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Abstract

This paper studies second-order properties of the empirical likelihood overidentifying restriction test to

check the validity of moment condition models. We show that the empirical likelihood test is Bartlett cor-

rectable and suggest second-order refinement methods for the test based on the empirical Bartlett correction

and adjusted empirical likelihood. Our second-order analysis supplements the one in Chen and Cui (2007)

who considered parameter hypothesis testing for overidentified models. In simulation studies we find that the

empirical Bartlett correction and adjusted empirical likelihood assisted by bootstrapping provide reasonable

improvements for the properties of the null rejection probabilities.

1 Introduction

The generalized method of moments (GMM) by Hansen (1982) has been a standard tool for empirical economic

analysis. GMM provides a unified framework for conducting statistical inference when economic models are

specified by some moment conditions. However, the literature indicates that there are considerable problems

with GMM particularly in its finite sample performance, such as the bias in point estimation and distortions

of null rejection probabilities in hypothesis testing (see, e.g., the special issue of the Journal of Business and

Economic Statistics, vol. 14).

One well-known problem of GMM-based inference is that the (first-order) asymptotic null distribution of

the overidentifying restriction test based on the minimized GMM criterion function, often called the J-test, can

be a poor approximation in finite samples. In order to overcome this problem, several alternative inference
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methods have been developed. Hall and Horowitz (1996) proposed a uniform weight bootstrap method by using

recentered moment restrictions. Brown and Newey (2002) proposed a weighted bootstrap method based on

the implied probabilities obtained from the moment conditions. These bootstrap methods provide higher-order

refinements for the property of null rejection probabilities of overidentifying restriction tests.

Another approach to tackle this finite sample problem of the GMM-based overidentifying restriction test is to

employ an alternative criterion function to derive a test statistic, such as continuous updating GMM, exponential

tilting, and empirical likelihood (see, Kitamura, 2007, for a survey). Among them, empirical likelihood is an

attractive candidate to deal with the distortion problem of the null rejection probabilities because of its Bartlett

correctability, a second-order refinement based on the Edgeworth expansion. The Bartlett correctability of the

empirical likelihood-based test is reported in several contexts, such as smooth functions of means (DiCiccio,

Hall and Romano, 1991) and quantiles (Chen and Hall, 1993). Also Baggerly (1998) focused on testing for the

mean parameter (i.e., E [X ] = 0) and showed that only empirical likelihood is Bartlett correctable in the power

divergence family. Bravo (2004) showed that a bootstrap version of the empirical likelihood test achieves the

same higher order accuracy as the Bartlett corrected test. Although the parameters of interest are different,

these papers studied Bartlett correctability of empirical likelihood in just-identified moment restrictions (i.e., the

number of moment restrictions equals the number of parameters). This paper is concerned with overidentified

moment restrictions (i.e., the number of moment restrictions exceeds the number of parameters) which are

common in economic analysis. Although the second-order analysis becomes substantially more complicated due

to extra systems and terms brought by overidentifying restrictions, Chen and Cui (2007) tackled this problem

and showed that the empirical likelihood test for parameter hypotheses is Bartlett correctable even if the models

are overidentified.

This paper extends Chen and Cui’s (2007) analysis to the overidentifying restriction testing problem and

studies second-order properties of the empirical likelihood overidentifying restriction test. Although the basic

idea of the second-order analysis follows from Chen and Cui (2007), the technical detail is case-by-case and

specific to our test statistic. Indeed Chen and Cui (2007, p. 504) indicated the possibility of this extension, and

this paper formally studies this issue. In particular, we show that the empirical likelihood test for overidentifying

restrictions is also Bartlett correctable and propose second-order refinement methods for the test based on the

empirical Bartlett correction and adjusted empirical likelihood. Adjusted empirical likelihood (Liu and Chen,

2010) is a modification of empirical likelihood to avoid non-existence of solutions for the likelihood maximization

problem by introducing auxiliary observations. Our refinement methods are illustrated by simulation studies

based on a linear instrumental variable regression model and asset pricing model. We find that (i) the GMM and

empirical likelihood tests based on the asymptotic critical values show severe over-rejections particularly when the

number of moment restrictions is large, and (ii) an empirical Bartlett correction and adjusted empirical likelihood

assisted by bootstrapping provide reasonable improvements for the properties of null rejection probabilities. Since

testing for overidentifying restrictions is a fundamental problem to assess the validity of economic theory which

precedes to parameter estimation and inference, our refinement methods contribute to enhance the reliability of

empirical economic analysis based on moment condition models.

In the context of hypothesis testing for overidentifying restrictions, there are several papers which derive global

optimal properties of empirical likelihood-based tests. Kitamura (2001) focused on the generalized Neyman-

Pearson criterion (i.e., comparison of decay rates of the type II errors under fixed alternatives subject to a

restriction on the decay rate of the type I errors), and showed that the empirical likelihood test is generalized

Neyman-Pearson optimal. Otsu (2010) focused on the Bahadur criterion (i.e., comparison of decay rates of p-
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values under fixed alternatives), and showed that the empirical likelihood test is Bahadur optimal. Canay and

Otsu (2011) focused on the Hodges-Lehmann criterion (i.e., comparison of decay rates of the type II errors under

fixed alternatives subject to a size constraint), and showed that not only the empirical likelihood test but also

the GMM and generalized empirical likelihood tests are Hodges-Lehmann optimal. These studies concentrate on

global (or fixed alternative) and first-order power properties and show that the empirical likelihood test satisfies

these optimality criteria. On the other hand, this paper concentrates on second-order null rejection properties

under the null hypothesis and show that the empirical likelihood test is Bartlett correctable (i.e., accepts a second-

order refinement for the null rejection property). If the Bartlett correction factor Bc for the empirical likelihood

test Tn is known, then the corrected test statistic Tn

(

1 + n−1Bc

)−1
shows the same first-order global power

properties to the original statistic Tn. Thus, the Bartlett corrected empirical likelihood test also enjoys the above

global optimal properties. However, if Bc is unknown (as always the case in practice) and is estimated by B̂c

based on data, then we need to incorporate the large deviation properties of the estimation error B̂c−Bc and the

first-order global power properties of the corrected test statistic Tn

(

1 + n−1B̂c

)−1
require further investigation.

Based on these considerations, we recommend applied researchers to employ the Bartlett corrected empirical

likelihood test (with estimated Bc) when from previous studies the distortion in the null rejection probability is

a major concern for their applications of interest, and to employ the uncorrected empirical likelihood test when

the distortion in the null rejection probability is not a serious problem and better power property is desired. For

example, our simulation results in Section 4 indicate that when the sample size is small and/or the number of

moment conditions is large, the uncorrected empirical likelihood and GMM-based overidentification tests tend

to over-reject the null hypothesis. Therefore, in such situations, we recommend the use of the Bartlett corrected

empirical likelihood test suggested in this paper.

The rest of the paper is organized as follows. Section 2 introduces our setup and notation. Section 3 presents

the main theoretical results: second-order properties of the empirical likelihood test statistic and refinements by

the Bartlett correction and adjusted empirical likelihood. Section 4 conducts simulation studies based on a linear

instrumental variable regression model and asset pricing model. Section 5 concludes. All technical details are

contained in the Appendix.

2 Setup

Our notation closely follows that of Chen and Cui (2007). Suppose we observe a random sample {Xi}ni=1 from

X ∈ X ⊆ Rd. Let g : X × Θ → Rr be a vector of moment functions, where Θ ⊂ Rp is the parameter space and

r > p (overidentified). We wish to test the validity of the overidentifying restrictions:

H0 : E [g (X, θ)] = 0 for some θ ∈ Θ,

H1 : E [g (X, θ)] (= 0 for any θ ∈ Θ. (1)

If the null hypothesis is uniquely satisfied at some θ0 ∈ Θ (i.e., the model is correctly specified and the parameter

is point identified at θ0), then we can estimate the true parameter value θ0 by GMM or generalized empirical

likelihood and also conduct hypothesis testing on θ0 by the Wald, Lagrange multiplier, or likelihood ratio type

tests. In contrast to Chen and Cui (2007) who focused on parameter hypothesis testing (i.e., HP
0 : θ0 = c against

HP
1 : θ0 (= c), this paper studies second-order properties of the empirical likelihood test for the overidentifying

restrictions H0 against H1. We consider the following setup adopted by Chen and Cui (2007). Let g (X, θ) =
(

g1 (X, θ) , . . . , gr (X, θ)
)′

and |·| be the Euclidean norm.
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Assumption.

1. {Xi}ni=1 is i.i.d.

2. E [g (X, θ)] = 0 is uniquely satisfied at θ0 ∈ Θ, Θ is compact, V = V ar (g (X, θ0)) is positive definite, and

G = E
[

∂g(X,θ0)
∂θ′

]

has the full column rank.

3. There exists a neighborhood N of θ0 such that for each j = 1, . . . , r, gj (x, θ) is continuously third-order

differentiable in θ ∈ N almost surely and the derivatives are bounded by integrable functions over N .

4. E
[

|g (X, θ0)|15
]

< ∞ and lim sup|t|→∞ |E [exp (it′g (X, θ0))]| < 1.

