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Abstract

Completeness and bounded-completeness conditions are used increasingly in econo-

metrics to obtain nonparametric identi�cation in a variety of models from nonparametric

instrumental variable regression to non-classical measurement error models. However,

distributions that are known to be complete or boundedly complete are somewhat scarce.

In this paper, we consider an L2-completeness condition that lies between com-

pleteness and bounded completeness. We construct broad (nonparametric) classes of

distributions that are L2-complete and boundedly complete. The distributions can have

any marginal distributions and a wide range of strengths of dependence. Examples of

L2-incomplete distributions also are provided.

Keywords: Bivariate distribution, bounded completeness, canonical correlation, com-
pleteness, identi�cation, measurement error, nonparametric instrumental variable re-

gression.

JEL Classi�cation Numbers: C14.



1 Introduction

Lehmann and Sche¤é (1950, 1955) introduce the concept of completeness and use

it to determine estimators with minimal risk in classes of unbiased estimators and to

characterize tests that are similar. More recently, completeness and the weaker concept

of bounded completeness have been used in the econometrics literature to obtain global

and local identi�cation conditions for a variety of nonparametric and semiparametric

models. See the references below. In consequence, it is important to have available a

broad array of distributions that are known to satisfy or fail these conditions.

A number of papers in the literature provide su¢ cient conditions for completeness

and bounded completeness. Newey and Powell (2003) give a rank condition for com-

pleteness of distributions with �nite support. Lehmann (1986) and Newey and Powell

(2003) give su¢ cient conditions for parametric families in the exponential family, with

the leading case being multivariate normal distributions. Ghosh and Singh (1966), Isen-

beck and Rüschendorf (1992), and Mattner (1992) give conditions for location and scale

families. Hu and Shiu (2011) provide some additional results.

d�Haultfoeuille (2011) provides su¢ cient conditions for bounded completeness for

random vectors X and Z that satisfy �(X) = �(Z) + "; where Z and " are indepen-

dent, �(Z) is absolutely continuous with respect to (wrt) Lebesgue measure with full

support RdX ; and " is absolutely continuous wrt Lebesgue measure with nowhere van-

ishing characteristic function. These are quite useful results but they do not allow for

unbounded regression functions in the nonparametric instrumental variables (IV) re-

gression model or non-classical measurement error in measurement error models, and

the full support condition can be restrictive. d�Haultfoeuille (2011) also provides some

su¢ cient conditions for completeness, but these conditions are quite restrictive.

In addition, several other papers in the literature provide examples of distributions

that are boundedly complete, but not complete. These include Hoe¤ding (1977), Bar-

Lev and Plachky (1989), and Mattner (1993). The boundedly complete distributions in

these papers are restrictive and are not very suitable for typical econometric applications.

In this paper, we provide additional examples of distributions that satisfy complete-

ness-type conditions and others that fail them. We consider the concept of L2-complete-

ness. This concept, or at least very closely related concepts, have been used by others,

e.g., Florens, Mouchart, and Rolin (1990, Ch. 5), Isenbeck and Rüschendorf (1992),

Mattner (1992, 1996), San Martin and Mouchart (2006), and Severini and Tripathi
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(2006). Completeness and bounded completeness can be viewed as L1-completeness and

L1-completeness, respectively, so L2-completeness lies between the two. It allows for

unbounded regression functions in the nonparametric IV regression model and related

semiparametric models, which are ruled out when the bounded completeness condition

is used. The joint distribution of two random vectors X and Z is L2-complete wrt X if

and only if every non-constant square-integrable function of X is correlated with some

square-integrable function of Z:

We construct distributions of (X;Z) that are L2-complete or L2-incomplete wrtX by

starting with (i) any marginal distributions FX and FZ ; respectively, (ii) two arbitrary

sets of bounded orthonormal functions in L2(FX) and L2(FZ); and (iii) a sequence of

constants f� j : j � 1g: The constructed bivariate density is

k� (x; z) = 1 +

rZX
j=1

� jx
(j)(x)z(j)(z); (1.1)

where the density is wrt the product of the marginal distributions FX � FZ ; fx(j) : j =
0; :::; rXg is an orthonormal basis of L2(FX) consisting of bounded functions, x(0)(x) = 1
8x; and fz(j) : j = 1; :::; rZg is a set of bounded orthonormal functions in L2(FZ): Under
a condition on f� jg; k� (x; z) is a proper density� it integrates to one and is non-negative.
The resulting bivariate distribution is L2-complete wrt X if rZ = rX and � j 6= 0 for all
j = 1; :::; rZ : Hence, one can construct easily a broad array of bivariate distributions

that are L2-complete and also a broad array that are L2-incomplete. The method of

construction employs the method used in a simple example of Lancaster (1958), which

does not consider completeness.

If X and Z are absolutely continuous wrt Lebesgue measure, then the bivariate

density k� wrt to the product of the marginals FX and FZ can be converted easily into

a standard bivariate density wrt Lebesgue measure on RdX+dZ ; where dX and dZ denote

the dimensions of X and Z; respectively.

