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Abstract

Nonparametric additive modeling is a fundamental tool for statistical data analysis which allows
flexible functional forms for conditional mean or quantile functions but avoids the curse of dimension-
ality for fully nonparametric methods induced by high-dimensional covariates. This paper proposes
empirical likelihood-based inference methods for unknown functions in three types of nonparametric
additive models: (i) additive mean regression with the identity link function, (ii) generalized additive
mean regression with a known non-identity link function, and (iii) additive quantile regression. The
proposed empirical likelihood ratio statistics for the unknown functions are asymptotically pivotal
and converge to chi-square distributions, and their associated confidence intervals possess several
attractive features compared to the conventional Wald-type confidence intervals.

1 Introduction

Nonparametric additive modeling is a fundamental tool for statistical data analysis which allows flexible

functional forms for conditional mean or quantile functions but avoids the curse of dimensionality for

fully nonparametric methods induced by high-dimensional covariates (see, e.g., Hastie and Tibshirani,

1990). This paper proposes empirical likelihood-based inference methods for unknown functions in non-

parametric additive models.1 In particular, we consider three types of the additive models: (i) additive

mean regression with the identity link function, (ii) generalized additive mean regression with a known

non-identity link function, and (iii) additive quantile regression. For these models, we find localized

versions of estimating equations to estimate the unknown functions at given values of covariates, and

construct empirical likelihood functions based on these estimating equations. The proposed empirical

likelihood ratio statistics are asymptotically pivotal and converge to chi-square distributions. In other

words, we can still observe the so-called Wilks phenomena (i.e., convergence of a likelihood ratio statistic
∗E-mail: taisuke.otsu@yale.edu. Website: http://cowles.econ.yale.edu/faculty/otsu.htm. Address: P.O. Box 208281,

New Haven, CT 06520-8281, USA. Phone: +1-203-432-9771. Fax: +1-203-432-6167.
†The author would like to thank anonymous referees for helpful comments.
1See Owen (2001) and Kitamura (2007) for a comprehensive review on empirical likelihood.
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to the chi-square distribution) in these nonparametric additive models. Also, the confidence intervals

obtained by inverting the empirical likelihood ratio statistics possess several attractive features com-

pared to the conventional Wald-type confidence intervals, such as circumvention of asymptotic variance

estimation to compute the standard error, flexible shapes of the confidence intervals determined by data,

transformation invariance, and range-preserving property.

There is rich literature on statistical theory of nonparametric additive models. For the additive

mean regression with the identity link function, Stone (1994) and Newey (1997) studied properties of

series estimators. Buja, Hastie and Tibshirani (1989) and Hastie and Tibshirani (1990) developed the

backfitting procedure which iteratively estimates each additive nonparametric component. Opsomer

and Ruppert (1997) and Opsomer (2000) studied asymptotic properties of the backfitting estimator

in depth. Mammen, Linton and Nielsen (1999) proposed a modification of backfitting, called smooth

backfitting, to achieve better asymptotic properties such as oracle efficiency. On the other hand, Linton

and Nielsen (1995) developed the marginal integration technique, which utilizes an integral expression for

the unknown function of interest. Linton (1997) and Fan, Mammen and Härdle (1998) studied oracle

efficiency of the marginal integration estimator. Horowitz, Klemelä and Mammen (2006) analyzed

optimal properties of different estimators in a unified framework.

For the generalized additive mean regression with a known non-identity link function, Linton and

Härdle (1996) extended the marginal integration approach of Linton and Nielsen (1995) to this context.

Horowitz and Mammen (2004) developed a two stage estimation procedure, in which we first obtain

a preliminary estimator for unknown functions based on series approximations and then refine the

preliminary estimator by the second stage local polynomial fitting. Horowitz and Mammen’s (2004)

estimator is asymptotically normal and oracle efficient and achieves the optimal convergence rate derived

by Stone (1985, 1986). Our construction of empirical likelihood is based on an estimating equation

implied from the second stage local linear regression of Horowitz and Mammen (2004) by using the first

stage preliminary estimator as inputs. Also Horowitz (2001) proposed a nonparametric estimator for

the case where the link function is unknown.

For the additive quantile regression, Doksum and Koo (2000) studied a series estimation procedure

and Goojier and Zerom (2003) extended the marginal integration approach to the quantile regression

setup. Horowitz and Lee (2005) extended the two stage approach of Horowitz and Mammen (2004) to

the quantile regression context and derived analogous optimal properties to the mean regression case.

Our construction of empirical likelihood utilizes an estimating equation implied from the second stage

local quantile regression of Horowitz and Lee (2005).

This paper also contributes to the rapidly growing literature on empirical likelihood (Owen, 1988,

2001). Compared to inference problems for parametric or finite-dimensional components (e.g., Wang

and Jing, 2003; Otsu, 2007; Hjort, McKeague and van Keilegom, 2009), the literature on empirical

likelihood inference for nonparametric or infinite-dimensional components is relatively thin. Chen and

Qin (2000) proposed an empirical likelihood confidence interval for the conditional mean function based
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on an estimating equation of local linear fitting, and showed that their empirical likelihood confidence

interval has better higher-order coverage properties than the Wald-type confidence interval. This paper

can be considered as an extension of Chen and Qin’s (2000) approach to nonparametric additive models.

Fan, Zhang and Zhang (2001) provided several nonparametric settings where we can observe the Wilks

phenomena. This paper provides additional positive results for the Wilks phenomena in nonparametric

additive models.

This paper is organized as follows. Section 2 considers the nonparametric additive mean regression

model with the identity link function, proposes the empirical likelihood function for an unknown func-

tion, and studies its asymptotic property. Section 3 discusses the case of the generalized additive mean

regression model with a known non-identity link function. Section 4 extends the empirical likelihood

approach to the nonparametric additive quantile regression model. Section 5 concludes. All proofs and

lemmas are contained in the Appendix.

2 Additive Mean Regression with Identity Link Function

The notation closely follows that of Horowitz and Mammen (2004). We first consider the nonparametric

additive regression model with the identify (or linear) link function:

Y = µ+m1(X1) + · · ·+md(X
d) + U, (1)

E [U |X = x] = 0 for a.e. x,

where Y ∈ R is a scalar response variable, Xj ∈ Xj ⊂ R (j = 1, . . . , d) is a scalar explanatory random

variable, X =
(
X1, . . . , Xd

)′, U ∈ R is an unobservable error term satisfying the mean independence

condition E [U |X = x] = 0 for almost every x, µ is an unknown constant, and mj : Xj → R (j =

1, . . . , d) is an unknown function. Note that this model is more restrictive than the fully nonparametric

regression (i.e., Y = m
(
X1, . . . , Xd

)
+ε) due to the additive structure. However, the additive regression

(1) provides an attractive compromise between fully parametric and nonparametric models since the

convergence rates of nonparametric estimators for mj ’s typically do not increase with the number of

covariates d (i.e., avoid the curse of dimensionality).

To simplify the presentation and technical discussion, hereafter we assume that the support of Xj

is Xj = [−1, 1] for all j = 1, . . . , d, and normalize mj ’s as
´ 1
−1mj(v)dv = 0 for all j = 1, . . . , d. Based

on an i.i.d sample {Yi, Xi}ni=1, we wish to conduct inference on the unknown function m1(x1) evaluated

at some x1 ∈ X1. Inference on the other components mj(x
j) (j = 2, . . . , d) can be implemented in the

same manner.

The nonparametric additive regression model (1) and its generalizations discussed in the following

sections are typically applied when the dimension of the explanatory variables X is large. In this case,

since it is difficult to visualize the estimates of the whole regression function µ+m1(x1) + · · ·+md(x
d),

we commonly report the plots for the estimates of mj(x
j) (j = 1, . . . , d) separately. Therefore, the
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confidence interval for mj(x
j), which is plotted along the estimates of mj(x

j), is a fundamental tool to

evaluate the uncertainty of the estimates of mj(x
j) and to assess the functional form of the regression

function. For empirical applications of nonparametric additive regression, see, e.g., Fan and Jiang (2005)

(additive mean regression for housing price in Boston) and Horowitz and Lee (2005) (additive median

regression for sales of Japanese firms in the chemical industry). Also Hastie and Tibshirani (1990)

contain various real data examples of nonparametric additive regression. In these examples, most

estimation results are presented by separate plots for the estimates of mj(x
j)’s, where our confidence

intervals discussed below can be added along the estimates.

To construct the empirical likelihood function for the object of interest m1(x1), let us tentatively

assume that the other functions m2, . . . ,md and the intercept µ are known. Then the variable Y ∗ =

Y − µ−m2(X2)− · · · −md(X
d) is observable and we can identify the object of interest m1(x1) by the

conditional mean m1(x1) = E
[
Y ∗|X1 = x1

]
. Thus, we can estimate m1(x1) by, for example, the local

linear regression, where we solve the weighted least square problem

min
a,b

n∑
i=1

Kh

(
x1 −X1

i

) {
Y ∗i − a− b

(
X1
i − x1

)}2
, (2)

and estimate m1(x1) by the solution â with respect to a. Here Kh (v) = K (v/h) with a kernel function

K and a bandwidth parameter h satisfying h→ 0 as n→∞. After some manipulation, we can see that

the solution â satisfies the first-order condition (see, Fan and Gijbels, 1996)
n∑
i=1

K̃i (Y ∗i − â) = 0,

where

K̃i = Kh

(
x1 −X1

i

)
1
nh

∑n
j=1Kh

(
x1 −X1

j

)(
X1
j−x1

h

)2

−
(
X1
i −x1
h

)
1
nh

∑n
j=1Kh

(
x1 −X1

j

)(
X1
j−x1

h

)
 .