The same comments in Chen and Cui (2007) apply here. Assumption 1 excludes dependent data. An

extension to time series data is beyond the scope of this paper. The first condition in Assumption 2 says that

the overidentification null hypothesis H0 is satisfied and the true parameter value θ0 is point identified. The last

condition in Assumption 2 excludes weak identification (or weak instruments) in the sense of Stock and Wright

(2000). If Assumption 2 does not hold and G drifts to the zero matrix at the
√
n-rate (so-called weak identification

asymptotics), the first-order asymptotic null distribution of the overidentification test statistic typically becomes

non-standard. Assumption 3 is on smoothness of the moment functions. This assumption excludes, for example,

quantile regression models. Assumption 4 imposes bounded moments and a Cramér condition used to establish

the validity of the Edgeworth expansion. It is known that the Cramér condition is satisfied when the distribution

of g (X, θ0) has a non-degenerate and absolutely continuous component (see, e.g., Hall, 1992, pp. 65-67). This

requirement is typically satisfied when X is continuous and g (x, θ0) is smooth in x. For example, Assumption 4

can be verified for the simulation design in Section 4 motivated by an asset pricing model, and linear instrumental

variable regression models with normal errors, regressors, and instruments. However, when the distribution of

g (X, θ0) has no absolutely continuous component, a conventional argument to verify the Cramér condition is not

applicable in general, and the validity of the Cramér condition becomes questionable or at least hard to verify.1

We now introduce the empirical likelihood test statistic for H0. Let T be an r×r orthogonal matrix satisfying

TV −1/2GU =
(

Λ, 0p×(r−p)

)′
,

where U is a p×p orthogonal matrix and Λ is a p×p non-singular diagonal matrix. We orthogonalize the moment

functions as wi (θ) = TV −1/2g (Xi, θ) so that E
[

wi (θ0)wi (θ0)
′] = I. The empirical likelihood overidentifying

restriction test statistic, proposed by Qin and Lawless (1994), can be defined as

Tn = min
θ∈Θ

" (θ) = min
θ∈Θ

2
n
∑

i=1

log
(

1 + λ (θ)′ wi (θ)
)

,

where λ (θ) solves
∑n

i=1
wi(θ)

1+λ′wi(θ)
= 0 with respect to λ for a given value of θ. From Qin and Lawless (1994,

Corollary 3), we can see that Tn
d→ χ2 (r − p) under H0.

The rest of this section presents an expansion formula for Tn derived by Chen and Cui (2007). Let θ̂ =

argminθ∈Θ " (θ) and λ̂ = λ
(

θ̂
)

. The first-order conditions for
(

λ̂′, θ̂′
)

are written as Q
(

λ̂, θ̂
)

= 0, where

Q (λ, θ) =

(

1

n

n
∑

i=1

wi (θ)
′

1 + λ′wi (θ)
,
1

n

n
∑

i=1

λ′ (∂wi (θ) /∂θ′)

1 + λ′wi (θ)

)′

.

1For example, Hall (1992, Section 5.5.1) argued that a random variable 1
2 I {|X − c| ≤ h} used for the uniform kernel density

estimation does not satisfy the Cramér condition. See also Horowitz (1998) and Whang (2006) on this issue in the context of quantile

regression, where g (X, θ0) = Z (τ − I {Y ≤ Z′θ0}) for X = (Y,Z′)′ and τ ∈ (0, 1). In particular, these papers verified the Cramér

condition for a kernel smoothed version of the moment function g (X, θ0).
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Thus, the fourth-order Taylor expansion of Q
(

λ̂, θ̂
)

= 0 around
(

λ̂′, θ̂′
)

=
(

0′r×1, θ
′
0

)

and inversions yield

expansion formulae for λ̂ and θ̂ − θ0. By inserting those formulae to the fourth-order Taylor expansion of

Tn = 2
∑n

i=1 log
(

1 + λ̂′wi

(

θ̂
))

around λ̂′wi

(

θ̂
)

= 0, Chen and Cui (2007) obtained an expansion formula for

Tn. To present the formula, define η = (λ′, θ′)′, S = E
[

∂Q(0,θ0)
∂η′

]

, aj = j-th element of a vector a,

αj1...jk = E
[

wj1
i (θ0) · · ·wjk

i (θ0)
]

, Aj1...jk =
1

n

n
∑

i=1

wj1
i (θ0) · · ·wjk

i (θ0)− αj1...jk ,

βj,j1...jk = S−1E

[

∂kQj (0, θ0)

∂ηj1 · · ·∂ηjk

]

, Bj,j1...jk = S−1 ∂
kQj (0, θ0)

∂ηj1 · · · ∂ηjk
− βj,j1...jk ,

γj,j1...jl;k,k1...km;...p,p1,...,pn = E

[

∂lwj (θ0)

∂θj1 · · · ∂θjl
∂mwk (θ0)

∂θk1
· · · ∂θkm

· · · ∂nwp (θ0)

∂θp1
· · · ∂θpn

]

,

Cj,j1...jl;k,k1...km;...p,p1,...,pn =
1

n

n
∑

i=1

∂lwj (θ0)

∂θj1 · · · ∂θjl
∂mwk (θ0)

∂θk1
· · · ∂θkm

· · · ∂nwp (θ0)

∂θp1
· · · ∂θpn

− γj,j1...jl;k,k1...km;...p,p1,...,pn .

Hereafter, the ranges of the superscripts are fixed as g, h, i, j ∈ {1, . . . , r}, k, l,m, n ∈ {1, . . . , p}, and q, s, t, u ∈
{1, . . . , r + p}. Also, by the convention, repeated superscripts are summed over (e.g., BjAj =

∑r
j=1 B

jAj).

Based on this notation, Chen and Cui’s (2007) expansion formula for Tn is presented as

n−1Tn = −2BjAj −BjBj + 2Ci,kBiBr+k,qBq +
1

2
βj,uqβr+k,stγj,kBuBqBsBt

−βj,uqBuBqBr+k,sBsγj,k − βr+k,uqBuBqCi,kBi −BjBiAji − 2

3
αjihBjBiBh

+2Cj,k

{

BjBr+k −Bj,qBqBr+k [2, j, r + k] +
1

2
βj,uqBuBqBr+k [2, j, r + k]

}

+γj,kl

{

−BjBr+kBr+l +BjBr+kBr+l,qBq [3, j, r + k, r + l]

−1

2
βj,uqBr+kBr+lBuBq [3, j, r + k, r + l]

}

− Cj,klBjBr+kBr+l − 2

3
AjihBjBiBh

−Bj,uBuBj,qBq − 1

4
βj,uqβj,stBuBqBsBt + βj,uqBuBqBj,sBs + 2γj;i;h,kBjBiBhBr+k

+BjBi,qBqAji [2, j, i]− 1

2
βj,uqBuBqBiAji [2, j, i] +

1

3
γj;k,lmBjBr+kBr+lBr+m

+2γj;i,l

{

BjBiBr+l −BjBiBr+l,qBq +
1

2
βr+l,uqBjBiBuBq −Br+lBiBj,qBq [2, j, i]

+
1

2
βj,uqBuBqBiBr+l [2, j, i]

}

+ 2BjBiBr+lCj;i,l −
(

γj;i,lk + γj,l;i,k
)

BjBiBr+lBr+k

+2αjihBjBiBh,qBq − αjihβj,uqBuBqBiBh − 1

2
αjihgBjBiBhBg +Op

(

n−5/2
)

= L1 + · · ·+ L33 +Op

(

n−5/2
)

, (2)

where [2, j, i] means the sum of two terms by exchanging the superscripts i and j, and [3, j, r + k, r + l] means the

sum of three terms by exchanging the superscripts j, r + k, and r + l (e.g., BjBr+kBr+l,qBq [3, j, r + k, r + l] =

BjBr+kBr+l,qBq +Br+kBr+lBj,qBq +BjBr+lBr+k,qBq). Compared to Chen and Cui (2007) who investigated

the second-order properties of the empirical likelihood ratio test statistic " (c)−"
(

θ̂
)

for the parameter hypothesis

HP
0 : θ0 = c, this paper studies second-order properties of Tn = "

(

θ̂
)

. Except for the basic ideas, the second-order

analysis below is specific to our setup and different from Chen and Cui (2007).
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3 Main Results

3.1 Signed Root Expansion and Cumulants

Hereafter, the ranges of the superscripts are fixed as a, b, c, d ∈ {1, . . . , r − p}. To study the second-order prop-

erties of Tn based on the expansion in (2), we first find a signed root expansion in the form of

n−1Tn = (R1 +R2 +R3)
p+a (R1 +R2 +R3)

p+a +Op

(

n−5/2
)

,

where R1 = Op

(

n−1/2
)

, R2 = Op

(

n−1
)

, and R3 = Op

(

n−3/2
)

. By collecting the terms of order Op

(

n−1
)

in (2),

we have Rp+a
1 Rp+a

1 = L1 + L2. Using the formulae in Appendix A.1, Rp+a
1 is obtained as

Rp+a
1 = Ap+a. (3)

By collecting the terms of order Op

(

n−3/2
)

in (2), we have 2Rp+a
1 Rp+a

2 = L7 + L8 + L9 + L12 + L24. Let

UΛ−1 =
(

ωkl
)

p×p
. Using the formulae in Appendix A.1, Rp+a

2 is obtained as

Rp+a
2 = −1

2
Ap+bAp+a p+b +

1

3
αp+a p+b p+cAp+bAp+c − ωklCp+a,kAl

+
1

2
ωkmωlnγp+a,klAmAn + ωlmγp+a;p+b,lAp+bAm. (4)

Also, by collecting the terms of order Op

(

n−2
)

in (2), we have 2Rp+a
1 Rp+a

3 +Rp+a
2 Rp+a

2 =
∑6

j=3 Lj+
∑11

j=10 Lj+
∑23

j=13 Lj +
∑33

j=25 Lj . Thus, after tedious calculations in Appendix A.3, Rp+a
3 is obtained as in Appendix A.2.

Based on the signed root expansion obtained above, we compute cumulants of R = R1 +R2 +R3. Observe that

E
[

Rp+a
1

]

= 0 and E
[

Rp+a
2

]

= n−1µp+a, where

µp+a = −1

6
αp+a p+b p+b − ωklγl;p+a,k +

1

2
γp+a,klωkmωlm. (5)

Since all terms in Rp+a
3 are product of three zero mean averages, it holds E

[

Rp+a
3

]

= O
(

n−2
)

. Thus, the

first-order cumulant is

cum
(

Rp+a
)

= E
[

Rp+a
]

= n−1µp+a +O
(

n−2
)

. (6)

In Appendix A.4, we show that the second-order cumulant is

cum
(

Rp+a, Rp+f
)

= n−1δp+a p+f + n−2∆p+a p+f +O
(

n−3
)

. (7)

Appendices A.5 and A.6 show that the third and fourth cumulants satisfy

cum
(

Rp+a, Rp+b, Rp+d
)

= O
(

n−3
)

, cum
(

Rp+a, Rp+b, Rp+c, Rp+d
)

= O
(

n−4
)

. (8)

3.2 Second-order Properties and Bartlett Correction

Based on the cumulants for the signed root expansion obtained in the previous subsection, we can apply a

conventional argument to derive the Edgeworth expansion and Bartlett correction for the empirical likelihood

test statistic Tn (e.g., DiCiccio, Hall and Romano, 1991). Let cα and fr−p (·) be the (1− α)-th quantile and

probability density function of the χ2 (r − p) distribution, respectively. Also define the Bartlett factor as

Bc =
µp+aµp+a +∆p+a p+a

r − p
, (9)

where µp+a and ∆p+a p+a are defined in (5) and (7), respectively. Let B̂c be a
√
n-consistent estimator of Bc.

