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Abstract

This paper studies second-order properties of the empirical likelihood overidentifying restriction test to
check the validity of moment condition models. We show that the empirical likelihood test is Bartlett cor-
rectable and suggest second-order refinement methods for the test based on the empirical Bartlett correction
and adjusted empirical likelihood. Our second-order analysis supplements the one in Chen and Cui (2007)
who considered parameter hypothesis testing for overidentified models. In simulation studies we find that the
empirical Bartlett correction and adjusted empirical likelihood assisted by bootstrapping provide reasonable

improvements for the properties of the null rejection probabilities.

1 Introduction

The generalized method of moments (GMM) by Hansen (1982) has been a standard tool for empirical economic
analysis. GMM provides a unified framework for conducting statistical inference when economic models are
specified by some moment conditions. However, the literature indicates that there are considerable problems
with GMM particularly in its finite sample performance, such as the bias in point estimation and distortions
of null rejection probabilities in hypothesis testing (see, e.g., the special issue of the Journal of Business and
Economic Statistics, vol. 14).

One well-known problem of GMM-based inference is that the (first-order) asymptotic null distribution of
the overidentifying restriction test based on the minimized GMM criterion function, often called the J-test, can

be a poor approximation in finite samples. In order to overcome this problem, several alternative inference
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methods have been developed. Hall and Horowitz (1996) proposed a uniform weight bootstrap method by using
recentered moment restrictions. Brown and Newey (2002) proposed a weighted bootstrap method based on
the implied probabilities obtained from the moment conditions. These bootstrap methods provide higher-order
refinements for the property of null rejection probabilities of overidentifying restriction tests.

Another approach to tackle this finite sample problem of the GMM-based overidentifying restriction test is to
employ an alternative criterion function to derive a test statistic, such as continuous updating GMM, exponential
tilting, and empirical likelihood (see, Kitamura, 2007, for a survey). Among them, empirical likelihood is an
attractive candidate to deal with the distortion problem of the null rejection probabilities because of its Bartlett
correctability, a second-order refinement based on the Edgeworth expansion. The Bartlett correctability of the
empirical likelihood-based test is reported in several contexts, such as smooth functions of means (DiCiccio,
Hall and Romano, 1991) and quantiles (Chen and Hall, 1993). Also Baggerly (1998) focused on testing for the
mean parameter (i.e., E[X] = 0) and showed that only empirical likelihood is Bartlett correctable in the power
divergence family. Bravo (2004) showed that a bootstrap version of the empirical likelihood test achieves the
same higher order accuracy as the Bartlett corrected test. Although the parameters of interest are different,
these papers studied Bartlett correctability of empirical likelihood in just-identified moment restrictions (i.e., the
number of moment restrictions equals the number of parameters). This paper is concerned with overidentified
moment restrictions (i.e., the number of moment restrictions exceeds the number of parameters) which are
common in economic analysis. Although the second-order analysis becomes substantially more complicated due
to extra systems and terms brought by overidentifying restrictions, Chen and Cui (2007) tackled this problem
and showed that the empirical likelihood test for parameter hypotheses is Bartlett correctable even if the models
are overidentified.

This paper extends Chen and Cui’s (2007) analysis to the overidentifying restriction testing problem and
studies second-order properties of the empirical likelihood overidentifying restriction test. Although the basic
idea of the second-order analysis follows from Chen and Cui (2007), the technical detail is case-by-case and
specific to our test statistic. Indeed Chen and Cui (2007, p. 504) indicated the possibility of this extension, and
this paper formally studies this issue. In particular, we show that the empirical likelihood test for overidentifying
restrictions is also Bartlett correctable and propose second-order refinement methods for the test based on the
empirical Bartlett correction and adjusted empirical likelihood. Adjusted empirical likelihood (Liu and Chen,
2010) is a modification of empirical likelihood to avoid non-existence of solutions for the likelihood maximization
problem by introducing auxiliary observations. Our refinement methods are illustrated by simulation studies
based on a linear instrumental variable regression model and asset pricing model. We find that (i) the GMM and
empirical likelihood tests based on the asymptotic critical values show severe over-rejections particularly when the
number of moment restrictions is large, and (ii) an empirical Bartlett correction and adjusted empirical likelihood
assisted by bootstrapping provide reasonable improvements for the properties of null rejection probabilities. Since
testing for overidentifying restrictions is a fundamental problem to assess the validity of economic theory which
precedes to parameter estimation and inference, our refinement methods contribute to enhance the reliability of
empirical economic analysis based on moment condition models.

In the context of hypothesis testing for overidentifying restrictions, there are several papers which derive global
optimal properties of empirical likelihood-based tests. Kitamura (2001) focused on the generalized Neyman-
Pearson criterion (i.e., comparison of decay rates of the type II errors under fixed alternatives subject to a
restriction on the decay rate of the type I errors), and showed that the empirical likelihood test is generalized

Neyman-Pearson optimal. Otsu (2010) focused on the Bahadur criterion (i.e., comparison of decay rates of p-



values under fixed alternatives), and showed that the empirical likelihood test is Bahadur optimal. Canay and
Otsu (2011) focused on the Hodges-Lehmann criterion (i.e., comparison of decay rates of the type II errors under
fixed alternatives subject to a size constraint), and showed that not only the empirical likelihood test but also
the GMM and generalized empirical likelihood tests are Hodges-Lehmann optimal. These studies concentrate on
global (or fixed alternative) and first-order power properties and show that the empirical likelihood test satisfies
these optimality criteria. On the other hand, this paper concentrates on second-order null rejection properties
under the null hypothesis and show that the empirical likelihood test is Bartlett correctable (i.e., accepts a second-
order refinement for the null rejection property). If the Bartlett correction factor B, for the empirical likelihood
test T, is known, then the corrected test statistic T, (1 + n_ch)_l shows the same first-order global power
properties to the original statistic 7;,. Thus, the Bartlett corrected empirical likelihood test also enjoys the above
global optimal properties. However, if B, is unknown (as always the case in practice) and is estimated by B,
based on data, then we need to incorporate the large deviation properties of the estimation error B.— B, and the
first-order global power properties of the corrected test statistic 75, (1 + n_ch) - require further investigation.

Based on these considerations, we recommend applied researchers to employ the Bartlett corrected empirical
likelihood test (with estimated B.) when from previous studies the distortion in the null rejection probability is
a major concern for their applications of interest, and to employ the uncorrected empirical likelihood test when
the distortion in the null rejection probability is not a serious problem and better power property is desired. For
example, our simulation results in Section 4 indicate that when the sample size is small and/or the number of
moment conditions is large, the uncorrected empirical likelihood and GMM-based overidentification tests tend
to over-reject the null hypothesis. Therefore, in such situations, we recommend the use of the Bartlett corrected
empirical likelihood test suggested in this paper.

The rest of the paper is organized as follows. Section 2 introduces our setup and notation. Section 3 presents
the main theoretical results: second-order properties of the empirical likelihood test statistic and refinements by
the Bartlett correction and adjusted empirical likelihood. Section 4 conducts simulation studies based on a linear
instrumental variable regression model and asset pricing model. Section 5 concludes. All technical details are

contained in the Appendix.