If we regard this condition as an estimating equation for the expectation E [â], the empirical likelihood

function for E [â] can be defined as

L∗ (a) = sup
{pi}ni=1

n∏
i=1

pi, (3)

s.t. 0 ≤ pi ≤ 1,

n∑
i=1

pi = 1,

n∑
i=1

piK̃i (Y ∗i − a) = 0.

Note that without the last constraint
∑n

i=1 piK̃i (Y ∗i − a) = 0, the above supremum becomes n−n.

Thus, the (normalized) log empirical likelihood ratio is defined as `∗ (a) = −2 {logL∗ (a) + n log n}.
Although the optimization problem (3) involves n variables {pi}ni=1, mild regularity conditions allow an

application of the Lagrange multiplier method (see, e.g., Theorem 2.2 in Newey and Smith, 2004), and

the dual form for `∗ (a) is written as

`∗ (a) = 2 sup
λ∈Λ∗n(a)

n∑
i=1

log
(

1 + λK̃i (Y ∗i − a)
)
, (4)
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where Λ∗n (a) =
{
λ ∈ R : λK̃i (Y ∗i − a) ∈ V∗ for i = 1, . . . , n

}
and V∗ is an open interval containing 0.

In practice, we use the dual representation (4) instead of the original problem (3) to compute the

empirical likelihood function. Note that the optimization problem for the Lagrange multiplier λ in

(4) is one-dimensional, and that the objective function
∑n

i=1 log
(

1 + λK̃i (Y ∗i − a)
)
for λ is typically

concave in λ. Therefore, the conventional Newton-type gradient-based optimization routine can be used

to evaluate the empirical likelihood ratio `∗ (a).

Note that the above construction of `∗ (a) gives us the empirical likelihood ratio for the expectation

E [â], rather than for the object of interest m1(x1) itself. However, if we choose a relatively fast decay

rate for the bandwidth h (i.e., undersmoothing), then the bias component m1(x1) − E [â] becomes

asymptotically negligible. Therefore, the function (4) can be employed as a valid empirical likelihood

ratio for m1(x1).

If we observe Y ∗, we can see that the empirical likelihood ratio `∗ (a) evaluated at a = m1(x1)

converges in distribution to the χ2
1 distribution under suitable regularity conditions (see, Chen and Qin,

2000). Thus, the asymptotic confidence interval form1(x1) can be constructed by inverting the empirical

likelihood ratio test statistic, i.e.,
{
a : `∗ (a) ≤ χ2

1,1−α
}
, where χ2

1,1−α is the 100 (1− α) % critical value

for the χ2
1 distribution. However, in practice, we do not observe Y ∗ since mj ’s and µ are unknown.

Therefore, we find a proxy for Y ∗ by utilizing the first stage preliminary estimation of m2, . . . ,md and

µ in Horowitz and Mammen (2004) and propose a feasible version of the empirical likelihood function

`∗ (a).

To obtain the first stage estimator for mj ’s having a sufficiently fast convergence rate, Horowitz and

Mammen (2004) employed a series estimator. Consider a basis {pk}∞k=1 for smooth functions on [−1, 1],

which satisfies

mj(x
j) =

∞∑
k=1

θjkpk(x
j),

for all xj ∈ [−1, 1] and j = 1, . . . , d, and some coefficients {θjk}. Also assume that the basis is orthogonal

(i.e.,
´ 1
−1 pj (v) pk (v) dv = I {j = k}) and satisfies a normalization constraint

´ 1
−1 pk (v) dv = 0. If we

truncate the infinite series representation for mj ’s by a positive integer κ (satisfying κ→∞ as n→∞),

a series approximation for µ + m1(x1) + · · · + md(x
d) is obtained as Pκ (x)′ θκ for some θκ ∈ Rκd+1,

where Pκ (x) =
[
1, p1(x1), . . . , pκ(x1), . . . , p1(xd), . . . , pκ(xd)

]′. If we estimate the coefficients θκ by the

least square method

θ̂κ = arg min
θκ

n∑
i=1

{
Yi − Pκ (Xi)

′ θκ
}2
,

then the unknown function µ+m1(x1)+· · ·+md(x
d) can be estimated by Pκ (x)′ θ̂κ. Note that since this

series estimator Pκ (x)′ θ̂κ imposes the additive structure in the original model (1), it does not involve

any higher dimensional nonparametric estimation, which enables us to avoid the curse of dimensionality.

Horowitz and Mammen (2004) used the series estimator Pκ (x)′ θ̂κ as inputs to the second stage point

estimation of m1(x1). We employ this estimator to construct a feasible empirical likelihood function for
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inference on m1(x1). Note that the intercept µ is estimated by the first component of θ̂κ (denote by

µ̃) and the function mj(x
j) is estimated by an adequate component of Pκ (x)′ θ̂κ (denote by m̃j(x

j)).

Then a feasible analog of Y ∗i = Yi − µ−m2(X2
i )− · · · −md(X

d
i ) is defined as

Ỹi = Yi − µ̃− m̃2(X2
i )− · · · − m̃d(X

d
i ). (5)

By replacing Y ∗i in (4) with its proxy Ỹi, we propose the following feasible empirical likelihood function:

` (a) = 2 sup
λ∈Λn(a)

n∑
i=1

log
(

1 + λK̃i

(
Ỹi − a

))
, (6)

where Λn (a) =
{
λ ∈ R : λK̃i

(
Ỹi − a

)
∈ V for i = 1, . . . , n

}
and V is an open interval containing 0.

Under similar assumptions of Horowitz and Mammen (2004) listed in Appendix A.1, the asymptotic

property of the empirical likelihood ratio ` (a) evaluated at a = m1(x1) is obtained as follows.

Theorem 2.1. Under Assumptions 1-4 in Appendix A.1,

`
(
m1(x1)

) d→ χ2
1,

for each x1 ∈ [−1, 1].

Remark 2.1 (Intuition for technical argument). The assumptions for this theorem are adaptations of

Horowitz and Mammen (2004, Assumptions A1-A7) to the present setting, where the link function is

identity. In contrast to Horowitz and Mammen (2004), we impose undersmoothing nh5 → 0 for the

bandwidth h (Assumption 4(ii)) to neglect an asymptotic bias component. If we set h = Cn−1/5 as in

Horowitz and Mammen (2004), the empirical likelihood ratio `
(
m1(x1)

)
converges to a non-central χ2

1

distribution. Intuitively, under our assumptions, the series estimator m̃j converges tomj at a sufficiently

fast rate and thus the proxy Ỹi is sufficiently close to Y ∗i . Therefore, we can establish the asymptotic

equivalence between the empirical likelihood ratio `
(
m1(x1)

)
and its infeasible version `∗

(
m1(x1)

)
, and

a modified argument of Chen and Qin (2000) and Otsu and Xu (2010) implies that `∗
(
m1(x1)

)
has the

χ2
1 limiting distribution. Also, in the context of point estimation for m1(x1), Horowitz and Mammen

(2004) showed a so-called oracle property: the local linear regression from Ỹi on X1
i has the same first-

order asymptotic property as the one from Y ∗i on X1
i . Theorem 2.1 can be considered as an analog of

the oracle property to the empirical likelihood context.

Remark 2.2 (Wilks phenomenon). Theorem 2.1 says that the empirical likelihood ratio `
(
m1(x1)

)
is

asymptotically pivotal and converges to the χ2
1 distribution, i.e., the Wilks phenomenon emerges in the

context of nonparametric additive regression. This result can be compared with earlier works which also

have demonstrated the Wilks phenomenon for empirical likelihood in other nonparametric models, such

as Chen and Qin (2000), Fan, Zhang and Zhang (2001), and Otsu and Xu (2010). Intuitively, the moment

restriction E
[
K̃i

(
Ỹi −m1(x1)

)]
≈ 0 can be viewed as a “localized” moment restriction at X1

i = x1

with an effective sample size nh, instead of n for standard moment restrictions. By undersmoothing the
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tuning parameters h and κ, we can neglect the bias in E
[
K̃i

(
Ỹi −m1(x1)

)]
from 0, and an adaptation

of a standard argument from the empirical likelihood literature for estimating equations (e.g., Qin and

Lawless, 1994) implies the Wilks phenomenon in our nonparametric context.

Remark 2.3 (Confidence interval). Based on Theorem 2.1, the 100 (1− α) % asymptotic empirical

likelihood confidence interval for m1(x1) is obtained by inverting the empirical likelihood ratio statistic

`
(
m1(x1)

)
, i.e.,

ELCIα =
{
a : ` (a) ≤ χ2

1,1−α
}
.