The main results are summarized as follows.
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Theorem 3.1. Under Assumptions 1-4,

(i) Pr {Tn ≤ cα} = 1− α− n−1cαfr−p (cα)Bc +O
(

n−2
)

,

(ii) Pr
{

Tn ≤ cα
(

1 + n−1Bc

)}

= 1− α+O
(

n−2
)

,

(iii) Pr
{

Tn ≤ cα
(

1 + n−1B̂c

)}

= 1− α+O
(

n−2
)

.

Theorem 3.1 says that (i) the error in the null rejection probability of the empirical likelihood test using the

asymptotic critical value cα is of order O
(

n−1
)

, (ii) the error can be reduced to order O
(

n−2
)

by the Bartlett

correction, and (iii) replacing the Bartlett factor Bc by a
√
n-consistent estimator B̂c has no effect at the order

of n−2 (see DiCiccio, Hall and Romano (1991), for instance).

In practice, Bc has to be estimated. The method of moments estimator of Bc can be obtained by substituting

all the population moments involved by their corresponding sample moments. However, particularly when the

moment function g (X, θ) is nonlinear in θ, the Bartlett factor Bc takes a complex form and the method of

moments estimator can be less practical and precise. Chen and Cui (2007) employed a uniform weight bootstrap

method using recentered moments (Hall and Horowitz, 1996) to estimate the normalized factor βc = 1 + n−1Bc

in the case of parameter hypothesis testing for overidentified models. We suggest a slightly different procedure

to estimate βc based on the implied probability bootstrap (Brown and Newey, 2002) which resamples from

a distribution that imposes the moment restrictions instead of the empirical distribution. The procedure to

estimate βc is as follows.

1. Using θ̂ and λ̂, calculate the implied probabilities

p̂i =
1

n
(

1 + λ̂′g
(

Xi, θ̂
)) , (10)

for i = 1, . . . , n.

2. Draw n i.i.d. observations
{

X∗b
i

}n

i=1
with replacement from the multinomial distribution with Pr {X = xi} =

p̂i and calculate the empirical likelihood test statistic T ∗b
n based on

{

X∗b
i

}n

i=1
.2

3. Repeat Step 2 B times to obtain T ∗1
n, , . . . , T

∗B
n . Estimate βc by

β̂c =
1

B (r − p)

B
∑

b=1

T ∗b
n . (11)

The critical value for Tn is set as cαβ̂c.

Brown and Newey (2002) argued that this version of bootstrap can provide an asymptotically efficient estimator

of the distribution of overidentification test statistics. The asymptotic property of this procedure is presented as

follows.

Theorem 3.2. Under Assumptions 1-4,

Pr
{

Tn ≤ cαβ̂c

}

= 1− α+O
(

n−3/2
)

.

2Since this multinomial distribution satisfies the overidentified moment conditions (i.e.,
∑n

i=1 p̂ig
(

Xi, θ̂
)

= 0), we can use the

original moment functions without recentering.
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Compared to Theorem 3.1 (i), this theorem says that the error in the null rejection probability of the empirical

likelihood test can be reduced to order O
(

n−3/2
)

by the bootstrap approximation to βc = 1+n−1Bc. Compared

to Theorem 3.1 (ii) and (iii), the asymptotic error increases from O
(

n−2
)

to O
(

n−3/2
)

. This is due to the use of
√
n-consistent estimator β̂c of βc. The proof of this theorem is similar to that of Chen and Cui (2007, Theorem

3), which employs the uniform weight bootstrap with recentering.

3.3 Refinement by Adjusted Empirical Likelihood

Liu and Chen (2010) proposed an adjustment for the construction of empirical likelihood to avoid non-existence

for the solution of the likelihood maximization problem (i.e., the case where the linear space spanned by
{

g
(

Xi, θ̂
)}n

i=1
may not contain the origin in finite samples). In our context, the adjusted empirical likelihood

test statistic can be defined as

TA
n = min

θ∈Θ
2
n+1
∑

i=1

log
(

1 + λA (θ)′ wi (θ)
)

,

where wn+1 (θ) = −an

n

∑n
i=1 wi (θ) is a pseudo observation and λA (θ) solves

∑n+1
i=1

wi(θ)
1+λ′wi(θ)

= 0 with respect

to λ. If an > 0, the linear space spanned by {wi (θ)}n+1
i=1 always contains the origin and thus the test statistic

TA
n always exists. By a similar argument to Liu and Chen (2010) combined with the results in Section 3.1, the

signed root expansion of TA
n is obtained as

n−1TA
n =

(

R1 +R2 +RA
3

)p+a (
R1 +R2 +RA

3

)p+a
+Op

(

n−5/2
)

,

where RA
3 = R3 − a

nR1 with an = a + Op

(

n−1/2
)

. By setting a = Bc

2 , the same calculations in Sections 3.1

with RA
3 imply that the Bartlett correction factor in (9) will be zero. This result is summarized in the following

theorem.

Theorem 3.3. Under Assumptions 1-4,

(i) Pr
{

TA
n ≤ cα

}

= 1− α+O
(

n−2
)

if an =
Bc

2
,

(ii) Pr
{

TA
n ≤ cα

}

= 1− α+O
(

n−2
)

if an =
B̂c

2
+Op

(

n−1/2
)

.

Theorem 3.3 says that (i) by setting an = Bc

2 , the adjusted empirical likelihood test with the chi-square critical

value achieves the same higher-order precision as the Bartlett correction in Theorem 3.1 (ii); and (ii) estimation

of Bc by a
√
n-consistent estimator has no effect on the error in the null rejection probability. Similar to the case

of the Bartlett correction in Section 3.2, the correction factor Bc can be estimated by the method of moments or

bootstrapping. If B̂c is obtained by the method of moments, then mild conditions guarantee the
√
n-consistency

for Bc. However, if we employ a bootstrap approximation for βc based on either the uniform weight bootstrap

(Chen and Cui, 2007) or implied probability bootstrap in Section 3.2 and estimate Bc by B̃c = n
(

β̂c − 1
)

, then

B̃c is not
√
n-consistent in general (even though β̂c is

√
n-consistent for βc). In a simulation study below, we find

that the value of B̃c varies in a wide range across simulations compared to the value of β̂c.3

3For the uniform bootstrap approximation, Liu and Chen (2010, pp. 1355-1356) estimated Bc by using the median of bootstrap

resamples of Tn (with recentered moments), while they reported that the estimates for Bc are unstable even after this modification.
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4 Simulation

This section conducts simulation studies in order to evaluate finite sample properties of the second-order refine-

ments proposed in the last section. We consider two simulation designs: a linear instrumental variable regression

model (Section 4.1) and nonlinear moment restriction model (Section 4.2). Under the null and alternative hy-

potheses, we compare rejection frequencies of four overidentifying restriction tests: (i) the J-test based on the

generalized method of moments (GMM),4 (ii) usual empirical likelihood test (EL),5 (iii) Bartlett corrected em-

pirical likelihood test (BEL), and (iv) adjusted empirical likelihood test (AEL). To implement BEL, we obtain

an estimator β̂c for the correction factor βc = 1 + n−1Bc by using the implied probability bootstrap method

suggested in Section 3.2. To implement AEL, we estimate Bc by B̃c = n
(

β̂c − 1
)

. The number of bootstrap

replications is 199. All results are based on 1,000 Monte Carlo replications. All tables and figures are contained

in Appendix B.

4.1 Linear Instrumental Variable Regression

4.1.1 Performance under the Null Hypothesis

We first consider the linear instrumental variable regression model:

Yi = Wiθ0 + Ui, (12)

Wi = Z ′
iπ + Vi,

for i = 1, . . . , n, where π = (c, . . . , c)′ and Zi ∼ N (0, Ir). The error terms are generated as (Ui, Vi) =
(

ε1i, ρε1i +
√

1− ρ2ε2i
)

, where ε1i and ε2i are independent and drawn from three distributions: for j = 1

and 2, εji ∼ N (0, 1) (normal case), t (5) /
√

5/3 (standardized t (5) case), and
{

χ2 (3)− 3
}

/
√
6 (standardized

χ2 (3) case). The moment restrictions to estimate θ0 are written as E [g (Xi, θ0)] = E [Zi (Yi −Wiθ0)] = 0. We

set θ0 = 0 for the true parameter value of interest. For each Monte Carlo replication, we set the value of c to fix

the value of the concentration parameter δ2 = π′ (
∑n

i=1 ZiZ ′
i) π (given the realized values of Zi).

