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Abstract

This paper studies large and moderate deviation properties of a realized volatility statistic of high
frequency financial data. We establish a large deviation principle for the realized volatility when the
number of high frequency observations in a fixed time interval increases to infinity. Our large
deviation result can be used to evaluate tail probabilities of the realized volatility. We also derive
a moderate deviation rate function for a standardized realized volatility statistic. The moderate
deviation result is useful for assessing the validity of normal approximations based on the central
limit theorem. In particular, it clarifies that there exists a trade-off between the accuracy of the
normal approximations and the path regularity of an underlying volatility process. Our large and
moderate deviation results complement the existing asymptotic theory on high frequency data. In
addition, the paper contributes to the literature of large deviation theory in that the theory is
extended to a high frequency data environment.

1 Introduction

Realized volatility and its related statistics have become standard tools to explore the behavior of

financial data and to evaluate financial theoretical models including stochastic volatility models.1 This

increase in popularity has been propelled by recent developments of probability and statistical theory
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reviews on realized volatility and stochastic volatility models.
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and by the increasing availability of high frequency financial data. Using the asymptotic framework

where the number of high frequency observations in a fixed time interval (say, a day) increases to

infinity, Barndorff-Nielsen and Shephard (2002) established a law of large numbers and a central limit

theorem for realized volatility, which were extended to more general setups and statistics by Barndorff-

Nielsen et al. (2006a,b). Also, Gonçalves and Meddahi (2009) investigated higher-order properties of

the realized volatility statistic and its bootstrap analog based on Edgeworth expansions. These central

limit theorem and Edgeworth expansion results are useful to explore asymptotic behaviors of realized

volatility, in particular around the center of its distribution. On the other hand, tail behaviors of the

realized volatility statistic, such as large and moderate deviation properties, have not been explored yet

in the literature.

This paper studies the large and moderate deviation properties of realized volatility of high frequency

data. We establish the large deviation principle in the sense of Dembo and Zeitouni (1998, Section 1.2)

for the realized volatility statistic when the number of high frequency observations in a fixed time

interval increases to infinity. The large deviation result can be used to evaluate and approximate tail

probabilities of realized volatility. We also derive a moderate deviation result for a standardized realized

volatility statistic, which fills the gap between the central limit theorem and the large deviation one.

The moderate deviation result is useful for assessing the validity of normal approximations based on

the central limit theorem. In particular, it clarifies that there exists a trade-off between the accuracy of

the normal approximations and the path regularity of an underlying volatility process. Our large and

moderate deviation results complement the existing asymptotic theory on high frequency data.

This paper also contributes to the literature of large deviation theory.2 In particular, we extend the

strategy of the proof of Gärtner and Ellis’ large deviation theorem (Gärtner, 1977 and Ellis, 1984) for

general dependent processes to our high frequency data environment. It should be noted that since we

cannot determine the limiting behavior of the cumulant generating function at some boundary point,

the proof strategy of Gärtner and Ellis’ large deviation theorem is not directly applicable to our case.

To deal with this technical difficulty, we modify an approach by Bercu, Gamboa and Rouault (1997)

and Bryc and Dembo (1997), where they established the large deviation principle for quadratic forms

of Gaussian processes.

In Section 2, we present our baseline model and derives the large and moderate deviation results

for the realized volatility statistic. In particular, we derive the exponential convergence rate function

for the conditional tail probabilities of the estimation errors of the realized volatility statistic given

an underlying volatility process. By this conditioning combined with the no leverage effect assumption

(i.e., independence between the volatility and innovation processes), we concentrate on characterizing

the estimation errors driven by the innovation process which is assume to be a standard Brownian

motion. Since the underlying volatility process is unobservable, our large deviation results should be

considered as a contribution to probability theory (where we derive implications from the assumed
2See, e.g., Dembo and Zeitouni (1998) for a review on large deviation theory in the probability and statistics literature.
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probabilistic model) rather than theory of statistical inference (where we utilize observed data to infer

on the unknown data generating process). We note that Gonçalves and Meddahi (2009) adopt a similar

conditioning strategy to derive the second-order properties of the realized volatility statistic. Section 3.1

discusses some technical issues to derive the unconditional version of our large deviation result. Section

3.2 extends the baseline model to allow some specific form of leverage effects and derive analogous

large and moderate deviation results. Our large deviation analysis can be considered as a starting

point to derive more general properties (e.g., the unconditional large deviation theorems) or to compare

the realized volatility statistic with other estimators for the integrated volatility, such as the ones by

Barndorff-Nielsen et al. (2008), Christensen, Oomen and Podokskij (2010), and Zhang, Mykland and

Aït-Sahalia (2005a).

2 Main Results

We first introduce our basic setup. Let us consider a univariate continuous time process Y on a filtered

probability space
(

Ω,F , {Ft}t≥0 , P
)
, which satisfies the following assumption.

Assumption. Y follows a Brownian semimartingale:

Yt := Y0 +
ˆ t

0
audu+

ˆ t

0
σu−dWu, (1)

where Y0 is a real-valued (initial) random variable, W is a standard Brownian motion, a is a predictable

and bounded drift process, and σ is an adapted càdlàg volatility process which is locally bounded away

from zero and independent of W .3

We adopt this setup as a benchmark and later discuss some possible extensions to more general

setups. There are at least two limitations in this assumption. First, the condition of independence

between σ and W excludes the presence of so-called leverage effects. A negative correlation between

asset returns and volatilities is referred to as the leverage effect, which is often observed in stock price

data (see Black, 1976). In our context, a leverage effect corresponds to a negative contemporaneous

correlation between the volatility σ and the Brownian innovation W . While assuming the absence

of leverage effects is restrictive for stock returns, it is empirically reasonable for some exchange rate

data (see Andersen, Bollerslev and Meddahi, 2005). In Section 3.2, we consider an extension of the

baseline model to allow some leverage effects. Second, the above assumption does not allow jumps in

the process Y . Some previous studies argue that the presence of jumps is a prominent feature of some

high frequency financial data.4 On the other hand, it should be noted that several existing theoretical
3This assumption guarantees that the integrals on the right-hand side of (1) are well-defined, which implies the existence

and uniqueness of the process Y (see, e.g., Section 3.2 of Karatzas and Shreve, 1991). Also note that the stochastic integral´ t
0
σu−dWu is a (local) martingale, provided that σ is adapted and càdlàg (see the reference above).
4For example, Barndorff-Nielsen and Shephard (2006) tested the presence of jumps in exchange rate data for each day

in 10 years. They found that the null of no jump is rejected at the 5% significance level on about 20% of days, while
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studies on realized volatility have imposed assumptions similar to ours. For example, Bandi and Russell

(2008) excluded leverage effects and jumps to derive an optimal sampling frequency under the presence

of market microstructure noises. Gonçalves and Meddahi (2009) also excluded them to investigate

higher-order properties of realized volatility and its bootstrap counterpart. Additionally, we do not

explicitly take into account the presence of measurement errors in Y , so-called market microstructure

noises. Some papers, such as Andersen et al. (2003), suggest the use of realized volatility with sampling

at lower frequencies to alleviate biases caused by the market microstructure noises. Our large deviation

analysis may give a reasonable description of the tail behavior under such a sampling method.5

Throughout the paper, let Pr {·} and E [·] be the conditional probability and conditional expectation

given the path of σ, respectively. Given the independence of σ and W , Pr {·} and E [·] are taken with

respect to the innovation process W . We employ a càglàd version of the volatility process and write

the Brownian martingale component as
´ t

0 σu−dWu in (1).6 We may write this component as
´ t

0 σudWu

since both are almost surely equal (as long as
´ t

0 σudWu is martingale).7 In this paper, we use the

expression
´ t

0 σu−dWu to facilitate some technical argument below (see, e.g., (28) in the proof of Lemma

A.1). Also note that
{
σ2
u−
}
is locally Riemann integrable by the càdlàg condition of σ. In particular,

the integrated volatility
´ 1

0 σ
2
u−du is well-defined, which is of our interest in estimation by the realized

volatility statistic.8

Suppose that from the process Y in (1), we obtain n high frequency observations of asset returns on

the time interval [0, 1] (say, one day), that is

∆n
i Y := Yi/n − Y(i−1)/n,

for i = 1, . . . , n. Based on the high frequency returns, the realized volatility statistic is defined as their

at the 1% significance level on about 10% of days. See also Aït-Sahalia and Jacod (2009) and Andersen, Bollerslev and

Dobrev (2007) for analyses of jumps in individual stock returns and S&P500 future returns, respectively.
5See also Bandi and Russell (2008), Barndorff-Nielsen et al. (2008), Hansen and Lunde (2005), and Zhang, Mykland

and Aït-Sahalia, (2005a,b). Some of these papers suggest alternative volatility statistics which are robust to the market

microstructure noises. It is interesting to investigate large deviation properties of such statistics. While it is uncertain if

we can obtain sensible large deviation results with allowing for the noises, an asymptotic assumption in Zhang, Mykland

and Aït-Sahalia (2011) may help us to proceed, where they established Edgeworth expansions for realized volatility and

some related statistics under the presence of market microstructure noises by using small-noise asymptotics.
6A càglàd process is a process whose paths are left-continuous with right limits almost surely.
7The almost sure equivalence holds because W is a Brownian motion. To see this point, observe that

E

"˛̨̨̨ˆ t

0

(σu − σu−) dWu

˛̨̨̨2#
= E

»ˆ t

0

(σu − σu−)2 du

–
= 0,

where the first equality holds by the Ito isometry, and the second by the càdlàg condition of σ (note that a realized path of

the càdlàg process may have infinitely many jumps on any finite interval but its number is at most countable). Therefore,

it holds that
´ t
0

(σu − σu−) dWu = 0 in the L2 sense, and so it does in the almost sure sense.
8By the same token, the integrated volatility may be written as

´ 1

0
σ2
udu, which is equal to

´ 1

0
σ2
u−du almost surely (as

well as everywhere conditional on the realized path of σ).
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squared sum:

RVn :=
n∑
i=1

(∆n
i Y )2 .

Given the increasing availability of high frequency financial data, the realized volatility statistic RVn
has been used as a fundamental tool to investigate volatility in financial markets (e.g., Andersen et al.,

2003 and Barndorff-Nielsen and Shephard, 2002). For example, realized volatility has been employed

as a descriptive measure of volatility of stock returns in financial markets and a basic diagnostic to

evaluate stochastic volatility models. Despite its fundamental importance and long history of empirical

applications, theoretical studies on the realized volatility statistic have started only recently. Barndorff-

Nielsen and Shephard (2002) established the weak law of large numbers and the central limit theorem for

the realized volatility statistic RVn when the data frequency n increases to infinity (see also Barndorff-

Nielsen and Shephard, 2004, and Barndorff-Nielsen et al., 2006a,b, for more general results). Letting

σq :=
´ 1

0 σ
q
u−du, these limit theorems are stated as

RVn
p→ σ2,

√
n
(
RVn − σ2

)
√
σ4

d→ N (0, 2) . (2)

The weak law of large numbers says that the realized volatility statistic RVn converges in probability

to the integrated volatility σ2, and the central limit theorem tells us that an asymptotic approxima-

tion to the estimation error RVn − σ2 is given by the normal distribution. In other words, the large

deviation probability Pr
{∣∣∣RVn − σ2

∣∣∣ > c
}

converges to zero for any positive constant c, and the local

deviation probability Pr
{∣∣∣RVn − σ2

∣∣∣ > c/
√
n
}
is approximated by the normal distribution. Due to the

localization, the central limit theorem is useful for approximating the finite sample distribution of RVn
particularly around the center of its distribution. On the other hand, it can be less precise when one

wishes to capture the tail behavior of RVn. As a complement to the above limiting theorems, this paper

considers an asymptotic approximation to the large deviation probability Pr
{∣∣∣RVn − σ2

∣∣∣ > c
}

with a

given constant c, which is able to provide a more accurate description of the tail behavior of RVn. Also,

to describe the tail behavior between the local and large deviations, we consider the moderate deviation

probability Pr
{∣∣∣RVn − σ2

∣∣∣ > c/mn

}
with mn →∞ and mn/

√
n→ 0.