Compared to the Wald-type confidence interval (i.e., the point estimate±2×standard error), there are

at least four advantages for the empirical likelihood confidence interval. First, the empirical likelihood

confidence interval does not require the estimation of the asymptotic variance, which typically involves

additional nonparametric estimation for the conditional variance V ar
(
U |X1 = x1

)
and the marginal

density f1

(
x1
)
of X1. In the next remark, we argue that in some special case this circumvention

of variance estimation can yield a better higher-order coverage property for the empirical likelihood

confidence interval. Second, the empirical likelihood confidence interval is not necessarily symmetric

around the point estimator of m1(x1), i.e., the shape of the confidence interval is determined by that

of the empirical likelihood function. Intuitively, the Wald-type confidence interval is derived from a

quadratic approximation to some criterion function to estimate m1(x1). The empirical likelihood con-

fidence interval is derived directly from the empirical likelihood function without relying on such a

quadratic approximation. Third, the empirical likelihood confidence interval is transformation invari-

ant, i.e., based on ELCIα, the 100 (1− α) % asymptotic confidence interval for a transformed object

q
(
m1(x1)

)
∈ R is obtained as {q (a) : a ∈ ELCIα}. Finally, the empirical likelihood confidence interval

is range-preserving, i.e., if the value of m1(x1) is restricted to a subset M of R (e.g., m1(x1) ≥ 0), then

ELCIα is always a subset of M because we set ` (a) =∞ for any a ∈ R \M.

Remark 2.4 (Higher-order property). We present some intuition for why the empirical likelihood con-

fidence interval can be theoretically better than the Wald-type confidence interval. Assume that the

functions m2, . . . ,md and the intercept µ are known and consider the (infeasible) empirical likelihood

function `∗ (a) defined in (4). The same argument to Theorem 2.1 yields `∗
(
m1(x1)

) d→ χ2
1, and the as-

sociated empirical likelihood confidence interval form1(x1) is defined as ELCI∗α =
{
a : `∗ (a) ≤ χ2

1,1−α
}
.

On the other hand, the Wald-type confidence interval for m1(x1) based on the local linear estimator â

obtained from the solution of (2) is defined as WCI∗α =

[
â± z1−α/2

√
̂Asy.V ar (â)

]
, where ̂Asy.V ar (â)

is a nonparametric estimator for the asymptotic variance of â and z1−α/2 is the (1− α/2)-th quantile

of the standard normal distribution. Under this setup with additional regularity conditions, we can

directly apply the results of Chen and Qin (2000). Chen and Qin (2000) found that even though both

ELCI∗α and WCI∗α are derived from the local linear regression problem in (2), their coverage errors for
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m1(x1) have different orders near the boundary of the support [−1, 1] for X1, i.e.,

Pr
{
m1(x1) ∈ ELCI∗α

}
= 1− α+O

(
nh5 + h2 + (nh)−1

)
,

Pr
{
m1(x1) ∈WCI∗α

}
= 1− α+O

(
nh5 + h+ (nh)−1

)
,

for all x1 ∈ [−1,−1 + h]∪ [1− h, 1].2 For example, if h = O
(
n−1/3

)
, then the coverage error of ELCI∗α

is O
(
n−2/3

)
but the coverage error of WCI∗α is O

(
n−1/3

)
. As Chen and Qin (2000) argued, this higher-

order difference near the boundary emerges from the fact that the coverage error of WCI∗α depends on

the estimation error of the asymptotic variance of â. Since the empirical likelihood confidence interval is

free from such an estimation error, ELCI∗α yields a better higher-order coverage property than WCI∗α

near the boundary of the support.3 The analysis for the (feasible) empirical likelihood ratio ` (a) in (6)

is considerably more complicated because of the first stage estimation of µ and mj ’s. Therefore, formal

higher-order analysis is beyond the scope of the paper. However, it is reasonable to expect that similar

arguments to Chen and Qin (2000) will yield analogous higher-order properties.

Remark 2.5 (Practical consideration). To compute the empirical likelihood ratio statistic ` (a), we

need to choose the basis {pk}, series length κ, kernel function K, and bandwidth h. The assumptions

on the basis (Assumption 3 in Appendix A.1) are standard and satisfied by popular basis functions,

such as Fourier and spline bases. To choose the series length κ for the first stage estimation of µ and

mj ’s, we can apply conventional methods, such as cross validation, to control the estimation error (see,

e.g., Chen, 2007). The assumptions on the kernel function K (Assumption 4 in Appendix A.1) are also

mild and allow popular density functions, such as the uniform, triangular, and Epanechnikov. For the

bandwidth parameter h, note that Assumption 4 (ii) in Appendix A.1 requires undersmoothing (i.e.,

nh5 → 0) which prohibits direct applications of the plug-in and penalized least square methods proposed

by Horowitz and Mammen (2004). Also, it is not clear whether the bandwidth selection procedures by

Horowitz and Mammen (2004), which intend to minimize the mean squared error for point estimation

of m1(x1), yield desirable coverage properties for the confidence interval of m1(x1). Instead we suggest

to employ a plug-in approach based on the optimal bandwidth derived by Chen and Qin (2000), which

minimizes the leading coverage error of the empirical likelihood confidence interval for the conditional

mean. In particular, we consider an auxiliary nonparametric regression from Ỹi on X1
i and estimate

Chen and Qin’s (2000) optimal bandwidth (“h∗” in their notation) by taking the sample analogs. Since

Chen and Qin’s (2000) optimal bandwidth is of order O
(
n−1/3

)
, this choice satisfies the undersmoothing

condition, nh5 → 0.

Remark 2.6 (Inference on derivatives). Although this paper focuses on inference for the regression

function m1(x1), it is possible to extend our empirical likelihood approach to conduct inference on

the derivative m′1(x1) = dm1(x1)/dx1. In the additive model (1), the derivative m′1(x1) gives us the
2In the interior of the support, both ELCI∗α and WCI∗α have coverage errors of the same order O

(
nh5 + h2 + (nh)−1).

3Chen and Qin (2000) also proposed Bartlett correction for ELCI∗α, which provides even smaller coverage errors.
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marginal effect ∂E [Y |X = x] /∂x1 for x1. Observe that m′1(x1) is estimated by the solution of the local

linear regression in (2) with respect to b, and the solution b̂ satisfies the first-order condition

n∑
i=1

K̄i

(
Y ∗i − b̂

(
X1
i − x1

))
= 0,

where

K̄i = Kh

(
x1 −X1

i

) 1

nh

n∑
j=1

Kh

(
x1 −X1

j

)(X1
j − x1

h

)
−
(
X1
i − x1

h

)
1

nh

n∑
j=1

Kh

(
x1 −X1

j

) .

Therefore, by using Ỹi defined in (5), the (dual) empirical likelihood function for m′1(x1) can be defined

as

`1 (b) = 2 sup
λ∈Λ1n(b)

n∑
i=1

log
(

1 + λK̄i

(
Ỹi − b

(
X1
i − x1

)))
,

Λ1n (b) =
{
λ ∈ R : λK̄i

(
Ỹi − b

(
X1
i − x1

))
∈ V1 for i = 1, . . . , n

}
and V1 is an open interval containing

0. Based on Qin and Tsao (2005), we conjecture that the empirical likelihood ratio `1
(
m′1(x1)

)
will

converge in distribution to a scaled χ2 distribution. It is interesting to extend this approach to higher-

order derivatives by considering estimating equations for higher-order local polynomial regressions.

Remark 2.7 (Significance test). Also Theorem 2.1 can be employed as a basis for hypothesis testing on

the additive regression model. For example, if we want to test H0 : m1(x1) = 0 against H1 : m1(x1) 6= 0

at some given x1, we can use the empirical likelihood ratio statistic ` (0). To test the overall significance

of X1 over a subset S ⊂ [−1, 1], the researcher may be interested in testing H0 : m1(x1) = 0 for all

x1 ∈ S against H1 : m1(x1) 6= 0 for some x1 ∈ S. In this case, we can consider the integrated test

statistic
´
x1∈S `

(
0;x1

)
dx1, where `

(
0;x1

)
is the empirical likelihood ratio statistic ` (0) evaluated at

x1 ∈ S. This approach is adopted by Chen, Härdle and Li (2003) to test goodness-of-fit for a parametric

model. Although it is not a focus of this paper, it is interesting to investigate statistical properties of

this test statistic.

3 Additive Mean Regression with Non-Identity Link Function

We next consider the nonparametric generalized additive regression model with a non-identify (or non-

linear) link function:

Y = F
(
µ+m1(X1) + · · ·+md(X

d)
)

+ U, (7)

E [U |X = x] = 0 for a.e. x,

where F is a known link function. Again based on an i.i.d sample {Yi, Xi}ni=1, we wish to conduct

inference on the function m1(x1) evaluated at some value x1 ∈ [−1, 1].
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The model (7) is a natural generalization of the generalized linear model (see, e.g., McCullagh and

Nelder, 1989) to the nonparametric context. Also note that this model is a generalization of the additive

model (1), which corresponds to the case of F (z) = z. The model (7) is particularly useful to analyze

the case where the response variable Y has a limited support. For example, if Y is binary (0 or 1),

the nonparametric additive probit or logit model is specified by setting F as the normal or logistic

cumulative distribution function, respectively. Also, if Y takes non-negative integers (i.e., count data),

the nonparametric additive Poisson regression model is specified by setting F (z) = exp (z).