First, Tables 1-3 report the rejection frequencies of four tests at the 5% nominal significance level for the cases

of normal, standardized t (5), and standardized χ2 (3), respectively. We set n = 200 for the sample size, r =2,

5, and 10 for the number of instruments, ρ =0.2 and 0.8 for the degree of endogeneity, and δ2 =20 and 100 for

the concentration parameter. Our findings are summarized as follows. First, compared to the nominal level, the

rejection frequencies of GMM and EL can be large when the number of moment restrictions r is large. Therefore,

in this example the first-order asymptotic approximations for the J-test and its empirical likelihood analog are less

precise. Second, improvements by BEL and AEL in the null rejection frequencies are reasonable. For example, in

the normal case (Table 1), the rejection frequency varies between .034 and .125 for GMM and between .042 and

4The version of the J-test statistic considered here is J = minθ
{
∑n

i=1 g (Xi, θ)
}′

[

∑n
i=1 g

(

Xi, θ̃
)

g
(

Xi, θ̃
)′
]−1

{
∑n

i=1 g (Xi, θ)
}

,

where θ̃ = argminθ
{
∑n

i=1 g (Xi, θ)
}′ {∑n

i=1 g (Xi, θ)
}

is the GMM estimator with the identity weight matrix (thus θ̃ is consistent to

estimate θ0 and asymptotically normal under Assumptions 1-4). For the linear instrumental variable regression model, θ̃ corresponds

to the two-stage least square estimator.
5To compute the empirical likelihood statistic, Tn = minθ∈Θ 2

∑n
i=1 log

(

1 + γ (θ)′ g (Xi, θ)
)

where γ (θ) solves
∑n

i=1
g(Xi,θ)

1+γ′g(Xi,θ)
= 0 with respect to γ, we adopted a nested algorithm. For each θ, the computation of γ (θ)

(called the inner loop) is implemented by a quasi-Newton method based on Bruce Hansen’s MATLAB code (available at

http://www.ssc.wisc.edu/~bhansen/progs/elikem.zip). For the minimization with respect to θ (called the outer loop), we employed

a derivative free optimization algorithm based on the fminsearch function in MATLAB (because θ is scalar for both simulation

designs).
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.099 for EL, while it varies between .047 and .061 for BEL and between .020 and .053 for AEL. Third, comparing

BEL and AEL, BEL shows slightly better performance in the null rejection frequencies particularly when r is

large. Based on an inspection of simulation outputs, we conjecture this difference is partly due to the lack of

stability of the estimates of Bc to implement AEL (compared to the estimates of βc to implement BEL). Finally,

in general the results are similar for the different distributions of the error terms. For the non-normal cases, all

tests generally rejects the null hypothesis slightly more than the normal case.

Second, we examine how the rejection frequencies of these tests vary with the sample size. Our theoretical

results in Section 3 indicate that the discrepancies between the actual rejection frequencies and the nominal level

of BEL and AEL will decay faster than those of GMM and EL as the sample size increases. Figure 1 reports

the plots of the rejection frequencies of four tests with the 5% nominal level for sample sizes n =30, 50, 70, 100,

200, 500, 700, and 1000 (with r = 5, ρ = 0.8, and δ2 = 20). We can see that as predicted by the theoretical

results, the convergence speeds of the rejection frequencies of BEL and AEL to the nominal 5% level are faster

than those of GMM and EL. In particular, the convergence speed of the rejection frequency of GMM is slow.

Third, we investigate the null rejection properties of these tests when the concentration parameter δ2 is close

to (or equal to) zero, i.e., weak instruments. Although our theoretical analysis focuses on the case of strong

identification (i.e., G is full column rank, imposed in Assumption 2), it is important to examine finite sample

behaviors of the proposed BEL and AEL tests when the strong identification assumption is questionable. Figure

2 reports the plots of the rejection frequencies of four tests with the 5% nominal level for δ2 =0, 3, 5, 10, 20, 30,

50, 70, 100, and 200. It is remarkable that the rejection frequency of BEL and AEL are very robust against small

non-zero values of δ2 (ranges between 0.038 and 0.066 for BEL and between 0.034 and 0.061 for AEL). When

δ2 = 0, all tests under-reject the null hypothesis. Although it is beyond the scope of this paper, it is interesting

to provide some theoretical explanation on this phenomenon.

Finally, we examine the properties of these overidentifying restriction tests as pre-tests for parameter hypoth-

esis testing. We consider a two-stage strategy to test the parameter null hypothesis HP
0 : θ0 = 0. In the first

stage, we test the overidentifying restriction H0. If the null hypothesis H0 is not rejected, we proceed to the

second stage and test the parameter null hypothesis HP
0 . Guggenberger and Kumar (2011) provided theoretical

and simulation evidences for the size distortion of this two stage approach in linear instrumental variable regres-

sion models. In particular, they derived a lower bound for the asymptotic size of the two stage test and showed

that surprisingly the lower bound can be as large as 1 − α, where α is the nominal size for the first stage test.

Although formal analysis is beyond the scope of this paper, it is interesting to investigate finite sample behaviors

of this two stage approach when we employ BEL or AEL in the first stage. We compare (i) the J-test followed by

the t-test based on the two-step GMM estimator, (ii) the empirical likelihood overidentification test followed by

the empirical likelihood ratio test for the parameter hypothesis,6 (iii) the BEL overidentification test followed by

the empirical likelihood ratio test for the parameter hypothesis, and (iv) the AEL overidentification test followed

by the empirical likelihood ratio test for the parameter hypothesis.

In order to evaluate the asymptotic size of a test for HP
0 , we need to analyze the null rejection probabilities

of the test for all possible values of nuisance parameters and find the worst one. It is not easy and beyond the

scope of this paper to characterize the asymptotic size property for the two stage test in our simulation design.

Thus, after some preliminary simulation studies, we replace the data generating process for Yi in (12) with

Yi = Wiθ0 + cZ1i + Ui,

6The empirical likelihood ratio statistic for HP
0 : θ0 = a is defined as TP

n = $ (a) − minθ∈Θ $ (θ). Based on the first-order

asymptotic approximation (Qin and Lawless, 1994), we use the χ2 critical value.
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where Z1i is the first element of Zi, r = 5, ρ = 0.8, δ2 = 20, and n = 200. By perturbing c from 0, we allow

small deviations from the overidentification null hypothesis H0, which corresponds to a nuisance parameter for

testing HP
0 . Figure B reports the frequencies of the event “not rejecting H0 in the first stage but rejecting HP

0 in

the second stage”. For both stages, the nominal level is 5%. In this particular setup (which does not necessarily

characterize the finite sample size of the two stage tests), we can see that the frequencies for this event can be

higher than 0.05 for all the two stage tests. The difference among EL, BEL, and AEL-based tests is small.

4.1.2 Power Property

In order to investigate the power properties of the proposes tests, we consider the following data generation

process as alternative hypotheses:

Yi = Wiθ0 + 0.1Z1i + Ui,

where Z1i is the first element of Zi, r = 5, ρ = 0.8, δ2 = 20, and n = 200. We can see that there is no θ which

satisfies E [g (Xi, θ)] = E [Zi (Yi −Wiθ)] = 0. We investigate the calibrated powers of GMM, EL, BEL, and AEL

(i.e., the rejection frequencies of these overidentification tests where the critical values are given by the Monte

Carlo 95% percentiles of these test statistics under the data generation process in (12)). Figure 4 reports the

calibrated powers for the tests with sample sizes n = 50, 70, 100, 200, 300, 400, 500, and 600 under the normal

case. In this setting, all tests show similar calibrated power properties.

Overall, the simulation results for the linear instrumental variable regression indicate that BEL and AEL have

more attractive null properties than EL and GMM and have comparable power properties to EL and GMM.

4.2 Nonlinear Moment Restriction

4.2.1 Performance under the Null Hypothesis

We next consider a simulation design in Liu and Chen (2010) motivated by an asset pricing model, which is a

multivariate version of Hall and Horowitz’s (1996) simulation design. Let X = (X1, X2, . . . , Xr)
′ be a vector

of mutually independent random variables, where X1, X2 ∼ N
(

0,σ2
)

and X3, . . . , Xr ∼ χ2 (1). The moment

restrictions are written as

E [g (X, θ0)] = E



















m (X, θ0)

X2m (X, θ0)

(X3 − 1)m (X, θ0)
...

(Xr − 1)m (X, θ0)



















= 0 (13)

where m (X, θ) = exp
(

−4.5σ2 − θ (X1 +X2) + 3X2

)

− 1. We treat σ as a given normalizing constant and treat

θ as an unknown parameter to be estimated from (13). These restrictions are satisfied at θ0 = 3 for any σ > 0.7

First, Table 4 reports the rejection frequencies of the four tests at the 5% nominal significance level. We set

σ = 0.2 for the standard deviation of X1 and X2, n = 100 and 200 for the sample size, and r =2, 3, 5, and 7

for the number of moment restrictions. Our findings are summarized as follows. First, compared to the nominal

level, the rejection frequencies of GMM and EL can be quite large particularly when the number of moment

7Note that E [m (X, 3)] = 1√
2πσ2

´

exp

(

−
(x1+3σ2)2

2σ2

)

dx1 − 1 = 0 for any σ > 0, and X1 is independent from other variables.
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restrictions r is large. It should be noted that, GMM shows serious distortions in the null rejection frequencies

even when r is as small as 3. Therefore, in this example the first-order asymptotic approximation for the J-test

is less precise. Second, improvements by BEL and AEL in the null rejection frequencies are reasonable. The

rejection frequency varies between .040 and .370 for GMM and between .054 and .255 for EL, while it varies

between .054 and .089 for BEL and between .000 and .052 for AEL. Finally, comparing BEL and AEL, BEL

shows better performance in the null rejection frequencies particularly when r is large. Based on an inspection

of simulation outputs, we conjecture this difference is partly due to the lack of stability of the estimates of Bc to

implement AEL (compared to the estimates of βc to implement BEL).

Second, we examine how the rejection frequencies of these tests vary with the sample size. Our theoretical

results in Section 3 indicate that the discrepancies between the actual rejection frequencies and the nominal level

of BEL and AEL will decay faster than those of GMM and EL as the sample size increases. Figure B reports

the plots of the rejection frequencies of four tests with the 5% nominal level for sample sizes n =30, 50, 70, 100,

200, 500, 700, and 1000 (with σ = 0.2 and r = 3). We can see that as predicted by the theoretical results, the

convergence speeds of the rejection frequencies of BEL and AEL to the nominal 5% level are faster than those of

GMM and EL. In particular, the convergence speed of the rejection frequency of GMM is slow.

Third, we investigate the null rejection properties of these tests when the matrix G = E
[

∂g(X,θ0)
∂θ′

]

is close

to the zero matrix, i.e., weak identification (Stock and Wright, 2000). Although our theoretical analysis focuses

on the case of strong identification (i.e., G is full column rank, imposed in Assumption 2), it is important to

examine finite sample behaviors of the proposed BEL and AEL tests when the strong identification assumption

is questionable. In order to characterize weak identification in our simulation design, Figure 6 reports the

relationship between the constant σ and the scalar µ = nG′V −1G computed by Monte Carlo integration. We call

this µ as the degree of concentration since it is analogous to the so-called concentration parameter in the linear

instrumental variable regression model. From Figure 6, we can see that µ gets smaller as σ increases. Thus, in

our setup, large values of σ can be associated with weak identification for the parameter θ0. Figure 7 reports

the plots of the rejection frequencies of four tests with the 5% nominal level for σ =0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, and 0.8 (with n = 200 and r = 3). Note that all tests over-reject the null hypothesis when σ is large (i.e.,

the degree of concentration µ is small). The rejection frequencies of BEL and AEL are closer to the nominal size

than those of GMM and EL. In particular, it is remarkable that the rejection frequency of BEL is very robust

against large values of σ (ranges between 0.05 and 0.15). Although it is beyond the scope of this paper, it is

interesting to provide some theoretical explanation on this phenomenon.