2 Setup

Our notation closely follows that of Chen and Cui (2007). Suppose we observe a random sample {X;}!" ; from
X e X CRY Let g: X x © = R" be a vector of moment functions, where © C R? is the parameter space and
r > p (overidentified). We wish to test the validity of the overidentifying restrictions:

Hy:E[g(X,0)] = 0 forsome6 e 0O,
Hy:E[g(X,0)] # 0 foranyfec®. (1)

If the null hypothesis is uniquely satisfied at some 6y € © (i.e., the model is correctly specified and the parameter
is point identified at ), then we can estimate the true parameter value 8y by GMM or generalized empirical
likelihood and also conduct hypothesis testing on 6y by the Wald, Lagrange multiplier, or likelihood ratio type
tests. In contrast to Chen and Cui (2007) who focused on parameter hypothesis testing (i.e., HY : 6y = c against
HF : 0y # c), this paper studies second-order properties of the empirical likelihood test for the overidentifying
restrictions Hy against H;. We consider the following setup adopted by Chen and Cui (2007). Let g (X,0) =
(" (X,0),...,9" (X, 9))’ and |-| be the Euclidean norm.



Assumption.
1 {X,}, is i,

Eg(X,0)] =0 is uniquely satisfied at 6y € O, © is compact, V = Var (g (X,0)) is positive definite, and
G=F {M} has the full column rank.

3. There exists a neighborhood N of 0o such that for each j = 1,...,r, ¢/ (x,0) is continuously third-order

differentiable in 0 € N almost surely and the derivatives are bounded by integrable functions over N.
4. E {|g (X, 90)|15} < 00 and limsupy,_, o |E [exp (it'g (X, 09))]] < 1.

The same comments in Chen and Cui (2007) apply here. Assumption 1 excludes dependent data. An
extension to time series data is beyond the scope of this paper. The first condition in Assumption 2 says that
the overidentification null hypothesis Hj is satisfied and the true parameter value 6y is point identified. The last
condition in Assumption 2 excludes weak identification (or weak instruments) in the sense of Stock and Wright
(2000). If Assumption 2 does not hold and G drifts to the zero matrix at the \/n-rate (so-called weak identification
asymptotics), the first-order asymptotic null distribution of the overidentification test statistic typically becomes
non-standard. Assumption 3 is on smoothness of the moment functions. This assumption excludes, for example,
quantile regression models. Assumption 4 imposes bounded moments and a Cramér condition used to establish
the validity of the Edgeworth expansion. It is known that the Cramér condition is satisfied when the distribution
of g (X, 0p) has a non-degenerate and absolutely continuous component (see, e.g., Hall, 1992, pp. 65-67). This
requirement is typically satisfied when X is continuous and g (x,6) is smooth in 2. For example, Assumption 4
can be verified for the simulation design in Section 4 motivated by an asset pricing model, and linear instrumental
variable regression models with normal errors, regressors, and instruments. However, when the distribution of
g (X, 0p) has no absolutely continuous component, a conventional argument to verify the Cramér condition is not
applicable in general, and the validity of the Cramér condition becomes questionable or at least hard to verify.!

We now introduce the empirical likelihood test statistic for Hy. Let T" be an r X r orthogonal matrix satisfying
TV=Y2GU = (A, Opirpy) s
where U is a p X p orthogonal matrix and A is a p X p non-singular diagonal matrix. We orthogonalize the moment
functions as w; (0) = TV ~1/2g (X;,0) so that E [w; (6o) w; (60)'] = I. The empirical likelihood overidentifying
restriction test statistic, proposed by Qin and Lawless (1994), can be defined as

p— 1 ! .
T, = Hél(glé(e) = %182;10g (T+X(0) w; (0)),

where A (6) solves Y7 | 1+)\,( )(9) 0 with respect to A for a given value of 6. From Qin and Lawless (1994,
Corollary 3), we can see that T}, % x2 (r — p) under Hy.
The rest of this section presents an expansion formula for 7, derived by Chen and Cui (2007). Let 6 =

argmingee £ (0) and A = A (9) The first-order conditions for (5\’, 9’) are written as Q (5\, 9) = 0, where

LS wi () 1= N (0w (0) /00
QA0 = ( Zl+/\/ ()’EZ 1+ Nw; (6) )

=1

IFor example, Hall (1992, Section 5.5.1) argued that a random variable %]I{\X —c¢| < h} used for the uniform kernel density
estimation does not satisfy the Cramér condition. See also Horowitz (1998) and Whang (2006) on this issue in the context of quantile
regression, where g (X,00) = Z (1 —1{Y < Z'60}) for X = (Y, Z') and 7 € (0,1). In particular, these papers verified the Cramér

condition for a kernel smoothed version of the moment function g (X, 6p).



Thus, the fourth-order Taylor expansion of @ (S\,é) = 0 around (5\’ .0 ) = (0)..1,0)) and inversions yield
expansion formulae for A and 6 — 6. By inserting those formulae to the fourth-order Taylor expansion of
T, =2, log (1 + Nw; (é)) around N w; (é) = 0, Chen and Cui (2007) obtained an expansion formula for

T,,. To present the formula, define n = (\N,#)', S =E [%?7’,90)}, a’ = j-th element of a vector a,

JieJe  — J1 coaqulE Jieede — = J1 e _d1--dk
a E[wl (00) - - w; (90)}7 A n;wz (60) - - - wl* (6p) — 7
kNj ki
gl = §7E {M} o piae = g1 X000 g
8773‘1 . aT]gk anjl . 877%
ik b — [ 0w 00 0wt (0) | 0nu” (6)
96, -+ 00, O, - -- 00y, 90, --- 06,
Ol it = —Zn: 0wl (Bo) Omwt(Bo) _OmwP (Bo) B S e
< 00}, - 08, 001, -~ 0k, 0By, 06y, .

Hereafter, the ranges of the superscripts are fixed as g, h,i,5 € {1,...,7}, k,l,m,n € {1,...,p}, and ¢, s, t,u €
{1,...,7+p}. Also, by the convention, repeated superscripts are summed over (e.g., B/A’ = 3" | BIA7).

Based on this notation, Chen and Cui’s (2007) expansion formula for T, is presented as
n_lTn = _9BIAI _ BIipI Lo0bkpiprthape | 5ﬁj7uq5r+k,st73,kBquBth
—ﬁj’ququBr+k’SBs’}/j’k _ ﬁr—i—k,ququci,kBi _ BjBiAji _ 2ajithBiBh
3
) ) ) 1 .
+209k {BJBT”“ — BMMBIB™TR (2 4. r + K] + 55]%3“3%”’“ 2,4,7 + k]}
+~yj*kl{—BjB’”+kB’”+l + BIB™tFBLa B (3 G r 4+ k1 + ]

1 . . ; 2
—5[3%“43”’“3”13“3‘1 3,47 +k,r+ 1]} — CPK piprthprl gAﬂhBﬂBlBh
_Bj,uBuBg,qu _ Zﬂ],uqﬂj,stBquBth + ﬂJ’UunBqBJ’SBS + 2’}/J’l’h’kBJBZBhBT+k

o y 1 . o 1 . )
+BIB“BIAI (2, ],i] — Eﬁﬂv“qB“BQBlAﬂ 2,7, + gyﬂ*k*lmBﬂBH’“B’”“B”m
+2~W’Z{BJBZBT+I — B'B'B"th1BI ¢ gﬂ”l’wBJBzB“Bq — B""'B'BB 2, j,i]

1 7, uq RU Rq Rt Rr+l1 R J Rt Rr+1lg;i,l 73tk YREN J Rt T+l pr+k
+§B’BBBB [2,4,i] » +2B’B'B C"—(v” —|—7"’)BBB B
+20/" BB BB - o/ §1 B BB B — Sol M BIB'B B + O, (n*5/2)

= Ll + ..._|_L33_|_Op (n75/2) , (2)

where [2, j,i] means the sum of two terms by exchanging the superscripts ¢ and j, and [3, j, 7 + k, r 4+ {] means the
sum of three terms by exchanging the superscripts j, 7 +k, and v + 1 (e.g., B B"T*B™+tbaB4[3 j r + k,r +1] =
Biprtkprtlapa  grikprtipiapa 4 Bipr+ipgr+k.a Ba). Compared to Chen and Cui (2007) who investigated
the second-order properties of the empirical likelihood ratio test statistic ¢ (c) —¢ (é) for the parameter hypothesis

HY : 6y = c, this paper studies second-order properties of T, = ¢ (é) Except for the basic ideas, the second-order

analysis below is specific to our setup and different from Chen and Cui (2007).