We extend the construction of the empirical likelihood function (6) in the last section to the gener-

alized additive model. If we know the functions m2, . . . ,md and the intercept µ, then m1(x1) can be

estimated by the local (nonlinear) regression

min
a

n∑
i=1

Kh

(
x1 −X1

i

){
Yi − F

(
a+ µ+m2(X2

i ) + · · ·+md(X
d
i )
)}2

, (8)

where the solution â gives us an estimator of m1(x1). Let m−1(X̃i) = m2(X2
i ) + · · · + md(X

d
i ) and

X̃i =
(
X2
i , . . . , X

d
i

)′. By assuming that F is differentiable, the first-order condition of â is written as

n∑
i=1

Kh

(
x1 −X1

i

){
Yi − F

(
â+ µ+m−1(X̃i)

)}
F ′
(
â+ µ+m−1(X̃i)

)
= 0.

If we regard this condition as an estimating equation for m1(x1), the empirical likelihood function for

m1(x1) can be defined as

L∗F (a) = sup
{pi}ni=1

n∏
i=1

pi,

s.t. 0 ≤ pi ≤ 1,
n∑
i=1

pi = 1,
n∑
i=1

pigi (a) = 0,

where

gi (a) = Kh

(
x1 −X1

i

){
Yi − F

(
a+ µ+m−1(X̃i)

)}
F ′
(
a+ µ+m−1(X̃i)

)
.

By applying the Lagrange multiplier method, the dual form for the empirical likelihood ratio `∗F (a) =

−2 {logL∗F (a) + n log n} is obtained as

`∗F (a) = 2 sup
λ∈Λ∗F,n(a)

n∑
i=1

log (1 + λgi (a)) ,

where Λ∗F,n (a) = {λ ∈ R : λgi (a) ∈ V∗F for i = 1, . . . , n} and V∗F is an open interval containing 0. Again,

since λ is scalar and the objective function
∑n

i=1 log (1 + λgi (a)) is typically concave in λ, the compu-

tational cost to evaluate the empirical likelihood ratio `∗F (a) is not expensive.

Although we cannot compute `∗F (a) in practice, a feasible analog of `∗F (a) is available by replacing

µ+m−1(X̃i) with its estimate. Similar to the case of the identity link function, we estimate µ+m−1(X̃i)
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based on a series approximation. By using the truncated basis functions Pκ (x) defined in the last section,

θ̂κ is defined as a solution to the least square problem:

min
θκ∈Θκ

n∑
i=1

{
Yi − F

(
Pκ (Xi)

′ θκ
)}2

,

where Θκ is a compact subset of Rκd+1 (due to the nonlinearity of the objective function, we need

compactness of the parameter space). Note that µ is estimated by the first component of θ̂κ (denote by

µ̃) and mj(x
j) is estimated by an adequate component of Pκ (x)′ θ̂κ (denote by m̃j(x

j)). Then letting

m̃−1(X̃i) = m̃2(X2
i ) + · · ·+ m̃d(X

d
i ), an feasible analog of `∗F (a) is defined as

`F (a) = 2 sup
λ∈ΛF,n(a)

n∑
i=1

log (1 + λg̃i (a)) , (9)

where

g̃i (a) = Kh

(
x1 −X1

i

){
Yi − F

(
a+ µ̃+ m̃−1(X̃i)

)}
F ′
(
a+ µ̃+ m̃−1(X̃i)

)
,

ΛF,n (a) = {λ ∈ R : λg̃i (a) ∈ VF for i = 1, . . . , n}, and VF is an open interval containing 0.

The asymptotic property of the empirical likelihood ratio `F (a) evaluated at a = m1(x1) is obtained

as follows.

Theorem 3.1. Under Assumptions 1-5 in Appendix A.1,

`F
(
m1(x1)

) d→ χ2
1,

for each x1 ∈ [−1, 1].

The same remarks to Theorem 2.1 apply. In particular, the 100 (1− α) % asymptotic empirical

likelihood confidence interval for m1(x1) is obtained as

ELCIF,α =
{
a : `F (a) ≤ χ2

1,1−α
}
.

Remark 3.1 (Local linear fitting). As in Section 2 for the identity link function case, we can also

include the linear term of X1 to the minimization problem in (8), i.e.,

min
a,b

n∑
i=1

Kh

(
x1 −X1

i

){
Yi − F

(
a+ b

(
X1
i − x1

)
+ µ+m−1(X̃i)

)}2
.

However, in contrast to the identity link function case, the solution
(
â, b̂
)
to the above minimization

problem does not have an explicit form in general. Thus, to construct empirical likelihood, we need to

incorporate the two-dimensional estimating equations:

n∑
i=1

 Kh

(
x1 −X1

i

){
Yi − F

(
â+ b̂

(
X1
i − x1

)
+ µ+m−1(X̃i)

)}
×F ′

(
â+ b̂

(
X1
i − x1

)
+ µ+m−1(X̃i)

) [ 1

X1
i − x1

]
= 0.
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Based these estimating equations, a feasible analog of the (profile) empirical likelihood ratio for m1(x1)

is defined as
¯̀
F (a) = min

b

{
2 sup
λ∈Λ̄F,n(a,b)

n∑
i=1

log
(
1 + λ′ḡi (a, b)

)}
, (10)

where

ḡi (a, b) =

 Kh

(
x1 −X1

i

){
Yi − F

(
a+ b

(
X1
i − x1

)
+ µ̃+ m̃−1(X̃i)

)}
×F ′

(
a+ b

(
X1
i − x1

)
+ µ̃+ m̃−1(X̃i)

) [ 1

X1
i − x1

]
,

Λ̄F,n (a, b) =
{
λ ∈ R2 : λ′ḡi (a, b) ∈ V̄F for i = 1, . . . , n

}
, and V̄F is an open interval containing 0. It

should be noted that compared to the empirical likelihood ratio `F (a) in (9) based on local constant

fitting, the empirical likelihood ratio ¯̀
F (a) based on local linear fitting requires additional minimization

with respect to b and is computationally more expensive. In particular, to evaluate the empirical

likelihood ratio ¯̀
F (a), we typically need to employ some nested algorithm (i.e., for each b we call a

subroutine to implement optimization with respect to λ). This additional minimization step does not

appear in the identity link function case because the estimating equations for
(
â, b̂
)

can be solved

explicitly. Although the technical argument will be more lengthy and complicated, we can expect that
¯̀
F

(
m1(x1)

)
converges in distribution to the χ2

1 distribution as well as `F
(
m1(x1)

)
.

4 Additive Quantile Regression

We finally consider the nonparametric additive quantile regression model:

Y = µ+m1(X1) + · · ·+md(X
d) + U, (11)

Qτ (U |X = x) = 0 for a.e. x,

where Qτ ( ·|X = x) denotes the τ -th conditional quantile function given X = x with τ ∈ (0, 1). A

special case is the additive median regression with τ = 0.5. This model, studied by e.g., Doksum and

Koo (2000), Goojier and Zerom (2003), and Horowitz and Lee (2005), is a generalization of the additive

model (1) for the conditional mean to the conditional quantiles. Based on an i.i.d sample {Yi, Xi}ni=1,

we wish to conduct inference on the function m1(x1) evaluated at some value x1 ∈ [−1, 1].

The construction of the empirical likelihood function ` (a) in (6) for the conditional mean case

can be extended as follows. If we know the functions m2, . . . ,md and the intercept µ, then let Y ∗i =

Yi − µ −m2(X2
i ) − · · · −md(X

d
i ) again and we can estimate m1(x1) by the local (constant) quantile

regression

min
a

n∑
i=1

Kh

(
x1 −X1

i

)
ρτ (Y ∗i − a) , (12)

where ρτ (v) = v (τ − I {v ≤ 0}) is the so-called check function (Koenker and Bassett, 1978) and I {·} is
the indicator function. The solution â gives us an estimator of m1(x1). By taking the derivative except
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for the point with Y ∗i − a = 0, the (asymptotic) first-order condition of â is written as

n∑
i=1

Kh

(
x1 −X1

i

)
(τ − I {Y ∗i ≤ a}) = 0.

If we regard this condition as an estimating equation for m1(x1), the empirical likelihood function for

m1(x1) can be defined as

L∗τ (a) = sup
{pi}ni=1

n∏
i=1

pi,

s.t. 0 ≤ pi ≤ 1,
n∑
i=1

pi = 1,
n∑
i=1

piKh

(
x1 −X1

i

)
(τ − I {Y ∗i ≤ a}) = 0.