Finally, we examine the properties of these overidentifying restriction tests as pre-tests for parameter hy-

pothesis testing. We consider a two-stage strategy to test the parameter null hypothesis HP
0 : θ0 = 3. In

the first stage, we test the overidentifying restriction H0 in (1). If the null hypothesis H0 is not rejected, we

proceed to the second stage and test the parameter null hypothesis HP
0 . Similarly to the previous section, we

compare (i) the J-test followed by the t-test based on the two-step GMM estimator, (ii) the empirical likelihood

overidentification test followed by the empirical likelihood ratio test for the parameter hypothesis, (iii) the BEL

overidentification test followed by the empirical likelihood ratio test for the parameter hypothesis, and (iv) the

AEL overidentification test followed by the empirical likelihood ratio test for the parameter hypothesis.

In order to evaluate the asymptotic size of a test for HP
0 , we need to analyze the null rejection probabilities

of the test for all possible values of nuisance parameters and find the worst one. It is not easy and beyond the

scope of this paper to characterize the asymptotic size property for the two stage test in our simulation design.

Thus, after some preliminary simulation studies, we fix the data generating process as X1, X2 ∼ N
(

0, (cσ)2
)

and

12



X3, . . . , Xr ∼ χ2 (1) with n = 200, σ = 0.2, and r = 3.8 By perturbing c from 1, we allow small deviations from

the overidentification null hypothesis H0, which corresponds to a nuisance parameter for testing HP
0 . Figure B

reports the frequencies of the event “not rejecting H0 in the first stage but rejecting HP
0 in the second stage”. For

both stages, the nominal level is 5%. In this particular setup (which does not necessarily characterize the finite

sample size of the two stage tests), we can see that the frequencies for this event are typically higher than 0.05

for the GMM-based two stage test and lower than 0.05 for the other tests. Also the difference among EL, BEL,

and AEL-based tests is small.

4.2.2 Power Property

In order to investigate the power properties of the proposes tests, we consider the two data generation processes

as alternative hypotheses:

Case 1:X1, X2 ∼ N
(

0.05, (0.2)2
)

, X3 ∼ χ2 (1) ,

Case 2:X1, X2 ∼ N
(

0, (0.3)2
)

, X3 ∼ χ2 (1) .

Under these data generation processes, we specify the moment functions as

g (X, θ) = (m (X, θ) , X2m (X, θ) , (X3 − 1)m (X, θ))′, where

m (X, θ) = exp
(

−4.5 (0.2)2 − θ (X1 +X2) + 3X2

)

− 1.

We can see that for both cases, there is no θ which satisfies E [g (X, θ)] = 0. For both cases, we investigate the

calibrated powers of GMM, EL, BEL, and AEL (i.e., the rejection frequencies of these overidentification tests

where the critical values are given by the Monte Carlo 95% percentiles of these test statistics under the data

generation process X1, X2 ∼ N
(

0, (0.2)2
)

and X3 ∼ χ2 (1) satisfying H0). Figures 9 and 10 report the calibrated

powers with sample sizes n = 100, 200, 300, 400, 500, and 600 for each case. For Case 1, EL, BEL, and AEL

show superior calibrated power properties than GMM. For Case 2, EL and BEL have better power than AEL

and GMM. Lower calibrated power of GMM is partly due to the over-rejection properties of GMM under H0 as

illustrated in Figure B (which typically yield large critical values to compute calibrated power). For both cases,

BEL is slightly less powerful than EL. Since BEL has better null rejection properties than EL (see Figure B),

these power properties characterize a trade-off between the null rejection and power properties of EL and BEL.

For Case 2, AEL tends to have lower calibrated power than BEL and EL, and shows similar properties to GMM.

We find that this decay of power in AEL is partly due to the lack of stability of the estimates of Bc to implement

AEL.9

Overall, our simulation results are encouraging. BEL and AEL have more attractive null properties than EL

and GMM. Based on the power properties, we particularly recommend to use BEL.

5 Conclusion

In this paper, we show that the empirical likelihood test for overidentifying restrictions is Bartlett correctable

and propose second-order refinement methods based on the empirical Bartlett correction and adjusted empirical

8In preliminary analysis, we tried the cases of X1,X2 ∼ N
(

c,σ2
)

for different values of c, different values of σ (but not too large

to avoid weak identification for θ0), and different number of moments r, for example. The results are basically similar to the one in

Figure B.
9For example, in Case 2 with n = 200, the bootstrap estimates of βc and Bc range from 0.86 to 3.71 and from -13.73 to 271.18,

respectively. In Case 2 with n = 500, they range from 0.79 to 2.87 and -104.81 from 938.26, respectively.
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likelihood. Simulation results suggest that the empirical Bartlett correction and adjusted empirical likelihood

assisted by bootstrapping exhibit better null rejection properties than the conventional GMM and empirical

likelihood tests using the first-order asymptotic approximation. It is interesting to extend this research to a time

series context and non-smooth moment functions (e.g. quantile instrumental variable regressions).
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A Mathematical Appendix

A.1 Basic Formulae

Let UΛ−1 =
(

ωkl
)

p×p
. From Chen and Cui (2007), we have the following formulae:

Bk = 0, Bp+a = −Ap+a, Br+k = ωklAl, γj,kBr+k = AjI {j ≤ p} , γj,kBj = 0,

γj,kBj,l = Cl,k, γj,kBj,p+a = 0,









Bk,l Bk,p+b Bk,r+l

Bp+a,l Bp+a,p+b Bp+a,r+l

Br+k,l Br+k,p+b Br+k,r+l









=









ωmkCl,m ωmkCp+b,m 0

Alp+a Ap+a p+b −Cp+a,l

ωkm
(

ωnmCl,n −Aml
)

ωkm
(

ωnmCp+b,n −Amp+b
)

ωkmCm,l









,

βl,p+a p+c = −ωol
(

γp+c;p+a,o + γp+a;p+c,o
)

, βl,r+m p+c = ωolγp+c,om, βp+a,p+b p+c = −2αp+a p+b p+c,

βp+a,r+m p+c = γp+c;p+a,m + γp+a;p+c,m, βl,p+a r+n = ωolγp+a,on, βl,r+m r+n = 0,

βp+a,p+b r+n = γp+a,n;p+b + γp+a;p+b,n, βp+a,r+m r+n = −γp+a,mn, βr+k,r+m r+n = ωkoγo,mn,

βr+k,p+a p+c = 2ωkoαop+a p+c − ωkoωno
(

γp+c;p+a,n + γp+a;p+c,n
)

,

βr+k,p+a r+n = ωkoωmoγp+a,mn − ωko
(

γo,n;p+a + γo;p+a,n
)

,

βr+k,r+m p+c = ωkoωnoγp+c,nm − ωko
(

γp+c;o,m + γo,p+c;m
)

.
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A.2 Expression of R3

Rp+a
3 is written as

Rp+a
3 = ωklωmnCn,kCp+a,mAl +

1

2
ωklCp+b,kAp+a p+bAl − 1

2
ωklωmlCp+a,kCp+b,mAp+b

+
3

8
Ap+a p+cAp+b p+cAp+b + ωklCp+b,kAlp+aAp+b

+

{

ωklγp+c;p+d,kαlp+a p+b − 1
2ω

klωmlγp+a;p+b,kγp+c;p+d,m

+ 4
9α

p+e p+a p+bαp+e p+c p+d − 1
4α

p+a p+b p+c p+d

}

Ap+bAp+cAp+d

+ωmv















ωkl
(

γp+c;l,m + γl;p+c,m
)

γp+a;p+b,k + 3ωklγp+a,kmαlp+b p+c

+ωloγp+a;p+b,l (γp+c;o,m + γo;p+c,m − 3ωnoγp+a,nm)

+αp+d p+a p+b
(

2
3γ

p+d;p+c,m + γp+c;p+d,m
)

− γp+a;p+b;p+c,m















AvAp+bAp+c

+ωmvωnv′















− 1
2ω

klωolγp+a,kmγp+b,on + ωklγp+b,km
(

γl,n;p+a + γl;p+a,n
)

+ 1
2ω

klγl,mnγp+a;p+b,k + 1
3γ

p+c,mnαp+a p+b p+c − 1
2γ

p+a;p+b,mn − 1
2γ

p+a,m;p+b,n

+ 1
2γ

p+a;p+c,m
(

γp+b;p+c,n + γp+c;p+b,n
)

+ 1
2γ

p+c;p+a,mγp+b;p+c,n















AvAv′

Ap+b

+
1

2
ωmvωnv′

ωov′′

{

ωklωp+a,klωl,mn + γp+b,mnγp+a;p+b,o − 1

3
γp+a;m,no

}

AvAv′

Av′′

−1

2
ωknωloωvmγm,klCp+a,vAnAo − 1

4
ωknωloγp+b,klAp+b p+aAnAo + ωkmωnmωloγp+a,klCp+b,nAoAp+b

−ωkmωloγp+a,klAmp+bAoAp+b − ωkvωlnωmoγp+a,klCv,nAnAo +
1

2
ωknωloCp+a,klAnAo

+
1

3
Ap+a p+b p+cAp+bAp+c + ωlmωnmγp+a;p+b,lCp+c,nAp+bAp+c − ωlmγp+a;p+b,lAmp+cAp+bAp+c

−ωlnωmoγp+a;p+b,lCn,mAoAp+b − ωlnωmk
(

γk;p+a,l + γp+a;k,l
)

Cp+b,mAnAp+b

−ωlnωmoγp+a;p+b,lCp+b,mAnAo −
(

1

2
γp+c;p+a,l + γp+a;p+c,l

)

ωlnAp+b p+cAnAp+b

+ωlmCp+a;p+b,lAmAp+b − ωmkαkp+a p+bCp+c,mAp+bAp+c

−2

3
ωlmαp+a p+b p+cCp+c,lAmAp+b − 5

6
αp+a p+b p+cAp+c p+dAp+bAp+d. (14)

A.3 Derivation of R3

We first evaluate the terms in
∑6

j=3 Lj +
∑11

j=10 Lj +
∑23

j=13 Lj +
∑33

j=25 Lj . Note that the terms L5, L6, L11,

L19, and L22 cancel each other since

βj,uq
{

−Br+k,sBsγj,k + Cj,kBr+k +Bj,sBs −AjiBi
}

BuBq = 0,

from the formulae in Appendix A.1. The other terms are written as follows.

