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Abstract

This paper proposes empirical likelihood based inference methods for causal e¤ects identi�ed

from regression discontinuity designs. We consider both the sharp and fuzzy regression discontinuity

designs and treat the regression functions as nonparametric. The proposed inference procedures

do not require asymptotic variance estimation and the con�dence sets have natural shapes, unlike

the conventional Wald-type method. These features are illustrated by simulations and an empir-

ical example which evaluates the e¤ect of class size on pupils�scholastic achievements. Bandwidth

selection methods, higher-order properties, and extensions to incorporate additional covariates and

parametric functional forms are also discussed.

Keywords: Empirical likelihood; Nonparametric methods; Regression discontinuity design; Treat-

ment e¤ect

JEL Classi�cations: C12; C14; C21

1 Introduction

Since the seminal work of Thistlethwaite and Campbell (1960), regression discontinuity design (RDD)

analysis has been a fundamental tool to investigate causal e¤ects of treatment assignments on outcomes

of interest. There are numerous methodological developments and empirical applications of RDD
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analysis particularly in the �elds of economics, psychology, and statistics (see e.g. Trochim, 2001, and

Imbens and Lemieux, 2008, for surveys). The main purpose of this paper is to propose a new inference

approach to RDD analysis based on empirical likelihood.1

In the literature of RDD analysis, there are at least two important issues that have attracted

substantial attention from researchers. First, although RDD analysis were initially discussed in the

context of regression analysis, recent research has focused on deeper understanding of the estimated

parameters of interest based on the theory of causal e¤ects (see e.g. Rubin, 1974, Holland, 1986, and

Angrist, Imbens and Rubin, 1996). In causal analysis, RDDs are split into two categories, the sharp

and fuzzy RDDs. This categorization is based on how the treatment assignments are determined by a

covariate (called the forcing variable). For the sharp design, the treatment is completely determined

by the forcing variable on the either side of a cuto¤ value and we can identify and estimate the

average causal e¤ect of the treatment at the cuto¤ value. For the fuzzy design, the treatment is partly

determined by the forcing variable and the treatment assignment probability jumps at the cuto¤ value.

In this case, we can identify and estimate the average causal e¤ect of the treatment for the compliers

(see Hahn, Todd and van der Klaauw, 2001, and Section 2.1 below). The present paper adopts this

framework and focuses on inferences for the average causal e¤ects identi�ed in the sharp and fuzzy

RDDs.

The second issue that has attracted researchers�attention is the importance of nonparametric meth-

ods in RDD analysis (e.g. Sacks and Ylvisaker, 1978, Kna�, Sacks and Ylvisaker, 1985). Since RDD

analysis is concerned with the causal e¤ects locally at some cuto¤ value of the forcing variable, it is

natural to allow �exible functional forms for regression and treatment assignment probability functions.

Hahn, Todd and van der Klaauw (2001) and Porter (2003) proposed nonparametric estimators for av-

erage causal e¤ects in the sharp and fuzzy RDDs based on local polynomial �tting (Fan and Gijbels,

1996). Their nonparametric estimators possess reasonable convergence rates and are asymptotically

normal under certain regularity conditions. However, the asymptotic variances of these estimators,

which are required to construct Wald-type con�dence sets, are rather complicated due to discontinu-

ities in the conditional mean, variance, and covariance functions. Typically, in order to estimate the

asymptotic variances, we need additional nonparametric regressions to estimate the left and right limits

of the conditional variances and covariances, and we also need nonparametric density estimation for

the forcing variable. In this paper we construct empirical likelihood-based con�dence sets which allow

for nonparametric regression functions but do not require complicated asymptotic variance estimation.

This circumvention of asymptotic variance estimation for the empirical likelihood-based con�dence

sets is not only a practical but also theoretical matter. Chen and Qin (2000) showed that the empirical

likelihood con�dence set for a conditional mean function at boundary points have better higher-order

coverage properties than the Wald-type con�dence sets. Chen and Qin con�rmed that this re�nement

follows from the fact that empirical likelihood naturally internalizes the estimation of an asymptotic

1See Owen (2001) for a review on empirical likelihood.
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variance component which needs to be estimated to construct the Wald statistic. This fact makes our

application of empirical likelihood particularly attractive since RDD analysis is mainly concerned with

inference on conditional mean functions at boundary (or cuto¤) points. Indeed, our empirical likelihood

construction is an extension of Chen and Qin (2000) to the sharp and fuzzy RDD setups, and we can

interpret Chen and Qin�s empirical likelihood as a special case of ours (see Section 4.2). We show that

the empirical likelihood ratios for the causal e¤ects in the sharp and fuzzy RDDs are asymptotically

chi-square distributed. Therefore, similar to the existing papers such as Chen and Qin (2000) and Fan,

Zhang and Zhang (2001), we can still observe an analog of Wilks�s phenomenon in this nonparametric

RDD setup.

The paper is organized as follows. In Section 2 we present the basic setup and construct the

empirical likelihood function for the causal e¤ects. Section 3 studies �rst-order asymptotic properties

of the empirical likelihood ratios and con�dence sets. Section 4 discusses bandwidth selection methods,

higher-order properties, and extensions to incorporate additional covariates and parametric functional

forms. The proposed methods are examined in Section 5 through Monte Carlo simulations and an

empirical example which evaluates the e¤ect of class size on pupils�scholastic achievements investigated

in Angrist and Lavy (1999). Section 6 concludes. Appendix A contains the proofs and lemmas for the

main theorems.

2 Setup and Methodology

2.1 Regression Discontinuity Design

We �rst introduce our basic setup. Let Yi (1) and Yi (0) be potential outcomes of unit i with and without

exposure to a treatment, respectively. Let Wi 2 f0; 1g be an indicator variable for the treatment. We
set Wi = 1 if unit i is exposed to the treatment and set Wi = 0 otherwise. The observed outcome is

Yi = (1�Wi)Yi (0) +WiYi (1) and we cannot observe Yi (0) and Yi (1) simultaneously. Our purpose is

to make inference on the causal e¤ect of the treatment, or more speci�cally, probabilistic aspects of the

di¤erence of potential outcomes Yi (1)� Yi (0). RDD analysis focuses on the case where the treatment
assignment Wi is completely or partly determined by some observable covariate Xi, called the forcing

variable. For example, to study the e¤ect of class size on pupils� achievements, it is reasonable to

consider the following setup: the unit i is school, Yi is an average exam score, Wi is an indicator

variable for the class size (Wi = 0 for one class and Wi = 1 for two classes), and Xi is the number of

enrollments.

Depending on the assignment rule for Wi based on Xi, we have two cases, called the sharp and

fuzzy RDDs. In the sharp RDD, the treatment is deterministically assigned based on the value of Xi,

i.e.

Wi = I fXi � cg ;

where I f�g is the indicator function and c is a known cuto¤ point. A parameter of interest in this case
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is the average causal e¤ect at the discontinuity point c,

�s = E [Yi (1)� Yi (0)jXi = c] :

Since the di¤erence of potential outcomes Yi (1) � Yi (0) is unobservable, we need a tractable repres-
entation of �s in terms of quantities that can be estimated by data. If the conditional mean functions

E [Yi (1)jXi = x] and E [Yi (0)jXi = x] are continuous at x = c, then the average causal e¤ect �s can
be identi�ed as a contrast of the right and left limits of the conditional mean E [YijXi = x] at x = c,

�s = lim
x#c
E [YijXi = x]� lim

x"c
E [YijXi = x] : (1)

In contrast to sharp RDD analysis, fuzzy RDD analysis focuses on the case where the forcing

variable Xi is not informative enough to determine the treatment Wi but can a¤ect on the treatment

probability. In particular, the fuzzy RDD assumes that the conditional treatment probability of Wi

jumps at Xi = c,

lim
x#c
Pr fWi = 1jXi = xg 6= lim

x"c
Pr fWi = 1jXi = xg :

To de�ne a reasonable parameter of interest for the fuzzy case, let Wi (x) be a potential treatment for

unit i when the cuto¤ level for the treatment was set at x, and assume that Wi (x) is non-increasing in

x at x = c. Using the terminology of Angrist, Imbens and Rubin (1996), unit i is called a complier if

her cuto¤ level is Xi, i.e.2

lim
x#Xi

Wi (x) = 0; lim
x"Xi

Wi (x) = 1:

A parameter of interest in the fuzzy RDD, suggested by Hahn, Todd and van der Klaauw (2001), is

the average causal e¤ect for compliers at Xi = c,

�f = E [Yi (1)� Yi (0)j i is complier, Xi = c] :

Hahn, Todd and van der Klaauw (2001) showed that under mild conditions the parameter �f can be

identi�ed by the ratio of the jump in the conditional mean of Yi at Xi = c to the jump in the conditional

treatment probability at Xi = c, i.e.

�f =
limx#c E [YijXi = x]� limx"c E [YijXi = x]

limx#c Pr fWi = 1jXi = xg � limx"c Pr fWi = 1jXi = xg
: (2)

If additional covariates Zi are available, the same identi�cation arguments for �s and �f go through

by slightly modifying the assumptions and adding conditioning variables Zi = z to the conditional

means and probabilities above. This paper focuses on how to make inference for these average causal

e¤ect parameters �s and �f in the sharp and fuzzy RDDs.

