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Abstract

This paper studies robustness of bootstrap inference methods for instrumental variable regression
models. In particular, we compare the uniform weight and implied probability bootstrap approxima-
tions for parameter hypothesis test statistics by applying the breakdown point theory, which focuses
on behaviors of the bootstrap quantiles when outliers take arbitrarily large values. The implied
probabilities are derived from an information theoretic projection from the empirical distribution to
a set of distributions satisfying orthogonality conditions for instruments. Our breakdown point anal-
ysis considers separately the effects of outliers in dependent variables, endogenous regressors, and
instruments, and clarifies the situations where the implied probability bootstrap can be more robust
than the uniform weight bootstrap against outliers. Effects of tail trimming introduced by Hill and
Renault (2010) are also analyzed. Several simulation studies illustrate our theoretical findings.

1 Introduction

Instrumental variable (IV) regression is one of the most widely used methods in empirical economic

analysis. By introducing instruments which are orthogonal to a structural error component in a regres-

sion model and utilizing this orthogonality as moment conditions for slope parameters of interest, we

can consistently estimate the slope parameters for endogenous regressors. There are numerous empiri-

cal examples and theoretical studies on IV regression. To analyze its theoretical properties, in modern

econometrics it is common to invoke the framework of the generalized method of moments (GMM),

which provides a unified approach for statistical inference in econometric models that are specified by
∗We would like to thank the seminar participants at the Info-Metrics conference 2010 at American University, Kyoto,
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some moment conditions (see, e.g., Hall, 2005, for a review on the GMM as well as IV regression). How-

ever, recent research indicates that there are considerable problems with the conventional IV regression

technique particularly in its finite sample performance, and that approximations based on the asymp-

totic theory can yield poor results (see, e.g., the special issue of the Journal of Business & Economic

Statistics, vol. 14, and Stock, Wright and Yogo, 2002).

A common way to refine the approximations for the distributions of the IV regression estimator and

related test statistics is to employ a bootstrap method. In the IV regression context, there are at least two

approaches to conduct bootstrap approximation: the uniform weight bootstrap and implied probability

bootstrap. The uniform weight bootstrap draws resamples from the original sample with equal weights

and uses quantiles of the resampled statistics to approximate the distribution of the original statistic

of interest (see Efron and Tibshirani, 1993, for example). When the number of instruments exceeds

the number of parameters (called over-identification), it is reasonable to impose the over-identified

moment conditions to bootstrap resamples. Hall and Horowitz (1996) suggested to use the uniform

weight bootstrap with recentered moment conditions and established higher-order refinements of their

bootstrap inference over the first-order asymptotic approximation. On the other hand, the implied

probability bootstrap, proposed by Brown and Newey (2002), draws resamples with unequal weights

defined by the so-called implied probabilities from the moment conditions, and uses quantiles of the

resampled statistics based on the moment conditions without recentering (see also Hall and Presnell,

1999).

In order to find reasonable bootstrap weights which satisfy moment conditions of interest (i.e.,

orthogonality of instruments in this paper), information theoretic argument plays a crucial role (see,

Cover and Thomas, 1991, and Golan, Judge and Miller, 1996). In particular, we focus on an information

projection from the empirical distribution (or equal weights on data points) to a set of distributions sat-

isfying the moment conditions, and utilize the projection, called the implied probabilities in this paper,

as weights for bootstrapping. These implied probabilities can be computed based on the Boltzmann-

Shannon entropy yielding the exponential tilting weights (Kitamura and Stutzer, 1997, and Imbens,

Spady and Johnson, 1998), Burg entropy yielding the empirical likelihood weights (Owen, 1988), Fisher

information yielding the GMM-type weights (Back and Brown, 1993), or their variants (Smith, 1997,

and Newey and Smith, 2004).

Brown and Newey (2002) argued that the implied probability bootstrap provides a higher-order

refinement over the first-order asymptotic approximation under certain regularity conditions as well as

the uniform weight bootstrap (with recentering). An important feature of implied probabilities empha-

sized in the literature is that they provide semiparametrically efficient estimators for the distribution

function and its moments under the moment conditions (Back and Brown, 1993, and Brown and Newey,

1998). Antoine, Bonnal and Renault (2007) employed implied probabilities to construct an asymp-

totically efficient estimator for parameters in the moment conditions. Recently, Camponovo and Otsu

(2010) introduced an alternative viewpoint based on robustness analysis against outliers to compare

2



these bootstrap approaches. They extended the breakdown point theory for bootstrap quantiles (Singh,

1998) to the over-identified GMM setting and investigated robustness properties of the implied prob-

ability bootstrap. In particular, they analyzed behaviors of bootstrap quantiles of the uniform weight

and implied probability bootstraps (using Back and Brown’s, 1993, weight) when outliers take arbitrary

large values, and compared the breakdown points for these bootstrap quantiles.

The purpose of this paper is to refine the breakdown point analysis of Camponovo and Otsu (2010)

by focusing on the IV regression models. In contrast to Camponovo and Otsu (2010), who focused on

developing a basic framework for breakdown point analysis and considered somewhat artificial examples

such as the trimmed mean with prior information, this paper focuses on the IV regression which is one

of the most popular econometrics models, and studies separately the effects of outliers in dependent

variables, endogenous regressors, and instruments. As test statistics of interest to be resampled by

bootstrapping, this paper considers commonly used statistics, such as the t-statistic based on the two-

stage least squares and two-step GMM estimators, and their non-studentized versions. Therefore, this

paper clarifies when researchers using IV regression should seriously think about adopting the implied

probability bootstrap for their inference in practice. Another important feature of this paper is that in

the IV regression setting, there are many cases where the conventional statistics have zero breakdown

point (i.e., divergence of a single outlier implies divergence of the statistic), and the breakdown point

analysis yields rather striking difference for the different bootstrap approaches. For example, consider

the case where divergence of an outlier implies divergence of the t-value in a just-identified setting (one

endogenous regressor and one instrument) with the sample size 1, 000. As shown in Table 2 below,

divergence of a single outlier implies divergence of more than 63% of the uniform weight bootstrap

resamples of the t-values. On the other hand, divergence of a single outlier implies divergence of

around 1% of the implied probability bootstrap resamples of the t-values. In addition to the breakdown

point analysis to the conventional statistics, we also study the effect of tail trimming proposed by Hill

and Renault (2010) to the bootstrap inference and provide a striking simulation evidence to show the

difference of the two bootstrap approaches.

There is vast literature on the breakdown point theory in robust statistics (see Hampel, 1971,

and Donoho and Huber, 1983, for general definitions of breakdown points, and Singh, 1998, Salibian-

Barrera, Van Aelst and Willems, 2007, and Camponovo, Scaillet and Trojani, 2010a, for the use of the

breakdown point theory in bootstrap contexts). On the other hand, the literature of robustness study in

the IV regression or GMM context is relatively thin and is currently under development. Ronchetti and

Trojani (2001) extended robust estimation methods for (just-identified) estimating equations to the over-

identified GMM setup. Gagliardini, Trojani and Urga (2005) proposed a robust GMM test for structural

breaks. Hill and Renault (2010) proposed a GMM estimator with asymptotically vanishing tail trimming

for robust estimation of dynamic moment condition models. Kitamura, Otsu and Evdokimov (2010) and

Kitamura and Otsu (2010) studied local robustness against perturbations controlled by the Hellinger

distance for point estimation and hypothesis testing, respectively, in moment condition models. Our
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breakdown point analysis studies global robustness of bootstrap methods in IV regression models when

outliers take arbitrarily large values.

The rest of the paper is organized as follows. Section 2 studies a just-identified case, which can be

a benchmark for our breakdown point analysis. Section 3 generalizes the analysis in Section 2 to an

over-identified model. Section 4 discusses the breakdown point analysis for test statistics based on tail

trimming, and remarks on extensions to the over-identifying restriction test, high-dimensional moment

functions, and time series data. Section 5 illustrates the theoretical results by simulations. Section 6

concludes.

2 Just-identified case: a benchmark

2.1 Setup

Let {Yi, Xi, Zi}ni=1 be a random sample of size n from (Y,X,Z) ∈ R × Rp × Rk, where k ≥ p. We

consider the linear model

Yi = X ′iθ0 + Ui,

for i = 1, . . . , n, where θ0 ∈ Rp is a vector of unknown parameters and Ui ∈ R is a zero-mean error

term. We suspect that the regressors Xi have endogeneity (i.e., E [XiUi] 6= 0) and the OLS estimator

cannot consistently estimate the parameter of interest θ0. In such a situation, it is common to introduce

instrumental variables Zi, which are orthogonal to the error term Ui. Based on the orthogonality, our

estimation problem for θ0 reduces to the one from the moment condition model

E [g (Wi, θ0)] = E
[
Zi
(
Yi −X ′iθ0

)]
= 0, (1)

whereWi = (Yi, X
′
i, Z
′
i)
′. When the number of instruments equals the number of regressors (i.e., k = p),

the model is called just-identified. When the number of instruments exceeds the number of regressors

(i.e., k > p), the model is called over-identified. To obtain an intuition of our breakdown point analysis,

this section focuses on the case of k = p = 1, i.e., the model is just-identified and there is only one

regressor.