L3 + L10 + L17 + L21

= 2ωklωmnCn,kCp+a,mAlAp+a + 2ωklCp+b,kAp+a p+bAlAp+a + ωklωmnCp+a,kCp+a,mAlAn

−ωklωmlCp+a,kCp+b,mAp+aAp+b +Ap+a p+cAp+b p+cAp+aAp+b + 2ωklCp+b,kAp+a,lAp+aAp+b.
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L4 = −1

2
ωkl
(

γp+b;p+a,k + γp+a;p+b,k
) {

2αlp+cp+d − ωml
(

γp+d;p+c,m + γp+c;p+d,m
)}

Ap+aAp+bAp+cAp+d

+ωklωmo
(

γp+a;p+c,k + γp+c;p+a,k
) {

ωnlγp+b,nm −
(

γl,m;p+b + γl;p+b,m
)}

AoAp+aAp+bAp+c

+ωklωmoγp+a,km
{

2αlp+b p+c − ωnl
(

γp+c;p+b,n + γp+b;p+c,n
)}

AoAp+aAp+bAp+c

+2ωklωmvωnv′

γp+a,km
{

ωolγp+b,on −
(

γl,n;p+b + γl;p+b,n
)}

AvAv′

Ap+aAp+b

−1

2
ωklωmoωnv

(

γp+b;p+a,k + γp+a;p+b,k
)

γl,mnAoAvAp+aAp+b − ωklγp+a,kmγl,mnωmvAvωnv′

Av′

ωov′′

Av′′

Ap+a.

L13 = −ωknωloωvmγm,klCp+a,vAnAoAp+a − ωknωloγp+b,klAp+b p+aAnAoAp+a

−ωkmωloωnvγp+a,klCp+b,nAmAoAv + 2ωkmωlo
(

ωnmCp+b,n −Amp+b
)

γp+a,klAoAp+aAp+b

−2ωkvωlnωmoγp+a,klCv,mAnAoAp+a.

L14 =
1

2
ωomωknωlvγm,kl

(

γp+b;p+a,o + γp+a;p+b,o
)

AnAvAp+aAp+b + ωkmωlnγp+c,klαp+a p+b p+cAmAnAp+aAp+b

+ωomωkvωlv′

ωnv′′

γm,klγp+a,onAvAv′

Av′′

Ap+a + ωkmωloωnvγp+b,kl
(

γp+b,n;p+a + γp+b;p+a,n
)

AmAoAvAp+a

+
1

2
ωkoωlvωmv′

ωnv′′

γp+a,klγp+a,mnAoAvAv′

Av′′

+ ωkoωlvωmv′

ωnv′′

γp+a,klγo,mnAvAv′

Av′′

Ap+a

+ωkoωlvγp+a,kl{2αop+b p+c − ωno
(

γp+c;p+b,n + γp+b;p+c,n
)

}AvAp+aAp+bAp+c

−2ωkoωlvωnv′

γp+a,kl
{

ωmoγp+b,mn −
(

γo,n;p+b + γo;p+b,n
)}

AvAv′

Ap+aAp+b.

L15 + L16 = ωknωloCp+a,klAnAoAp+a +
2

3
Ap+a p+b p+cAp+aAp+bAp+c.

L18 = −1

4
ωokωo′k

(

γp+b;p+a,o + γp+a;p+b,o
)

(

γp+d;p+c,o′ + γp+c;p+d,o′
)

Ap+aAp+bAp+cAp+d

−ωokωo′kωlm
(

γp+b;p+a,o + γp+a;p+b,o
)

γp+c,o′lAmAp+aAp+bAp+c

−ωokωo′kωlnωmvγp+a,olγp+b,o′mAnAvAp+aAp+b − αp+e p+a p+bαp+e p+c p+dAp+aAp+bAp+cAp+d

−2ωlm
(

γp+d,l;p+c + γp+d;p+c,l
)

αp+d p+a p+bAmAp+aAp+bAp+c

−αp+c p+a p+bγp+c,lmωlnωmoAnAoAp+aAp+b

−ωlnωmo
(

γp+c,l;p+a + γp+c;p+a,l
) (

γp+c,m;p+b + γp+c;p+b,m
)

AnAoAp+aAp+b

−ωloωmvωnv′ (

γp+b,l;p+a + γp+b;p+a,l
)

γp+b,mnAoAvAv′

Ap+a

−1

4
ωlvωmv′

ωnv′′

ωov′′′

γp+a,lmγp+a,noAvAv′

Av′′

Av′′′

.

L20 + L23 = −2ωklγp+a;p+b;p+c,kAlAp+aAp+bAp+c − 1

3
ωknωloωmvγp+a;k,lmAnAoAv.

L25 = 2ωlmγp+a;p+b,l
(

ωnmCp+c,n −Am,p+c
)

Ap+aAp+bAp+c − 2ωlnωmoγp+a;p+b,lCn,mAoAp+aAp+b.
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L26 = ωloγp+a;p+b,l
{

2αop+c p+d − ωno
(

γp+d;p+c,n + γp+c;p+d,n
)}

Ap+aAp+bAp+cAp+d

−2ωloωmvγp+a;p+b,l
{

ωnoγp+c,nm −
(

γp+c;o,m + γo;p+c,m
)}

AvAp+aAp+bAp+c

+ωloωmvωnv′

γp+a;p+b,lγo,mnAvAv′

Ap+aAp+b.

L27 = −2ωlnωmkγk;p+a,lCp+b,mAnAp+aAp+b − 2ωlnγp+c;p+a,lAp+c p+bAnAp+aAp+b

−2ωlnωmoγp+b;p+a,lCp+b,mAnAoAp+a − 2ωlnωmkγp+a;k,lCp+b,mAnAp+aAp+b

−2ωlnγp+a;p+b,lAp+b p+cAnAp+aAp+c − 2ωlnωmoγp+a;p+b,lAnAoCp+b,mAp+a.

L28

= ωokωlmγk;p+a,l
(

γp+c;p+b,o + γp+b;p+c,o
)

AmAp+aAp+bAp+c + 2ωokωmnωloγk;p+d,lγp+a,omAnAoAp+dAp+a

+2ωlmγp+d;p+a,lαp+d p+b p+cAmAp+aAp+bAp+c + 2ωmnωloγp+c;p+a,l
(

γp+c,m;p+b + γp+c;p+b,m
)

AnAoAp+aAp+b

+γp+b;p+a,lγp+b,mnωmoωnvωlv′

AoAvAv′

Ap+a + γp+a;k,lωokωlm
(

γp+c;p+b,o + γp+b;p+c,o
)

AmAp+aAp+bAp+c

+2ωokωmnωloγp+a;k,lγp+b,omAnAoAp+aAp+b + 2ωlmγp+a;p+b,lαp+b p+c p+dAmAp+aAp+cAp+d

+2ωmnωloγp+a;p+b,l
(

γp+b,m;p+c + γp+b;p+c,m
)

AnAoAp+aAp+c + ωmoωnvωlv′

γp+a;p+b,lγp+b,mnAoAvAv′

Ap+a.

L29 + L30 = 2ωlmCp+a;p+b,lAmAp+aAp+b − ωlmωkn
(

γp+a;p+b,lk + γp+a,l;p+b,k
)

AmAnAp+aAp+b.

L31 = −2ωmkαkp+a p+bCp+c,mAp+aAp+bAp+c − 2αp+a p+b p+cAp+c p+dAp+aAp+bAp+d

−2ωlmαp+a p+b p+cCp+c,lAmAp+aAp+b.

L32 = ωokαkp+a p+b
(

γp+d;p+c,o + γp+c;p+d,o
)

Ap+aAp+bAp+cAp+d + 2ωokωlmαkp+a p+bγp+c,olAmAp+aAp+bAp+c

+2αp+e p+a p+bαp+b p+c p+dAp+aAp+bAp+cAp+d + ωlnωmoγp+c,lmαp+c p+a p+bAnAoAp+aAp+b

+2ωlm
(

γp+d,l;p+c + γp+d;p+c,l
)

αp+d p+a p+bAmAp+aAp+bAp+c.

L33 = −1

2
αp+a p+b p+c p+dAp+aAp+bAp+cAp+d.

Combining these results, we obtain the expression for
∑6

j=3 Lj+
∑11

j=10 Lj+
∑23

j=13 Lj+
∑33

j=25 Lj. By subtracting

Rp+a
2 Rp+a

2 from this expression, we obtain 2Rp+a
3 Rp+a

1 , which yields the expression of Rp+a
3 in (14).