To estimate the parameters �s and �f , it is common to apply some nonparametric regression tech-

niques (e.g. Hahn, Todd and van der Klaauw, 2001, and Porter, 2003). For example, the left and

2 If limx#XiWi (x) = 0 and limx"XiWi (x) = 0, then unit i is called a nevertaker. If limx#XiWi (x) = 1 and

limx"XiWi (x) = 1, then unit i is called an alwaystaker.
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right limits of the conditional mean �l = limx"c E [YijXi = x] and �r = limx#c E [YijXi = x] can be
estimated by local linear regression estimators �̂l and �̂r, i.e. solutions to the following weighted least

square problems with respect to al and ar,

min
al;bl

X
i:Xi<c

K
�
Xi � c
h

�
(Yi � al � bl (Xi � c))2 ; (3)

min
ar;br

X
i:Xi�c

K
�
Xi � c
h

�
(Yi � ar � br (Xi � c))2 ;

respectively, with a kernel function K and bandwidth h = hn satisfying h ! 0 as n ! 1. Then from
the identi�cation formula (1), the parameter �s is estimated by

�̂s = �̂r � �̂l:

In the same manner a nonparametric estimator for �f can be obtained as

�̂f =
�̂r � �̂l
�̂wr � �̂wl

;

where �̂wl and �̂wr are estimators for the left and right limits of the conditional treatment probabilities

�wl = limx"c Pr fWi = 1jXi = xg and �wr = limx#c Pr fWi = 1jXi = xg, respectively, and are obtained
as solutions to the weighted least square problems with respect to awl and awr,

min
awl;bwl

X
i:Xi<c

K
�
Xi � c
h

�
(Wi � awl � bwl (Xi � c))2 ; (4)

min
awr;bwr

X
i:Xi�c

K
�
Xi � c
h

�
(Wi � awr � bwr (Xi � c))2 ;

respectively. The kernel functions and bandwidths in (3) and (4) can be di¤erent. But to simplify the

presentation we assume that they are identical.

Porter (2003) derived the asymptotic distributions of the nonparametric estimators �̂s and �̂f . For

example, under certain regularity conditions the asymptotic distribution of the estimator �̂s using the

local linear regressions in (3) is obtained as

p
nh
�
�̂s � �s

�
d! N

�
0;
�2l + �

2
r

f (c)
e01�

�1���1e1

�
; (5)

where �2l = limx"cVar (YijXi = x), �2r = limx#cVar (YijXi = x), f (c) is the density function of Xi

evaluated at c, e1 = (1; 0; : : : ; 0)0, � =

 

0 
1


1 
2

!
, � =

 
�0 �1

�1 �2

!
, 
j =

R1
0 K (z) zjdz, and

�j =
R1
0 K (z)2 zjdz. The estimator �̂f is also asymptotically normal with the asymptotic variance

depending on �2l , �
2
r , limx"cVar (WijXi = x), limx#cVar (WijXi = x), limx"cCov (Yi;WijXi = x),

limx#cCov (Yi;WijXi = x), and f (c). The conventional Wald-type con�dence sets for �s and �f are
obtained by estimating these asymptotic variances of �̂s and �̂f . Typically, we estimate the above non-

parametric components by additional nonparametric regressions and plug those estimated components
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into the asymptotic variance formulae. The obtained Wald-type con�dence set is symmetric around

the estimator �̂s or �̂f .

This paper proposes alternative con�dence sets for the parameters �s and �f based on empirical

likelihood, which circumvent the asymptotic variance estimation issues mentioned above and have data-

determined shapes.

2.2 Empirical Likelihood for RDD

We now construct empirical likelihood functions for the average causal e¤ect parameters �s and �f .

We extend the empirical likelihood construction of Chen and Qin (2000) for local linear �tting to the

sharp and fuzzy RDD contexts. Let Ii = I fXi � cg be an indicator for whether the forcing variable Xi
exceeds the cuto¤ level c. Note that Wi = Ii in the sharp RDD, but Wi 6= Ii in the fuzzy RDD.

We �rst consider the sharp RDD case. Observe that the local linear estimators �̂l and �̂r de�ned

in (3) satisfy the �rst-order conditions (see Fan and Gijbels, 1996)

nX
i=1

(1� Ii)Kli (Yi � �̂l) = 0;
nX
i=1

IiKri (Yi � �̂r) = 0; (6)

where

Kli = K
�
Xi � c
h

�8<: 1
nh

Pn
i=1 (1� Ii)K

�
Xi�c
h

��
Xi�c
h

�2
�
�
Xi�c
h

�
1
nh

Pn
i=1 (1� Ii)K

�
Xi�c
h

��
Xi�c
h

�
9=; ;

Kri = K
�
Xi � c
h

�8<: 1
nh

Pn
i=1 IiK

�
Xi�c
h

��
Xi�c
h

�2
�
�
Xi�c
h

�
1
nh

Pn
i=1 IiK

�
Xi�c
h

��
Xi�c
h

�
9=; :

If we regard (6) as estimating equations for E [�̂l] and E [�̂r], the empirical likelihood function for

(E [�̂r]� E [�̂l] ;E [�̂l]) is de�ned as

Ls (t; a) = sup
fpigni=1

nY
i=1

pi; (7)

s.t. 0 � pi � 1;
nX
i=1

pi = 1;

nX
i=1

pi (1� Ii)Kli (Yi � a) = 0;
nX
i=1

piIiKri (Yi � t� a) = 0:

Also, the log empirical likelihood ratio is de�ned as `s (t; a) = �2 flogLs (t; a) + n log ng. By applying
the Lagrange multiplier method, under mild conditions (see Theorem 2.2 in Newey and Smith, 2004),

we can use the dual problem in place of (7). The dual form for `s (t; a) is

`s (t; a) = 2 sup
�2�n(t;a)

nX
i=1

log
�
1 + �0gi (t; a)

�
; (8)

where �n (t; a) =
�
� 2 R2 : �0gi (t; a) 2 V for i = 1; : : : ; n

	
, V is an open interval containing 0, and

gi (t; a) = [(1� Ii)Kli (Yi � a) ; IiKri (Yi � t� a)]0 : (9)
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Also, after pro�ling out the nuisance parameter a, the concentrated empirical likelihood ratio for E [�̂r]�
E [�̂l] is de�ned as

`s (t) = min
a2A

`s (t; a) ; (10)

where A is a parameter space of �l.

In practice, we use the dual representations in (8) and (10) to implement empirical likelihood

inference. Note that (i) the optimization problem for the Lagrange multiplier � in (8) is two-dimensional,

and (ii) the objective function
Pn
i=1 log

�
1 + �0gi (t; a)

�
for � is typically concave in �. Therefore, the

computational cost to evaluate the empirical likelihood ratio `s (t; a) is not expensive.

The above construction gives us the empirical likelihood ratios for E [�̂r]� E [�̂l] and E [�̂l], rather
than for �s = �r � �l and �l. However, if we choose a relatively fast decay rate for the bandwidth h
(i.e. undersmoothing), the bias components �s� (E [�̂r]� E [�̂l]) and �l�E [�̂l] become asymptotically
negligible. Therefore, the functions (8) and (10) can be employed as valid empirical likelihood ratios

for the parameters �s and �l.

We next consider the fuzzy RDD case. Similar to (7), we consider the following likelihood maxim-

ization problem:

Lf (t; a; awl; awr) = max
fpigni=1

nY
i=1

pi; (11)

s.t. 0 � pi � 1;
nX
i=1

pi = 1;

nX
i=1

pi (1� Ii)Kli (Yi � a) = 0,
nX
i=1

piIiKri (Yi � t (awr � awl)� a) = 0;

nX
i=1

pi (1� Ii)Kli (Wi � awl) = 0,
nX
i=1

piIiKri (Wi � awr) = 0:

Note that the last two conditions come from the �rst-order conditions for the local linear estimators of

�wl and �wr. The dual form of the empirical likelihood ratio for (�f ; �l; �wl; �wr) is written as

`f (t; a; awl; awr) = �2 flogLf (t; a; awl; awr) + n log ng

= 2 sup
�2�n(t;a;awl;awr)

nX
i=1

log
�
1 + �0hi (t; a; awl; awr)

�
; (12)

where �n (t; a; awl; awr) =
�
� 2 R4 : �0hi (t; a; awl; awr) 2 Vh for i = 1; : : : ; n

	
, Vh is an open interval

containing 0, and

hi (t; a; awl; awr) = [(1� Ii)Kli (Yi � a) ; IiKri (Yi � t (awr � awl)� a) ; (13)

(1� Ii)Kli (Wi � awl) ; IiKri (Wi � awr)]0 :

Also, the concentrated empirical likelihood ratio for �f is de�ned as

`f (t) = min
(a;awl;awr)2A�[0;1]�[0;1]

`f (t; a; awl; awr) : (14)
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3 Asymptotic Properties

This section investigates asymptotic properties of the empirical likelihood ratios proposed in the last

section and proposes asymptotically valid empirical likelihood con�dence sets for the average causal

e¤ects �s and �f identi�ed from the sharp and fuzzy RDDs.

First, we consider the empirical likelihood ratios `s (t; a) in (8) and `s (t) in (10) for the sharp RDD.

We impose the following assumptions.

Assumption 3.1.

(i) fYi;Wi; Xigni=1 is i.i.d.

