �null);

e.g., see Andrews and Soares (2010, p. 130). In brief, the reason is that the test

statistics (and critical values) are functions of n�1=2
Pn

i=1m(Wi; �null) and the asymp-

totic behavior of the latter is determined by its mean n1=2EFn;�;�m(Wi; �null) and its

variance V arFn;�;�(m(Wi; �null)) (in the i.i.d. case). The asymptotic distributions of

typical test statistics (and critical values) are a function of a N(�;�) distribution under

fFn;�;� 2 F : n � 1g:
De�ne B and B� as in Section 4.

We impose the following assumptions:

Assumption 1. For some symmetric positive-de�nite p � p matrix �; all � 2 B; and
some �� 2 B�nB; there exist sequences fFn;�;� 2 FBdy : n � 1g and fFn;��;� 2 F : n �
1g such that (5.5) holds (with �� in place of � in (5.5) for fFn;��;� : n � 1g):

Assumption 2. The sequence of tests f�n : n � 1g is asymptotically similar on the
boundary of the null hypothesis with asymptotic rejection probability � 2 (0; 1): That
is, limn!1 supF2FBdy PF (�n rejects H0) = limn!1 infF2FBdy PF (�n rejects H0) = �:

Assumption 3. The tests f�n : n � 1g satisfy: For all sequences fFn;�;� : n � 1g and
fFn;��;� : n � 1g as in Assumption 1,

lim
n!1

PFn;�;�(�n rejects H0) = P�;�(�(Z;�) rejects H
1
0 )

and likewise with �� in place of �; for some test � that depends on (Z;�); where

Z � N(�;�) and where the null hypothesis for � is H1
0 : � � 0:

Assumption 1 requires that null distributions F exist such that the vector of moment

functions evaluated at �null and under F can take any p-vector value in some neighbor-
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hood of 0 (2 Rp) intersected with the non-negative orthant. This holds in many exam-
ples, but not all. For example, if one moment inequality is binding implies that some

other moment inequality is slack by at least c > 0 for all F 2 F , then Assumption 1 fails
to hold. This occurs in the interval-outcome regression model considered in Manski and

Tamer (2002). On the other hand, suppose one moment inequality is binding implies

that some other moment inequality cannot be binding, but the amount of slackness can

be arbitrarily close to zero. In this case, Assumption 1 fails to hold at � = 0 2 B; but
it can be weakened to cover this case. For convenience, we discuss this extension in

Comment 2 to Theorem4 below.

Assumption 2 states that the tests under consideration satisfy the asymptotic similar-

ity-on-the-boundary condition in a uniform sense. A test �n is similar on the boundary

in �nite samples if

sup
F2FBdy

PF (�n rejects H0) = inf
F2FBdy

PF (�n rejects H0): (5.6)

The uniform asymptotic version of this condition just adds limn!1 on both sides of

the equality. Without uniformity, e.g., if the condition is simply limn!1 PF (�n rejects

H0) = � for all F 2 FBdy; the condition is quite weak and does not imply that the tests
are close to being similar on the boundary for �nite n no matter how large n is.

Assumption 3 holds for a wide range of tests. For example, it holds for the class of

moment selection tests in Andrews and Soares (2010) (using the asymptotic distribution

or bootstrap distribution in the construction of critical values), the re�ned moment

selection tests in Andrews and Barwick (2012), the subsampling tests that have been

considered by Chernozhukov, Hong, and Tamer (2007), Romano and Shaikh (2008), and

Andrews and Guggenberger (2009).12 It also holds for generalized empirical likelihood

(GEL) based tests with plug-in least favorable critical values, moment selection critical

values based on the asymptotic distribution or bootstrap distribution, and subsampling

12For example, for the class of tests in Andrews and Soares (2010), Assumption 3 holds by Lemma 2
and its proof in the Supplement to Andrews and Soares (2010). This follows because the test statistic
Tn(�n;h) converges in distribution S(Z;
h22); where Z � N(h1;
h22); under sequences fn;h : n � 1g
that are analogous to those in Assumption 1 above by equation (S1.19). In addition, the moment
selection critical value bcn(�n;h; 1 � �) converges in probability to a constant under these sequences.
This holds because �1 = 0 in condition (ii) of Lemma 2 (in the Supplement to Andrews and Soares
(2010)) given that � in Assumption 3 above, which corresponds to h1 in Andrews and Soares (2010),
has all elements �nite. This implies that �1 = ��1 = 0; the inequality bcn(�n;h; 1 � �) � c�n in Lemma
2(a) holds as an equality, and the critical value bcn(�n;h; 1� �) converges in probability to the constant
c��(1� �):
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critical values, as in Andrews and Guggenberger (2009), Canay (2010), and Andrews

and Soares (2010). It also holds for the tests in Rozen (2008) and Bugni (2010).