Suppose we wish to test the null hypothesis H0 : θ0 = c for some given c ∈ R against the two-sided

alternative H1 : θ0 6= c.1 It is common to evaluate the difference between a point estimator of θ0 and the

hypothetical value c. Since we assume k = p = 1, we can apply the conventional method of moments

to the condition in (1) and define the estimator as

θ̂ =

∑n
i=1 ZiYi∑n
i=1 ZiXi

.

1For simplicity this paper focuses on two-sided testing. Our breakdown point analysis can be easily extended to

one-sided testing by analyzing divergence properties of test statistics to positive and negative infinity separately.
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Based on this estimator, we study robustness of two test statistics for H0:

Tn =
√
n
(
θ̂ − c

)
(non-studentized statistic)

tn =
θ̂ − c
σ̂

(studentized statistic) (2)

where σ̂ =

√(
1
n

∑n
i=1 Û

2
i

) (∑n
i=1 Z

2
i

)
/ (
∑n

i=1 ZiXi)
2 is the standard error of θ̂ under homoskedasticity,

and Ûi = Yi−Xiθ̂ is the residual.2 In practice, we commonly use the studentized statistic tn, which con-

verges to the standard normal distribution under the null hypothesis with certain regularity conditions.

We also consider the non-studentized statistic Tn to analyze the effect of studentization to robustness.

Indeed, the statistics Tn and tn show different divergence properties against different types of outliers.

To implement hypothesis testing based on the above test statistics, we need to find approximations to

the distributions of the test statistics under the null hypothesisH0, which in turn give us critical vales for

the tests. One way to approximate these distributions is to apply the uniform weight bootstrap approach.

The uniform weight bootstrap draws many bootstrap resamples from the observations {Wi}ni=1 with the

uniform weight 1/n, and approximates the distributions of Tn and tn by the resampled statistics.

Another way to apply the bootstrap approach in this context is to impose the moment condition

E [g (Wi, c)] = 0 implied from the null hypothesis H0, and draw bootstrap resamples using the implied

probabilities (Back and Brown, 1993),

πi =
1

n
− 1

n

(g (Wi, c)− ḡ) ḡ
1
n

∑n
i=1 g (Wi, c)

2 , (3)

for i = 1, . . . , n, where ḡ = 1
n

∑n
i=1 g (Wi, c) (note: g is assumed to be scalar-valued in this section).3

The second term in (3) can be interpreted as a penalty term for the deviation from H0. If |g (Wi, c)|
becomes larger, then the second term tends to be negative (because (g (Wi, c)− ḡ) and ḡ tends to take

the same sign) and the weight πi tends to be smaller than the uniform weight 1/n. Intuitively, if outliers

in the sample yield large values of |g (Wi, c)|, then the implied probability bootstrap tends to draw those

outliers less frequently and is expected to show different robustness properties than the uniform weight

bootstrap. The next subsection formalizes this intuitive argument by using the breakdown point theory.4

2The results in this section do not change even if we use the heteroskedasticity robust standard error σ̂ =√(∑n
i=1 Û

2
i Z

2
i

)
/
(∑n

i=1 ZiXi

)2.
3Our breakdown point analysis assumes that all implied probabilities are non-negative. This assumption is typically

justified when the sample size is sufficiently large. However, in finite samples, it is possible to have negative implied

probabilities. In the simulation study below, we adopt a shrinkage-type modification suggested by Antoine, Bonnal and

Renault (2007) to avoid negative implied probabilities.
4For the breakdown point analysis below, we focus on Back and Brown’s (1993) implied probability in (3) because of its

simplicity for analysis. Back and Brown’s (1993) implied probability can be interpreted as an approximation to the Fisher

information projection from the empirical distribution to the space of distributions satisfying the moment conditions. It

is important to extend our analysis to other implied probabilities using different information projections based on the

Boltzmann-Shannon entropy yielding the exponential tilting weights (Kitamura and Stutzer, 1997, and Imbens, Spady

and Johnson, 1998) and Burg entropy yielding the empirical likelihood weights (Owen, 1988) for example.
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2.2 Breakdown point analysis

Based on the above setup, we now introduce the breakdown point analysis. The first step is to define

outliers in our context. Since the observations are multivariate vectors, we define the outliers based

on the Euclidean norms. Let
∥∥W(1)

∥∥ ≤ · · · ≤ ∥∥W(n)

∥∥ be the ordered sample by the Euclidean norm

‖·‖. Hereafter we treat W(n) having the largest Euclidean norm as an outlier and consider the limiting

situation where
(∥∥W(1)

∥∥ · · · ∥∥W(n−1)

∥∥) are all finite but
∥∥W(n)

∥∥ → +∞.5 Note that the sample size n

is held fixed. Thus the breakdown point analysis is different from the conventional asymptotic analysis

sending n to infinity. Since the outlier W(n) contains three elements
(
Y(n), X(n), Z(n)

)
in the case of

k = p = 1, we consider seven cases that imply
∥∥W(n)

∥∥→ +∞. Those cases are summarized in Table 1

below.

Table 1: Cases such that
∥∥W(n)

∥∥→ +∞

Case Diverge Bounded

1 Z X, Y

2 X Y, Z

3 Y X, Z

4 X, Z Y, X
Z

5 X, Y Z, X
Y

6 Y, Z X, Z
Y

7 X, Y, Z Z
Y ,

X
Y

For the sake of brevity, in Table 1 (and also in Tables 3, 4, and 5 below) X, Y , and Z mean

(the realizations of)
∣∣X(n)

∣∣, ∣∣Y(n)

∣∣, and ∣∣Z(n)

∣∣, respectively. For example, the second row for Case 1

means that
∣∣Z(n)

∣∣ → +∞, but
∣∣X(n)

∣∣ and ∣∣Y(n)

∣∣ are bounded, while the sixth row for Case 5 means

that
∣∣X(n)

∣∣ → +∞ and
∣∣Y(n)

∣∣ → +∞, but
∣∣Z(n)

∣∣ and ∣∣∣X(n)

Y(n)

∣∣∣ are bounded. Of course this table is not

exhaustive and there are other cases where the norm
∥∥W(n)

∥∥ diverges. We mention that the same

breakdown point analysis presented below goes through for such other cases.

For i = 1, . . . , n, let g(i) = g
(
W(i), c

)
and π(i) be the implied probability associated with the

observation W(i). Using some algebra, we can verify that for all the seven cases introduced in Table

1 we have
∣∣g(n)

∣∣ → +∞.6 Therefore, the implied probability defined in (3) for the observation W(n)

satisfies

π(n) =
1

n
− 1

n

(
1− 1

n −
ḡ−
g(n)

)(
ḡ−
g(n)

+ 1
n

)
v̄−
g2
(n)

+ 1
n

→ 1

n2
, (4)

5This is just one way to define outliers. For other definitions, basically the same breakdown point analysis goes through

by analyzing limiting behaviors of the test statistics and bootstrap quantiles as the outliers diverge or converge to some

points.
6For Cases 5 and 7 with c = 1, we introduce the additional condition

∣∣∣(1− Y(n)

X(n)

)
X(n)

∣∣∣→ +∞.
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as
∣∣g(n)

∣∣→ +∞, where ḡ− = 1
n

∑n−1
i=1 g

(
W(i), c

)
and v̄− = 1

n

∑n−1
i=1 g

(
W(i), c

)2. Again the sample size n

is fixed here. Note that compared to the uniform weight n−1, the implied probability bootstrap draws

the outlier W(n) with a smaller weight converging to n−2 as
∣∣g(n)

∣∣→ +∞.

Now suppose that divergence of
∥∥W(n)

∥∥ causes divergence of |Tn| (the same argument applies for

|tn|). Let T#
n and T ∗n denote the bootstrap counterparts of Tn based on the uniform weight and implied

probability bootstraps, respectively. Letting B (n, p) be a binomial random variable with parameters n

and p, the probability that the uniform weight bootstrap counterpart T#
n is free from the outlier W(n)

is written as

p# = P

(
B

(
n,

1

n

)
= 0

)
.

