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Abstract

We study endogenous leverage in a general equilibrium model with in-
complete markets. We prove that in any binary tree leverage emerges in
equilibrium at the maximum level such that VaR=0, so there is no default
in equilibrium, provided that agents get no utility from holding the collat-
eral. When the collateral does affect utility (as with housing) or when agents
have sufficiently heterogenous beliefs over three or more states, VaR=0 fails
to hold in equilibrium. We study commonly used examples: an economy in
which investors have heterogenous beliefs and a CAPM economy consisting
of investors with different risk aversion. We find two main departures from
VaR=0. First, both examples show that with enough heterogeneity among
the investors, equilibrium default is normal. Second, we find that more than
one contract is actively traded in equilibrium on the same collateral, that is,
the same asset is bought at different margin requirements by different agents.
Finally, we study the relationship between leverage and asset prices. We pro-
vide an example that shows that as the regulatory authority gradually relaxes
leverage restrictions from low levels and permits leverage to rise, asset prices
start to rise, but eventually increased leverage paradoxically tends to reduce
asset prices because the risky bonds become substitutes for the asset used as
collateral.
Keywords: Endogenous Leverage, Collateral Equilibrium, VaR, Asset Prices.
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1 Introduction

The recent economic turmoil has brought to the forefront the impact of leverage on
financial system stability. The crisis might well be understood as the bottom of a
Leverage Cycle in which leverage and asset prices crashed. It was preceded by years
in which asset prices and the amount of leverage in the financial system increased
dramatically. A new theoretical literature has begun to explain how leverage is
determined in financial markets and how it affects asset prices, but the results so far
have been quite special. The main goal of this paper is to extend the literature to
more general and more realistic situations.

To attack the leverage endogeneity problem we follow the techniques developed
by Geanakoplos (1997). Agents have access to a menu of contracts, each of them
characterized by a non-contingent promise of size j and one unit of asset as collateral
to back the promise. When an investor sells a contract j she is borrowing money
and putting up collateral, when she is buying a contract j, she is lending money. In
equilibium each contract j will have a price πj, and the collateral will have a price p.
The equilibrium loan-to-value of contract j thus emerges endogenously as πj/p. The
key is that even if all contracts are priced in equilibrium, because collateral is scarce,
only a few will be actively traded. In this sense, leverage becomes endogenous.

Geanakoplos (2003, 2010) and Fostel-Geanakoplos (2010) studied a special class
of economies with a continuum of risk neutral agents with common discount but
heterogenous priors and only two states of nature. These papers found that out of
the whole menu of contracts only one would ever be actively traded in equilibrium,
namely the contract that made the maximum promise without ever defaulting, which
we now call the VaR = 0 contract. Many papers in the more recent leverage literature
arbitrarily assume that margins are set so that the chance of default is, say, 5%, or
0% (VaR equals to 5%, or 0%). But which should it be? Is VaR a useful variable in
describing endogenous leverage?

In this paper we study general conditions under which VaR=0 arises as the only
contract traded in equilibrium. We prove that in an economy with just two states
of the world (or more generally, two successor nodes to every node in the date-event
tree), and an arbitrary number of traders, collateral equilibrium always rules out
default as long as the collateral does not directly affect the utility of any agent. Risk
neutrality, common discounting, and the continuum of agents are not required for
the conclusion and play no role in the theorem.

The theorem shows that there is a tremendous difference between physical col-
lateral (like houses and cars) that generate contemporaneous utility and financial
collateral that gives utility only through dividends or other cash flows that appear
later. Our theorem might explain why there are some markets (like for mortgages)
in which defaults are to be expected while in others (like Repos) margins are set
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so strictly that default is almost ruled out. We provide two examples, commonly
used in the literature, to illustrate the proposition. The first involves an economy
with heterogenous beliefs and the second is a CAPM economy with differences in
risk aversion.

Next we explore equilibrium leverage in the general case with many investors and
many states of nature. We extend the previous examples to an economy with three
successor states. We find two main departures from the previous case. First, both
examples show that with enough heterogeneity among the investors, equilibrium
default is then normal, even if the collateral does not affect utility. Second, we find
that more than one contract is actively traded in equilibrium on the same collateral,
that is, the asset is bought at different loan to values by different agents. This
is precisely what we observe in the real world: prime borrowers typically bought
houses with high down-payments and low interest rates while subprime borrowers
were putting almost no money down but paying a high interest rate on exactly the
same kinds of houses. In light of this reversal when going from two states to many
states, we must interpret the condition that there are just two branches at every
node of the time-event tree. Two nodes suggest a world with very short maturity
loans and no jumps in collateral values (Brownian motion can be approximated by
binary trees with short intervals).

Finally, we study the relationship between leverage and asset prices. Geanakoplos
(2003, 2010) argued that higher leverage creates higher asset prices. As the regulatory
authority relaxes leverage limits, the most eager buyers can get access to more cash
and so spend more money on the asset, driving up its price. Fostel-Geanakoplos
(2008) gave a deeper reason why more leverage should drive up asset prices. They
demonstrated that the price of any asset can be decomposed into two parts: its payoff
value and its collateral value. The payoff value reflects the asset owner’s valuation
of the future stream of payments, i.e. it is the value attached to the asset due to
its investment role. However, assets can also be used as collateral to borrow money.
The collateral value reflects the asset owner’s valuation of this second role. It will be
positive when collateral is scarce. This decomposition into payoff value and collateral
value is extremely important because it shows very clearly how financial models with
leverage imply definite departures from fundamental asset valuation, in the form of
deviations from the law of one price and from the efficient markets hypothesis. It
explains why assets that can be used as collateral will sometimes trade for higher
prices than identical assets that cannot. An asset that can be used to make a big
promise will have greater collateral value than an asset that cannot. The formal
analysis in Geanakoplos (2003, 2010) and Fostel-Geanakoplos (2008) was all in the
context of binary trees for which VaR = 0 emerges endogenously. Subsequent papers
linking leverage and asset prices, such as Brunnermeier and Pedersen (2009) and
Garleanu and Pedersen (2009) assume VaR= 0.

In this paper we consider economies with more than two states of nature and
we allow leverage to emerge endogenously in equilibrium. We gradually relax the
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leverage limits (that is an exogenously imposed ceiling on j that can be traded) and
investigate how the asset prices change. We find that when the ceiling on leverage
is high enough to allow a lot of default in equilibrium, further increases in leverage
paradoxically tend to reduce asset prices when investors have different priors.