By applying the Lagrange multiplier method, the dual form for the empirical likelihood ratio `∗τ (a) =

−2 {logL∗τ (a) + n log n} is obtained as

`∗τ (a) = 2 sup
λ∈Λ∗τ,n(a)

n∑
i=1

log
(
1 + λKh

(
x1 −X1

i

)
(τ − I {Y ∗i ≤ a})

)
,

where Λ∗τ,n (a) =
{
λ ∈ R : λKh

(
x1 −X1

i

)
(τ − I {Y ∗i ≤ a}) ∈ V∗τ for i = 1, . . . , n

}
and V∗τ is an open

interval containing 0.

Note that although the objective function
∑n

i=1 log
(
1 + λKh

(
x1 −X1

i

)
(τ − I {Y ∗i ≤ a})

)
is non-

smooth in a, it is smooth in λ. Therefore, we can still apply the conventional Newton-type gradient-based

optimization to evaluate `∗τ (a).

Similar to the previous sections, a feasible analog of `∗τ (a) is obtained by replacing µ + m2(X2
i ) +

· · ·+md(X
d
i ) with its estimate. By using the truncated basis functions Pκ (x) defined in Section 2, θ̂κ

is defined as a solution to the quantile regression problem:

min
θκ

n∑
i=1

ρτ
(
Yi − Pκ (Xi)

′ θκ
)
.

Since this is the conventional linear quantile regression problem, we can apply the standard algorithm

such as the linear programming method (see, e.g., Koenker, 2005). Note that µ is estimated by the first

component of θ̂κ (denote by µ̃) and mj(x
j) is estimated by an adequate component of Pκ (x)′ θ̂κ (denote

by m̃j(x
j)). Then letting Ỹi = Yi− µ̃− m̃2(X2

i )−· · ·− m̃d(X
d
i ), an feasible analog of `∗τ (a) is defined as

`τ (a) = 2 sup
λ∈Λτ,n(a)

n∑
i=1

log
(

1 + λKh

(
x1 −X1

i

) (
τ − I

{
Ỹi ≤ a

}))
,

where Λτ,n (a) =
{
λ ∈ R : λKh

(
x1 −X1

i

) (
τ − I

{
Ỹi ≤ a

})
∈ Vτ for i = 1, . . . , n

}
, and Vτ is an open

interval containing 0.

The asymptotic property of the empirical likelihood ratio `τ (a) evaluated at a = m1(x1) is obtained

as follows.
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Theorem 4.1. Under Assumptions 1-4 and 6 in Appendix A.1,

`τ
(
m1(x1)

) d→ χ2
1,

for each x1 ∈ [−1, 1] and τ ∈ (0, 1).

The same remarks to Theorem 2.1 apply. In particular, the 100 (1− α) % asymptotic empirical

likelihood confidence interval for m1(x1) is obtained as

ELCIτ,α =
{
a : `τ (a) ≤ χ2

1,1−α
}
.

Remark 4.1 (Local linear fitting). As in Section 2 for the identity link function case, we can include

the linear term of X1 to the minimization problem in (12), i.e.,

min
a,b

n∑
i=1

Kh

(
x1 −X1

i

)
ρτ
(
Y ∗i − a− b

(
X1
i − x1

))
.

However, similar to the non-identity link function case in Section 3, the solution
(
â, b̂
)

to the above

minimization problem does not have an explicit form in general. Thus, to construct empirical likelihood,

we need to incorporate the two-dimensional estimating equations:

n∑
i=1

Kh

(
x1 −X1

i

) (
τ − I

{
Y ∗i ≤ â+ b̂

(
X1
i − x1

)})[ 1

X1
i − x1

]
= 0.

Based these estimating equations, a feasible analog of the (profile) empirical likelihood ratio for m1(x1)

is defined as
¯̀
τ (a) = min

b

{
2 sup
λ∈Λ̄τ,n(a,b)

n∑
i=1

log
(
1 + λ′ḡτ,i (a, b)

)}
, (13)

where

ḡτ,i (a, b) = Kh

(
x1 −X1

i

) (
τ − I

{
Ỹi ≤ a+ b

(
X1
i − x1

)})[ 1

X1
i − x1

]
,

Λ̄τ,n (a, b) =
{
λ ∈ R2 : λ′ḡτ,i (a, b) ∈ V̄τ for i = 1, . . . , n

}
, and V̄τ is an open interval containing 0. Sim-

ilar to (10), the empirical likelihood ratio ¯̀
τ (a) based on local linear fitting requires additional mini-

mization with respect to b. Note that this minimization is computationally more demanding than the

one in (10) because the objective function for b is generally non-smooth. Therefore, although we can

expect that ¯̀
τ

(
m1(x1)

)
converges in distribution to the χ2

1 distribution by more elaborate technical

arguments, we do not recommend this approach due to the practical drawback.4

4As in Otsu (2008), it is possible to replace the indicator function in ḡτ,i (a, b) with an integrated kernel function to

make the objective function for b smooth.
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5 Conclusion

This paper proposes empirical likelihood inference methods for three types of nonparametric additive

models: additive mean regression with the identity link function, generalized additive mean regression

with a known non-identity link function, and additive quantile regression. For these models, we con-

struct empirical likelihood functions and derive the empirical likelihood ratio statistics for the unknown

functions. The associated confidence intervals obtained from inverting the empirical likelihood ratio

statistics have attractive features compared to the conventional Wald-type confidence intervals. It is

interesting to extend the present approach to other nonparametric settings, such as additive regression

with an unknown link function and censored additive regression.
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A Mathematical Appendix

A.1 Assumptions

1. (Assumptions on data)

(i) For almost every x ∈ [−1, 1]d,

E [Y |X = x] =

{
µ+m1(x1) + · · ·+md(x

d) (identity link case)

F
(
µ+m1(x1) + · · ·+md(x

d)
)

(non-identity link case)

Qτ (Y |X = x) = µ+m1(x1) + · · ·+md(x
d) (quantile case)

(ii) {Yi, Xi}ni=1 is an i.i.d. sample of (Y,X).

(iii) X is absolutely continuous with respect to the Lebesgue measure with the support X ∈
[−1, 1]d.

(iv) The density function of X is bounded, bounded away from zero, twice continuously differ-

entiable in the interior of [−1, 1]d, and has continuous second-order one-sided derivatives at the

boundary of [−1, 1]d.

(v) V ar (U |X = x) is bounded and bounded away from zero for all x ∈ [−1, 1]d.

(vi) E |U |j ≤ Cj−2j!E
[
U2
]
for all j ≥ 2 and some C ∈ (0,∞).

2. (Assumptions on mj)

(i) |mj(v)| ≤ Cm <∞ for all v ∈ [−1, 1] and all j = 1, . . . , d.

(ii)mj is twice continuously differentiable in the interior of [−1, 1] and has continuous second-order

one-sided derivatives at the boundary of [−1, 1] for all j = 1, . . . , d.

3. (Assumptions on basis and series length)

(i) {pk} satisfies
´ 1
−1 pj (v) pk (v) dv = I {j = k} and

´ 1
−1 pk (v) dv = 0 for all j, k ∈ N.

(ii) supx∈[−1,1]d |Pκ (x)| is bounded away from zero for all κ large enough and supx∈[−1,1]d |Pκ (x)| =
O
(
κ1/2

)
as κ→∞.

(iii) There exists θκ0 ∈ Rdκ+1 (identity link and quantile cases) or θκ0 ∈ Θκ (non-identity link

case) such that supx∈[−1,1]d
∣∣µ+m1(x1) + · · ·+md(x

d)− Pκ (x)′ θκ0

∣∣ = O
(
κ−2

)
as κ→∞.

(iv) The smallest eigenvalue of

Qκ =


E
[
Pκ (X)Pκ (X)′

]
(identity link case)

E
[
F ′
(
µ+m1(X1) + · · ·+md(X

d)
)2
Pκ (X)Pκ (X)′

]
(non-identity link case)

E
[
fU (0|X)Pκ (X)Pκ (X)′

]
(quantile case)
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is bounded away from zero for all κ ∈ N, where fU ( ·|x) is the conditional density function of U

in (11) given X = x. Each element of Qκ is bounded for all κ ∈ N.

(v) The largest eigenvalue of

Ψκ =


Q−1
κ E

[
V ar (U |X)Pκ (X)Pκ (X)′

]
Q−1
κ (identity link case)

Q−1
κ E

[
F ′
(
µ+m1(X1) + · · ·+md(X

d)
)2

×V ar (U |X)Pκ (X)Pκ (X)′

]
Q−1
κ (non-identity link case)

is bounded for all κ ∈ N. For the quantile case, let

P̄κ (x̃) =

1, 0, . . . , 0︸ ︷︷ ︸
k

, p1(x2), . . . , pκ(x2), . . . , p1(xd), . . . , pκ(xd)

′ ,
and the largest eigenvalue of Ψk

(
x1
)

= E

[
P̄κ

(
X̃
)
P̄κ

(
X̃
)′∣∣∣∣X1 = x1

]
is bounded for all κ ∈ N

and x1 ∈ [−1, 1], and twice continuously differentiable in the interior of [−1, 1] for all κ ∈ N, and
has continuous second-order one-sided derivatives at the boundary of [−1, 1] for all κ ∈ N.

