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Abstract

In parametric models a su�cient condition for local identi�cation is that the
vector of moment conditions is di�erentiable at the true parameter with full rank
derivative matrix. We show that there are corresponding su�cient conditions for
nonparametric models. A nonparametric rank condition and di�erentiability of
the moment conditions with respect to a certain norm imply local identi�cation.
It turns out these conditions are slightly stronger than needed and are hard to
check, so we provide weaker and more primitive conditions. We extend the results
to semiparametric models. We illustrate the su�cient conditions with endogenous
quantile and single index examples. We also consider a semiparametric habit-
based, consumption capital asset pricing model. There we �nd the rank condition
is implied by an integral equation of the second kind having a one-dimensional null
space.
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1 Introduction

There are many important models that give rise to conditional moment restrictions.

These restrictions often take the form

E[�(Y;X; �0)jW ] = 0,

where �(Y;X; �) has a known functional form but �0 is unknown. Parametric models

of this form are well known from the work of Hansen (1982), Chamberlain (1987), and

others. Nonparametric versions are motivated by the desire to relax functional form

restrictions. Identi�cation and estimation of linear nonparametric conditional moment

models have been studied by Newey and Powell (1988, 2003), Hall and Horowitz (2005),

Blundell, Chen, and Kristensen (2007), Darolles, Fan, Florens, and Renault (2011), and

others.

The purpose of this paper is to derive identi�cation conditions for �0 when � may

be nonlinear in �. Models with nonlinear � are important. They include models with

conditional quantile restrictions, as discussed in Chernozhukov and Hansen (2005) and

Chernozhukov, Imbens, and Newey (2007). Allowing � to be nonlinear in � is also

important for economic structural models and for semiparametric models, as further

discussed below. In this paper we focus on conditions for local identi�cation of these

models. It should be possible to extend these results to provide global identi�cation

conditions by linking the local conditions with global conditions.

In parametric models there are easily interpretable rank conditions for local iden-

ti�cation; see Fisher (1966) and Rothenberg (1971). A su�cient condition for local

identi�cation from solving a set of equations is that the equations are di�erentiable at

the true value with full rank derivative matrix. We show a nonparametric analog of this

result. If a nonparametric rank condition holds and the equations are di�erentiable at

the true value with respect to a certain norm then the unknown function is locally iden-

ti�ed. However, the conditions of this result are sensitive to the choice of norm for the

derivative and are not primitive. For these reasons we add Hilbert space structure that

leads to more primitive su�cient conditions. We also consider semiparametric models,
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providing conditions for identi�cation of a vector of real parameters. These conditions

are based on "partialling out" the nonparametric part and allow for identi�cation of the

parametric part even when the nonparametric part is not identi�ed.

The usefulness of these conditions is illustrated by three examples. One example gives

primitive conditions for local identi�cation of the nonparametric endogenous quantile

models of Chernozhukov and Hansen (2005) and Chernozhukov, Imbens, and Newey

(2007). Another gives conditions for local identi�cation of a semiparametric index model

with endogeneity. There we give conditions for identi�cation of parametric components

when nonparametric components are not identi�ed. The third example give conditions

for local identi�cation of a semiparametric consumption capital asset pricing model with

habit formation.

In relation to previous literature, the nonparametric rank condition is a local version

of identi�cation conditions for linear conditional moment restriction models that were

considered in Newey and Powell (1988, 2003). Chernozhukov, Imbens, and Newey (2007)

also suggested the nonparametric rank condition and di�erentiability as su�cient condi-

tions for local identi�cation but did not use the right norm in de�ning di�erentiability.

Florens and Sbai (2010) recently gave local identi�cation conditions for games but their

conditions do not seem to apply to the kind of conditional moment restrictions that arise

in instrumental variable settings and are a primary subject of this paper. Also, the mod-

els we consider belong to the di�cult class of nonlinear ill-posed inverse problems, that

have not received much treatment in the mathematics literature.

Section 2 presents a general nonparametric local identi�cation result and relates it

to su�cient conditions for identi�cation in parametric models. Section 3 gives more

easily interpretable conditions for local identi�cation and applies these to the endogenous

quantile model. Section 4 provides conditions for identi�cation in semiparametric models

and applies these to the endogenous index model. Section 5 discusses the asset pricing

example and Section 6 brie
y concludes.
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2 Nonparametric Models

To help explain the nonparametric results and give them context we give a brief descrip-

tion of su�cient conditions for local identi�cation in parametric models. Let � be a p�1

vector of parameters and m(�) a J � 1 vector of moment conditions with m(�0) = 0 for

true value �0. Also let j�j denote the Euclidean norm in either <p or <J depending on

the context. We say that �0 is locally identi�ed if there is a neighborhood of �0 such

that m(�) 6= 0 for all � 6= �0 in the neighborhood. Let m0 denote the derivative of m(�)

at �0 when it exists. Su�cient conditions for local identi�cation can be stated as follows:

If m(�) is di�erentiable at �0 and rank(m
0) = p then �0 is locally identi�ed.

This result follows from two observations: 1) By rank(m0) = p; for h 2 <p the

Euclidean norm jhj is equivalent to the norm jm0hj; 2) By m0 being the derivative at �0

there is a neighborhood of �0 such that for all � 6= �0 in that neighborhood

jm(�)�m0(�� �0)j
jm0(�� �0)j

=
jm(�)�m(�0)�m0(�� �0)j

jm0(�� �0)j
< 1: (2.1)

This inequality implies m(�) 6= 0:

To extend these observations to provide su�cient conditions for local identi�cation

of nonparametric models we will let � denote a function with true value �0 and m(�) a

function of the object of interest. The true value of the object of interest satis�es

m(�0) = 0;

where we will be precise about the meaning of the equality in the discussion to fol-

low. Conditional moment restrictions are an important example where �(Y;X; �) is a

�nite dimensional residual vector depending on an unknown function � and m(�) =

E[�(Y;X; �)jW ].

To be precise we impose some mathematical structure. Assume that � 2 A, a Banach

space with norm k�kA : Let B be a Banach space with a norm k�kB and assume that m

maps A into B, i.e. m : A 7! B. The restrictions of the model are that km(�0)kB = 0.

[3]



Definition: �0 is locally identi�ed for N � A, with �0 2 N , if for all � 2 N ,

km(�)kB = 0) k�� �0kA = 0:

This local identi�cation concept is more general than the one introduced by Cher-

nozhukov, Imbens and Newey (2007). Note that local identi�cation is de�ned rela-

tive to a set N . Often there will be � > 0 such that N is a subset of an open ball

f� : k�� �0kA < �g: The set N may be strictly smaller than an open ball due to other

restrictions being imposed on N . For example, one could restrict N to be a bounded

set in a Sobolev space. Or one could restrict N to only include � that are bounded

functions. This restriction is useful for local identi�cation in conditional moment models

as further discussed below.