More precisely, the example shows that as leverage is allowed to increase from
lower levels without default, asset prices increase. This is consistent with the previous
literature with VaR= 0. But as leverage is allowed to increase to the point where
default emerges in equilibrium, the span of the bond payoffs will change, giving
investors more alternatives in which to invest their money. The effect of leverage
on asset prices can be reversed, and asset prices can go down with more leverage.
The intuition is that as leverage increases the bonds default more and grow riskier,
coming to be better and better substitutes for the underlying asset. Some investors
eventually switch out of the asset and buy the bonds instead, driving down the asset
price.

The paper is related to a literature on collateral and credit constraints as in
Bernanke, Gertler and Gilchrist (1999), Caballero and Krishnamurthy (2001), Fostel
and Geanakoplos (2008a), Holmstrom and Tirole (1997), Kiyotaki and Moore (1997)
and Shleifer and Vishny (1992). More closely, our paper is related to a literature
on leverage as in Araujo, Kubler and Schommer (2009), Acharya and Viswanathan
(2009), Adrian and Shin (2009), Brunnermeier and Pedersen (2009), Cao (2010), Fos-
tel and Geanakoplos (2008b and 2010), Geanakoplos (1997, 2003 and 2010), Gromb
and Vayanos (2002) and Simsek (2010).

It is also related to work that studies the asset price implications of leverage as
Hindy (1994), Hindy and Huang (1995) and Garleanu and Pedersen (2009).

Some of these papers focus on investor-based leverage as in Acharya and Viswanathan
(2009), Adrian and Shin (2009) and Gromb and Vayanos (2002), and others such as
Brunnermeier and Pedersen (2009), Cao (2010), Fostel and Geanakoplos (2008b and
2010), Geanakoplos (1997, 2003 and 2009) and Simsek (2010) focus on asset-based
leverage. Not all these models present a theory of endogenous leverage; most of
them assume a VAR=0 rule and study the cyclical properties of leverage as well
as its asset pricing implications. In Acharya and Viswanathan (2009) and Adrian
and Shin (2009) the endogeneity of leverage relies on asymmetric information and
moral hazard problems between lenders and borrowers. Asymmetric information is
important in many loan markets, especially those for which the borrower is also a
manager who exercises control over the value of the collateral. The recent crisis,
however, was centered not in the corporate bond world, where managerial control is
central, but in the mortgage securities market, where the owner/borrrower generally
has no control or specialized knowledge over the cash flows of the collateral.

In Araujo, Kubler and Schommer (2009), Cao (2010), Geanakoplos (1997, 2003,
2009), Fostel-Geanakoplos (2008, 2010) and Simsek (2010) endogeneity does not rely
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on asymmetric information, rather financial contracts are micro founded by a collat-
eralized loan market. Geanakoplos (1997) showed how to make leverage endogenous
by defining a contract as an ordered pair (promise, collateral) and requiring that
every contract be priced in equilibrium, even if it is not actively traded. Geanako-
plos (1997, 2003, 2010) and Fostel-Geanakoplos (2008), and Cao (2010) show that
only the VaR= 0 contract is traded in a concrete example with heterogenous pri-
ors. On the other hand, in the setting of Geanakoplos 1997, with two states of the
world but where agents derived utility from the collateral (like living in the house),
it turned out that equilibrium leverage was high enough that there was anticipated
default. Geanakoplos (2003) gives an example with a continuum of risk neutral in-
vestors with different priors and three states of nature in which the only contract
traded in equilibrium involved default. Simsek (2010) showed an example with two
types of risk-averse investors and a continuum of states of nature with equilibrium
default. Araujo et.al (2009) provided a two period example of an asset which is used
as collateral in two different actively traded contracts when agents have utility over
the asset.

The paper is organized as follows. Section 2 presents the general model of endoge-
nous leverage. Section 3 presents the main theorem which shows conditions under
which only the VaR=0 contract is traded and two examples. Section 4 extends the
previous examples and shows deviations from the theorem. Section 5 studies the
relationship between asset prices and leverage.

2 A General Equilibrium Model of Endogenous

Leverage

The model is a two-period general equilibrium model, with time t = 0, 1. Uncertainty
is represented by the existence of different states of nature s ∈ S including a root
s = 0. Finally, we denote the time of s as t(s), so t(0) = 0 and t(s) = 1,∀s ∈ ST ,
the set of terminal nodes of S. Suppose there is a single storable consumption good
c and one asset Y which pays dividends ds in each final state s ∈ ST .

2.1 Investors

Each investor h ∈ H is characterized by a utility, uh, a discounting factor, δh, and
subjective probabilities, qhs , s ∈ ST . We assume that the Bernoulli utility function
for consumption in each state s ∈ S, uh : R+ → R, is differentiable, concave, and
monotonic. The von-Neumann-Morgenstern expected utility to agent h is

Uh = uh(c0) + δh
∑
s∈ST

qhsu
h(cs) (1)
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Investor h’s endowment of the consumption good is denoted by ehs ∈ R+ in each
state s ∈ S. His endowment of the only asset at time 0 is ah ∈ R+. We assume that
the consumption good is present,

∑
h∈H e

h
0 > 0,

∑
h∈H(ehs + dsa

h
s ) > 0,∀s ∈ ST .

Observe that we do not allow utility to depend on the asset. This assumption
will play a crucial role in proving our main result, that with two states of nature,
equilibrium can always be taken to be without default.

Every agent has direct access to an inter-period constant-returns-to-scale ware-
housing technology. This is a simple way to model consumption good durability
in the economy. A unit of consumption warehoused in state 0 yields one unit of
consumption in all final states. There is no depreciation. This warehousing greatly
simplifies the computation of equilibrium in our examples by fixing the riskless in-
terest rate at zero.

2.2 Financial Contracts and Collateral

We take the consumption good as numeraire and denote the price of Y at time 0
as p. At time 0 agents can trade financial contracts. A financial contract (A,C)
consists of both a promise, A, and collateral backing it, C. Collateral consists of
durable goods, which will be called assets. The lender has the right to seize as much
of the collateral as will make him whole once the loan comes due, but no more. Since
there is only one asset, we shall always take C to be one unit of Y.

A non-contingent contract j is of the form (j · 1̃, 1), where 1̃ ∈ RST stands for the
vector of ones with dimension equal the number of final states. Contract j promises
j units of consumption good in each final state and the promise is backed by one
unit of asset Y . Let J be the set of all contracts that use one unit of asset Y as
collateral.