3 Main Results

3.1 Signed Root Expansion and Cumulants

Hereafter, the ranges of the superscripts are fixed as a,b,¢,d € {1,...,r — p}. To study the second-order prop-

erties of T;, based on the expansion in (2), we first find a signed root expansion in the form of
n T, = (R + Ry + R3)" ™ (Ry + Ro + R3)" ™ + O, (n_5/2) :

where Ry = O, (n™'/2), Ry = O, (n™1), and Ry = O, (n=*/2). By collecting the terms of order O, (n™') in (2),
we have RPT*RPT® = L) + Ly. Using the formulae in Appendix A.1, R¥™ is obtained as

RE*e — grto, 3)

By collecting the terms of order O, (n™%/2) in (2), we have 2R} ™R5™® = L; + Ls + Lg + Li2 + Los. Let
UAL = (wkl)pxp. Using the formulae in Appendix A.1, R5*® is obtained as

R;nga _ _lAerbAera p+b + laera p+b p+cAp+bAp+c _ wkloera,kAl
1 .
+§wkmwln,yp+a,klAmAn + wlm,prra,erb,lAerbAm. (4)

Also, by collecting the terms of order O,, (n~2) in (2), we have 2R} T*RET + RETCRET® = ES:?, L;+ 2;1:10 L+
Z?ilg L; + Z?i% L;. Thus, after tedious calculations in Appendix A.3, R5™® is obtained as in Appendix A.2.
Based on the signed root expansion obtained above, we compute cumulants of R = Ry + R + R3. Observe that
E[RY*] =0 and E [RE""] = n~ 1P+, where

— _lap—i-a p+b p+b wkl,yl;;ﬂ-i-a,k 4 l,yp—i-a,klwkmwlm' (5)

6 2

p+a

Since all terms in RS are product of three zero mean averages, it holds E [R™*] = O (n~2). Thus, the

first-order cumulant is
cum (RPY*) = E [RPY] = n~ 'yt 4 0 (n7?). (6)
In Appendix A.4, we show that the second-order cumulant is
cum (Rera, Rerf) =p lgprartf 4 pT2APTe Pt 4 O (nf?’) . (7)
Appendices A.5 and A.6 show that the third and fourth cumulants satisfy

cum (Rp+a, RPTY, Rerd) =0 (nig) , cum (RPJ”’, RPTY RPFe, Rerd) =0 (n74) . (8)

3.2 Second-order Properties and Bartlett Correction

Based on the cumulants for the signed root expansion obtained in the previous subsection, we can apply a

conventional argument to derive the Edgeworth expansion and Bartlett correction for the empirical likelihood

test statistic T}, (e.g., DiCiccio, Hall and Romano, 1991). Let ¢, and fr—, (-) be the (1 — a)-th quantile and

probability density function of the x? (r — p) distribution, respectively. Also define the Bartlett factor as
up-i-aup-i-a + Aprta pta

B, = — : 9)

where pPt® and APT® PT¢ are defined in (5) and (7), respectively. Let B, be a \/n-consistent estimator of B..

The main results are summarized as follows.



Theorem 3.1. Under Assumptions 1-4,

(i) Pr{T,<cat=1-a—n""cafrp(ca)Bc+O (n?),
(i) Pr {Tn < o (1 + n_ch)} =1—-a+0 (n_2) ,
(#i7) Pr {Tn <y (1 + TFIBC)} =1—-a+0 (nfz) .

Theorem 3.1 says that (i) the error in the null rejection probability of the empirical likelihood test using the
asymptotic critical value ¢, is of order O (nil), (ii) the error can be reduced to order O (n’z) by the Bartlett
correction, and (iii) replacing the Bartlett factor B, by a y/n-consistent estimator B, has no effect at the order
of n=2 (see DiCiccio, Hall and Romano (1991), for instance).

In practice, B, has to be estimated. The method of moments estimator of B, can be obtained by substituting
all the population moments involved by their corresponding sample moments. However, particularly when the
moment function g (X, 0) is nonlinear in 6, the Bartlett factor B. takes a complex form and the method of
moments estimator can be less practical and precise. Chen and Cui (2007) employed a uniform weight bootstrap
method using recentered moments (Hall and Horowitz, 1996) to estimate the normalized factor 8. = 1+ n~'B,
in the case of parameter hypothesis testing for overidentified models. We suggest a slightly different procedure
to estimate (. based on the implied probability bootstrap (Brown and Newey, 2002) which resamples from
a distribution that imposes the moment restrictions instead of the empirical distribution. The procedure to

estimate S, is as follows.

1. Using 6 and ;\, calculate the implied probabilities

o 1
P e xg (50)) o

fori=1,...,n.

2. Draw nii.d. observations {be}?zl with replacement from the multinomial distribution with Pr{X = z;} =

p; and calculate the empirical likelihood test statistic 7 based on {X{‘b}?zl.z

3. Repeat Step 2 B times to obtain T:{yl, ..., TrB. Estimate 3. by

1 B
= T*b 11
B —B(T_p); . (11)

The critical value for T;, is set as cch.

Brown and Newey (2002) argued that this version of bootstrap can provide an asymptotically efficient estimator
of the distribution of overidentification test statistics. The asymptotic property of this procedure is presented as

follows.

Theorem 3.2. Under Assumptions 1-/,

Pr{Tn < CQBC} =1—a+0 (n_3/2).

2Since this multinomial distribution satisfies the overidentified moment conditions (i.e., S Pig (Xi,é) = 0), we can use the

original moment functions without recentering.



Compared to Theorem 3.1 (i), this theorem says that the error in the null rejection probability of the empirical
likelihood test can be reduced to order O (n~%/2) by the bootstrap approximation to 8. = 14+ n~!B,. Compared
to Theorem 3.1 (ii) and (iii), the asymptotic error increases from O (n=2) to O (n=3/2). This is due to the use of
\/n-consistent estimator Bc of .. The proof of this theorem is similar to that of Chen and Cui (2007, Theorem

3), which employs the uniform weight bootstrap with recentering.

3.3 Refinement by Adjusted Empirical Likelihood

Liu and Chen (2010) proposed an adjustment for the construction of empirical likelihood to avoid non-existence
for the solution of the likelihood maximization problem (i.e., the case where the linear space spanned by
{g (Xl-, 9) }n may not contain the origin in finite samples). In our context, the adjusted empirical likelihood
test statisticlz;n be defined as

n+1
T} =min2 ) log (1+ A" (6) w; (0
i = min ;C)g( + A (0) wi (6)),
where w41 (0) = —% " w; (0) is a pseudo observation and A (9) solves 7} Hiiiiv(z)(e) = 0 with respect

to A. If a,, > 0, the linear space spanned by {w; (9)}?:11 always contains the origin and thus the test statistic

T2 always exists. By a similar argument to Liu and Chen (2010) combined with the results in Section 3.1, the

signed root expansion of T is obtained as
W = (Ry+ Ry + R (Ra+ Ra+ R340, (n792),

where Rg‘ = R3 — - Ry with a, = a + O, (n_1/2). By setting a = %, the same calculations in Sections 3.1
with R4 imply that the Bartlett correction factor in (9) will be zero. This result is summarized in the following

theorem.