To formulate a nonparametric rank condition we will use a nonparametric version of

the derivative. We will be speci�c below about what we require of this derivative but for

now we just specify it to be a linear mapping m0 : A 7! B. Under the conditions we give,

m0 will be a Gâteaux derivative at �0; that can be calculated as

m0h =
@

@t
m(�0 + th)jt=0 (2.2)

for h 2 A and t a scalar. The result of this calculation can be used as a candidate for

checking the conditions given below.

The following condition is a nonparametric rank condition.

Assumption 1 (Rank): There is a continuous linear mapping m0 : A 7! B and a

set N 0 containing �0 such that for all � 2N 0;

km0(�� �0)kB = 0) k�� �0kA = 0: (2.3)

This condition means that on N 0 the only � with m0(���0) = 0 is � = �0. In other

words, on the domain f���0 : � 2N 0g the null space of the linear operator m0 is 0. If �

were �nite dimensional this condition would be equivalent to a full rank derivative matrix

(as long as N 0 is open and nonempty). This motivates our interpretation of Assumption

1 as being like the rank condition for local identi�cation in parametric models.

A similar condition is used to characterize identi�cation in linear conditional moment

models. For example, consider the linear conditional moment restriction where Y =
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�0(X) +U and E[U jW ] = 0: Let �(Y;X; �) = Y � �(X). Here m(�) = E[Y � �(X)jW ]

so that equation (2.2) is satis�ed with m0h = �E[h(X)jW ]. In this case Assumption

1 requires that E[�(X) � �0(X)jW ] 6= 0 for any � 2N 0 with � � �0 6= 0. This is the

completeness condition discussed in Newey and Powell (2003) with � restricted to N 0.

Similarly to local identi�cation, the rank condition is de�ned in terms of a set N 0: In

general there is a trade-o� between di�erent sets N 0:With smaller N 0 it is easier to verify

rank but the identi�cation result is weaker. For example, in the linear conditional moment

model we could let N 0 = f� 2 A : k�� �0kA < 1g; where khkA = fE[h(X)2]g1=2, and

X and W are continuous random variables. Then Assumption 1 requires completeness

of the conditional distribution of X given W . Su�cient conditions for completeness can

be found in Newey and Powell (2003), Chernozhukov, Imbens, and Newey (2007), and

Andrews (2011). If we consider the same mean square norms for k�kA and k�kB but restrict

�� �0 to be a bounded function of X, then Assumption 1 requires that the conditional

distribution of X given W be bounded complete, which is weaker than completeness.

See, for example, Mattner (1993), Chernozhukov and Hansen (2005), Blundell, Chen

and Kristensen (2007), D'Haultfoeuille (2010), and Andrews (2011) for discussions of

completeness and bounded completeness.

As for parametric models, the rank condition and di�erentiability will imply local

identi�cation. We base di�erentiability on the following de�nition.

Definition: The map m(�) is di�erentiable on N 00 at �0 for the norm k�k if for all

� > 0 there is " > 0 such that for all � 2 N 00 with 0 < k�� �0k < ",

km(�)�m(�0)�m0(�� �0)kB
k�� �0k

< �:

This condition is the same as Frechet di�erentiability only we do not require that the

domain of m(�) be a Banach space with norm k�k, i.e. we do not require that all Cauchy

sequences converge in the metric implied by k�k. This condition does depend on k�k,

which is important, because di�erent norms are not equivalent in nonparametric models.

The rank condition and di�erentiability for the norm khk = km0hkB are su�cient for

local identi�cation in nonparametric models.
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Theorem 1: If Assumption 1 is satis�ed and m(�) is di�erentiable on N 0 at �0 for

the norm km0hkB then there is " > 0 such that �0 is locally identi�ed for N = N 0 \ f� :

km0(�� �0)kB < "g:

Di�erentiability is actually a stronger assumption than is needed for local identi�-

cation result. Intuitively, it is su�cient that an inequality analogous to equation (2.1)

be satis�ed. For this reason we also consider identi�cation when we just impose that

inequality.

Assumption 2: (Derivative) There is a set N 00 containing �0 such that for all

� 2 N 00 with � 6= �0;

km(�)�m(�0)�m0(�� �0)kB
km0(�� �0)kB

< 1:

The rank and derivative conditions are su�cient for local identi�cation.

Theorem 2: If Assumptions 1 and 2 are satis�ed then �0 is locally identi�ed for

N=N 0 \N 00:

In linear conditional moment restriction models Assumption 2 will automatically be

satis�ed and m(�) will be di�erentiable for any norm. That is because in the linear case

m(�)�m(�0)�m0(�� �0) = 0:

Therefore Theorem 2 includes previous identi�cation results for linear conditional mo-

ment restrictions as a special case.

It is important to note that Theorems 1 and 2 just provide su�cient, and not neces-

sary, conditions for local identi�cation. In particular, Assumption 1 may not be needed

for identi�cation in nonlinear models, although its absence may a�ect the attainable

convergence rate of estimators, as occurs in parametric models, see Sargan (1983).

3 Local Identi�cation in Hilbert Spaces

In Hilbert spaces we can give more primitive conditions for local identi�cation of nonlinear

models. This will be based on a lower bound for the rank norm km0(�� �0)k2B.
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Assumption 3: (A; k�kA) and (B; k�kB) are separable Hilbert spaces and either a)

there is a set N 0; an orthonormal basis f�1; �2; :::g; and a positive, nonincreasing sequence

(�1; �2; :::) such that for all � 2 N 0;

km0(�� �0)k2B �
1X
j=1

�2jh�� �0; �ji2;

or b) N 0 = A and m0 is a compact linear operator with positive singular values (�1; �2; :::).

The hypothesis in b) that m0 is a compact operator is not very strong; e.g. see Kress

(1999). It implies that there is an orthonormal basis f�j : j = 1; : : : g for A with

km0(�� �0)k2B =
1X
j=1

�2jh�� �0; �ji2;

where �2j are the eigenvalues and �j the eigenfunctions of the self-adjoint operator m
0�m0,

so that condition a) is satis�ed when �j > 0 for all j. The assumption that the singular

values are all positive is quite strong and implies the rank condition for N 0 = A. In the

linear conditional moment restriction model this condition implies (L2-) completeness of

the conditional expectation E[�jW ]. Part a) di�ers from part b) by imposing a lower

bound on km0(�� �0)k2B only over a subset N 0 of A and by allowing the basis f�jg

to be di�erent from the eigenfunction basis of the operator m0�m0. In principle this

allows us to impose restrictions on ���0, like boundedness and smoothness, which help

the rank condition to hold. Assumption 3 a) is a natural extension of the reverse link

condition in Chen and Rei� (2010), that is used to establish the rate of convergence for

the linear nonparametric instrumental variables (NPIV) problem. It has been used in

Chen and Pouzo (2008) for the convergence rates of their estimators of functions identi�ed

by nonlinear nonparametric conditional moment restrictions. Here we demonstrate that

Assumption 3 a) is useful also for local identi�cation.