(ii) There exists a neighborhood N around c such that (a) the density function f of Xi is continuously

di¤erentiable and bounded away from zero in N , (b) E [YijXi = x] � �sI fx � cg is continuously
di¤erentiable in N n fcg and is continuous at c with �nite left and right hand derivatives, (c)
E
�
Y 2i
��Xi = x� is continuous in N n fcg and has �nite left and right hand limits at c, and (d)

E
h
jYij�

���Xi = xi is uniformly bounded on N for some � � 4. Also, Vl and Vr de�ned in (18) are
positive.

(iii) K is a symmetric and bounded density function with support [�k; k] for some k 2 (0;1).

(iv) As n!1, h! 0, nh!1, nh5 ! 0, and n1=��1=2h�1=2 ! 0.

(v) A is compact and �l 2 int (A).

Assumption 3.1 (i) is on the data structure. Since RDD analysis is typically applied to cross section

data, this assumption is reasonable. Assumption 3.1 (ii) restricts the local shape of the data distribution

around x = c. Note that this assumption allows discontinuity of the conditional moments E [YijXi = x],
E
�
Y 2i
��Xi = x�, and E h jYij����Xi = xi at x = c. Assumption 3.1 (iii) is on the kernel function K and

imposes that we use a second-order kernel. Assumption 3.1 (iv) is on the bandwidth parameter h.

If h / n��, this assumption is satis�ed for � 2
�
1
5 ; 1�

2
�

�
. The bandwidth h can be stochastic: in

that case, we replace �!�with � p!�in this assumption. The requirement nh5 ! 0 corresponds to an

undersmoothing condition to remove the bias components in the construction of empirical likelihood.

See Section 4.1 for further discussion. Assumption 3.1 (v) is required for the concentrated empirical

likelihood ratio `s (�s).

Under these assumptions, we obtain the asymptotic distributions of the empirical likelihood ratios

`s (�s; �l) and `s (�s).

Theorem 3.1.

(i) Under Assumption 3.1 (i)-(iv), `s (�s; �l)
d! �2 (2).

(ii) Under Assumption 3.1, `s (�s)
d! �2 (1).
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See Appendix A.1 for a proof of this theorem. Theorem 3.1 says that the empirical likelihood

ratios `s (�s; �l) and `s (�s) are asymptotically pivotal and converge to chi-square distributions, i.e.

Wilks�s phenomenon emerges in this nonparametric RDD context. This result can be compared with

earlier works which have also demonstrated the Wilks�s phenomenon for empirical likelihood in other

nonparametric models, such as Chen and Qin (2000), Fan, Zhang and Zhang (2001), Xu (2009), and

Chan, Peng and Zhang (2010). Intuitively, the moment restriction E [gi (�s; �l)] � 0 can be viewed

as a �localized� moment restriction at Xi = c with an e¤ective sample size nh, instead of n for

standard moment restrictions. By undersmoothing, we can neglect the bias in E [gi (�s; �l)] from 0, and

an adaptation of a standard argument from the empirical likelihood literature for standard moment

restrictions implies Wilks�s phenomenon in our nonparametric context. Also, based on Theorem 3.1 (ii),

the 100 (1� �)% asymptotic empirical likelihood con�dence set for the average causal e¤ect parameter

�s is obtained as

ELCSs;� =
�
t : `s (t) � �21�� (1)

	
;

where �21�� (1) is the 100 (1� �)% critical value for the �2 (1) distribution.

We now compare with the conventional Wald-type con�dence set

WCSs;� =

"
�̂s � z1��=2

r
\

Asy:V ar
�
�̂s

�#
;

where z1��=2 is the 100 (1� �=2)% standard normal critical value and
\

Asy:V ar
�
�̂s

�
is some (typically

nonparametric) estimator of the asymptotic variance of �̂s presented in (5). There are at least four

important di¤erences. First, the empirical likelihood con�dence set does not require the variance

estimator
\

Asy:V ar
�
�̂s

�
, which typically requires additional nonparametric estimation for �2l , �

2
r , and

f (c). In Section 4.2, we argue that in some special case this circumvention of variance estimation

can yield a better higher-order coverage property for the empirical likelihood con�dence set. Second,

the empirical likelihood con�dence set is not necessarily symmetric around the point estimator �̂s: the

shape of the con�dence set is determined by that of the empirical likelihood function. Intuitively,

the Wald-type con�dence set is derived from a quadratic approximation of some criterion function to

obtain �̂s. The empirical likelihood con�dence set is derived directly from the empirical likelihood

function without relying on such a quadratic approximation. Third, in �nite samples the empirical

likelihood con�dence set may not be an interval (it could be disjoint or unbounded) but the Wald-type

con�dence set is always an interval. At �rst glance, this feature might seem like a drawback to the

empirical likelihood approach. However, as Stock and Wright (2000) argued in a GMM context, disjoint

or unbounded con�dence sets can be viewed as a symptom of weak identi�cation, in which case the

GMM or (negative) empirical likelihood criterion function tends to be �at or wiggly around the bottom.

Under weak identi�cation, it is known that the Wald-type con�dence set can yield highly misleading

conclusions (Stock and Wright, 2000). See also Lemieux and Marmer (2009) for a discussion of the weak

identi�cation problem in a fuzzy RDD context. Although formal analysis on weak identi�cation in our
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setup is beyond the scope of this paper, it is at least bene�cial to use the empirical likelihood con�dence

set as a complement to the Wald-type one. Finally, although the empirical likelihood con�dence set

circumvents asymptotic variance estimation, it requires numerical search to �nd endpoints for the

con�dence set satisfying `s (t) = �21�� (1), so it is more computationally expensive than the Wald-type

con�dence set. Based on these di¤erences, we recommend the empirical likelihood con�dence set as a

complement to the conventional Wald-type con�dence set.

Next, we consider the empirical likelihood ratios `f (t; a; awl; awr) in (12) and `f (t) in (14) for the

fuzzy RDD. For this case, we add the following assumption.

Assumption 3.2.

There exists a neighborhood N 0 around c such that E [WijXi = x] � (�wr � �wl) I fx � cg is con-
tinuously di¤erentiable in N 0 n fcg and is continuous at c with �nite left and right hand derivatives.
Also, �wl; �wr 2 (0; 1).

This assumption corresponds to Assumption 3.1 (ii) in the sharp RDD case. The asymptotic

properties of the empirical likelihood ratios `f (�s; �l; �wl; �wr) and `f (�f ) are presented as follows.

Theorem 3.2.

(i) Under Assumptions 3.1 (i)-(iv) and 3.2, `f (�s; �l; �wl; �wr)
d! �2 (4).

(ii) Under Assumptions 3.1 and 3.2, `f (�f )
d! �2 (1).

Since the proof is similar to that of Theorem 3.1, it is omitted. Based on Theorem 3.2 (ii), the

100 (1� �)% empirical likelihood con�dence set for the average causal e¤ect parameter �f is

ELCSf;� =
�
t : `f (t) � �21�� (1)

	
:

Similar comments to Theorem 3.1 apply here. However, we mention that the asymptotic variance of

�̂f is more complicated than that of �̂s. In addition to �2l , �
2
r , and f (c), the asymptotic variance

of �̂f contains four more nonparametric components: limx"cVar (WijXi = x), limx#cVar (WijXi = x),
limx"cCov (Yi;WijXi = x), and limx#cCov (Yi;WijXi = x). Also, the Wald-type con�dence set relies
upon a linear approximation (or delta method) to the ratio �̂f =

�̂r��̂l
�̂wr��̂wl .

4 Discussion

4.1 Bandwidth Selection

To implement our empirical likelihood inference, we need to choose the bandwidth h. One way to select

the bandwidth is to conduct a higher-order expansion, derive some Edgeworth expansion formula for

the coverage probability (say, Pr fELCSs;�g = 1 � � + r (n; h) with r (n; h) ! 0 as n ! 1 for the

sharp RDD case), and then choose h to minimize the dominant term of the coverage error r (n; h).
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This approach was adopted by Chen and Qin (2000) for their empirical likelihood con�dence interval

of the conditional mean. Our setup is more complicated than that of Chen and Qin (2000) due to the

existence of more than one moment restriction and additional pro�le-out steps needed to obtain `s (�s)

and `f (�f ). Thus, we leave this analysis for future research.

An alternative would be to adopt some bandwidth selection procedure that is e¤ective for point

estimation of nonparametric regression functions. Although our interest is on interval estimation or

hypothesis testing for �s or �f , desirable properties for point estimation can re�ect favorably on the

performance of the empirical likelihood-based inference. For local linear nonparametric regression, Li

and Racine (2004) studied data-driven cross-validation methods under a general setup and presented

desirable theoretical and simulation evidence. However, there are two di¢ culties that prevent us from

applying Li and Racine�s (2004) results to our context. First, the results of Li and Racine (2004) are not

directly applicable because we need to choose the bandwidths to estimate the regression functions at the

boundary points, such as limx#c E [YijXi = x] and limx"c E [YijXi = x]. Second, to obtain the limiting
�2 null distributions for the empirical likelihood ratios in Theorems 3.1 and 3.2, we need to undersmooth

the bandwidth to satisfy nh5 ! 0 (Assumption 3.1 (iv)), which excludes Li and Racine�s (2004)

convergence rate Op
�
n�1=5

�
for their least square cross-validation bandwidth. If we allow nh5 ! c

for some constant c, modi�ed arguments imply the limiting non-central �2 null distributions for the

empirical likelihood ratios, where the non-centrality parameters depend on c. Although full investigation

of these issues is reserved for future work, we suggest the following modi�ed cross-validation bandwidth

selection method motivated by Li and Racine (2004): (i) choose the bandwidths for the local linear

regressions in (3) and (4) by the cross-validation method discussed in Li and Racine (2004), and then

(ii) modify those cross-validated bandwidths by multiplying n�� (say, � = 0:1) for undersmoothing.