Therefore, if
∥∥W(n)

∥∥ → +∞, then 100
(
1− p#

)
% of resamples of

∣∣∣T#
n

∣∣∣ will diverge to +∞. In other

words, the t-th bootstrap quantile Q#
t of

∣∣∣T#
n

∣∣∣ will diverge to +∞ for all t > p# as
∥∥W(n)

∥∥→ +∞. On

the other hand, from (4), the probability that the implied probability bootstrap counterpart T ∗n is free

from the outlier W(n) converges to

p∗ = P

(
B

(
n,

1

n2

)
= 0

)
,

as
∥∥W(n)

∥∥ → +∞. Thus, the t-th bootstrap quantile Q∗t of |T ∗n | will diverge to +∞ for all t > p∗

satisfying p∗ > p#. Table 2 presents the values of p# and p∗ for several choices of the sample size n.

Table 2: Values of p# and p∗

n p# p∗

10 0.349 0.904

20 0.358 0.951

50 0.364 0.980

100 0.366 0.990

500 0.368 0.998

1000 0.368 0.999

For example, when n = 100, divergence of a single outlier implies divergence of more than 63% of

the uniform weight bootstrap resamples of T#
n . On the other hand, divergence of a single outlier implies

divergence of around 1% of the implied probability bootstrap resamples of T ∗n .

Given the above argument, the remaining task is to figure out when the statistics Tn and tn defined

in (2) diverge as
∥∥W(n)

∥∥→ +∞. Table 3 below analyzes the limiting behaviors of the statistics Tn and

tn for each of the seven cases listed in Table 1.7

7For Case 1, assume
∣∣X(n)

∣∣ is bounded away from zero. For Cases 2 and 4, |tn| diverges only when c 6= 0.
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Table 3: Limits of Tn and tn as
∥∥W(n)

∥∥→ +∞

Case Diverge Bounded Limit of |Tn| Limit of |tn|

1 Z X, Y bounded bounded

2 X Y, Z bounded +∞
3 Y X, Z +∞ bounded

4 X, Z Y, X
Z bounded +∞

5 X, Y Z, X
Y bounded +∞

6 Y, Z X, Z
Y +∞ bounded

7 X Y, Z Z
Y ,

X
Y bounded +∞

For example, the second row for Case 1 means that when
∣∣Z(n)

∣∣ → +∞ but
∣∣X(n)

∣∣ and ∣∣Y(n)

∣∣ are
bounded, Tn and tn are bounded. Also the sixth row for Case 5 means that when

∣∣X(n)

∣∣ → +∞ and∣∣Y(n)

∣∣→ +∞ but
∣∣Z(n)

∣∣ and ∣∣∣X(n)

Y(n)

∣∣∣ are bounded, Tn is bounded but |tn| diverges to infinity. From this

table, we can regard the outliers of Cases 3 and 6 as the ones for the non-studentized statistic Tn and

also regard the outliers of Cases 2, 4, 5 and 7 as the ones for the studentized statistic tn.

The findings in this subsection are summarized as follows.

Proposition 1. Consider the setup of this section. Let p# = P
(
B
(
n, 1

n

)
= 0
)

and p∗ = P
(
B
(
n, 1

n2

)
= 0
)
.

If
∥∥W(n)

∥∥→ +∞, the followings hold true.

(i) For Cases 3 and 6, the uniform weight bootstrap t-th quantile Q#
t from the resamples

∣∣∣T#
n

∣∣∣ of |Tn|
will diverge to +∞ for all t > p#, and the implied probability bootstrap t-th quantile Q∗t from the

resamples |T ∗n | of |Tn| will diverge to +∞ for all t > p∗.

(ii) For Cases 2, 4, 5 and 7, the uniform weight bootstrap t-th quantile Q#
t from the resamples

∣∣∣t#n ∣∣∣ of

|tn| will diverge to +∞ for all t > p#, and the implied probability bootstrap t-th quantile Q∗t from

the resamples |t∗n| of |tn| will diverge to +∞ for all t > p∗.

For example, if there is an outlier in the endogenous regressor (i.e., Case 2), the uniform weight

bootstrap resamples for the studentized statistic |tn| contain the outlier more often than the implied

probability bootstrap resamples. Thus, the uniform weight bootstrap quantiles tend to take large values.

On the other hand, we can expect that the bootstrap quantiles for the non-studentized statistic |Tn| are
relatively robust against such an outlier, since the non-studentized statistic does not diverge in this case.

Similar comments apply to the other cases. In Section 5.1, we illustrate these findings by simulation.

Proposition 1 may be extended to the case where we have m > 1 outliers. Suppose that for each

j = 1, . . . ,m, it holds g(n−j+1)

g(n)
→ 1 as

∥∥W(n−j+1)

∥∥→∞. Then, we have

π(n) =
1

n
− 1

n

{(
1− 1

n

)
− 1

n

(
g(n−1)+···+g(n−m+1)

g(n)

)
− ḡm−

g(n)

}{
ḡm−
g(n)

+ 1
n

(
g(n)+···+g(n−m+1)

g(n)

)}
v̄m−
g2
(n)

+ 1
n

(
g2
(n)

+···+g2
(n−m+1)

g2
(n)

) → m

n2
,
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as
∥∥W(n−j+1)

∥∥→∞ for all j = 1, . . . ,m, where ḡm− = 1
n

∑n−m
i=1 g

(
X(i), c

)
and v̄m− = 1

n

∑n−m
i=1 g

(
X(i), c

)2.
By applying the same argument, we obtain π(n−j+1) → m

n2 , for all j = 1, . . . ,m. Therefore, the proba-

bility that the implied probability bootstrap resample T ∗n is free from m outliers
(
W(n−m+1), . . . ,W(n)

)
converges to

p∗m = P

(
B

(
n,
(m
n

)2
)

= 0

)
,

as
∥∥W(n−j+1)

∥∥ → ∞ for all j = 1, . . . ,m. On the other hand, the probability that the uniform weight

bootstrap resample T#
n is free from m outliers

(
W(n−m+1), . . . ,W(n)

)
is written as

p#
m = P

(
B
(
n,
m

n

)
= 0
)
.

Note that p∗m is always larger than p#
m for any m and n. We can extend the cases displayed in Table

3 to the m outliers setup, i.e., X, Y , and Z mean
(
X(n−m+1), . . . , X(n)

)
,
(
Y(n−m+1), . . . , Y(n)

)
, and(

Z(n−m+1), . . . , Z(n)

)
, respectively, and the ratio such as X

Z means X(n−j+1)

Z(n−j′+1)
for all j, j′ = 1, . . . ,m.

Then, we obtain the following result.

Proposition 2. Consider the setup of this section. Let p#
m = P

(
B
(
n, mn

)
= 0
)

and

p∗m = P
(
B
(
n,
(
m
n

)2)
= 0
)
. If

∥∥W(n−j+1)

∥∥→ +∞ for all j = 1, . . . ,m, the followings hold true.

(i) For Cases 3 and 6, the uniform weight bootstrap t-th quantile Q#
t from the resamples

∣∣∣T#
n

∣∣∣ of |Tn|

will diverge to +∞ for all t > p#
m, and the implied probability bootstrap t-th quantile Q∗t from the

resamples |T ∗n | of |Tn| will diverge to +∞ for all t > p∗m.

(ii) For Cases 2, 4, 5 and 7, the uniform weight bootstrap t-th quantile Q#
t from the resamples

∣∣∣t#n ∣∣∣ of

|tn| will diverge to +∞ for all t > p#
m, and the implied probability bootstrap t-th quantile Q∗t from

the resamples |t∗n| of |tn| will diverge to +∞ for all t > p∗m.