More specifically, we establish the large deviation principle in the sense of Dembo and Zeitouni

(1998, Section 1.2) for the realized volatility statistic. We say that a sequence {Zn}n∈N of random

variables on Z satisfies the large deviation principle (LDP) with speed sn ↘ 0 and good rate function

I : Z → [0,∞], if

(i) I is a good rate function: I is lower semicontinuous and level compact (i.e., I−1 ([0, c]) is compact

for all c ∈ (0,∞)),

(ii) for any closed set F ⊂ R,

lim sup
n→∞

sn log Pr {Zn ∈ F} ≤ − inf
x∈F

I (x) , (3)
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(iii) for any open set G ⊂ R,

lim inf
n→∞

sn log Pr {Zn ∈ G} ≥ − inf
x∈G

I (x) . (4)

We establish the LDP by setting Zn as the realized volatility statistic RVn and its normalized version.

To present our main results, we introduce some notation. Let

λ̄ :=
1

2 supu∈[0,1] σ
2
u−
, (5)

Λ (λ) := −1
2

ˆ
[0,1]

log
(
1− 2λσ2

u−
)
du, for λ ∈

(
−∞, λ̄

)
, (6)

Λ∗ (x) := sup
λ∈(−∞,λ̄)

{λx− Λ (λ)} , for x ∈ R, (7)

Λ∗∗ (x) := sup
λ∈R

{
λx− λ2σ4

}
=

x2

4σ4
, for x ∈ R. (8)

In Lemma A.1, we show that Λ (λ) is the (pointwise) limit for the normalized cumulant generating

function n−1Λn (λn) for each λ ∈
(
−∞, λ̄

)
, where Λn (u) := logE [exp (uRVn)]. The function Λ∗ is the

Fenchel-Legendre transform of Λ. The function Λ∗∗ corresponds to the Fenchel-Legendre transform of

the cumulant generating function of the normal distribution N
(

0, 2σ4
)
.9

Our main theorems are presented as follows.

Theorem 1. [Large deviation] Suppose that Assumption holds. Then the sequence of the realized volatil-

ity {RVn}n∈N satisfies the LDP with speed n−1 and good rate function Λ∗.

Theorem 2. [Moderate deviation] Suppose that Assumption holds and that for the given path of σ, the

sequence {mn}n∈N satisfies mn →∞, m2
n/n→ 0,

mn

(
1
n

n∑
i=1

σ2
(i−1)/n − σ2

)
→ 0, and

mn

n

n∑
i=1

sup
u∈((i−1)/n,i/n]

∣∣σu− − σ(i−1)/n

∣∣→ 0, (9)

as n → ∞. Then the normalized sequence of the realized volatility
{
mn

(
RVn − σ2

)}
n∈N

satisfies the

LDP with speed m2
n/n and good rate function Λ∗∗.

Proofs of these theorems are provided in Appendix. Some remarks on the theorems are in order.

Remarks:

1. First of all, we emphasize that the probability Pr {·} and expectation E [·] are conditional ones

given the path of the volatility process σ. Thus, the above theorems describe the conditional

large and moderate deviation probabilities for the realized volatility statistic RVn given the path
9Except for Section 3.1, all of our arguments and proofs are made under the conditional expectations and probabilities

given a realized path of the volatility process σ. Since we assume that σ is càdlàg and locally bounded away from zero,

each realized path of σ is uniformly bounded from above and away from zero over [0, 1]. This implies that supu∈[0,1] σ
2
u−

is finite for each realized path of σ and λ̄ cannot be null.
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of σ. Since the volatility process σ is unobservable, these theorems should be considered as

contributions to probability theory (where we derive implications from the assumed probabilistic

model) rather than theory of statistical inference (where we utilizes observed data to infer on the

unknown data generating process). Section 3.1 discusses technical issues to extend these results

to the unconditional probabilities.

2. Theorem 1 is on the large deviation property. This theorem says that the large deviation prob-

ability of realized volatility decays at an exponential rate, whose exponent is characterized by

the Fenchel-Legendre transform Λ∗ of Λ. This form of the rate function is analogous to the

ones obtained in the existing large deviation theorems, such as Cramér’s theorem for the sum

of iid observations and Gärtner-Ellis’ theorem for the sum of possibly dependent heterogeneous

observations. Relying on the Brownian semimartingale assumption, we can obtain a specific form

of the limiting moment generating function Λ. Note that Λ is the cumulant generating func-

tion of the (scaled) χ2 distribution when the volatility process is constant. Intuitively, given the

volatility process σ, we can approximate the large deviation probability Pr {RVn ∈ A} by the

formula exp {−n infx∈A Λ∗ (x)} for any interval A. For example, the estimation error probabil-

ity Pr
{∣∣∣RVn − σ2

∣∣∣ > c
}

for some c > 0 can be approximated by setting A =
(
σ2 + c,∞

)
∪(

−∞, σ2 − c
)
.

3. A key to Gärtner-Ellis’ theorem is the assumption that the limit of the normalized cumulant, i.e.,

limn→∞ n
−1Λn (λn), exists and is determinate in the extended real line for each λ ∈ R.10 However,

in the present setup the limit may be finite or infinite at the boundary point λ̄, depending on the

realized path of σ. If we can assume limn→∞ n
−1Λn

(
λ̄n
)

=∞, then we can adapt Gärtner-Ellis’

theorem to our context. However, such a requirement may be too strong to accommodate some

volatility processes.11 Furthermore, it is not generally easy to check the requirement since Λn
(
λ̄n
)

needs to be evaluated for each realized path of σ. To circumvent this technical difficulty, we adopt

a modified approach of Bercu, Gamboa and Rouault (1997) and Bryc and Dembo (1997), where
10Additionally, Gärtner-Ellis’ theorem requires that the limiting normalized cumulant is essentially smooth, which is

also typically violated in our setup.
11The condition limn→∞ n

−1Λn
`
λ̄n
´

= ∞ holds when the Lebesgue measure of the set Sσ :=n
u ∈ [0, 1] : σ2

u− = sups∈[0,1] σ
2
s−

o
is not zero, i.e., ξ (Sσ) > 0, where ξ is the Lebesgue measure on R. This is satis-

fied if σ is a piecewise constant process for example. On the other hand, if ξ (Sσ) = 0, the condition may fail to hold. To

see this point let us consider a process σ2
u = πθ (u), where

πθ (u) :=

8>><>>:
1− exp{(1/2− u)−θ} for u ∈ [0, 1/2),

1 for u = 1/2,

1− exp{(u− 1/2)−θ} for u ∈ (1/2, 1],

and θ is a non-negative constant parameter. Note that log
`
1− 2λ̄σ2

u

´
= log (1− πθ (u)), which is bounded everywhere

except at a single point u = 1/2 and ξ (Sσ) = 0. In this case it can be seen that limn→∞ n
−1Λn

`
λ̄n
´

=∞ for θ ≥ 1 (but

<∞ for 0 ≤ θ < 1).
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they investigate large deviation behavior of quadratic forms of Gaussian processes.12

4. Theorem 2 is on the moderate deviation property. A scaling factor mn for the normalized statistic

mn

(
RVn − σ2

)
diverges to infinity but with the rate slower than

√
n. Let

Ln :=
1
n

n∑
i=1

sup
u∈((i−1)/n,i/n]

∣∣σu− − σ(i−1)/n

∣∣ .
Both conditions in (9) are satisfied when mnLn → 0. This is because∣∣∣∣∣ 1n

n∑
i=1

σ2
(i−1)/n − σ2

∣∣∣∣∣ ≤ 1
n

n∑
i=1

sup
u∈((i−1)/n,i/n]

∣∣∣σ2
u− − σ2

(i−1)/n

∣∣∣ , and∣∣∣σ2
u− − σ2

(i−1)/n

∣∣∣ ≤ C ∣∣σu− − σ(i−1)/n

∣∣ ,
where C is some positive constant (uniform over i and u), whose existence is guaranteed by

Assumption. We say that the realized path of the volatility process σ is more regular if the

decay rate of Ln is faster. The decay rate of Ln may be regarded as a measure of the degree of

path continuity/smoothness of the process. Note that the rate function Λ∗∗ in (8) is the Fenchel-

Legendre transform of the cumulant generating function of the normal distribution N
(

0, 2σ4
)
,

which corresponds to the limiting distribution of
√
n
(
RVn − σ2

)
in the central limit theorem (2).

Therefore, Theorem 2 says that if the path of the volatility process is sufficiently regular to satisfy

(9) with a given factor mn, then the moderate deviation probability of RVn is still approximated

by the normal distribution. We are faced with a trade-off between the degree of regularity of the

volatility process and the possible range of rates of mn as characterized by (9).

5. In connection with the previous remark we provide the following additional discussion of the

conditions in (9). First, since the càdlàg property of σ implies Ln → 0 (see, pp. 121-123 of

Billingsley, 1999), we can always find a sequence {mn} satisfying (9). Possible rates of mn depend

upon the path property of σ. We below present some examples in order.

(a) Suppose that σ is a (continuous) Brownian semimartingale written as

σt = σ0 +
ˆ t

0
θsds+

ˆ t

0
vsdZs, (10)

where Z is a Brownian motion, and θ and v are locally bounded processes whose integral and

stochastic integral are respectively well-defined. In this case, we can let mn = o
(√

n/ log n
)

because there exists a random variable X such that X (ω) <∞ for almost every ω ∈ Ω and

that

Prσ

{
lim sup
n→∞

{
max1≤i≤n supu∈((i−1)/n,i/n]

∣∣σu − σ(i−1)/n

∣∣√
n−1 log n

}
≤ X

}
= 1,

12Alternatively it might be possible to apply a perturbed version of Gärtner-Ellis’ theorem by Feng, Forde and Fouque

(2010).
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where Prσ is the probability with respect to σ, and the rate
√
n−1 log n is exact (note that

σu = σu−). This result follows from the (local) modulus of continuity of the Brownian motion

and the Dambis-Dubins-Schwarz theorem (see Chapters I and V of Revuz and Yor, 1999,

respectively). The specification of (10) allows the following type of stochastic differential

equation:

df (σt) = α (σt) ds+ β (σt) dZt,

where f is a twice continuously differentiable function (e.g., f (x) = x2, log x), and α and β

are the drift and diffusion functions. Heston’s (1993) model and the continuous-time limit

version of the GARCH model in Nelson (1990) are in this category.

(b) For a general continuous process which may not be a semimartingale, it is possible to estimate

the degree of continuity of the volatility path by using the Kolmogorov-Čentsov criterion (see

Theorem 2.8 in Chapter 2 of Karatzas and Shreve, 1991). Let Eσ be the expectation with

respect to σ. If

Eσ [|σt+h − σt|p] ≤ C |h|1+q for some positive constants C, p and q, (11)

then σt is almost surely (locally) Hölder continuous with degree of γ ∈ (0, q/p). In this case,

we can set mn = o (nγ) for any γ ∈ (0,min {q/p, 1/2}). As an example, consider the case

where σ is driven by a fractional Brownian motion (see Chapter 4 of Embrechts and Maejima,

2002):

σt = f (BH (t)) ,

where f is a twice continuously differentiable function, and BH (t) :=
´ t
−∞ (t− s)H−1/2 dZs

with the Hurst index H ∈ (0, 1). In this case we can show (11) with q = pH − 1 for any

p ∈ (1/H,∞). Therefore, we can pick any γ ∈ (0, H). The smaller H means the more

irregular path of σ, and thus mn must grow at a slower rate (the range of possible rates is

narrower). Note that the Brownian semimartingale in (10) essentially corresponds to the case

of H = 1/2. Therefore, the normal approximations under (10) may be less accurate than

those under volatility processes with H > 1/2 (i.e., long-range dependence or long memory

process; see, e.g., Comte and Renault, 1996).

(c) We may also work with a volatility process whose paths exhibit jumps. Suppose that σ is

described by a process which consists of continuous and jump components, i.e., σt = Xt + Jt

with a continuous process X and a pure jump process J . We can consider two possible

cases for J . First, if J is a process whose number of jumps is almost surely finite over any

finite interval (e.g., a compound Poisson process), then the possible rate of mn is completely

determined by the path property of the continuous partX. IfX is a Brownian semimartingale

defined in (10), then we can set mn = o
(√

n/ log n
)
. If Xt = 0, we can set mn = o

(
n1/2

)
,

which is the fastest divergence rate of mn among any volatility processes. The second is
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the case where σ is a process which may have infinitely many (small) jumps over a finite

interval, such as a Lévy-type process with the infinite Lévy measure (see, e.g., Barndorff-

Nielsen and Shephard, 2001, Barndorff-Nielsen, Shephard and Winkel, 2006, and Todorov,

2008). Although the convergence Ln → 0 for this type of process is guaranteed by the càdlàg

condition, its rate is generally unknown.