It is di�cult to show that m(�) is di�erentiable for the norm km0hkB even when it is

easy to show di�erentiability for khkA. It also seems often impossible to make km0hkB
equivalent to khkA by restricting h. For these reasons we follow a di�erent approach

where we strengthen the assumption of di�erentiability of m(�) for the norm khkA and
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forge a link between the norms khkA and km0hkB using Assumption 3. The following

condition strengthens di�erentiability of m(�) for the norm khkA.

Assumption 4: There are constants L � 0 and r > 1 and a set N 00 such that for all

� 2N 00,

km(�)�m(�0)�m0(�� �0)kB � L k�� �0k
r
A :

This condition is like Holder continuity of the derivative and L = 0 corresponds to

the case that m(�) is linear in �. Let h�; �i denote the inner product on A and for any

q > 1 de�ne

khkq =
" 1X
j=1

�
�2=(q�1)
j hh; �ji2

#1=2
:

The following is an identi�cation result based on Theorem 1.

Theorem 3: If Assumptions 3 and 4 (with L > 0) are satis�ed then for any C > 0

and any q with 1 < q < r there is � > 0 such that �0 is locally identi�ed for

N = N 0 \N 00\f� : km0(�� �0)kB < �; k�� �0kq � Cg:

We can also base a result on the inequality of Assumption 2 rather than di�erentia-

bility.

Theorem 4: If Assumptions 3 and 4 (with L > 0) are satis�ed then �0 is locally

identi�ed on

N = N 0\N 00\f� : k�� �0kr < L�1=(r�1)g:

These results can be explained in a straightforward way. In conditional moment

restriction models the operator m0 often will not have a continuous inverse, i.e. there

will be an ill-posed inverse problem. Under Assumption 3 that corresponds to �j ! 0 as

j ! 1. A consequence of this is that the norms km0hkB and khkA are not equivalent.

However, khkA is generally a natural norm to use in the remainder of Assumption 4, as

is illustrated in the quantile example below. Therefore, to obtain su�cient conditions for

local identi�cation it is useful to forge a link between the norms km0hkB and khkA. The

bounds on khkq or khkr allow us to forge such a link. Implicitly these bounds restrict
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the higher-order Fourier coe�cients of h to go to zero at certain rates, so that smallness

of km0hkB implies that khkA is small. In this way the link leads to a small remainder in

the derivative expansion, which in turn leads to Assumption 2.

The bounds on k�� �0kq in Theorems 3 and 4 require that the Fourier coe�cients

h�� �0; �ji of the deviations ���0 vanish faster as j grows than �1=(q�1)j . This bound is

a "source condition" under Assumption 3 b) and is similar to conditions used by Florens,

Johannes and Van Bellegem (2010) and others. Under Assumption 3 a) it is similar to

norms in generalized Hilbert scales, for example, see Engl, Hanke, and Neubauer (1996)

and Chen and Rei� (2010). Theorems 3 and 4 also remain valid if we impose uniform

bounds on the size of Fourier coe�cients, corresponding to a hyperrectangle instead of

an ellipsoid.

To illustrate the usefulness of the results, we consider an endogenous quantile example

where 0 < � < 1 is a scalar and

�(Y;X; �) = 1(Y � �(X))� �

Here we have

m(�) = E[1(Y � �(X))jW ]� �:

Let fY (yjX;W ) denote the conditional density of Y given X and W:

Proposition 5: If fY (yjX;W ) is continuously di�erentiable with jdfY (yjX;W )=dyj �

L1; X has conditional pdf fX(xjW ) given W and marginal pdf f(x) satisfying fX(xjW ) �

L2f(x); and m
0h = E[fY (�0(X)jX;W )h(X)jW ] satis�es Assumption 3, then �0 is locally

identi�ed for

N = N 0\f� : � : k�� �0k2 < (L1L2)�1g:

This result gives a precise link between a neighborhood on which �0 is locally iden-

ti�ed and the bounds L1 and L2. Also, here the neighborhood is de�ned in terms of

k�� �0k2 which is a strong norm. This result corrects Theorem 3.2 of Chernozhukov,

Imbens, and Newey (2007) and has more primitive conditions than the global identi�-

cation characterization of Chernozhukov and Hansen (2005). Horowitz and Lee (2007)
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impose analogous bounds on a strong norm in their paper on convergence rates of non-

parametric endogenous quantile estimators.

4 Semiparametric Models

In this section, we consider local identi�cation in possibly nonlinear semiparametric mod-

els, where � can be decomposed into a p � 1 dimensional parameter vector � and non-

parametric component g, so that � = (�; g). Let j � j denote the Euclidean norm for �

and G the parameter space for g; where we assume that G is a Banach space with norm

k�kG ; such as a Hilbert space. We focus here on the model

E[�(Y;X; �0; g0)jW ] = 0;

where �(y; x; �; g) is a J � 1 vector of residuals. Here m(�) = E[�(Y;X; �; g)jW ] will

be considered as an element of the Hilbert space B of J � 1 random vectors with inner

product

ha; bi = E[a(W )T b(W )]:

The di�erential m0(�� �0) can be expressed as

m0(�� �0) = m0
�(� � �0) +m0

g(g � g0);

where m0
� is the derivative of m(�; g0) = E[�(Y;X; �; g0)jW ] with respect to � at �0 and

m0
g is the Gateaux derivative of m(�0; g) with respect to g at g0: To give conditions for

local identi�cation of �0 in the presence of the nonparametric component g it is helpful

to partial out g. Let �M be the closure of the linear span M of m0
g(g � g0) for g 2 N 0

g

where N 0
g will be speci�ed below. In general

�M 6=M because the linear operator m0
g

does not have closed range (due to the ill-posed inverse problem). For the jth unit vector

ej let

��j = arg min
�2 �M

E[fm0
�(W )ej � �(W )gTfm0

�(W )ej � �(W )g];

which exists by standard Hilbert space results, and satis�es

E[fm0
�(W )ej � ��j gTm0

g(g � g0)] = 0 for all g 2 N 0
g:
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De�ne � to be the p� p matrix with

�jk := E
h�
m0
�(W )ej � ��j (W )

	T �
m0
�(W )ek � ��k(W )

	i
; (j; k = 1; :::; p):

The following condition is important for local identi�cation of �0.

Assumption 5: The mapping m0 : <p�N 0
g �! B is continuous and linear and � is

nonsingular.