(vi) κ = Cκn
v for some Cκ ∈ (0,∞) and some v ∈

(
4
15 ,

3
10

)
(identity and non-identity link cases)

or v ∈
(

1
5 ,

7
30

)
(quantile case).

4. (Assumptions on kernel and bandwidth)

(i) K is a bounded, continuous, and symmetric (around zero) density function on [−1, 1].

(ii) As n→∞, it holds h→ 0, nh→∞, and nh5 → 0.

5. (Additional assumptions for non-identity link function)

(i) For all v ∈ [µ− Cmd, µ+ Cmd], F (v) is bounded, F is twice continuously differentiable, and

F ′ (v) is bounded and bounded away from zero. There exists a constant CF ∈ (0,∞) such that

|F ′′ (v1)− F ′′ (v2)| ≤ CF |v1 − v2| for all v1, v2 ∈ [µ− Cmd, µ+ Cmd].

(ii) For some constant Cθ ∈ (0,∞), Θκ = [−Cθ, Cθ]κd+1 for all κ ∈ N. For all κ ∈ N, θκ is in

interior of Θκ.

6. (Additional assumptions for quantile regression)

The conditional distribution function FU (u|x) of U in (11) given X = x satisfies FU (0|x) = τ

for almost every x ∈ [−1, 1]d, and has a density function fU (u|x) which is bounded and bounded

away from zero for all u in a neighborhood of 0 and for all x ∈ [−1, 1]d. There exists a constant

Cf ∈ (0,∞) such that |fU (u1|x)− fU (u2|x)| ≤ Cf |u1 − u2| for all u1 and u2 in a neighborhood

of 0 and for all x ∈ [−1, 1]d
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A.2 Proof of Theorem 2.1

In this subsection, let f1 be the density function of X1, and

Sn,j =
1

nh

n∑
j=1

Kh

(
x1 −X1

i

)(X1
i − x1

h

)j
, sj1j2 = f1

(
x1
) ˆ

K (z)j1 zj2dz,

σ2 = V ar
(
U |X1 = x1

)
, V = σ2s2

12s20,

gi = K̃i

(
Ỹi −m1(x1)

)
.

From Lemma A.1 (iii), the first-order condition for λ̂ satisfies

0 =
1

nh

n∑
i=1

gi

1 + λ̂gi
=

1

nh

n∑
i=1

gi − V̂1λ̂,

w.p.a.1 (with probability approaching one), where V̂1 = 1
nh

∑n
i=1

g2i

(1+λ̇gi)
2 , the second equality follows

from an expansion around λ̂ = 0, and λ̇ is a point on the line joining λ̂ and 0. Since∣∣∣V̂1 − V
∣∣∣ ≤ max

1≤i≤n

∣∣∣∣ 1

1 + λ̇gi

∣∣∣∣2
∣∣∣∣∣ 1

nh

n∑
i=1

g2
i − V

∣∣∣∣∣ p→ 0,

(by Lemma A.1 (ii) and (iii)) and V > 0, V̂ −1
1 exists w.p.a.1. Thus, we have

λ̂ = V̂ −1
1

1

nh

n∑
i=1

gi,

w.p.a.1. From Lemma A.1 (iii), λ̂ satisfies `
(
m1(x1)

)
= 2

∑n
i=1 log

(
1 + λ̂gi

)
w.p.a.1, and a second-

order expansion of this equation around λ̂ = 0 yields

`
(
m1(x1)

)
= 2λ̂

n∑
i=1

gi − V̂2λ̂
2 =

[
2V̂ −1

1 − V̂2V̂
−2

1

]( 1√
nh

n∑
i=1

gi

)2

,

w.p.a.1, where V̂2 = 1
nh

∑n
i=1

g2i

(1+λ̈gi)
2 and λ̈ is a point on the line joining λ̂ and 0. Since

∣∣∣V̂2 − V
∣∣∣ p→ 0

by the same argument to V̂1, we have 2V̂ −1
1 − V̂2V̂

−2
1

p→ V −1. Therefore, Lemma A.1 (ii) implies the

conclusion.

Lemma A.1. Under Assumptions 1-4 in Appendix A.1, it holds

(i) Sn,1 = Op

(
(nh)−1/2

)
+O

(
h2
)
, and Sn,2 − s12 = Op

(
(nh)−1/2

)
+O

(
h2
)
;

(ii) 1
nh

∑n
i=1 g

2
i

p→ V and 1√
nh

∑n
i=1 gi

d→ N (0, V );

(iii) there exists λ̂ ∈ int
(
Λn
(
m1(x1)

))
satisfying

n∑
i=1

log
(

1 + λ̂gi

)
= sup

λ∈Λn(m1(x1))

n∑
i=1

log (1 + λgi) , w.p.a.1,

∣∣∣λ̂∣∣∣ = Op

(
(nh)−1/2

)
, and max1≤i≤n

∣∣∣λ̂gi∣∣∣ p→ 0.
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Proof of (i). We only prove the first statement. The second statement can be shown in the same

manner. By the change of variables and a second-order expansion of f1

(
x1 + hz

)
around hz = 0, we

have

E [Sn,1] =

ˆ
K (z) zf1

(
x1 + hz

)
dz = O

(
h2
)
.

Also, a similar argument yields

V ar (Sn,1) ≤ 1

nh2
E

[
Kh

(
x1 −X1

i

)2(X1
i − x1

h

)2
]

=
1

nh

ˆ
K (z)2 z2f1

(
x1 + hz

)
dz = O

(
(nh)−1

)
.

Therefore, Lyapunov’s central limit theorem implies Sn,1 −E [Sn,1] = Op

(
(nh)−1/2

)
. Combining these

results, the conclusion is obtained.

Proof of (ii). Proof of the first statement. From K̃i = Kh

(
x1 −X1

i

){
Sn,2 −

(
X1
i −x1
h

)
Sn,1

}
,

1

nh

n∑
i=1

g2
i =

1

nh

n∑
i=1

K̃2
i

(
Ỹi −m1(x1)

)2

= S2
n,2

1

nh

n∑
i=1

Kh

(
x1 −X1

i

)2 (
Ỹi −m1(x1)

)2

+S2
n,1

1

nh

n∑
i=1

Kh

(
x1 −X1

i

)2(X1
i − x1

h

)2 (
Ỹi −m1(x1)

)2

−2Sn,2Sn,1
1

nh

n∑
i=1

Kh

(
x1 −X1

i

)2(X1
i − x1

h

)(
Ỹi −m1(x1)

)2

= T1 + T2 − 2T3.

For T1, note that

T1 = S2
n,2

1

nh

n∑
i=1

Kh

(
x1 −X1

i

)2 (
Y ∗i −m1(x1)

)2
+ S2

n,2

1

nh

n∑
i=1

Kh

(
x1 −X1

i

)2 (
Ỹi − Y ∗i

)2

+2S2
n,2

1

nh

n∑
i=1

Kh

(
x1 −X1

i

)2 (
Y ∗i −m1(x1)

) (
Ỹi − Y ∗i

)
= T11 + T12 + 2T13.

By the same argument to the proof of Part (i) of this lemma,

E

[
1

nh

n∑
i=1

Kh

(
x1 −X1

i

)2 (
Y ∗i −m1(x1)

)2] → σ2s20,

V ar

(
1

nh

n∑
i=1

Kh

(
x1 −X1

i

)2 (
Y ∗i −m1(x1)

)2) → 0, (14)

Thus, from Chebyshev’s inequality and Lemma A.1 (i), we have T11
p→ σ2s20. For T12 and T13, adapted

versions of Horowitz and Mammen (2004, Lemma 7), where the link function is set to identity, and

Lemma A.1 (i) imply that T12
p→ 0 and T13

p→ 0. Combining these results, the conclusion is obtained.
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Proof of the second statement. Again, from K̃i = Kh

(
x1 −X1

i

){
Sn,2 −

(
X1
i −x1
h

)
Sn,1

}
,

1√
nh

n∑
i=1

gi =
1√
nh

n∑
i=1

K̃i

(
Ỹi −m1(x1)

)
=

1√
nh

n∑
i=1

Kh

(
x1 −X1

i

){
Sn,2 −

(
X1
i − x1

h

)
Sn,1

}(
Y ∗i −m1(x1)

)
+

1√
nh

n∑
i=1

Kh

(
x1 −X1

i

){
Sn,2 −

(
X1
i − x1

h

)
Sn,1

}(
Ỹi − Y ∗i

)
= L1 + L2.