6. We can naturally think of an extension of our theorems to the realized power variations:

Rr := n−1+r/2
n∑
i=1

|∆n
i Y |

r ,

for r > 0. The realized volatility statistic RVn corresponds to the case of r = 2. The law of large

numbers and the central limit theorem for this statistic are studied in the literature (Barndorff-

Nielsen and Shephard, 2002, 2004, Barndorff-Nielsen et al. 2006a,b, and Tauchen and Todorov,

2010). To establish a large deviation theorem for Rr, we can use the same strategy as in our

proof in particular for r ∈ (0, 2). However, the proof of Lemma A.1, which derives the limit

of the normalized cumulant generating function, will be completely different. Thus, we need to

investigate the limiting behavior of the cumulant generating function individually for each r.

7. When we consider the possibility of jumps in asset returns, a bipower variation is a useful statistic

(see, e.g. Barndorff-Nielsen and Shephard, 2004, 2006). Under Assumption (i.e., Y does not

exhibit any jump) we conjecture that a large deviation theorem for the bipower variation statistics

can be derived by the same strategy. Again, a challenging part is to establish an analogous result

of Lemma A.1 to characterize the limiting behavior of the cumulant generating functions. For

the case where the process Y contains jumps, it may be possible to proceed by assuming certain

stationarity and mixing conditions of the process, as is done in Section 6.4 of Dembo and Zeitouni

(1998).

3 Discussions

In this section, we discuss two important directions to extend the results obtained in the previous

section. First, we consider the possibility of establishing the large or moderate deviation result for the

realized volatility statistic RVn without conditioning on the path of the volatility process σ. Second, we

consider a certain class of models which allow leverage effects (i.e., dependence between σ and W ), and

derive analogous large and moderate deviation theorems to the ones in the last section.

3.1 Unconditional LDP

In the last section, we focus on the conditional large or moderate deviation probability of RVn given

the path of the volatility process σ (recall that Pr {·} and E [·] mean the conditional probability and

conditional expectation given the path of σ, respectively). Since we do not observe the volatility

10



process, our main results in the last section, which focus on deducing the large or moderate deviation

probabilities for each given (hypothetical) path of σ, should be considered as a contribution to probability

theory rather than inferential statistics. Gonçalves and Meddahi (2009) adopted a similar approach

and characterized higher-order properties of the realized volatility statistic and its bootstrap analog

by conditioning on the path of σ. Although a formal analysis is beyond the scope of the paper, this

subsection discusses some technical issue to derive the unconditional LDP for RVn.

As discussed in the last section, a key to establish the LDP is to find the limit of the normalized

cumulant generating function of RVn. For the conditional case, the limit Λ (λ) is derived in Lemma

A.1. For the unconditional case, however, it would not be an easy task to compute such a limit even if

we maintain the independence of σ and W . To see this point, let us consider the same setup as the last

section and look at the normalized cumulant generating function of RVn, that is

1
n

ΛU,n (λn) :=
1
n

logEσ [E [exp {λnRVn}]] ,

where Eσ [·] is the expectation with respect to σ. Suppose that the limit

ΛU (λ) := lim
n→∞

1
n

logEσ

[
n∏
i=1

[
1− 2λσ2

(i−1)/n

]−1/2
]

exists for all λ ∈ R in the extended real line and that the volatility process σ is almost surely bounded

(in addition to Assumption in the last section). Then a similar argument to the proof of Lemma A.1

yields

lim
n→∞

1
n

ΛU,n (λn) = lim
n→∞

1
n

logEσ

[
E

[
exp

{
λn

n∑
i=1

(´ i/n
(i−1)/ndWu

)2
σ2

(i−1)/n

}]]
= ΛU (λ) ,

where the second equality follows from the property of the Brownian motion W . Based on this,

Gärtner-Ellis’ theorem implies that {RVn}n∈N satisfies the LDP with speed n−1 and good rate func-

tion Λ∗U (x) := supλ∈R {λx− ΛU (λ)} for x ∈ R. However, it seems difficult to establish a gen-

eral condition to guarantee the existence of the limit ΛU (λ). For example, because the sequence{(´ i/n
(i−1)/ndWu

)2
σ2

(i−1)/n

}n
i=1

is not independent, we cannot proceed as in (25) for the proof of Lemma

A.1 and it is not clear how to proceed with the current strategy of the proof. By the same token, the

dependence of
{(´ i/n

(i−1)/ndWu

)2
σ2

(i−1)/n

}n
i=1

prevents a direct extension of the current strategy of the

proof for Theorem 2 to derive a moderate deviation result.

3.2 Leverage Effect

In this subsection, we consider the following specification for the continuous time process Y , which

allows some form of leverage effects.

Assumption’. Y follows a Brownian semimartingale:

Yt := Y0 +
ˆ t

0
audu+

ˆ t

0
σu−

(√
1− ρ2dWu + ρdZu

)
, (12)

11



where Y0 is a real-valued (initial) random variable, W and Z are standard Brownian motions which are

independent, a is a predictable and bounded drift process, σ is an adapted càdlàg volatility process which

is locally bounded away from zero and independent of W with supu∈[0,1]Eσ
[
σ4
u−
]
<∞, and ρ ∈ [0, 1) is

a constant. Also, assume that the filtrations {Fσt }t≥0 and
{
FZt
}
t≥0

generated by σ and Z (Fσt , FZt ⊂ Ft),
respectively, coincide.

This process is one of the most popular specifications in economics and finance literature (see,

e.g., Romano and Touzi, 1997). The parameter ρ captures the degree of dependence between σ and

W (i.e., the leverage effect). Although the last condition on the filtrations {Fσt }t≥0 and
{
FZt
}
t≥0

is

restrictive, it allows us to make our conditional argument transparent: given the realized path of σ, we

can treat objects which consist of σ and Z (e.g.,
´ i/n

(i−1)/n σu−dZu) as given (below we discuss how to

proceed without this condition). One possible specification for σ satisfying this filtration condition is

the process driven by Z with the following form

σt = h (t, Zt) , (13)

where h : [0,∞) × R → (0,∞) is a positive-valued non-random function such that for each t ∈ [0,∞),

h (t, z) is càdlàg and strictly monotone in z. An example of (13) is the geometric Brownian motion

σt = µσtdt+ sσtdZt,

with constants µ ∈ R and s ∈ (0,∞). This process can be written as σt = σ0 exp
{(
µ− s2/2

)
t+ sZt

}
with some initial constant σ0 > 0 and satisfies all conditions on σ in Assumption’.

We define the following objects:

λ̄D :=
1

2 (1− ρ2) supu∈[0,1] σ
2
u

, (14)

ΛD (λ) := −1
2

ˆ 1

0
log
[
1− 2λ

(
1− ρ2

)
σ2
u−
]
du

+2λ2
(
1− ρ2

)
ρ2

ˆ 1

0

σ4
u−

1− 2λ (1− ρ2)σ2
u−
du+ λρ2σ2 for λ ∈

(
−∞, λ̄D

)
, (15)

Λ∗D (x) := sup
λ∈(−∞,λ̄D)

{λx− ΛD (λ)} , for x ∈ R, (16)

Λ∗∗D (x) := sup
λ∈R

{
λx− λ2

(
1− ρ4

)
σ4
}

=
x2

4 (1− ρ4)σ4
, for x ∈ R. (17)

These objects are counterparts of (5)-(8) to the present context. Note that when there is no leverage

effect (i.e., ρ = 0), these objects coincide with the counterparts in (5)-(8). We obtain the following

theorems (the proofs are provided in the Appendix):

Theorem 3. [Large deviation with leverage effects] Suppose that Assumption’ holds. Then the sequence

of the realized volatility {RVn}n∈N satisfies the LDP with speed n−1 and good rate function Λ∗D.

12



Theorem 4. [Moderate deviation with leverage effects] Suppose that Assumption’ holds and that for

the given path of σ, the sequence {mn}n∈N satisfies mn → ∞, m2
n/n → 0, and the conditions provided

in (9). Then the normalized sequence of the realized volatility
{
mn

(
RVn − σ2

)}
n∈N

satisfies the LDP

with speed m2
n/n and good rate function Λ∗∗D .

Theorem 3 establishes the LDP for the realized volatility under the process in (12). We can interpret

this result in a way analogous to Remark 2. When there is no leverage effect (i.e., ρ = 0), the rate

function Λ∗D coincides with Λ∗ in (7). Note that the limit of the normalized cumulant generating

function ΛD may be regarded as the mixture of the cumulant generating functions of the noncentral χ2

distributions. This is due to the introduction of the leverage effects. On the other hand, the limiting

function Λ in Theorem 1 for the no leverage case can be regarded as the mixture of the cumulant

generating functions of the (scaled) χ2 distributions (see Remark 2).

Theorem 4 derives a moderate deviation result. Similar comments to Remarks 4 and 5 apply here.

When there is no leverage effect (i.e., ρ = 0), the rate function Λ∗∗D coincides with Λ∗∗ in (8). Note that

Λ∗∗D is the Fenchel-Legendre transform of the cumulant generating function of the normal distribution

N
(

0, 2
(
1− ρ4

)
σ4
)
. Thus, Theorem 4 says that if the path of the volatility process is sufficiently

regular to satisfy (9) with a given factor mn, then the moderate deviation probability of RVn is still

approximated by the normal distribution N
(

0, 2
(
1− ρ4

)
σ4
)
. However, it should be noted that the

above results are derive by conditioning on the realized path of σ and the derivation of the unconditional

moderate deviation result is beyond the scope of this paper.

We conclude this section by giving some remarks on the possibilities of more general specifications.

First, the last filtration condition in Assumption’ is imposed for us to proceed with probabilities and

expectations conditional on the realized path of σ, or equivalently, on {Fσt } (in the same way as we

did in Section 2). If we consider an extended filtration
{
Fσt ∪ FZt

}
t≥0

and work with probabilities and

expectations conditional on
{
Fσt ∪ FZt

}
, then we are able to develop large and moderate deviation results

analogous to Theorems 3 and 4. Second, if we allow the leverage effect in the original process (1), then

the estimation error can be written as

RVn − σ2 =
n∑
i=1

ξn,i with ξn,i :=
ˆ i/n

(i−1)/n

ˆ u

(i−1)/n
σv−dWvσu−dWu,

where {ξn,i} is a martingale difference array (regardless of the dependence between σ and W ). If some

large deviation results on a very general martingale difference array were available, we could import

them to our context. Unfortunately, to the best of our knowledge, results currently available in the

literature cannot be immediately applied to our case.13

13For example, Grama (1997), and Lesigne and Volný (2001) provide exponential bounds of tail probabilities for discrete-

time martingales; Grama and Haeusler (2000) suppose that martingale differences are almost surely bounded.
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4 Conclusion

This paper derives large and moderate deviation theorems for realized volatility of high frequency

financial data. Obtained results are natural extensions of conventional large and moderate deviation

theorems, such as Cramér’s and Gärtner-Ellis’ theorems, to high frequency data environments where we

increase the number of data frequency to infinity for the asymptotic approximation. Our large deviation

result can be used to examine behaviors of the tail probabilities of the realized volatility statistics. Our

moderate deviation result is useful for characterizing the validity of the central limit theorem based

approximations in the high frequency context. In particular, it clarifies that the accuracy of the normal

approximation depends upon the degree of regularity of the volatility process. Our large deviation

analysis can be considered as a starting point to derive more general properties (e.g., the unconditional

large deviation theorems), to work with more general setups with jumps and/or measurement errors,

and to compare various types of estimators for the integrated volatility.

A Appendix

A.1 Auxiliary Lemmas

Here, we present two auxiliary lemmas which are used for the proof of Theorem 1. For each n, define

the cumulant generating function for the realized volatility statistic as

Λn (u) := logE

[
exp

{
u

n∑
i=1

(∆n
i Y )2

}]
.

