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Abstract

This paper provides a set of results that can be used to establish the asymptotic size and/or

similarity in a uniform sense of con�dence sets and tests. The results are generic in that they can

be applied to a broad range of problems. They are most useful in scenarios where the pointwise

asymptotic distribution of a test statistic has a discontinuity in its limit distribution.

The results are illustrated in three examples. These are: (i) the conditional likelihood ratio

test of Moreira (2003) for linear instrumental variables models with instruments that may be weak,

extended to the case of heteroskedastic errors; (ii) the grid bootstrap con�dence interval of Hansen

(1999) for the sum of the AR coe¢ cients in a k-th order autoregressive model with unknown

innovation distribution, and (iii) the standard quasi-likelihood ratio test in a nonlinear regression

model where identi�cation is lost when the coe¢ cient on the nonlinear regressor is zero.



1 Introduction

The objective of this paper is to provide results that can be used to convert asymptotic

results under drifting sequences or subsequences of parameters into results that hold uniformly

over a given parameter space. Such results can be used to establish the asymptotic size and

asymptotic similarity of con�dence sets (CS�s) and tests. By de�nition, the asymptotic size of a CS

or test is the limit of its �nite-sample size. Also, by de�nition, the �nite-sample size is a uniform

concept, because it is the minimum coverage probability over a set of parameters/distributions for

a CS and it is the maximum of the null rejection probability over a set for a test.

The size properties of CS�s and tests are their most fundamental property. The asymptotic

size is used to approximate the �nite-sample size and typically it gives good approximations. On

the other hand, it has been demonstrated repeatedly in the literature that pointwise asymptotics

often provide very poor approximations to the �nite-sample size in situations where the statistic of

interest has a discontinuous pointwise asymptotic distribution. References are given below. Hence,

it is useful to have available tools for establishing the asymptotic size of CS�s and tests that are

simple and easy to employ.

The results of this paper are useful in a wide variety of cases that have received attention

recently in the econometrics literature. These are cases where the statistic of interest has a discon-

tinuous pointwise asymptotic distribution. This means that the statistic has a di¤erent asymptotic

distribution under di¤erent sequences of parameters/distributions that converge to the same para-

meter/distribution. Examples include: (i) time series models with unit roots, (ii) models in which

identi�cation fails to hold at some points in the parameter space, including weak instrumental

variable (IV) scenarios, (iii) inference with moment inequalities, (iv) inference when a parameter

may be at or near a boundary of the parameter space, and (v) post-model selection inference.

For example, in a simple autoregressive (AR) time series model Yi = �Yi�1+Ui for i = 1; :::; n; an

asymptotic discontinuity arises for standard test statistics at the point � = 1: Standard statistics

such as the least squares (LS) estimator and the LS-based t statistic have di¤erent asymptotic

distributions as n ! 1 if one considers a �xed sequence of parameters with � = 1 compared to a

sequence of AR parameters �n = 1� c=n� for some constants c 2 R and � � 1: But, in both cases,
the limit of the AR parameter is one. Similarly, standard t tests in a linear IV regression model

have asymptotic discontinuities at the reduced-form parameter value at which identi�cation is lost.

The results of this paper show that to determine the asymptotic size and/or similarity of a

CS or test it is su¢ cient to determine their asymptotic coverage or rejection probabilities under

certain drifting subsequences of parameters/distributions. We start by providing general conditions

for such results. Then, we give several sets of su¢ cient conditions for the general conditions that
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are easier to apply in practice.

No papers in the literature, other than the present paper, provide generic results of this sort.

However, several papers in the literature provide uniform results for certain procedures in particular

models or in some class of models. For example, Mikusheva (2007) uses a method based on almost

sure representations to establish uniform properties of three types of con�dence intervals (CI�s) in

autoregressive models with a root that may be near, or equal to, unity. Romano and Shaikh (2008,

2010a) and Andrews and Guggenberger (2009c) provide uniform results for some subsampling CS�s

in the context of moment inequalities. Andrews and Soares (2010) provide uniform results for gen-

eralized moment selection CS�s in the context of moment inequalities. Andrews and Guggenberger

(2009a, 2010a) provide uniform results for subsampling, hybrid (combined �xed/subsampling crit-

ical values), and �xed critical values for a variety of cases. Romano and Shaikh (2010b) provide

uniform results for subsampling and the bootstrap that apply in some contexts.

The results in these papers are quite useful, but they have some drawbacks and are not easily

transferable to di¤erent procedures in di¤erent models. For example, Mikusheva�s (2007) approach

using almost sure representations involves using an almost sure representation of the partial sum

of the innovations and exploiting the linear form of the model to build up an approximating AR

model based on Gaussian innovations. This approach cannot be applied (at least straightforwardly)

to more complicated models with nonlinearities. Even in the linear AR model this approach does

not seem to be conducive to obtaining results that are uniform over both the AR parameter � and

the innovation distribution.

The approach of Romano and Shaikh (2008, 2010a,b) applies to subsampling and bootstrap

methods, but not to other methods of constructing critical values. It only yields asymptotic size

results in cases where the test or CS has correct asymptotic size. It does not yield an explicit

formula for the asymptotic size.

The approach of Andrews and Guggenberger (2009a, 2010a) applies to subsampling, hybrid,

and �xed critical values, but is not designed for other methods. In this paper, we take this approach

and generalize it so that it applies to a wide variety of cases, including any test statistic and any

type of critical value. This approach is found to be quite �exible and easy to apply. It establishes

asymptotic size whether or not asymptotic size is correct, it yields an explicit formula for asymptotic

size, and it establishes asymptotic similarity when the latter holds.

We illustrate the results of the paper using several examples. The �rst example is a heterosked-

asticity-robust version of the conditional likelihood ratio (CLR) test of Moreira (2003) for the linear

IV regression model with included exogenous variables. This test is designed to be robust to weak

identi�cation and heteroskedasticity. In addition, it has approximately optimal power in a certain
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sense in the weak and strong IV scenarios with homoskedastic normal errors. We show that the test

has correct asymptotic size and is asymptotically similar in a uniform sense with errors that may

be heteroskedastic and non-normal. Closely related tests are considered in Andrews, Moreira, and

Stock (2004, Section 9), Kleibergen (2005), Guggenberger, Ramalho, and Smith (2008), Kleibergen

and Mavroeidis (2009), and Guggenberger (2011).

The second example is Hansen�s (1999) grid bootstrap CI for the sum of the autoregressive

coe¢ cients in an AR(k) model. We show that the grid bootstrap CI has correct asymptotic size

and is asymptotically similar in a uniform sense. We consider this example for comparative purposes

because Mikusheva (2007) has established similar results. We show that our approach is relatively

simple to employ� no almost sure representations are required. In addition, we obtain uniformity

over di¤erent innovation distributions with little additional work.

The third example is a CI in a nonlinear regression model. In this model one loses identi�cation

in part of the parameter space because the nonlinearity parameter is unidenti�ed when the coe¢ -

cient on the nonlinear regressor is zero. We consider standard quasi-likelihood ratio (QLR) CI�s.

We show that such CI�s do not necessarily have correct asymptotic size and are not asymptotically

similar typically. We provide expressions for the degree of asymptotic size distortion and the mag-

nitude of asymptotic non-similarity. These results make use of some results in Andrews and Cheng

(2010a).

The method of this paper also has been used in Andrews and Cheng (2010a,b,c) to establish

the asymptotic size of a variety of CS�s based on t statistics, Wald statistics, and QLR statistics in

models that exhibit lack of identi�cation at some points in the parameter space.

We note that some of the results of this paper do not hold in scenarios in which the parameter

that determines whether one is at a point of discontinuity is in�nite dimensional. This arises in

tests of stochastic dominance and CS�s based on conditional moment inequalities, e.g., see Andrews

and Shi (2010a,b) and Linton, Song, and Whang (2010).

Selected references in the literature regarding uniformity issues in the models discussed above

include the following: for unit roots, Bobkowski (1983), Cavanagh (1985), Chan and Wei (1987),

Phillips (1987), Stock (1991), Park (2002), Giraitis and Phillips (2006), and Andrews and Guggen-

berger (2011); for weak identi�cation due to weak IV�s, Staiger and Stock (1997), Stock and Wright

(2000), Moreira (2003), Kleibergen (2005), and Guggenberger, Ramalho, and Smith (2008); for weak

identi�cation in other models, Cheng (2008), Andrews and Cheng (2010a,b,c), and I. Andrews and

Mikusheva (2011); for parameters near a boundary, Cherno¤ (1954), Self and Liang (1987), Shapiro

(1989), Geyer (1994), Andrews (1999, 2001, 2002), and Andrews and Guggenberger (2010b); for

post-model selection inference, Kabaila (1995), Leeb and Pötscher (2005), Leeb (2006), and An-
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drews and Guggenberger (2009a,b).

This paper is organized as follows. Section 2 provides the generic asymptotic size and similarity

results. Section 3 gives the uniformity results for the CLR test in the linear IV regression model.

Section 4 provides the results for Hansen�s (1999) grid bootstrap in the AR(k) model. Section 5

gives the uniformity results for the quasi-LR test in the nonlinear regression model. An Appendix

provides proofs of some results used in the examples given in Sections 3-5.

2 Determination of Asymptotic Size and Similarity

2.1 General Results

This subsection provides the most general results of the paper. We state a theorem that is

useful in a wide variety of circumstances when calculating the asymptotic size of a sequence of CS�s

or tests. It relies on the properties of the CS�s or tests under drifting sequences or subsequences of

true distributions.

Let fCSn : n � 1g be a sequence of CS�s for a parameter r(�); where � indexes the true
distribution of the observations, the parameter space for � is some space �; and r(�) takes values

in some space R: Let CPn(�) denote the coverage probability of CSn under �: The exact size and
asymptotic size of CSn are denoted by

ExSzn = inf
�2�

CPn(�) and AsySz = lim inf
n!1

ExSzn; (2.1)

respectively.

By de�nition, a CS is similar in �nite samples if CPn(�) does not depend on � for � 2 �: In
other words, a CS is similar if

inf
�2�

CPn(�) = sup
�2�

CPn(�): (2.2)

We say that a sequence of CS�s fCSn : n � 1g is asymptotically similar (in a uniform sense) if

lim inf
n!1

inf
�2�

CPn(�) = lim sup
n!1

sup
�2�

CPn(�): (2.3)

De�ne the asymptotic maximum coverage probability of fCSn : n � 1g by

AsyMaxCP = lim sup
n!1

sup
�2�

CPn(�): (2.4)

Then, a sequence of CS�s is asymptotically similar if AsySz = AsyMaxCP:
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For a sequence of constants f�n : n � 1g; let �n ! [�1;1; �2;1] denote that �1;1 � lim infn!1 �n

� lim supn!1 �n � �2;1: All limits are as n!1 unless stated otherwise.

We use the following assumptions:

Assumption A1. For any sequence f�n 2 � : n � 1g and any subsequence fwng of fng there
exists a subsequence fpng of fwng such that

CPpn(�pn)! [CP�(h); CP+(h)] (2.5)

for some CP�(h); CP+(h) 2 [0; 1] and some h in an index set H:1

Assumption A2. 8h 2 H; there exists a subsequence fpng of fng and a sequence f�pn 2 � : n � 1g
such that (2.5) holds.2

Assumption C1. CP�(hL) = CP+(hL) for some hL 2 H such that CP�(hL) = infh2H CP�(h):

Assumption C2. CP�(hU ) = CP+(hU ) for some hU 2 H such that CP+(hU ) = suph2H CP
+(h):

Assumption S. CP�(h) = CP+(h) = CP 8h 2 H; for some constant CP 2 [0; 1]:

The typical forms of h and the index set H are given in Assumption B below.

In practice, Assumptions C1 and C2 typically are continuity conditions (hence, C stands

for continuity). This is because given any subsequence fwng of fng one usually can choose a
subsequence fpng of fwng such that CPpn(�pn) has a well-de�ned limit CP (h); in which case
CP�(h) = CP+(h) = CP (h): However, this is not possible in some troublesome cases. For example,

suppose CSn is de�ned by inverting a test that is based on a test statistic and a �xed critical value

and the asymptotic distribution function of the test statistic under f�pn 2 � : n � 1g has a disconti-
nuity at the critical value. Then, it is usually only possible to show CPpn(�pn)! [CP�(h); CP+(h)]

for some CP�(h) < CP+(h): Assumption A1 allows for troublesome cases such as this. Assumption

C1 holds if for at least one value hL 2 H for which CP�(hL) = infh2H CP�(h) such a troublesome

1 It is not the case that Assumption A1 can be replaced by the following simpler condition just by re-indexing the
parameters: Assumption A1y. For any sequence f�n 2 � : n � 1g; there exists a subsequence fpng of fng for
which (2.5) holds.
The �awed re-indexing argument goes as follows: Let f�wn : n � 1g be an arbitrary subsequence of f�n 2 � : n �

1g: We want to use Assumption A1y to show that there exists a subsequence fpng of fwng such that CPpn(�pn)!
[CP�(h); CP+(h)]: De�ne a new sequence f��n 2 � : n � 1g by ��n = �wn : By Assumption A1

y; there exists a
subsequence fkng of fng such that CPkn(��kn)! [CP�(h); CP+(h)]; which looks close to the desired result. However,
in terms of the original subsequence f�wn : n � 1g of interest, this gives CPkn(�wkn )! [CP�(h); CP+(h)] because
��kn = �wkn : De�ning pn = wkn ; we obtain a subsequence fpng of fwng for which CPkn(�pn)! [CP�(h); CP+(h)]:
This is not the desired result because the subscript kn on CPkn(�) is not the desired subscript.