Theorem 3.3. Under Assumptions 1-/,
(i) Pr{Tf<ci}=1-a+0(n?) ifa,=
(i5) Pr {T,‘l4 <ct=1-a+0((n"?) ifa,=

Theorem 3.3 says that (i) by setting a,, = %, the adjusted empirical likelihood test with the chi-square critical
value achieves the same higher-order precision as the Bartlett correction in Theorem 3.1 (ii); and (ii) estimation
of B, by a y/n-consistent estimator has no effect on the error in the null rejection probability. Similar to the case
of the Bartlett correction in Section 3.2, the correction factor B, can be estimated by the method of moments or
bootstrapping. If B, is obtained by the method of moments, then mild conditions guarantee the \/n-consistency
for B.. However, if we employ a bootstrap approximation for . based on either the uniform weight bootstrap
(Chen and Cui, 2007) or implied probability bootstrap in Section 3.2 and estimate B, by B.=n (BC — 1), then
B, is not v/n-consistent in general (even though Bc is y/n-consistent for 8.). In a simulation study below, we find

that the value of B, varies in a wide range across simulations compared to the value of Bc.g

3For the uniform bootstrap approximation, Liu and Chen (2010, pp. 1355-1356) estimated B. by using the median of bootstrap

resamples of Ty, (with recentered moments), while they reported that the estimates for B. are unstable even after this modification.



4 Simulation

This section conducts simulation studies in order to evaluate finite sample properties of the second-order refine-
ments proposed in the last section. We consider two simulation designs: a linear instrumental variable regression
model (Section 4.1) and nonlinear moment restriction model (Section 4.2). Under the null and alternative hy-
potheses, we compare rejection frequencies of four overidentifying restriction tests: (i) the J-test based on the
generalized method of moments (GMM),* (ii) usual empirical likelihood test (EL),% (iii) Bartlett corrected em-
pirical likelihood test (BEL), and (iv) adjusted empirical likelihood test (AEL). To implement BEL, we obtain
an estimator BC for the correction factor 3. = 1 + n~ !B, by using the implied probability bootstrap method
suggested in Section 3.2. To implement AEL, we estimate B. by B.=n (Bc — 1). The number of bootstrap
replications is 199. All results are based on 1,000 Monte Carlo replications. All tables and figures are contained

in Appendix B.

4.1 Linear Instrumental Variable Regression
4.1.1 Performance under the Null Hypothesis

We first consider the linear instrumental variable regression model:

Y, = Wb+ Us, (12)
W, = Z{W—F‘/Z‘,

for i = 1,...,n, where 7 = (¢,...,¢) and Z; ~ N(0,1,). The error terms are generated as (U;,V;) =
(eu, peri + /1 — p2€21‘), where €1; and ey; are independent and drawn from three distributions: for j = 1
and 2, €j; ~ N (0,1) (normal case), t(5) //5/3 (standardized ¢ (5) case), and {x*(3) — 3} /V/6 (standardized
X2 (3) case). The moment restrictions to estimate 6y are written as E [g (X;,00)] = E[Z; (Y: — W;ifo)] = 0. We
set fp = 0 for the true parameter value of interest. For each Monte Carlo replication, we set the value of ¢ to fix
the value of the concentration parameter 62 =’ (3" | Z; Z!) m (given the realized values of Z;).

First, Tables 1-3 report the rejection frequencies of four tests at the 5% nominal significance level for the cases
of normal, standardized ¢ (5), and standardized x? (3), respectively. We set n = 200 for the sample size, r =2,
5, and 10 for the number of instruments, p =0.2 and 0.8 for the degree of endogeneity, and §2 =20 and 100 for
the concentration parameter. Our findings are summarized as follows. First, compared to the nominal level, the
rejection frequencies of GMM and EL can be large when the number of moment restrictions r is large. Therefore,
in this example the first-order asymptotic approximations for the J-test and its empirical likelihood analog are less
precise. Second, improvements by BEL and AEL in the null rejection frequencies are reasonable. For example, in

the normal case (Table 1), the rejection frequency varies between .034 and .125 for GMM and between .042 and

4The version of the J-test statistic considered here is J = ming {37 ; g (X;,6) }/

-1
P ~\ /
Sy g (Xi0) g (X:.0) } (X0, 9(X:,0)},
where 6 = arg ming { * 9 (Xa, 9)}/ {2?21 g (X, 0)} is the GMM estimator with the identity weight matrix (thus 6 is consistent to

i=1

estimate 0p and asymptotically normal under Assumptions 1-4). For the linear instrumental variable regression model, 6 corresponds

to the two-stage least square estimator.
5To compute the empirical likelihood statistic, T, = mingeg 2y i, log (1+’y(0)'g(Xi,0)) where v (0) solves
9(X;,9)
i=1 TF25(X,0)
(called the inner loop) is implemented by a quasi-Newton method based on Bruce Hansen’s MATLAB code (available at

= 0 with respect to v, we adopted a nested algorithm. For each 6, the computation of -~ ()

http://www.ssc.wisc.edu/ ~bhansen/progs/elikem.zip). For the minimization with respect to 6 (called the outer loop), we employed
a derivative free optimization algorithm based on the fminsearch function in MATLAB (because 6 is scalar for both simulation

designs).



.099 for EL, while it varies between .047 and .061 for BEL and between .020 and .053 for AEL. Third, comparing
BEL and AEL, BEL shows slightly better performance in the null rejection frequencies particularly when r is
large. Based on an inspection of simulation outputs, we conjecture this difference is partly due to the lack of
stability of the estimates of B, to implement AEL (compared to the estimates of 8. to implement BEL). Finally,
in general the results are similar for the different distributions of the error terms. For the non-normal cases, all
tests generally rejects the null hypothesis slightly more than the normal case.

Second, we examine how the rejection frequencies of these tests vary with the sample size. Our theoretical
results in Section 3 indicate that the discrepancies between the actual rejection frequencies and the nominal level
of BEL and AEL will decay faster than those of GMM and EL as the sample size increases. Figure 1 reports
the plots of the rejection frequencies of four tests with the 5% nominal level for sample sizes n =30, 50, 70, 100,
200, 500, 700, and 1000 (with r = 5, p = 0.8, and 6% = 20). We can see that as predicted by the theoretical
results, the convergence speeds of the rejection frequencies of BEL and AEL to the nominal 5% level are faster
than those of GMM and EL. In particular, the convergence speed of the rejection frequency of GMM is slow.

Third, we investigate the null rejection properties of these tests when the concentration parameter 62 is close
to (or equal to) zero, i.e., weak instruments. Although our theoretical analysis focuses on the case of strong
identification (i.e., G is full column rank, imposed in Assumption 2), it is important to examine finite sample
behaviors of the proposed BEL and AEL tests when the strong identification assumption is questionable. Figure
2 reports the plots of the rejection frequencies of four tests with the 5% nominal level for 62 =0, 3, 5, 10, 20, 30,
50, 70, 100, and 200. It is remarkable that the rejection frequency of BEL and AEL are very robust against small
non-zero values of §2 (ranges between 0.038 and 0.066 for BEL and between 0.034 and 0.061 for AEL). When
62 = 0, all tests under-reject the null hypothesis. Although it is beyond the scope of this paper, it is interesting
to provide some theoretical explanation on this phenomenon.