Starting with Darolles, Florens, and Renault (2000), it is common in the nonpara-

metric IV regression literature, to obtain identi�cation as follows. Given the conditional

distribution of X and Z; one de�nes the conditional expectation operator, say T; one

obtains the singular value decomposition (SVD) of T using standard operator results,

e.g., see Kress (1999, Sec. 15.4), and one assumes that the eigenvalues of T are all

non-zero. The SVD yields a density of the form in (1.1).
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The L2-completeness results of this paper give a converse to this procedure. Starting

with orthonormal functions fx(j)g and fz(j)g and constants f� jg; one can de�ne a func-
tion k� (x; z) as in (1.1). But, such a function is not necessarily a density because the

orthonormal functions fx(j)g and fz(j)g take on positive and negative values and, hence,
k� (x; z) can be negative. The contribution of this paper is to provide a simple set of

su¢ cient conditions to guarantee that k� (x; z) is a proper density. The conditions given

are su¢ ciently weak that one can construct a broad (i.e., nonparametric) class of distri-

butions that are L2-complete. In a certain sense, the distributions that are L2-complete

wrt X are generic in the class of distributions that are constructed. (The sense consid-

ered follows the concepts of shyness and prevalence introduced in Christensen (1974),

Hunt, Sauer, and Yorke (1992), and Anderson and Zame (2001).) Nevertheless, one also

can construct many L2-incomplete distributions.

We now brie�y discuss the use of completeness conditions in the econometrics lit-

erature. Completeness, L2-completeness, and bounded completeness conditions can be

used to obtain global or local identi�cation in a variety of models. These models include:

(i) the nonparametric IV regression model, see Newey and Powell (2003), Darolles, Flo-

rens, and Renault (2000), Hall and Horowitz (2005), and references in Horowitz (2010),

(ii) semiparametric IV models, see Ai and Chen (2003), Blundell, Chen, and Kristensen

(2007), and Chen and Pouzo (2009a), (iii) nonparametric IV quantile models, see Cher-

nozhukov and Hansen (2005), Chernozhukov, Imbens, and Newey (2007), Horowitz and

Lee (2007), Chen and Pouzo (2009b), and Chen, Chernozhukov, Lee, and Newey (2010),

(iv) measurement error models, see Bissantz, Hohage, Munk, and Ruymgaart (2007),

Hu and Schennach (2008), Carroll, Chen, and Hu (2009), An and Hu (2009), Song

(2011), and Wilhelm (2011), (v) demand models, see Berry and Haile (2009a, 2010),

(vi) dynamic optimization models, see Hu and Shum (2009), (vii) generalized regression

models with group e¤ects, see Berry and Haile (2009a), (viii) asset pricing models, see

Chen and Ludvigson (2009), and (ix) missing data models, see Sasaki (2011).

The remainder of the paper is organized as follows. Section 2 discusses the L2-

completeness condition. Section 3 gives classes of bivariate distributions of random

variables and vectors that are L2-complete and others that are L2-incomplete. Section

4 provides proofs.
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2 L2-Completeness

In this section, we de�ne the concept of L2-completeness, which is very closely related

to the well-known concepts of completeness and bounded completeness, see Lehmann

(1986, p. 173). In consequence, L2-completeness can be used to give conditions for

nonparametric identi�cation in a variety of models. L2-completeness is not original to

this paper.1

LetX and Z be random elements that take values in complete separable metric spaces

X and Z; respectively, and are de�ned on the same probability space. In applications,
X and Z typically are random variables or vectors, possibly of di¤erent dimensions, but

they could be stochastic processes. We say that a bivariate distribution FXZ of random

elements X and Z is L2-complete wrt X if 8h 2 L2(FX);

E(h(X)jZ) = 0 a.s.[FZ ] implies that h(X) = 0 a.s.[FX ]; (2.1)

where the expectation is taken under FXZ :2 ;3 ;4 In words, L2-completeness means that

if h 2 L2(FX) has conditional mean zero given Z; then h equals zero a.s. In contrast
to the well-known conditions of completeness and bounded completeness, the family

of functions h considered here is L2(FX); rather than L1(FX) or L1(FX); respectively.

Although L2-completeness imposes a second moment condition, rather than the weaker

�rst moment condition imposed by a completeness condition, it is still useful in most

applications for which unbounded functions h are of interest.

1See the Introduction for references to its use in the literature.
2The L2-completeness of a bivariate distribution FXZ wrtX depends on FXZ through the conditional

distribution of X given Z; the marginal distribution of X (because L2(FX) enters the de�nition), and
the support of Z (because a.s.[FZ ] enters the de�nition). The marginal distribution of Z only a¤ects
L2-completeness through its support.

3An L2 version of Oosterho¤ and Schriever�s (1987) de�nition of P� completeness (which is an L1
de�nition) is almost the same as the de�nition used here.

4One can give a closely-related de�nition of L2-completeness that is more akin to the de�nition of
completeness given in Lehmann and Sche¤é (1950). One can de�ne a family of distributions F 2 fFX;� :
� 2 �g of the random vector X to be L2-complete if 8h 2 L2(FX);

Eh(X) = 0 8FX;� 2 F implies that h(X) = 0 a.s.[FX;�] 8� 2 �; (2.2)

where the expectation of X is taken under FX;�: Here, � is a �xed parameter and its parameter space
is �; which play the role of z and the support of FZ ; respectively, in (2.1), and FX;� is the distribution
of X; which plays the role of the conditional distribution of X given Z = z in (2.1).
For the purposes of identi�cation in nonparametric models, the de�nition of L2-completeness of the

bivariate distribution FXZ wrt X given in (2.1) is more convenient than the de�nition given in (2.2).
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For example, consider the nonparametric IV regression model with regressor X; IV

Z; and regression function h(X): The use of L2(FX)-completeness wrt X to identify h;

rather than completeness, imposes the restriction h 2 L2(FX); rather than h 2 L1(FX);
but allows for a much broader class of joint distributions ofX and Z: Unlike the bounded

completeness condition, L2(FX)-completeness does not require that h is bounded, which

can be restrictive.