The price of contract j is πj. An investor can borrow πj today by selling contract
j in exchange for a promise of j tomorrow. Since the maximum a borrower can lose
is his collateral if he does not honor his promise, the actual delivery of contract j
in state s ∈ ST is min{j, ds}. If the collateral is so big that j ≤ ds,∀s ∈ ST , then
the contract will not default. In this case its price defines a riskless rate of interest
(1 + rj) = 1/πj.

The Loan to Value (LTV) associated to contract j is given by

LTV j =
πj

p
(2)

The margin requirement mj associated to contract j is 1−LTV j, and the leverage
associated to contract j is the inverse of the margin, 1/mj.
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We define the asset loan to value, LTV for asset Y , as the trade-value weighted
average of LTV j across all contracts actively traded in equilibrium.

2.3 Budget Set

Given the asset and contract prices (p, (πj)j∈J), each agent h ∈ H decides consump-
tion in each state, cs, and at time 0, warehousing, w, asset holding, y, contract sales
(borrowing), ϕj > 0, or purchases (lending), ϕj < 0, in order to maximize utility (3)
subject to the budget set defined by

Bh(p, π) = {(c, w, y, ϕ) ∈ RS+1
+ ×R+ ×R+ ×RJ :

(c0 + w − eh0) + p(y − ah) ≤
∑

j∈J ϕjπ
j

(cs − ehs − w) ≤ yds −
∑

j∈J ϕjmin(j, ds), ∀s ∈ ST∑
j∈J max(0, ϕj) ≤ y}

At time 0 expenditures on consumption and warehousing minus endowments, plus
total net expenditures on the asset, can be at most equal to the money borrowed
selling contracts using the asset as collateral. In the final period, at each state s
expenditure on consumption net of initial endowments and warehousing can be at
most equal to the dividend payment minus debt repayment. Finally, those agents
who borrow must hold the required collateral at time 0.

First, notice that there is no sign constraint on ϕj; a positive (negative) ϕj in-
dicates the agent is selling (buying) contracts or borrowing (lending) πj. Second,
notice that we are assuming that short selling of assets is not possible. This assump-
tion is crucial for the results in the paper, since if we were to allow short selling in
the examples we work in the paper, markets would be complete. Though a crucial
assumption, we do not think it is an implausible one. It is impossible to short sell
many assets in the real world, though the CDS market is beginning to change that.
In Fostel-Geanakoplos (2011) we investigate the significance of CDS for asset pricing.

The set H of agents can be taken as finite (in which case we really have in
mind a continuum of agents of each of the types), or we might think of H = [0, 1]
as a continuum of distinct agents, in which case we must think of all the agent
characteristics as measurable functions of h. In the latter case we must think of the
summation

∑
over agents in the next section as an integral over agents, and all the

optimization conditions as holding with Lebesgue measure one.
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2.4 Collateral Equilibrium

A Collateral Equilibrium in this economy is a vector of asset price and contract
prices, individual consumption and warehousing, asset holding, and contract trades
((p, π), (ch, wh, yh, ϕh)h∈H) ∈ (R+ ×RJ

+)× (RS+1
+ ×R+ ×R+ ×RJ)H such that

1.
∑

h∈H(ch0 + wh − eh0) = 0

2.
∑

h∈H(chs − wh − ehs ) =
∑

h∈H y
hds,∀s ∈ S

3.
∑

h∈H(yh − ah) = 0

4.
∑

h∈H ϕ
h
j = 0,∀j ∈ J

5. (ch, wh, yh, ϕhj ) ∈ Bh(p, π),∀h
(c, w, y, ϕ) ∈ Bh(p, π)⇒ Uh(c) ≤ Uh(ch),∀h

Markets for the consumption good in all states clear, assets and promises clear
in equilibrium at time 0, and agents optimize their utility in their budget sets. As
shown by Geanakoplos and Zame (1997), equilibrium in this model always exists
under the assumption we have made so far.

3 When VaR=0 Emerges Endogenously

3.1 Main Result

In this section we study conditions under which VaR=0 arises endogenously in equi-
librium: among all possible contracts, the only one actively traded in equilibrium
is the one that promises the worst case scenario in the future. In this way, default
never occurs in equilibrium, even though it could. We call this the maxmin contract
because then the promise is equal to j∗ = max{j : j ≤ mins ds}.

Consider the situation in which S = {0, U,D}. Asset Y pays dU units of the
consumption good in state s = U and dD < dU in state s = D. Figure 1 depicts
the asset payoff. One might imagine that some agents may value the asset much
more than others, say because they attach very high probability qhU to the up state,
or because they are more risk tolerant, or because they put a high value δh on the
future. These agents might be expected to want to borrow a lot, promising j > dD
so as to get their hands on more money to buy more assets at time 0. Indeed it is
true that for dU > j > j∗ = dD, any agent can raise more money πj > πj

∗
by selling

asset j rather than j∗. Nonetheless, the following result holds

Theorem:
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s=U	  

dU	  

dD	  

s=D	  

s=0	  

Figure 1: Asset payoff description.

Suppose that S = {0, U,D} and that the max min contract j∗ = dD < dU is avail-
able to be traded, that is j∗ ∈ J . Then given any equilibrium ((p, π), (ch, wh, yh, ϕh)h∈H),
we can find another equilibrium ((p, π), (ch, wh, ȳh, ϕ̄h)h∈H) with the same asset and
contract prices and the same consumptions, in which j∗ is the only contract traded,
ϕ̄hj = 0 if j 6= j∗.

Proof:

Note first that if dD = 0 then the promises only deliver in U and they are perfect
substitutes for the asset, so there is no point in trading them. Sellers of the contracts
could simply hold less of the asset and reduce their borrowing to zero while buyers
of the contracts could buy the asset instead, giving another equilibrium as claimed.
So we might as well assume 0 < j∗ = dD < dU . The proof is organized into a series
of claims and their proofs.

1. Let a = p−πj∗

dU−j∗
and b = πj

∗
/j∗ − a. Then πj

∗
= aj∗ + bj∗ and p = adU + bdD.

aj∗ + bj∗ = aj∗ + (πj
∗
/j∗ − a)j∗ = πj

∗

Using the definitions of πj
∗
, a and j∗
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adU + bdD − πj
∗

= a(dU − j∗) + b(dD − j∗) = (p− πj∗) + 0

adU + bdD = p

2. Suppose j with dU > j > j∗ = dD is traded in equilibrium. Then πj = aj+bj∗.

Contract j pays fully in the up state, but defaults and pays only j∗ = dD in the
down state. The seller of the contract must have put up the collateral of one
unit of the asset, and therefore on net is effectively holding an Arrow security
in the U state, paying a price per dollar of

ā =
p− πj

dU − j

The seller of contract j could instead have acquired U Arrow securities by
buying the asset while borrowing πj

∗
, that is making the riskless promise j∗.