3 Over-identified case

3.1 Setup

We now extend our breakdown point analysis to an over-identified case with k = 2 and p = 1. Extensions

to high dimension cases will be briefly discussed in Section 4.2. In this case, the moment conditions (1)

can be written as

E [g (Wi, θ0)] = E

[
g1 (Wi, θ0)

g2 (Wi, θ0)

]
= E

[
Z1i (Yi −Xiθ0)

Z2i (Yi −Xiθ0)

]
= 0.

where Wi = (Yi, Xi, Z1i, Z2i)
′ ∈ R4. Similar to the just-identified case, we consider the parameter

hypothesis testing problem H0 : θ0 = c against the two-sided alternative H1 : θ0 6= c using the non-

studentized statistic Tn =
√
n
(
θ̂ − c

)
and the studentized statistic tn = θ̂−c

σ̂ . The point estimator for

9



θ0 is either the two-stage least square estimator

θ̂2SLS =

( n∑
i=1

XiZi

)′( n∑
i=1

ZiZ
′
i

)−1( n∑
i=1

XiZi

)−1(
n∑
i=1

XiZi

)′( n∑
i=1

ZiZ
′
i

)−1( n∑
i=1

ZiYi

)
,

or the two-step GMM estimator

θ̂GMM =

( n∑
i=1

XiZi

)′( n∑
i=1

Û2
i ZiZ

′
i

)−1( n∑
i=1

XiZi

)−1(
n∑
i=1

XiZi

)′( n∑
i=1

Û2
i ZiZ

′
i

)−1( n∑
i=1

ZiYi

)
,

where Ûi = Yi − Xiθ̂2SLS is the residual from the first-stage regression using θ̂2SLS . Since we have

the same breakdown point properties, in this section we indifferently denote Tn =
√
n
(
θ̂2SLS − c

)
or

√
n
(
θ̂GMM − c

)
. For the standard error in the studentized statistic tn, we consider

σ̂2SLS =

√√√√√( 1

n

n∑
i=1

Û2
i

)( n∑
i=1

XiZi

)′( n∑
i=1

ZiZ ′i

)−1( n∑
i=1

XiZi

)−1

,

for the two-stage least square estimator and

σ̂GMM =

√√√√√
( n∑

i=1

XiZi

)′( n∑
i=1

Ũ2
i ZiZ

′
i

)−1( n∑
i=1

XiZi

)−1

,

for the two-step GMM estimator, where Ũi = Yi −Xiθ̂GMM . Since we have the same breakdown point

properties, in this section we indifferently denote tn = θ̂2SLS−c
σ̂2SLS

or θ̂GMM−c
σ̂GMM

.

Similar to the last section, we compare the robustness properties of bootstrap quantiles based on the

uniform weigh and implied probability bootstraps. In this case, since the moment function g is now a

vector, Back and Brown’s (1993) implied probability for the observation Wi from the moment condition

E [g (Wi, c)] = 0 is written as

πi =
1

n
− 1

n
(g (Wi, c)− ḡ)′

[
1

n

n∑
i=1

g (Wi, c) g (Wi, c)
′

]−1

ḡ. (5)

Although the implied probability takes more complicated form than the just-identified case considered

in the last section, we can still apply the same breakdown point analysis to this setting.

3.2 Breakdown point analysis

Similar to the just-identified case, we order the sample as
∥∥W(1)

∥∥ ≤ · · · ≤ ∥∥W(n)

∥∥ based on the Euclidean

norm, and consider the limiting situation where
(∥∥W(1)

∥∥ · · · ∥∥W(n−1)

∥∥) are all finite but ∥∥W(n)

∥∥→ +∞.

Since the outlier W(n) now contains four elements
(
Y(n), X(n), Z1(n), Z2(n)

)
, we consider fifteen cases

summarized in Table 4 below.

10



Table 4: Conditions such that
∥∥W(n)

∥∥→ +∞

Case Diverge Bounded Case Diverge Bounded Case Diverge Bounded

1 Z1 X, Y, Z2 6 Z1, X Y, , Z2 ,
Z1
X 11 Z1, Z2, X Y, Z1

Z2
, Z1
X

2 Z2 X, Y, Z1 7 Z2, X Y, , Z1 ,
Z2
X 12 Z1, Z2, Y X, Z1

Z2
, Z1

Y

3 X Z1 Z2, Y 8 Z1, Y X, , Z2 ,
Z1
Y 13 Z1, Y, X Z2,

Z1
X ,

Z1
Y

4 Y Z1 Z2, X 9 Z2, Y X, , Z1 ,
Z2
Y 14 Z2, Y, X Z1,

Z2
X ,

Z2
Y

5 Z1, Z2 X, Y, Z1
Z2

10 X, Y Z1, , Z2 ,
Y
X 15 Z1, Z2, Y, X

Z2
X ,

Z1
X ,

Z1
Y

Let g1(n) = g1

(
W(n), c

)
and g2(n) = g2

(
W(n), c

)
. Using some algebra we can verify that8

(∣∣g1(n)

∣∣ , ∣∣g2(n)

∣∣)→


(+∞, C) for Case 1

(C ′,+∞) for Case 2

(+∞,+∞) for Cases 3-15

as
∥∥W(n)

∥∥ → +∞. By applying the results in Camponovo and Otsu (2010) to the present setup, the

limiting behavior of the implied probability π(n) for the outlier W(n) is characterized as follows

π(n) →


1
n2 + 1

n

ḡ22−
v22

for Case 1
1
n2 + 1

n

ḡ21−
v11

for Case 2
1
n2 + 1

n
(ḡ1−−ḡ2−)2

v11+v22−2v12
for Cases 3-15

(6)

where ḡ1− = 1
n

∑n−1
i=1 g1(i), ḡ2− = 1

n

∑n−1
i=1 g2(i), v11 = 1

n

∑n−1
i=1 g

2
1(i), v22 = 1

n

∑n−1
i=1 g

2
2(i), and v12 =

1
n

∑n−1
t=1 g1(i)g2(i).

Unlike the just-identified case, in this setting the limit of the implied probability π(n) depends on

the terms ḡ1−, ḡ2−, v11, v22, and v12. Therefore, the implied probability bootstrap does not necessarily

draw outliers with lower probability than the uniform weight bootstrap. Nevertheless, it should be noted

that the terms ḡ1−, ḡ2−, v11, v22, and v12 do not contain the outlier W(n) and thus the second terms

appearing in the limit (6) are typically small when the sample size n is large. Also we can empirically

evaluate the second terms in (6) and assess the difference with the uniform weight 1/n.

To conduct the breakdown point analysis, it remains to characterize the limits of the statistics Tn
and tn when

∥∥W(n)

∥∥→ +∞. For the sake of brevity, in Table 5 below we do not report all the results

for the fifteen cases introduced in Table 4, but we report only the cases where at least one of the two

test statistics diverges to infinity.9

8For Cases 10. 13, 14, and 15 with c = 1, we additionally assume that
∣∣∣(1− Y(n)

X(n)

)
X(n)

∣∣∣→ +∞.
9For Cases 3, 6, 7 and 11, |tn| diverges to infinity only when c 6= 0.
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Table 5: Limits of Tn and tn as
∥∥W(n)

∥∥→ +∞

Case Diverge Bounded Limit of |Tn| Limit of |tn|

3 X Z1 Z2, Y bounded +∞
4 Y Z1 Z2, X +∞ bounded

6 Z1, X Y, , Z2 ,
Z1
X bounded +∞

7 Z2, X Y, , Z1 ,
Z1
X bounded +∞

8 Z1, Y X, , Z2 ,
Z1
Y +∞ bounded

9 Z2, Y X, , Z1 ,
Z1
Y +∞ bounded

10 X, Y Z1, , Z2 ,
Y
X bounded +∞

11 Z1, Z2, X Y, Z1
Z2
, Z1
X bounded +∞

12 Z1, Z2, Y X, Z1
Z2
, Z1

Y +∞ bounded

13 Z1, Y, X Z2,
Z1
X ,

Z1
Y bounded +∞

14 Z2, Y, X Z1,
Z2
X ,

Z2
Y bounded +∞

15 Z1, Z2, Y, X
Z2
X ,

Z1
X ,

Z1
Y bounded +∞

We can summarize the findings of this subsection in the following proposition.

Proposition 3. Consider the setup of this section. Let p# = P
(
B
(
n, 1

n

)
= 0
)
, and

p∗ = P
(
B
(
n, 1

n2 + 1
n

(ḡ1−−ḡ2−)2

v11+v22−2v12

)
= 0
)
. If

∥∥W(n)

∥∥→ +∞, the followings hold true.

(i) For Cases 4, 8, 9 and 12, the uniform weight bootstrap t-th quantile Q#
t from the resamples

∣∣∣T#
n

∣∣∣ of

|Tn| will diverge to +∞ for all t > p#, and the implied probability bootstrap t-th quantile Q∗t from

the resamples |T ∗n | of |Tn| will diverge to +∞ for all t > p∗.

(ii) For Cases 3, 6, 7, 10, 11, 13, 14 and 15, the uniform weight bootstrap t-th quantile Q#
t from the

resamples
∣∣∣t#n ∣∣∣ of |tn| will diverge to +∞ for all t > p#, and the implied probability bootstrap t-th

quantile Q∗t from the resamples |t∗n| of |tn| will diverge to +∞ for all t > p∗.

For example, if there is an outlier in the endogenous regressor (i.e., Case 3) and it holds 1
n2 +

1
n

(ḡ1−−ḡ2−)2

v11+v22−2v12
< 1

n , then the uniform weight bootstrap resamples for the studentized statistic tn contain

the outlier more often than the implied probability bootstrap resamples. Thus the uniform weight

bootstrap quantiles tend to take large values. On the other hand, we can expect that the bootstrap

quantiles for the non-studentized statistic Tn are relatively robust against such an outlier, since the

non-studentized statistic does not diverge in this case. Similar comments apply to the other cases. In

Section 5.2, we illustrate these findings by simulation.