Also, as suggested by Imbens and Lemieux (2008), one may implement this procedure for observations

which are close enough to the cuto¤ point (i.e. observations with jXi � cj � � for some given � > 0).

4.2 Higher-order Properties

We present some intuition for why empirical likelihood con�dence sets can be theoretically better

than Wald-type con�dence sets. Consider the sharp RDD case and assume that the right limit �r =

limx#c E [YijXi = x] is known. In this case we can concentrate on the inference problem for the left

limit �l = limx"c E [YijXi = x]. The empirical likelihood ratio for �l can be written as

~̀
s (a) = 2 sup

�2�n(a)

X
i:Xi�c

log (1 + �~gi (a)) ;

where �n (a) =
n
� 2 R : �~gi (a) 2 ~V for all i with Xi > c

o
, ~V is an open interval containing 0, and

~gi (t; a) = Kli (Yi � a). The same argument to Theorem 3.1 yields ~̀s (�l)
d! �2 (1), and the empirical

likelihood con�dence set for �l is de�ned as ^ELCSs;� =
n
a : ~̀s (a) � �21�� (1)

o
. On the other hand,

the Wald-type con�dence set for �l based on the local linear estimator �̂l from the �rst equation of
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(3) is de�ned as ŴCSs;� =
�
�̂l � z1��=2

q
\Asy:V ar (�̂l)

�
, where \Asy:V ar (�̂l) is some nonparametric

estimator for the asymptotic variance of �̂l. Under this setup with additional regularity conditions, we

can directly apply the results of Chen and Qin (2000). Chen and Qin (2000) found that even though

both ^ELCSs;� and ŴCSs;� are derived from the local linear regression problem, their coverage errors

for �l have di¤erent orders, i.e.

Pr
n
�l 2 ^ELCSs;�

o
= 1� � +O

�
nh5 + h2 + (nh)�1

�
;

Pr
n
�l 2 ŴCSs;�

o
= 1� � +O

�
nh5 + h+ (nh)�1

�
:

For example, if h = O
�
n�1=3

�
(which satis�es Assumption 3.1 (iv)), then the coverage error of ^ELCSs;�

is O
�
n�2=3

�
but the coverage error of ŴCSs;� is O

�
n�1=3

�
. As Chen and Qin (2000) argued, this higher-

order di¤erence emerges from the fact that the coverage error of ŴCSs;� depends on the estimation

error of the asymptotic variance of �̂l. Since the empirical likelihood con�dence interval is free from

such an estimation error, ^ELCSs;� yields a better higher-order coverage property than ŴCSs;�.3

The empirical likelihood ratios presented in Section 2 are more complicated because of additional

moment functions and pro�le-out manipulations. Therefore, formal higher-order analysis is beyond the

scope of the paper. However, it is reasonable to conjecture that similar arguments to Chen and Qin

(2000) will yield analogous higher-order properties.

4.3 Extensions

In this section we discuss two extensions of the present results: the inclusion of additional covariates

and parametric functional forms.

It is often the case that we need to incorporate additional covariates to RDD analysis. We �rst

consider the sharp RDD. Suppose there are m additional covariates Zi. Then �l and �r are estimated

by ��l and ��r, which are solutions of the weighted least square problems with respect to al and ar,

min
al;bl;dl

X
i:Xi<c

K
�
Xi � c
h

��
Yi � al � bl (Xi � c)� d0lZi

�2
;

min
ar;br;dr

X
i:Xi�c

K
�
Xi � c
h

��
Yi � ar � br (Xi � c)� d0rZi

�2
;

respectively. Solving the minimization problems gives ��l =
P
i:Xi<c

�liYi, where

�li = e
0
1A

�1
l K

�
Xi�c
h

�
[1; Xi � c; Z 0i]

0 with e1 = (1; 0; � � � ; 0)0 2 Rm+2 and

Al =
X
i:Xi<c

K
�
Xi � c
h

�0BB@
1 Xi � c Z 0i

Xi � c (Xi � c)2 Z 0i (Xi � c)
Zi Zi (Xi � c) ZiZ

0
i

1CCA ;
3Chen and Qin (2000) also proposed Bartlett correction for ^ELCSs;�, which provides even smaller coverage errors.
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and ��r =
P
i:Xi�c �riYi, where Ar (therefore �ri) is similarly de�ned with the summation taken for the

observations with Xi � c.4 Since it can be shown that
P
i:Xi<c

�li =
P
i:Xi�c �ri = 1, the estimating

equations for �l and �r can be written as

nX
i=1

(1� Ii)�li (Yi � ��l) = 0;
nX
i=1

Ii�ri (Yi � ��r) = 0:

The empirical likelihood ratio can be obtained by replacing the estimating functions gi (t; a) in (9) with

gi (t; a) = [(1� Ii)�li (Yi � a) ; Ii�ri (Yi � t� a)]0 :

For the fuzzy RDD case, the estimating functions hi (t; a; awl; awr) in (13) are correspondingly modi�ed

as

hi (t; a; awl; awr) = [(1� Ii)�li (Yi � a) ; Ii�ri (Yi � t (awr � awl)� a) ;

(1� Ii)�li (Wi � awl) ; Ii�ri (Wi � awr)]0 :

The concentrated empirical likelihood ratios `s (�s) and `f (�f ) are similarly de�ned and they are asymp-

totically chi-square distributed at the true parameter values.

In the previous sections, we do not impose any parametric functional form on the conditional mean

E [YijXi = x] and conditional treatment probability Pr fWi = 1jXi = xg. The empirical likelihood

approach can naturally accommodate parametric functional forms. For example, in a fuzzy RDD with

the cuto¤ value c = 0, one speci�es the regression model for Yi as

Yi = �0 + �1Ii + �
0
lPl (Xi) (1� Ii) + �0rPr (Xi) Ii + ui; E [uijXi; Ii] = 0; (15)

where Pl (Xi) and Pr (Xi) are �nite dimensional vectors of polynomials of Xi without constant terms.

This speci�cation allows the regression functions to have di¤erent left and right limits at the threshold

x = c = 0. In this case, the numerator of �f in (2) is identi�ed by limx#0 E [YijXi = x]�limx"0 E [YijXi = x] =
�1. The model (15) can be estimated by the two stage least squares with instrumental variables Vi, for

example. Typical candidates for Vi are the indicator variable Ii and polynomials of Xi. To incorpor-

ate parametric information in (15), we can modify the estimating function hi (t; a; awl; awr) in (13) as

follows:

hi (t; b0; bl; br; awl; awr) =
�
V 0i
�
Yi � b0 � t (awr � awl) Ii � b0lPl (Xi) (1� Ii)� b0rPr (Xi) Ii

�
;

(1� Ii)Kli (Wi � awl) ; IiKri (Wi � awr)]0 :

The empirical likelihood ratios and their asymptotic chi-square null distributions can be obtained under

analogous conditions. By applying the same argument, it is also possible to incorporate parametric

information on the conditional treatment probability Pr fWi = 1jXi = xg, such as the logit or probit
functional form.

4Note that if there are no additional covariates, �li and �ri reduce to Kli and Kri, respectively.
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5 Numerical Examples

In this section we study the �nite sample performance of the proposed empirical likelihood methods

through simulations and an empirical application, and compare with the conventional Wald or t-test

based on the asymptotic normality of the average causal e¤ect estimators �̂s and �̂f .

5.1 Simulations

We consider the following data generating process of the sharp RDD:

Yi = � (Xi) + �sWi + � (Xi) "i; (16)

where � (x) = x2, Wi = I fXi � cg, Xi � iid Uniform [�2; 2], "i � iid N (0; 1), and

� (x) = 2:5 exp (� jxj) I fx � cg+
p
1:4 (1� I fx � cg) : (17)

The cuto¤ point is set to c = 0:5 so that the conditional mean E [YijXi = x] jumps at x = 0:5 from

�l = 0:25 to �r = 3:25. Thus, in this setup, the average causal e¤ect is �s = �r��l = 3. The conditional
variance function Var (YijXi = x) = �2 (x) is homoskedastic for x < c and heteroskedastic for x � c.
This speci�cation of �2 (x) is adopted to assess the impact of heteroskedasticity. A representative

sample with 100 observations is displayed in Figure 1 (a).

We consider two kinds of t-tests based on di¤erent estimators for the asymptotic variance of �̂s:

(i) Porter�s (2003) residual-based kernel estimator of the variance function on boundaries (denoted as

AN1), and (ii) its improved version based on local linear estimators of the variance function as in

Ruppert et al. (1997) and Fan and Yao (1998) (denoted as AN2).5 We compare these t-tests for the

null hypothesis H0 : �s = 3 with the empirical likelihood test (denoted as EL) introduced in this paper.