2The following conditions are equivalent to Assumptions A1 and A2, respectively:
Assumption A1-alt. For any sequence f�n 2 � : n � 1g and any subsequence fwng of fng such that CPwn(�wn)
converges, limn!1 CPwn(�wn) 2 [CP�(h); CP+(h)] for some CP�(h); CP+(h) 2 [0; 1] and some h in an index set
H: Assumption A2-alt. 8h 2 H; there exists a subsequence fwng of fng and a sequence f�wn 2 � : n � 1g such
that CPwn(�wn) converges and limn!1 CPwn(�wn) 2 [CP�(h); CP+(h)]:
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case does not arise. Assumption C2 is analogous. Clearly, a su¢ cient condition for Assumptions

C1 and C2 is CP�(h) = CP+(h) 8h 2 H:
Assumption S (where S stands for similar) requires that the asymptotic coverage probabilities

of the CS�s in Assumptions A1 and A2 do not depend on the particular sequence of parameter

values considered. When this assumption holds, one can establish asymptotic similarity of the

CS�s. When it fails, the CS�s are not asymptotically similar.

The most general result of the paper is the following.

Theorem 2.1. The con�dence sets fCSn : n � 1g satisfy the following results.
(a) Under Assumption A1, infh2H CP�(h) � AsySz � AsyMaxCP � suph2H CP+(h):
(b) Under Assumptions A1 and A2, AsySz 2 [infh2H CP�(h); infh2H CP+(h)] and

AsyMaxCP 2 [suph2H CP�(h); suph2H CP+(h)] :
(c) Under Assumptions A1, A2, and C1, AsySz = infh2H CP�(h) = infh2H CP+(h):

(d) Under Assumptions A1, A2, and C2, AsyMaxCP = suph2H CP
�(h) = suph2H CP

+(h):

(e) Under Assumptions A1 and S, AsySz = AsyMaxCP = CP:

Comments. 1. Theorem 2.1 provide bounds on, and explicit expressions for, AsySz and

AsyMaxCP: Theorem 2.1(e) provides su¢ cient conditions for asymptotic similarity of CS�s.

2. The parameter space � may depend on n without a¤ecting the results. Allowing � to depend

on n allows one to cover local violations of some assumptions, as in Guggenberger (2011).

3. The results of Theorem 2.1 hold when the parameter that determines whether one is at

a point of discontinuity (of the pointwise asymptotic coverage probabilities) is �nite or in�nite

dimensional or if no such point or points exist.

4. Theorem 2.1 (and other results below) apply to CS�s, rather than tests. However, if the

following changes are made, then the results apply to tests. One replaces (i) the sequence of CS�s

fCSn : n � 1g by a sequence of tests f�n : n � 1g of some null hypothesis, (ii) �CP�by �RP�
(which abbreviates null rejection probability), (iii) AsyMaxCP by AsyMinRP (which abbreviates

asymptotic minimum null rejection probability), and (iv) �inf�by �sup�throughout (including in

the de�nition of exact size). In addition, (v) one takes � to be the parameter space under the null

hypothesis rather than the entire parameter space.3 The proofs go through with the same changes

provided the directions of inequalities are reversed in various places.

5. The de�nitions of similar on the boundary (of the null hypothesis) of a test in �nite samples

and asymptotically are the same as those for similarity of a test, but with � denoting the boundary

of the null hypothesis, rather than the entire null hypothesis. Theorem 2.1 can be used to establish

3The null hypothesis and/or the parameter space � can be �xed or drifting with n:

6



the asymptotic similarity on the boundary (in a uniform sense) of a test by de�ning � in this way

and making the changes described in Comment 4.

Proof of Theorem 2.1. First we establish part (a). To show AsySz � infh2H CP
�(h); let

f�n 2 � : n � 1g be a sequence such that lim infn!1CPn(�n) = lim infn!1 inf�2�CPn(�)

(= AsySz): Such a sequence always exists. Let fwn : n � 1g be a subsequence of fng such that
limn!1CPwn(�wn) exists and equals AsySz: Such a sequence always exists. By Assumption A1,

there exists a subsequence fpng of fwng such that (2.5) holds for some h 2 H: Hence,

AsySz = lim
n!1

CPpn(�pn) � CP�(h) � inf
h2H

CP�(h): (2.6)

The proof that AsyMaxCP � suph2H CP
+(h) is analogous to the proof just given with AsySz;

infh2H ; inf�2�; CP
�(h); and lim infn!1 replaced by AsyMaxCP; suph2H ; sup�2�; CP

+(h); and

lim supn!1; respectively. The inequality AsySz � AsyMaxCP holds immediately given the de�-

nitions of these two quantities, which completes the proof of part (a).

Given part (a), to establish the AsySz result of part (b) it su¢ ces to show that

AsySz � CP+(h) 8h 2 H: (2.7)

Given any h 2 H; let fpng and f�png be as in Assumption A2. Then, we have:

AsySz = lim inf
n!1

inf
�2�

CPn(�) � lim inf
n!1

inf
�2�

CPpn(�) � lim inf
n!1

CPpn(�pn) � CP+(h): (2.8)

This proves the AsySz result of part (b). The AsyMaxCP result of part (b) is proved analogously

with lim infn!1 inf�2� replaced by lim supn!1 sup�2� :

Part (c) of the Theorem follows from part (b) plus infh2H CP�(h) = infh2H CP+(h): The latter

holds because

inf
h2H

CP�(h) = CP�(hL) = CP+(hL) � inf
h2H

CP+(h) (2.9)

by Assumption C1, and infh2H CP�(h) � infh2H CP+(h) because CP�(h) � CP+(h) 8h 2 H by

Assumption A2. Part (d) of the Theorem holds by an analogous argument as for part (c) using

Assumption C2 in place of Assumption C1.

Part (e) follows from part (a) because Assumption S implies that infh2H CP�(h) = suph2H

CP+(h) = CP: �
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2.2 Su¢ cient Conditions

In this subsection, we provide several sets of su¢ cient conditions for Assumptions A1 and

A2. They show how Assumptions A1 and A2 can be veri�ed in practice. These su¢ cient conditions

apply when the parameter that determines whether one is at a point of discontinuity (of the

pointwise asymptotic coverage probabilities) is �nite dimensional, but not in�nite dimensional.

First we introduce a condition, Assumption B, that is su¢ cient for Assumptions A1 and A2. Let

fhn(�) : n � 1g be a sequence of functions on �; where hn(�) = (hn;1(�); :::; hn;J(�); hn;J+1(�))
0;

hn;j(�) 2 R 8j � J; and hn;J+1(�) 2 T for some compact pseudo-metric space T :4 If an in�nite-
dimensional parameter does not arise in the model of interest, or if such a parameter arises but

does not a¤ect the asymptotic coverage probabilities of the CS�s under the drifting sequences

f�pn 2 � : n � 1g considered here, then the last element hn;J+1(�) of hn(�) is not needed and
can be omitted from the de�nition of hn(�): For example, this is the case in all of the examples

considered in Andrews and Guggenberger (2009a, 2010a,b).

Suppose the CS�s fCSn : n � 1g depend on a test statistic and a possibly data-dependent
critical value. Then, the function hn(�) is chosen so that if hn(�n) converges to some limit, say h

(whose elements might include �1); for some sequence of parameters f�ng; then the test statistic
and critical value converge in distribution to some limit distributions that may depend on h: In

short, hn(�) is chosen so that convergence of hn(�n) yields convergence of the test statistic and

critical value. See the examples below for illustrations.

For example, Andrews and Cheng (2010a,b,c) analyze CS�s and tests constructed using t;Wald,

and quasi-LR test statistics and (possibly data-dependent) critical values based on a criterion

function that depends on parameters (�0; � 0; �0)0; where the parameter � 2 Rd� is not identi�ed

when � = 0 2 Rd� ; and the parameters (�0; � 0)0 2 Rd�+d� are always identi�ed. The distribution

that generates the data is indexed by 
 = (�0; � 0; �0; �)0; where the parameter � 2 T and T is

some compact pseudo-metric space. In this scenario, one takes � = (jj�jj; �0=jj�jj; � 0; �0; �)0 and
hn(�) = (n1=2jj�jj; jj�jj; �0=jj�jj; � 0; �0; �)0; where if � = 0; then �=jj�jj = 1d�=jj1d� jj for 1d� =
(1; :::; 1)0 2 Rd� : (If � does not a¤ect the limit distributions of the test statistic and critical value,
then it can be dropped from hn(�) and T does not need to be compact.)

In Andrews and Guggenberger (2009a, 2010a,b), which considers subsampling and m out of n

bootstrap CI�s and tests with subsample or bootstrap sizemn and uses a parameter 
 = (
01; 

0
2; 


0
3)
0;

one takes � = 
 and hn(�) = (nr
1;m
r
n
1; 


0
2)
0 (in the case of a test), where r = 1=2 in most

applications (other than unit root models), 
1 2 Rp; 
2 2 Rq; 
3 2 T ; and T is some arbitrary

(possibly in�nite-dimensional) space.

4For notational simplicity, we stack J real-valued quantities and one T -valued quantity into the vector hn(�):
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De�ne

H = fh 2 (R [ f�1g)J � T : hpn(�pn)! h for some subsequence fpng

of fng and some sequence f�pn 2 � : n � 1gg: (2.10)

Assumption B. For any subsequence fpng of fng and any sequence f�pn 2 � : n � 1g for which
hpn(�pn)! h 2 H; CPpn(�pn)! [CP�(h); CP+(h)] for some CP�(h); CP+(h) 2 [0; 1]:

Theorem 2.2. Assumption B implies Assumptions A1 and A2.

The proof of Theorem 2.2 is given in Section 2.3 below.

The parameter � and function hn(�) in Assumption B typically are of the following form: (i)

For all � 2 �; � = (�1; :::; �q; �q+1)
0; where �j 2 R 8j � q and �q+1 belongs to some in�nite-

dimensional pseudo-metric space. Often �q+1 is the distribution of some random variable or vector,

such as the distribution of one or more error terms or the distribution of the observable variables

or some function of them.

(ii) hn(�) = (hn;1(�); :::; hn;J(�); hn;J+1(�))0 for � 2 � is of the form:

hn;j(�) =

8<: dn;j�j for j = 1; :::; JR

mj(�) for j = JR + 1; :::; J + 1;
(2.11)

where JR denotes the number of �rescaled parameters� in hn(�); JR � q; fdn;j : n � 1g is a non-
decreasing sequence of constants that diverges to 1 8j � JR; mj(�) 2 R 8j = JR + 1; :::; J; and

mJ+1(�) 2 T for some compact pseudo-metric space T :
In fact, often, one has JR = 1; mj(�) = �j and no term mJ+1(�) appears. If the CS is

determined by a test statistic, as is usually the case, then the terms dn;j�j and mj(�) are chosen so

that the test statistic converges in distribution to some limit whenever dn;j�n;j ! hj as n!1 for

j = 1; :::; JR and mj(�n)! hj as n!1 for j = JR + 1; :::; J + 1 for some sequence of parameters

f�n 2 � : n � 1g: For example, in an AR(1) model with AR(1) parameter � and i.i.d. innovations
with distribution F; one can take q = JR = J = 1; �1 = 1� �; �2 = F; dn;1 = n; and hn(�) = n�1:

The scaling constants fdn;j : n � 1g often are dn;j = n1=2 or dn;j = n when a natural parame-

trization is employed.5

The function hn(�) in (2.11) is designed to handle the case in which the pointwise asymptotic

coverage probability of fCSn : n � 1g or the pointwise asymptotic distribution of a test statistic
5The scaling constants are arbitrary in the sense that if �j is reparametrized to be (�j)�j for some �j > 0; then

dn;j becomes d
�
n;j : For example, in an AR(1) model with AR(1) parameter �; a natural parametrization is to take

�1 = 1� �; which leads to dn;1 = n: But, if one takes �1 = (1� �)� ; then dn;1 = n� for � > 0:
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exhibits a discontinuity at any � 2 � for which (a) �j = 0 for all j � JR; or alternatively, (b)

�j = 0 for some j � JR; as in Cheng (2008). To see this, suppose JR = 1; � 2 � has �1 = 0;

and �" 2 � equals � except that �"1 = " > 0: Then, under the (constant) sequence f� : n � 1g;
hn;1(�) ! h1 = 0; whereas under the sequence f�" : n � 1g; hn;1(�") ! h"1 = 1 no matter how

close " is to 0: Thus, if h = limn!1 hn(�) and h" = limn!1 hn(�
"); then h does not equal h" because

h1 = 0 and h"1 =1 and h" does not depend on " for " > 0: Provided CP+(h) 6= CP+(h") and/or

CP�(h) 6= CP�(h"); there is a discontinuity in the pointwise asymptotic coverage probability of

fCSn : n � 1g at �:
The function hn(�) in (2.11) can be reformulated to allow for discontinuities when �j = �0j ;

rather than �j = 0; for all j � JR or for some j � JR: To do so, one takes hn;j(�) = dn;j(�j � �0j )

8j � JR:

The function hn(�) in (2.11) also can be reformulated to allow for discontinuities at JR di¤erent

values of a single parameter �k for some k � q; e.g., at the values in f�0k;1; :::; �0k;JRg (rather than a
single discontinuity at multiple parameters f�1; :::; �kg): In this case, one takes hn;j(�) = dn;j(�k �
�0k;j) for j = 1; :::; JR: The function hn(�) can be reformulated to allow for multiple discontinuities at

each parameter value in f�k1 ; :::; �kLg; where k` � q 8` � L; e.g., at the values in f�0k`;1; :::; �
0
k`;JR;`

g
8` � L: In this case, one takes hn;j(�) = dn;j(�k`��0k`;j�S`�1) for j = S`�1+1; :::; S` for ` = 1; :::; L;

where S` =
P`

s=0 JR;s; JR;0 = 0 and JR =
PL

s=0 JR;s:

A weaker and somewhat simpler assumption than Assumption B is the following.