Similar to the just-identified case, Proposition 3 may be extended to the case where we have m > 1

outliers. Suppose that for each j = 1, . . . ,m, it holds g1(n−j+1)

g1(n)
→ 1 and g2(n−j+1)

g2(n)
→ 1 as

∥∥W(n−j+1)

∥∥→
∞. Then, using the results in Camponovo and Otsu (2010), we have

12



π(n) →


m
n2 + 1

n

ḡ22−,m

v22,k
for Case 1

m
n2 + 1

n

ḡ21−,m

v11,k
for Case 2

m
n2 + 1

n
(ḡ1−,m−ḡ2−,k)

2

v11,m+v22,m−2v12,m
for Cases 3-15

as
∥∥W(n−j+1)

∥∥ → ∞ for all j = 1, . . . ,m, where ḡ1−,m = 1
n

∑n−m
i=1 g1(i), ḡ2−,m = 1

n

∑n−m
i=1 g2(i),

v11,m = 1
n

∑n−m
t=1 g2

1(m), v22,m = 1
n

∑n−m
i=1 g2

2(i), and v12,m = 1
n

∑n−m
i=1 g1(i)g2(i). By applying the same

argument, we can see that π(n−j+1) has the same limit for all j = 1, . . . ,m. We extend the cases

displayed in Table 5 to the m outlier setup, i.e., X, Y , Z1, and Z2 mean
(
X(n−m+1), . . . , X(n)

)
,(

Y(n−m+1), . . . , Y(n)

)
,
(
Z1(n−m+1), . . . , Z1(n)

)
, and

(
Z2(n−m+1), . . . , Z2(n)

)
, respectively, and the ratio

such as X
Z1

means X(n−j+1)

Z1(n−j′+1)
for all j, j′ = 1, . . . ,m. Then we obtain following result.

Proposition 4. Consider the setup of this section. Let p#
m = P

(
B
(
n, mn

)
= 0
)

and

p∗m = P
(
B
(
n,
(
m
n

)2
+ m

n
(ḡ1−,m−ḡ2−,m)2

v11,m+v22,m−2v12,m

)
= 0
)
. If

∥∥W(n−j+1)

∥∥ → +∞ for all j = 1, . . . ,m, the

followings hold true.

(i) For Cases 4, 8, 9 and 12, the uniform weight bootstrap t-th quantile Q#
t from the resamples

∣∣∣T#
n

∣∣∣ of

|Tn| will diverge to +∞ for all t > p#
m, and the implied probability bootstrap t-th quantile Q∗t from

the resamples |T ∗n | of |Tn| will diverge to +∞ for all t > p∗m.

(ii) For Cases 3, 6, 7, 10, 11, 13, 14 and 15, the uniform weight bootstrap t-th quantile Q#
t from the

resamples
∣∣∣t#n ∣∣∣ of |tn| will diverge to +∞ for all t > p#

m, and the implied probability bootstrap t-th

quantile Q∗t from the resamples |t∗n| of |tn| will diverge to +∞ for all t > p∗m.

4 Discussions

4.1 Tail trimming

To deal with possibly heavy tailed data, Hill and Renault (2010) recently introduced the tail trimming

GMM estimator. The idea of this approach consists of trimming an asymptotically vanishing sample

portion of the estimating equations. The application of the tail trimming method to the IV regression

model analyzed in this paper delivers interesting robustness properties. We briefly describe Hill and

Renault’s (2011) approach in our context and extend the breakdown point analysis to the bootstraps

for the statistics based on the tail trimming GMM estimator.

We first consider the just-identified case with k = p = 1 and the test for the null H0 : θ0 = c. Let∣∣g (W[1], c
)∣∣ ≤ · · · ≤ ∣∣g (W[n], c

)∣∣ be the ordered estimating equations evaluated at θ = c, and define the

trimmed sample as W̌i =
(
Y̌i, X̌i, Ži

)′
= Wi × I

{
|g (Wi, c)| <

∣∣g (W[n−r+1], c
)∣∣} for some r < n, where

I {·} is the indicator function (note: g (·) is scalar-valued if k = p = 1). The tail trimming IV regression

estimator of θ0 is defined as

θ̌ =

∑n
i=1 ŽiY̌i∑n
i=1 ŽiX̌i

.
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Based on this estimator, we introduce the non-studentized statistic Ťn =
√
n
(
θ̌ − c

)
and the studentized

statistic ťn = θ̌−c
σ̌ , where σ̌ =

√(
1
n

∑n
i=1 Ǔ

2
i

) (∑n
i=1 Ž

2
i

)
/
(∑n

i=1 ŽiX̌i

)2 and Ǔi = Y̌i − X̌iθ̌. Hill and

Renault (2011) assumed r/n→ 0 as n→ +∞ and studied the asymptotic properties of the tail trimming

GMM estimator in a general setting. Here we fix the sample size n (and also r) and consider the situation

where
∥∥W(n−j+1)

∥∥→ +∞ for all j = 1, . . . ,m.

The test statistics Ťn and ťn based on the trimmed sample are more robust to outliers than the

test statistics Tn and tn based on the original sample. With slight modifications, the breakdown point

analysis in the last section can be adapted to this context.10

Proposition 5. Consider the setup of Section 2. Let pr#m = P
(
B
(
n, mn

)
≤ r
)

and

pr∗m = P
(
B
(
n,
(
m
n

)2) ≤ r). If
∥∥W(n−j+1)

∥∥→ +∞ for all j = 1, . . . ,m, the followings hold true.

(i) For Cases 3 and 6 of Section 2.2, the uniform weight bootstrap t-th quantile Q̌#
t from the resamples∣∣∣Ť#

n

∣∣∣ of
∣∣Ťn∣∣ will diverge to +∞ for all t > pr#m , and the implied probability bootstrap t-th quantile

Q̌∗t from the resamples
∣∣Ť ∗n ∣∣ of

∣∣Ťn∣∣ will diverge to +∞ for all t > pr∗m .

(ii) For Cases 2, 4, 5 and 7 of Section 2.2, the uniform weight bootstrap t-th quantile Q̌#
t from the

resamples
∣∣∣ť#n ∣∣∣ of

∣∣ťn∣∣ will diverge to +∞ for all t > pr#m , and the implied probability bootstrap t-th

quantile Q̌∗t from the resamples
∣∣ť∗n∣∣ of

∣∣ťn∣∣ will diverge to +∞ for all t > pr∗m .

Note that as r increases (i.e., trim more samples), both pr#m and pr∗m increase. Thus, tail trimming

robustifies the both bootstrap quantiles. Also note that it always holds pr#m < pr∗m , and the implied

probability bootstrap shows analogous robustness properties over the uniform weight bootstrap.

Analogously, for the over-identified case considered in Section 3, let
∣∣g1

(
W[1], c

)∣∣ ≤ · · · ≤ ∣∣g1

(
W[n], c

)∣∣
and

∣∣g2

(
W[1], c

)∣∣ ≤ · · · ≤ ∣∣g2

(
W[n], c

)∣∣ be the ordered estimating equations for each component. Then,

the trimmed sample is defined as

W̌i =
(
Y̌i, X̌i, Ži

)′
= Wi × I

{
|g1 (Wi, c)| <

∣∣g1

(
W[n−r+1], c

)∣∣ , |g2 (Wi, c)| <
∣∣g2

(
W[n−r+1], c

)∣∣} ,
for some r < n, and the tail trimming two-stage least square estimator is written as11

θ̌ =

( n∑
i=1

X̌iŽi

)′( n∑
i=1

ŽiŽ
′
i

)−1( n∑
i=1

X̌iŽi

)−1(
n∑
i=1

X̌iŽi

)′( n∑
i=1

ŽiŽ
′
i

)−1( n∑
i=1

ŽiY̌i

)
.

We can consider the non-studentized statistic Ťn =
√
n
(
θ̌ − c

)
and the studentized one ťn = θ̌−c

σ̌ , where

Ǔi = Y̌i − X̌iθ̌ and

σ̌ =

√√√√√( 1

n

n∑
i=1

Ǔ2
i

)( n∑
i=1

X̌iŽi

)′( n∑
i=1

ŽiŽ ′i

)−1( n∑
i=1

X̌iŽi

)−1

.