For L1, note that

L1 = (Sn,2 − s12)
1√
nh

n∑
i=1

Kh

(
x1 −X1

i

) (
Y ∗i −m1(x1)

)
− (Sn,1 − s11)

1√
nh

n∑
i=1

Kh

(
x1 −X1

i

)(X1
i − x1

h

)(
Y ∗i −m1(x1)

)
+

1√
nh

n∑
i=1

 Kh

(
x1 −X1

i

){
s12 −

(
X1
i −x1
h

)
s11

}(
Y ∗i −m1(x1)

)
−E

[
Kh

(
x1 −X1

i

){
s12 −

(
X1
i −x1
h

)
s11

}(
Y ∗i −m1(x1)

)]


+

√
n

h
E

[
Kh

(
x1 −X1

i

){
s12 −

(
X1
i − x1

h

)
s11

}(
Y ∗i −m1(x1)

)]
= L11 − L12 + L13 + L14.

For L11, Lyapunov’s central limit theorem implies

1√
nh

n∑
i=1

{
Kh

(
x1 −X1

i

) (
Y ∗i −m1(x1)

)
− E

[
Kh

(
x1 −X1

i

) (
Y ∗i −m1(x1)

)]} d→ N
(
0, σ2s20

)
,

and the change of variables and a second-order expansion ofE
[
Y ∗i −m1(x1)

∣∣X1 = x1 + hz
]
f1

(
x1 + hz

)
around hz = 0 imply

E
[
Kh

(
x1 −X1

i

) (
Y ∗i −m1(x1)

)]
= h

ˆ
K (z)E

[
Y ∗i −m1(x1)

∣∣X1 = x1 + hz
]
f1

(
x1 + hz

)
dz = O

(
h3
)
.

Thus, from Lemma A.1 (i) and nh5 → 0, we have L11
p→ 0. Similarly, we can show that L12

p→ 0. For

L13, note that

E [L13] =

ˆ
K (z)2 (s12 − s11z)

2E
[(
Y ∗i −m1(x1)

)2∣∣∣X1 = x1 + hz
]
f1

(
x1 + hz

)
dz

−h
(ˆ

K (z) (s12 − s11z)E
[
Y ∗i −m1(x1)

∣∣X1 = x1 + hz
]
f1

(
x1 + hz

)
dz

)2

→ V,

where the convergence follows from a similar argument to (14). Therefore, Lyapunov’s central limit

theorem implies L13
d→ N (0, V ). For L14, the change of variables and second-order expansion of
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E
[
Y ∗i −m1(x1)

∣∣X1 = x1 + hz
]
f1

(
x1 + hz

)
around hz = 0 yield

L14 =
√
nh

ˆ
K (z) (s12 − s11z)E

[
Y ∗i −m1(x1)

∣∣X1 = x1 + hz
]
f1

(
x1 + hz

)
dz → 0.

Combining these results, we obtain L1
d→ N (0, V ). On the other hand, from Horowitz and Mammen

(2004, Lemma 7) with the identity link function and Lemma A.1 (i), we have L2
p→ 0. Therefore, the

conclusion is obtained.

Proof of (iii). Since the proof is similar to Newey and Smith (2004, Lemmas A1 and A2), it is

omitted.

A.3 Proof of Theorem 3.1

In this subsection, let f be the density function of X, gF,i = g̃i
(
m1(x1)

)
, and

VF =

(ˆ
K (z)2 dz

) ˆ
V ar

(
U |X =

(
x1, x̃

)′)
F ′
(
µ+m1(x1) +m−1(x̃)

)2
f
(
x1, x̃

)
dx̃.

From Lemma A.2 (ii), the first-order condition for λ̂F satisfies

0 =
1

nh

n∑
i=1

gF,i

1 + λ̂F gF,i
=

1

nh

n∑
i=1

gF,i − V̂F,1λ̂F ,

w.p.a.1, where V̂F,1 = 1
nh

∑n
i=1

g2F,i

(1+λ̇F gF,i)
2 , the second equality follows from an expansion around λ̂F = 0,

and λ̇F is a point on the line joining λ̂F and 0. Since

∣∣∣V̂F,1 − VF ∣∣∣ ≤ max
1≤i≤n

∣∣∣∣∣ 1

1 + λ̇F gF,i

∣∣∣∣∣
2 ∣∣∣∣∣ 1

nh

n∑
i=1

g2
F,i − VF

∣∣∣∣∣ p→ 0,

(by Lemma A.2 (i) and (ii)) and VF > 0 (by Assumptions 1 (iv)-(v), 4 (i), and 5 (v)), V̂ −1
F,1 exists w.p.a.1.

Thus, we have

λ̂F = V̂ −1
F,1

1

nh

n∑
i=1

gF,i,

w.p.a.1. From Lemma A.2 (ii), λ̂F satisfies `F
(
m1(x1)

)
= 2

∑n
i=1 log

(
1 + λ̂F gF,i

)
w.p.a.1, and a

second-order expansion of this equation around λ̂F = 0 yields

`F
(
m1(x1)

)
= 2λ̂F

n∑
i=1

gF,i − V̂F,2λ̂2
F =

[
2V̂ −1

F,1 − V̂F,2V̂
−2
F,1

]( 1√
nh

n∑
i=1

gF,i

)2

,

w.p.a.1, where V̂F,2 = 1
nh

∑n
i=1

g2F,i

(1+λ̈F gF,i)
2 and λ̈F is a point on the line joining λ̂F and 0. Since∣∣∣V̂F,2 − VF ∣∣∣ p→ 0 by the same argument to V̂F,1, we have 2V̂ −1

F,1 − V̂F,2V̂
−2
F,1

p→ V −1
F . Therefore, Lemma

A.2 (i) implies the conclusion.

Lemma A.2. Under Assumptions 1-5 in Appendix A.1, it holds
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(i) 1
nh

∑n
i=1 g

2
F,i

p→ VF and 1√
nh

∑n
i=1 gF,i

d→ N (0, VF );

(ii) there exists λ̂F ∈ int
(
ΛF,n

(
m1(x1)

))
satisfying

n∑
i=1

log
(

1 + λ̂F gF,i

)
= sup

λ∈ΛF,n(m1(x1))

n∑
i=1

log (1 + λgF,i) , w.p.a.1,

∣∣∣λ̂F ∣∣∣ = Op

(
(nh)−1/2

)
, and max1≤i≤n

∣∣∣λ̂F gF,i∣∣∣ p→ 0.

Proof of (i). Proof of the first statement. Let

Mi = µ+m1(x1) +m−1(X̃i), M̃i = µ̃+m1(x1) + m̃−1(X̃i).

By the definition of gF,i and expansions around M̃i = Mi,

1

nh

n∑
i=1

g2
F,i =

1

nh

n∑
i=1

Kh

(
x1 −X1

i

)2 {
Ui − F ′

(
Ṁi

)(
M̃i −Mi

)}2 {
F ′ (Mi) + F ′′

(
M̈i

)(
M̃i −Mi

)}2

=
1

nh

n∑
i=1

Kh

(
x1 −X1

i

)2
U2
i F
′ (Mi)

2

+
1

nh

n∑
i=1

Kh

(
x1 −X1

i

)2
F ′
(
Ṁi

)2
F ′ (Mi)

2
(
M̃i −Mi

)2

− 2

nh

n∑
i=1

Kh

(
x1 −X1

i

)2
UiF

′
(
Ṁi

)
F ′ (Mi)

2
(
M̃i −Mi

)
+

1

nh

n∑
i=1

Kh

(
x1 −X1

i

)2
U2
i F
′′
(
M̈i

)2 (
M̃i −Mi

)2

+
1

nh

n∑
i=1

Kh

(
x1 −X1

i

)2
F ′
(
Ṁi

)2
F ′′
(
M̈i

)2 (
M̃i −Mi

)4

− 2

nh

n∑
i=1

Kh

(
x1 −X1

i

)2
UiF

′
(
Ṁi

)
F ′′
(
M̈i

)2 (
M̃i −Mi

)3

+
2

nh

n∑
i=1

Kh

(
x1 −X1

i

)2
U2
i F
′ (Mi)F

′′
(
M̈i

)(
M̃i −Mi

)
+

2

nh

n∑
i=1

Kh

(
x1 −X1

i

)2
F ′
(
Ṁi

)2
F ′ (Mi)F

′′
(
M̈i

)(
M̃i −Mi

)3

− 4

nh

n∑
i=1

Kh

(
x1 −X1

i

)2
UiF

′
(
Ṁi

)
F ′ (Mi)F

′′
(
M̈i

)(
M̃i −Mi

)2

= T1 + T2 − 2T3 + T4 + T5 − 2T6 + 2T7 + 2T8 − 4T9,

where Ṁi and M̈i are points on the line joining M̃i and Mi. For T1, a similar argument to the proof

of Lemma A.1 (i) yields E [T1] → VF and V ar (T1) → 0. Thus, the Chebyshev’s inequality implies

T1
p→ VF . From Horowitz and Mammen (2004, Theorem 1 (c)), we have

max
1≤i≤n

∣∣∣M̃i −Mi

∣∣∣ = Op

(
κn−1/2 + κ−3/2

)
.
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Thus, by applying the law of large numbers repeatedly, we can obtain Tj
p→ 0 for each j = 2, . . . , 9. For

example,

|T2| ≤
(

max
1≤i≤n

∣∣∣M̃i −Mi

∣∣∣)2

max
1≤i≤n

∣∣∣∣F ′ (Ṁi

)2
F ′ (Mi)

2

∣∣∣∣
∣∣∣∣∣ 1

nh

n∑
i=1

Kh

(
x1 −X1

i

)2∣∣∣∣∣ p→ 0,

where max1≤i≤n

∣∣∣∣F ′ (Ṁi

)2
F ′ (Mi)

2

∣∣∣∣ = Op (1) by Assumption 5 (i). Combining these results, the con-

clusion is obtained.