Assumption B1. For any sequence f�n 2 � : n � 1g for which hn(�n) ! h 2 H; CPn(�n) !
[CP�(h); CP+(h)] for some CP�(h); CP+(h) 2 [0; 1]:

The di¤erence between Assumptions B and B1 is that Assumption B must hold for all subse-

quences fpng for which "..." holds, whereas Assumption B1 only needs to hold for all sequences
fng for which "..." holds. In practice, the same arguments that are used to verify Assumption B1
based on sequences usually also can be used to verify Assumption B for subsequences with very few

changes. In both cases, one has to verify results under a triangular array framework. For example,

the triangular array CLT for martingale di¤erences given in Hall and Heyde (1980, Theorem 3.2,

Corollary 3.1) and the triangular array empirical process results given in Pollard (1990, Theorem

10.6) can be employed.

Next, consider the following assumption.

Assumption B2. For any subsequence fpng of fng and any sequence f�pn 2 � : n � 1g for which
hpn(�pn) ! h 2 H; there exists a sequence f��n 2 � : n � 1g such that hn(��n) ! h 2 H and

��pn = �pn 8n � 1:
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If Assumption B2 holds, then Assumptions B and B1 are equivalent. In consequence, the

following Lemma holds immediately.

Lemma 2.1. Assumptions B1 and B2 imply Assumption B.

Assumption B2 looks fairly innocuous, so one might consider imposing it and replacing As-

sumption B with Assumptions B1 and B2. However, in some cases, Assumption B2 can be di¢ cult

to verify or can require super�uous assumptions. In such cases, it is easier to verify Assumption B

directly.

Under Assumption B2, H simpli�es to

H = fh 2 (R [ f�1g)J � T : hn(�n)! h for some sequence f�n 2 � : n � 1gg: (2.12)

Next, we provide a su¢ cient condition, Assumption B2�, for Assumption B2.

Assumption B2�. (i) For all � 2 �; � = (�1; :::; �q; �q+1)0; where �j 2 R 8j � q and �q+1 belongs

to some pseudo-metric space.

(ii) condition (ii) given in (2.11) holds.

(iii) mj(�) (= mj(�1; :::; �q+1)) is continuous in (�1; :::; �JR) uniformly over � 2 � 8j = JR +

1; :::; J + 1:6

(iv) The parameter space � satis�es: for some � > 0 and all � = (�1; :::; �q+1)0 2 �; (a1�1; :::; aJR�JR ;
�JR+1; :::; �q+1)

0 2 � 8aj 2 (0; 1] if j�j j � �; where aj = 1 if j�j j > � for j � JR:

The comments given above regarding (2.11) also apply to the function hn(�) in Assumption

B2�:

Lemma 2.2. Assumption B2� implies Assumption B2.

The proof of Theorem 2.2 is given in Section 2.3 below.

For simplicity, we combine Assumptions B and S, and B1 and S, as follows.

Assumption B�. For any subsequence fpng of fng and any sequence f�pn 2 � : n � 1g for which
hpn(�pn)! h 2 H; CPpn(�pn)! CP for some CP 2 [0; 1]:

Assumption B1�. For any sequence f�n 2 � : n � 1g for which hn(�n)! h 2 H; CPn(�n)! CP

for some CP 2 [0; 1]:
6That is, 8" > 0; 9�� > 0 such that 8�; �� 2 � with jj(�1; :::; �JR) � (��1; :::; ��JR)jj < �� and (�JR+1; :::; �q+1) =

(��JR+1; :::; �
�
q+1); �(mj(�);mj(�

�)) < "; where �(�; �) denotes Euclidean distance on R when j � J and �(�; �) denotes
the pseudo-metric on T when j = J + 1:
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The relationship among the assumptions is

B1� ) B1

B2� ) B2

9=;) B;

B� ) B;

B ) A1 & A2; and
B1� ) S

B� ) S:
(2.13)

The results of the last two subsections are summarized as follows.

Corollary 2.1 The con�dence sets fCSn : n � 1g satisfy the following results.
(a) Under Assumption B (or B1 and B2, or B1 and B2�), AsySz 2 [infh2H CP�(h); infh2H

CP+(h)]:

(b) Under Assumptions B, C1, and C2 (or B1, B2, C1, and C2, or B1, B2�, C1, and C2),

AsySz = infh2H CP
�(h) = infh2H CP

+(h) and AsyMaxCP = suph2H CP
�(h) = suph2H CP

+(h):

(c) Under Assumption B� (or B1� and B2, or B1� and B2�), AsySz = AsyMaxCP = CP:

Comments. 1. Corollary 2.1(a) is used to establish the asymptotic size of CS�s that are (i) not

asymptotically similar and (ii) exhibit su¢ cient discontinuities in the asymptotic distribution func-

tions of their test statistics under drifting sequences such that infh2H CP�(h) < infh2H CP
+(h):

Property (ii) is not typical. Corollary 2.1(b) is used to establish the asymptotic size of CS�s in the

more common case where property (ii) does not hold and the CS�s are not asymptotically similar.

Corollary 2.1(c) is used to establish the asymptotic size and asymptotic similarity of CS�s that are

asymptotically similar.

2. With the adjustments in Comments 4 and 5 to Theorem 2.1, the results of Corollary 2.1 also

hold for tests.

2.3 Proofs for Su¢ cient Conditions

Proof of Theorem 2.2. First we show that Assumption B implies Assumption A1. Below we

show Condition Sub: For any sequence f�n 2 � : n � 1g and any subsequence fwng of fng there
exists a subsequence fpng of fwng such that hpn(�pn)! h for some h 2 H: Given Condition Sub,
we apply Assumption B to fpng and f�png to get CPpn(�pn)! [CP�(h); CP+(h)] for some h 2 H;
which implies that Assumption A1 holds.

Now we establish Condition Sub. Let fwng be some subsequence of fng: Let hwn;j(�wn) denote
the j-th component of hwn(�wn) for j = 1; :::; J + 1: Let p1;n = wn 8n � 1: For j = 1; either (1)

lim supn!1 jhpj;n;j(�pj;n )j < 1 or (2) lim supn!1 jhpj;n;j(�pj;n )j = 1: If (1) holds, then for some

12



subsequence fpj+1;ng of fpj;ng;

hpj+1;n;j(�pj+1;n)! hj for some hj 2 R: (2.14)

If (2) holds, then for some subsequence fpj+1;ng of fpj;ng;

hpj+1;n;j(�pj+1;n)! hj ; where hj =1 or �1: (2.15)

Applying the same argument successively for j = 2; :::; J yields a subsequence fp�ng = fpJ+1;ng of
fwng for which hp�n;j(�p�n)! hj 8j � J: Now, fhp�n;J+1(�p�n) : n � 1g is a sequence in the compact
set T : By compactness, there exists a subsequence fsn : n � 1g of fng such that fhp�sn ;J+1(�p�sn ) :
n � 1g converges to an element of T ; call it hJ+1: The subsequence fpng = fp�sng of fwng is such
that hpn(�pn)! h = (h1; :::; hJ+1)

0 2 H; which establishes Condition Sub.
Next, we show that Assumption B implies Assumption A2. Given any h 2 H; by the de�nition

of H in (2.10), there exists a subsequence fpng and a sequence f�pn 2 � : n � 1g such that
hpn(�pn)! h: In consequence, by Assumption B, CPpn(�pn)! [CP�(h); CP+(h)] and Assumption

A2 holds. �

Proof of Lemma 2.2. Let fpng and f�png be as in Assumption B2. Then, hpn(�pn) ! h;

dpn;j�pn;j ! hj 8j � JR; and mj(�pn)! hj 8j = JR + 1; :::; J + 1 using Assumption B2�(ii).

Given h 2 H as in Assumption B2 and � > 0 as in Assumption B2�(iv), 9N < 1 such that

8n � N; j�pn;j j < � 8j � JR for which jhj j < 1: (This holds because jhj j < 1 and dn;j ! 1
imply that �pn;j ! 0 as n!1 8j � JR:)

De�ne a new sequence f��s = (��s;1; :::; ��s;q; ��s;q+1)0 : s � 1g as follows: (i) 8s < pN ; take ��s to

be an arbitrary element of �; (ii) 8s = pn and n � N; de�ne ��s = �pn 2 �; and (iii) 8s 2 (pn; pn+1)
and n � N; de�ne

��s;j =

8<: (dpn;j=ds;j)�pn;j if jhj j <1 & j � JR

�pn;j if jhj j =1 & j � JR; or if j = JR + 1; :::; J + 1:
(2.16)

In case (iii), dpn;j=ds;j 2 (0; 1] (for n large enough) by Assumption B2�(ii), and hence, using

Assumption B2�(iv), we have ��s 2 �: Thus, ��s 2 � 8s � 1:
For all j � JR with jhj j < 1; we have ds;j��s;j = dpn;j�pn;j 8s 2 [pn; pn+1) with s � pN ; and

dpn;j�pn;j ! hj as n ! 1 by the �rst paragraph of the proof. Hence, hs;j(��s) = ds;j�
�
s ! hj as

s!1:
For all j � JR with hj = 1; we have ds;j��s;j = ds;j�pn;j � dpn;j�pn;j 8s 2 [pn; pn+1) with
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s � pN and with s large enough that ��s;j > 0 using the property that dn;j is non-decreasing in j

by Assumption B2�(ii). We also have dpn;j�pn;j ! hj =1 as n!1 by the �rst paragraph of the

proof. Hence, ds;j��s ! hj =1 as s!1: The argument for the case where j � JR with hj = �1
is analogous.

Next, we consider j = JR + 1; :::; J + 1: De�ne ���s = �pn 8s 2 [pn; pn+1) and all n � N and

���s = ��s 8s � pN : For j = JR + 1; :::; J + 1; mj(�pn)! hj as n!1 by the �rst paragraph of the

proof, which implies that mj(�
��
s )! hj as s!1:

In the following, let � denote the Euclidean distance on R when j � J and let � denote the

pseudo-metric on T when j = J +1: Now, for j = JR+1; :::; J +1; if jhj1 j <1 8j1 � JR; we have:

8s 2 [pn; pn+1) with s � pN ;

�(mj(�
�
s);mj(�

��
s ))

= �(mj((dpn;1=ds;1)�pn;1; :::; (dpn;JR=ds;JR)�pn;JR ; �pn;JR+1; :::; �pn;q+1);

mj(�pn;1; :::; �pn;JR ; �pn;JR+1; :::; �pn;q+1))

! 0 as s!1; (2.17)

where the convergence holds by Assumption B2�(iii) using the fact that �pn;j1 ! 0 as n ! 1
because jhj1 j < 1; (dpn;j1=ds;j1) 2 [0; 1] 8s 2 [pn; pn+1) by Assumption B2�(ii), and hence,

sups2[pn;pn+1) j(dpn;j1=ds;j1)�pn;j1 j ! 0 as n!1 and sups2[pn;pn+1) j(dpn;j1=ds;j1)�pn;j1��pn;j1 j ! 0

as n ! 1 8j1 � JR: Equation (2.17) and mj(�
��
s ) ! hj as s ! 1 imply that mj(�

�
s) ! hj as

s ! 1; as desired. If jhj1 j = 1 for one or more j1 � JR; then the corresponding elements of

��s equal those of �
��
s and the convergence in (2.17) still holds by Assumption B2�(iii). Hence, we

conclude that for j = JR + 1; :::; J + 1; mj(�
�
s)! hj as s!1:

Replacing s by n; we conclude that f��n 2 � : n � 1g satis�es hn(��n) ! h 2 H and ��pn = �pn

8n � 1 and so Assumption B2 holds. �

3 Conditional Likelihood Ratio Test with Weak Instruments

In the following sections, we apply the theory above to a number of di¤erent examples. In

this section, we consider a heteroskedasticity-robust version of Moreira�s (2003) CLR test concerning

the parameter on a scalar endogenous variable in the linear IV regression model. We show that

this test (and corresponding CI) has asymptotic size equal to its nominal size and is asymptotically

similar in a uniform sense with IV�s that may be weak and errors that may be heteroskedastic.
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Consider the linear IV regression model

y1 = y2� +X� + u;

y2 = Z� +X�+ v; (3.1)

where y1; y2 2 Rn are vectors of endogenous variables, X 2 Rn�dX for dX � 0 is a matrix of

included exogenous variables, and Z 2 Rn�dZ for dZ � 1 is a matrix of IV�s. Denote by ui and Xi

the i-th rows of u and X; respectively, written as column vectors (or scalars) and analogously for

other random variables. Assume that f(X 0
i; Z

0
i; ui; vi)

0 : 1 � i � ng are i.i.d. with distribution F:
The vector (�; �0; �0; �0)0 2 R1+dZ+2dX consists of unknown parameters.