For each n, the domain of Λn is the whole real line R. The normalized cumulant generating function is

defined as
1
n

Λn (λn) =
1
n

logE

[
exp

{
λn

n∑
i=1

(∆n
i Y )2

}]
. (18)

We derive the pointwise limit of 1
nΛn (λn) on the extended real line R ∪ {−∞} ∪ {∞} for each λ ∈(

−∞, λ̄
)
∪
(
λ̄,∞

)
as n tends to ∞.

Lemma A.1. Under Assumption, it holds that for each λ ∈
(
−∞, λ̄

)
, the limit of 1

nΛn (λn) as n tends

to ∞ is Λ (λ) <∞, i.e.,

lim
n→∞

1
n

Λn (λn) = Λ (λ) <∞, (19)

and for each λ ∈
(
λ̄,∞

)
, the limit of 1

nΛn (λn) as n tends to ∞ is infinity, i.e.,

lim
n→∞

1
n

Λn (λn) =∞, (20)

where the threshold value λ̄ and the limit function Λ are defined in (5) and (6), respectively.
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Proof. First, we derive upper and lower bounds of (∆n
i Y )2. Letting

qn (i) := sup
u∈((i−1)/n,i/n]

∣∣σu− − σ(i−1)/n

∣∣ , (21)

and using the expression (1) for Yt, we can write as

(∆n
i Y )2 =

(ˆ i/n

(i−1)/n
audu

)2

+

(ˆ i/n

(i−1)/n
dWu

)2

σ2
(i−1)/n

+ 2

(
n1/4

ˆ i/n

(i−1)/n
audu

)(
n−1/4

ˆ i/n

(i−1)/n
σu−dWu

)

+

(
q−1/2
n (i)

ˆ i/n

(i−1)/n

[
σu− − σ(i−1)/n

]
dWu

)(
q1/2
n (i)

ˆ i/n

(i−1)/n

[
σu− + σ(i−1)/n

]
dWu

)
.

Since the drift process a is assumed to be uniformly bounded, it holds that
(´ i/n

(i−1)/n audu
)2
≤ Cn−2

for some C > 0. Thus, by applying the inequality AB ≤ (A2 + B2)/2 (for A,B ∈ R) to the last two

terms on the right-hand side of the above equality,

(∆n
i Y )2 ≤ Cn−2

(
1 + n1/2

)
+

(ˆ i/n

(i−1)/n
dWu

)2

σ2
(i−1)/n +

(
n−1/4

ˆ i/n

(i−1)/n
σu−dWu

)2

+
1
2

(
q−1/2
n (i)

ˆ i/n

(i−1)/n

[
σu− − σ(i−1)/n

]
dWu

)2

+
1
2

(
q1/2
n (i)

ˆ i/n

(i−1)/n

[
σu− + σ(i−1)/n

]
dWu

)2

=
∑4

j=1
M2
j (i) + Cn−2

(
1 + n1/2

)
, (22)

for i = 1, . . . , n, where

Mj (i) :=
ˆ i/n

(i−1)/n
fj,u (i) dWu, (23)

and fj,u (i) is a stochastic process on [(i− 1) /n, i/n] which is defined by

f1,u (i) := σ(i−1)/n, f2,u (i) := n−1/4σu−,

f3,u (i) := (1/
√

2)q−1/2
n (i)

[
σu− − σ(i−1)/n

]
, f4,u (i) := (1/

√
2)q1/2

n (i)
[
σu− + σ(i−1)/n

]
,

for each i = 1, . . . , n and j = 1, . . . , 4. By a similar argument, a lower bound for (∆n
i Y )2 is obtained as

(∆n
i Y )2 ≥M2

1 (i)−
∑4

j=2
M2
j (i)− Cn−2

(
1 + n1/2

)
, (24)

for i = 1, . . . , n. We use (22) and (24) to find upper and lower bounds for 1
nΛn (λn). We will show that

both the bounds for 1
nΛn (λn) have the same limit given in (19) for λ ∈

(
−∞, λ̄

)
and the lower bound

of 1
nΛn (λn) takes ∞ for λ ∈

(
λ̄,∞

)
, which is sufficient for the conclusion. We split into two cases: (I)

λ ≥ 0 and (II) λ < 0. Recall that for each n, the domain of Λn is the whole real line R.
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Case (I): λ ≥ 0. Note that for any λ ≥ 0,

1
n

Λn (λn) =
1
n

logE

[
exp

{
λn

n∑
i=1

(∆n
i Y )2

}]

≤ 1
n

logE

[
n∏
i=1

exp
{
λn
∑4

j=1
M2
j (i) + λCn−1

(
1 + n1/2

)}]

=
1
n

n∑
i=1

logE
[
exp

{
λn
∑4

j=1
M2
j (i)

}]
+ λCn−1

(
1 + n1/2

)
, (25)

where the inequality follows from (22), and the last equality follows from the independent increments

property of W and the independence between (f1 (i) , . . . , f4 (i)) and W . Similarly, by using (24),

1
n

Λn (λn) ≥ 1
n

n∑
i=1

logE
[
exp

{
λnM2

1 (i)− λn
∑4

j=2
M2
j (i)

}]
− λCn−1

(
1 + n1/2

)
. (26)

To proceed, we split Case (I) further into two sub-cases: (I-A) 0 ≤ λ < λ̄ and (I-B) λ̄ < λ.

Case (I-A): 0 ≤ λ < λ̄. Pick any λ ∈
[
0, λ̄
)
. Let

gn (i) := n−1/2 sup
u∈((i−1)/n,i/n]

σ2
u− + 2q−1

n (i) sup
u∈((i−1)/n,i/n]

∣∣σu− − σ(i−1)/n

∣∣2
+ 2qn (i) sup

u∈((i−1)/n,i/n]

∣∣σu− + σ(i−1)/n

∣∣2 . (27)

Note that from the definition of qn (i) in (21),

0 ≤ max
1≤i≤n

gn (i) ≤ C1

[
n−1/2 + max

1≤i≤n
sup

u∈((i−1)/n,i/n]

∣∣σu− − σ(i−1)/n

∣∣]→ 0, (28)

for some C1 > 0, where the convergence follows from the left-continuity of {σu−}. By applying (i-a) of

Lemma A.2 to (25),

1
n

Λn (λn) ≤ − 1
2n

n∑
i=1

log
(

1− 2λ
(
σ2

(i−1)/n + gn (i)
))

+ λCn−1
(

1 + n1/2
)
→ Λ (λ) , (29)

for all n large enough, where the convergence follows from the càdlàg condition of σ and (28). By

applying the Hölder inequality for negative exponents (Theorem 2.2 of Cheung, 2001) to (26),

1
n

Λn (λn) ≥ 2
n

n∑
i=1

logE
[
exp

{
λnM2

1 (i)
}]
− 1
n

n∑
i=1

logE
[
exp

{
λn
∑4

j=1
M2
j (i)

}]
− λCn−1

(
1 + n1/2

)
≥ − 1

n

n∑
i=1

log
[
1− 2λσ2

(i−1)/n

]
+

1
2n

n∑
i=1

log
[
1− 2λ

(
σ2

(i−1)/n + gn (i)
)]
−O

(
λn−1/2

)
→ Λ (λ) , (30)

where the second inequality follows from M1 (i) ∼ N
(

0, n−1σ2
(i−1)/n

)
(recall the definition of M1 (i)

in (23)), and (i-a) of Lemma A.2. Therefore, by (29) and (30), we obtain 1
nΛn (λn) → Λ (λ) for all

λ ∈
[
0, λ̄
)
.

16



Case (I-B): λ̄ < λ < ∞. Pick any λ ∈
(
λ̄,∞

)
. By applying the Hölder inequality for negative

exponents to (26),

1
n

Λn (λn) ≥ 1
n (1− δ)

n∑
i=1

logE
[
exp

{
(1− δ)λnM2

1 (i)
}]

− δ

n (1− δ)

n∑
i=1

logE
[
exp

{(
1− δ
δ

)
λn
∑4

j=2
M2
j (i)

}]
− λCn−1

(
1 + n1/2

)
, (31)

for δ ∈
(
0, 1− λ̄/λ

)
(i.e., (1− δ)λ > λ̄). Since M1 (i) ∼ N

(
0, n−1σ2

(i−1)/n

)
and (1− δ)λ > λ̄, the first

term in the right-hand side of (31) takes ∞. On the other hand, the second term satisfies

δ

n (1− δ)

n∑
i=1

logE
[
exp

{(
1− δ
δ

)
λn
∑4

j=2
M2
j (i)

}]

≤ − δ

2n (1− δ)

n∑
i=1

log
(

1− 2
(

1− δ
δ

)
λgn (i)

)
→ 0,

where the inequality holds for all n large enough, which follows from (i-b) of Lemma A.2, and the

convergence follows from (28). Therefore, we obtain 1
nΛn (λn)→∞ for all λ ∈

(
λ̄,∞

)
, as desired.

Case (II): −∞ < λ < 0. Pick any λ ∈ (−∞, 0). By an argument similar to that for (25) (but with

negative λ) and (ii) of Lemma A.2,

1
n

Λn (λn) ≥ 1
n

n∑
i=1

logE
[
exp

{
λn
∑4

j=1
M2
j (i)

}]
+ λCn−1

(
1 + n1/2

)
≥ 1
n

n∑
i=1

log
([

1− 2λσ2
(i−1)/n

]−1/2
− [1 + 2λgn (i)]−1/2 + 1

)
+O

(
λn−1/2

)
→ Λ (λ) ,

where the convergence follows from the càdlàg condition of σ and (28). Also, by an argument similar

to that for (26) (but with negative λ) and (ii) of Lemma A.2,

1
n

Λn (λn) ≤ 1
n

n∑
i=1

logE
[
exp

{
λnM2

1 (i)− λn
∑4

j=2
M2
j (i)

}]
+ λCn−1

(
1 + n1/2

)
≤ 1
n

n∑
i=1

log
([

1− 2λσ2
(i−1)/n

]−1/2
+ [1 + 2λgn (i)]−1/2 − 1

)
+O

(
λn−1/2

)
→ Λ (λ) .

Therefore, we obtain 1
nΛn (λn) → Λ (λ) for all λ ∈ (−∞, 0). The proof of Lemma A.1 is completed by

showing the following lemma.

Lemma A.2. Suppose that Assumption holds. Let Mj (i) and gn (i) be a random variable defined in

(23) (for i = 1, . . . , n and j = 1, . . . , 4), and let gn (i) be a variable defined in (27) (for i = 1, . . . , n).

(i-a) For each λ ∈
[
0, λ̄
)
, it holds that for all n large enough,

E
[
exp

{
λn
∑4

j=1
M2
j (i)

}]
≤
[
1− 2λ

(
σ2

(i−1)/n + gn (i)
)]−1/2

, (32)
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for all i = 1, . . . , n.

(i-b) For each λ ∈
(
λ̄,∞

)
and each δ ∈ (0, 1), it holds that for all n large enough,

E
[
exp

{
[(1− δ) /δ]λn

∑4

j=2
M2
j (i)

}]
≤ [1− 2 [(1− δ) /δ]λgn (i)]−1/2 , (33)

for all i = 1, . . . , n.

(ii) For each λ ∈ (−∞, 0), it holds that for all n large enough,

E
[
exp

{
λn
∑4

j=1
M2
j (i)

}]
≥
[
1− 2λσ2

(i−1)/n

]−1/2
− [1 + 2λgn (i)]−1/2 + 1, (34)

E
[
exp

{
λnM2

1 (i)− λn
∑4

j=2
M2
j (i)

}]
≤
[
1− 2λσ2

(i−1)/n

]−1/2
+ [1 + 2λgn (i)]−1/2 − 1, (35)

for all i = 1, . . . , n.

Proof. First, we derive some moment bounds of
∑4

j=1M
2
j (i). Without loss of generality, we can

set i = 1. For each j = 1, . . . , 4, define a stochastic process:

Mj,t :=
ˆ t

0
fj,u (1) dWu,

for t ∈ [0, 1/n]. By Ito’s formula for continuous semimartingales, it holds that for each j = 1, . . . , 4,

Mp
j,t =

ˆ t

0
pMp−1

j,s dMj,s +
1
2

ˆ t

0
p (p− 1)Mp−2

j,s fj,u (1) ds for any p ≥ 2.