For the over-identified case, we obtain analogous breakdown point properties.
10Note that

(
W[n−m+1], . . . ,W[n]

)
=
(
W(n−m+1), . . . ,W(n)

)
as
∥∥W(n−j+1)

∥∥ → +∞ for all j = 1, . . . ,m (because

|g (Wi, c) | → +∞ when ‖Wi‖ → +∞).
11The results do not change even if we replace the estimator with the tail trimming two-stage GMM estimator.
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Proposition 6. Consider the setup of Section 3. Let pr#m = P
(
B
(
n, mn

)
≤ r
)

and

pr∗m = P
(
B
(
n,
(
m
n

)2
+ m

n
(ḡ1−,m−ḡ2−,m)2

v11,m+v22,m−2v12,m

)
≤ r
)
. If

∥∥W(n−j+1)

∥∥ → +∞ for all j = 1, . . . ,m, the

followings hold true.

(i) For Cases 4, 8, 9 and 12 of Section 3.2, the uniform weight bootstrap t-th quantile Q̌#
t from the

resamples
∣∣∣Ť#
n

∣∣∣ of
∣∣Ťn∣∣ will diverge to +∞ for all t > pr#m , and the implied probability bootstrap

t-th quantile Q̌∗t from the resamples
∣∣Ť ∗n ∣∣ of

∣∣Ťn∣∣ will diverge to +∞ for all t > pr∗m .

(ii) For Cases 3, 6, 7, 10, 11, 13, 14 and 15 of Section 3.2, the uniform weight bootstrap t-th quantile

Q̌#
t from the resamples

∣∣∣ť#n ∣∣∣ of
∣∣ťn∣∣ will diverge to +∞ for all t > pr#m , and the implied probability

bootstrap t-th quantile Q̌∗t from the resamples
∣∣ť∗n∣∣ of

∣∣ťn∣∣ will diverge to +∞ for all t > pr∗m .

Similar to the just-identified case, both pr#m and pr∗m increase as r increases. Thus, tail trimming

helps to robustify bootstrap quantiles. Also, when n is large, pr∗m is typically larger than pr#m and the

implied probability bootstrap tends to be more robust than the uniform weight bootstrap.

The results of this subsection show that Hill and Renault’s (2010) trimming approach improves

robustness of the both bootstrap methods against outliers. In this setting, we can still observe desirable

robustness properties of the implied probability bootstrap in the sense that pr∗m tends to be larger than

pr#m . In Section 5.3, we provide a striking numerical example which shows that the improvement of

robustness by tail trimming for the uniform weight bootstrap is rather small comparing to the one for

the implied probability bootstrap.

4.2 Remarks

Over-identifying restriction test. Another important issue for over-identified IV regression models is

to check the validity of instruments (i.e., test H0 : E [Zi (Yi −X ′iθ)] = 0 for some θ against H1 :

E [Zi (Yi −X ′iθ)] 6= 0 for any θ). This problem is called the over-identifying restriction test. In the

GMM context, the over-identifying restriction test statistic (so-called Hansen’s J-statistic) is defined as

Jn =

(
n∑
i=1

Z ′i

(
Yi −X ′i θ̂GMM

))( n∑
i=1

Û2
i ZiZ

′
i

)−1( n∑
i=1

Zi

(
Yi −X ′i θ̂GMM

))
,

where Ûi = Yi−X ′i θ̂2SLS . Hall and Horowitz (1996) and Brown and Newey (2002) demonstrated higher

order refinements of the uniform weight bootstrap with recentered moments and implied probability

bootstrap, respectively, over the first-order asymptotic approximation which relies on the χ2 distribution.

To apply the breakdown point analysis to the test statistic Jn, we investigate the limiting behaviors of

Jn for all cases displayed in Table 4. However, we find that the statistic Jn remains bounded for all

the cases. Once we find the case where Jn → ∞ (e.g., the instruments diverge at different rates), we

can apply the same argument in the last section to derive the breakdown point properties for bootstrap

quantiles.
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High dimension moment functions. We can also extend our robustness analysis to the case of k > 2.

The main issue consists in computing the limit of the implied probability π(n) defined in (5). As pointed

out in Camponovo and Otsu (2010), if each element of g
(
W(n), c

)
takes a different limit as

∥∥W(n)

∥∥ →
+∞, it is necessary to explicitly evaluate the limit of the inverse

[
1
n

∑n
i=1 g (Wi, c) g (Wi, c)

′]−1. Conse-

quently, the result may become more complicated and less intuitive. To obtain a comprehensible result,

it would be reasonable to consider the case where all elements of g
(
X(n), c

)
take only two limiting val-

ues. In this case, we can split g
(
X(n), c

)
into two sub-vectors and apply the partitioned matrix inverse

formula for
[

1
n

∑n
i=1 g (Xi, c) g (Xi, c)

′]−1 to derive the limit of the implied probability π(n).

Time series data. For time series data, the bootstrap methods discussed in this paper need to

be modified to reflect dependence of the data generating process. Combining the ideas of Kitamura

(1997) and Brown and Newey (2002), in a recent study Allen, Gregory and Shimotsu (2010) proposed

an extension of the implied probability bootstrap to a time series context by using block averages of

moment functions. We expect that the breakdown point analysis of this paper can be adapted to such

a modified bootstrap method (see Camponovo, Scaillet and Trojani, 2010b, for the breakdown point

analysis of resampling methods in time series data).

5 Simulation

To illustrate the breakdown point properties of the bootstrap methods described above, we conduct

Monte Carlo experiments. To ensure that all the implied probabilities are non-negative, we employ a

shrinkage approach suggested by Antoine, Bonnal and Renault (2007) (i.e., π̃i = 1
1+εn

πi + εn
1+εn

1
n with

εn = −nmin {min1≤i≤n πi, 0}). As pointed out in Antoine, Bonnal and Renault (2007) this approach

preserves the order of the implied probabilities, has no impact when the imply probabilities are already

non-negative, and assigns zero probability only to the observation associated to the smallest probability

when it is negative.

5.1 Just-identified case

We consider iid samples of size n = 50 generated from Yi = Xiθ0 + Ui and Xi = Ziπ + Vi, where

Zi ∼ N (0, 1),

(
Ui

Vi

)
∼ N

((
0

0

)
,

(
1 0.2

0.2 1

))
, and π = 1. The true parameter value is set

as θ0 = 0. We are interested in testing the null hypothesis H0 : θ0 = 0 against the alternative

H1 : θ0 6= 0. To study the robustness properties of the bootstrap methods, we consider two situations:

(i) (W1, . . . ,Wn) are generated from the above model (No contamination), and (ii)
(
W̃1, . . . , W̃n

)
with

W̃(i) = W(i) for i = 1, . . . , 49 and W̃(50) =
(
Ỹ(50), X̃(50), Z̃(50)

)
=
(
C,X(50), Z(50)

)
with C = 5 and

10 (Contamination on Y ). This setup for the contamination corresponds to Case 3 in Section 2.2

and Proposition 1 says that as
∥∥W(n)

∥∥ → ∞, the uniform weight bootstrap t-th quantile Q#
t from the

resamples
∣∣∣T#
n

∣∣∣ of the non-studentized statistic Tn will diverge to +∞ for all t > p# = P
(
B
(
n, 1

n

)
= 0
)
,
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and the implied probability bootstrap t-th quantile Q∗t from the resamples |T ∗n | of Tn will diverge to

+∞ for all t > p∗ = P
(
B
(
n, 1

n2

)
= 0
)
. On the other hand, the bootstrap quantiles for the studentized

statistic tn does not show such divergence properties.

Tables 1 and 2 report the Monte Carlo means of the uniform weight bootstrap quantiles Q#
t and

implied probability bootstrap quantiles Q∗t for t =0.9, 0.95, and 0.99 for the statistics |Tn| and |tn|,
respectively. The number of bootstrap replications is 99 for each Monte Carlo sample. The number of

Monte Carlo replications is 1, 000.

For non-contaminated samples, both the uniform weight and implied probability bootstrap quantiles

are very close to the true quantile values. As expected from Proposition 1, the presence of outliers

decreases the accuracy of the bootstrap approximations of the non-studentized statistic distribution.

Because of the higher probability to select outliers, the uniform weight bootstrap resamples tend to

contain the outlier W(50) more frequently. Therefore, the uniform weight bootstrap quantiles tend to be

larger than the true quantile values. In contrast, since the implied probability π(50) for the outlier W(50)

is very small, the implied probability bootstrap is able to mitigate this robustness problem. For example,

when Y(n) = 10, for the non-studentized statistic |Tn| with the true .99-th quantile Q.99 = 4.8683, the

uniform weight bootstrap quantile is Q#
.99 = 6.3541, while the implied probability bootstrap quantile is

Q∗.99 = 4.2179. As expected, Table 2 shows that both bootstrap methods provide valid approximations

for the distribution of the studentized statistic |tn| against this particular contamination.