The de�nition above can be weakened to bounded completeness of the bivariate dis-

tribution FXZ wrt X by requiring the function h in the de�nition to be a bounded

function. Obviously, L2-completeness of FXZ wrt X implies bounded completeness of

FXZ wrt X:

We say that a random variable is non-constant if its distribution is not a point mass

distribution.

A simple and intuitive characterization of L2-completeness is the following result,

which is a slightly di¤erent statement of Lemma 2.1 of Severini and Tripathi (2006):

Proposition 1. FXZ is L2-complete wrt X if and only if every non-constant rv �(X) 2
L2(FX) is correlated with some rv �(Z) 2 L2(FZ):5

3 Examples of L2-Complete Distributions

In this section, we construct bivariate distributions FXZ;� that are L2-complete and

others that are L2-incomplete. The marginal distributions can be any distributions FX
and FZ of interest.

3.1 Bivariate Distributions FXZ;� of Random Elements

X and Z

Given any marginal distributions FX and FZ ; we construct a distribution FXZ;� by

specifying its density k� (x; z) wrt the product of its marginal distributions FX �FZ : To
do so, we use the following assumptions.

5By de�nition, h 2 L2(FX) means
R
h2(x)dFX(x) < 1: For convenience, but with some abuse

of notation, we let h(X) 2 L2(FX) mean that the random variable h(X) satis�es Eh2(X) < 1 when
X � FX : Thus, h 2 L2(FX) and h(X) 2 L2(FX) are equivalent. This notation also is used for functions
�(Z) of Z � FZ :
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Assumption 1. fx(j) : 0 � j � rXg is an orthonormal basis of L2(FX) with x(0)(x) = 1
8x 2 X and fz(j) : 0 � j � rZg is a set of orthonormal functions in L2(FZ) with
z(0)(z) = 1 8z 2 Z; where 0 � rX ; rZ � 1:

Assumption 2. The functions fx(j)g and fz(j)g are bounded in absolute value on the
supports of FX and FZ ; respectively, with bounds fBX;j : 0 � j � rXg and fBZ;j : 0 �
j � rZg:

Assumption 3. f� j : j = 1; :::; rZg is a sequence of constants that satis�esPrZ
j=1 j� jjBX;jBZ;j � 1; where 0 � rZ � rX :

Assumptions 1 and 2 hold for a wide variety of functions. Some examples are given

below. However, Assumption 2 does rule out some orthonormal functions, such as the

Hermite polynomials on R or Rd; which appear in an orthonormal expansion of the

bivariate normal distribution, see Lancaster (1957). Note that rX is �nite only if the

support of FX is �nite. When rZ =1; Assumption 3 holds for sequences that converge
to zero arbitrarily quickly, as well as those that converge as slowly as j� jj�(1+�) for any
� > 0 when supj�1(BX;jBZ;j) <1:

De�ne the density k� (x; z) by

k� (x; z) = 1 +

rZX
j=1

� jx
(j)(x)z(j)(z): (3.1)

Theorem 1 below shows that k� (x; z) is a density function wrt FX � FZ for any choice
of functions fx(j)g and fz(j)g and any constants f� jg that satisfy Assumptions 1-3. In
particular, Assumption 1 guarantees that k� (x; z) integrates to one and Assumptions 2

and 3 ensure that k� (x; z) is non-negative. Let FXZ;� denote the bivariate distribution

of X and Z that corresponds to the density k� (x; z) and the marginal distributions FX
and FZ :

Example 1. Now we illustrate functions fx(j)g and fz(j)g that satisfy Assumptions 1
and 2 in the case of absolutely continuous random vectors X and Z with dimensions

dX and dZ ; respectively. Consider bounded functions fu(j) : j = 0; 1; :::; rXg and fv(j) :
j = 0; 1; :::; rZg on [0; 1]dX and [0; 1]dZ ; respectively, that are orthonormal wrt Lebesgue
measure, have u(0)(x) = v(0)(z) = 1 8x 2 [0; 1]dX ; z 2 [0; 1]dZ ; and for which fu(j) :
j = 0; 1; :::; rXg is a basis of the set of L2 functions (wrt Lebesgue measure) on [0; 1]dX :
Products of trigonometric functions (each scaled to lie in [0; 1]dm ; rather than [0; 2�]dm ;
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for m = X;Z) provide one example. Products of shifted Legendre polynomials provide

another example. In fact, any countably dense sets of bounded functions on [0; 1]dX

and [0; 1]dZ that are orthonormalized, e.g., by the Gramm-Schmidt process, yield other

examples. The type of orthonormal functions for X; e.g., trigonometric functions, can

be di¤erent from the orthonormal functions for Z; e.g., shifted Legendre polynomials.

Shu­ ing the orders of the functions fu(j)g and fv(j)g (so that di¤erent u(j) functions
match up with di¤erent v(j) functions) provides additional examples.

Then, the functions

fx(j) = u(j) � FX : j = 0; 1; :::g and fz(j) = v(j) � FZ : j = 0; 1; :::; rZg (3.2)

satisfy Assumptions 1 and 2 with rX =1:6 �

Example 2. Suppose FX and FZ are uniform on [0; 1]dX and [0; 1]dZ ; respectively.