Consequently, for any even integer p ≥ 2,

E
[
Mp

j,t

]
≤ p (p− 1)

2
gj

ˆ t

0
E
[
Mp−2

j,s

]
ds, (36)

where gj := sups∈(0,1/n] f
2
j,s (1), and the inequality holds since f2

j,s ≤ gj for almost every s ∈ [0, 1/n]

(with respect to the Lebesgue measure). Recall that in this paper the expectation E [·] means the

conditional expectation given the realized path of the volatility process σ and that the realized path of

σ is uniformly bounded over [0, 1]. Therefore, the property of the Brownian motion W guarantees that

the (conditional) expectation E
[
Mp

j,t

]
exists for any p ≥ 2. By the same token, we can guarantee that

if p = 2, then E
[
M2

j,u

]
≤ gju for each j = 1, . . . , 4. By using (36) repeatedly, we have

E
[
M4

j,v

]
≤ 4 · 3

2
gj

ˆ v

0
(gju) du =

4 · 3
2

(gjv)2

2
,

E
[
M6

j,w

]
≤ 6 · 5

2
gj

ˆ w

0

[
4 · 3

2
(gjv)2

2

]
dv =

6 · 5 · 4 · 3
22

(gjw)3

2 · 3
,

...

E
[
Mp

j,τ

]
≤ p!

2p/2 (p/2)!
(gjτ)p/2 for any even integer p ≥ 2,
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for each j = 1, . . . , 4, which leads to

E
[
Mp

j,1/n

]
≤ p!

2p/2 (p/2)!
g
p/2
j n−p/2 for any even integer p ≥ 2, (37)

for each j = 1, . . . , 4. Now, for any non-negative integer k,

E

[(∑4

j=1
M2

j,1/n

)k]
=

∑
0≤l1,l2,l3,l4≤k
l1+l2+l3+l4=k

(
k

l1, l2, l3, l4

)
E
[
M2l1

1,1/nM
2l2
2,1/nM

2l3
3,1/nM

2l4
4,1/n

]

≤
∑

0≤l1,l2,l3,l4≤k
l1+l2+l3+l4=k

(
k

l1, l2, l3, l4

)
E
[
M2k

1,1/n

]l1/k
E
[
M2k

2,1/n

]l2/k
E
[
M2k

3,1/n

]l3/k
E
[
M2k

J,1/n

]l4/k

=
(∑4

j=1
E
[
M2k

j,1/n

]1/k
)k
≤ (2k)!

2kk!

(∑4

j=1
gj

)k
n−k, (38)

where the equalities follow from the multinomial theorem with

(
k

l1, l2, l3, l4

)
:=

k!
l1!l2!l3!l4!

, the first

inequality holds by the generalized Hölder inequality (see, e.g., Finner, 1992), and the last inequality

holds by (37) with p = 2k. Note that Mj (1) =Mj,1/n, σ2
0 = g1, and gn (1) = g2 + g3 + g4, where gn (i)

is defined in (27). Then, by (38), we have

E

[(∑4

j=1
M2
j (i)

)k]
≤ (2k)!

2kk!

(
σ2

(i−1)/n + gn (i)
)k
n−k, (39)

for i = 1. By the same argument, we can also show that (39) holds for any i (= 1, . . . , n).

Proof of (i-a). Pick any λ ∈
[
0, λ̄
)
. It holds that for each i = 1, . . . , n,

E
[
exp

{
λn
∑4

j=1
M2
j (i)

}]
=
∞∑
k=0

(λn)k

k!
E

[(∑4

j=1
M2
j (i)

)k]

≤
∞∑
k=0

λk

k!
(2k)!
2kk!

(
σ2

(i−1)/n + gn (i)
)k

= E
[
exp

{
λ
(
σ2

(i−1)/n + gn (i)
)
Z2
}]

=
[
1− 2λ

(
σ2

(i−1)/n + gn (i)
)]−1/2

, (40)

where Z ∼ N (0, 1), the first equality holds by the Taylor expansion and the monotone convergence

theorem, the inequality holds by (39), and the last two equalities holds by the fact that if Y ∼ N (0, θ),

then

E
[
Y 2k

]
=

(2k)!
2kk!

θk for any non-negative integer k,

E
[
exp

{
ηY 2

}]
= [1− 2ηθ]−1/2 for any η < 1/2θ, (41)
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and that

1− 2λ
(
σ2

(i−1)/n + gn (i)
)
> 0 for all sufficiently large n uniformly over i. (42)

Note that (42) holds since λ ∈
[
0, λ̄
)
and (28). Now, (40) leads to the desired result (32).

Proof of (i-b). Pick any λ ∈
(
λ̄,∞

)
and any δ ∈ (0, 1). By the same argument to derive (39)

(without M2
1 (i)), we can see that

E

[(∑4

j=2
M2
j (i)

)k]
≤ (2k)!

2kk!
(gn (i))k n−k,

for all i = 1, . . . , n and all non-negative integer k. By a similar argument to derive (40),

E
[
exp

{
[(1− δ) /δ]λn

∑4

j=2
M2
j (i)

}]
=
∞∑
k=0

([(1− δ) /δ]λn)k

k!
E

[(∑4

j=2
M2
j (i)

)k]

≤
∞∑
k=0

([(1− δ) /δ]λ)k

k!
(2k)!
2kk!

(gn (i))k

= E
[
exp

{
[(1− δ) /δ]λgn (i)Z2

}]
= [1− 2 [(1− δ) /δ]λgn (i)]−1/2 ,

where the last two equalities follow from (41) and 1 − 2 [(1− δ) /δ]λgn (i) > 0 for all sufficiently large

n uniformly over i. Therefore, the conclusion (33) is obtained.

Proof of (ii). Pick any λ ∈ (−∞, 0). By an argument similar to the proof of part (i), we have

E
[
exp

{
λn
∑4

j=1
M2
j (i)

}]
= E

[
exp

{
λnM2

1 (i)
}

+ exp
{
λnM2

1 (i)
} [

exp
{
λn
∑4

j=2
M2
j (i)

}
− 1
]]

≥ E
[
exp

{
λnM2

1 (i)
}

+ exp
{
λn
∑4

j=2
M2
j (i)

}
− 1
]

≥ E
[
exp

{
λnM2

1 (i)
}
− exp

{
−λn

∑4

j=2
M2
j (i)

}
+ 1
]

≥
[
1− 2λσ2

(i−1)/n

]−1/2
− [1 + 2λgn (i)]−1/2 + 1, (43)

for each i = 1, . . . , n, which implies the desired result (34). The first inequality for (43) follows from

exp
{
λnM2

1 (i)
}
≤ 1 and exp

{
λn
∑4

j=2M
2
j (i)

}
− 1 ≤ 0, the second inequality follows from exp {x} +

exp {−x} ≥ 2 for x ∈ R, and the last inequality follows from M1 (i) ∼ N
(

0, n−1σ2
(i−1)/n

)
and

E
[
exp

{
|λ|n

∑4

j=2
M2
j (i)

}]
≤ [1− 2 |λ| gn (i)]−1/2 . (44)

Note that (44) holds by the same argument as in deriving (40). Similarly, we have

E
[
exp

{
λnM2

1 (i)− λn
∑4

j=2
M2
j (i)

}]
= E

[
exp

{
λnM2

1 (i)
}

+ exp
{
λnM2

1 (i)
} [

exp
{
−λn

∑4

j=2
M2
j (i)

}
− 1
]]

≤ E
[
exp

{
λnM2

1 (i)
}

+ exp
{
−λn

∑4

j=2
M2
j (i)

}
− 1
]

≤
[
1− 2λσ2

(i−1)/n

]−1/2
+ [1 + 2λgn (i)]−1/2 − 1,

which implies the desired result (35). Now, we have completed the proof.
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A.2 Proof of Theorem 1

Proof of the upper bound. First, we show the upper bound (3) for the case where the set F is

compact. Pick any compact interval [xL, xU ] ⊂ R with −∞ < xL ≤ xU < ∞ and a constant δ > 0.

Denote

Λ∗δ (x) := min
{

Λ∗ (x)− δ, δ−1
}

= min

 sup
λ∈(−∞,λ̄)

{λx− Λ (λ)} − δ, δ−1

 .

Pick any point x ∈ [xL, xU ]. From the continuity of Λ (λ) on
(
−∞, λ̄

)
, there exists a point λx ∈

(
−∞, λ̄

)
such that

λxx− Λ (λx) ≥ Λ∗δ (x) . (45)

Also there exists a neighborhood Bx := {y : |y − x| < rx} with center x and radius rx > 0 such that

δ ≥ rx |λx|. For each λ ∈ R,

Pr {RVn ∈ Bx} ≤ Pr
{
λ (RVn − x) ≥ inf

y∈Bx
λ (y − x)

}
≤ E [exp {λ (RVn − x)}] exp

{
− inf
y∈Bx

λ (y − x)
}
,

where the first inequality follows from the fact that the inequality |RVn − x| < rx implies λ (RVn − x) ≥
− |λ| rx = infy∈Bx {λ (y − x)}, and the second inequality follows from the Markov inequality. By setting

λ = λxn,

1
n

log Pr {RVn ∈ Bx} ≤ − inf
y∈Bx

λx (y − x)−
{
λxx−

1
n

Λn (λxn)
}
≤ δ −

{
λxx−

1
n

Λn (λxn)
}
, (46)

where the second inequality holds by the definition of Bx. Since [xL, xU ] is compact, there exists a finite

covering
{
Bxj

}J
j=1

such that [xL, xU ] ⊂ ∪Jj=1Bxj and we have

1
n

log Pr {RVn ∈ [xL, xU ]} ≤ 1
n

log
(
J max

1≤j≤J
Pr
{
RVn ∈ Bxj

})
≤ 1
n

log J + δ − min
1≤j≤J

{
λxjxj −

1
n

Λn
(
λxjn

)}
,

where the first inequality follows from the set inclusion relation, and the second inequality follows from

(46). Thus, Lemma A.1 implies

lim sup
n→∞

1
n

log Pr {RVn ∈ [xL, xU ]} ≤ δ − min
1≤j≤J

{
λxjxj − Λ

(
λxj
)}
≤ δ − inf

x∈[xL,xU ]
Λ∗δ (x) .

Then, by letting δ → 0, we obtain the upper bound for the compact case:

lim sup
n→∞

1
n

log Pr {RVn ∈ [xL, xU ]} ≤ − inf
x∈[xL,xU ]

Λ∗ (x) ,

where we used the fact that limδ→0 infx∈[xL,xU ] Λ∗δ (x) = infx∈[xL,xU ] Λ∗ (x) (see page 6 of Dembo and

Zeitouni, 1998).
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Next, we show the exponential tightness of the sequence of probability measures of RVn, i.e., for

each ε ∈ (0,∞), there exists a compact set Kε ⊂ R such that lim supn→∞
1
n log Pr {RVn ∈ Kε} ≤ −ε.

Since Λ (λ) < ∞ for any λ ∈
(
−∞, λ̄

)
and λ̄ > 0, there exist λ1 ∈ (0,∞) and λ2 ∈

(
0, λ̄
)
such that

Λ (−λ1) <∞ and Λ (λ2) <∞. For each r > 0, the Markov inequality and Lemma A.1 yield

lim
r→∞

lim sup
n→0

1
n

log Pr {RVn ≤ −r} ≤ lim
r→∞

(−λ1r) + Λ (−λ1) = −∞,

lim
r→∞

lim sup
n→0

1
n

log Pr {RVn ≥ r} ≤ lim
r→∞

(−λ2r) + Λ (λ2) = −∞,

which implies the exponential tightness of the sequence of measures of RVn.

Finally, combining the upper bound for the compact case and the exponential tightness of the

sequence of measures of RVn, Lemma 1.2.18 (a) in Dembo and Zeitouni (1998) implies that the upper

bound holds for any closed set.

Proof of the lower bound. We now show the lower bound (4). Define

Λ
(
λ̄
)

:= lim
λ↗λ̄

Λ (λ) .

If Λ
(
λ̄
)

=∞, Gärtner-Ellis’ theorem implies the conclusion. Thus, we hereafter suppose that Λ
(
λ̄
)
<

∞. Let

s (λ) :=
ˆ

[0,1]

σ2
u−

1− 2λσ2
u−
du for λ ∈

(
−∞, λ̄

)
, and x̄ := lim

λ↗λ̄
s (λ) .