5.2 Over-identified case

We consider iid samples of size n = 50 generated from Yi = Xiθ0 + Ui and Xi = Z ′iπ + Vi, where

Zi =

(
Z1i

Z2i

)
∼ N

((
2

1

)
,

(
1 0

0 1

))
,

(
Ui

Vi

)
∼ N

((
0

0

)
,

(
1 0.2

0.2 1

))
, and π = (0.5, 0.5)′.

The true parameter value is set as θ0 = 1. We are interested in testing the null hypothesis H0 : θ0 = 1

against the alternative H1 : θ0 6= 1. We consider two situations: (i) (W1, . . . ,Wn) are generated from

the above model (No contamination), and (ii)
(
W̃1, . . . , W̃n

)
with W̃(i) = W(i) for i = 1, . . . , 49 and

W̃(50) =
(
Ỹ(50), X̃(50), Z̃1(50), Z̃2(50)

)
=
(
Y(50), C, Z1(50), Z2(50)

)
with C = 10 and 15 (Contamination

on X). This setup for the contamination corresponds to Case 3 in Section 3.2, and Proposition 3

says that as
∥∥W(n)

∥∥ → ∞, the uniform weight bootstrap t-th quantile Q#
t from the resamples

∣∣∣t#n ∣∣∣
of the studentized statistic tn will diverge to +∞ for all t > p# = P

(
B
(
n, 1

n

)
= 0
)
, and the implied

probability bootstrap t-th quantile Q∗t from the resamples |t∗n| of tn will diverge to +∞ for all t > p∗ =

P
(
B
(
n, 1

n2 + 1
n

(ḡ1−−ḡ2−)2

v11+v22−2v12

)
= 0
)
. On the other hand, the bootstrap quantiles for the non-studentized

statistic Tn does not show such divergence properties.

Tables 3 and 4 report the Monte Carlo means of the uniform weight bootstrap quantiles Q#
t and

implied probability bootstrap quantiles Q∗t for t =0.9, 0.95, and 0.99 for the statistics |Tn| and |tn|,
respectively. The number of bootstrap replications is 99 for each Monte Carlo sample. The number of

Monte Carlo replications is 1, 000.
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Similar to the just-identified case, without contamination, both the uniform weight and implied prob-

ability bootstraps are accurate for the true quantiles. It should be noted that the implied probability

bootstrap quantiles Q∗t provide reasonable approximations to the true quantiles Qt even under contam-

inations. On the other hand, the uniform weight bootstrap quantiles Q#
t tend to be larger than the

true ones. For example, when X(n) = 15, for the studentized statistic |tn| with the true .99-th quantile

Q.99 = 3.0748, the bootstrap approximations are Q#
.99 = 4.8735 and Q∗.99 = 3.2908. Finally, as expected

from the theoretical results in Section 3.2, the bootstrap quantiles for the non-studentized statistic |Tn|
are relatively stable and do not show such divergence properties for this particular contamination.

5.3 Tail trimming

We finally consider the effect of tail trimming introduced by Hill and Renault (2010) to bootstrap

quantiles. We set r = 2 for tail trimming. Table 5 reports the results for the non-studentized statis-

tic Ťn with tail trimming under the data generating process in Section 5.1 (just-identified case). In

particular, we consider two situations: (i) (W1, . . . ,Wn) are generated according to the true data gen-

erating process (No contamination), and (ii)
(
W̃1, . . . , W̃n

)
with W̃(i) = W(i) for i = 1, . . . , 49 and

W̃(50) =
(
Ỹ(50), X̃(50), Z̃(50)

)
=
(
C,X(50), C

)
with C = 5 and 10 (Contamination on Y and Z). Table

6 reports the results for the the studentized statistic ťn with tail trimming under the data generat-

ing process in Section 5.2 (over-identified case). We consider two situations: (i) (W1, . . . ,Wn) are

generated according to the true data generating process (No contamination), and (ii)
(
W̃1, . . . , W̃n

)
with W̃(i) = W(i) for i = 1, . . . , 49 and W̃(50) =

(
Ỹ(50), X̃(50), Z̃1(50), Z̃2(50)

)
=
(
Y(50), C, C, Z2(50)

)
with

C = 10 and 15 (Contamination on X and Z1). Tables 5 and 6 report the Monte Carlo means of the

uniform weight bootstrap quantiles Q̌#
t and implied probability bootstrap quantiles Q̌∗t for t =0.9, 0.95,

and 0.99 for the statistics
∣∣Ťn∣∣ and ∣∣ťn∣∣, respectively. The number of bootstrap replications is 99 for

each Monte Carlo sample. The number of Monte Carlo replications is 1, 000.

Again without contamination, both bootstrap quantiles are very close to the true values. Under con-

taminations, the implied probability bootstrap provides reasonable approximations to the true quantiles

for all cases. However, as Table 5 shows, the uniform weight bootstrap could be severely biased. For

example, when Y(n) = Z(n) = 10, for the non-studentized statistic
∣∣Ťn∣∣ with the true .99-th quantile

Q̌.99 = 3.0221, the implied probability bootstrap provides Q̌#
.99 = 3.9878, but the uniform weight boot-

strap provides Q̌#
.99 = 196.3904, which is a strikingly large value. This simulation suggests that the

implied probability bootstrap is particularly attractive to approximate the distributions of the statistics

with tail trimming.

5.4 Summary

The Monte Carlo experiments show that in absence of contamination both the uniform weight and

implied probability bootstraps provide accurate approximations of the test statistic distributions. The
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presence of contamination reduces the reliability of the bootstrap methods. Since the uniform weight

bootstrap selects outliers with high probability, the uniform weight bootstrap quantiles tend to be

larger than the true quantiles. The implied probability bootstrap is in part able to overcome this lack

of robustness. Nevertheless, in some cases the implied probabilities of outliers are very small. In such

situations the implied probability bootstrap quantiles are smaller than the true quantiles and tend to

be close to the true quantiles without contamination.

The tail trimming approach introduced in Hill and Renault (2010) increases the robustness of the

test statistics. Researchers need to be cautious for applying the uniform weight bootstrap for tail

trimming statistics since its bootstrap reamples tend to contain more outliers than the original sample.

In contrast, the implied probability bootstrap provides reasonable approximations to the tail trimming

statistics.

Unreported Monte Carlo results for other types of outliers also confirm these conclusions.

6 Conclusion

This paper studies robustness of the uniform weight and implied probability bootstrap inference methods

for instrumental variable regression models. In particular, we analyze the breakdown point properties

of the quantiles of those bootstrap methods for studentized and non-studentized test statistics for

parameter hypotheses. Simulation studies illustrate the theoretical findings. Our breakdown point

analysis can be an informative guideline for applied researchers to decide which bootstrap method

should be applied under existence of outliers. It is important to extend our analysis to dependent

data setups, where different bootstrap methods, such as blocked bootstrap, need to be employed. Also,

it is interesting to analyze the breakdown point properties for other implied probabilities, such as the

exponential tilting weights obtained from the information projection by the Boltzmann-Shannon entropy.

19



References

[1] Allen, J., Gregory, A. W. and K. Shimotsu (2010) Empirical likelihood block bootstrapping, forth-

coming in Journal of Econometrics.

[2] Antoine, B., Bonnal, H. and E. Renault (2007) On the efficient use of the informational content

of estimating equations: implied probabilities and Euclidean likelihood, Journal of Econometrics,

138, 461-487.

[3] Back, K. and D. P. Brown (1993) Implied probabilities in GMM estimators, Econometrica, 61,

507-517.

[4] Brown, B. W. and W. K. Newey (1998) Efficient semiparametric estimation of expectations, Econo-

metrica, 66, 453-464.

[5] Brown, B. W. and W. K. Newey (2002) Generalized method of moments, efficient bootstrapping,

and improved inference, Journal of Business & Economic Statistics, 20, 971-975.

[6] Camponovo, L. and T. Otsu (2010) Breakdown point theory for implied probability bootstrap,

Working paper.

[7] Camponovo, L., Scaillet, O. and F. Trojani (2010a) Robust subsampling, Working paper.

[8] Camponovo, L., Scaillet, O. and F. Trojani (2010b) Robust resampling methods for time series,

Working paper.

[9] Cover, T. M. and Thomas, J. A. (1991) Elements of Information Theory, Wiley.

[10] Donoho, D. L. and P. J. Huber (1983) The notion of breakdown point, in A Festschrift for Erich

L. Lehmann by Bickel, P. J., Doksum, K. A. and J. L. Hodges Jr. (eds.), 157-184, Wadsworth,

Belmont, California.

[11] Efron, B. and R. Tibshirani (1993) An Introduction to the Bootstrap, Chapman & Hall/CRC.