Hence
1

ā
=
dU − j
p− πj

≥ dU − j∗

p− πj∗
=

1

a

The buyer of contract j could have instead bought j∗ and bought (j − j∗) U
Arrow securities via the risky promise as above, hence it must be that

πj ≤ πj
∗

+ (j − j∗) p− π
j

dU − j

and hence that
(j − j∗)
πj − πj∗

≥ dU − j
p− πj

It follows that all the previous inequalities must be equalities, otherwise we
would have1

(j − j∗) + dU − j
πj − πj∗ + p− πj

>
dU − j∗

p− πj∗

a contradiction.

Thus if contract dU > j > j∗ is traded, then

πj = πj
∗

+ (j − j∗)a = aj + bj∗

3. If contract j < j∗ is traded, then πj/j = πj
∗
/j∗, hence πj = aj + bj.

If πj/j > πj
∗
/j∗, then the buyer of j made a mistake; instead he should have

bought j/j∗ units of j∗. On the other hand, if πj/j < πj
∗
/j∗,then the seller

1We make use of the arithmetic property that if a, b, c, d > 0, and a
b >

c
d then a+c

b+d >
c
d .
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of j made a mistake; instead he should have sold j/j∗ < 1 units of j∗. Since
j < j∗, this uses less collateral than is available and so is feasible, and brings
more money, a contradiction.

4. The portfolio of assets and contracts that any agent h holds in equilibrium
delivers (zhU , z

h
D), with zhU ≥ zhD ≥ 0 and costs azhU + bzhD.

Any held portfolio payoff (zU , zD) is the sum of payoffs from individual transac-
tions. The possible transactions include precisely contracts j > j∗, j = j∗, j <
j∗, the asset, and the asset bought on margin by selling some security j. In
every such transaction we have shown that the net payoff is a vector (rU , rD),
with rU ≥ rD and costs arU + brD. The conclusion follows from addition and
the distributive law of arithmetic.

5. Define

ȳh =
zhU − zhD
dU − dD

ϕ̄hj∗ = [ȳhdD − zhD]/j∗ = ȳh − zhD/j∗

Then if yh is replaced by ȳh and ϕhj is replaced by 0 for j 6= j∗ and by ϕ̄hj∗ for
j = j∗, and all prices and other individual choices are left the same, then we
still have an equilibrium.

Note first that ϕ̄hj∗ ≤ ȳh, so this portfolio choice satisfies the collateral con-
straint. Observe from the second equation above that

ȳhdD − ϕ̄hj∗j∗ = zhD

and so
ȳhdU − ϕ̄hj∗j∗ = ȳhdU − ȳhdD + zhD

From the very first equation defining ȳh,

ȳh(dU − dD) + zhD = (zhU − zhD) + zhD = zhU

Hence the portfolio choice (ȳh, ϕ̄hj∗) gives the same payoff (zhU , z
h
D). From the

previous observations it must have the same cost as well. Hence every agent is
optimizing. Summing over individuals we must get∑

h

ȳh(dU , dD)−
∑
h

ϕ̄hj∗(j
∗, j∗) =

∑
h

(zhU , z
h
D) =

∑
h

yh(dU , dD)

where the last equality follows from the fact that
∑

h ϕ
h
j = 0 in the origi-

nal equilibrium for each contract j. By the linear independence of the vectors
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(dU , dD) and (j∗, j∗) we deduce that∑
h

ȳh =
∑
h

yh∑
h

ϕ̄hj∗ = 0

proving the theorem.�

As discussed before, leverage is endogenously determined in equilibrium. In par-
ticular, the proposition derives the conclusion that although all contracts will be
priced in equilibrium, the only contract actively traded is the maxmin contract,
which corresponds to the Value at Risk equal zero rule assumed by many other
papers in the literature.

Geanakoplos (2003) stated a slightly stronger theorem (that equilibrium is also
unique) in the special case where the set of agents was taken to be the continuum
H = [0, 1] and every agent was risk neutral and did not discount the futute, and qhU
was taken to be continuous and strictly monotonic in h. Fostel-Geanakoplos (2010)
formally proved that theorem and generalized it to all binary trees. The theorem
in this paper is more general in that it does not depend on a continuum of agents
and continuity of preferences across agents, or on identical discount rates, or on risk
neutrality, or on any assumption about endowments (for example it does not assume
that agent endowments in terminal periods are spanned by the asset). It includes
the case where there is a finite number of agent types.

Note also that the theorem does not presume that markets are complete. Indeed,
in the examples below we see that equilibrium is different from the Arrow-Debreu
equilibrium. It does not say that equilibrium is unique, only that each equilibrium
can be replaced by another with the same asset price and the same consumption
by each agent, in which there is no default. The theorem could easily be extended
to multiple periods and multiple assets provided that every asset took on at most
two total values (capital value plus dividend value) immediately following each state;
such a situation necessarily obtains if the tree is binary.

One key assumption in the theorem is that the tree is binary, so that the maxmin
promise plus the U Arrow security (obtained by buying the asset while selling the
minmax contract), positively spans the set of feasible portfolio payoffs. To take one
example, if an agent wishes to leverage his asset purchases less than the maxmin, he
can always leverage some of his holdings to the maxmin, and the others not at all.

The idea of the proof is that in equilibrium each agent must be indifferent to
replacing his portfolio with another in which on each unit of collateral that he holds,
he either leverages to the maximum amount without risk of default, or does not
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leverage at all. If every agent switches to this VaR = 0 leverage, markets must
still clear. From a simple spanning argument it is clear that the new portfolio each
agent holds gives the same payoffs the next period. But it is important to realize
that this new portfolio may involve each agent holding a different amount of the
collateral asset. Agents are indifferent to switching to the new portfolio because
of the assumption that the asset does not directly enter any agent’s utility (but
only indirectly through its payoffs). If the collateral were housing, for example, the
theorem would not hold; it might well be that even with only two states agents would
leverage in equilibrium to the point where they would default in one of the states (as
shown in an example in Geanakoplos (1997, 2010)).

The theorem has a sort of Modigliani-Miller feel to it. But the theorem does not
assert that the debt-equity ratio is irrelevant. Agents are indifferent to leveraging
as in their equilibrium portfolio, or the point where VaR = 0. But they may not
be indifferent to other levels of leverage. We shall shortly give an example with a
unique equilibrium in which every borrower leverages to the VaR = 0 point, but no
agent would be indifferent to leveraging any less.