Note that s (λ) = (d/dλ) Λ (λ) for any λ ∈
(
−∞, λ̄

)
, which can be shown by using the dominated

convergence theorem. If x̄ =∞, Gärtner-Ellis’ theorem implies the conclusion. Therefore, we focus on

the case where Λ
(
λ̄
)
<∞ and x̄ <∞. It is sufficient to show that for any open set G ⊂ R,

lim inf
n→∞

1
n

log Pr {RVn ∈ G ∩ (−∞, x̄)} ≥ − inf
x∈G∩(−∞,x̄)

Λ∗ (x) , (47)

lim inf
n→∞

1
n

log Pr {RVn ∈ G ∩ (x̄,∞)} ≥ − inf
x∈G∩(x̄,∞)

Λ∗ (x) . (48)

Proof of (47). Here, we follow the same steps of the proof of the Gärtner-Ellis theorem in Dembo

and Zeitouni (1998, pp. 49-51). Pick any y ∈ (0, x̄), and let By,δ be a neighborhood around y ∈ (0, x̄)

with radius δ > 0. We first show that

lim
δ→0

lim inf
n→0

1
n

log Pr {RVn ∈ By,δ} ≥ −Λ∗ (y) . (49)

Note that s (λ) is strictly increasing in λ ∈
(
−∞, λ̄

)
. Then, since y ∈ (0, x̄), limλ→−∞ s (λ) = 0

and limλ↗λ̄ s (λ) = x̄, there exists a unique solution λy ∈
(
−∞, λ̄

)
to the equation y = s (λ). Since

−∞ < λy < λ̄, it holds that Λn (λyn) < ∞ for all n large enough by Lemma A.1. Thus, letting µn be

the probability measure of RVn given the path of σ, we can define the probability measure µ̃n with the

Radon-Nikodym derivative
dµ̃n
dµn

(z) = exp {λynz − Λn (λyn)} .
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Observe that

lim
δ→0

lim inf
n→0

1
n

log Pr {RVn ∈ By,δ} = lim
δ→0

lim inf
n→∞

1
n

log
ˆ
z∈By,δ

exp {−λynz + Λn (λyn)} dµ̃n (z)

≥ −λyy + Λ (λy) + lim
δ→0

lim inf
n→∞

1
n

log
ˆ
z∈By,δ

exp {− |λy|nδ} dµ̃n (z)

≥ −Λ∗ (y) + lim
δ→0

lim inf
n→∞

1
n

log µ̃n (By,δ) ,

where the equality follows from the change of measures, the first inequality follows from Lemma A.1,

and the second inequality follows from the definition of Λ∗. Therefore, we can establish (49) if it holds

that

lim
δ→0

lim inf
n→∞

1
n

log µ̃n (By,δ) = 0, (50)

which we below show. Let Λ̃ (λ) := Λ (λ+ λy)− Λ (λy) for λ ∈
(
−∞, λ̄− λy

)
, and

Λ̃∗ (x) := sup
λ∈(−∞,λ̄−λy)

{
λx− Λ̃ (λ)

}
= Λ∗ (x)− λyx+ Λ (λy) , (51)

for x ∈ R. By the change of measures and Lemma A.1,

1
n

Λ̃n (λn) :=
1
n

log
ˆ

R
exp {λnz} dµ̃n (z) =

1
n

Λn ((λ+ λy)n)− 1
n

Λn (λyn)→ Λ̃ (λ) , (52)

for each λ ∈
(
−∞, λ̄− λy

)
. We here apply the same argument as for the proof of the upper bound to

µ̃n. Then, by (52), we have the large deviation probability of a closed set Bc
y,δ, the complement of By,δ,

bounded as

lim sup
n→0

1
n

log µ̃n(Bc
y,δ) ≤ − inf

x∈Bcy,δ
Λ̃∗ (x) for each δ > 0.

Note that Λ̃∗ is lower semicontinuous and level compact, which follows from the goodness of Λ∗ (i.e.,

Λ∗ is lower semicontiniuous and level compact). Then, by the (generalized) Weierstrass Theorem, there

exists a point x0 ∈ Bc
y,δ such that for each δ > 0,

inf
x∈Bcy,δ

Λ̃∗ (x) = Λ̃∗ (x0) = sup
λ∈(−∞,λ̄)

{λx0 − Λ (λ)} − {λyx0 − Λ (λy)} =: l0,

where the second equality follows from (51) and the definition of Λ∗ (x). Note that Λ (λ) is strictly

increasing and convex. Therefore, (a) if x0 ≤ 0, then λx0 − Λ (λ) is strictly decreasing in λ (and

limλ→−∞ Λ (λ) = −∞), thus l0 = ∞; (b) if 0 < x0, then there exists a unique solution λx0 (6= λy) to

x0 = s (λ) satisfying l0 = {λx0x0 − Λ (λx0)} − {λyx0 − Λ (λy)} > 0. Now, we have shown l0 > 0 and

thus µ̃n(By,δ)→ 1 for all δ > 0. This implies the desired result (50).

We are now prepared to prove (47). Pick any open set G ⊂ R. For each y ∈ G ∩ (−∞, x̄), we can

take a neighborhood By,δ ⊂ G for all δ small enough, and (49) implies

lim inf
n→∞

1
n

log Pr {RVn ∈ G ∩ (−∞, x̄)} ≥ −Λ∗ (y) ,
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for all y ∈ G ∩ (−∞, x̄). Therefore, the desired result (47) follows.

Proof of (48). Let i∗n := arg max1≤i≤n σ
2
(i−1)/n and RV −n := RVn−

(
∆n
i∗n
Y
)2

. Pick any y ∈ (x̄,∞)

and ε > 0. Since RV −n and
(

∆n
i∗n
Y
)2

are independent,

Pr {RVn > y} ≥ Pr
{
RV −n > x̄− ε

}
Pr
{(

∆n
i∗n
Y
)2

> y − x̄+ ε

}
, (53)

for all n ∈ N. Observe that

lim inf
n→∞

1
n

log Pr
{
RV −n > x̄− ε

}
≥ lim inf

n→∞

1
n

log Pr
{
RV −n ∈ (x̄− ε, x̄)

}
≥ − inf

x∈(x̄−ε,x̄)
Λ∗ (x) , (54)

where the second inequality follows from an argument analogous to the proof of (47) (replace RVn and

G with RV −n and (x̄− ε,∞), respectively). Note also that

lim inf
n→∞

1
n

log Pr
{(

∆n
i∗n
Y
)2

> y − x̄+ ε

}
≥ lim inf

n→∞

1
n

log Pr
{
n−1

(
max

1≤i≤n
σ2

(i−1)/n − gn (i∗n)
)
Z2 > y − x̄− ε

}
≥ −λ̄ (y − x̄+ ε) , (55)

where Z ∼ N (0, 1), the first inequality follows from (22) and
´ i∗n/n

(i∗n−1)/n dWu ∼ N
(
0, n−1

)
, and the

second inequality follows from Bercu, Gamboa and Rouault (1997, Lemma 6) with max1≤i≤n σ
2
(i−1)/n →

1/
(
2λ̄
)

= supu∈[0,1] σ
2
u− (by (i) the right continuity of σ, and (ii) the fact that the number of jumps

larger than δ is finite for any δ > 0, both of which follow from the càdlàg condition of σ) and gn (i∗n)→ 0

(by (28)). Combining (53)-(55) and letting ε→ 0,

lim inf
n→∞

1
n

log Pr {RVn > y} ≥ −Λ∗ (x̄)− λ̄ (y − x̄) = − inf
x∈(y,∞)

Λ∗ (x) ,

for all y ∈ (x̄,∞). By applying an argument analogous to that for Pr {RVn ∈ G ∩ (x̄,∞)}, we obtain

the desired result (48). The proof is now completed.

A.3 Proof of Theorem 2

In this case, since the set of exposed points is the whole real line R, it is sufficient to show that the

limiting cumulant generating function is lower semicontinuous and essentially smooth based on (a part

of) Gärtner-Ellis’ theorem (see, Dembo and Zeitouni, 1998, p. 44). Let Tn := mn

{
RVn − σ2

}
and

sn := m2
n/n. In particular, it is sufficient to show that for each λ ∈ R,

lim
n→∞

sn logE
[
exp

{
s−1
n λTn

}]
= λ2σ4. (56)
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First, we consider the case where λ > 0. Pick any λ ∈ (0,∞), and let gn (i) be as defined in (27) in the

proof of Lemma A.1. Then,

sn logE
[
exp

{
s−1
n λTn

}]
=
m2
n

n

n∑
i=1

logE
[
exp

{
1
mn

λn (∆n
i Y )2

}]
−mnλσ2

≤ −m
2
n

2n

n∑
i=1

log
[
1− 2

mn
λ
(
σ2

(i−1)/n + gn (i)
)]
−mnλσ2 +

mn

n

(
1 + n1/2

)
λC

= λmn

(
1
n

n∑
i=1

σ2
(i−1)/n − σ2

)
+ λ

mn

n

n∑
i=1

gn (i)

+ λ2 1
n

n∑
i=1

(
σ2

(i−1)/n + gn (i)
)2

[
1− 2

mn
λti,n

(
σ2

(i−1)/n + gn (i)
)]2 +

mn

n

(
1 + n1/2

)
λC, (57)

for some ti,n ∈ [0, 1] (i = 1, . . . , n) and all n large enough, where the inequality follows from Lemma

A.1 (i) and (25), and the equality in the third line follows from the Taylor expansion of log (1− w) =

−w − 1
2[1−tww]2

w2 for |w| < 1 with tw ∈ [0, 1]. From the first condition in (9), the first term on the

right-hand side of (57) converges to zero. From the second condition in (9) combined with (28), the

second term on the right-hand side of (57) converges to zero. From (28) and the boundedness of σ2
(i−1)/n,

it holds that max1≤i≤n
2
mn
λti,n

(
σ2

(i−1)/n + gn (i)
)
→ 0 and thus the third term on the right-hand side

of (57) converges to λ2σ4. From the condition m2
n/n→ 0, the fourth term on the right-hand side of (57)

converges to zero. Combining these results implies that the upper bound in (57) converges to λ2σ4. We

can also show that the lower bound of sn logE
[
exp

{
s−1
n λTn

}]
converges to λ2σ4 in the same manner.

For the case where λ < 0, (56) can be shown analogously.

A.4 Proof of Theorem 3

Since the other part of the proof is similar to that of Theorem 1, it is sufficient to show the following

counterpart of Lemma A.1.

Lemma A.3. Under Assumption’, it holds that for each λ ∈
(
−∞, λ̄D

)
, the limit of 1

nΛn (λn) (defined

in (18)) as n tends to ∞ is ΛD (λ) <∞, i.e.,

lim
n→∞

1
n

Λn (λn) = ΛD (λ) <∞, (58)

and for each λ ∈
(
λ̄D,∞

)
, the limit of 1

nΛn (λn) as n tends to ∞ is infinity, i.e.,

lim
n→∞

1
n

Λn (λn) =∞, (59)

where the threshold value λ̄D and the limit function ΛD are defined in (14) and (15), respectively.

To simplify the presentation, we provide a proof for the case of au = 0. Similarly to the proof of

Lemma A.1, under the boundedness assumption on a, we can show that the the presence of non-zero
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drift has no impact on the form of the rate function. Let

rn (i) := sup
u∈((i−1)/n,i/n]

∣∣σu− − σ(i−1)/n

∣∣ , (60)

L (i) := ρ

ˆ i/n

(i−1)/n
σu−dZu for each i ∈ {1, . . . , n} . (61)

Note that rn (i)→ 0 uniformly over i as n→∞. By using (12) (with au = 0), we can write

(∆n
i Y )2 =

(
1− ρ2

)(ˆ i/n

(i−1)/n
dWu

)2

σ2
(i−1)/n

+
(
1− ρ2

)(
r−1/2
n (i)

ˆ i/n

(i−1)/n

[
σu− − σ(i−1)/n

]
dWu

)(
r1/2
n (i)

ˆ i/n

(i−1)/n

[
σu− + σ(i−1)/n

]
dWu

)

+ 2
√

1− ρ2

(ˆ i/n

(i−1)/n
dWu

)
σ(i−1)/nL (i)

+ 2

(√
1− ρ2r−1/2

n (i)
ˆ i/n

(i−1)/n

[
σu− − σ(i−1)/n

]
dWu

)
r1/2
n (i)L (i) + L2 (i) . (62)

Now let

Nj (i) :=
ˆ i/n

(i−1)/n
f̃1,u (i) dWu, (63)

for j = 1, 2, 3, where f̃j,u (i) is a stochastic process on [(i− 1) /n, i/n] defined by

f̃1,u (i) :=
√

1− ρ2σ(i−1)/n, f̃2,u (i) := 2−1/2r−1/2
n (i)

√
1− ρ2

[
σu− − σ(i−1)/n

]
,

f̃3,u (i) := 2−1/2r1/2
n (i)

√
1− ρ2

[
σu− + σ(i−1)/n

]
.