This assumption is similar to those imposed in Ai and Chen (2003, assumption 4.1(i))

and Chen and Pouzo (2009, assumption 2.10), who used it for establishing the n�1=2-

normality of the sieve minimum distance estimator for the parametric part. Nonsingu-

larity of � can be shown to be equivalent to �niteness of the semiparametric variance

bound for �0; when E[�(Y;X; �0)�(Y;X; �0)
T jW ] is bounded with smallest eigenvalue

bounded away from zero; see, e.g., Chamberlain (1992). In the local identi�cation analy-

sis considered here it leads to local identi�cation of �0 without identi�cation of g when

m(�0; g) is linear in g. It allows us to separate conditions for identi�cation of �0 from

conditions for identi�cation of g, via the following result:

Lemma 6: If Assumption 5 is satis�ed then there is " > 0 such that for all (�; g) 2

<p �N 0
g;

"(j� � �0j+


m0

g(g � g0)



B) � km

0(�� �0)kB :

An implication of Lemma 6 is that if Assumption 5 is satis�ed then Assumption 1

for m0
g will imply Assumption 1 for m

0. In this way Assumption 5 is a critical condition

that allows us to specify conditions for local identi�cation of �0. One other condition is

also useful for this purpose.

Assumption 6: For every " > 0 there is a neighborhood B of �0 and a set N 000
g such

that for all g 2 N 000
g with probability one E[�(Y;X; �; g)jW ] is continuously di�erentiable

in � on B and

sup
g2N 000

g

r
E[sup

�2B
j@E[�(Y;X; �; g)jW ]=@� � @E[�(Y;X; �0; g0)jW ]=@�j2] < ":

It turns out that Assumptions 5 and 6 will be su�cient for local identi�cation of �0

when m(�0; g) is linear in g; i.e. for m(�; g) = 0 to imply � = �0 when (�; g) is in
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some neighborhood of (�0; g0): This works because Assumption 5 removes the e�ect of

unknown g on local identi�cation of �0 by partialling out g.

Theorem 7: If Assumptions 5 and 6 are satis�ed and m(�0; g) is linear in g then

there is a neighborhood B of �0 and a set Ng containing g0 such that �0 is locally identi�ed

for N = B �Ng: If, in addition, Assumption 1 is satis�ed for m
0
g and N 0

g replacing m
0

and N 0 then �0 = (�0; g0) is locally identi�ed for N = B � (Ng \N 0
g):

This result is more general than Florens, Johannes, and Van Bellegem (2008) and

Santos (2010) in allowing for nonlinearities in �:

For semiparametric models that are nonlinear in g we can give local identi�cation

results based on di�erentiability of m(�0; g) with respect to g or on the more primitive

conditions of Section 3. For brevity we will focus on a result based on Theorem 4.

Theorem 8: If Assumptions 3 and 4 are satis�ed with � = g, m(�) = m(�0; g),

m0 = m0
g, N 0 = N 0

g;N 00 = N 00
g and Assumptions 5 and 6 are satis�ed then there is a

neighborhood B of �0 and � > 0 such that �0 = (�0; g0) is locally identi�ed for N =

B �Ng, where

Ng = N 0
g \N 00

g \N 000
g \ fg : kg � g0kr < �g:

An interesting and potentially important example is a single index model with endo-

geneity. This model is given by

Y = g0(X1 +X
T
2 �0) + U; E[U jW ] = 0; (4.4)

where �0 is a vector of unknown parameters, g0(�) is an unknown function, and W are

instrumental variables. The scale of the parametric part is not identi�ed separately, and

hence, we normalize the coe�cient of X1 to 1. Here

m(�)(W ) = E[Y � g(X1 +X
T
2 �)jW ]:

Let V = X1 +X
T
2 �0 and for di�erentiable g0(V ) let

m0
� = �E[g00(V )X2jW ]:

[12]



Let ��j denote the projection of m
0
�ej = �E[g00(V )X2jjW ] on the mean-square closure of

the set fE[h(V )jW ] : E[h(V )2] <1g and � the matrix with �jk = E[(m0
�ej���j )(m0

�ek�

��k)]:

Proposition 9: Consider the model of (4.4). If a) g0(V ) is continuously di�eren-

tiable with bounded derivative g00(V ) satisfying jg00( ~V ) � g00(V )j � Cgj ~V � V j for some

Cg > 0; b) E[jX2j4] < 1, and c) � is nonsingular then there is a neighborhood B of �0

and � > 0 such that for

N �
g = fg : g(v) is continuously di�erentiable and sup

v
jg0(v)� g00(v)j � �g

�0 is locally identi�ed for N = B �N �
g : Furthermore, if there is N 0

g such that E[g(V )�

g0(V )jW ] is bounded complete on the set fg(V )� g0(V ) : g 2 N 0
gg then (�0; g0) is locally

identi�ed for N = B � (N �
g \N 0

g):

Since this model includes as a special case the linear simultaneous equations model the

usual rank and order conditions are still necessary for � to be nonsingular for all possible

models, and hence are necessary for identi�cation. Relative to the linear nonparametric

model in Newey and Powell (1988, 2003) the index structure lowers the requirements

for identi�cation by requiring that m0
gh = �E[h(V )jW ] be complete on N 0

g rather than

requiring completeness of E[r(X)jW ]. For example, it may be possible to identify �0 and

g0 with only two instrumental variables, one of which is used to identify g0 and nonlinear

functions of the other being used to identify �0.

To further explain we can give more primitive conditions for nonsingularity of �. The

following result gives a necessary condition for � to be nonzero (and hence nonsingular)

as well as a su�cient condition for nonsingularity of �.

Proposition 9A: Consider the model of (4.4). If � is nonsingular then the condi-

tional distribution of W given V is not complete. Also, if there is a measurable function

T (W ) such that the conditional distribution of V given W depends only on T (W ) and

for every � 6= 0; E[g00(V )�
0X2jW ] is not measurable with respect to T (W ) then � is

nonsingular.

To explain the conditions of this result note that if there is only one variable in W

[13]



then the completeness condition (of W given V ) can hold and hence � can be singular.

If there is more than one variable in W then generally completeness (of W given V ) will

not hold, because completeness would be like identifying a function of more than one

variable (i.e. W ) with one instrument (i.e. V ). If W and V are joint Gaussian and V

and W are correlated then completeness holds (and hence � is singular) when W is one

dimensional but not otherwise. In this sense having more than one instrument in W is

a necessary condition for nonsingularity of �. Intuitively, one instrument is needed for

identi�cation of the one dimensional function g0(V ) so that more than one instrument is

needed for identi�cation of �.