We are interested in testing the null hypothesis

H0 : � = �0 (3.2)

against a two-sided alternative H1 : � 6= �0:

For any matrix B with n rows, let

B? =MXB; where MA = In � PA; PA = A(A
0
A)�1A0 (3.3)

for any full column rank matrixA; and In denotes the n-dimensional identity matrix. If no regressors

X appear, then we setMX = In: Note that from (3.1) we have y?1 = y?2 �+u
? and y?2 = Z?�+v?:

De�ne

gi(�) = Z?i (y
?
1i � y?2i�) and Gi = �(@=@�)gi(�) = Z?i y

?
2i: (3.4)

Let

Zi = (X
0
i; Z

0
i)
0 and Z�i = Zi � EFZiX 0

i(EFXiX
0
i)
�1Xi; (3.5)

where EF denotes expectation under F: Let Z� be the n� dZ matrix with ith row Z�0i :

Now, we de�ne the CLR test for H0 : � = �0: Let

gi = gi(�0); bg = n�1
nP
i=1

gi; bG = n�1
nP
i=1

Gi; b
 = n�1
nP
i=1

gigi
0 � bgbg0;

b	 = b�� b�b
�1b�; b� = n�1
nP
i=1

Z?i Z
?0
i bv2i � bLbL0; b� = n�1

nP
i=1

Z?i Z
?0
i buibvi � bgbL0;

bu = MX(y1 � y2�0) (= u?); bv =MZy2 (6= v?); and bL = n�1
nP
i=1

Z?i bvi: (3.6)
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For notational convenience, subscripts n are omitted.7

We de�ne the Anderson and Rubin (1949) statistic and the Lagrange Multiplier statistic of

Kleibergen (2002) and Moreira (2009), generalized to allow for heteroskedasticity, as follows:

AR = nbg0b
�1bg and LM = nbg0b
�1=2Pb
�1=2 bDb
�1=2bg; wherebD = bG� n�1 nP
i=1
(Gi � bG)gi0b
�1bg: (3.7)

Note that bD equals (minus) the derivative with respect to � of the moment conditions n�1
nP
i=1

gi(�)

with an adjustment to make the latter asymptotically independent of the moment conditions bg:
We de�ne a Wald statistic for testing � = 0 as follows:

W = n bD0b	�1 bD: (3.8)

A small value of W indicates that the IV�s are weak.

The heteroskedasticity-robust CLR test statistic is

CLR =
1

2

�
AR�W +

p
(AR�W )2 + 4LM �W

�
: (3.9)

The CLR statistic has the property that for W large it is approximately equal to the LM statistic

LM:8

The critical value of the CLR test is c(1 � �;W ): Here, c(1 � �;w) is the (1 � �)-quantile of

the distribution of

clr(w) =
1

2

�
�21 + �

2
dZ�1 � w +

q
(�21 + �

2
dZ�1 � w)

2 + 4�21w
�
; (3.10)

where �21 and �
2
dZ�1 are independent chi-square random variables with 1 and dZ � 1 degrees of

freedom, respectively. Critical values are given in Moreira (2003).9 The nominal 100(1��)% CLR

CI for � is the set of all values �0 for which the CLR test fails to reject H0 : � = �0: Fast computation

of this CI can be carried out using the algorithm of Mikusheva and Poi (2006). The function

c(1 � �;w) is decreasing in w and equals �2dZ ;1�� and �
2
1;1�� when w = 0 and 1; respectively,

see Moreira (2003), where �2m;1�� denotes the (1� �)-quantile of a chi-square distribution with m
degrees of freedom.

7The centering of b
; b�; and b� using bgbg0; bLbL0; and bgbL0; respectively, has no e¤ect asymptotically under the null
and under local alternatives, but it does have an e¤ect under non-local alternatives.

8To see this requires some calculations, see the proof of Lemma 3.1 in the Appendix.
9More extensive tables of critical values are given in the Supplemental Material to Andrews, Moreira, and Stock

(2006), which is available on the Econometric Society website.
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The CLR test rejects the null hypothesis H0 : � = �0 if

CLR > c(1� �;W ): (3.11)

With homoskedastic normal errors, the CLR test of Moreira (2003) has some approximate as-

ymptotic optimality properties within classes of equivariant similar and non-similar tests under

both weak and strong IV�s, see Andrews, Moreira, and Stock (2006, 2008). Under homoskedas-

ticity, the heteroskedasticity-robust CLR test de�ned here has the same null and local alternative

asymptotic properties as the homoskedastic CLR test of Moreira (2003). Hence, with homoskedas-

tic normal errors, it possesses the same approximate asymptotic optimality properties. By the

results established below, it also has correct asymptotic size and is asymptotically similar under

both homoskedasticity and heteroskedasticity (for any strength of the IV�s and errors that need

not be normal).

Next, we de�ne the parameter space for the null distributions that generate the data. De�ne

V arF

0@ Z�i ui

Z�i vi

1A =

24 
F �F

�F �F

35 =
24 EFZ

�
i Z

�0
i u

2
i EFZ

�
i Z

�0
i uivi

EFZ
�
i Z

�0
i uivi EFZ

�
i Z

�0
i v

2
i

35 and 	F = �F � �F
�1F �
0
F :

(3.12)

Under the null hypothesis, the distribution of the data is determined by � = (�1; �2; �3F ; �4; �5F );

where

�1 = jj�jj; �2 = �=jj�jj; �3F = (EFZ�i Z�0i ;
F ;�F ;�F ); �4 = (�; �); (3.13)

and �5F equals F; the distribution of (ui; vi; X 0
i; Z

0
i)
0:10 By de�nition, �=jj�jj equals 1dZ=d

1=2
Z if

jj�jj = 0; where jj � jj denotes the Euclidean norm. As de�ned, � completely determines the

distribution of the observations. As is well-known, vectors � close to the origin lead to weak IV�s.

Hence, �1 = jj�jj measures the strength of the IV�s.
The parameter space � of null distributions is

� = f� = (�1; �2; �3F ; �4; �5F ) : (�; �; �) 2 RdZ+2dX ;

�5F (= F ) satis�es EFZi(ui; vi) = 0; EF jjZijjk1 juijk2 jvijk3 �M

for all k1; k2; k3 � 0; k1 + k2 + k3 � 4 + �; k2 + k3 � 2 + �;

�min(A) � � for A = 	F ;�F ;
F ; EFZiZ
0
i; EFZ

�
i Z

�0
i g (3.14)

for some � > 0 and M <1; where �min(�) denotes the smallest eigenvalue of a matrix.
10For notational simplicity, we let � (and some other quantities below) be concatenations of vectors and matrices.
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When applying the results of Section 2, we let

hn(�) = (n
1=2�1; �2; �3F ) (3.15)

and we take H as de�ned in (2.10) with no J + 1 component present.

Assumption B� holds with RP = � 8h 2 H by the following Lemma.11

Lemma 3.1. The asymptotic null rejection probability of the nominal level � CLR test equals �

under all subsequences fpng and all sequences f�pn 2 � : n � 1g for which hpn(�pn)! h 2 H:

Given that Assumption B� holds, Corollary 2.1(c) implies that the asymptotic size of the CLR

test equals its nominal size and the CLR test is asymptotically similar (in a uniform sense). Correct

asymptotic size of the CLR CI, rather than the CLR test, requires uniformity over �0: This holds

automatically because the �nite-sample distribution of the CLR test for testing H0 : � = �0 when

�0 is the true value is invariant to �0:

Furthermore, the proof of Lemma 3.1 shows that the AR and LM tests, which reject H0 : � = �0

when AR(�0) > �2dZ ;1�� and LM(�0) > �21;1��; respectively, satisfy Assumption B
� with RP = �:

Hence, these tests also have asymptotic size equal to their nominal size and are asymptotically

similar (in a uniform sense). However, the CLR test has better power than these tests.

4 Grid Bootstrap CI in an AR(k) Model

Hansen (1999) proposes a grid bootstrap CI for parameters in an AR(k) model. Using the

results in Section 2, we show this grid bootstrap CI has correct asymptotic size and is asymptotically

similar in a uniform sense. The parameter space over which the uniform result is established is

speci�ed below. Mikusheva (2007) also demonstrates the uniform asymptotic validity and similarity

of the grid bootstrap CI. Compared to Mikusheva (2007), our results include uniformity over

the innovation distribution, which is an in�nite-dimensional nuisance parameter. Our approach

does not use almost sure representations, which are employed in Mikusheva (2007). It just uses

asymptotic coverage probabilities under drifting subsequences of parameters.

We focus on the grid bootstrap CI for �1 in the Augmented Dickey-Fuller (ADF) representation

of the AR(k) model:

Yt = �0 + �1t+ �1Yt�1 + �2�Yt�1 + :::+ �k�Yt�k+1 + Ut; (4.1)

11Here, RP is the testing analogoue of CP: See Comment 4 to Theorem 2.1.
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where �1 2 [�1 + "; 1] for some " > 0; Ut is i.i.d. with unknown distribution F; and EFUt = 0:12

The time series fYt : t � 1g is initialized at some �xed value (Y0; :::; Y1�k)0:13 Let � = (�1; :::; �k)0:
De�ne a lag polynomial a(L; �) = 1 � �1L �

Pk
j=2 �jL

j�1(1 � L) and factorize it as a(L; �) =

�kj=1(1 � 
j(�)L); where j
1(�)j � ::: � j
k(�)j: Note that 1 � �1 = �kj=1(1 � 
j(�)): We have

�1 = 1 if and only if 
k(�) = 1: We construct a CI for �1 under the assumption that j
k(�)j � 1

and j
k�1(�)j � 1� � for some � > 0:
In this example, � = (�; F ): The parameter space for � is

� = f(�; F ) : �1 2 [�1 + "; 1]; � 2 
�; F 2 F�g; where


� is some compact subset of 
;


 = f� : j
k(�)j � 1; j
k�1(�)j � 1� �g;

F� is some compact subset of F wrt to Mallow�s metric d2r; and

F = fF : EFUt = 0 and EFU4t �Mg (4.2)

for some " > 0; � > 0; M < 1; and r � 1: Mallow�s (1972) metric d2r also is used in Hansen

(1999).