[12] Gagliardini, P., Trojani, F. and G. Urga (2005) Robust GMM tests for structural breaks, Journal

of Econometrics, 129, 139-182.

[13] Golan, A., Judge, G. G. and D. Miller (1996) Maximum Entropy Econometrics: Robust Estimation

with Limited Data, Wiley.

[14] Hall, A. R. (2005) Generalized Method of Moments, Oxford University Press.

[15] Hall, P. and J. L. Horowitz (1996) Bootstrap critical values for tests based on generalized- method-

of-moment estimators, Econometrica, 64, 891-916.

20



[16] Hall, P. and B. Presnell (1999) Intentionally biased bootstrap methods, Journal of the Royal Sta-

tistical Society, B, 61, 143-158.

[17] Hampel, F. R. (1971) A general qualitative definition of robustness, Annals of Mathematical Statis-

tics, 42, 1887-1896.

[18] Hill, J. P. and E. Renault (2010) Generalized method of moments with tail trimming, Working

paper

[19] Imbens, G. W., Spady, R. H. and P. Johnson (1998) Information theoretic approaches to inference

in moment condition models, Econometrica, 66, 333-357.

[20] Kitamura, Y. (1997) Empirical likelihood methods with weakly dependent process, Annals of Statis-

tics, 25, 2084-2102.

[21] Kitamura, Y. and T. Otsu (2010) Robust inference under moment restrictions, Working paper.

[22] Kitamura, Y., Otsu, T. and K. Evdokimov (2010) Robustness, infinitesimal neighborhoods, and

moment restrictions, Working paper.

[23] Kitamura, Y. and M. Stutzer (1997) An information-theoretic alternative to generalized method of

moments estimation, Econometrica, 65, 861-874.

[24] Newey, W. K. and R. J. Smith (2004) Higher order properties of GMM and generalized empirical

likelihood estimators, Econometrica, 72, 219-255.

[25] Owen, A. B. (1988) Empirical likelihood ratio confidence intervals for a single functional,

Biometrika, 75, 237-249.

[26] Ronchetti, E. and F. Trojani (2001) Robust inference with GMM estimators, Journal of Econo-

metrics, 101, 37-69.

[27] Salibian-Barrera, M., Van Aelst, S. and G. Willems (2007) Fast and robust bootstrap, Statistical

Methods and Applications, 17, 41-71.

[28] Singh, K. (1998) Breakdown theory for bootstrap quantiles, Annals of Statistics, 26, 1719-1732.

[29] Smith, R. J. (1997) Alternative semi-parametric likelihood approaches to generalized method of

moments estimation, Economic Journal, 107, 503–519.

[30] Stock, J. H., Wright, J. H. and M. Yogo (2002) A survey of weak instruments and weak identification

in generalized method of moments, Journal of Business & Economic Statistics, 20, 518-529.

21



|Tn| No Con. Contamination

Y(n) = 5 Y(n) = 10

Q.9 1.7059 2.0870 2.9616

True Q.95 2.0968 2.5265 3.5943

Q.99 2.9004 3.4971 4.8683

Q#
.9 1.7635 2.3302 3.2836

Uniform Q#
.95 2.1732 2.8532 3.9836

Q#
.99 3.1127 4.2318 6.3541

Q∗.9 1.7511 2.0108 2.3405

Implied Q∗.95 2.1525 2.5083 3.0213

Q∗.99 3.1083 3.7109 4.2179

Table 1: Quantiles of the uniform weight and implied probability bootstrap. “No Con.”

means “No Contamination”. The rows labelled “True” report the simulated quantiles of the distribution

of the non-studentized statistic |Tn| based on 20,000 realizations. The rows labelled “Uniform” report

the uniform weight bootstrap quantiles. The rows labelled “Implied” report the implied probability

bootstrap quantiles.

|tn| No Con. Contamination

Y(n) = 5 Y(n) = 10

Q.9 1.6683 1.6430 1.6268

True Q.95 1.9409 1.9348 1.9216

Q.99 2.5713 2.5588 2.5311

Q#
.9 1.6278 1.6250 1.8365

Uniform Q#
.95 1.9521 2.0006 2.2963

Q#
.99 2.7366 2.8185 3.0861

Q∗.9 1.6085 1.6079 1.6364

Implied Q∗.95 1.9217 1.9251 1.9963

Q∗.99 2.6977 2.7184 2.8990

Table 2: Quantiles of the uniform weight and implied probability bootstrap. “No Con.”

means “No Contamination”. The rows labelled “True” report the simulated quantiles of the distribution

of the studentized statistic |tn| based on 20,000 realizations. The rows labelled “Uniform” report the

uniform weight bootstrap quantiles. The rows labelled “Implied” report the implied probability bootstrap

quantiles.
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|Tn| No Con. Contamination

X(n) = 10 X(n) = 15

Q.9 1.0114 1.4327 1.8345

True Q.95 1.2082 1.6697 2.0805

Q.99 1.5963 2.1081 2.5421

Q#
.9 1.0028 1.3595 1.7055

Uniform Q#
.95 1.2085 1.6581 2.0077

Q#
.99 1.7108 2.2955 2.6912

Q∗.9 0.9813 1.2654 1.5707

Implied Q∗.95 1.1835 1.5579 1.8782

Q∗.99 1.6799 2.0177 2.2108

Table 3: Quantiles of the uniform weight and implied probability bootstrap. “No Con.”

means “No Contamination”. The rows labelled “True” report the simulated quantiles of the distribution

of the non-studentized statistic |Tn| based on 20,000 realizations. The rows labelled “Uniform” report

the uniform weight bootstrap quantiles. The rows labelled “Implied” report the implied probability

bootstrap quantiles.

|tn| No Con. Contamination

X(n) = 10 X(n) = 15

Q.9 1.6905 1.8376 2.0544

True Q.95 2.0099 2.1775 2.3962

Q.99 2.6506 2.8162 3.0748

Q#
.9 1.6901 2.1882 2.8206

Uniform Q#
.95 2.0451 2.7615 3.3728

Q#
.99 2.8885 3.9035 4.8735

Q∗.9 1.6981 1.8443 1.9642

Implied Q∗.95 2.0337 2.2425 2.3451

Q∗.99 2.8524 3.1438 3.2908

Table 4: Quantiles of the uniform weight and implied probability bootstrap. “No Con.”

means “No Contamination”. The rows labelled “True” report the simulated quantiles of the distribution

of the studentized statistic |tn| based on 20,000 realizations. The rows labelled “Uniform” report the

uniform weight bootstrap quantiles. The rows labelled “Implied” report the implied probability bootstrap

quantiles.
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∣∣Ťn∣∣ No Con. Contamination

Y(n) = Z(n) = 5 Y(n) = Z(n) = 10

Q̌.9 1.7341 1.8426 1.8426

True Q̌.95 2.1321 2.2214 2.2214

Q̌.99 2.9980 3.0221 3.0221

Q̌#
.9 1.8225 6.3818 29.3635

Uniform Q̌#
.95 2.2266 10.2179 53.4920

Q̌#
.99 3.0895 27.1615 196.3904

Q̌∗.9 1.8389 2.3933 2.3488

Implied Q̌∗.95 2.2574 2.9153 2.7979

Q̌∗.99 3.1003 4.1754 3.9878

Table 5: Quantiles of the uniform weight and implied probability bootstrap. “No Con.”

means “No Contamination”. The rows labelled “True” report the simulated quantiles of the distribution

of the non-studentized statistic
∣∣Ťn∣∣ based on 20,000 realizations. The rows labelled “Uniform” report

the uniform weight bootstrap quantiles. The rows labelled “Implied” report the implied probability

bootstrap quantiles.

∣∣ťn∣∣ No Con. Contamination

X(n) = Z1(n) = 10 X(n) = Z1(n) = 15

Q̌.9 1.8655 1.9475 1.9566

True Q̌.95 2.2176 2.2947 2.3068

Q̌.99 2.9203 2.9700 2.9812

Q̌#
.9 1.9246 4.0810 6.8627

Uniform Q̌#
.95 2.3272 5.2062 8.7074

Q̌#
.99 3.1718 7.5485 12.2239

Q̌∗.9 1.9737 2.2310 2.2038

Implied Q̌∗.95 2.3262 2.6594 2.6351

Q̌∗.99 3.1456 3.7534 3.6774

Table 6: Quantiles of the uniform weight and implied probability bootstrap. “No Con.”

means “No Contamination”. The rows labelled “True” report the simulated quantiles of the distribution

of the studentized statistic
∣∣ťn∣∣ based on 20,000 realizations. The rows labelled “Uniform” report the

uniform weight bootstrap quantiles. The rows labelled “Implied” report the implied probability bootstrap

quantiles.
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