To implement these tests, we need to choose the kernel function K and bandwidth h. In our

experiments, we use the Epanechnikov kernel function K (z) = 3
4

�
1� z2

�
I fjzj � 1g and six �xed

bandwidths ranging from h = 0:8 to h = 1:3 when the sample size is 100 and from h = 0:7 to h = 1:2

when the sample size is 200. We also consider a data-dependent bandwidth selected via least square

cross-validation, in which we discard 50% of the observations on each side far from the cuto¤ value,

as recommended by Imbens and Lemieux (2008, Section 5.1). Figure 1 (b) plots the distribution (over

replications) of the data-driven bandwidths selected for the two sample sizes.

Tables 1 and 2 report the rejection rates of the two t-tests (AN1 and AN2) and the empirical

likelihood test (EL) over 1000 replications with the nominal sizes 5% and 10%, when the sample sizes

are 100 and 200, respectively. In addition, we report the averages and standard errors (over replications)

5Local linear �tting is generally preferred in estimating nonparametric functions at boundary points because of auto-

matic boundary bias correction. But in �nite samples the local linear �tting may give negative estimates of variances

occasionally (see e.g. Xu and Phillips, 2009). In our simulations, the percentages of negative local linear estimates of

�̂2r (c) or �̂
2
l (c) over replications range from 5.8% to 0.8% for six bandwidths considered when n = 100, and from 1.1% to

0.1% when n = 200. But we did not observe negative estimates for �̂2r (c) + �̂
2
l (c).
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of the estimates �̂r and �̂l of the right and left limits of the conditional mean, and those of the estimates

�̂2r (c) and �̂
2
l (c) of the right and left limits of the conditional variance. We also record the averages

and variances (over replications) of the estimate �̂s in the columns labeled as ��̂s� and �var
�
�̂s

�
�.

The column labeled as �
\
var

�
�̂s

�
� gives the averages and standard errors (over replications) of the

estimated asymptotic variances, where �2r (c) and �
2
l (c) are estimated by the kernel (AN1) or the local

linear method (AN2). It should be compared with var
�
�̂s

�
, the true value of the asymptotic variance

of �̂s presented in (5).

Several observations are in order. The three tests (AN1, AN2, and EL) for H0 : �s = 3 are generally

oversized. Over all bandwidths considered including the data-driven one, EL appears to have the least

amount of size distortion among the three tests. Using the cross-validated bandwidth does not help

much to reduce size distortions. When the larger sample size is used, the empirical sizes of the three

tests are closer to the nominal ones, with the largest improvement observed for the EL test. Noticeable

biases are observed for �̂r and �̂l, especially when large bandwidths are used. On the other hand, these

estimates happen to be biased in the same direction so that the bias of their di¤erence �̂s = �̂r � �̂l
is negligible. The variance of �̂s is quite close to the sum of the variances of �̂r and �̂l. Marked size

distortions of AN1 are largely explained by the fact that the variance of �̂s is poorly estimated when

�̂2r (c) and �̂
2
l (c) are estimated using the kernel method. In particular, �̂

2
r (c) is seriously biased, with the

average (over replications) just about half of the true value of �2r (c). On the other hand, �
2
l (c) appears

to be estimated satisfactorily. Take the case when n = 100 and h = 1:0 for example. The average (over

replications) of �̂2r (c) is 1.17 with standard error 0.48, which is far below the true value �
2
r (c) = 2:3,

while the average (over replications) of �̂2l (c) is 1.38 with standard error 0.47, which is fairly close to

the true value �2l (c) = 1:4. Consequently, the average (over replications) of the estimated asymptotic

variances of �̂s is 0.46 with standard error 0.13, which underestimates the true value var
�
�̂s

�
= 0:63.

This explains the serious over-rejection of AN1. Similar comments apply for other bandwidths and

for the case of n = 200: This is not surprising in view of our design of the variance function (with

signi�cant non-zero derivatives on the right side but zero derivatives of any order on the left side). In

contrast, the estimates of var
�
�̂s

�
are considerably improved when we use the local linear estimators

for �2r (c) and �
2
l (c) (still with appreciable downward bias for �̂

2
r (c)). This is consistent with the better

size property of AN2 compared to that of AN1.6

6The performance of the t-tests AN1 and AN2 can be alternatively improved by using the standard error estimated

via bootstrap. To be concrete, generate B bootstrap samples by resampling the pairs (Xi; Yi) and for each bootstrap

sample we obtain the estimate of �s, denoted by �̂
�
s (b), where b = 1; : : : ; B. De�ne the test statistic

�
�̂s � �s

�
=se�

�
�̂s
�
,

where se�
�
�̂s
�
is the standard error of the estimates �̂

�
s (b) over B bootstrap replications. Although this test statistic

avoids nonparametric regressions to estimate the asymptotic variance of �̂s, it is computationally more expensive. In our

experiments, the bootstrap test takes about ten times longer than the EL test if the number of bootstrap replications

is B = 399. Our preliminary simulation results (not reported here) show that (i) the bootstrap method has smaller

estimation errors for var
�
�̂s
�
than those of AN1 and AN2; and (ii) the bootstrap test shows similar size properties to

the EL test. To our best knowledge, there is no theoretical study on bootstrap methods in the RDD context and further
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The P-value plots (Davidson and MacKinnon, 1998) displayed in Figure 2 compare the actual null

rejection rates of each of the two squared t-tests and the EL test with a range of nominal null rejection

rates from 0.2%-25%, when (n; h) = (100; 1:0) and (200; 0:9). The P-value discrepancy plots (Figure

3) show the di¤erences of actual and nominal null rejection rates. These plots are useful to evaluate

the quality of asymptotic approximations for the test statistics in �nite samples. It is clear from these

�gures that all p-values of the EL test are closer to the nominal null rejection rates than those of the

t-tests. This means that the �2 (1) distribution serves as a better approximation for the �nite sample

distribution of the EL test statistic than that of the two (squared) t-test statistics. Similar results are

obtained for other bandwidths.

Figures 4 and 5 show the calibrated powers of the three tests under the alternative HA : �s = �A.

These calibrated powers are computed by using adjusted critical values (see Table 3) at which the null

rejection rates are 10% under the data generating process in (16).7 We observe that all tests are more

powerful when a larger bandwidth is used. AN1 and AN2 generally have similar power properties except

that AN2 is less powerful for small bandwidths due to the relatively higher variability of the local linear

variance estimates. It is clear from the �gures that EL has dominant power for all bandwidth values

except when the value of �A is on the far right side of the null hypothesis. This exception disappears

when the sample size is 200. In this case, for all values of �A, EL has the highest power among all tests

considered.

Overall, our simulation result suggests that the empirical likelihood method is very promising be-

cause the resulting test has better size and power properties than the conventional Wald or t-tests.

5.2 Empirical Application

We use the data of Angrist and Lavy (1999) to study the e¤ect of the number of classes on pupils�

scholastic achievement. In Israeli public schools, Maimonides�s rule, which stipulates that a class should

be split when it has more than 40 students, has been used to determine the division of enrollment cohorts

into classes. Here we only consider schools which have one or two classes and focus on 4th graders,

although Angrist and Lavy�s original analysis involved schools with up to six classes and studied 3rd,

4th, and 5th graders. We end up with a sample with 1177 observations (after removing 2 observations

with missing values), with 307 schools having only one class (the controlled group) and 870 schools

having two classes (the treated group).

Plots of average math scores and verbal scores (outcome variables) against enrollment sizes (forcing

variable) are displayed in Figures 7 and 8, respectively. The round circles represent the controlled group

and the pentagrams represent the treated group. Actual class size may not be the same as what would

be predicted by a strict application of Maimonides�s rule. It is clear from the �gures that there are

research is needed.
7The calibrated powers we report here are often misnamed as �size-adjusted�powers in the literature, as pointed out

by Horowitz and Savin (2000) and Davidson and MacKinnon (2006). Following their arguments, we emphasize that such

calibrated critical values are only useful in our speci�c Monte Carlo studies and are irrelevant to empirical applications.
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schools with enrollments near the cuto¤ point 40 appearing both in the treated and controlled groups.

In other words, this is an fuzzy RDD. Local linear �ts are also plotted for the two groups. We use the

bandwidth h = 10 for illustration, which is close to the one selected via least square cross-validation.

The jump size for the average verbal scores seems to be larger than that for the average math scores.

The local linear estimate of the propensity score function (i.e. Pr fWi = 1jXi = xg) is plotted in Figure
6 with treatment assignments (jiggled with small random noises so that overlapped observations are

distinguishable). A discontinuity at the enrollment count c = 40 is clearly visible.