Finally, we examine the properties of these overidentifying restriction tests as pre-tests for parameter hypoth-
esis testing. We consider a two-stage strategy to test the parameter null hypothesis HY : g = 0. In the first
stage, we test the overidentifying restriction Hy. If the null hypothesis Hy is not rejected, we proceed to the
second stage and test the parameter null hypothesis H. Guggenberger and Kumar (2011) provided theoretical
and simulation evidences for the size distortion of this two stage approach in linear instrumental variable regres-
sion models. In particular, they derived a lower bound for the asymptotic size of the two stage test and showed
that surprisingly the lower bound can be as large as 1 — «, where « is the nominal size for the first stage test.
Although formal analysis is beyond the scope of this paper, it is interesting to investigate finite sample behaviors
of this two stage approach when we employ BEL or AEL in the first stage. We compare (i) the J-test followed by
the t-test based on the two-step GMM estimator, (ii) the empirical likelihood overidentification test followed by
the empirical likelihood ratio test for the parameter hypothesis,® (iii) the BEL overidentification test followed by
the empirical likelihood ratio test for the parameter hypothesis, and (iv) the AEL overidentification test followed
by the empirical likelihood ratio test for the parameter hypothesis.

In order to evaluate the asymptotic size of a test for HI', we need to analyze the null rejection probabilities
of the test for all possible values of nuisance parameters and find the worst one. It is not easy and beyond the
scope of this paper to characterize the asymptotic size property for the two stage test in our simulation design.

Thus, after some preliminary simulation studies, we replace the data generating process for Y; in (12) with

Yi = Wibo+cZii+ Ui,

SThe empirical likelihood ratio statistic for H : 6o = a is defined as T = £(a) — mingee £ (). Based on the first-order

asymptotic approximation (Qin and Lawless, 1994), we use the x?2 critical value.
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where Zy; is the first element of Z;, r = 5, p = 0.8, 62 = 20, and n = 200. By perturbing ¢ from 0, we allow
small deviations from the overidentification null hypothesis Hy, which corresponds to a nuisance parameter for
testing HY'. Figure B reports the frequencies of the event “not rejecting Hy in the first stage but rejecting HY in
the second stage”. For both stages, the nominal level is 5%. In this particular setup (which does not necessarily
characterize the finite sample size of the two stage tests), we can see that the frequencies for this event can be
higher than 0.05 for all the two stage tests. The difference among EL, BEL, and AEL-based tests is small.

4.1.2 Power Property

In order to investigate the power properties of the proposes tests, we consider the following data generation

process as alternative hypotheses:
Y, = W;0+0.1Zy;+ U,

where Zy; is the first element of Z;, r = 5, p = 0.8, §2 = 20, and n = 200. We can see that there is no # which
satisfies F [g (X, 0)] = E[Z; (Y; — W;0)] = 0. We investigate the calibrated powers of GMM, EL, BEL, and AEL
(i.e., the rejection frequencies of these overidentification tests where the critical values are given by the Monte
Carlo 95% percentiles of these test statistics under the data generation process in (12)). Figure 4 reports the
calibrated powers for the tests with sample sizes n = 50, 70, 100, 200, 300, 400, 500, and 600 under the normal
case. In this setting, all tests show similar calibrated power properties.

Overall, the simulation results for the linear instrumental variable regression indicate that BEL and AEL have

more attractive null properties than EL. and GMM and have comparable power properties to EL and GMM.

4.2 Nonlinear Moment Restriction
4.2.1 Performance under the Null Hypothesis

We next consider a simulation design in Liu and Chen (2010) motivated by an asset pricing model, which is a
multivariate version of Hall and Horowitz’s (1996) simulation design. Let X = (X1, Xs,...,X,)" be a vector
of mutually independent random variables, where X1, Xo ~ N (O, 02) and X3,..., X, ~ x?(1). The moment

restrictions are written as

m (X, 90)
XQ’ITL (X, 90)
E| (Xs—1)m(X,0) | =0 (13)

Elg(X,00)]

L (XT - 1)m(X790) |

where m (X, 0) = exp (—4.502 —0(X1+X2)+ 3X2) — 1. We treat o as a given normalizing constant and treat
6 as an unknown parameter to be estimated from (13). These restrictions are satisfied at 6y = 3 for any o > 0.7

First, Table 4 reports the rejection frequencies of the four tests at the 5% nominal significance level. We set
o = 0.2 for the standard deviation of X; and X5, n = 100 and 200 for the sample size, and r =2, 3, 5, and 7
for the number of moment restrictions. Our findings are summarized as follows. First, compared to the nominal

level, the rejection frequencies of GMM and EL can be quite large particularly when the number of moment

9..2)2
"Note that E [m (X, 3)] = \/2172 [ exp (—%) dx1 —1 =0 for any o > 0, and X is independent from other variables.
To
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restrictions r is large. It should be noted that, GMM shows serious distortions in the null rejection frequencies
even when r is as small as 3. Therefore, in this example the first-order asymptotic approximation for the J-test
is less precise. Second, improvements by BEL and AEL in the null rejection frequencies are reasonable. The
rejection frequency varies between .040 and .370 for GMM and between .054 and .255 for EL, while it varies
between .054 and .089 for BEL and between .000 and .052 for AEL. Finally, comparing BEL and AEL, BEL
shows better performance in the null rejection frequencies particularly when r is large. Based on an inspection
of simulation outputs, we conjecture this difference is partly due to the lack of stability of the estimates of B, to
implement AEL (compared to the estimates of 3. to implement BEL).

Second, we examine how the rejection frequencies of these tests vary with the sample size. Our theoretical
results in Section 3 indicate that the discrepancies between the actual rejection frequencies and the nominal level
of BEL and AEL will decay faster than those of GMM and EL as the sample size increases. Figure B reports
the plots of the rejection frequencies of four tests with the 5% nominal level for sample sizes n =30, 50, 70, 100,
200, 500, 700, and 1000 (with o = 0.2 and r = 3). We can see that as predicted by the theoretical results, the
convergence speeds of the rejection frequencies of BEL and AEL to the nominal 5% level are faster than those of
GMM and EL. In particular, the convergence speed of the rejection frequency of GMM is slow.

W} is close

to the zero matrix, i.e., weak identification (Stock and Wright, 2000). Although our theoretical analysis focuses

Third, we investigate the null rejection properties of these tests when the matrix G = E [

on the case of strong identification (i.e., G is full column rank, imposed in Assumption 2), it is important to
examine finite sample behaviors of the proposed BEL and AEL tests when the strong identification assumption
is questionable. In order to characterize weak identification in our simulation design, Figure 6 reports the
relationship between the constant o and the scalar ;4 = nG’V~'G computed by Monte Carlo integration. We call
this p as the degree of concentration since it is analogous to the so-called concentration parameter in the linear
instrumental variable regression model. From Figure 6, we can see that y gets smaller as ¢ increases. Thus, in
our setup, large values of o can be associated with weak identification for the parameter 6y. Figure 7 reports
the plots of the rejection frequencies of four tests with the 5% nominal level for o =0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, and 0.8 (with n = 200 and r = 3). Note that all tests over-reject the null hypothesis when o is large (i.e.,
the degree of concentration p is small). The rejection frequencies of BEL and AEL are closer to the nominal size
than those of GMM and EL. In particular, it is remarkable that the rejection frequency of BEL is very robust
against large values of o (ranges between 0.05 and 0.15). Although it is beyond the scope of this paper, it is
interesting to provide some theoretical explanation on this phenomenon.