Then, the density k� (x; z) of FXZ;� is a copula density on [0; 1]dX+dZ ; which we denote

by c� (x; z): Using the functions fu(j)g and fv(j)g de�ned in Example 1, the following
function is a copula density provided Assumption 3 holds:

c� (x; z) = 1 +

rZX
j=1

� ju
(j)(x)v(j)(z): (3.3)

�

Example 3. As above, suppose FX and FZ are absolutely continuous with densities fX
and fZ wrt Lebesgue measure on [0; 1]dX and [0; 1]dZ ; respectively. Then, the following

functions, k� and f� ; are proper densities wrt FX � FZ and wrt Lebesgue measure on
RdX+dZ ; respectively, of a bivariate distribution FXZ;� :

k� (x; z) = c� (FX(x); FZ(z)) and

f� (x; z) = c� (FX(x); FZ(z))fX(x)fZ(z) (3.4)

provided Assumption 3 holds. Given any copula density c� as in (3.3) one obtains

bivariate distributions FXZ;� with any absolutely continuous marginal distributions FX
and FZ that are desired. �

6By de�nition, (u(j) � FX)(x) = u(j)(FX(x)) for x 2 RdX and likewise for v(j) � FZ :
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3.2 L2-Completeness of FXZ;�

The L2-completeness of FXZ;� wrt X depends on whether the following Assumption

holds or not.

Assumption 4. (i) � j 6= 0 8j = 1; :::; rZ and (ii) rZ = rX :

If Assumption 4 holds, then every basis function x(j) for j = 0; :::; rX enters the

density k� (x; z) with a non-zero coe¢ cient. Given this, one can show that every non-

constant function �(X) 2 L2(FX) is correlated with some function �(Z) 2 L2(FZ); see
Theorem 1 below.

If the support of X is �nite, then Assumption 4(ii) requires that the number of points

in the support of Z is greater than or equal to the number in the support of X: If the

support of X is in�nite, then Assumption 4 requires rZ = 1 and � j 6= 0 8j � 1: But,
Assumption 4 does not require that fz(j) : 0 � j � rZg is an orthonormal basis of
L2(FZ): For example, fz(j) : 0 � j � rZg could consist of the odd-numbered terms of
some orthonormal basis of L2(FZ):

The following Theorem is the main result of the paper.

Theorem 1. Suppose Assumptions 1-3 hold. Then,
(a) k� (x; z) is a proper bivariate density function wrt FX � FZ and
(b) the bivariate distribution FXZ;� de�ned by the density k� is L2-complete wrt X

if and only if Assumption 4 holds.

Comments. 1. Given any marginal distributions FX and FZ ; consider the class of bi-
variate distributions with densities k� (wrt FX�FZ) of the form in (3.1) that is generated
by a �xed choice of orthonormal functions fx(j)g and fz(j)g that satisfy Assumptions 1
and 2 and all sequences of constants f� j : j = 1; :::; rZg that satisfy Assumptions 3 and
4. This is a nonparametric (i.e., in�nite-dimensional) class of L2-complete distributions

wrt X when rZ = 1: Re-ordering the orthonormal functions fx(j)g and fz(j)g leads
to additional nonparametric classes of L2-complete distributions. Di¤erent orthonor-

mal functions fx(j)g and fz(j)g lead to additional nonparametric classes of L2-complete
distributions. Taking unions of the preceding classes of L2-complete distributions over

di¤erent marginal distributions leads to larger nonparametric classes of L2-complete

distributions.

2. The question naturally arises: How many bivariate distributions FXZ can be written
in the form of FXZ;�? Results of Lancaster (1958, 1963) for bivariate distributions and
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results of Darolles, Florens, and Renault (2000) based on the singular value decompo-

sition of the conditional expectation operator (see Kress (1998, Sec. 15.4)) show that

the answer is that many are of this form. Let FXZ << FX � FZ denote that FXZ is
absolutely continuous wrt FX � FZ : Consider the following assumption:

Assumption A. (i) FXZ << FX � FZ and (ii) k 2 L2(FX � FZ); where k is the
Radon-Nykodym derivative of FXZ wrt FX � FZ :

Assumption A(i) rules out joint distributions of (X;Z) for which X is a determinis-

tic function of Z and vice versa. In econometric applications of completeness or L2-

completeness, this usually is not restrictive. Note that FXZ;� and k� satisfy Assumption

A under Assumptions 1-3.7 The references immediately above show that any bivariate

distribution FXZ that satis�es Assumption A has a density k wrt FX � FZ of the form
in (3.1) and Assumption 1 holds.

Theorem 1(a) is a partial converse to these results. Theorem 1(a) says that given

suitable orthonormal functions and some conditions on the constants f� jg one obtains
a proper bivariate distribution.

3. Assumptions 2 and 3 in Theorem 1 can be replaced by the more general, but less
easily veri�ed, condition:

Assumption 2�. (i) k� (x; z) � 0 a.s.[FX � FZ ] and (ii) k� 2 L2(FX � FZ):

Several bivariate distributions in the literature have been shown to satisfy Assumptions

1 and 2�; but not 2 and 3, including the bivariate normal, gamma, Poisson, binomial,

hypergeometric, and negative binomial, see Campbell (1934), Aitken and Gonin (1935),

Kibble (1941), Eagleson (1964), and Hamdan and Al-Bayyani (1971).8 In all cases,

Assumption 4 holds with rX = rZ = 1; so the distributions are L2-complete wrt both
X and Z by Theorem 1.9

4. Using the canoncial correlation representation of Lancaster (1958, 1963), it can
be shown that when (X;Z) has density k� ; as in (3.1), then x(1)(X) and z(1)(Z) are the

mean-zero variance-one functions ofX and Z; respectively, that maximize the correlation

7This holds because k2� (x; z) = (1+
PrZ

j=1 � jx
(j)z(j))2 � (1+

PrZ
j=1 j� j jBX;jBZ;j)2 � 4 by Assumption

3.
8I thank Daniel Wilhelm for references.
9One cannot use the bivariate density expansions just listed to obtain nonparametric classes of