We construct con�dence sets for the average causal e¤ect �f in (2) for the fuzzy RDD by the Wald

test (AN CSs) and the empirical likelihood test (EL CSs) with con�dence level 90%. Figure 9 (a)

presents the estimates and con�dence sets for the discontinuity size in the propensity score function

(i.e. �wr � �wl), which can be obtained by applying our method for the sharp RDD to the dependent
variable Wi. The estimates of �wr � �wl are between 0.54 and 0.70 and the EL CSs for �wr � �wl
are wider than the AN CSs in both the lower and upper tails. Figures 9 (b) and 10 present the AN

and EL CSs together with the local linear point estimates using a group of bandwidths for the math

score and the verbal score, respectively. Depending on the choice of the bandwidth, the estimate for

the average causal e¤ect �f ranges from 1.8 to 7.4 for the math score and from 5.0 to 12.0 for the

verbal score. The AN CSs are symmetric around the point estimates by construction. In contrast, the

EL CSs are typically asymmetric around the point estimates and wider than the AN CSs. This result

is consistent with the simulation evidence in Section 5.1 that the AN CSs are potentially subject to

under-coverage (or over-rejection). For both the math and verbal scores, the AN and EL CSs have

similar lower endpoints. On the other hand, these two CSs yield rather di¤erent upper endpoints. For

example, if we take h = 10, which is close to the one selected via least square cross-validation, the

upper endpoints of the AN and EL CSs for the verbal scores are considerably di¤erent: around 19 and

30, respectively. This contrast suggests that compared to the lower endpoints, we may not have enough

sample information to determine the upper endpoints of the con�dence set for �f .

For further graphical illustration, in Figures 11 and 12 we plot the values of the Wald and EL

test statistics for a range of candidate parameter values for the jump in the propensity score and the

causal e¤ect. The critical values at di¤erent con�dence levels are also marked. These plots show how

the empirical likelihood con�dence sets are constructed via inversion of the test statistics. Also they

show how the EL CIs are asymmetric around the point estimates. Both AN and EL CSs show that

splitting a large class into two small classes has a signi�cant impact to improve the pupils�verbal scores,

but not to improve their math scores. Also, from Figure 12, we can see that the empirical likelihood

function is relatively �at for the right tail. This result indicates that we may not have strong sample

information to determine the upper endpoint of the con�dence set of �f . Note that the Wald approach

never provides such additional information. This di¤erence demonstrates that the empirical likelihood

approach can provide useful information in practice that is not available by the conventional Wald

approach. In practice, the Wald approach tends to yield too small con�dence sets. On the other hand,
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the empirical likelihood approach tends to yield relatively larger con�dence sets. Thus, the researcher

can feel con�dent in her results if she obtains the same conclusion from both approaches (e.g. �f > 0 in

the verbal score example). Meanwhile, if she obtains di¤erent conclusions from these approaches (e.g.

�f > 15 in the verbal score example with the 5% signi�cance level), she needs to be cautious about

whether she has enough sample information to extract a de�nitive conclusion.

6 Conclusion

This paper proposes empirical likelihood inference methods for average causal e¤ects in regression dis-

continuity designs. Our methods allow for sharp and fuzzy regression discontinuity designs and do not

need to specify parametric functional forms on the regression functions. Compared to the conventional

Wald-type con�dence sets, our empirical likelihood con�dence sets do not require asymptotic variance

estimation and can be asymmetric around the point estimates. Monte Carlo simulations and an empir-

ical example evaluating the e¤ect of class size on pupils�performance are used to illustrate the bene�ts

of the proposed methods.
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A Mathematical Appendix

In the appendix, we provide mathematical proofs of the main results. De�ne

sl;j1j2 = f (c)

Z 0

�k
K (z)j1 zj2dz; sr;j1j2 = f (c)

Z k

0
K (z)j1 zj2dz;

Vl = �2l
�
s2l;12sl;20 � 2sl;12sl;11sl;21 + s2l;11sl;22

�
;

Vr = �2r
�
s2r;12sr;20 � 2sr;12sr;11sr;21 + s2r;11sr;22

�
;

V =

 
Vl 0

0 Vr

!
: (18)

A.1 Proof of Theorem 3.1

Proof of (i). From Lemma A.1 (iii), the �rst-order condition for �̂ (�s; �l), which solves the optimiz-

ation problem in (8), satis�es

0 =
1

nh

nX
i=1

gi (�s; �l)

1 + �̂ (�s; �l)
0 gi (�s; �l)

=
1

nh

nX
i=1

gi (�s; �l)� V̂1�̂ (�s; �l) ; (19)

w.p.a.1 (with probability approaching one), where V̂1 = 1
nh

Pn
i=1

gi(�s;�l)gi(�s;�l)
0�

1+ _�
0
gi(�s;�l)

�2 , the second equal-
ity follows from an expansion around �̂ (�s; �l) = 0, and _� is a point on the line joining �̂ (�s; �l)

and 0. Since
���V̂1 � V ��� � max1�i�n

���� 1

1+ _�
0
gi(�s;�l)

����2 �� 1nhPn
i=1 gi (�s; �l) gi (�s; �l)

0 � V
�� p! 0 (by Lemma

A.1 (ii) and (iii)) and V is positive de�nite (Assumption 3.1 (ii)), V̂1 is invertible w.p.a.1. Thus,

we have �̂ (�s; �l) = V̂ �11
1
nh

Pn
i=1 gi (�s; �l) w.p.a.1, and a second-order expansion of `s (�s; �l) =

2
Pn
i=1 log

�
1 + �̂ (�s; �l)

0 gi (�s; �l)
�
w.p.a.1 (by Lemma A.1 (iii)) around �̂ (�s; �l) = 0 yields

`s (�s; �l) = 2�̂ (�s; �l)
0
nX
i=1

gi (�s; �l)� �̂ (�s; �l)0 V̂2�̂ (�s; �l)

=

 
1p
nh

nX
i=1

gi (�s; �l)

!0 h
2V̂ �11 � V̂ �11 V̂2V̂

�1
1

i 1p
nh

nX
i=1

gi (�s; �l)

!
; (20)

w.p.a.1, where V̂2 = 1
nh

Pn
i=1

gi(�s;�l)gi(�s;�l)
0�

1+��
0
gi(�s;�l)

�2 and �� is a point on the line joining �̂ (�s; �l) and 0. Since���V̂2 � V ��� p! 0 by the same argument to V̂1, we have 2V̂ �11 � V̂ �11 V̂2V̂
�1
1

p! V �1. Therefore, Lemma A.1

(ii) implies the conclusion.

Proof of (ii). Let �̂ = argmina2A `s (�s; a). Based on Lemma A.2, we can apply the same argument

to derive (20), which yields

`s (�s) =

 
1p
nh

nX
i=1

gi (�s; �̂)

!0 h
2 ~V �11 � ~V �11

~V2 ~V
�1
1

i 1p
nh

nX
i=1

gi (�s; �̂)

!
; (21)
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w.p.a.1., where ~V1 = 1
nh

Pn
i=1

gi(�s;�̂)gi(�s;�̂)
0�

1+ _�
0
gi(�s;�̂)

�2 , ~V2 = 1
nh

Pn
i=1

gi(�s;�̂)gi(�s;�̂)
0�

1+��
0
gi(�s;�̂)

�2 , and _� and �� are points on
the line joining �̂ (�s; �̂) and 0. Also, Lemma A.2 implies 2 ~V �11 � ~V �11

~V2 ~V
�1
1

p! V �1.

We now derive the asymptotic distribution of 1p
nh

Pn
i=1 gi (�s; �̂). From Lemma A.2 (ii), �̂ (�s; �̂)

satis�es the �rst-order condition

0 =
1

nh

nX
i=1

gi (�s; �̂)

1 + �̂ (�s; �̂)
0 gi (�s; �̂)

; (22)

w.p.a.1. Since the derivative of this condition with respect to �̂ (�s; �̂) converges in probability to

the positive de�nite matrix V (by Lemma A.2), we can apply the implicit function theorem, i.e.

�̂ (�s; a) is continuously di¤erentiable with respect to a in a neighborhood of �̂ w.p.a.1. Let
@gi(�s;a)

@a =

� ((1� Ii)Kli; IiKri)0 = �Gi. The envelope theorem implies

0 =
1

nh

nX
i=1

�G0i�̂ (�s; �̂)
1 + �̂ (�s; �̂)

0 gi (�s; �̂)
= �Ĝ01�̂ (�s; �̂) ; (23)

w.p.a.1, where Ĝ1 is implicitly de�ned. On the other hand, an expansion of (22) around
�
�̂; �̂ (�s; �̂)

�
=

(�l; 0) yields

0 =
1

nh

nX
i=1

gi (�s; �l) +
1

nh

nX
i=1

�Gi (�̂� �l)
1 + ~�

0
gi (�s; ~�)

� 1

nh

nX
i=1

gi (�s; ~�) gi (�s; ~�)
0�

1 + ~�
0
gi (�s; ~�)

�2 �̂ (�s; �̂)
=

1

nh

nX
i=1

gi (�s; �l)� Ĝ2 (�̂� �l)� V̂3�̂ (�s; �̂) ; (24)

where
�
~�; ~�

�
is a point on the line joining

�
�̂; �̂ (�s; �̂)

�
and (�l; 0), and Ĝ2 and V̂3 are implicitly

de�ned. Combining (23) and (24),

0 =

 
0

1
nh

Pn
i=1 gi (�s; �l)

!
+ M̂

 
�̂� �l
�̂ (�s; �̂)

!
; where M̂ =

 
0 �Ĝ01
�Ĝ2 �V̂3

!
: (25)

Lemma A.2 implies V̂3
p! V , Ĝ1

p! G, and Ĝ2
p! G, where G = f(c)