After illustrating the theorem with some examples, we go on to analyze the
situation when there are more than two states. We find that in equilibrium there
may be active default, and that different agents may make different promises on the
same collateral.

3.2 Examples

Now we provide two examples, extensively used in the financial literature, to illustrate
the theorem: i) heterogenous beliefs and ii) CAPM investors with differences in risk
aversion.

3.2.1 Heterogenous Beliefs

Agents differ only in their subjective probabilities. There is a continuum of het-
erogenous agents indexed by h ∈ H = [0, 1]. The only source of heterogeneity is in
subjective probabilities, qhU = h, so the higher the h the more optimistic the agent is
with respect to the future.

Agents are risk neutral and do not discount the future. They start at t = 0 with
an endowment of 1 unit of the consumption good and 1 unit of the asset. More
formally, Uh =

∑
s∈S q

h
s cs, e

h
0 = 1 and ehs = 0, s 6= 0, and ah = 1,∀h.

Let us describe the system of equations that characterizes the equilibrium. Be-
cause of linear utilities and the continuity of utility in h and the connectedness of
the set of agents H = [0, 1], at state s = 0 there will be a marginal buyer, h0, who
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will be indifferent between buying or selling Y . All agents h > h0 will buy all they
can afford of Y , i.e., they will sell all their endowment of the consumption good and
borrow to the max using Y as collateral. On the other hand, agents h < h0 will sell
all their endowment of Y and lend to the more optimistic investors. The risk-less
interest rate is zero.

At s = 0 aggregate revenue from sales of the asset is given by p × 1.2 On the
other hand, aggregate expenditure on the asset is given by (1 − h0)(1 + p) + dD.
The first term is total income (endowment plus revenues from asset sales) of buyers
h ∈ [h0, 1]. The second term is borrowing, which from the theorem is dD (recall that
the interest rate is zero). Equating we have

p = (1− h0)(1 + p) + dD (3)

The next equation states that the price at s = 0 is equal to the marginal buyer’s
valuation of the asset’s future payoff.

p = qh0
U dU + qh0

D dD (4)

Hence we have a system of two equations and two unknowns: the price of the
asset, p, and the marginal buyer, h0.

We solve the equilibrium for dU = 1 and dD = .2. Table 1 presents the equilibrium
values for the asset price and marginal buyer. By the theorem, every agent who
leverages chooses to sell the same contract using the asset as collateral, hence asset
leverage and contract leverage are the same and described in the table. It is easy
to check that this is a genuine equilibrium, this is, everybody is maximizing and
markets clear.

Note that in this example equilibrium is unique (as shown in Fostel-Geanakoplos
(2010)). Leverage is uniquely pinned down by equilibrium. There is no other equilib-
rium in which any agent leverages more or less than he does in the above equilibrium.
If agents were forced to issue less debt and hold more equity, they would rise in anger:
no borrower h > h0 is indifferent to issuing less debt. Those agents are indifferent
to leveraging more at the market prices, and then defaulting, but nobody would buy
their promises. The point is that collateral is in short supply; there is no excess of
it. If any agent were to issue fewer bonds but hold the same collateral, nobody else
could step in to take his place and issue the missing bonds.

2All asset endowments add to 1 and without loss of generality are put up for sale even by those
who buy it.
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Table 1: Equilibrium: Heterogenous Beliefs.

Price, p 0.75

Marginal buyer, h0 0.67

Leverage

Margin, m 0.73

Leverage, 1/m 1.36

Loan to Value, 1-m 0.27

3.2.2 CAPM with Differences in Risk Aversion

There are two types of agents who agree on the probabilities; the heterogeneity is
in their appetite for risk. There are risk tolerant and risk averse agents, h = T,A,
and both are mean-variance investors. More formally, Uh =

∑
s∈S qsu

h(cs), where
uh(cs) = cs − 1

2
αhc2s, and αT < αA. Suppose qU = .5 and αT = .02 and αA = .1. As

before agents do not discount the future. Suppose agents each own one unit of the
asset, ah = 1, h = T,A. Suppose eT0 = eTU = eTD = 1 and eA0 = eAD = 1, eAU = 4.

Let us describe how we solve for the equilibrium in this example. We guess a
regime and calculate the equilibrium values according to this guess. At the end we
check that our guess is correct. We guess that in equilibrium the tolerant agents
buy all the asset in the economy and leverage to the max. On the other hand, the
risk averse investors sell all their asset, buy all the consumption good and lend to
the more tolerant investors. We solve for two variables in this case: the price of the
asset, p, and the price of the only contract traded in equilibrium, π. For that we
have two equations.

The first equation is the first order condition for lending corresponding to the
risk averse investor. The price of the contract equals the payoff dD of the contract
weighted by the probabilities of the states and the marginal utilities tomorrow nor-
malized by the marginal utility of consumption at t = 0.

π =
qU(1− αAcAU)dD + qD(1− αAcAD)dD

1− αAcA0
(5)

The second equation is the first order condition of the tolerant investor for pur-
chasing the asset via the maxmin leverage.
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p− π =
qU(1− αT cTU)(dU − dD) + qD(1− αT cTD)(dD − dD)

1− αT cT0
(6)

Notice that this is not the usual first order condition for holding the asset. In fact,
the relevant first order condition when the investor leverages all his asset holdings
is on the net position. The marginal utility of the down-payment today has to
equal the expected marginal utility of the net payoff (dividend minus delivery) in
the future. Given proposition 1, the net payoff in state D is zero, hence buying an
asset leveraging via the maxmin contract is equivalent to buying the state U Arrow
security. As shown by in Fostel-Geanakoplos (2008) the asset pricing implications
of this type of first order condition are very rich, explaining among other things
different pricing kernels and deviations from classical laws of one price.

We solve the equilibrium for dU = 1 and dD = .2. Table 2 presents the equilibrium
values for the asset and contract price. As before, by the theorem, asset leverage and
contract leverage are the same and described in the table. It is easy to check that
this is a genuine equilibrium, this is, that our guess was correct.3

Table 2: Equilibrium: CAPM.