Proof of the second statement. Again, from the definition of gF,i and expansions around M̃i =

Mi,

1√
nh

n∑
i=1

gF,i =
1√
nh

n∑
i=1

Kh

(
x1 −X1

i

){
Ui − F ′

(
Ṁi

)(
M̃i −Mi

)}{
F ′ (Mi) + F ′′

(
M̈i

)(
M̃i −Mi

)}
=

1√
nh

n∑
i=1

Kh

(
x1 −X1

i

)
UiF

′ (Mi)

+
1√
nh

n∑
i=1

Kh

(
x1 −X1

i

)
UiF

′′
(
M̈i

)(
M̃i −Mi

)
− 1√

nh

n∑
i=1

Kh

(
x1 −X1

i

)
F ′
(
Ṁi

)
F ′ (Mi)

(
M̃i −Mi

)
− 1√

nh

n∑
i=1

Kh

(
x1 −X1

i

)
F ′
(
Ṁi

)
F ′′
(
M̈i

)(
M̃i −Mi

)2

= L1 + L2 − L3 − L4,

where Ṁi and M̈i are points on the line joining M̃i and Mi. For L1, Lyapunov’s central limit theorem

implies (note: E [L1] = 0 by the law of iterated expectations)

L1
d→ N (0, VF ) .

For L2, by inserting the asymptotic linear form for
(
M̃i −Mi

)
given in Horowitz and Mammen (2004,

Theorem 1 (d)), we can apply Horowitz and Mammen (2004, Lemma 8) to show that L2
p→ 0. Similar

arguments yield L3
p→ 0 and L4

p→ 0. Therefore, the conclusion is obtained.

Proof of (ii). Since the proof is similar to Newey and Smith (2004, Lemmas A1 and A2), it is

omitted.

A.4 Proof of Theorem 4.1

In this subsection, let f1 be the density function of X1, and

gτ,i = Kh

(
x1 −X1

i

) (
τ − I

{
Ỹi ≤ m1(x1)

})
,

Vτ = τ (1− τ) f1

(
x1
) ˆ

K (z)2 dz.
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From Lemma A.3 (ii), the first-order condition for λ̂τ satisfies

0 =
1

nh

n∑
i=1

gτ,i

1 + λ̂τgτ,i
=

1

nh

n∑
i=1

gτ,i − V̂τ,1λ̂τ ,

w.p.a.1, where V̂τ,1 = 1
nh

∑n
i=1

g2τ,i

(1+λ̇τgτ,i)
2 , the second equality follows from an expansion around λ̂τ = 0,

and λ̇τ is a point on the line joining λ̂τ and 0. Since

∣∣∣V̂τ,1 − Vτ ∣∣∣ ≤ max
1≤i≤n

∣∣∣∣∣ 1

1 + λ̇τgτ,i

∣∣∣∣∣
2 ∣∣∣∣∣ 1

nh

n∑
i=1

g2
τ,i − Vτ

∣∣∣∣∣ p→ 0,

(by Lemma A.3 (i) and (ii)) and Vτ > 0 (by Assumptions 1 (iv) and 4 (i), and τ ∈ (0, 1)), V̂ −1
τ,1 exists

w.p.a.1. Thus, we have

λ̂τ = V̂ −1
τ,1

1

nh

n∑
i=1

gτ,i,

w.p.a.1. From Lemma A.3 (ii), λ̂τ satisfies `τ
(
m1(x1)

)
= 2

∑n
i=1 log

(
1 + λ̂τgτ,i

)
w.p.a.1, and a second-

order expansion of this equation around λ̂τ = 0 yields

`τ
(
m1(x1)

)
= 2λ̂τ

n∑
i=1

gτ,i − V̂τ,2λ̂2
τ =

[
2V̂ −1

τ,1 − V̂τ,2V̂
−2
τ,1

]( 1√
nh

n∑
i=1

gτ,i

)2

,

w.p.a.1, where V̂τ,2 = 1
nh

∑n
i=1

g2τ,i

(1+λ̈τgτ,i)
2 and λ̈τ is a point on the line joining λ̂τ and 0. Since∣∣∣V̂τ,2 − Vτ ∣∣∣ p→ 0 by the same argument to V̂τ,1, we have 2V̂ −1

τ,1 − V̂τ,2V̂
−2
τ,1

p→ V −1
τ . Therefore, Lemma A.3

(i) implies the conclusion.

Lemma A.3. Under Assumptions 1-4 and 6 in Appendix A.1,

(i) 1
nh

∑n
i=1 g

2
τ,i

p→ Vτ and 1√
nh

∑n
i=1 gτ,i

d→ N (0, Vτ );

(ii) there exists λ̂τ ∈ int
(
Λτ,n

(
m1(x1)

))
satisfying

n∑
i=1

log
(

1 + λ̂τgτ,i

)
= sup

λ∈Λτ,n(m1(x1))

n∑
i=1

log (1 + λgτ,i) , w.p.a.1,

∣∣∣λ̂τ ∣∣∣ = Op

(
(nh)−1/2

)
, and max1≤i≤n

∣∣∣λ̂τgτ,i∣∣∣ p→ 0.
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Proof of (i). Proof of the first statement. By the definition of gτ,i,

1

nh

n∑
i=1

g2
τ,i =

1

nh

n∑
i=1

Kh

(
x1 −X1

i

)2 (
τ − I

{
Ỹi ≤ m1(x1)

})2

= τ2 1

nh

n∑
i=1

Kh

(
x1 −X1

i

)2
+ (1− 2τ)

1

nh

n∑
i=1

Kh

(
x1 −X1

i

)2
I
{
Yi ≤ m1(x1)

}
+ (1− 2τ)

1

nh

n∑
i=1

Kh

(
x1 −X1

i

)2 (
Pr
{
Ỹi ≤ m1(x1)

∣∣∣Xi

}
− Pr

{
Yi ≤ m1(x1)

∣∣Xi

})

+ (1− 2τ)
1

nh

n∑
i=1

Kh

(
x1 −X1

i

)2 I
{
Ỹi ≤ m1(x1)

}
− Pr

{
Ỹi ≤ m1(x1)

∣∣∣Xi

}
−I
{
Yi ≤ m1(x1)

}
+ Pr

{
Yi ≤ m1(x1)

∣∣Xi

}


= T1 + T2 + T3 + T3.

For T1, a similar argument to the proof of Lemma A.1 (i) yields E [T1] → τ2f1

(
x1
) ´

K (z)2 dz and

V ar (T1)→ 0. Thus, the Chebyshev’s inequality implies

T1
p→ τ2f1

(
x1
) ˆ

K (z)2 dz.

Similarly, for T2, we obtain

T2
p→ τ (1− 2τ) f1

(
x1
) ˆ

K (z)2 dz.

By applying Horowitz and Lee (2005, Theorem 3 (a) and Lemma A.7), we can obtain T3
p→ 0. Also by

applying Horowitz and Lee (2005, Theorem 3 (a) and Lemma A.5), we can obtain T4
p→ 0. Combining

these results, the conclusion is obtained.

Proof of the second statement. Again, from the definition of gτ,i,

1√
nh

n∑
i=1

gτ,i =
1√
nh

n∑
i=1

Kh

(
x1 −X1

i

) (
τ − I

{
Ỹi ≤ m1(x1)

})
=

1√
nh

n∑
i=1

Kh

(
x1 −X1

i

) (
τ − I

{
Yi ≤ m1(x1)

})
+

1√
nh

n∑
i=1

Kh

(
x1 −X1

i

) (
Pr
{
Yi ≤ m1(x1)

∣∣Xi

}
− Pr

{
Ỹi ≤ m1(x1)

∣∣∣Xi

})

+
1√
nh

n∑
i=1

Kh

(
x1 −X1

i

) I
{
Yi ≤ m1(x1)

}
− Pr

{
Yi ≤ m1(x1)

∣∣Xi

}
−I
{
Ỹi ≤ m1(x1)

}
+ Pr

{
Ỹi ≤ m1(x1)

∣∣∣Xi

} 
= L1 + L2 + L3.

For L1, Lyapunov’s central limit theorem implies (note: E [L1] = 0 by the law of iterated expectations)

L1
d→ N (0, Vτ ) .

By applying Horowitz and Lee (2005, Theorem 3 (a) and Lemma A.11), we can obtain L2
p→ 0. Also by

applying Horowitz and Lee (2005, Theorem 3 (a) and Lemma A.13), we can obtain L3
p→ 0. Therefore,

the conclusion is obtained.
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Proof of (ii). Since the proof is similar to Newey and Smith (2004, Lemmas A1 and A2), it is

omitted.
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