L2-complete distributions just by perturbing the coe¢ cients f� j : j � 1g in these expansions. The
reason is that the resulting functions are not necessarily non-negative. Note that the basis functions
fx(j) : j � 1g and fz(j) : j � 1g necessarily take negative values because they integrate to zero wrt FX
and FZ ; respectively.
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between X and Z: In addition, by direct calculation, � 1 = Corr(x(1)(X); z(1)(Z)): Fur-

thermore, for j = 2; :::; rZ ; x(j)(X) and z(j)(Z) are the mean-zero variance-one functions

of X and Z that maximize the correlation between X and Z subject to being uncor-

related with fx(j)(X) : m = 1; :::; j � 1g and fz(m)(Z) : m = 1; :::; j � 1g; respectively.
Also, � j = Corr(x(j)(X); z(j)(Z)):

5. It is sometimes of interest to view X as a function of Z and some unobservable

V: Suppose (X;Z) have a joint df FXZ;� as in Theorem 1, X is a scalar random variable,

and Z is a random vector (or a random element). Then, one can generate X via the

equation

X = h(Z; V ); (3.5)

where Z and V are independent random variables, Z � FZ ; V � FV for any distribution
FV that is absolutely continuous wrt Lebesgue measure on R; and h(z; v) is a suitably

chosen function.10 Hence, if FXZ;� satis�es Assumption 4, then (X;Z) generated as in

(3.5) are L2-complete wrt X but otherwise are not.

6. Suppose rX = rZ = 1: Consider the space of `p sequences for some 1 � p � 1
that satisfy Assumption 3:

CB =

(
f� j : j � 1g 2 `p :

1X
j=1

j� jjBX;jBZ;j � 1
)
: (3.6)

One can ask: for sequences in CB; how generic is the property � j 6= 0 8j � 1? That

is, how generic is the completeness property speci�ed by Assumption 4? For �nite-

dimensional spaces, a property often is said to be generic if the set of points for which

the property fails has Lebesgue measure zero. In in�nite-dimensional spaces, such as

CB; the concept of genericity is more complicated. Topological notions of genericity

often are too weak, see Anderson and Zame (2001) and Stinchcombe (2002). Measure-

theoretic notions are more useful. Christensen (1974) and Hunt, Sauer, and Yorke

(1992) (independently) develop a measure-theoretic notion of �genericity� for vector

10Let FXjZ;� (xjz) denote the conditional distribution of X given Z = z under FXZ;� : Let
h�(z; u) = F�1XjZ;� (ujz) for u 2 [0; 1]; where F�1XjZ;� (ujz) is the u-th quantile of FXjZ;� (�jz): Let
h(z; v) = h�(z; FV (v)): Let X = h(Z; V ): We claim that (X;Z) � FXZ;� : Under the assumptions,
U = FV (V ) � U [0; 1]: We have X = h�(Z;U) = F�1XjZ;� (U jZ): The conditional distribution of X given

Z = z is the distribution of F�1XjZ;� (U jz): But, this is the conditional distribution FXjZ;� (�jz) as desired,
because for any distribution F; eX = F�1(U) � F: This holds whether or not FXjZ;� (�jz) is a continuous
conditional distribution.
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spaces that the latter authors call prevalence. A set is prevalent if its complement is

shy. The shyness of a set is a natural extension to an in�nite-dimensional vector space

of a set having Lebesgue measure zero in a �nite-dimensional space.

The set CB is not a vector space. In fact, it is a shy set in the vector space `p: Thus,

the de�nition of shyness and prevalence in Christensen (1974) and Hunt, Sauer, and

Yorke (1992) cannot be applied here. However, the same issue that the space of interest

is not a vector space also arises in various areas of economic theory where it is natural

to ask whether a property is generic. In consequence, Anderson and Zame (2001) have

extended the concept of shyness and prevalence to convex subsets of vector spaces. The

set CB is convex and hence their de�nition is applicable here.

Their de�nition is as follows. Let X be a topological vector space and let C � X

be a subset that is completely metrizable in the relative topology induced from X: Let

c 2 C: A set E � C which is universally measurable in X is said to be shy in C at c if

for each � > 0 and each neighborhood W of 0 in X; there is a regular Borel probability

measure � on X with compact support such that supp(�) � [�(C� c)+ c]\ (W + c) and

�(E + x) = 0 8x 2 X: By de�nition, E is shy in C if it is shy in C at c for all c 2 C:
An arbitrary subset F � C is shy in C if it is contained in a shy universally measurable
set. A subset S � C is prevalent in C if its complement CnS is shy in C: Anderson and
Zame (2001, p. 12) show that if E is shy at some c 2 C then it is shy at every c 2 C
and hence is shy at C:

See Hunt, Sauer, and Yorke (1992) and Anderson and Zame (2001) for discussions

of why the concept of shyness is a suitable extension to in�nite-dimensional spaces of a

set (in a �nite-dimensional space) having Lebesgue measure zero. The key is that a set

E in Rk is shy if and only if it has Lebesgue measure zero. See Hunt, Sauer, and Yorke

(1992, p. 219).

We have the following genericity result for Assumption 4.