Asset price, p 0.63

Contract price, ! 0.24

Leverage

Margin, m 0.68

Leverage, 1/m 1.47

Loan to Value, 1-m 0.32

3We need to check two things: First that the tolerant investor really wants to leverage to the
max, for this to be the case, π > qU (1−αT cT

U )dD+qD(1−αT cT
D)dD

1−αT cT
0

. Second, we need to check that the

averse investor is optimizing not holding the asset, i.e. p >
qU (1−αAcA

U )dU+qD(1−αAcA
D)dU

1−αAcA
0

. These
two conditions are satisfied in the equilibrium. The parameter choice of endowments was made so
that this particular regime would be the equilibrium one. Of course, we could have chosen other
parameters and the regime would have not be optimal. For example, agents would have liked
to share the asset. These would have only complicated the system of equations without adding
any conceptual insight. Fostel-Geanakoplos (2008) extensively studies the robustness of all these
regimes.
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4 Beyond VaR=0 : Default and Multiple Con-

tracts in Equilibrium.

We extend the previous examples to three states and we find that the theorem fails
to hold. Now S = {0, U,M,D}. Asset Y pays ds units of the consumption good in
state s, where dU ≥ dM ≥ dD. Figure 2 depicts the asset payoffs.

s=U	  
dU	  

qU	  

s=D	  

s=0	  
s=M	  

qM	   dM	  

dD	  

Figure 2: Asset payoff description.

We study a continuum economy with heterogenous beliefs and a two agent econ-
omy with different risk aversions and endowments, as in the previous examples. We
find that we have both default and multiple contracts traded in equilibrium. This
exercise shows that when other papers in the literature assume VAR=0 contracts,
they very likely are not considering genuine equilibria.

4.1 Heterogenous Beliefs: An Example of Multiple Con-
tracts.

We consider first the analogue of the heterogeneous continuum in example 3.2.1,
where each agent begins with one unit of the asset and one consumption good at
time 0 and no other endowments, but we extend the example to three states of
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nature. As before, a (possibly different) price must emerge in equilibrium for each
possible non-contingent promises backed by one unit of the asset as collateral. In
example 3.2.1 with two states of nature we found that among all these contracts, just
one contract need be traded, and that it involved no default. But with three states,
we give robust examples where two contracts will be traded: a risk-less contract as
before that promises dD, the worst-case scenario in the future, and a risky contract
that promises dM in all states but defaults and delivers only dD in s = D.

For concreteness we display the equilibrium for the following probabilities and
asset payoffs: qhU = h, qhM = h(1 − h) and qhD = (1 − h)2, and dU = 3, dM = 2 and
dD = 1. Notice that the higher the h, the more optimisitc the agent. As before we
assume no discounting, and we can guess the riskless interest rate will be zero.

Buying an asset on margin using a financial contract defines a down-payment at
time 0 and a profile of net payoffs in the future. Two contracts will be traded for
the asset, so that in addition to the asset we can think of five securities in total at
time 0, three risky and two risk-less:

1. buying Y on margin using the risky bond (the one that promises dM). In this
case the down-payment is p − πdM and the payoffs in the future are given by
dU − dM , 0, 0 in states U,M and D respectively.

2. buying Y on margin using the risk-less bond (which promises dD). In this case
the down-payment is p− πdD = p− dD and the payoffs in the future are given
by dU − dD, dM − dD, 0 in states U,M and D respectively.

3. the risky bond that promises dM , and is collateralized by one unit of the asset.
In this case the price is πdM and the payoffs in the future are given by dM , dM , dD
in states U,M and D respectively.

4. the risk-less bond that promises dD, and is collateralized by one unit of the
asset. In this case the payment is πdD and the payoffs in the future are given
by dD, dD, dD in states U,M and D respectively.

5. cash (that is holding the durable consumption good)

We guess that at s = 0, because of linear utilities, there will be a marginal buyer
for each of the risky securities above. With this in mind, we need to find the value
of 6 variables:

• Asset price: p.

• Risky bond price: πdM .

• Asset marginal buyers: hM , hD where hM corresponds to the marginal buyer of
Y leveraging with the risky bond, and hD to the marginal buyer of Y leveraging
with the risk-less bond.
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• Risky bond marginal buyer: hB.

• Total quantity of assets purchased by leveraging with the risky bond: y

Next, we will guess a regime in order to be able to define a system of equations,
and once we get a solution we need to check that the regime is genuine, i.e. all agents
are maximizing with those choices. In particular, agents h > hM buy Y and promise
dM , so they buy Y leveraging with the risky bond. Agents with hM > h > hD buy
Y and promise dD, so they leverage using the risk-less bond. Agents hD > h > hB
sell Y and buy the risky bond (so lend in the risky market collateralized by Y ).
Finally, agents h < hB sell everything, hold risk-less securities (so lend in the risk-
less markets).

Suppose the top 1 − hM agents altogether buy y units of Y. The system of
equations is given by

(dU − dM)qhM
U

p− πdM
=

(dU − dD)qhM
U + (dM − dD)qhM

M

p− dD
(7)

(dU − dD)qhD
U + (dM − dD)qhD

M

p− dD
=
dMq

hD
U + dMq

hD
M + dDq

hD
D

πdM
(8)

dMq
hB
U + dMq

hB
M + dDq

hB
D

πdM
= 1 (9)

1− hM + (1− hM + y)πdM = py (10)

hM − hD + ((hM − hD) + (hD − y))dD) = p(hD − y) (11)

hD − hB + p(hD − hB) = (1− hM + y)πdM (12)

Equation (7) states that the marginal buyer hM is indifferent between buying
the asset leveraging with the risky bond and leveraging the asset with the risk-less
bond. Equation (8) states that the marginal buyer hD is indifferent between buying
the asset leveraging with the risk-less bond and buying the risky bond. Equation (9)
says that the marginal buyer hB is indifferent between buying the risky bond and
holding risk-less assets like the risk-less bond or cash. Equation (10) says that the
total amount of money spent by the top 1− hM agents on the asset in cash and by
leveraging both their endowment of assets and their purchased assets via the risky
bond should equal the total revenues from those asset purchases. Equation (11) is
the analog but for the risk-less market, noting that the price of the riskless bond is
hD and that all sales of the asset come from the bottom hD agents, so that purchases
via leverage on the risk-less bond must be hD − y. The last equation states that the
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total amount of money spent on the risky bond comes from the endowment (of goods
and assets) by the agents in the interval (hD, hB) equals the total sales revenues.

Tables 3 shows the results. All agents above hM = .93 leverage all their asset
holdings, 1−hM +y = .35,4 using the risky bond. More pessimistic agents but above
hD = .66 leverage all their asset holdings, .65, but with the risk-less bond. Investors
with less optimistic view than the previous ones but more optimistic than hB = .48
do not hold the asset and lend in the risky market, i.e. they buy the risky bond,
whereas the most pessimistic investors hold cash and lend in the default-free market.

Table 3: Equilibrium: Heterogenous Beliefs.