The su�cient condition for nonsingularity of � is stronger than noncompleteness. It

is essentially an exclusion restriction, where E[g00(V )X2jW ] depends on W in a di�erent

way than the conditional distribution of V depends on W . This condition can be shown

to hold if W and V are Gaussian, W is two dimensional, and E[g00(V )X2jW ] depends on

all of W .

5 Semiparametric CCAPM Models

Consumption capital asset pricing models (CCAPM) provide interesting examples of non-

parametric and semiparametric moment restrictions, see Gallant and Tauchen (1989),

Hansen, Heaton, Lee, and Roussanov (2007), Chen and Ludvigson (2009), and others.

In this section, we illustrate our results by applying them to identi�cation of a particular

semiparametric speci�cation. These results could easily be extended to other speci�ca-

tions. Newey and Powell (1988), Chen and Ludvigson (2009), Lewbel and Linton (2010),

and Escanciano and Hoderlein (2010) have analyzed nonparametric marginal utility spec-

i�cations.

To describe the model let Ct denote consumption level at time t and ct � Ct=Ct�1

be consumption growth. Suppose that the marginal utility of consumption at time t is

given by

MUt = C
�
0
t g0(Ct=Ct�1) = C

�
0
t g0(ct);

[14]



where g0(c) is an unknown positive function. For this model the intertemporal marginal

rate of substitution is

�0MUt+1=MUt = �0c
�
0
t+1 g0(ct+1)=g0(ct);

where 0 < �0 < 1 is the rate of time preference. Let Rt+1 = (Rt+1;1; :::; Rt+1;J)
T be a

J � 1 vector of gross asset returns. A semiparametric CCAPM equation is then given by

E[Rt+1�0c
�
0
t+1fg0(ct+1)=g0(ct)gjWt] = e; (5.5)

where Wt � (Zt; ct) is a vector of variables observed by the agent at time t, and e is a

J�1 vector of ones. This corresponds to an external habit formation model with only one

lag as considered by Chen and Ludvigson (2009). We focus here on consumption growth

ct = Ct=Ct�1 to circumvent the potential nonstationarity of the level of consumption, as

has long been done in this literature, e.g. Hansen and Singleton (1982).

As discussed in the previous Section, local identi�cation of �0 = (�0; 
0)
T and g0

will follow from nonsingularity of a matrix and from identi�cation of the nonparametric

part at �0: Identi�cation of �0 is straightforward while nonparametric identi�cation is

interesting, so we focus �rst on the nonparametric part. We consider two approaches,

based on an integral equation of the �rst and second kind respectively. While our results

are speci�c to the semiparametric model of equation (5.5), both approaches are applicable

to a broad class of semiparametric consumption based asset pricing models, such as

models with durable good consumption, housing, etc..

5.1 Identi�cation via integral equation of �rst-kind

Let h(ct+1; ct) = g(ct+1)=g(ct). If g0 is known to be bounded and bounded away from zero

then it is su�cient for identi�cation of h that at least one of the "adjusted" conditional

expectation operators

E�j [h(ct+1; ct)jWt] =
E[Rt+1;jc

�
0
t+1h(ct+1; ct)jWt]

E[Rt+1;jc
�
0
t+1 jWt]

[15]



be boundedly complete. Since identifying h0(ct+1; ct) identi�es g0 only up to scale we

also normalize g0 to satisfy E[g0(ct)
2] = 1: Let �G denote the set of positive functions g

that are bounded, bounded away from zero, and satisfy E[g(ct)
2] = 1.

Assumption 7a: E�j [�jWt] is boundedly complete for some j and g0 2 �G.

An alternative scale normalization is also interesting. If g0(c
�) = 1 for some c�, then g0

is identi�ed by g0(ct+1) = h0(ct+1; c
�). We could directly impose this scale normalization

in equation (5.5) and then g0(ct+1) is identi�ed when at least one of the "return adjusted"

conditional expectation operators

E�j [g(ct+1)jZt; ct = c�] =
E[Rt+1;jc

�
0
t+1 g(ct+1)jZt; ct = c�]

E[Rt+1;jc
�
0
t+1 jZt; ct = c�]

is boundedly complete. This identi�cation condition is consistent with existing �ndings

that ct is a \weak instrument" and that one needs other more powerful instruments Zt

for strong identi�cation and reliable estimation of CCAPM; see, e.g., Stock and Wright

(2000). In fact, Chen and Ludvigson (2009) �nd that all the empirical results of their

semiparametric habit formation CCAPM remain virtually unchanged when ct is dropped

from the conditioning set Wt = (Zt; ct).

5.2 Identi�cation via integral equation of second-kind

Multiplying g0(ct) through CCAPM equation (5.5) we see that identi�cation of g0(c) (up

to scale) just requires a unique solution (up to scale) of

E[�0Rt+1c
�
0
t+1 g(ct+1)jWt]� g(ct)e = 0: (5.6)

This is a vector homogenous linear integral equation of the second kind. It will identify

g0(c) (up to scale) if and only if the intersection of its null space N with �G is a single-

ton. A one-dimensional null space N is thus su�cient for identi�cation of g0, since the

E[g0(ct)
2] = 1 normalization will reduce that to a singleton. This condition is analogous

to the well known rank condition for identi�cation in parametric simultaneous equations

models, which requires a one-dimensional null space for the restriction matrix multiplied

by the matrix of structural coe�cients (see Fisher, 1966, Theorem 2.3.1).

[16]



Assumption 7b: N is one dimensional and g0 2 �G.

The following reasoning suggests that one-dimensional N is a weak condition that

is generic. Note �rst that N = \Jj=1 Nj where Nj is the null space of the operator

E[�0Rt+1;jc
�
0
t+1 g(ct+1)jWt]�g(ct): Furthermore, for any �nite valued, measurable function

T (Zt), by iterated expectations it follows that

Nj � N T
j = fg : E[�0Rt+1;jc

�
0
t+1 g(ct+1)jT (Zt); ct]� g(ct) = 0g:

If E[�0Rt+1;jc
�
0
t+1 g(ct+1)jT (Zt) = �; ct] is a compact operator thenN T

j is �nite dimensional

(see e.g. Kress, 1999, Chapter 3). Therefore, Nj � \TN T
j has �nite dimension, where

the intersection is over all measurable functions T: Furthermore, if Zt is continuously

distributed then there will be an in�nite number of distinct such T . Generically the

intersection of an in�nite number of �nite dimensional spaces is the linear space that is

common to each, which is just constant multiples of g0(c), so that Nj is one dimensional.

It follows that generically N will be one-dimensional, and hence g0(c) identi�ed (up to

scale).

Many overidentifying restrictions may be present in this model. The argument given

for generic identi�cation holds if J = 1 and Zt consists of one continuous variable. Larger

J and more instrumental variables in Zt constitute overidentifying restrictions.