Lemma 1. Suppose rX = rZ : The set of sequences S = ff� jg 2 CB : � j 6= 0 8j � 1g is
a prevalent subset of CB:

7. Because the de�nition of prevalence is somewhat complicated, we give an alterna-
tive genericity result here. Consider the space of sequences S� = ff� j : j � 1g : j� jj �
DB�1X;jB

�1
Z;jj

�1�� 8j � 1g for some � > 0 and D = (
P1

j=1 j
�1��)�1: Such sequences all

satisfy Assumption 3. How generic is the property � j 6= 0 8j � 1? If one considers a

property to be generic if the �-measure of the set for which the property fails is zero

for some measure �; then the property � j 6= 0 8j � 1 is generic for any measure � on

11



S� (coupled with some �-�eld FS� ) for which the induced measure on any set of �nite
subsequences is absolutely continuous wrt Lebesgue measure.11

8. Given any marginal distributions FX and FZ ; consider the class of bivariate

distributions with densities k� (wrt FX �FZ) of the form in (3.1) that is generated by a
�xed choice of orthonormal functions fx(j)g and fz(j)g that satisfy Assumptions 1 and
2 and all sequences of constants f� j : j = 1; :::; rZg that satisfy Assumption 3 for some
�xed constants fBX;j : 1 � j � rXg and fBZ;j : 1 � j � rZg: The set of incomplete
distributions in this class (i.e., those that fail Assumption 4) is a dense subset (under

the L2(FX � FZ) metric).
See Santos (2009, Lemma 2.1) for a related L1-denseness result for incomplete dis-

tributions (roughly speaking) in the class of distributions with compact support and

smooth density functions wrt Lebesgue measure.

4 Proofs

4.1 Proof of Propositon 1

The proof of Proposition 1 uses the following Lemma.

Lemma 2. For any non-constant �(X) 2 L2(FX) with E�(X) = 0;

E(�(X)jZ) = 0 a.s.[FZ ] i¤ Corr(�(X); �(Z)) = 0 for all non-constant �(Z) 2 L2(FZ):

Proof of Lemma 2. Let �2� = V ar(�(X)) > 0 and �
2
� = V ar(�(Z)) > 0: We have

Corr(�(X); �(Z)) = E�(X)�(Z)=(����) = E[E(�(X)jZ)�(Z)]=(����); (4.1)

where the �rst equality uses E�(X) = 0 and the second holds by iterated expectations.

If E(�(X)jZ) = 0 a.s.[FZ ]; then the right-hand side of (4.1) equals zero, which

establishes the �only if�statement of the Lemma.

11That is, the condition on � is that �fj1;:::;jKg is absolutely continuous wrt to Lebesgue measure on
RK for any non-redundant �nite positive integers fj1; :::; jKg; where �fj1;:::;jKg is the measure de�ned
by �fj1;:::;jKg(ff� jk : k = 1; :::;Kg : j� jk j � CB�1X;jkB

�1
Z;jk

j�1��k for k = 1; :::;Kg) = �(ff� j : j � 1g :
j� jk j � CB�1X;jkB

�1
Z;jk

j�1��k for k = 1; :::;Kg):)
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To prove the �if�statement, take �(Z) = E(�(X)jZ) in (4.1) to obtain

Corr(�(X); �(Z)) = E[E(�(X)jZ)]2=(����): (4.2)

Then, Corr(�(X); �(Z)) = 0 implies E(�(X)jZ) = 0 a.s.[FZ ] and the proof is complete.
�

Proof of Proposition 1. The following are equivalent:
1. Every non-constant rv �(X) 2 L2(FX) is correlated with some rv �(Z) 2 L2(FZ):
2. Every mean zero, non-constant rv �(X) 2 L2(FX) is correlated with some rv

�(Z) 2 L2(FZ):
3. For every mean zero, non-constant rv �(X) 2 L2(FX); E(�(X)jZ) = 0 a.s.[FZ ]

fails to hold.

4. For every mean zero rv �(X) 2 L2(FX); if �(X) = 0 a.s.[FX ] fails to hold, then
E(�(X)jZ) = 0 a.s.[FZ ] fails to hold.
5. If h(X) 2 L2(FX) and E(h(X)jZ) = 0 a.s.[FZ ]; then h(X) = 0 a.s.[FX ]:
6. FXZ is L2-complete wrt X:

The equivalences of 1 and 2, 3 and 4, and 4 and 5 are straightforward. The equiva-

lence of 2 and 3 holds by Lemma 2. The equivalence of 5 and 6 holds by the de�nition

of L2-completeness. �

4.2 Proof of Theorem 1

First, we provide some useful expressions for h 2 L2(FX) and E(h(X)jZ = z) when
(X;Z) � FXZ;� : These results are used in the proof of Theorem 1. De�ne the inner

products h�; �iFX and h�; �iFZ by

hh1; h2iFX =
Z
h1(x)h2(x)dFX(x) and hm1;m2iFZ =

Z
m1(z)m2(z)dFZ(z) (4.3)

for h1; h2 2 L2(FX) and m1;m2 2 L2(FZ): Note that hh1; x(j)iFX = Cov(h1(X); x(j)(X))
and hm1; z

(j)iFX = Cov(m1(Z); z
(j)(Z)) for any functions x(j) and z(j) as in Assumption

1 and (3.1) for j = 1; :::; rZ :12

12This holds because x(0)(x) = z(0)(z) = 1 8x 2 X ; 8z 2 Z implies that EFXx
(j)(X) = 0 and

EFZz
(j)(Z) = 0 8j � 1:
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For h 2 L2(FX); let
hZ(z) = E(h(X)jZ = z): (4.4)

De�ne � 0 = 1: Let SX;� denote the linear subspace of L2(FX) that is generated by

the functions fx(j)1(� j 6= 0) : j = 0; :::; rZg: Let S?X;� denote the orthogonal complement
of SX;� in L2(FX):

Lemma 3. Suppose FXZ;� satis�es Assumptions 1-3. Then,
(a) for h 2 L2(FX);

hZ(z) =

rZX
j=0

� jhh; x(j)iFX z(j)(z) a.s. [FZ ];