2 (1; 1)0. Thus, M̂ is invertible

w.p.a.1. By solving (25) for
p
nh (�̂� �l), we have

p
nh (�̂� �l) =

�
G0V �1G

��1
G0V �1 1p

nh

Pn
i=1 gi (�s; �l)+

op (1). From this and an expansion of 1p
nh

Pn
i=1 gi (�s; �̂) around �̂ = �l,

1p
nh

nX
i=1

gi (�s; �̂) =
h
I �G

�
G0V �1G

��1
G0V �1

i 1p
nh

nX
i=1

gi (�s; �l) + op (1) : (26)

From (21), (26), and 1p
nh

Pn
i=1 gi (�s; �l)

d! N (0; V ) (by Lemma A.1 (ii)),

`s (�s)
d! �0V 1=2

h
I �G

�
G0V �1G

��1
G0V �1

i0
V �1

h
I �G

�
G0V �1G

��1
G0V �1

i
V 1=2�

= �0
h
I �A

�
A0A

��1
A0
i
� = �2 (1) ;

where � � N (0; I) and A = V �1=2G. Therefore, the conclusion is obtained.
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A.2 Lemmas

De�ne

Sln;j =
1

nh

nX
i=1

(1� Ii)K
�
Xi � c
h

��
Xi � c
h

�j
; Srn;j =

1

nh

nX
i=1

IiK
�
Xi � c
h

��
Xi � c
h

�j
;

� (x) = E [YijXi = x]� �sI fx � cg ; �0l = lim
�"0

� (c+ �)� � (c)
�

; �0r = lim
�#0

� (c+ �)� � (c)
�

:

Note that Kli = K
�
Xi�c
h

�n
Sln;2 �

�
Xi�c
h

�
Sln;1

o
and Kri = K

�
Xi�c
h

�n
Srn;2 �

�
Xi�c
h

�
Srn;1

o
.

Lemma A.1. Suppose that Assumption 3.1 (i)-(iv) holds. Then

(i) Sln;1 � sl;11 = Op

�
(nh)�1=2

�
+ O (h), Sln;2 � sl;12 = Op

�
(nh)�1=2

�
+ O (h), Srn;1 � sr;11 =

Op

�
(nh)�1=2

�
+O (h), and Srn;2 � sr;12 = Op

�
(nh)�1=2

�
+O (h),

(ii) 1
nh

Pn
i=1 gi (�s; �l) gi (�s; �l)

0 p! V , and 1p
nh

Pn
i=1 gi (�s; �l)

d! N (0; V ),

(iii) there exists �̂ (�s; �l) 2 int (�n (�s; �l)) satisfyingPn
i=1 log

�
1 + �̂ (�s; �l)

0 gi (�s; �l)
�
= sup�2�n(�s;�l)

Pn
i=1 log

�
1 + �0gi (�s; �l)

�
w.p.a.1,����̂ (�s; �l)��� = Op �(nh)�1=2�, and max1�i�n ����̂ (�s; �l)0 gi (�s; �l)��� p! 0.

Proof of (i). We only prove the �rst statement. The other statements can be shown in the same

manner. By the change of variables and an expansion f (c+ hz) around hz = 0,

E [Sln;1]� sl;11 =
Z 0

�k
K (z) zf (c+ hz) dz � sl;11 = h

Z 0

�k
K (z) z2f 0 (cz) dz = O (h) ;

where cz is a point on the line joining c and c+ hz and the last equality follows from Assumption 3.1

(ii) and (iii). Also, a similar argument yields

Var (Sln;1) �
1

nh2
E

"
(1� Ii)K

�
Xi � c
h

�2�Xi � c
h

�2# 1

nh

Z 0

�k
K (z)2 z2f (c+ hz) dz = O

�
(nh)�1

�
:

Therefore, Lyapunov�s central limit theorem implies Sln;1�E [Sln;1] = Op
�
(nh)�1=2

�
. Combining these

results, the conclusion is obtained.

Proof of (ii). Proof of the �rst statement. It is su¢ cient to show that

1

nh

nX
i=1

(1� Ii)K2
li (Yi � �l)

2 p! Vl;
1

nh

nX
i=1

IiK
2
ri (Yi � �s � �l)

2 p! Vr:
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Since the proofs are similar, we only show the �rst statement. By the de�nition of K2
li,

1

nh

nX
i=1

(1� Ii)K2
li (Yi � �l)

2

= S2ln;2
1

nh

nX
i=1

(1� Ii)K
�
Xi � c
h

�2
(Yi � �l)2 + S2ln;1

1

nh

nX
i=1

(1� Ii)K
�
Xi � c
h

�2�Xi � c
h

�2
(Yi � �l)2

�2Sln;2Sln;1
1

nh

nX
i=1

(1� Ii)K
�
Xi � c
h

�2�Xi � c
h

�
(Yi � �l)2 : (27)

By the same argument to the proof of Part (i) of this lemma,

E

"
1

nh

nX
i=1

(1� Ii)K
�
Xi � c
h

�2
(Yi � �l)2

#
! �2l sl;20;

Var

 
1

nh

nX
i=1

(1� Ii)K
�
Xi � c
h

�2
(Yi � �l)2

!
! 0; (28)

Thus, from Chebyshev�s inequality and Lemma A.1 (i), the probability limit of the �rst term in (27)

is �2l s
2
l;12sl;20. By applying the same argument to the second and third terms of (27), we obtain the

conclusion.

Proof of the second statement. From the de�nition of gi (�s; �l), it is su¢ cient to show that

1p
nh

nX
i=1

(1� Ii)Kli (Yi � �l)
d! N (0; Vl) ;

1p
nh

nX
i=1

IiKri (Yi � �s � �l)
d! N (0; Vr) :

Since the proofs are similar, we only show the �rst statement. From the de�nition of Kli,

1p
nh

nX
i=1

(1� Ii)Kli (Yi � �l)

= (Sln;2 � sl;12)
1p
nh

nX
i=1

(1� Ii)K
�
Xi � c
h

�
(Yi � �l)

� (Sln;1 � sl;11)
1p
nh

nX
i=1

(1� Ii)K
�
Xi � c
h

��
Xi � c
h

�
(Yi � �l)

+
1p
nh

nX
i=1

8<: (1� Ii)K
�
Xi�c
h

�n
sl;12 �

�
Xi�c
h

�
sl;11

o
(Yi � �l)

�E
h
(1� Ii)K

�
Xi�c
h

�n
sl;12 �

�
Xi�c
h

�
sl;11

o
(Yi � �l)

i 9=;
+

r
n

h
E

�
(1� Ii)K

�
Xi � c
h

��
sl;12 �

�
Xi � c
h

�
sl;11

�
(Yi � �l)

�
= T1 � T2 + T3 + T4:

For T1, Lyapunov�s central limit theorem implies

1p
nh

nX
i=1

�
(1� Ii)K

�
Xi � c
h

�
(Yi � �l)� E

�
(1� Ii)K

�
Xi � c
h

�
(Yi � �l)

��
d! N

�
0; �2l sl;20

�
;
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and the change of variables and Assumption 3.1 (ii)-(iv) imply

E

�
(1� Ii)K

�
Xi � c
h

�
(Yi � �l)

�
= h

Z 0

�k
K (z) (E [YijXi = c+ hz]� �l) f (c+ hz) dz = h2�0lsl;10+O

�
h3
�
:

Thus, from Lemma A.1 (i) and Assumption 3.1 (iv), we have T1 = op (1). Similarly, we can show that

T2 = op (1). For T4, the change of variables and Assumption 3.1 (ii)-(iv) yield

T4 =
p
nh

Z 0

�k
K (z) (sl;12 � sl;11z) (E [YijXi = c+ hz]� �l) f (c+ hz) dz

=
p
nhh�0l

�
sl;12sl;10 � s2l;11

�
+O

�p
nhh2

�
! 0:

For T3, note that

E
�
T 23
�
=

Z 0

�k
K (z)2 (sl;12 � sl;11z)2 E

h
(Yi � �l)2

���Xi = c+ hzi f (c+ hz) dz
�h
�Z 0

�k
K (z) (sl;12 � sl;11z) (E [YijXi = c+ hz]� �l) f (c+ hz) dz

�2
! �2l

�
s2l;12sl;20 � 2sl;12sl;11sl;21 + s2l;11sl;22

�
= Vl;

where the convergence follows from a similar argument to (28). Therefore, Lyapunov�s central limit

theorem implies T3
d! N (0; Vl). Combining these results, we obtain the conclusion.

Proof of (iii). Since the proof is similar to Newey and Smith (2004, Lemmas A1 and A2), it is

omitted.

Lemma A.2. Suppose that Assumption 3.1 holds. Then

(i) Sln;0 � sl;10 = Op
�
(nh)�1=2

�
+O (h), and Srn;0 � sr;10 = Op

�
(nh)�1=2

�
+O (h),

(ii) 1
nh

Pn
i=1 gi (�s; �̂) gi (�s; �̂)

0 p! V , and
�� 1
nh

Pn
i=1 gi (�s; �̂)

�� = Op �(nh)�1=2�,
(iii) there exists �̂ (�s; �̂) 2 int (�n (�s; �̂)) satisfyingPn

i=1 log
�
1 + �̂ (�s; �̂)

0 gi (�s; �̂)
�
= sup�2�n(�s;�̂)

Pn
i=1 log

�
1 + �0gi (�s; �̂)

�
w.p.a.1,����̂ (�s; �̂)��� = Op �(nh)�1=2�, and max1�i�n ����̂ (�s; �̂)0 gi (�s; �̂)��� p! 0.