Theorem 4. Under Assumptions 1-3, for all sequences fFn;��;� 2 F : n � 1g as in
Assumption 1 with �� 2 B�nB;

lim
n!1

PFn;��;�(�n rejects H0) = �:

Comments. 1. Theorem 4 shows that an asymptotically similar-on-the-boundary test
(with asymptotic rejection probability � on the boundary) has local power equal to �;

which is less than or equal to its asymptotic size, for all alternatives with asymptotic

mean vector �� in B�nB:13 In consequence, such tests have very poor asymptotic power
properties.

2. For the conclusion of Theorem 4 to hold, Assumption A can be weakened. Any

given alternative vector �� 2 B�nB lies in the set B�j nB for some j � p; where B�j =

f� = (�1; :::; �p)0 : �j = 0g: Assumption A does not need to hold for all � 2 B; it just
needs to hold for all � 2 Bj for some set Bj = f� = (�1; :::; �p)0 : �j = 0; ��j 2 Mg for
some (nondegenerate) rectangle M in Rp�1+ ; where ��j = (�1; :::�j�1; �j+1; :::; �p)

0 and

R+ = fx 2 R : x � 0g: The proof of this extension uses Comment 3 to Theorem 3.

3. The results of Theorem 4 can be extended to models with moment inequalities

and equalities. Suppose the true value �0 (2 � � Rd) satis�es the moment conditions:

EF0mj(Wi; �0) � 0 for j = 1; :::; p and

EF0mj(Wi; �0) = 0 for j = p+ 1; :::; p+ q; (5.7)

where fmj(�; �) : j = 1; :::; p + qg are known real-valued moment functions and q � 1:

In this case, the parameter space F� for F given � contains the additional conditions

EFmj(Wi; �) = 0 for j = p+ 1; :::; p+ q and p is replaced by p+ q in conditions (ii)-(iv)

of (5.3). The sets B and B� are de�ned to be B = f� = (�01; �02)0 : �1 = 0 and �2 � 0g;
and B� = f� = (�01; �02)0 : �1 = 0g; as in Comment 2 to Theorem 3. In this model, the

boundary of the null is the null itself. That is, FBdy = F�null : Assumptions 1-3 apply
in this model with p replaced by p+ q: With the above changes, the result of Theorem

4 holds in the moment inequalities and equalities model.14 In consequence, tests that
13By de�nition, the asymptotic size of a test is the limit of its �nite-sample size, which is its maximum

rejection probability under the null.
14To obtain this result, in the proof of Theorem 4, one just replaces the use of Theorem 3 with the
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are asymptotically similar on the boundary have poor asymptotic power properties in

models with moment inequalities and equalities.

4. A version of the result of Theorem 4 applies to tests of stochastic dominance

provided the null and alternative hypotheses include distributions with �nite support.

Proof of Theorem 4. By Assumption 1, for all � 2 B; there exists a sequence

fFn;�;� 2 FBdy : n � 1g such that (5.5) holds. This and Assumption 2 imply that

lim
n!1

PFn;�;�(�n rejects H0) = � 8� 2 B: (5.8)

By Assumption 3,

lim
n!1

PFn;�;�(�n rejects H0) = P�;�(�(Z;�) rejects H
1
0 ): (5.9)

Combining (5.8) and (5.9) gives

P�;�(�(Z;�) rejects H1
0 ) = � 8� 2 B: (5.10)

Thus, � is a test based on Z � N(�;�) (and possibly �) that is similar on the boundary
of the null hypothesis H1

0 : � � 0: Hence, by Theorem 3, P��;�(�(Z;�) rejects H1
0 ) = �

for all �� 2 B�nB: Combining this with Assumption 3 and taking �� 2 B�nB as in

Assumption 1 gives

lim
n!1

PFn;��;�(�n rejects H0) = P��;�(�(Z;�) rejects H
1
0 ) = �; (5.11)

which is the result of Theorem 4. �
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