        

        

Marginal Buyers   Asset Price   

        

hM 0.9307 p 2.4197 

        

hD 0.6589     

    Bond Price   

hB 0.4839     

    πdM 1.7336 

        

        

  Asset purchases on risky market   

        

  y 0.276   

        

When the asset can take on at most two immediate successor values, equilibrium
determines a unique actively traded promise and hence leverage. With three or
more successor values, we cannot expect a simple promise. In this example there is
default in equilibrium, and different agents buy the same asset with different leverage.
But equilibrium still determines the economy-wide average leverage used to buy the
asset. Equilibrium leverage is presented in table 4. There are four securities in total,
three risky securities and one risk-less security (without considering warehousing).
Columns 2 and 3 show the holdings and value of such holdings for each of the
securities. Most importantly, column 4 shows the LTV of each of the two traded

4Notice that total asset holdings consist of initial endowments, 1− .93, plus new purchases, .27.
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contracts. As was expected, LTV is higher for the risky contracts (they have a
higher promise). Finally, column 5 shows the asset LTV. As defined in section 2,
asset LTV is a weighted average, so it is obtained from the total amount borrowed
using all contracts, .5986 + .6547 divided by the total value of collateral, 2.4197× 1.

Table 4: Equilibrium Leverage: Heterogenous Beliefs.

          

          

Security Holdings Holdings Value Contract LTV Asset LTV 

          

          

Y lev Medium 0.3453 0.8355 0.7165 0.5180 

          

Y lev Min 0.6547 1.5842 0.4133   

          

Risky Bond 0.3453 0.5986     

          

Riskless bond 0.6547 0.6547     

          

          

          

4.2 CAPM: An Example with Default.

We now consider the same asset payoff tree as in the previous example but with
mean variance investors as in section 3. In this case, we show an example in which
only one contract is traded in equilibrium, but not the maxmin contract. Instead
leverage takes place exclusively via the promise dM which defaults in state D.

We calculate the equilibrium in the same way we did in section 3. We will guess
a regime and calculate the equilibrium values according to this guess. Finally, of
course, we will have to check that our guess is correct. We guess that in equilibrium
the tolerant agents buy all the asset in the economy and it all using the contract
that promises dM . On the other hand, the averse investors sell all their asset, buy
all the consumption good and lend to the more tolerant investors. We will have to
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solve for two variables in this case: the price of the asset, p, and the price of the only
contract traded in equilibrium, π. For that we have two equations.

The first equation is the first order condition for lending corresponding to the
averse investor. The marginal utility at t = 0 of the price of the contract has to
equal the expected marginal utility in the future of the payoff of the contract.

π =
qU(1− αAcAU)dM + qM(1− αAcAM)dM + qD(1− αAcAD)dM

1− αAcA0
(13)

The second equation is the first order condition for holding the asset correspond-
ing to the tolerant investor.

p− π =
qU(1− αT cTU)(dU − dM)

1− αT cT0
(14)

We solve the equilibrium for the following parameter values: asset payoffs dU =
3, dM = 2, dD = 1, asset endowments, aT = 0, aA = 1, good endowments, eTs = 2, s 6=
U, and eTU = 1, and eAs = 2, s 6= U, and eAU = 6, risk aversion αT = .06, αA = .1,
finally, probabilities, qhs = 1/3,∀h,∀s. Table 5 shows the equilibrium. As we did in
section 3, we check that the regime is genuine and also that they do not want to
borrow or lend using the risk-less bond, contrary to section 3.5

Table 5: Equilibrium: CAPM and default.

    
Asset price, p 2.4086 

    

Contract price, π 2.0852 
    
    

Leverage   
    
    

Margin, m 0.1343 
    

Leverage, 1/m 7.4477 
    

Loan to Value, 1-m 0.8657 
    

    

5All results area available upon request.
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5 Leverage and Asset Prices

In this section we study the effect of leverage on asset prices. As volatility of asset
payoffs fall, increasing the maxmin payoff and thus increasing equilibrium leverage,
or as regulators relax the maximum allowable leverage, what should happen to asset
prices? Geanakoplos (2003, 2010) and Fostel-Geanakoplos (2008) argued, in the
context of our two state model, that increased leverage would raise asset prices. But
as we have seen, this is the context in which VaR=0 is the endogenous leverage
rule. Similar conclusions were reached later by Brunnermeier and Pedersen (2009),
Garleanu and Pedersen (2009). But in these papers the VaR=0 rule is imposed by
assumption.

The following example allows for four states and endogenous leverage. VaR=0
is not the rule; in equilibrium there is default and multiple promises on the same
collateral. The example demonstrates that the relationship between leverage and
asset prices is subtle. In the example, as the government relaxes a maximum leverage
constraint, asset prices rises for awhile, but eventually go down. The intuition is that
as leverage increases at the beginning, there is still no default. The bond payoff just
increases proportionately, enabling optimists to borrow more without changing the
span of available assets from which to choose. The price of the asset rises. But as the
leverage constraint is further relaxed, agents endogenously choose to make promises
that will involve a positive probability of default. The promise itself becomes riskier
and more like the asset. Eventually some buyers switch from buying the asset to
buying the bond. The higher the leverage, the more the bond becomes an asset
substitute, competing away some of the asset demand.

Consider an extension of our heterogenous priors example to four states. Agent
endowments and utilities are described exactly as before. State probabilities are now
given by qhs = 3!

(s−1)!(4−s)!h
s−1(1 − h)4−s. The asset payoff is now described in figure

3.

Asset payoffs are given by d4 = 4, d3 = 3, d2 = 2 and d1 = 1. We first study
the equilibrium in an economy, we call economy 1, in which regulation limits bond
promises collateralized by one unit of the asset to a risk-less contract that promises
d1/2 = 1/2. In a second step we study the equilibrium in an economy, economy 2, in
which the maximum allowed promise is d1 = 1. In economies 1 and 2, only a single
risk-less contract is endogenously traded, namely the one with the maximum allowed
promise.

In economy 3, we raise the maximum allowable promise to d2 = 2. In equilibrium,
two contracts are endogenously traded: the risk-less traded promise of 1 traded in
economy 2 and a risky contract that promises d2 = 2 and defaults in state s = 1.
Economy 4 further relaxes the maximum promise to d3 = 3. In equilibrium three
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s=0 
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q2  d1 

d3 

d4 

s=4 

q3 

Figure 3: Asset Payoff Description.

contracts are endogenously traded, namely a contract promising 1, another promis-
ing 2, and a third promising 3. The second contract defaults in state 1, and the third
contract defaults in states s = 1, 2. We calculate the equilibrium in these four differ-
ent economies. The system of equations solved in each case and all the equilibrium
values are presented in the appendix.
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Figure 4: Leverage and Asset Price.