Finally, we examine the properties of these overidentifying restriction tests as pre-tests for parameter hy-
pothesis testing. We consider a two-stage strategy to test the parameter null hypothesis H : 6y = 3. In
the first stage, we test the overidentifying restriction Hp in (1). If the null hypothesis Hy is not rejected, we
proceed to the second stage and test the parameter null hypothesis H’. Similarly to the previous section, we
compare (i) the J-test followed by the t-test based on the two-step GMM estimator, (ii) the empirical likelihood
overidentification test followed by the empirical likelihood ratio test for the parameter hypothesis, (iii) the BEL
overidentification test followed by the empirical likelihood ratio test for the parameter hypothesis, and (iv) the
AEL overidentification test followed by the empirical likelihood ratio test for the parameter hypothesis.

In order to evaluate the asymptotic size of a test for HI’, we need to analyze the null rejection probabilities
of the test for all possible values of nuisance parameters and find the worst one. It is not easy and beyond the
scope of this paper to characterize the asymptotic size property for the two stage test in our simulation design.

Thus, after some preliminary simulation studies, we fix the data generating process as X7, Xo ~ NV (O, (00)2) and
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X3,..., X, ~x?(1) with n = 200, o = 0.2, and r = 3.8 By perturbing ¢ from 1, we allow small deviations from
the overidentification null hypothesis Hp, which corresponds to a nuisance parameter for testing HY’. Figure B
reports the frequencies of the event “not rejecting Hy in the first stage but rejecting HY in the second stage”. For
both stages, the nominal level is 5%. In this particular setup (which does not necessarily characterize the finite
sample size of the two stage tests), we can see that the frequencies for this event are typically higher than 0.05
for the GMM-based two stage test and lower than 0.05 for the other tests. Also the difference among EL, BEL,
and AEL-based tests is small.

4.2.2 Power Property

In order to investigate the power properties of the proposes tests, we consider the two data generation processes

as alternative hypotheses:
Case 1:Xy, Xo ~ N (0.05, (0.2)2) . Xs~x2(1),
Case 2:X1, Xo ~ N (0, (0.3)2) . Xs~x2(1).

Under these data generation processes, we specify the moment functions as
g(X,0) = (m(X,0),Xom(X,0),(Xs—1)m(X,0)), where

m (X, 0) = exp (—4.5 (0.2)% = 0(X1 + Xo) + 3X2) ~ 1

We can see that for both cases, there is no 6 which satisfies E [g (X, )] = 0. For both cases, we investigate the
calibrated powers of GMM, EL, BEL, and AEL (i.e., the rejection frequencies of these overidentification tests
where the critical values are given by the Monte Carlo 95% percentiles of these test statistics under the data
generation process X1, Xo ~ N (O, (0.2)2) and X3 ~ x? (1) satisfying Hp). Figures 9 and 10 report the calibrated
powers with sample sizes n = 100, 200, 300, 400, 500, and 600 for each case. For Case 1, EL, BEL, and AEL
show superior calibrated power properties than GMM. For Case 2, EL and BEL have better power than AEL
and GMM. Lower calibrated power of GMM is partly due to the over-rejection properties of GMM under Hy as
illustrated in Figure B (which typically yield large critical values to compute calibrated power). For both cases,
BEL is slightly less powerful than EL. Since BEL has better null rejection properties than EL (see Figure B),
these power properties characterize a trade-off between the null rejection and power properties of EL and BEL.
For Case 2, AEL tends to have lower calibrated power than BEL and EL, and shows similar properties to GMM.
We find that this decay of power in AEL is partly due to the lack of stability of the estimates of B, to implement
AEL.?

Overall, our simulation results are encouraging. BEL and AEL have more attractive null properties than EL

and GMM. Based on the power properties, we particularly recommend to use BEL.

5 Conclusion

In this paper, we show that the empirical likelihood test for overidentifying restrictions is Bartlett correctable

and propose second-order refinement methods based on the empirical Bartlett correction and adjusted empirical

8In preliminary analysis, we tried the cases of X1, X2 ~ N (c, 02) for different values of ¢, different values of o (but not too large
to avoid weak identification for 6p), and different number of moments r, for example. The results are basically similar to the one in

Figure B.
9For example, in Case 2 with n = 200, the bootstrap estimates of 3. and B. range from 0.86 to 3.71 and from -13.73 to 271.18,

respectively. In Case 2 with n = 500, they range from 0.79 to 2.87 and -104.81 from 938.26, respectively.
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likelihood. Simulation results suggest that the empirical Bartlett correction and adjusted empirical likelihood
assisted by bootstrapping exhibit better null rejection properties than the conventional GMM and empirical
likelihood tests using the first-order asymptotic approximation. It is interesting to extend this research to a time

series context and non-smooth moment functions (e.g. quantile instrumental variable regressions).
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A Mathematical Appendix

A.1 Basic Formulae

Let UA~! = (wkl)pxp. From Chen and Cui (2007), we have the following formulae:

Bk _ O, Bp+a — _1417-{-117 Br—i—k _ wklAl, ’}/]’kBT+k _ A]I{j < p}7 ,_Y_],kB] — 0,

,ijkBjJ — Olﬁk, ,ijkBJ};DﬂLa =0,

Bkl BF.p+0b Bkr+i wmkcl,m wmkcp—i—b,m 0
Bptal  Bptap+b  pptar+l — Alpta Apta p+b —Cptal
Br-i—k:,l BT-HC,P-H) BT-HC,T-H wk:m (wnmcl,n _ Aml) wk:m (wnmcp-i-b,n _ Amp+b) wk:mcm,l
ﬂl,era ptc _ _wol (,Yerc;era,o + ,_Yp+a;p+c,o) , ﬂl,r+m ptc _ wol,prrc,om’ ﬂp+a,p+b ptec _ _2ap+a p+b p+c7

ﬁera,rer ptc _ ,7p+c;p+a,m + ,7p+a;p+c,m ﬁl,p+a r+n _ wol,ypqLa,on Bl,r+m r+n -0
) ) )
ﬁp+a7p+b r+n o _ ,7p+a>n;p+b + 7;D-i-a;p+bm ﬁp-ﬁ-a,r-'rm r+n _ _,yp-i-a,mn ﬁr-i-k,r-i-m r+n _ wk0707mn
) ) )
Br-i-k,p-‘ra ptc zwkoaoz)-‘ra ptc _ wkowno (,Yp-‘rcm-i-am 4 ,Yp+a;p+c7n) ,
r+k,p+a r+n o ko, .mo, p+a,mn ko o,n;pta o;pta,n
greve = WwwWmoP — Whe (yomipra g yoiptan)
r+k,r+m p+c __ ko, no,. p+c,nm ko +c;0,m o,p+c;m
Jé] P = wuwW"P —wh (P + oPrEmy
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A.2 Expression of Rj

R§+a is written as

p+a kl, . mn o,k ~pta,m gl l kl ~p+b,k pgp+a p+b l_l kl, ml ~p+a,k p+b,m gp+b
Rs = wrWmCmrC A+ - C A A ww™C C A