Detailed proofs are available from the authors upon request. The proof of Lemma A.2 (i) is similar

to that of Lemma A.1 (i). The second statement of Lemma A.2 (ii) follows from a similar argument

to the proof of Newey and Smith (2004, Lemma A3) combined with Lemma A.1. Since this statement

implies the weak consistency of �̂ to �l, Lemma A.1 (ii) implies the �rst statement of Lemma A.2 (ii).

Also, given the consistency of �̂ and Lemma A.2 (ii), a similar argument to the proof of Newey and

Smith (2004, Lemma A2) implies Lemma A.2 (iii).
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Figure 1: (a) A representative sample with 100 observations; (b) The distributions of the bandwidths

selected by cross validation over 1000 replications when the sample sizes are 100 and 200.
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Figure 2: P-value plots (Davidson and MacKinnon, 1998) for the two squared t-test statistics (AN1

and AN2) and empirical likelihood-based test statistic (EL).
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Table 1: The rejection rates (under the null) of two t-tests and the empirical likelihood-based test with

various �xed bandwidths and the one selected via cross validation, when the nominal sizes are 5% and

10% and the sample size is 100. (Standard errors are in the parentheses.)

Bandwidth Tests 5% Sizes 10% Sizes b�r b�l b�s var(b�s) \
var(b�s) b�2r b�2l

True values of parameters 3:25 0.25 3 2.30 1.4

h = 0:8 AN1 0.092 0.154 3:15
(0:69)

0:20
(0:59)

2.95 0.78 0:60
(0:19)

1:29
(0:57)

1:32
(0:52)

AN2 0.103 0.163 0:70
(0:38)

1:83
(1:14)

1:24
(0:99)

EL 0.084 0.135

h = 0:9 AN1 0.093 0.149 3:17
(0:62)

0:16
(0:57)

3.01 0.70 0:53
(0:15)

1:22
(0:53)

1:35
(0:48)

AN2 0.087 0.138 0:62
(0:31)

1:83
(1:09)

1:22
(0:88)

EL 0.079 0.124

h = 1:0 AN1 0.103 0.158 3:13
(0:59)

0:13
(0:52)

2.99 0.63 0:46
(0:13)

1:17
(0:48)

1:38
(0:47)

AN2 0.088 0.146 0:57
(0:25)

1:82
(0:97)

1:30
(0:79)

EL 0.075 0.125

h = 1:1 AN1 0.097 0.166 3:11
(0:55)

0:12
(0:54)

2.99 0.59 0:42
(0:11)

1:16
(0:47)

1:39
(0:46)

AN2 0.084 0.143 0:52
(0:22)

1:79
(0:90)

1:35
(0:77)

EL 0.068 0.122

h = 1:2 AN1 0.087 0.140 3:07
(0:52)

0:06
(0:48)

3.01 0.49 0:39
(0:09)

1:14
(0:44)

1:42
(0:43)

AN2 0.057 0.113 0:49
(0:19)

1:87
(0:88)

1:39
(0:80)

EL 0.053 0.102

h = 1:3 AN1 0.082 0.147 3:05
(0:50)

0:06
(0:45)

2.99 0.44 0:36
(0:08)

1:12
(0:42)

1:45
(0:41)

AN2 0.069 0.116 0:45
(0:18)

1:82
(0:89)

1:37
(0:75)

EL 0.048 0.098

hcv AN1 0.105 0.173 3:11
(0:63)

0:11
(0:58)

3.00 0.70 0:47
(0:25)

1:22
(0:51)

1:39
(0:47)

AN2 0.085 0.142 0:55
(0:34)

1:84
(1:00)

1:33
(0:83)

EL 0.076 0.122
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Table 2: The rejection rates (under the null) of two t-tests and the empirical likelihood-based tests with

various �xed bandwidths and the one selected via cross validation, when the nominal sizes are 5% and

10% and the sample size is 200. (Standard errors are in the parentheses.)

Bandwidth Tests 5% Sizes 10% Sizes b�r b�l b�s var(b�s) \
var(b�s) b�2r b�2l

True values of parameters 3:25 0.25 3 2.30 1.4

h = 0:7 AN1 0.077 0.143 3:18
(0:51)

0:19
(0:43)

3.00 0.45 0:35
(0:08)

1:39
(0:45)

1:34
(0:39)

AN2 0.075 0.131 0:42
(0:16)

1:94
(0:88)

1:30
(0:69)

EL 0.061 0.116

h = 0:8 AN1 0.086 0.142 3:16
(0:47)

0:18
(0:41)

2.98 0.38 0:31
(0:07)

1:32
(0:42)

1:37
(0:38)

AN2 0.060 0.114 0:37
(0:13)

1:96
(0:84)

1:34
(0:67)

EL 0.058 0.113

h = 0:9 AN1 0.080 0.130 3:14
(0:42)

0:18
(0:37)

2.96 0.31 0:27
(0:05)

1:26
(0:38)

1:38
(0:36)

AN2 0.068 0.118 0:33
(0:11)

1:98
(0:82)

1:34
(0:61)

EL 0.050 0.105

h = 1:0 AN1 0.062 0.122 3:14
(0:39)

0:15
(0:36)

2.99 0.27 0:24
(0:05)

1:23
(0:35)

1:40
(0:34)

AN2 0.074 0.120 0:30
(0:09)

1:92
(0:72)

1:37
(0:58)

EL 0.047 0.096

h = 1:1 AN1 0.087 0.148 3:12
(0:40)

0:11
(0:35)

3.01 0.28 0:21
(0:04)

1:16
(0:33)

1:44
(0:33)

AN2 0.057 0.094 0:28
(0:08)

1:97
(0:70)

1:39
(0:58)

EL 0.056 0.097

h = 1:2 AN1 0.079 0.143 3:05
(0:37)

0:09
(0:32)

2.96 0.24 0:20
(0:03)

1:15
(0:31)

1:46
(0:30)

AN2 0.052 0.098 0:25
(0:07)

1:95
(0:70)

1:43
(0:54)

EL 0.048 0.099

hcv AN1 0.111 0.170 3:17
(0:51)

0:14
(0:45)

3.02 0.33 0:29
(0:16)

1:28
(0:47)

1:40
(0:37)

AN2 0.080 0.130 0:36
(0:19)

1:96
(0:87)

1:38
(0:63)

EL 0.070 0.119
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Figure 3: P-value discrepancy plots (Davidson and MacKinnon, 1998) for the two squared t-test stat-

istics (AN1 and AN2) and empirical likelihood-based test statistic (EL).

Table 3: The calibrated 10% critical values (used to obtain the calibrated powers) of the two squared

t�tests (AN1 and AN2) and the EL test.

n = 100

h = 0:8 h = 1:0 h = 1:2 hcv uncalibrated

AN1 5:186 5.632 5.167 5.862 2.706

AN2 6.208 4.968 4.038 5.078 2.706

EL 3:335 3.368 2.785 3.432 2.706

n = 200

h = 0:7 h = 0:9 h = 1:1 hcv uncalibrated

AN1 4:876 5.024 5.301 5.408 2.706

AN2 4.812 4.627 4.014 5.194 2.706

EL 3:123 2.803 2.893 3.331 2.706
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Figure 4: The calibrated powers of the two t-tests (AN1 and AN2) and the empirical likelihood-based

test (EL) for various �xed bandwidths and the one selected via cross validation, when the nominal size

is 10% and the sample size is 100.
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Figure 5: The calibrated powers of the two t-tests (AN1 and AN2) and the empirical likelihood-based

test (EL) for various �xed bandwidths and the one selected via cross validation, when the nominal size

is 10% and the sample size is 200.
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Figure 6: The plot of the assignment (with imposed random noises) by the enrollment count, and

the local linear estimates of the conditional probabilities of getting treated (splitting into two classes)

given the enrollment counts for the controlled sample (enrollment� 40) and the treatment sample

(enrollment> 40).
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Figure 7: The plot of the average math scores by the enrollment counts, and the local linear �ts for the

controlled sample (enrollment� 40) and the treatment sample (enrollment> 40).
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Figure 8: The plot of the average verbal scores by the enrollment counts, and the local linear �ts for

the controlled sample (enrollment� 40) and the treatment sample (enrollment> 40).
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Figure 9: The local linear estimates and the 90% asymptotic normality con�dence intervals (AN CIs)

and empirical likelihood con�dence intervals (EL CIs) of (a) the jump in the propensity score and (b)

the average causal treatment e¤ect of splitting into two classes on pupils�math score.
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Figure 10: The local linear estimates and the 90% asymptotic normality con�dence intervals (AN CIs)

and empirical likelihood con�dence intervals (EL CIs) of the average causal treatment e¤ect of splitting

into two classes on pupils�verbal score.
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Figure 11: The Wald and empirical likelihood (EL) test statistics for (a) the jump in the propensity

score and (b) the average causal treatment e¤ect of splitting into two classes on pupils�math score.

The smoothing bandwidth h = 16 is used. Both test statistics have �2(1) limit distribution and the

90%, 95% and 99% critical values are marked in the �gures.
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Figure 12: The Wald and EL test statistics for the average causal treatment e¤ect of splitting into two

classes on pupils�verbal score. The smoothing bandwidth h = 16 is used. Both test statistics have

�2(1) limit distribution and the 90%, 95% and 99% critical values are marked in the �gure.

36