A.4 Second-order Cumulant of R

In this subsection, let “ [2]” mean “ [2, a, f ]” for a, f ∈ {1, . . . , r − p}. Observe that

cum
(

Rp+a, Rp+f
)

= E
[

Rp+aRp+f
]

− E
[

Rp+a
]

E
[

Rp+f
]

= n−1δp+a p+f + E
[

Rp+a
2 Rp+f

2

]

+ E
[

Rp+a
2 Rp+f

1

]

[2] + E
[

Rp+a
3 Rp+f

1

]

[2]− n−2µp+aµp+f +O
(

n−3
)

.(15)
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The second term of (15) is

n2E
[

Rp+a
2 Rp+f

2

]

=
1

4
αp+a p+f p+b p+b − 7

36
αp+a p+b p+cαp+f p+b p+c +

1

36
αp+a p+b p+bαp+f p+c p+c − 1

4
δp+a p+f

+ωkl

(

1

6
γp+a,k;lαp+f p+b p+b [2] +

1

2
γp+a,k;p+bαlp+f p+b [2]− 1

2
γp+b,k;p+aαlp+f p+b [2]

)

+ωkmωlm

(

γp+a,k;p+f,l − γp+b,l;p+aγp+f,k;p+b [2] + γp+b,l;p+aγp+b,k;p+f − 1

12
γp+a,klαp+f p+b p+b [2]

)

+ωklωmn
(

γp+a,k;lγp+f,m;n + γp+a,k;nγp+d,m;l
)

+ωklωmnωk1n

(

−1

2
γp+a,k;lγp+f,mk1 [2]− γp+a,kk1γp+f,m;l [2]

)

+
1

4

(

ωkmωlmωk1m1ωl1m1 + ωkmωlnωk1mωl1n + ωkmωlnωk1nωl1m
)

γp+a,klγp+f,k1l1 +O
(

n−1
)

.

The third term of (15) is

n2E
[

Rp+a
2 Rp+f

1

]

= −1

2
αp+a p+b p+b p+f +

1

2
δp+a p+bδp+b p+f +

1

3
αp+a p+b p+cαp+b p+c p+f

−γl;p+f ;p+a,kωkl +
1

2
γp+a,klωkmωlnαmnp+f + γp+a;p+b,lωlmαmp+b p+f +O

(

n−1
)

.
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The fourth term of (15) is

n2E
[

Rp+a
3 Rp+f

1

]

= ωklωmn
(

γn,k;p+fγp+a,m;l + γn,k;lγp+a,m;p+f
)

+
1

2

(

γp+b,k;lαp+a p+b p+f + γp+b,k;p+fαp+a p+b l
)

−1

2
ωklωml

(

γp+a,k;p+f,m + γp+a,k;p+bγp+b,m;p+f + γp+a,k;p+fγp+b,m;p+b
)

+
3

8

(

αp+a p+c p+c p+f + αp+a p+b p+cαp+b p+c p+f + αp+a p+c p+fαp+b p+b p+c − δp+a p+f
)

+ωkl
(

γp+f,k;p+a,l + γp+b,k;p+bαlp+a p+b + γp+b,k;p+fαlp+a p+b
)

+ωkl
(

γp+b;p+f,k + γp+f ;p+b,k
)

αlp+a p+b + ωklγp+c;p+c,kαlp+a p+f

−1

2
ωklωmlγp+a;p+b,k

(

γp+b;p+f,m + γp+f ;p+b,m
)

− 1

2
ωklωmlγp+a;p+f,kγp+c;p+c,m

+
8

9
αp+a p+b p+eαp+b p+e p+f +

4

9
αp+a p+e p+fαp+c p+c p+e − 3

4
αp+a p+b p+b p+f

+ωmvωnv















− 1
2ω

klωnlγp+a,kmγp+f,on + ωklγp+f,km
(

γl,m;p+a + γl;p+a,m
)

+ 1
2ω

klγl,mnγp+a;p+f,k + 1
3α

p+a p+f p+cγp+c,mn − 1
2γ

p+a;p+f,mn − 1
2γ

p+a,m;p+f,n

+ 1
2γ

p+a;p+c,m
(

γp+f ;p+c,n + γp+c;p+f,n
)

+ 1
2γ

p+c;p+a,mγp+f ;p+c,n















−1

2
ωknωlnωvmγm,klγp+a,v;p+f +

1

4
ωknωlnγp+b,klαp+a p+b p+f + ωkmωnmωloγp+a,klγp+f,n;o

−ωknωloγp+a,klαmop+f − ωkvωlnωmnγp+a,klγv,n;p+f +
1

2
ωknωlnγp+a,kl;p+f + αp+a p+b p+b p+f

+ωlmωnm
{

γp+a;p+b,l
(

γp+f,n;p+b + γp+b,n;p+f
)

+ γp+a;p+f,lγp+c,n;p+c
}

−2ωlm
(

γp+a;p+b,lαmp+b p+f + γp+a;p+f,lαmp+c p+c
)

− ωlnωmoγp+a,p+f,lγn,m;o

−ωlnωmk
(

γk;p+a,l + γp+a;k,l
)

γp+f,m;n − ωlnωmnγp+a;p+b,lγp+b,m;p+f

−1

2
ωln

(

γp+c;p+a,l + γp+a;p+c,l
)

αnp+f p+c + ωlmγp+a;p+f,l;m

−ωmk
{

αkp+a p+b
(

γp+f,m;p+b + γp+b,m;p+f
)

+ αkp+a p+fγp+c,m;p+c
}

− 2

3
ωlmγp+c,l;mαp+a p+f p+c

−5

6

(

2αp+a p+b p+cαp+b p+c p+f + αp+a p+f p+cαp+c p+d p+d
)

+O
(

n−1
)

.

Combining these results,

cum
(

Rp+a, Rp+f
)

= n−1δp+a p+f + n−2∆p+a p+f +O
(

n−3
)

,

where

∆p+a p+f =
1

2
αp+a p+f p+b p+b − 1

3
αp+a p+b p+cαp+f p+b p+c − 1

36
αp+a p+f p+cαp+b p+b p+c

+ωklγl;p+f ;p+a,k [2]− 1

2
ωkmωlnγp+a,klαm n p+f [2]

+ωlm

(

γp+b;p+b,lαm p+a p+f − 1

2
γp+f ;p+b,lαm p+a p+b

)

[2]

+ωkmωlm

(

−γp+a,k;p+f,l +
1

6
γp+b,klαp+a p+f p+b

)

−1

3
ωklγp+b,k;lαp+a p+f p+b − ωklγp+a;p+f,kαl p+b p+b [2] + ωklωmnωvnγp+a,v;lγp+f,km [2]

−1

2
ωkmωlnωk′mωl′nγp+a,klγp+f,k′l′ + ωklωmlγp+a;p+b,kγp+b,m;p+f .
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A.5 Third-order Cumulant of R

Using the results to derive the first and second-order cumulants, the third-order cumulant is written as

cum
(

Rp+a, Rp+b, Rp+d
)

= E
[

Rp+aRp+bRp+d
]

− E
[

Rp+a
]

E
[

Rp+bRp+d
]

[3] + 2E
[

Rp+a
]

E
[

Rp+b
]

E
[

Rp+d
]

= E
[

Rp+a
1 Rp+b

1 Rp+d
1

]

− E
[

Rp+a
2

]

E
[

Rp+b
1 Rp+d

1

]

[3] + E
[

Rp+a
2 Rp+b

1 Rp+d
1

]

[3] +O
(

n−3
)

, (16)

where E [Rp+a]E
[

Rp+bRp+d
]

[3] = E [Rp+a]E
[

Rp+bRp+d
]

+E
[

Rp+b
]

E
[

Rp+aRp+d
]

+E
[

Rp+d
]

E
[

Rp+aRp+b
]

and other terms are similarly defined. The first term of (16) is

n2E
[

Rp+a
1 Rp+b

1 Rp+d
1

]

= αp+a p+b p+d +O
(

n−1
)

.

The second term of (16) is

n2E
[

Rp+a
2

]

E
[

Rp+b
1 Rp+d

1

]

= −
{

1

6
αp+a p+b1 p+b1 + ωklγl;p+a,k − 1

2
γp+a,klωkmωlm

}

δp+b p+d +O
(

n−1
)

.

The third term of (16) is

n2E
[

Rp+a
2 Rp+b

1 Rp+d
1

]

= −1

3
αp+a p+b p+d − 1

6
αp+a p+b1 p+b1δp+b p+d

−ωklγp+a,k;lδp+b p+d +
1

2
γp+a,klωkmωlnδmnδp+b p+d +O

(

n−1
)

.

Combining these results, we obtain cum
(

Rp+a, Rp+b, Rp+d
)

= O
(

n−3
)

.

A.6 Fourth-order Cumulant of R

In this subsection, let

t1 = αp+a p+b p+c p+d

t2 = δp+a p+bδp+c p+d + δp+a p+cδp+b p+d + δp+a p+dδp+b p+c,

t3 = αp+a p+b1 p+b1αp+b p+c p+d + αp+b p+b1 p+b1αp+a p+c p+d,

+αp+c p+b1 p+b1αp+a p+b p+d + αp+d p+b1 p+b1αp+a p+b p+c,

t4 = αp+a p+b p+b1αp+c p+d p+b1 + αp+a p+c p+b1αp+b p+d p+b1 + αp+a p+d p+b1αp+b p+c p+b1 .

Using the results to obtain the first, second, and third-order cumulants,

cum
(

Rp+a, Rp+b, Rp+c, Rp+d
)

= E
[

Rp+aRp+bRp+cRp+d
]

− E
[

Rp+aRp+b
]

E
[

Rp+cRp+d
]

[3]− E
[

Rp+a
]

E
[

Rp+bRp+cRp+d
]

[4]

+2E
[

Rp+a
]

E
[

Rp+b
]

E
[

Rp+cRp+d
]

[6]− 6E
[

Rp+a
]

E
[

Rp+b
]

E
[

Rp+c
]

E
[

Rp+d
]

= E
[

Rp+a
1 Rp+b

1 Rp+c
1 Rp+d

1

]

− E
[

Rp+a
1 Rp+b

1

]

E
[

Rp+c
1 Rp+d

1

]

[3] + E
[

Rp+a
2 Rp+b

1 Rp+c
1 Rp+d

1

]

[4]

−E
[

Rp+a
2 Rp+b

1

]

E
[

Rp+c
1 Rp+d

1

]

[12] + E
[

Rp+a
2 Rp+b

2 Rp+c
1 Rp+d

1

]

[6]− E
[

Rp+a
2 Rp+b

2

]

E
[

Rp+c
1 Rp+d

1

]

[6]

+E
[

Rp+a
3 Rp+b

1 Rp+c
1 Rp+d

1

]

[4]− E
[

Rp+a
3 Rp+b

1

]

E
[

Rp+c
1 Rp+d

1

]

[12]− E
[

Rp+a
2

]

E
[

Rp+b
1 Rp+c

1 Rp+d
1

]

[4]

−E
[

Rp+a
2

]

E
[

Rp+b
2 Rp+c

1 Rp+d
1

]

[12] + 2E
[

Rp+a
2

]

E
[

Rp+b
2

]

E
[

Rp+c
1 Rp+d

1

]

[6] +O
(

n−4
)

. (17)
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The first term of (17) is

n3E
[

Rp+a
1 Rp+b

1 Rp+c
1 Rp+d

1

]

= αp+a p+b p+c p+d +O
(

n−1
)

.