+§Ap+a ptc gp+b pte gp+b + wrlop Tk glpta gp+b

ptcptd.k g lp+a p+b _ %wklwml,},pﬁ-a;pﬁ-b,k p+c;p+d,m

W v APTb gpte gpt+d
+ 4 b d 1 b d
+§a1)+e pta pt+bopte ptc ptd _ Zap-‘:-a p+b p+c p+
whk! (7p+0;l7m + 7l;p-l-c,m) 7p+a;p+b,k + 3wk17p+a,kmalp+b p+c

4™ _'_wlo,prra;erb,l (,.Yp+c;o,m 4 ,.Yo;p+c,m _ 3wno,yp+a,nm) AvAP+bAP+c
4 qPtd pta ptb (27p+d;p+c,m 4 ,YerC;erd,m) _ 7p+a;p+b;p+c,m
3

1, kl, ol.p+a,km.p+bon kl o, p+b,km l,n;p+a lipta,n
—whklwolyp P + whlyp (7 pta 4 ~Lp )
+wmvwny/ _'_%wkl,_yl,mn,prra;erb,k 4 %,.Yerc,mnaera p+b p+c _ %,Yp+a;p+b,mn _ %,—Y;DqLa,m;erb,n AUAU/AP-H)

+%7p+a;p+c,m (,Yp-i-b;p-i-c,n 4 7p+0;p+b7n) 4 %,Yp+0;p+a7m7p+b;p+c7n

_’_lwmvwnv w° wklwp-l-a,k:lwl,mn + ,yp+b,mn,yp+a;17+b,o _ l,yp-l-a;m,no AUAU/Av”
2 3
1
2wknwlowvmvm,leera,vAnAo _ ZWknwlo,}/erb,kl14;)+b p+aAnAo + wkmwnmw ,7p+a,klcp+b,nAoAp+b
1
_wkmw ’}/era’klAmerbAoAerb wkvwlnwmo,yp+a,klcv,nAnAo + 2w wlocp+a klAnAo
_'_lAera p+b p+cAp+bAp+c + wlmwnm,yp+a;p+b,lCp+c,nAp+bAp+c ,_Yp+a ;p+b, lAmp+cAp+bAp+c

_wlnwmo,yp+a;17+b,lCn,onAp-i-b o‘)lnwmk (,yk;;ﬂ-i-a,l + ,yp—i-a;k,l) Cp+b’mAnAp+b

. 1 . .
wlnme,prra,erb,lOp+b,mAnAo _ <§,Y;D+C,p+a,l + ,Yp+a,p+c>l Wl APTD pte pgn gp+b

+wlmcp+a;p+b,lAmAp+b — WMk kpta pboptem gp+b gpte

5

_2wlma1)+a p+b preoptel gm gp+b _ =\ pta p+b pte gp+e p+d gp+b gp+d (14)

A.3 Derivation of R3

We first evaluate the terms in ZJ 3 Lj + ZJ 0L+ ZJ 3L+ ZJ o5 Lj. Note that the terms Ls, Lg, L11,

L1g, and Lys cancel each other since
ﬁJ}uq {_Br+k75357j>k 4 CJk grtk 4+ BIspBs _ AjiBi} B“BY =0,
from the formulae in Appendix A.1. The other terms are written as follows.

L3+ Lio+ Li7 + Loy
_ 2wk:lwmncn,krcp+a,mAlAp+a + 2wkrlcp+b,kAp+a p+bAlAp+a + wk:lwmncp-l-a,krcp—i-a,mAlAn

_wklwmlcp-i-mkCp+b7mAp+aAp+b + Apta p+cAp+b p+CAP+aAP+b + 2wklcp+b,kAp+a,lAp+aAp+b_
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1
kl bip+a,k p+bk l d l d;p+e, ip+d, b d
L4 _ _§w (,yp-i- p+a + ,yp-‘ra p+ ) {2a p+cp+d _ wm (,yp-i- p+c,m + 7;D-i-c p+ m)} Ap-i-aAp-i- Ap-i-cAp-i-
kl mo +a;p+c,k +c;pta,k nl +b,nm l,m;p+b lip+bm o “+a —+b +c
+w™w (”yp P + APTEP ) {w ~P - (”y PO 4 A4hP )} ACAPTEAPTY AP

+wklwm07p+a,km {2alp+b pte _ (,Y;D+C;p+b,n + ,Y;D+b;p+c>n) } A° APTa Ap+b gptc
+2wklwmvwnv’7p+a,km {wol,yp-i-b,on _ (,yl,n;p-l-b _i_,yl;p-i-b,n)} AvAU’Ap+aAp+b

_lwklwmownv (,yp-i-b;P-‘ra,k 4 ,yp-'ra;p—i-b,k) ,yl,mnAoAvAp—i-aAp—i-b _ wkl’}/p+a’km’}/l’mnwmvz4vw"v/AUIWOUNAU”Ap-i-a_

ng — _wknwlowvm,_Ym,leera,vAnAoAera _ wknwlo,prrb,klAerb p+aAnAoAp+a

_wkmwlownv,_ypqLa,klOerb,nAonAv + 2wkmwlo (wnm0p+b,n _ Amp+b) ,_Yp+a,kleAp+aAp+b

_2wkvwlnwm07p+a,klcv,mAnAoAp+a-

1 . .
L14 — _womwknwlv,}/m,kl (,Yp+b,p+a,o + ,Yera,erb,o) AnAvAeraAerb + wkmwln,_)/pqLc,klapqLa p+b p+cAmAnAp+aAp+b

2
+womwkvwlv'wnv”,ym,kl,prra,onAvAv'Av”Aera + wkmwlownv,}/erb,kl (,Yerb,n;era 4 ,_Yp+b;p+a,n) AonAvAp+a

1 ’ " ’ " ’ " ’ "
+§wkowlvwmv wnv ,_Yp+a,kl,yp+a,mnAoAvAv Av + wkowlvwmv wnv ,Yera,kl,_Yo,mnAvAv Av Aera
+wk0wlv,yp+a7kl{2aop+b ptc _ mo (7p+0;p+b7n 4 7p-l-b;p+c7n) }AvAp-l-aAp-i-bAp—i-c

_2wkowlvwnv/7p+a,kl {wmo,_yp—i-b,mn _ (,Yo,n;p-i-b + ,YO;P-Fb,n)}A’UAv'Ap—i-aAp-l-b'

Lis+ Lig = whkntogptakl gn go gpta ;Ap-‘ra p+b ptc gpt+a gp+b gptc

1 / . . . / . /
Lis = 2Ok 0k (7p+b,p+a7o + 7p-l-a,p-i-b,O) (7p+d,p+070 + 7p-l-c,p—l-d,o ) APt pAp+b gptc gp+d
’ . . ’
—kawO kwlm (,_Yp+b,p+a,o + ,_Yp+a,p+b,o) ,_Yp+c,o lAmAp+aAp+bAp+c

/ ’
—wok e kwlnwmv,prra,ol,anLb,o m AT AV APTa gP+b _ pte pta p+bpte ptc p+d gpta gp+b gptc gp+d

_lem (7p+d,l;p+c + 7;D-i-d;p-i-c,l) ap-i-d p+a p+bAmAp+aAp+bAp+c

_Ptepta p+b,yp+c,lmwlnwmoAnAoAp+aAp+b

—ingyme (,Yp-l-c,l;p-i-a + ,Yp+0;p+a,l) (,Yp-‘rc,m;p-‘rb + ,yp+0;p+b7m) A™ AC APTa gpth
_wlowmvwnv’ (,Yerb,l;era + ,_yp+b;p+a,l) ,Yerb,mnAoAvAv’quLa