(b) for h 2 L2(FX) and j = 0; :::; rZ with � j 6= 0;

hh; x(j)iFX = ��1j hhZ ; z(j)iFZ ;

(c) if FXZ;� satis�es Assumption 4, then for h 2 L2(FX);

h(x) =

rZX
j=0

��1j hhZ ; z(j)iFZ x(j)(x) a.s.[FX ]; and

(d) for h 2 S?X;� ; hZ(z) = 0 a.s.[FZ ]:

Comment. Lemma 3(a) provides an expression for the conditional mean of a function
in terms of the function itself and the orthogonal functions and constants f� jg of FXZ;� :
Lemma 3(b) provides an expression for certain weighted averages of a function h in terms

of its conditional mean hZ and the orthogonal functions and constants f� jg of FXZ;� :
Lemma 3(c) provides an expression for a function h in terms of its conditional mean hZ
and the orthogonal functions and constants f� jg of FXZ;� that holds when Assumption
4 holds. Lemma 3(d) shows that the conditional mean given Z of a function in S?X;� is

zero.

Proof of Theorem 1. We have k� 2 L2(FX�FZ) because k2� (x; z) = (1+
PrZ

j=1 � jx
(j)(x)

z(j)(z))2 � (1+
PrZ

j=1 j� jjBX;jBZ;j)2 � 4 8x 2 X ; z 2 Z by Assumption 3. Let h�:�iFX�FZ
denote the inner product on L2(FX � FZ):
Now we apply the Parseval-Bessel equality, e.g., see Dudley (1989, Thm. 5.4.4), to

show that the density k� integrates to one: hk� ; 1iFX�FZ =
R R

k� (x; z)dFX(x)dFZ(z) =

14



1: The Parseval-Bessel equality says: If fe�g is an orthonormal set in a Hilbert space
H over the real numbers, x 2 H; y 2 H; x =

P
�2I x�e� for scalars fx�g; and y =P

�2I y�e� for scalars fy�g; then hx; yi =
P

�2I x�y�; where h�; �i is the inner product
on H:

We apply this result with (i) H = L2(FX � FZ); (ii) fe�g equal to the functions
fx(j)z(j) : j = 0; :::; rZg; which are orthonormal in L2(FX � FZ); (iii) x = k� =PrZ

j=0 � jx
(j)z(j) (= 1 +

PrZ
j=1 � jx

(j)z(j)); and (iv) y = 1 =
PrZ

j=0 �
�
jx
(j)z(j); where � �0 = 1

and � �j = 0 for j = 1; :::; rZ : This yieldsZ Z
k� (x; z)dFX(x)dFZ(z) = hk� ; 1iFX�FZ =

rZX
j=0

� j�
�
j = 1: (4.5)

Next, we have

k� (x; z) = 1 +

rZX
j=1

� jx
(j)(x)z(j)(z) � 1�

rZX
j=1

� jBX;jBZ;j � 0 (4.6)

for all x and z in the supports of FX and FZ ; respectively, using Assumption 3. Because

k� (x; z) integrates to one and is non-negative on the support FX � FZ ; it is a proper
density function wrt FX � FZ ; which proves part (a).
Now, we prove one direction of the if and only if result of Theorem 1(b). Suppose

Assumption 4 holds. If hZ(z) = 0 a.s.[FZ ]; then hhZ ; z(j)iFZ = 0 for j = 0; :::; rZ : This
and Lemma 3(c) (which applies because Assumption 4 holds) yield h(x) = 0 a.s.[FX ];

which establishes that FXZ;� is L2-complete.

Next, we prove the other direction of the if and only if result of Theorem 1(b).

Suppose Assumption 4 does not hold. Then, � j = 0 for some j = 1; :::; rZ or rZ < rX :

This implies that dim(S?X;� ) > 0 and the orthonormal basis fx(j) : j = rZ + 1; :::; rX if
rZ < rX or j � rZ & � j = 0g of S?X;� has at least one element. Let x

(1)
� denote any

element in this basis. We show that the function x(1)� 2 S?X;� � L2(FX) satis�es (i)

E(x
(1)
� (X)jZ = z) = 0 a.s.[FZ ] and (ii) x(1)� (x) = 0 a.s.[FX ] does not hold, which implies

that FXZ;� is not L2-complete wrt X: Property (i) holds by Lemma 3(d). Property (ii)

holds because jjx(1)� jj2 =
R
[x
(1)
� ]2dFX = 1 by orthonormality. �

Proof of Lemma 3. First, we establish Lemma 3(a) and 3(b). Let SZ denote the
linear subspace of L2(FZ) generated by the orthonormal functions fz(j) : 0 � j � rZg:
Let S?Z denote the orthogonal complement to SZ in L

2(FZ): Let fz(j)� : j = 1; :::; rZ�g
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be an orthonormal basis for S?Z ; where 0 � rZ� � 1: If fz(j) : j � rZg is a basis of
L2(FX); then rZ� = 0 and fz(j)� g is the empty set. By construction, fz(j)g [ fz(j)� g is an
orthonormal basis of L2(FZ):

By de�nition, k� (x; z) is the density of FXZ;� wrt FX � FZ : The density of FX wrt
FX is the constant function 1: Hence, k� (x; z) also is the conditional density of FXZ;�
wrt FX � FZ : This yields

hZ(z) =

Z
h(x)k� (x; z)dFX(x) a.s.[FZ ]: (4.7)

The second equality of the following equation holds by (4.7): for m = 0; :::; rZ ;

hhZ ; z(m)iFZ =
Z
hZ(z)z

(m)(z)dFZ(z)

=

Z Z
h(x)k� (x; z)dFX(x)z

(m)(z)dFZ(z)