The identi�cation condition in Assumption 7B is interesting because it shows that

Assumption 1 need not reduce to completeness of a conditional expectation. Instead,

the rank condition holds if an integral equation of the second kind has a one-dimensional

null space. Lewbel and Linton (2010) and Escanciano and Hoderlein (2010) also consider

identi�cation of nonparametric marginal utility of consumption, MUt = �0(Ct), using an

integral equation of the second kind, but their formulations and conditions are di�erent

from ours.

Imposing the scale normalization g0(c
�) = 1 gives another view of identi�cation from

an integral equation of the second kind. With that normalization (5.6) becomes the

integral equation of the �rst kind discussed in the previous subsection, namely

E[�0Rt+1c
�
0
t+1 g0(ct+1)jW �

t ]� e = 0 with W �
t � (Zt; ct = c�):

[17]



Turning to the identi�cation of parametric component �0 = (�0; 
0)
T ; let

m�1(Wt) = E[Rt+1c
�
0
t+1 g0(ct+1)jWt]; m�2(Wt) = ��0E[Rt+1 ln(ct+1)c�
0t+1 g0(ct+1)jWt]:

Let �M be the mean square closure of the linear span of

fE[Rt+1�0c�
0t+1 g(ct+1)jWt]� g(ct)e : E[g(ct)2] <1g:

De�ne

��j = arg min
�2 �M

E[fm�j(Wt)� �(Wt)gTfm�j(Wt)� �(Wt)g];

and let matrix � be a 2� 2 symmetric matrix with

�jk = E[fm�j(Wt)� ��j (Wt)gTfm�k(Wt)� ��j (Wt)g]; (j; k = 1; 2):

Nonsingularity of � leads to local identi�cation of �0 = (�0; 
0)
T .

The matrix � appears to be nonsingular quite generally as long as Wt includes other

variables Zt in addition to ct. Similarly to the index example the instrument ct is used

in identifying g0 so that addition instruments will be useful for identifying �. It should

be possible to formulate necessary and su�cient conditions similar to those for the index

model but for brevity we leave this to future work.

To help Assumption 6 be satis�ed it is useful to impose a dominance condition. For

any � > 0 de�ne

Dt = (1 + jRt+1j)[2 + j ln(ct+1)j] sup

2[
0��;
0+�]

c�
t+1:

We can now give a local identi�cation result for this model. Let �G denote the set of

functions g(c) that are bounded and bounded away from zero.

Proposition 10: If � is nonsingular, g0(�) 2 �G, 0 < �0 < 1; and E[D2
t ] < 1 then

there is a neighborhood B of �0 and " > 0 such that for

N "
g = fg : E[E[D2

t jWt]jg(ct+1)� g0(ct+1)j2] < "; g 2 �Gg;

�0 is locally identi�ed for N = B�N "
g : Furthermore, if Assumption 7A or 7B is satis�ed

then (�0; g0) is locally identi�ed for N = B �N "
g .

[18]



6 Conclusion

We provide su�cient conditions for local identi�cation for a general class of semiparamet-

ric and nonparametric conditional moment restriction models. We �nd that the choice of

norms and neighborhoods are important for local identi�cation of nonparametric models.

We provide new examples to illustrate the usefulness of our identi�cation results.

7 Appendix

Let Proj(bjM) denote the orthogonal projection of an element b of a Hilbert space on a

closed linear subsetM of that space.

Lemma A1: If a) M is a closed linear subset of Hilbert space H;b) bj 2 H (j =

1; : : : ; p), c) the p � p matrix � with �jk = hbj � Proj(bjjM); bk � Proj(bkjM)i is non-

singular then for b = (b1; : : : ; bp) there exists " > 0 such that for all a 2 <p and � 2M;

bTa+ �

 � " (jaj+ k�k) :
Proof: Let �bj = Proj(bjjM), ~bj = bj � �bj; �b = (�b1; :::;�bp)0, and ~b = (~b1; :::;~bp)0. Note

that for "1 =
p
�min(�)=2,

bTa+ �

 =

r


~bTa+ � +�bTa


2 =r


~bTa


2 + 

� +�bTa

2
� (




~bTa


+ 

� +�bTa

)=p2 = (paT�a+ 

� +�bTa

)=p2
� "1 jaj+



� +�bTa

 =p2:
Also note that for any C� �

qP
j



�bj

2 it follows by the triangle and Cauchy-Schwartz
inequalities that 

�bTa

 �X

j



�bj

 jajj � C� jaj :
Choose C� big enough that "1=

p
2C� � 1: Then by the triangle inequality,

� +�bTa

 =p2 �

�
"1=
p
2C�

�

� +�bTa

 =p2 = "1 

� +�bTa

 =2C�
� "1

�
k�k �



�bTa

� =2C� � "1 (k�k � C� jaj) =2C�
= ("1=2C

�) k�k � "1 jaj =2:

[19]



Then combining the inequalities, for " = minf"1=2; "1=2C�g;

bTa+ �

 � "1 jaj+ ("1=2C�) k�k � "1 jaj =2

= ("1=2) jaj+ ("1=2C�) k�k � " (jaj+ k�k) :Q:E:D:

Proof of Theorem 1: Choosing � = 1 in the de�nition of di�erentiability, it follows

that there is an " > 0 such that for all � 2N 0 with 0 < km0(�� �0)kB < ";

km(�)�m0(�� �0)kB
km0(�� �0)kB

=
km(�)�m(�0)�m0(�� �0)kB

km0(�� �0)kB
< 1:

This can only be the case if m(�) 6= 0. Therefore, m(�) 6= 0 for all � 2 N with � 6= �0
Q.E.D.

Proof of Theorem 2: For � 2 N it follows by Assumptions 1 and 2 that

km(�)�m0(�� �0)kB
km0(�� �0)kB

=
km(�)�m(�0)�m0(�� �0)kB

km0(�� �0)kB
< 1:

The conclusion then follows as in the proof of Theorem 1. Q.E.D.

Proof of Theorem 3: Assumption 3 implies Assumption 1 and

km0hk2B �
1X
j=1

�2j hh; �ji
2 ;

where hh; �ji are the Fourier coe�cients satisfying h =
P1

j=1 hh; �ji�j and the inequality

is an equality under Assumption 3 b). Also, by the Holder inequality, for any q > 1 and

aj = jhh; �jij,

(
X
j

a2j)
1=2 =

 X
j

�
�2=q
j a

2�2=q
j �

2=q
j a

2=q
j

!1=2

�
 X

j

�
�2=(q�1)
j a2j

!(q�1)=2q X
j

�2ja
2
j

!1=2q
:

Therefore we have

khkA �
�
khkq

�1�1=q
km0hk1=qB : (7.7)
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Let N 000 = N 00 \ fk�� �0kq � Cg: Then, by Assumption 4, for � 2 N 000 we have

km(�)�m(�0)�m0(�� �0)kB � L k�� �0kr(1�1=q)q km0(�� �0)kr=qB

� LCr(1�1=q) km0(�� �0)kr=qB :

Since r=q > 1 it follows that m(�) is di�erentiable on N 000 at �0 for the norm km0hkB, so

the conclusion follows by Theorem 1: Q.E.D.