By similar arguments to derive (22) and (24) (we apply the inequality AB ≤ A2/2 +B2/2 for A,B ∈ R
to the second and fourth terms in the right-hand side of (62)), we obtain

(∆n
i Y )2 ≤ N2

1 (i) + 2N1 (i)L (i) + 3N2
2 (i) +N2

3 (i) + [1 + rn (i)]L2 (i) , (64)

(∆n
i Y )2 ≥ N2

1 (i) + 2N1 (i)L (i)− 3N2
2 (i)−N2

3 (i) + [1− rn (i)]L2 (i) . (65)

Based on these upper and lower bounds, we can proceed in the same way as in the proof of Lemma

A.1, i.e., find upper and lower bounds of the normalized cumulant generating function of (∆n
i Y )2 and

then show that these bounds converge to the same limit for each λ. Note that given the path of σ, the

terms rn (i) and L (i) can be treated as given from the filtration condition in Assumption’. The main

difference from the proof of Lemma A.1 is that the upper and lower bounds of (∆n
i Y )2 include the term

N1 (i)L (i), which is normally distributed for each realized path of σ.

The following notation and results are used later. Let

g̃n (i) := 3 supu∈((i−1)/n,i/n]

∣∣∣f̃2,u (i)
∣∣∣2 + supu∈((i−1)/n,i/n]

∣∣∣f̃3,u (i)
∣∣∣2 . (66)
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>From the continuity of σ,

0 ≤ max
1≤i≤n

g̃n (i) ≤ C max
1≤i≤n

sup
u∈((i−1)/n,i/n]

∣∣σu− − σ(i−1)/n

∣∣→ 0 (as n→∞), (67)

for some C > 0. Since N1 (i) ∼ N
(

0,
(
1− ρ2

)
n−1σ2

(i−1)/n

)
, it holds that for each λ ∈

(
−∞, λ̄D

)
,

Gn (i, λ) := E
[
exp

{
λn
[
N2

1 (i) + 2N1 (i)L (i)
]}]

=
1√

1− 2λ (1− ρ2)σ2
(i−1)/n

exp

{
2λ2n

(
1− ρ2

)
σ2

(i−1)/nL
2 (i)

1− 2λ (1− ρ2)σ2
(i−1)/n

}
, (68)

for i = 1, . . . , n.

We now consider three cases to find the limit 1
nΛn (λn): (I-A) 0 ≤ λ < λ̄D; (I-B) λ̄D < λ <∞; and

(II) λ < 0.

Case (I-A): Pick any λ ∈
[
0, λ̄D

)
. Recall the form of n−1Λn (λn) in (18). By (64) and Lemma A.4

(i),

1
n

Λn (λn) ≤ 1
n

log

(
E

[
n∏
i=1

exp
{
λn
[
N2

1 (i) + 2N1 (i)L (i) + 3N2
2 (i) +N2

3 (i) + [1 + rn (i)]L2 (i)
]}])

=
1
n

n∑
i=1

logE
[
exp

{
λn
[
N2

1 (i) + 2N1 (i)L (i) + 3N2
2 (i) +N2

3 (i)
]}]

+ λ
n∑
i=1

[1 + rn (i)]L2 (i)

≤ 1
n

n∑
i=1

log
[
Gn (i, λ) + Cλg̃n (i) [1− 4lλg̃n (i)]−1/4l

]
+ λ[1 + max

1≤i≤n
rn (i)]

n∑
i=1

L2 (i)

→ ΛD (λ) , (69)

where the convergence follows from the uniform convergence of g̃n (i) and rn (i) (defined in (66) and in

(60), respectively), the uniform continuity of σ, and the following fact:
n∑
i=1

L2 (i)→ ρ2

ˆ 1

0
σ2
u−du = ρ2σ2, (70)

whose proof is provided below. For all n large enough, we also have

1
n

Λn (λn) ≥ 1
n

n∑
i=1

logE
[
exp

{
λn
[
N2

1 (i) + 2N1 (i)L (i)− 3N2
2 (i)−N2

3 (i)
]}]

+ λ
n∑
i=1

[1− rn (i)]L2 (i)

≥ 2
n

n∑
i=1

logE
[
exp

{
λn
[
N2

1 (i) +N1 (i)L (i)
]}]

− 1
n

n∑
i=1

logE
[
exp

{
λn
[
N2

1 (i) + 2N1 (i)L (i) + 3N2
2 (i) +N2

3 (i)
]}]

+ λ[1− max
1≤i≤n

rn (i)]L2 (i)

→ ΛD (λ) , (71)

where the first inequality holds by (65), the second inequality follows from the Hölder inequality for

negative exponents, and the convergence follows from the same argument to derive (69) combined with

(68) and Lemma A.4 (i). Therefore, (69) and (71) imply that n−1Λn (λn)→ ΛD (λ) for all λ ∈
[
0, λ̄D

)
.
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Case (I-B): Pick any λ ∈
(
λ̄D,∞

)
. Analogously to (31), we use (65) and the Hölder inequality for

negative exponents, and obtain

1
n

Λn (λn) ≥ 1
n

n∑
i=1

logE
[
exp

{
λn
[
N2

1 (i) + 2N1 (i)L (i)− 3N2
2 (i)−N2

3 (i)
]}]

≥ 1
n (1− δ)

n∑
i=1

logE
[
exp

{
λn (1− δ)

[
N2

1 (i)− 2N1 (i)L (i)
]}]

− δ

n (1− δ)

n∑
i=1

logE
[
exp

{
[(1− δ) /δ]λn

[
N2

2 (i) + 3N2
3 (i)

]}]
, (72)

for δ ∈
(
0, 1− λ̄D/λ

)
(i.e., (1− δ)λ > λ̄D). Since N1 (i) ∼ N

(
0, n−1

(
1− ρ2

)
σ2

(i−1)/n

)
and (1− δ)λ >

λ̄D, the first term in the right-hand side of (72) takes ∞ for all n large enough. For the second term,

1
n

n∑
i=1

logE
[
exp

{
[(1− δ) /δ]λn

[
3N2

2 (i) +N2
3 (i)

]}]
≤ − 1

2n

n∑
i=1

log (1− 2 [(1− δ) /δ]λg̃n (i))→ 0,

where the inequality follows from the same argument to derive Lemma A.2 (i-b). Therefore, we have
1
nΛn (λn)→∞ for all λ ∈

(
λ̄D,∞

)
.

Case (II): −∞ < λ < 0. The same argument to Case (II) of the proof of Lemma A.1 combined

with Lemma A.4 (ii) and (70) yields the conclusion. Thus we omit the proof for this case.

The proof is completed by showing (70). By the definition of L (i) in (61) and Ito’s lemma, we have

n∑
i=1

L2 (i) = ρ2
n∑
i=1

(´ i
(i−1)/nσu−dZu

)2
= ρ2

n∑
i=1

(´ i
(i−1)/nσ

2
u−du+ ηn (i)

)
= ρ2σ2 + ρ2

n∑
i=1

ηn (i) , (73)

where

ηn (i) =:
´ i

(i−1)/n

(´ s
(i−1)/nσu−dZu

)
σs−dZs. (74)

Let Eσ [·] be the expectation with respect to σ (and Z, where we note the filtration condition in

Assumption’). The uniform moment bound of ηn (i) is obtained as

Eσ

[
ηn (i)2

]1/2
= Eσ

[´ i
(i−1)/n

(´ s
(i−1)/nσu−dZu

)2
σ2
s−ds

]1/2

≤ Eσ
[(

maxs∈[(i−1)/n.i/n]

∣∣∣´ s(i−1)/nσu−dZu

∣∣∣)2 ´ i
(i−1)/nσ

2
s−ds

]1/2

≤ Eσ
[∣∣∣maxs∈[(i−1)/n.i/n]

´ s
(i−1)/nσu−dZu

∣∣∣4]1/2

+ Eσ

[∣∣∣´ i(i−1)/nσ
2
s−ds

∣∣∣]1/2

≤ CEσ
[∣∣∣´ i(i−1)/nσ

2
u−du

∣∣∣2]1/2

≤ CEσ
[
n−1
´ i

(i−1)/nσ
4
u−du

]1/2
≤ C̃n−1, (75)

for some C > 0, where C̃ := C
√

supu∈[0,1]Eσ
[
σ4
u−
]
(note that C̃ < ∞ by Assumption’), the equal-

ity follows from the Ito isometry, the second inequality holds by the Minkowski inequality, the third
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inequality follows from the Burkholder-Davis-Gundy inequality, and the fourth inequality follows from

the Jensen inequality. Thus, for each c > 0, it holds that

Prσ {|
∑n

i=1ηn (i)| > c} ≤ c−2Eσ

[
|
∑n

i=1ηn (i)|2
]

= c−2Eσ
[∑n

i=1η
2
n (i)

]
≤ c−2C̃n−1, (76)

where Prσ is the probability with respect to σ (and Z), the first inequality follows from the Markov

inequality, the equality follows from the martingale property of ηn (i), and the second inequality fol-

lows from (75). Since (76) holds for any constant c > 0, the Borel-Cantelli lemma implies that∑n
i=1 ηn (i)→ 0 almost surely (with respect to the probability measure of σ and Z). In other words, we

have
∑n

i=1 ηn (i) → 0 for each realized path of σ, which, together with (73), implies the desired result

(70).

Lemma A.4. Suppose that Assumption’ holds. For i = 1, . . . , n, let Nj (i) be a random variable defined

in (61) (j = 1, 2, 3), L (i) and g̃n (i) be variables defined in (63) and (66), respectively, and Gn (i, λ) be

a function of λ ∈
(
−∞, λ̄D

)
defined in (68).

(i) For each λ ∈
[
0, λ̄D

)
, there exist some constant C > 0 and some positive integer l (both C and l are

independent of i, λ, and n) such that for all n large enough,

E
[
exp

{
λn
[
N2

1 (i) + 2N1 (i)L (i) + 3N2
2 (i) +N2

3 (i)
]}]
≤ Gn (i, λ) + Cλg̃n (i) [1− 4lλg̃n (i)]−1/4l ,

(77)

for all i = 1, . . . , n.

(ii) For each λ ∈ (−∞, 0), it holds that for all n large enough,

E
[
exp

{
λn
[
N2

1 (i) + 2N1 (i)L (i) + 3N2
2 (i) +N2

3 (i)
]}]
≥ Gn (i, λ)− [1 + 2λg̃n (i)]−1/2 + 1, (78)

E
[
exp

{
λn
[
N2

1 (i) + 2N1 (i)L (i)− 3N2
2 (i)−N2

3 (i)
]}]
≤ Gn (i, λ) + [1 + 2λg̃n (i)]−1/2 − 1, (79)

for all i = 1, . . . , n.

Proof of (i). Pick any λ ∈
(
0, λ̄D

)
. Observe that

E
[
exp

{
λn
[
N2

1 (i) + 2N1 (i)L (i) + 3N2
2 (i) +N2

3 (i)
]}]

= Gn (i, λ) + E
[[

exp
{
λn
[
N2

2 (i) + 3N2
3 (i)

]}
− 1
]

exp
{
λn
[
N2

1 (i) + 2N1 (i)L (i)
]}]

≤ Gn (i, λ) + E
[∣∣exp

{[
λnN2

2 (i) + 3N2
3 (i)

]}
− 1
∣∣ p
p−1

] p−1
p
E
[
exp

{
λnp

[
N2

1 (i) + 2N1 (i)L (i)
]}]1/p

,

(80)

where the inequality follows from the Hölder inequality with p ∈
(
1, λ̄D/λ

)
. Now, we derive an upper

bound for the second term on the right hand side of (80). First, pick any integer l ≥ p
p−1 . For all n
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large enough, it holds that

E
[∣∣exp

{
λn
[
3N2

2 (i) +N2
3 (i)

]}
− 1
∣∣ p
p−1

] p−1
p ≤ E

[∣∣exp
{
λn
[
3N2

2 (i) +N2
3 (i)

]}
− 1
∣∣l]1/l

≤ E
[∣∣λn [3N2

2 (i) +N2
3 (i)

]
exp

{
λn
[
3N2

2 (i) +N2
3 (i)

]}∣∣l]1/l

≤ λn
{
E
[∣∣3N2

2 (i) +N2
3 (i)

∣∣2l]E [exp
{

2lλn
[
3N2

2 (i) +N2
3 (i)

]}]}1/2l

≤
{

(4l)!
24l (2l)!