The second term of (17) is

n3E
[

Rp+a
1 Rp+b

1

]

E
[

Rp+c
1 Rp+d

1

]

[3] = δp+a p+bδp+c p+d + δp+a p+cδp+b p+d + δp+a p+dδp+b p+c +O
(

n−1
)

.

The third and fourth terms of (17) are

n3E
[

Rp+a
2 Rp+b

1 Rp+c
1 Rp+d

1

]

[4]− n3E
[

Rp+a
2 Rp+b

1

]

E
[

Rp+c
1 Rp+d

1

]

[12]

= −6t1 + 2t2 −
1

6
t3 +

2

3
t4 +

1

2
γp+a,klωkmωlmαp+b p+c p+d [4]

−ωkl
{

γp+a,k;lαp+b p+c p+d + γp+a,k;p+bαlp+c p+d + γp+a,k;p+cαlp+b p+d + γp+a,k;p+dαlp+b p+c
}

[4]

+
{

γp+a;p+d,lωlmαmp+b p+c + γp+a;p+c,lωlmαmp+b p+d + γp+a;p+b,lωlmαmp+c p+d
}

[4] +O
(

n−1
)

.

The fifth and sixth terms of (17) are

n3E
[

Rp+a
2 Rp+b

2 Rp+c
1 Rp+d

1

]

[6]− n3E
[

Rp+a
2 Rp+b

2

]

E
[

Rp+c
1 Rp+d

1

]

[6]

= 3t1 − t2 +
1

6
t3 −

5

9
t4 +

1

3
ωkl
(

γp+a,k;lαp+b p+c p+d + γp+b,k;lαp+a p+c p+d
)

[6]

+
1

2
ωkl
(

γp+a,k;p+cαlp+b p+d + γp+a,k;p+dαlp+b p+c + γp+b,k;p+cαlp+a p+d + γp+b,k;p+dαlp+a p+c+
)

[6]

−1

2
ωkl
(

γp+c,k;p+aαlp+b p+d + γp+c,k;p+bαlp+a p+d + γp+d,k;p+aαlp+b p+c + γp+d,k;p+bαlp+a p+c
)

[6]

+ωklωml
(

γp+a,k;p+cγp+b,m;p+d + γp+a,k;p+dγp+b,m;p+c + γp+c,k;p+aγp+d,m;p+b + γp+d,k;p+aγp+c,m;p+b
)

[6]

−ωklωml
(

γp+a,k;p+cγp+d,m;p+b + γp+a,k;p+dγp+c,m;p+b + γp+c,k;p+aγp+b,m;p+d + γp+d,k;p+aγp+b,m;p+c
)

[6]

−1

6
ωkmωlm

(

γp+a,klαp+b p+c p+d + γp+b,klαp+a p+c p+d
)

[6] +O
(

n−1
)

.

The seventh and eighth terms of (17) are

n3E
[

Rp+a
3 Rp+b

1 Rp+c
1 Rp+d

1

]

[4]− n3E
[

Rp+a
3 Rp+b

1

]

E
[

Rp+c
1 Rp+d

1

]

[12] = 2t1 −
1

9
t4 +O

(

n−1
)

.

Using the results to derive the first, second, and third cumulants, the last three terms of (17) are of order O
(

n−4
)

.

Combining these results, we obtain cum
(

Rp+a, Rp+b, Rp+c, Rp+d
)

= O
(

n−4
)

.

A.7 Proof of Theorem 3.1

In Section 3.1, we have

n−1Tn = (R1 +R2 +R3)
p+a (R1 +R2 +R3)

p+a +Op

(

n−5/2
)

,

where R1, R2 and R3 are given by (3), (4) and (14), respectively. The first four cumulants of R = R1 +R2 +R3

are given by (6), (7) and (8), respectively.

Once we expand n−1Tn in (2) and compute its cumulants, the derivation of an Edgeworth expansion for the

distribution of Tn is exactly the same as that of Chen and Cui (2007, Theorems 1 and 2).
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A.8 Proof of Theorem 3.2

The proof is similar to that of Chen and Cui (2007, Theorem 3). Pick any t ∈ R. Theorem 3.1 (i) implies

Pr {Tn ≤ t} = Fr−p (t)− n−1tfr−p (t)Bc +O
(

n−2
)

,

where Fr−p is the cumulative distribution function of the χ2 (r − p) distribution. Let T ∗
n be a bootstrap resample

of Tn using the implied probabilities {p̂i}ni=1 in (10). By applying the same argument in Brown and Newey

(2002, pp. 510-511) (i.e., applying the same argument for Theorem 3.1 (i) to T ∗
n given the original sample

Xn = (X1, . . . , Xn)), we can obtain

Pr {T ∗
n < t|Xn} = Fr−p (t)− n−1B̂∗

c tfr−p (t) +Op

(

n−2
)

, (18)

where B̂∗
c is a bootstrap counterpart of Bc obtained by replacing all population moments with the weighted

averages based on {p̂i}ni=1 . Since (i) β̂c is a simulation estimator of E [T ∗
n |Xn] (where the error by simulation

is asymptotically negligible for suitably chosen B), (ii) (r − p)−1 E [T ∗
n |Xn] = 1 + n−1B̂∗

c + Op

(

n−3/2
)

by (18),

and (iii) B̂∗
c = Bc +Op

(

n−1/2
)

by Brown and Newey (2002, Theorem 1), we obtain

β̂c = 1 + n−1Bc +Op

(

n−3/2
)

.

Therefore, an application of the delta method (Hall, 1992, Section 2.7) yields

Pr
{

Tn < cαβ̂c

}

= Pr
{

Tn < cα
(

1 + n−1Bc

)}

+O
(

n−3/2
)

= 1− α+O
(

n−3/2
)

.
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B Tables and Figures

ρ δ2 r GMM EL BEL AEL

0.2 100 2 0.049 0.057 0.053 0.045

100 5 0.041 0.054 0.048 0.040

100 10 0.037 0.099 0.058 0.031

20 2 0.039 0.042 0.049 0.041

20 5 0.040 0.051 0.056 0.047

20 10 0.034 0.075 0.049 0.031

0.8 100 2 0.045 0.047 0.053 0.048

100 5 0.051 0.068 0.053 0.047

100 10 0.047 0.092 0.055 0.027

20 2 0.062 0.048 0.047 0.037

20 5 0.095 0.061 0.061 0.053

20 10 0.125 0.080 0.050 0.020

Table 1: Rejection frequencies of tests at 5% level with n = 200 (normal case)

ρ δ2 r GMM EL BEL AEL

0.2 100 2 0.041 0.047 0.046 0.042

100 5 0.047 0.071 0.056 0.046

100 10 0.039 0.110 0.060 0.012

20 2 0.050 0.049 0.058 0.055

20 5 0.040 0.056 0.052 0.042

20 10 0.026 0.082 0.054 0.015

0.8 100 2 0.057 0.060 0.048 0.046

100 5 0.045 0.071 0.057 0.043

100 10 0.054 0.127 0.064 0.009

20 2 0.049 0.047 0.050 0.040

20 5 0.077 0.059 0.051 0.041

20 10 0.129 0.124 0.066 0.016

Table 2: Rejection frequencies of tests at 5% level with n = 200 (standardized t (5) case)

24



ρ δ2 r GMM EL BEL AEL

0.2 100 2 0.048 0.056 0.058 0.052

100 5 0.042 0.076 0.062 0.044

100 10 0.032 0.126 0.060 0.013

20 2 0.046 0.047 0.056 0.053

20 5 0.035 0.058 0.048 0.044

20 10 0.039 0.092 0.057 0.019

0.8 100 2 0.055 0.061 0.057 0.052

100 5 0.049 0.077 0.054 0.041

100 10 0.048 0.125 0.063 0.011

20 2 0.058 0.051 0.051 0.044

20 5 0.082 0.084 0.064 0.053

20 10 0.139 0.129 0.066 0.015

Table 3: Rejection frequencies of tests at 5% level with n = 200 (standardized χ2 (3) case)

n r GMM EL BEL AEL

100 2 0.040 0.063 0.056 0.052

3 0.135 0.105 0.074 0.047

5 0.244 0.161 0.077 0.016

7 0.370 0.255 0.087 0.000

200 2 0.048 0.054 0.054 0.052

3 0.106 0.069 0.057 0.048

5 0.243 0.114 0.072 0.035

7 0.326 0.167 0.089 0.008

Table 4: Rejection frequencies of tests at 5% level with σ = 0.2
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Figure 1: Rejection frequencies for different values of sample sizes with r = 5, ρ = 0.8, and δ2 = 20
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Figure 2: Rejection frequencies for different values of δ2 with r = 5, ρ = 0.8, and n = 200
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Figure 3: Frequencies of the event “not reject in the first stage but reject in the second stage” with r = 5, ρ = 0.8,

δ2 = 20, and n = 200
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Figure 4: Calibrated power with r = 5, ρ = 0.8, δ2 = 20, and n = 200

27



30 100 200 300 400 500 600 700 800 900 1,000
0

0.05

0.1

0.15

0.2

Sample Size

Re
je

ct
io

n 
Fr

eq
ue

nc
y

 

 

EL
BEL
AEL
GMM

Figure 5: Rejection frequencies for different sample sizes with σ = 0.2 and r = 3
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Figure 6: Degree of concentration nG′V −1G for different values of σ with r = 3
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Figure 7: Rejection frequencies for different values of σ with n = 200 and r = 3
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Figure 8: Frequencies of the event “not reject in the first stage but reject in the second stage” with n = 200,

σ = 0.2, and r = 3
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Figure 9: Calibrated power for Case 1
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Figure 10: Calibrated power for Case 2
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