Proof of Theorem 4: By Assumption 4 and equation (7.7) with q = r it follows

that for � 2 N with � 6= �0;

km(�)�m0(�� �0)kB � L k�� �0kr�1r km0(�� �0)kB

< km0(�� �0)kB ;

implying m(�) 6= 0 by Theorem 2. Q:E:D:

Proof of Proposition 5: Let F (yjX;W ) = Pr(Y � yjX;W ),m(�) = E [1(Y � �(X))jW ]�

� , and m0h = E [fY (�0(X)jX;W )h(X)jW ], so that by iterated expectations,

m(�) = E [F (�(X)jX;W )jW ]� �:

Then by a mean value expansion, and by fY (yjX;W ) continuously di�erentiable

jF (�(X)jX;W )� F (�0(X)jX;W )� fY (�0(X)jX;W )(�(X)� �0(X))j

= j[fY (��(X)jX;W )� fY (�0(X)jX;W )] [�(X)� �0(X)]j

� L1 [�(X)� �0(X)]2 :

Then for L1L2 = L

jm(�)�m(�0)�m0(�� �0)j � L1E
�
f�(X)� �0(X)g2jW

�
� LE[f�(X)� �0(X)g2] = L k�� �0k2A :

Therefore,

km(�)�m(�0)�m0(�� �0)kB � L k�� �0k
2
A ;

so that Assumption 4 is satis�ed with r = 2 and N 00 = A. The conclusion then follows

from Theorem 4: Q:E:D:
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Proof of Lemma 6: Apply Lemma A1 with B there equal to B from the text, �M

in Lemma A1 equal to the closed linear span ofM0 = fm0
g(g � g0) : g 2 N 0

gg; bj = m0
�ej

for the jth unit vector ej, and a = � � �0: Then for all (�; g) 2 <p �N 0
g we have

m0(�� �0) = b0a+ �; b0a = m0
�(� � �0); � = m0

g(g � g0) 2 �M.

The conclusion then follows by the conclusion of Lemma A1. Q.E.D.

Proof of Theorem 7: Let " be from the conclusion of Lemma 6 and let B and

Ng = N 000
g be as in Assumption 6 with

sup
g2Ng

E[sup
�2B

j@E[�(Y;X; �; g)jW ]=@� � @E[�(Y;X; �0; g0)jW ]=@�j2] < "2:

Then bym(�0; g) linear in g and expanding each element ofm(�; g)(W ) = E[�(Y;X; �; g)jW ]

in �; it follows that for each (�; g) 2 B �Ng, if � 6= �0;

km(�)�m0(�� �0)kB

=


m(�; g)�m(�0; g)�m0

�(� � �0)



B =




h@m( ~�; g)=@� �m0
�

i
(� � �0)





B

�



m0

�(
~�; g)�m0

�





B
j� � �0j < " j� � �0j � "(j� � �0j+



m0
g(g � g0)




B)

� km0(�� �0)kB :

where ~� is a mean value depending on W that actually di�ers from row to row of

m0
�(
~�; g) = @E[�(Y;X; ~�; g)jW ]=@�:

Thus, km(�)�m0(�� �0)kB < km0(�� �0)kB, implying m(�) 6= 0; giving the �rst

conclusion.

To show the second conclusion, suppose � = �0 and g 2 Ng \N 0
g with g 6= g0: Then

km0(�� �0)kB =


m0

g(g � g0)



B > 0;

while km(�)�m0(�� �0)kB = 0; so m(�) 6= 0 follows as in the proof of Theorem 1.

Q.E.D.
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Proof of Theorem 8: Let " be from the conclusion of Lemma 6. Then similarly to

the proof of Theorem 7, for all g 2 N 00
g \N 000

g :

km(�)�m0(�� �0)kB

�


m(�; g)�m(�0; g)�m0

�(� � �0)



B +



m(�0; g)�m0
g(g � g0)




B

� " j� � �0j+ L kg � g0krA ;

where the last inequality is strict if � 6= �0 and L is from Assumption 4. Choose � =

("=L)1=(r�1). Then for g 2 N 0
g it follows as in the proof of Theorem 4 that for g 6= g0

with kg � g0kr < �

L kg � g0krA � L kg � g0k
r�1
r



m0
g(g � g0)




B < "



m0
g(g � g0)




B :

Combining this inequality with the previous one, it then follows from Lemma 6 that for

� 6= �0, implying either � 6= �0 or g 6= g0,

km(�)�m0(�� �0)kB < "(j� � �0j+


m0

g(g � g0)



B � km

0(�� �0)kB :

The conclusion then follows by Theorem 2. Q.E.D.

Proof of Proposition 9: The proof will proceed by verifying the conditions of

Theorem 7. Note that Assumption 5 is satis�ed. We now check Assumption 6. Note

that for any � > 0 and g 2 N �
g , g(X1 + X

T
2 �) is continuously di�erentiable in � with

@g(X1+X
T
2 �)=@� = g

0(X1+X
T
2 �)X2: Also, for � a p� 1 vector and �B a neighborhood

of zero it follows by boundedness of g00 and the speci�cation of N �
g that

E[sup
�2 �B

��g0(X1 +X
T
2 (� +�))X2

�� jW ] � CE[jX2j jW ] <1 a.s.

Therefore, by the dominated convergence theorem m(�)(W ) = E[Y � g(X1 +X
T
2 �)jW ]

is continuously di�erentiable in � a.s. with

@m(�)(W )=@� = �E[g0(X1 +X
T
2 �)X2jW ]:

Next consider any " > 0 and let B and � satisfy

B = f� : j� � �0j2 < "2=4C2gE[jX2j4]g; �2 < "2=4E[jX2j2]:

[23]



Then for g 2 N �
g we have, for v(X; �) = X1 +X

0
2�;

E[sup
�2B

��@m(�)(W )=@� �m0
�(W )

��2]
= E[sup

�2B
jE[fg0(v(X; �))� g00(V )gX2jW ]j2] � E[jX2j2 sup

�2B
jg0(v(X; �))� g00(V )j

2
]

� 2E[jX2j2 sup
�2B

jg0(v(X; �))� g00(v(X; �))j
2
] + 2E[jX2j2 sup

�2B
jg00(v(X; �))� g00(V )j

2
]

� 2�2E[jX2j2] + 2C2gE[jX2j4] sup
�2B

j� � �0j2 < "2:

Thus Assumption 6 is satis�ed. The other conditions of Theorem 7 are assumed to be

satis�ed so the conclusion follows from Theorem 7. Q.E.D.