The t statistic is used to construct the grid bootstrap CI. By de�nition, tn(�1) = (b�1 � �1)=b�1;
where b�1 denotes the least squares (LS) estimator of �1 and b�1 denotes the standard error estimator
of b�1:

The grid bootstrap CI for �1 is constructed as follows. For � 2 �; let (b�2(�1); :::;b�k(�1))0 denote
the constrained LS estimator of (�2; :::; �k)

0 given �1 for the model in (4.1). Let bF denote the

empirical distribution of the residuals from the unconstrained LS estimator of � based on (4.1), as

in Hansen (1999). Given (�1;b�2(�1); :::;b�k(�1); bF )0; bootstrap samples fYt(�1) : t � ng are simulated
using (4.1) and some �xed starting values (Y0; :::; Y1�k)0:14 Bootstrap t statistics are constructed

using the bootstrap samples. Let q�n(�j�1) denote the � quantile of the empirical distribution of
the bootstrap t statistics. The grid bootstrap CI for �1 is

Cg;n = f�1 2 [�1 + "; 1] : q�n(�=2j�1) � tn(�1) � q�n(1� �=2j�1)g; (4.3)

12The results given below could be extended to martingale di¤erence innovations with constant conditional variances
without much di¢ culty.
13The model can be extended to allow for random starting values, for example, along the lines of Andrews and

Guggenberger (2011). More speci�cally, from (4.1), Yt can be written as Yt = ��0 + �
�
1t + Y

�
t and Y �

t = �1Y
�
t�1 +

�2�Y
�
t�1+ :::+�k�Y

�
t�k+1+Ut for some �

�
0 and �

�
1: Let y

�
0 = (Y

�
0 ; :::; Y

�
1�k) denote the starting value for fY �

t : t � 1g:
When �1 < 1; the distribution of y

�
0 can be taken to be the distribution that yields strict stationarity for fY �

t : t � 1g:
When �1 = 1; y�0 can be taken to be arbitrary. With these starting values, the asymptotic distribution of the t
statistic under near unit-root parameter values changes, but the asymptotic size and similarity results given below
do not change.
14The bootstrap starting values can be di¤erent from those for the original sample.
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where 1� � is the nominal coverage probability of the CI.
To show that the grid bootstrap CI Cg;n has asymptotic size equal to 1 � �; we consider

sequences of true parameters f�n = (�n; Fn) 2 � : n � 1g such that n(1� �1;n)! h1 2 [0;1] and
�n ! �0 = (�0; F0) 2 �; where �n = (�1;n; :::; �k;n)0 and �0 = (�1;0; :::; �k;0)0: De�ne

hn(�) = (n(1� �1); �0)0 and

H = f(h1; �00)0 2 [0;1]� � : n(1� �1;n)! h1

and �n ! �0 for some f�n 2 � : n � 1gg: (4.4)

Lemma 4.1. For all sequences f�pn 2 � : n � 1g for which hpn(�pn)! (h1; �0) 2 H; CPpn(�pn)!
1� � for Cg;pn de�ned in (4.3) with n replaced by pn:

Comment. The proof of Lemma 4.1 uses results in Hansen (1999), Giraitis and Phillips (2006),

and Mikusheva (2007).15

In order to establish a uniform result, Lemma 4.1 covers (i) the stationary case, i.e., h1 =1 and

�1;0 6= 1; (ii) the near stationary case, i.e., h1 = 1 and �1;0 = 1; (iii) the near unit-root case, i.e.,

h1 2 R and �1;0 = 1; and (iv) the unit-root case, i.e., h1 = 0 and �1;0 = 1: In the proof of Lemma

4.1, we show that tn(�1) !d N(0; 1) in cases (i) and (ii), even though the rate of convergence

of the LS estimator of �1 is non-standard (faster than n
1=2) in case (ii). In cases (iii) and (iv),

tn(�1)) (
R 1
0 WcdW )=(

R 1
0 W

2
c )
1=2; where Wc(r) =

R r
0 exp(r� s)dW (s); W (s) is standard Brownian

motion, and c = h1=(1�
Pk

j=2 �j;0):

Lemma 4.1 implies that Assumption B� holds for the grid bootstrap CI. By Corollary 2.1(c),

the asymptotic size of the grid bootstrap CI equals its nominal size and the grid bootstrap CI is

asymptotically similar (in a uniform sense).

5 Quasi-Likelihood Ratio Con�dence Intervals

in Nonlinear Regression

In this example, we consider the asymptotic properties of standard quasi-likelihood ratio-

based CI�s in a nonlinear regression model. We determine the AsySz of such CI�s and �nd that

they are not necessarily equal to their nominal size. We also determine the degree of asymptotic

non-similarity of the CI�s, which is de�ned by AsyMaxCP�AsySz:We make use of results given in
15The results from Mikusheva (2007) that are employed in the proof are not related to uniformity issues. They are

an extension from an AR(1) model to an AR(k) model of an L2 convergence result for the least squares covariance
matrix estimator and a martingale di¤erence central limit theorem for the score, which are established in Giraitis
and Phillips (2006).
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Andrews and Cheng (2010a, Appendix E) concerning the asymptotic properties of the LS estimator

in the nonlinear regression model and general asymptotic properties of QLR test statistics under

drifting sequences of distributions. (Andrews and Cheng (2010a) does not consider QLR-based CI�s

in the nonlinear regression model.)

5.1 Nonlinear Regression Model

The model is

Yi = � � h (Xi; �) + Z
0
i� + Ui for i = 1; :::; n; (5.1)

where Yi 2 R; Xi 2 RdX ; and Zi 2 RdZ are observed i.i.d. random variables or vectors, Ui 2 R is

an unobserved homoskedastic i.i.d. error term, and h(Xi; �) 2 R is a function that is known up to
the �nite-dimensional parameter � 2 Rd� : When the true value of � is zero, (5.1) becomes a linear
model and � is not identi�ed. This non-regularity is the source of the asymptotic size problem.

We are interested in QLR-based CI�s for � and �:

The Gaussian quasi-likelihood function leads to the nonlinear LS estimator of the parameter

� = (�; � 0; �0)0: The LS sample criterion function is

Qn(�) = n�1
nX
i=1

U2i (�) =2; where Ui (�) = Yi � �h(Xi; �)� Z 0i�: (5.2)

Note that when � = 0; the residual Ui (�) and the criterion function Qn(�) do not depend on �:

The (unrestricted) LS estimator of � minimizes Qn(�) over � 2 �: The optimization parameter
space � takes the form

� = B � Z ��; where B = [�b1; b2] � R; (5.3)

Z (� Rd� ) is compact, and � (� Rd�) is compact.

The random variables
�
(X 0

i; Z
0
i; Ui)

0 : i = 1; :::; n
	
are i.i.d. with distribution �: The support of

Xi (for all possible true distributions of Xi) is contained in a set X :We assume that h (x; �) is twice
continuously di¤erentiable wrt �; 8� 2 �; 8x 2 X . Let h� (x; �) 2 Rd� and h�� (x; �) 2 Rd��d�

denote the �rst-order and second-order partial derivatives of h(x; �) wrt �:

The parameter space for the true value of � is

�� = B� �Z� ���; where B� = [�b�1; b�2] � R; (5.4)

b�1 � 0; b�2 � 0; b�1 and b
�
2 are not both equal to 0; Z� (� Rd� ) is compact, and �� (� Rd�) is
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compact.16 Let �� be a space of distributions of (Xi; Zi; Ui) that is a compact metric space with

some metric that induces weak convergence. The parameter space for the true value of � is

��� = f� 2 �� : E�(UijXi; Zi) = 0 a.s.; E�(U
2
i jXi; Zi) = �2 > 0 a.s.;

E�

�
sup
�2�

jjh (Xi; �) jj4+"+ sup
�2�

jjh� (Xi; �) jj4+"+ sup
�2�

jjh�� (Xi; �) jj2+"
�
� C;

jjh��(Xi; �1)� h��(Xi; �2)jj �M(Xi)jj�1 � �2jj 8�1;�2 2 � for some function

M(Xi); E�M(Xi)
2+" � C; E�jUij4+" � C; E� kZik4+" � C;

P�(a
0(h(Xi; �1); h (Xi; �2) ; Zi) = 0) < 1; 8�1; �2 2 � with �1 6= �2; 8a 2 Rd�+2

with a 6= 0; �min(E�(h(Xi; �); Z
0
i)
0(h(Xi; �); Z

0
i)) � " 8� 2 �; and

�min(E�di (�) di(�)
0) � " 8� 2 �g (5.5)

for some constants C < 1 and " > 0; and by de�nition di(�) = (h (Xi; �) ; Zi; h� (Xi; �))
0 : The

moment conditions in ��� are used to ensure the uniform convergence of various sample averages.

The other conditions are used for the identi�cation of � and � and the identi�cation of � when

� 6= 0:
We assume that the optimization parameter space � is chosen such that b1 > b�1; b2 > b�2;

Z� 2 int(Z); and B� 2 int(B): This ensures that the true parameter cannot be on the boundary of
the optimization parameter space.

5.2 Con�dence Intervals

We consider CI�s for � and �:17 The CI�s are obtained by inverting tests. For the CI for �;

we consider tests of the null hypothesis

H0 : r(�) = v; where r(�) = �: (5.6)

For the CI for �; the function r(�) is r(�) = �:

For v 2 r(�); we de�ne a restricted estimator e�n(v) of � subject to the restriction that r(�) = v:

By de�nition,

e�n(v) 2 �; r(e�n(v)) = v; and Qn(e�n(v)) = inf
�2�:r(�)=v

Qn(�) + o(n
�1): (5.7)

16We allow the optimization parameter space � and the �true parameter space� ��; which includes the true
parameter by de�nition, to be di¤erent to avoid boundary issues. Provided �� � int(�); as is assumed below,
boundary problems do not arise.
17CI�s for elements of � and nonlinear functions of �; �; and � can be obtained from the results given here by

verifying Assumptions RQ1-RQ3 in the Appendix.

22



For testing H0 : r(�) = v; the QLR test statistic is

QLRn(v) = 2n(Qn(e�n(v))�Qn(b�n))=b�2n; where
b�2n = b�2n(b�n) and b�2n(�) = n�1

nX
i=1

U2i (�): (5.8)

The critical value used with the standard QLR test statistic for testing a scalar restriction is

the 1 � � quantile of the �21 distribution, which we denote by �
2
1;1��: This choice is based on the

pointwise asymptotic distribution of the QLR statistic when � 6= 0:
The nominal level 1� � QLR CS for r(�) = � or r(�) = � is

CSQLRn = fv 2 r(�) : QLRn(v) � �21;1��g: (5.9)

5.3 Asymptotic Results

Under sequences f(�n; �n) : n � 1g such that �n 2 ��; �n 2 ���; (�n; �n) ! (�0; �0);

�0 = 0; and n
1=2�n ! b 2 R (which implies that jbj <1), we have the following result:

QLRn !d LR1(b; �0; �0) = 2( inf
�2�r;0

�r(�; b; �0; �0)� inf
�2�

�(�; b; �0; �0))=�
2
0; (5.10)

where �r;0 = � if r(�) = �; �r;0 = �0 if r(�) = �; 
0 = (�0; �0); �
2
0 denotes the variance of Ui

under �0; and the stochastic processes f�(�; b; �0; �0) : � 2 �g and f�r(�; b; �0; �0) : � 2 �g are
de�ned below in Section 5.5.18

We assume that the distribution function of LR1(b; �0; �0) is continuous at �
2
1;1�� 8b 2 R;8�0 2

��;8�0 2 ���:19 It is di¢ cult to provide primitive su¢ cient conditions for this assumption to hold.
However, given the Gaussianity of the processes underlying LR1(b; �0; �0); it typically holds. For

completeness, we provide results both when this condition holds and when it fails.

Next, under sequences f(�n; �n) : n � 1g such that �n 2 ��; �n 2 ���; (�n; �n) ! (�0; �0);

18The random quantity �(�; b; �0; �0) is the limit in distribution under f(�n; �n) : n � 1g (that satis�es the
speci�ed conditions) of the concentrated criterion function Qn(b�n(�)) after suitable centering and scaling, whereb�n(�) minimizes Qn(�) over � for given � 2 �: Analogously, �r(�; b; �0; �0) is the limit (in distribution) under
f(�n; �n) : n � 1g of the restricted concentrated criterion function Qn(e�n(v; �)) after suitable centering and scaling,
where e�n(v; �) minimizes Qn(�) over � subject to the restriction r(�) = v for given � 2 �r;0:
19This assumption is stronger than needed, but it is simple. It is su¢ cient that the df of LR1(b; �0; �0)

is continuous at �21;1�� for (b; �0; �0) equal to some (bL; �L; �L) and (bU ; �U ; �U ) in R � �� � ��� for which
P (LR1(bL; �L; �L) < �21;1��) = infb2R;�02��;�02���P (LR1(b; �0; �0) < �21;1��) and P (LR1(bU ; �U ; �U ) �
�21;1��) = supb2R;�02��;�02��� P (LR1(b; �0; �0) � �

2
1;1��):
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n1=2j�nj ! 1; and �n=j�nj ! !0 2 f�1; 1g; we have the result:

QLRn !d �
2
1: (5.11)

The results in (5.10) and (5.11) are proved in the Appendix using results in Andrews and Cheng

(2010a).

Now, we apply the results of Corollary 2.1(b) above with � = (j�j; �=j�j; � 0; �0; �)0; hn(�) =
(n1=2j�j; j�j; �=j�j; � 0; �0; �)0; where by de�nition �=j�j = 1 if � = 0; and h = (b; j�0j; �0=j�0j; � 00; �00;
�0)

0: We verify Assumptions B1 and B2�; C1, and C2. Assumption B1 holds by (5.10) and (5.11)

with

CP�(h) = CP+(h) = CP (b; �0; �0) when jbj <1; where

CP (b; �0; �0) = P
�
LR1(b; �0; �0) � �21;1��

�
: (5.12)

When jbj =1; Assumption B1 holds with

CP�(h) = CP+(h) = P
�
S � �21;1��

�
= 1� �; (5.13)

where S is a random variable with �21 distribution. Hence, Assumptions C1 and C2 also hold using

the condition on the df of LR1(b; �0; �0):

Assumption B2�(i) holds with (�1; :::; �q)0 = (j�j; �=j�j; � 0; �0)0 and �q+1 = �: Assumption

B2�(ii) holds with hn(�) as above, r = 1; dn;j = n1=2; J = 3 + d� + d�; mj(�) = �j�1 for

j = 2; :::; J; mJ+1(�) = �; � = f� = (j�j; �=j�j; � 0; �0; �)0 : � = (�; � 0; �0)0 2 ��; � 2 ���g; and
T = �� � ���; where �� is a compact pseudo-metric space by assumption. Assumption B2�(iii)

holds immediately given the form of mj(�) for j = 2; :::; J + 1: Assumption B2�(iv) holds because

given any � = (j�j; �=j�j; � 0; �0; �)0 2 �; (aj�j; �=j�j; � 0; �0; �)0 2 � for all a 2 (0; 1] by the form of

� and �� = B� � Z� � ��; where B� = [�b�1; b�2] � R with b�1 � 0; b�2 � 0; and b�1 and b�2 not both
equal to 0:

Hence, by Corollary 2.1(b), we have

AsySz = minf inf
b2R;�02��;�02���

CP (b; �0; �0); 1� �g and

AsyMaxCP = maxf sup
b2R;�02��;�02���

CP (b; �0; �0); 1� �g: (5.14)

Typically, AsySz < 1�� and the QLR CI for � or � does not have correct asymptotic size. Below
we provide a numerical example for a particular choice of h(x; �):
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Using the general approach in Andrews and Cheng (2010a), one can construct data-dependent

critical values (that are used in place of the �xed critical value �21;1��) that yield QLR-based CI�s

for � and � with AsySz equal to their nominal size. For brevity, we do not provide details here.