= hhz(m); k� iFX�FZ ; (4.8)

where h�; �iFX�FZ denotes the L2(FX�FZ) inner product. Equation (4.8) also holds with
z
(m)
� in place of z(m) for m = 1; :::; rZ�:

Now we apply the Parseval-Bessel equality, see the proof of Theorem 1 above, to the

right-hand side of (4.8). For each m = 0; :::; rZ ; we apply the Parseval-Bessel equality

with (i) H = L2(FX � FZ); (ii) fe�g equal to the functions fx(j)z(`) : 0 � j � rX ; 0 �
` � rZg [ fx(j)z(`)� : 0 � j � rX ; 1 � ` � rZ�g; which are orthonormal in L2(FX � FZ);

(iii) x = hz(m) =
rXX
j=0

hh; x(j)iFX x(j)z(m); (4.9)

where the second equality holds a.s.[FX ] because fx(j) : 0 � j � rXg is an orthonormal
basis of L2(FX); and

(iv) y = k� = 1 +
rZX
j=1

� jx
(j)z(j); (4.10)

where the second equality holds by de�nition, see (3.1). We have k� 2 L2(FX � FZ)
because k2� (x; z) = (1+

PrZ
j=1 � jx

(j)z(j))2 � (1+
PrZ

j=1 j� jjBX;jBZ;j)2 � 4 by Assumption
3. In addition, hz(m) 2 L2(FX � FZ) because h 2 L2(FX) and z(m) 2 L2(FZ): By the
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Parseval-Bessel equality, we have

hhz(m); k� iFX�FZ = �mhh; x(m)iFX for m = 0; :::; rZ ; (4.11)

because x(m)z(m) is the only orthonormal basis function of L2(FX � FZ) that fx(j)z(m) :
0 � j � rXg and fx(j)z(j) : 0 � j � rXg have in common.
By the same argument as in (4.9)-(4.11) but with z(m)� in place of z(m); we obtain

hhz(m)� ; k� iFX�FZ = 0 for m = 1; :::; rZ� (4.12)

because fx(j)z(m)� : 0 � j � rXg and fx(j)z(j) : 0 � j � rXg have no functions in
common.

Equations (4.8), (4.11), and (4.12) combine to give

hhZ ; z(m)iFZ = �mhh; x(m)iFX for m = 0; :::; rZ and

hhZ ; z(m)� iFZ = 0 for m = 1; :::; rZ�: (4.13)

Because fz(m) : 0 � m � rZg [ fz(m)� : 1 � m � rZ�g is an orthonormal basis of L2(FZ);
this yields the result of Lemma 3(a). It also gives the result of Lemma 3(b).

To prove Lemma 3(c), suppose Assumption 4 holds. Then, rZ = rX and fx(j) : 0 �
j � rZg is an orthonormal basis of L2(FX): In consequence,

h(x) =

rZX
j=0

hh; x(j)iFX x(j)(x) =
rZX
j=0

��1j hhZ ; z(j)iFZ x(j)(x); (4.14)

where both equalities hold a.s.[FX ]; the �rst equality holds by the de�nition of an or-

thonormal basis, and the second equality holds by Lemma 3(b) and Assumption 4(i).

Lemma 3(d) follows from Lemma 3(a) because h 2 S?X;� implies that hh; x(j)iFX = 0
for those x(j) for which � j 6= 0 for j = 0; :::; rZ : �

4.3 Proof of Lemma 1

Proof of Lemma 1. The set CB is a closed convex subset of `p: Hence, it is completely
metrizable in the relative topology induced from X: We show that the (universally
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measurable) set E; de�ned by

E = ff� jg 2 CB : � j = 0 for some j � 1g; (4.15)

is a shy subset of CB: By Facts 0 and 3 in Anderson and Zame (2001, p. 12), it su¢ ces

to show that the set E(1) is shy in C at c = 0; where

E(1) = ff� jg 2 CB : � 1 = 0g (4.16)

(because E is a countable union of sets of the form E(k) = ff� jg 2 CB : � k = 0g and
a set being shy at some c 2 C implies that it is shy at all c 2 C). Given � > 0 and a
neighborhood W of 0; de�ne ��;W by

��;W (A) = �Leb(A1)=�Leb(CB;1) for A � CB; where
A1 = f� 1 : f� jg 2 A \ [�CB] \Wg;
CB;1 = f� 1 : f� jg 2 CB \ [�CB] \Wg; (4.17)

and �Leb denotes Lebesgue measure on R: The support of ��;W is in [�CB] \ W: Be-
cause �CB is compact, the support of ��;W is in a compact set, as required. Note that

�Leb(CB;1) > 0; so ��;W is well de�ned.

Given the de�nition of ��;W ; we have

��;W (E(1)) = �Leb(E1(1))=�Leb(CB;1) = 0; (4.18)

where E1(1) = f� 1 : f� jg 2 E(1)g = f0g: Similarly, for all x 2 `p;

��;W (E(1) + x) = �Leb((E(1) + x)1)=�Leb(CB;1) = 0: (4.19)

This holds because E(1) + x = ff� jg 2 CB + x : � 1 = x1g; where x1 is the �rst
element in the sequence x; (E(1) + x)1 = f� 1 : f� jg 2 (E(1) + x) \ [�CB] \Wg; and
the latter set equals fx1g or �: (The set (E(1) + x)1 could be the null set � because
(E(1) + x) \ [�CB] \W could be empty. In contrast, E(1) \ [�CB] \W contains 0 and

hence is not empty.) By (4.19), E(1) is a shy set at c = 0 and the proof is complete. �
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