Proof of Proposition 9A: Suppose �rst that the conditional distribution of W

given V is complete. Note that by the projection de�nition of for all h(V ) with �nite

mean-square we have

0 = E[f�E[g00(V )X2jjW ]� ��j (W )gE[h(V )jW ]] = E[f�E[g00(V )X2jjW ]� ��j (W )gh(V )]:

Therefore,

E[�E[g00(V )X2jjW ]� ��j (W )jV ] = 0:

Completeness of the conditional distribution ofW given V then implies that�E[g00(V )X2jjW ]�

��j (W ) = 0; and hence �jj = 0. Since this is true for each j we have � = 0; � is singular.

Next, consider the second hypothesis and � 6= 0. Let ���(W ) denote the projection of

�E[g00(V )�0X2jW ] on �M. Since E[h(V )jW ] = E[h(V )jT (W )] it follows that ���(W ) is

measurable with respect to T (W ): Since E[g00(V )�
0X2jW ] is not measurable with respect

to T (W ), we have �E[g00(V )�0X2jW ]� ���(W ) 6= 0; so that

�0�� = E[f�E[g00(V )�0X2jW ]� ���(W )g2] > 0:

Since this is true for all � 6= 0, it follows that � is p.d., and hence nonsingular. Q.E.D.

Proof of Proposition 10: The proof will proceed by verifying the conditions of

Theorem 7 for the linear in g version of the moment condition from eq. (5.6). For

bounded h let

m0
gh = E[�0Rt+1c

�
0
t+1h(ct+1)jWt]� h(ct)e

[24]



and m0(�� �0) = m�(W )
0(� � �0) +m0

g(g � g0). Let A be the set of functions g(�) with

norm

kgkA =
q
E[fE[D2

t jWt] + 1gg(ct)2]:

Note that �20 jRt+1j
2 c�2
0t+1 � CD2

t . Then by the Cauchy-Schwartz inequality we have

E[�0Rt+1c�
0t+1h(ct+1)jWt]� h(ct)e


2
B

� CE[E[�0R
0
t+1c

�
0
t+1h(ct+1)jWt]E[�0Rt+1c

�
0
t+1h(ct+1)jWt] + h(ct)

2]

� CE[E[D2
t jWt]E[h(ct+1)

2jWt] + CE[h(ct)
2] � C khk2A :

It also follows similarly that km�(W )kB <1: Therefore m0(���0) is continuous so that

Assumption 5 is satis�ed.

We now check Assumption 6. Let � = (�; 
) and for bounded g let Ht+1(�; g) =

�Rt+1c
�

t+1g(ct+1): Note that Ht+1 is twice continuously di�erentiable in � and that there

is a neighborhood B of �0 such that

sup
�2B

����@Ht+1(�; g)@�

���� � Dtg(ct+1);

jE[@Ht+1(�; g)=@� � @Ht+1(�; g0)=@�jWt]j2 � E[D2
t jWt]E[jg(ct+1)� g0(ct+1)j2jWt];

jE[@Ht+1(�; g0)=@� � @Ht+1(�0; g0)=@�jWt]j2 � E[D2
t jWt]E[g0(ct+1)

2jWt] j� � �0j2 :

By E[D2
t ] < 1 we have E[DtjWt] exists a.s. implying that E[Ht+1(�; g)jWt] is continu-

ously di�erentiable on B with probability one with

@E[Ht+1(�; g)jWt]

@�
= E[@Ht+1(�; g)=@�jWt]:

By g0(ct+1) bounded we also have����@E[Ht+1(�; g)jWt]

@�
� @E[Ht+1(�0; g0)jWt]

@�

����2
= jE[@Ht+1(�; g)=@� � @Ht+1(�0; g0)=@�jWt]j2

� 2E[D2
t jWt]fE[jg(ct+1)� g0(ct+1)j2jWt] + j� � �0j2g:

Note that by iterated expectations,

E[E[D2
t jWt]E[jg(ct+1)� g0(ct+1)j2jWt]] = E[E[D

2
t jWt]jg(ct+1)� g0(ct+1)j2]:

[25]



Then choosing Ng and B so that

E[E[D2
t jWt]jg(ct+1)� g0(ct+1)j2] < "=4; j� � �0j2 < "=4E[D2

t ];

we have

E[sup
�2B

��@m(�)(W )=@� �m0
�(W )

��2]
� 2E[E[D2

t jWt]E[jg(ct+1)� g0(ct+1)j2jWt]] + 2E[E[D
2
t jWt]]"=4E[D

2
t ] < ":

so E[E[D2
t jWt]jg(ct+1) � g0(ct+1)j2] < "=4 and B, choosing " small enough in the the

conditions of Proposition 10 it follows that Assumption 6 is satis�ed. The �rst conclusion

then follows by the �rst conclusion of Theorem 7.

To show the second conclusion it su�ces to show that m0
g satis�es the rank condition

under Assumption 7A or 7B. Consider �rst Assumption 7A. Consider a g 2 �G with

m0
g(g� g0) = 0. Then m0

gg = m
0
gg0 = 0: Divide m

0
gg = 0 by g(ct) and m

0
gg0 = 0 by g0(ct)

to obtain

E[�0Rt+1c
�
0
t+1 g(ct+1)=g(ct)jWt] = e = E[�0Rt+1c

�
0
t+1 g0(ct+1)=g0(ct)jWt]:

Since 0 < �0 < 1 and E[Rt+1;jc
�
0
t+1 jWt] is positive random variable,

E�j [fg(ct+1)=g(ct)g jWt] =
E[Rt+1;jc

�
0
t+1 g(ct+1)=g(ct)jWt]

E[Rt+1;jc
�
0
t+1 jWt]

=
E[Rt+1;jc

�
0
t+1 g0(ct+1)=g0(ct)jWt]

E[Rt+1;jc
�
0
t+1 jWt]

:

By Assumption 7A (bounded completeness for some j), it follows that g(ct+1)=g(ct) =

g0(ct+1)=g0(ct) almost surely. Square both sides and integrate both sides with respect

the distribution of ct+1 and to obtain g(ct)
�2 = g0(ct)

�2: Since g(ct) > 0 it follows that

g(ct) = g0(ct):

Consider next Assumption 7B. Then for m0
g(g � g0) = 0 we have m0

gg = 0 so

g(ct) = Kg0(ct) by m
0
g having a one-dimensional null space containing g0. Squaring

and integrating both sides with respect the distribution of ct gives K
2 = 1: Since g(ct) is

restricted to be positive it follows that K = 1. Q.E.D.
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