If the continuity condition on the df of LR1(b; �0; �0) does not hold, then Assumptions C1 and

C2 do not necessarily hold. In this case, instead of (5.14), using Corollary 2.1(a), we have

AsySz 2
�
minf inf

b2R;�02��;�02���
CP�(b; �0; �0); 1� �g;

minf inf
b2R;�02��;�02���

CP (b; �0; �0); 1� �g
�
; and

AsyMaxCP 2
"
maxf sup

b2R;�02��;�02���
CP�(b; �0; �0); 1� �g;

maxf sup
b2R;�02��;�02���

CP (b; �0; �0); 1� �g
#
; where

CP�(b; �0; �0) = P
�
LR1(b; �0; �0) < �21;1��

�
: (5.15)

5.4 Numerical Results

Here we compute AsySz and AsyMaxCP in (5.14) for two choices of the nonlinear regres-

sion function h(x; �): We compute these quantities for a single distribution � (i.e., for the case

where ��� contains a single element). The model is as in (5.1) with Zi = (1; Z�i )
0 2 R2:

The two nonlinear functions considered are:

(i) a Box-Cox function h(x; �) = (x� � 1)=� and

(ii) a logistic function h(x; �) = x(1 + exp(�(x� �)))�1: (5.16)

In both cases, f(Z�i ; Xi; Ui) : i = 1; :::; ng are i.i.d. and Ui is independent of (Z�i ; Xi):

When the Box-Cox function is employed, Z�i � N(0; 1); Xi = jX�
i j with X�

i � N(3; 1);

Corr(Z�i ; X
�
i ) = 0:5; and Ui � N(0; 0:52): The true values of �0 and �1 are �2 and 2; respec-

tively. The true values of � considered are f1:50; 1:75; :::; 3:5g: The optimization space � for � is
[1; 4]:

When the logistic function is employed, Z�i � N(5; 1); Xi = Z�i ; Ui � N(0; 1): The true values

of �0 and �1 are �5 and 1; respectively. The true values of � considered are f4:5; 4:6; :::; 5:5g: The
optimization space � for � is [4; 6]; where the lower and upper bounds are approximately the 15%

and 85% quantiles of Xi:

In both cases, the discrete values of b for which computations are made run from 0 to 20

(although only values from 0 to 5 are reported in Figure 1), with a grid of 0:1 for b between 0 and
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Table I. Asymptotic Coverage Probabilities of Nominal 95% Standard
QLR CI�s for � and � in the Nonlinear Regression Model

Box-Cox Function
�0 1:50 2:00 2:50 3:00 3:50 AsySz AsyMaxCP

� min over b 0:918 0:918 0:918 0:918 0:918 0:918
max over b 0:987 0:992 0:989 0:986 0:974 0:992

� min over b 0:950 0:950 0:950 0:950 0:950 0:950
max over b 0:997 0:999 0:999 0:998 0:995 0:999

Logistic Function
�0 4:5 4:7 5:0 5:2 5:5 AsySz AsyMaxCP

� min over b 0:744 0:744 0:744 0:744 0:744 0:744
max over b 0:953 0:951 0:950 0:951 0:951 0:953

� min over b 0:868 0:869 0:869 0:869 0:870 0:868
max over b 0:950 0:953 0:951 0:951 0:950 0:953

5; a grid of 0:2 for b between 5 and 10, and a grid of 1 for b between 10 and 20: The number of

simulation repetitions is 50; 000:

Table 1 reports AsySz and AsyMaxCP de�ned in (5.14) and the minimum and maximum

of the asymptotic coverage probabilities over b; for several values of �0: To calculate AsySz and

AsyMaxCP; the values of �0 considered are the true values of � given above. Figure 1 plots the

asymptotic coverage probability as a function of b:

Table 1 and Figure 1 show that the properties of QLR CI depend greatly on the context. The

QLR CI for � in the Box-Cox model has correct AsySz; whereas the QLR CI�s for � in the Box-

Cox model and � and � in the logistic model have incorrect asymptotic sizes. Furthermore, the

asymptotic sizes of the QLR CI�s for � and � in the logistic model are quite low, being :75 and :87;

respectively. In the Box-Cox model, there is over-coverage for almost all parameter con�gurations.

In contrast, in the logistic model, there is under-coverage for all parameter con�gurations. In both

models, there is a substantial degree of asymptotic nonsimilarity. The values of AsyMaxCP �
AsySz for � and � in the Box-Cox and logistic models are :074; :049; :209; and :085; respectively.
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Figure 1. Asymptotic Coverage Probabilities of Standard QLR CI�s for � and � in the Nonlinear
Regression Model.

5.5 Quantities in the Asymptotic Distribution

Now, we de�ne �(�; b; �0; �0) and �r(�; b; �0; �0); which appear in (5.10). The stochastic

process f�(�; b; �0; �0) : � 2 �g depends on the following quantities:

H(�;�0) = E�0d ;i(�)d ;i(�)
0;

K(�;�0; �0) = �E�0h(Xi; �0)d ;i(�); and


(�1; �2;�0) = �20E�0d ;i(�1)d ;i(�2)
0; where

d ;i(�) = (h(Xi; �); Z
0
i)
0: (5.17)

LetG(�;�0) denote a mean 01+d� Gaussian process with covariance kernel 
(�1; �2;�0): The process

f�(�; b; �0; �0) : � 2 �g is a �weighted non-central chi-square�process de�ned by

�(�; b; �0; �0) = �
1

2
(G(�;�0) +K(�;�0; �0) b)

0H�1(�;�0) (G(�;�0) +K(�;�0; �0)b) : (5.18)
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Given the de�nition of ���; f�(�; b; �0; �0) : � 2 �g has bounded continuous sample paths a.s.
Next, we de�ne the �restricted�process f�r(�; b; �0; �0) : � 2 �g: De�ne the Gaussian process

f�(�; b; �0; �0) : � 2 �g by

�(�; b; �0; �0) = �H�1(�;�0)(G(�;�0) +K(�;�0; �0)b)� (b; 00d� )
0; (5.19)

where (b; 00d� )
0 2 R1+d� :20

The process f�r(�; b; �0; �0) : � 2 �g is de�ned by

�r(�; b; �0; �0) = �(�; b; �0; �0)

+
1

2
�(�; b; �0; �0)

0P (�;�0)
0H(�;�0)P (�;�0)�(�; b; �0; �0); where

P (�;�0) = H�1(�;�0)e1
�
e01H

�1(�;�0)e1
��1

e01: (5.20)

If r(�) = �; then e1 = (1; 00d� )
0: If r(�) = �; then e1 = 01+d� and hence �r(�; b; �0; �0) =

�(�; b; �0; �0): The (1+d�)� (1+d�)-matrix P (�;�0) is an oblique projection matrix that projects
onto the space spanned by e1:

20The process f�(�; b; �0; 
0) : � 2 �g arises in the formula for �r(�; b; �0; 
0) below because the asymptotic

distribution of n1=2(b�n � �n;b�0n � �0n)0 under f(�n; �n) : n � 1g such that �n 2 ��; �n 2 ��(�n); (�n; �n) !
(�0; �0); �0 = 0; and n1=2�n ! b 2 Rd� is the distribution of �(��(b; �0; �0); b; �0; �0); where �

�(b; �0; �0) =
argmin�2� �(�; b; �0; �0):
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6 Appendix

This Appendix contains proofs of (i) Lemma 3.1 concerning the conditional likelihood ratio

test in the linear IV regression model considered in Section 3 of the paper, (ii) Lemma 4.1 concerning

the grid bootstrap CI in an AR(k) model given in Section 4 of the paper, and (iii) equations (5.10)

and (5.11) for the nonlinear regression model considered in Section 5 of the paper.

6.1 Conditional Likelihood Ratio Test with Weak Instruments

Proof of Lemma 3.1. We start by proving the result for the full sequence fng; rather than a
subsequence fpng: Then, we note that the same proof goes through with pn in place of n:

Let f�ng be a sequence in � such that hn(�n)! h = (h1; h2; h31;:::; h34) 2 H: All results stated
below are �under f�ng:�We let E�n denote expectation under �n: De�ne

h1 = lim
n!1

n1=2jj�njj; h2 = lim
n!1

�n=jj�njj; h31 = lim
n!1

E�nZ
�
i Z

�0
i ;

h32 = lim
n!1


Fn = lim
n!1

E�nZ
�
i Z

�0
i u

2
i ; h33 = lim

n!1
�Fn = lim

n!1
E�nZ

�
i Z

�0
i v

2
i ; and

h34 = lim
n!1

�Fn = lim
n!1

E�nZ
�
i Z

�0
i uivi: (6.1)

Below we use the following result that holds by a law of large numbers (LLN) for a triangular

array of row-wise i.i.d. random variables using the moment conditions in �:

n�1
Pn

i=1A1iA2iA3iA4i � E�nA1iA2iA3iA4i !p 0; (6.2)

where A1i and A2i consist of any elements of Zi; Xi; or Z�i and A3i and A4i consist of any elements

of Zi; Xi; ui; vi; or 1:

Using the de�nitions in (3.6) and y?1i = y?2i�0 + u
?
i ; we obtain

n�1
Pn

i=1 gig
0
i = n�1

Pn
i=1 Z

?
i Z

?0
i u

?2
i = n�1

Pn
i=1 Z

�
i Z

�0
i u

2
i + op(1); where

Z?i = Zi � (n�1
Pn

i=1 ZiX
0
i)(n

�1Pn
i=1XiX

0
i)
�1Xi;

Z�i = Zi � (E�nZiX 0
i)(E�nXiX

0
i)
�1Xi; and

u?i = ui � (n�1
Pn

i=1 uiX
0
i)(n

�1Pn
i=1XiX

0
i)
�1Xi; (6.3)

where the second equality in the �rst line holds by (6.2) with A1i; :::; A4i including elements of Zi

or Xi; Zi or Xi; Xi; ui; or 1; and Xi; ui; or 1; respectively, E�nXiui = 0; and some calculations,

the second and fourth lines hold by (3.3), and the third line follows from (3.5) by noting that Z�i

in (3.5) depends on EF and in the present case F = Fn and EFn = E�n :
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By Lyapunov�s triangular array central limit theorem (CLT), we obtain

n1=2bg = n�1=2
Pn

i=1 Z
?
i u

?
i = n�1=2Z

0
MXu = n�1=2

Pn
i=1 Z

?
i ui

= n�1=2
Pn

i=1 Z
�
i ui + op(1)!d Nh � N(0; h32); (6.4)

where the fourth equality holds using (6.2) and some calculations and the convergence uses E�nZiui

= 0; the moment conditions in �; and (6.1).

Equations (6.1)-(6.4) give

b
 = n�1
Pn

i=1 gig
0
i � bgbg0 = n�1

Pn
i=1 Z

�
i Z

�0
i u

2
i + op(1)!p h32: (6.5)

To obtain analogous results for b� and b�; we write
bv = MZy2 =MZv; bvi = vi � (n�1

Pn
i=1 viZi)(n

�1Pn
i=1 ZiZ

0
i)
�1Zi; (6.6)

bu = MX(y1 � y2�0) =MXu; and bui = ui � (n�1
Pn

i=1 uiXi)(n
�1Pn

i=1XiX
0
i)
�1Xi:

This gives

bL = n�1
Pn

i=1 Z
?
i bvi = n�1Z 0MXMZy2 = n�1Z 0MZv !p 0;b� = n�1

Pn
i=1 Z

?
i Z

?0
i bv2i � bLbL0 = n�1

Pn
i=1 Z

�
i Z

�0
i v

2
i + op(1)!p h33; andb� = n�1

Pn
i=1 Z

?
i Z

?0
i buibvi � bLbg0 = n�1

Pn
i=1 Z

�
i Z

�0
i uivi + op(1)!p h34; (6.7)

where the convergence in the �rst row holds by (6.1), (6.2), and E�nZivi = 0; in the second and

third rows the second equalities use the result of the �rst row for bL; (6.2), (the second and third
lines of) (6.3), (6.4), (6.6), and some calculations, and the convergence in the second and third rows

holds by (6.1) and (6.2).