}1/2l

λg̃n (i) [1− 4lλg̃n (i)]−1/4l , (81)

for any i = 1, . . . , n, where the second inequality follow from the inequality: exp (x)− 1 ≤ x exp (x) for

any x ≥ 0, the third inequality follows from the Cauchy-Schwarz inequality, and the last inequality uses

the following facts: for all n large enough,

4lλ max
1≤i≤n

g̃n (i) < 1,

E
[∣∣3N2

2 (i) +N2
3 (i)

∣∣2l] ≤ { (4l)!
24l (2l)!

}(
g̃n (i)n−1

)2l
,

E
[
exp

{
2lλn

[
3N2

2 (i) +N2
3 (i)

]}]
≤ [1− 4lλg̃n (i)]−1/2 ,

for any i = 1, . . . , n. The first result follows from (67). The second result follows from the same argument

to derive (39). The third result follows from the same argument as for (i-a) of Lemma A.2. Second,

from the same argument for (68) and the uniform boundedness of σ and Li, there exists some constant

C̃ > 0 such that

lim sup
n→∞

max
1≤i≤n

E
[
exp

{
λnp

[
N2

1 (i) + 2N1 (i)L (i)
]}]

< C̃. (82)

Combining (80), (81), and (82), we obtain (77) with C =
{

(4l)!
24l(2l)!

}1/2l
C̃.

Proof of (ii). Since we can use analogous arguments to those used in the proofs for Part (i) of this

lemma and Lemma A.2 (ii), we only sketch the proof. Pick any λ ∈ (−∞, 0). Analogously to (80), it

holds that for any p > 1,

E
[
exp

{
λn
[
N2

1 (i) + 2N1 (i)L (i) +N2
2 (i) + 3N2

3 (i)
]}]

≥ Gn (i, λ)− E
[∣∣exp

{
λn
[
N2

2 (i) + 3N2
3 (i)

]}
− 1
∣∣ p
p−1

] p−1
p
E
[
exp

{
λnp

[
N2

1 (i) + 2N1 (i)L (i)
]}]1/p

.

By using the same arguments as for (81) and (82), we can show that the second term on the right-hand

side converges to zero uniformly over i. Now, (68) implies the desired result (78). The proof of (79)

follows from the same argument and is omitted.

A.5 Proof of Theorem 4

Since the basic idea is similar to the previous proofs, we omit some details and outline only main points.

By the same argument to the proof of Theorem 2, it is sufficient to show that for each λ ∈ R,

lim
n→∞

sn logE
[
exp

{
s−1
n λTn

}]
= λ2

(
1− ρ4

)
σ4, (83)
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where Tn := mn

{
RVn − σ2

}
and sn := m2

n/n. Below we only consider the case of λ ≥ 0 and show that

the limit of an upper bound of sn logE
[
exp

{
s−1
n λTn

}]
is λ2

(
1− ρ4

)
σ4. In the same manner, we can

show that the limit of a lower bound is also λ2
(
1− ρ4

)
σ4. The proof for the case of λ < 0 is similar.

Pick any λ ∈ [0,∞). By using (64),

sn logE
[
exp

{
s−1
n λTn

}]
≤ An +Bn, (84)

where

An :=
m2
n

n

n∑
i=1

logE
[
exp

{
λn

mn

[
N2

1 (i) + 2N1 (i)L (i) + 3N2
2 (i) +N2

3 (i)
]}]

,

Bn := λmn

n∑
i=1

[1 + rn (i)]L2 (i)− λmnσ2.

First, we consider An. Recall the definitions of Gn (i, λ) in (68) and g̃n (i) in (66). Observe that

An ≤
m2
n

n

n∑
i=1

log
[
Gn

(
i,

λ

mn

)
+ 2Cλ

g̃n (i)
mn

]

=
m2
n

n

n∑
i=1

{
logGn

(
i,

λ

mn

)
+ 2Cλ

g̃n (i)
mn

[
Gn

(
i,

λ

mn

)
+ 2Cλ

g̃n (i)
mn

ξn,i

]−1
}

=
m2
n

n

n∑
i=1

logGn

(
i,

λ

mn

)
+O (1)

{
λ
mn

n

n∑
i=1

sup
u∈((i−1)/n,i/n]

∣∣σu− − σ(i−1)/n

∣∣} , (85)

for some ξn,i ∈ [0, 1], where the inequality holds by Lemma A.4 (i) and max1≤i≤n

[
1− 4l

(
λ
mn

)
g̃n (i)

]−1/4l
≤

2 (the positive integer l appears in (77)) for all n large enough (since max1≤i≤n g̃n (i) /mn → 0), the

first equality follows from the mean value theorem, and the second equality follows from the definition

of g̃n (i) given in (66) and the result

max
1≤i≤n

[
Gn

(
i,

λ

mn

)
+ 2Cλ

g̃n (i)
mn

ξn,i

]−1

= O (1) . (86)

The result (86) can be shown by noting that min1≤i≤nGn

(
i, λ
mn

)
≥ 1/2 for all n large enough and the

assumptions mn → ∞ and n/m2
n → 0. We now consider the first term on the right-hand side of (85).

Recall the definition of L (i) in (61) and note that an expansion yields L2 (i) =
´ i

(i−1)/nσ
2
u−du+ ηn (i),

where ηn (i) is defined in (74). Thus, we have

m2
n

n

n∑
i=1

logGn

(
i,

λ

mn

)
= −m

2
n

2n

n∑
i=1

log
[
1− 2

λ

mn

(
1− ρ2

)
σ2

(i−1)/n

]

+ 2λ2
(
1− ρ2

)
ρ2

n∑
i=1

σ2
(i−1)/n

´ i
(i−1)/nσ

2
u−du+ ηn (i)σ2

(i−1)/n

1− 2 λ
mn

(1− ρ2)σ2
(i−1)/n

. (87)

By applying the Taylor expansion to the first term on the right-hand side of (87) and using the conditions

on mn and σ (in the same manner as in (57)), we have

−m
2
n

2n

n∑
i=1

log
[
1− 2λ

mn

(
1− ρ2

)
σ2

(i−1)/n

]
= λ

(
1− ρ2

) mn

n

n∑
i=1

σ2
(i−1)/n − λ

2
(
1− ρ2

)2
σ4 {1 + o (1)} .
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On the other hand, by using the boundedness and continuity properties of σ and a similar argument for

(70), we can see that the second term on the right-hand side of (87) is written as 2λ2
(
1− ρ2

)
ρ2σ4 {1 + o (1)}.

Combining these results,

m2
n

n

n∑
i=1

logGn

(
i,

λ

mn

)
= λ

(
1− ρ2

) mn

n

n∑
i=1

σ2
(i−1)/n + λ2

(
1− ρ4

)
σ4 + o (1) . (88)

Next, we consider Bn. Since L2 (i) =
´ i

(i−1)/nσ
2
u−du+ ηn (i),

Bn = λρ2mn

[∑n

i=1

´ i
(i−1)/nσ

2
u−du− σ2

]
︸ ︷︷ ︸

=0

− λ
(
1− ρ2

)
mnσ2 + λρ2mn

n∑
i=1

ηn (i)

+ λmn

n∑
i=1

rn (i) ρ2
[´ i

(i−1)/nσ
2
u−du+ ηn (i)

]
,

= −λ
(
1− ρ2

)
mnσ2 +O (1)

{
λ
mn

n

n∑
i=1

sup
u∈((i−1)/n,i/n]

∣∣σu− − σ(i−1)/n

∣∣} ,
+ λρ2mn

n∑
i=1

ηn (i) [1 + rn (i)] , (89)

where the second equality follows from
´ i

(i−1)/nσ
2
u−du = O

(
n−1

)
and the definition of rn (i) in (60).

Now, putting (84), (85), (88), and (89) together, we can write

sn logE
[
exp

{
s−1
n λTn

}]
≤ λ

(
1− ρ2

) mn

n

n∑
i=1

(
σ2

(i−1)/n − σ2
)

+ λ2
(
1− ρ4

)
σ4

+O (1)

{
λ
mn

n

n∑
i=1

sup
u∈((i−1)/n,i/n]

∣∣σu− − σ(i−1)/n

∣∣}

+ λρ2mn

n∑
i=1

ηn (i) [1 + rn (i)] + o (1) . (90)

Finally, we show that if we m2
n/n→ 0,

mn

n∑
i=1

ηn (i)→ 0 and mn

n∑
i=1

rn (i) ηn (i)→ 0, (91)

which implies that the fourth term on the right hand side of (90) converges to zero. Then we can see

that the right hand side of (90) converges to λ2
(
1− ρ4

)
σ4 under the conditions in (9) as desired. We

only consider the former convergence result in (91), since the latter can be shown analogously. Observe

that for any positive integers m and n with m < n,

Eσ

[
max
m<k≤n

∣∣∣∣∑k

i=m+1
ηn (i)

∣∣∣∣2
]
≤ C1

∑n

i=m+1
Eσ

[´ i
(i−1)/n

(´ s
(i−1)/nσu−dZu

)2
σ2
s−ds

]
≤ C1C̃

2 (n−m)n−2, (92)
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for some C1 > 0 and C̃ > 0, where Eσ stands for the expectation with respect to σ (and Z), the first

inequality holds by the Burkholder-Davis-Gundy inequality (recall the definition of ηn (i) in (74)), and

the second inequality uses the result in (75). Similarly, we have

Eσ

[∣∣∣∑m

i=1
ηn (i)

∣∣∣2] = Eσ

[∑m

i=1
η2
n (i)

]
≤ C̃2mn−2 ≤ C̃2n−1. (93)

Now, let Sn := n1/2
∑n

i=1 ηn (i). >From (92) and (93),

Eσ

[
max
m<k≤n

|Sk − Sm|2
]

= Eσ

[
max
m<k≤n

∣∣∣∣k1/2
∑k

i=m+1
ηn (i) +

(
k1/2 −m1/2

)∑m

i=1
ηn (i)

∣∣∣∣2
]

≤ 2nEσ

[
max
m<k≤n

∣∣∣∣∑k

i=m+1
ηn (i)

∣∣∣∣2
]

+ 2
(
n1/2 −m1/2

)2
Eσ

[∣∣∣∑m

i=1
ηn (i)

∣∣∣2]
≤ Cn−1

[
(n−m) +

(
n1/2 −m1/2

)2
]
≤ 3Cn−1 (n−m) ,

where the first inequality uses the inequality: (a+ b)2 ≤ 2
(
a2 + b2

)
for a, b ∈ R, the second inequality

follows from (92) and (93) with C = 2 (C1 + 1) C̃2, and the last inequality holds since
(
n1/2 −m1/2

)2 ≤
2 (n−m). Defining dn (i) :=

√
3Cn−1 for i = 1, . . . , n (an array which does not vary with i), we can

write the above inequality as

Eσ

[
max
m<k≤n

|Sk − Sm|2
]
<

n∑
i=m+1

d2
n (i) with lim

n→∞

n∑
i=1

d2
n (i) = 3C <∞. (94)

By the so-called Cauchy criterion (see, e.g., Corollary 20.2 of Davidson, 1994) and the Markov inequality,

the result (94) implies the existence of a random variable S such that Sn = n1/2
∑n

i=1 ηn (i)→ S almost

surely (with respect to the probability measure of σ and Z). Combining this convergence with the

condition m2
n/n→ 0, we have

mn

n∑
i=1

ηn (i) =
mn

n1/2
Sn → 0,

as desired. Therefore, the limit of an upper bound of sn logE
[
exp

{
s−1
n λTn

}]
is given by λ2

(
1− ρ4

)
σ4.
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