Figure 4 shows a graph corresponding to the asset price in each economy. We
can clearly see that as we increase leverage from economy 1 to economy 2 and 3,
the asset price increases. This increase is more dramatic at the beginning, when the
asset span remains unchanged. However, as we increase leverage further in economy
4, the asset price decreases. In fact, the riskiest bond that promise 3 looks very much
like the asset itself, and hence competes with it.
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7 Appendix

7.1 Economy 1

The only bond traded is the one that promises d3/2. There are two variables to solve
for, the asset price, p, and the marginal buyer, h3. The system of equations is the
following:

p− d3/2 = qh3
0 (d0 − d3/2) + qh3

1 (d1 − d3/2) + qh3
2 (d2 − d3/2) + qh3

3 (d3 − d3/2) (15)

p = (1− h3)(1 + p) + d3/2 (16)

The equilibrium is given by p = 2.345 and h3 = 0.448.

7.2 Economy 2

The only bond traded is the one that promises d3. There are two variables to solve
for, the asset price, p, and the marginal buyer, h3. The system of equations is the
following:

p− d3 = qh3
0 (d0 − d3) + qh3

1 (d1 − d3) + qh3
2 (d2 − d3) + qh3

3 (d3 − d3) (17)

p = (1− h3)(1 + p) + d3 (18)

The equilibrium is given by p = 2.646 and h3 = 0.549.
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7.3 Economy 3

The are two bonds, a risk-less one that promises d3 and a risky one that promises
d2. There are six variables: the asset price, p, the risky bond price, π, the marginal
buyer that leverage with the risky bond, h2, the marginal buyer that leverage with
the risk-less bond, h3, the marginal buyer of the risky bond, hB2, and asset purchases
leveraging with the risky bond, y. The regime is the following: h > h2 buy Y and
promise d2, so they buy Y leveraging to the max with the risky bond. h2 > h > h3

buy Y and promise d3, so they leverage using the risk-less bond. h3 > h > hB2 sell
Y and buy the risky bond (so lend in the risky market collateralized by Y ). Finally,
h < hB2 sell everything, hold risk-less securities (so lend in the risk-less markets).
The system of equations is the following:

qh2
0 (d0 − d2) + qh2

1 (d1 − d2)

p− π
=
qh2
0 (d0 − d3) + qh2

1 (d1 − d3) + qh2
2 (d2 − d3)

p− d3

(19)

qh3
0 (d0 − d3) + qh3

1 (d1 − d3) + qh3
2 (d2 − d3)

p− d3

=
qh3
0 d2 + qh3

1 d2 + qh3
2 d2 + qh3

3 d3

π
(20)

qhB2
0 d2 + qhB2

1 d2 + qhB2
2 d2 + qhB2

3 d3

π
= 1 (21)

(1− h2) + (1− h2 + y)π = py (22)

(h2 − h3) + (h2 − h3 + h3 − y)d3 = (h3 − y)p (23)

(h3 − hB2) + p(h3 − hB2) = π(1− h2 + y) (24)

The equilibrium is given by table 6.

7.4 Economy 4

The are three bonds, a risk-less one that promises d3 and two risky bond that promise
d2 and d1. There are ten variables: the asset price, p, the risky bond price that
promises d2 , π2, the risky bond price that promises d1 , π1, the marginal buyer that
leverage with the risky bond d1, h1, the marginal buyer that leverage with the risky
bond d2, h2,the marginal buyer that leverage with the risk-less bond, h3, the marginal
buyer of the risky bond that promises d1, hB1,the marginal buyer of the risky bond
that promises d2, hB2, asset purchases leveraging with the risky bond d1 , y1 and
asset purchases leveraging with the risky bond d2 , y2. The regime is the following:
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Table 6: Equilibrium

        

        

Marginal Buyers   Asset Price   

        

h2 0.8064 p 2.7541 

        

h3 0.6675     

    Bond Price   

hB2 0.3456     

    π 1.7198 

        

        

  Asset purchases on risky market   

        

  y 0.5090   

        

h > h1 buy Y and promise d1, h1 > h > h2 buy Y and promise d2. h2 > h > h3 buy
Y and promise d3, so they leverage using the risk-less bond. h3 > h > hB1 sell Y
and buy the risky bond that promises d1, hB1 > h > hB2 sell Y and buy the risky
bond that promises d2. Finally, h < hB2 sell everything, hold risk-less securities (so
lend in the risk-less markets). The system of equations is the following:

qh1
0 (d0 − d1)

p− π1

=
qh1
0 (d0 − d2) + qh1

1 (d1 − d2)

p− π2

(25)

qh2
0 (d0 − d2) + qh2

1 (d1 − d2)

p− π2

=
qh2
0 (d0 − d3) + qh2

1 (d1 − d3) + qh2
2 (d2 − d3)

p− d3

(26)

qh3
0 (d0 − d3) + qh3

1 (d1 − d3) + qh3
2 (d2 − d3

p− d3

=
qh3
0 d1 + qh3

1 d1 + qh3
2 d2 + qh3

3 d3

π1

(27)

qhB1
0 d1 + qhB1

1 d1 + qhB1
2 d2 + qhB1

3 d3

π1

=
qhB1
0 d2 + qhB1

1 d2 + qhB1
2 d2 + qhB1

3 d3

π2

(28)

qhB2
0 d2 + qhB2

1 d2 + qhB2
2 d2 + qhB2

3 d3

π2

= 1 (29)
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(1− h1) + (1− h1 + y1)π1 = py1 (30)

(h1 − h2) + (h1 − h2 + y2)π2 = py2 (31)

(h2 − h3) + (h2 − h3 + h3 − (y1 + y2))d3 = p(h3 − (y1 + y2)) (32)

(h3 − hB1) + p(h3 − hB1) = π1(1− h1 + y1) (33)

(hB1 − hB2) + p(hB1 − hB2) = π2(h1 − h2 + y2) (34)

The equilibrium is given by table 7.

Table 7: Equilibrium

        
        

Marginal Buyers   Asset Price   
        

h1 0.9688 p 2.7269 
        

h2 0.8203     
    Bond Prices   

h3 0.7159     
    π1 2.2360 

hB1 0.5736     
    π2 1.6976 

hB2 0.3288     
        
        
        
  Asset purchases on risky markets   
        
  y1 0.2058   
        
  y2 0.3891   
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