Equations (6.5) and (6.7) and the condition �min(
F ) � � > 0 in � give

b	 = b�� b�b
�1b�!p h33 � h34h�132 h34 � 	h: (6.8)

Case h1 < 1: Using the results just established, we now prove the result of the Lemma for
the case h1 <1: We have

n�1
Pn

i=1Gig
0
i = n�1

Pn
i=1 Z

?
i Z

?0
i (�

0
nZ

?
i + v

?
i )u

?
i = n�1

Pn
i=1 Z

�
i Z

�0
i viui + op(1)!p h34; (6.9)

where the �rst equality uses y?2i = Z?0i �n+v
?
i ; the second equality holds using (i) lim supn!1 jj�njj <

36



1; (ii) E�nZi(ui; vi) = 0; (iii) (6.2) with A1i; A2i; A3i; and A4i including elements of Zi or Xi; Zi

or Xi; Xi or ui; and Zi; Xi; or vi; respectively, and (iv) some calculations, and the convergence

uses (6.1) and (6.2).

By (6.1), we have

n1=2E�nZ
�
i Z

�0
i �n = n1=2jj�njjE�nZ�i Z�0i (�n=jj�njj)! h1h31h2: (6.10)

Using this, we obtain

n1=2 bG = n�1=2
Pn

i=1 Z
?
i y

?
2i = n�1=2Z

0
MXy2

= n�1Z
0
MXZ(n

1=2�n) + n
�1=2Z

0
MXv

= n�1
Pn

i=1 Z
�
i Z

�0
i (n

1=2�n) + n
�1=2Pn

i=1 Z
�
i vi + op(1)

= h1h31h2 + n
�1=2Pn

i=1 Z
�
i vi + op(1); (6.11)

where the fourth equality holds using lim supn!1 n1=2jj�njj < 1 (since h1 < 1); (6.2), and some
calculations, and the last equality holds by (6.2) and (6.10).

Using the de�nition of bD in (3.7), combined with (6.4), (6.5), (6.9), and (6.11) yields

n1=2 bD = n1=2 bG� [n�1Pn
i=1Gig

0
i � bGbg0]b
�1n1=2bg

= h1h31h2 + n
�1=2Pn

i=1 Z
�
i vi � h34h�132 n�1=2

Pn
i=1 Z

�
i ui + op(1)

= h1h31h2 + [�h34h�132 : IdZ ]n�1=2
Pn

i=1

0@ Z�i ui

Z�i vi

1A+ op(1); (6.12)

where the second equality uses the condition �min(
F ) � � > 0 in �:

Combining (6.4) and (6.12) gives0@ n1=2bg
n1=2 bD

1A =

0@ 0

h1h31h2

1A+
24 IdZ 0

�h34h�132 IdZ

35n�1=2Pn
i=1

0@ Z�i ui

Z�i vi

1A+ op(1)
! d

0@ Nh

Dh

1A � N

0@0@ 0

h1h31h2

1A ;

24 IdZ 0

�h34h�132 IdZ

3524 h32 h34

h34 h33

3524 IdZ �h�132 h34
0 IdZ

351A
= N

0@0@ 0

h1h31h2

1A ;

24 h32 0

0 	h

351A ; where 	h = h33 � h34h�132 h34: (6.13)

The convergence in (6.13) holds by Lyapunov�s triangular array CLT using the fact that E�nZi(ui;

vi) = 0 implies that E�nZ
�
i ui = E�nZ

�
i vi = 0; the moment conditions in �; and (6.1). In sum,
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(6.13) shows that n1=2bg and n1=2 bD are asymptotically independent with asymptotic distributions

Nh � N(0; h32) and Dh � N(h1h31h2;	h):

By the de�nition of �; �min(	h) � � > 0: Hence, with probability one, Dh 6= 0: This, (6.13),

and the continuous mapping theorem (CMT) give

( bD0b
�1 bD)�1=2 bD0b
�1n1=2bg !d (D
0
hh
�1
32 Dh)

�1=2D0
hh
�1
32 Nh � �1 � N(0; 1) and (6.14)

LM !d LMh = N 0
hh
�1=2
32 P

h
�1=2
32 Dh

h
�1=2
32 Nh = (D

0
hh
�1
32 Dh)

�1(D0
hh
�1
32 Nh)

2 = �21 � �21;

where �1 � N(0; 1) because its conditional distribution given Dh is N(0; 1) a.s.

We can write

AR = LM + J; where J = nbg0b
�1=2Mb
�1=2 bDb
�1=2bg: (6.15)

Using (6.5), (6.8), (6.13), and the CMT, we have

J !d Jh = N 0
hh
�1=2
32 M

h
�1=2
32 Dh

h
�1=2
32 Nh � �2dZ�1 and

W = n bD0b	�1 bD !d Wh = D0
h	

�1
h Dh � �2dZ : (6.16)

Substituting (6.15) into the de�nition of CLR in (3.9) and using the convergence results in

(6.14) and (6.16) (which hold jointly) and the CMT, we obtain

CLR!d CLRh =
1

2

�
LMh + Jh �Wh +

p
(LMh + Jh �Wh)2 + 4LMhWh

�
: (6.17)

Next, we determine the asymptotic distribution of the CLR critical value. By de�nition, c(1�
�;w) is the (1 � �)-quantile of the distribution of clr(w) de�ned in (3.10). First, we show that

c(1 � �;w) is a continuous function of w 2 R+: To do so, consider a sequence wn 2 R+ such that
wn ! w 2 R+: By the functional form of clr(w); we have clr(wn)! clr(w) as wn ! w a.s. Hence,

by the bounded convergence theorem, for all continuity points y of GL(x) � P (clr(w) � x); we

have

Ln(y) � P (clr(wn) � y) = P (clr(w) + (clr(wn)� clr(w)) � y)

! P (clr(wn) � y) = GL(y): (6.18)

The distribution function GL(x) is increasing at its (1 � �)-quantile c(1 � �;w): Therefore, by

Andrews and Guggenberger (2010, Lemma 5), it follows that c(1� �;wn)!p c(1� �;w): Because
these quantities actually are nonrandom, we get c(1 � �;wn) ! c(1 � �;w): This establishes

continuity.

38



From the continuity of clr(w); (6.16), and (6.17), it follows that

CLR� c(1� �;W )!d CLRh � c(1� �;Wh): (6.19)

Therefore, by the de�nition of convergence in distribution, we have

P�0;�n(CLR > c(1� �;W ))! P (CLRh > c(1� �;Wh)); (6.20)

where P�0;�n(�) denotes probability under �n when the true value of � is �0: Now, conditional
on Dh = d; Wh equals the constant w � d0	�1h d and LMh and Jh in (6.17) are independent

(because they are quadratic forms in the normal vector h�1=232 Nh and Ph�1=232 Dh
M
h
�1=2
32 Dh

= 0) and

are distributed as �21 and �
2
dZ�1; respectively. Hence, the conditional distribution of CLRh is the

same as that of clr(w); de�ned in (3.10), whose (1 � �)-quantile is c(1 � �;w): This implies that

the probability of the event CLRh > c(1� �;Wh) in (6.20) conditional on Dh = d equals � for all

d > 0: In consequence, the unconditional probability P (CLRh > c(1 � �;Wh)) equals � as well.

This completes the proof for the case h1 <1:
Case h1 = 1: From here on, we consider the case where h1 = 1: In this case, jj�njj > 0 for

all n large. Thus, we have

jj�njj�1n�1
Pn

i=1Gigi = n�1
Pn

i=1 Z
?
i Z

?0
i ((�n=jj�njj)0Z?i + v?i =jj�njj)u?i = Op(1) and

jj�njj�1 bG = jj�njj�1[n�1Z 0
MXZ�n + n

�1Z
0
MXv] = n�1

Pn
i=1 Z

�
i Z

�0
i (�n=jj�njj) + op(1)

!p h31h2; (6.21)

where the �rst equality in the �rst line uses the �rst equality in (6.9), the second equality in the

�rst line uses (6.2), the moment conditions in �; jj�n=jj�njjjj = 1; and some calculations, the �rst
equality in the second line uses the �rst two lines of (6.11), the second equality in the second line

uses (6.2) and some calculations, and the convergence uses (6.1) and (6.2).

By the de�nition of bD and (6.21), we have

jj�njj�1 bD = jj�njj�1 bG� jj�njj�1[n�1Pn
i=1Gig

0
i � bGbg0]b
�1bg !p h31h2; (6.22)

where bg = op(1) by (6.4) and b
�1 = Op(1) by (6.5) and the condition �min(
F ) � � > 0 in �:
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Combining (6.4) and (6.22) gives

( bD0b
�1 bD)�1=2 bD0b
�1n1=2bg = (jj�njj�1 bD0b
�1jj�njj�1 bD)�1=2jj�njj�1 bD0b
�1n1=2bg
!d (h

0
2h31h

�1
32 h31h2)

�1=2h02h31h
�1
32 Nh � �2 � N(0; 1) and

LM !d LMh = N 0
hh
�1=2
32 P

h
�1=2
32 h31h2

h
�1=2
32 Nh

= (h02h31h
�1
32 h31h2)

�1(h02h31h
�1
32 Nh)

2 = �22 � �21: (6.23)

Analogously, J !d N
0
hh
�1=2
32 M

h
�1=2
32 h31h2

h
�1=2
32 Nh and, hence, J = Op(1):

From (6.22), h1 = limn!1 n1=2jj�njj =1; and jjh31h2jj > 0; it follows that for all K <1;

P�0;�n(n
1=2jj�njj � jj�njj�1jj bDjj > K)! 1: (6.24)

This, (6.8), and jj	hjj <1 (by the conditions in �) yield

P�0;�n(W > K) = P�0;�n(n
bD0b	�1 bD > K)! 1: (6.25)

By (6.15) and some calculations, we have

(AR�W )2 + 4LM �W = (LM � J +W )2 + 4LM � J: (6.26)

Substituting this into the expression for CLR in (3.9) gives

CLR =
1

2

�
LM + J �W +

p
(LM � J +W )2 + 4LM � J

�
: (6.27)

Using a �rst-order expansion of the square-root expression in (6.27) about (LM � J +W )2; we
obtain p

(LM � J +W )2 + 4LM � J = LM � J +W + (1=2)��1=24LM � J (6.28)

for an intermediate value � between (LM �J +W )2 and (LM �J +W )2+4LM �J: By (6.23) and
(6.25), ��1=2LM � J !p 0:

This, (6.23), (6.27), and (6.28) give

CLR = LM + op(1)!d �
2
2 � �21: (6.29)

De�ne CLRh(w) as CLRh is de�ned in (6.17), but with w in place ofWh:We have CLRh(w)!d

LMh � �21 as w ! 1 by the argument just given in (6.26)-(6.29). In consequence, the (1 � �)-
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quantile c(1� �;w) satis�es c(1� �;w)! �21;1�� as w !1; where �21;1�� is the (1� �)-quantile

of the �21 distribution. Combining this with (6.25) gives

c(1� �;W )!p �
2
1;1��: (6.30)

The result of Lemma 3.1 for the case h1 = 1 follows from (6.29), (6.30), and the de�nition of

convergence in distribution. �

6.2 Grid Bootstrap CI in an AR(k) Model

Proof of Lemma 4.1. We start by proving the result for the full sequence fng rather than the
subsequence fpng: Then, we note that the same proof goes through with pn in place of n: The t
statistic for �1 is invariant to �0 and �1: Hence, without loss of generality, we assume �0 = �1 = 0:

We consider sequences of true parameters �n such that n(1� �1;n)! h1 and �n ! �0 2 �: Let
h = (h1; �

0
0)
0: Below we show that tn(�1;n) !d Jh; where Jh = (

R 1
0 WcdW )

(
R 1
0 W

2
c )
�1=2 when h1 2 R and Jh = N(0; 1) when h1 =1:

First we consider the case in which h1 2 R and �1;n ! �1;0 = 1: De�ne �(L) = 1�
Pk

j=2 �j;0L
j =

�k�1j=1(1 � 
j(�0)L): We have �(1) = 1 �
Pk

j=2 �j;0 = �k�1j=1(1 � 
j(�0)) 6= 0; where the inequality

holds because j
1(�0)j � ::: � j
k�1(�0)j � 1� � for some � > 0: Furthermore, all roots of �(z) are
outside the unit circle, as assumed in Theorem 2 of Hansen (1999). Following the proof of Theorem

2 of Hansen (1999), the limit distribution of tn(�1;n) is Jh when c = h1=�(1) 2 R: The proof of

Theorem 2 of Hansen (1999) is for �1;n = 1 + C=n for some C 2 R and for �xed (�2; :::; �k)
0: The

proof can be adjusted to apply here by (i) replacing C with h1;n with h1;n ! h1 2 R and (ii)

replacing (�2; :::; �k)
0 with (�2;n; :::; �k;n)

0; which converges to (�2;0; :::; �k;0)
0:

Next, we show that tn(�1;n) !d N(0; 1) when n(1 � �1;n) ! h1 = 1: This includes the
stationary case, where �1;n ! �1;0 < 1; and the near stationary case, where �1;n ! �1;0 =

1 and h1 = 1: To this end, we rescale Xt = (Yt�1;�Yt�1; :::;�Yt�k+1)
0 by a matrix �n =

Diag�1=2(V arn(Yt�1); :::; V arn(�Yt�k+1)) and de�ne eXt = �nXt; where V arn(�) denotes the vari-
ance when the true parameter is �n: The rescaling of Xt is necessary because V arn(Yt�1) diverges

when �1;n ! 1; see Giraitis and Phillips (2006). Without loss of generality, we assume �1;n < 1;

although it could be arbitrarily close to 1: Let �n = Corr( eXt; eXt) when the true value is �n and

�2 = EF0U
2
t : We have

n�1
nX
t=1

eXt
eX 0
t � �n !p 0 and n�1=2a0n

nX
t=1

eXtUt !d N(0; �
2) (6.31)
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for any k � 1 vector an such that a0n�nan = 1: The �rst result in (6.31) is established by showing
L2 convergence and the second is established using a triangular array martingale di¤erence central

limit theorem. For the case of an AR(1) process, these results hold by the arguments used to prove

Lemmas 1 and 2 in Giraitis and Phillips (2006). Mikusheva (2007) extends these arguments to the

case of an AR(k) model, as is considered here, see the proofs of (S10)-(S13) in the Supplemental

Material to Mikusheva (2007) (which is available on the Econometric Society website). The proof

relies on a key condition n(1 � j
k(�n)j) ! 1: Now we show that this condition is implied by

n(1 � �1;n) ! 1: The result is obvious when �1;n ! �1;0 < 1: When �1;n ! �1;0 = 1; 
k(�n) 2 R
for n large enough and 
k(�n) ! 1 because (i) 1 � �1 = �kj=1(1 � 
j(�)); (ii) j
k�1(�)j � 1 � �

for some � > 0 and (iii) complex roots appear in pairs. Hence, n(1 � j
k(�n)j) = nj1 � 
k(�n)j �
2�(k�1)n(1� �1;n) for n large enough, which implies that n(1� j
k(�n)j)!1:

Applying (6.31) with an = ��1n l1=(l
0
1�

�1
n l1)

1=2 and l1 = (1; 0; :::; 0)0 2 Rk and using n�1
Pn

t=1 U
2
t

!p �
2; which holds by (15) of Hansen (1999), we have tn(�1;n) !d N(0; 1) when n(1 � �1;n) !

h1 =1:
Now we consider the behavior of the grid bootstrap critical value. De�ne bhn = (n(1 �

�1;n); �1;n;b�2(�1;n); :::;b�k(�1;n); bF )0; which corresponds to the true value for the bootstrap sample
with sample size n:We have bhn !p h because b�j(�1;n)��j;n !p 0 for j = 2; :::; k and d2r( bF ; F0)! 0;

where the convergence wrt the Mallows (1972) metric follows from Hansen (1999), which in turn

references Shao and Tu (1995, Section 3.1.2).

Let Jn(xjhn) denote the distribution function (df) of tn(�1;n); where hn = hn(�n) and �n is

true parameter vector. Then, Jn(xjbhn) is the df of the bootstrap t statistic with sample size n:
Let J(xjh) denote the df of Jh: De�ne Ln(hn; h) = supx2R jJn(xjhn)� J(xjh)j: For all non-random
sequences fhn : n � 1g such that hn ! h; Ln(hn; h) ! 0 because tn(�1;n) !d Jh and J(xjh) is
continuous for all x 2 R: (For the uniformity over x in this result, see Theorem 2.6.1 of Lehmann

(1999).)

Next, we show Ln(bhn; h) !p 0 given that bhn !p h and Ln(hn; h) ! 0 for all sequences

fhn : n � 1g such that hn ! h: Suppose d(�; �) is a distance function (not necessarily a metric) wrt
which d(hn; h)! 0 and d(bhn; h)!p 0:

21 Let B(h; ") = fh� 2 [0;1)� � : d(h�; h) � "g: The claim
holds because (i) suph�2B(h;"n) Ln(h

�; h) ! 0 for any sequence f"n : n � 1g such that "n ! 0 and

21The distance can be de�ned as follows. Suppose h� = (h�1; �
�
1; �

�
2; :::; �

�
k; F

�)0 2 [0;1) � � and h =
(h1; �1;0; �2;0; :::; �k;0; F0)

0 2 [0;1] � �: When h1 < 1; let d1(h�1; h1) = jh�1 � h1j: When h1 = 1; let
d1(h

�
1; h1) = 1=h�1: Without loss of generality, assume h

�
1 6= 0 when h1 = 1: The distance between h� and h is

d(h�; h) = d1(h
�
1; h1) +

Pk
j=1 j�

�
j � �j;0j+ d2r(F �; F0):
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(ii) there exists a sequence "n ! 0 such that P (d(bhn; h) � "n)! 1:22 ;23

Using the result that supx2R jJn(xjbhn)�J(xjh)j !p 0; we have Jn(tn(�1;n)jbhn) = J(tn(�1;n)jh)+
op(1)!d U [0; 1]: The convergence in distribution holds because for all x 2 (0; 1); P (J(tn(�1;n)jh) �
x) = P (tn(�1;n) � J�1(xjh)) ! J(J�1(xjh))jh) = x; where J�1(xjh) is the x quantile of Jh: This
implies that P (�1 2 Cg;n) = P (�=2 � Jn(tn(�1;n)jbhn) � 1� �=2)! 1� �: �

6.3 Quasi-Likelihood Ratio Con�dence Intervals in Nonlinear Regression

Next, we prove equations (5.10) and (5.11) for the nonlinear regression example. Equation

(5.10) holds by Theorem 4.2 of Andrews and Cheng (2010) (AC1) provided Assumptions A, B1-B3,

C1-C5, RQ1, and RQ3 of AC1 hold.

Equation (5.11) holds by Theorem 4.3 and (4.15) of AC1 provided Assumptions A, B1-B3,

C1-C5, C7, C8, D1-D3, and RQ1-RQ3 of AC1 hold.

Assumptions A, B1-B3, C1-C5, C7, C8, and D1-D3 of AC1 hold by Appendix E of AC1. It

remains to verify Assumptions RQ1-RQ3 of AC1 when r(�) = � and when r(�) = �:

We now state and prove Assumptions RQ1-RQ3 of AC1. To state these assumptions, we need

to introduce some additional notation. The function r(�) is of the form

r(�) =

24 r1( )

r2(�)

35 ; (6.32)

where r1( ) 2 Rdr1 ; dr1 � 0 is the number of restrictions on  ; r2(�) 2 Rdr2 ; dr2 � 0 is the number
of restrictions on �; and dr = dr1 + dr2 :

The matrix r�(�) of partial derivatives of r(�) can be written as

r�(�) =
@

@�0
r(�) =

24 r1; ( ) 0dr1�d�

0dr2�d r2;�(�)

35 ; (6.33)

where r1; ( ) = (@=@ 0)r1( ) 2 Rdr1�d and r2;�(�) = (@=@�0)r2(�) 2 Rdr2�d� :
In particular, if r(�) = �; then r1( ) = �; r2(�) does not appear and r1; ( ) = (@=@ 0)r1( ) =

(1; 00d� ) = e01: If r(�) = �; then r1( ) and r1; ( ) do not appear, and r2(�) = �:

22To see that (i) holds, let h�n 2 B(h; "n) be such that Ln(h�n; h) � suph�2B(h;"n) Ln(h
�; h)��n for all n � 1; for some

sequence f�n : n � 1g such that �n ! 0: Then, h�n ! h: Hence, Ln(h�n; h)! 0: This implies suph�2B(h;"n) Ln(h
�; h)!

0:
23The proof of (ii) is as follows. For all k � 1; P (d(bhn; h) � 1=k) � 1 � 1=k for all n � Nk for some Nk < 1

because bhn !p h: De�ne "n = 1=k for n 2 [Nk; Nk+1) for k � 1: Then, "n ! 0 as n ! 1 because Nk < 1 for
all k � 1: In addition, P (d(bhn; h) � "n) = P (d(bhn; h) � 1=k) � 1 � 1=k for n 2 [Nk; Nk+1); which implies that
P (d(bhn; h) � "n)! 1 as n!1:
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By de�nition, �r;0 = �r(v0;2); where v0;2 = r2(�0) and 
0 = (�0; �0) 2 �: That is, �r;0 is the
set of values � that are compatible with the restrictions on � when 
0 is the true parameter value.

Hence, if r(�) = �; then �r;0 = �: If r(�) = �; then �r;0 = �0:

The quantity bsn that appears in the de�nition of QLRn of AC1 is bsn = b�2n in the nonlinear
regression case. Also, the quantities J(
0) and V (
0) that appear in Assumptions D2 and D3 of

AC1 and in Assumption RQ2 below are

J(
0) = E�0di(�0)di(�0)
0 and

V (
0) = E�0U
2
i di(�0)di(�0)

0 = �20J(
0); where

di(�) =
�
h (Xi; �) ; Z

0
i; h� (Xi; �)

0�0 : (6.34)

Note that J(
0) is the probability limit under sequences f(�n; �n) : n � 1g such that (�n; �n) !
(�0; �0); n

1=2j�nj ! 1; and �n=j�nj ! !0 2 f�1; 1g of the second derivative of the LS criterion
function after suitable scaling by a sequence of diagonal matrices. The matrix V (
0) is the asymp-

totic variance matrix under such sequences of the �rst derivative of the LS criterion function after

suitable scaling by a sequence of diagonal matrices.

The probability limit of the LS criterion function under 
0 is Q(�; 
0): We have

Q(�; 
0) = E�0U
2
i =2 + E�0(�0h(Xi; �0) + Z

0
i�0 � �h(Xi; �)� Z 0i�)2=2; (6.35)

where 
0 = (�0; �
0
0; �

0
0; �0)

0 and E�0 denotes expectation when the distribution of (X
0
i; Z

0
i; Ui)

0 is

�0:

If r(�) includes restrictions on �; i.e., dr2 > 0; then not all values � 2 � are consistent with the
restriction r2(�) = v2: For v2 2 r2(�); the set of � values that are consistent with r2(�) = v2 is

denoted by

�r(v2) = f� 2 � : r2(�) = v2 for some � = ( ; �) 2 �g: (6.36)

If dr2 = 0; then by de�nition �r(v2) = � 8v2 2 r2(�): In consequence, if r(�) = �; then �r(v2) = �:

If r(�) = �; then �r(v2) = v2:

Assumptions RQ1-RQ3 of AC1 are as follows.

Assumption RQ1. (i) r(�) is continuously di¤erentiable on �:

(ii) r�(�) is full row rank dr 8� 2 �:
(iii) r(�) satis�es (6.32).

(iv) dH(�r(v2);�r(v0;2))! 0 as v2 ! v0;2 8v0;2 2 r2(��):
(v)Q( ; �; 
0) is continuous in  at  0 uniformly over � 2 � (i.e., sup�2� jQ( ; �; 
0)�Q( 0; �; 
0)j
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! 0 as  !  0) 8
0 2 � with �0 = 0:
(vi) Q(�; 
0) is continuous in � at �0 8
0 2 � with �0 6= 0:

In Assumption RQ1(iv), dH denotes the Hausdor¤ distance.

Assumption RQ2. (i) V (
0) = s(
0)J(
0) for some non-random scalar constant s(
0) 8
0 2 �;
or (ii) V (
0) and J(
0) are block diagonal (possibly after reordering their rows and columns), the

restrictions r(�) only involve parameters that correspond to one block of V (
0) and J(
0); call

them V11(
0) and J11(
0); and for this block V11(
0) = s(
0)J11(
0) for some non-random scalar

constant s(
0) 8
0 2 �:

Assumption RQ3. The scalar statistic bsn satis�es bsn !p s(
0) under f
ng 2 �(
0; 0; b) and
under f
ng 2 �(
0;1; !0):

Assumptions RQ1(i)-(iii) hold immediately for r(�) = � and r(�) = �: Assumption RQ1(iv)

also holds because, from above, if r(�) = �; then �r(v2) = � and if r(�) = �; then �r(v2) = v2:

Assumption RQ1(v) holds because when �0 = 0 we have

sup
�2�

jQ( ; �; 
0)�Q( 0; �; 
0)j = sup
�2�

E�0(Z
0
i(� � �0) + �h(Xi; �))

2=2! 0 (6.37)

as (�; �)! (0; �0); where the convergence uses conditions in �
��:Assumption RQ1(vi) holds because

Q(�; 
0)�Q(�0; 
0) = E�0(�h(Xi; �)� �0h(Xi; �0) + Z
0
i(� � �0))2=2! 0 (6.38)

as � ! �0; where the convergence uses condition in ���:

Assumption RQ2(i) holds with s(
0) = �20 by (6.34). Assumption RQ3 holds with bsn = b�2n and
s(
0) = �20 by the same argument as used to verify Assumption V2 given in Appendix E of AC1.
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