1 ’ " " ’ " nr
_Zwlvwmv wnv wov ,_Yp+a,lm,yp+a,noAvAv Av Av )

b 1 .
L2O + L23 _ _2wkl,_Yp+a710+b,p+c,kAlAp+aAp+bAp+c _ gwknwlowmv,}/era,k,lmAnAoflv'
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Lo = w107p+a;p+b,l {2a0p+c ptd _  no (,Y;D+d;p+c,n + ,Y;D+C;;D+d,n) } APta gp+b gptc gp+d
l ip+b,1 H H b
—2w owmv7p+a,p+ s {wno,ypqLc,nm _ (7p+c,o,m + ,yo,erc,m)}AvAeraquL Aerc

+wlowmvwnv',yp-i-a;;ﬂ—i-b,l,yo,mnAvAv/Ap+aAp+b

Lo7 = _2wlnwmk7k;p+a,lOp+b,mAnAp+aAp+b _ 2wln,yp+0;p+a,lAp+c p+b gn gp+a gAp+b
_2wlnwm07p+b;P+a,lCp+b,mAnAoAp+a _ 2wlnwmk7p+a;k,lCerb,mAnAeraAerb

_2wln,yp+a;p+b,lAp+b ptc pn gpta gpte _ 2wlnwm0,yp+a;p+b,lAnAocp+b,mAp+a
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+2wlm7p+d;p+a,lap+d p+b p+cAmAp+aAp+bAp+c + menwl07p+0;p+a,l (,yp-l-c,m;p-i-b 4 ,yp+0;p+b,m) AnAoAp-i-aAp-i-b
_i_,yp-i-b;p-‘ra,l7p+b7mnwmownvwlv/AoAvAv' APta ,yp-i-a;k,lwokwlm (7p+0;p+b,o + 7;D-‘rb;p-i-c,O) A™ APta gptb gptc
+2w0kwmnwl07p+a;k7l,Yp-‘rb,omAnAoAp-i-aAp-‘rb + 2wlm7p+a;p+b,lap+b pte ptd gm gpta gpte gp+d

+2wmnwlo,_yp+a;p+b,l (,Yerb,m;erc + ,Yp+b;p+c,m) AnAoAp+aAp+c + wmownvwlv’pr+a;p+b,l7p+b,mnAoAvAv’Ap+a.

Log + L3g = owlimOptaiptbl gm gpta gp+b _  JIm kn (,yp-i-a;p-i-b,lk 4 ,yp-i-a,l;p-i-b,k) A™ AT APTa APTD

Ly = —9umkgkpta p+bowtem gpta gp+b gpt+c _ 9 pta pt+b ptc gpte ptd gpta gp+b gp+d

_2wlmap+a p+b p+cCp+c,lAmAp+aAp+b

Ly = wokkpta p+ob (,Yp+d;p+c,o + ,Y;D+C;;D+d,0) APTa APTb gptc gp+d 4 o ok lm kpta p+b,yp+c,olAmAp+aAp+bAp+c
+2ap+e p+a p+bap+b p+c p+dAp+aAp+bAp+cAp+d + wlnwmo,yp+c,lmap+c p+a p+bAnAoAp+aAp+b

+2wlm (7p+d,l;p+c + 7;D+d;p+c>l) aPtTd pa ptb gm ppta p\p+b gptc

1
L33 = — 504
Combining these results, we obtain the expression for 2?23 L; —I—Z;ilo L; —I—Z?ilg L; —I—Z?i% L;. By subtracting

RYTRET from this expression, we obtain 2R5T* R which yields the expression of R in (14).

p+a p+b p+c p+dAp+aAp+bAp+cAp+d

A.4 Second-order Cumulant of R
In this subsection, let “[2]” mean “[2,a, f]” for a, f € {1,...,7 — p}. Observe that
cum (R:D-‘ra’Rp-i-f) — E [Rp-‘raRp-i-f] —E [Rp-i-a] E [Rp-i-f}

= poleptertf 4 p [RQ*“RQ” } +E [RQ*“R{”} 2]+ E {R;f*“Rf;”} 2] = n 2Pt 10 (n73) (15)
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The second term of (15) is
n?E |RY RE|

1 : 7 1 1 :
= Zgptaptfptbptb T ptaptb preoptf ptbpte | pta ptb ptb pt+f pte pte  Z gpta ptf

4 36 36 4
1 . 1 ) . 1 ) .
+wkl (E,prra,k,lapqu p+b p+b [2] + 5,}/era,k,erbOélerj p+b [2] _ §,yp+b,k,p+aalp+j p+b [2]>

. . . . . 1
+wkmwlm <7p+a,k,p+f7l _ ,yp-i-b,l,p-i-a,yp-i-f,k,p-l-b [2] + ,yp-i-b,l,p-i-a,yp-i-b,k,p-i-f _ 57p-i-a,kloép-i-f p+b p+b [2]>

+wklwmn (,Yera,k;l,prrf,m;n + ,Yera,k;n,_Yerd,m;l)
1 . . .
+wklwmnwk1n <_§,_Yp+a,k,l,yp+j,mk1 [2] _ ,Yera,kkl,_quLf,m,l [2])

1 _
4z (wkmwlmwklmlwllml + wkmwlnwklmwlln + wkmwlnwklnwllm) ,Yera,kl,_Yerf,klll + O (n 1) )

4
The third term of (15) is

1 1 -1 .
n’E [R12’+“R117+f} —  _ZgPteptbptbptf 5(51ﬂra ptbgptb pf 4 Z pta ptb preptb pte ptf

2
N 1 . _
_,Yl,p+j,p+a,kwkl + _,_Yp+a,klwkmwlnamnp+f + ,_Yp+a,p+b,lwlmamp+b p+f + o) (n 1) .
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The fourth term of (15) is

n?E Ry Ry

1
_ kl, mn n,k;p+ +a,m;l n,k;l . p+a,m;p+ +b,k;l . p+a p+b p+ +b,k;p+ +a p+b 1
= wFlw (’Y ptfyp + ymokilyP pf)_|_§(,yp aPta prbptf 4 e p+foptap )
1 . .
kl ml +a,k;p+f,m +a,k;p+b . p+b,m;p+ +a,k;p+ +b,m;p+b
_ﬁw w (,Yp ptf + 4P pTop P f_|_,yp P f,yp P )
3
_|_§ (ap-i-a p+c ptec p+f 4 oPte pt+b pte pt+b pte ptf 4 gPtae pte p+fap+b p+b ptec _ gpta p+f)

kl k; l b,k;p+b 1 b b,k; l b
4w (7p+f, ptal | 710+ kiptb o lpta p+ +’7p+ Jptf plpta pt )
—|—wkl (7p+b;p+f,k 4 7p-l-f;p-i-byk) olpta ptb + o‘/,kl717-1-0;17-1-0,kalp-i-a p+f

_lwklwml,y pbip+fim ,yp+f;p+b7m) _ lwklwml7p+a;p+f7k7p+0;p+c,m
2 2

8 4 3 .
4 _pta p+b pte,pt+b pte p+f 4 Zgpbta pte p+fpte pte pre _ Zaera p+b p+b p+f

_%wklwnl,yp+a,km,yp+f,on 4 wkl,prrf,km (,yl,m;era 4 ,yl;p+a,m)

pta;p+b.k (7

4™y +%wklfyl,mn7p+a;p+f,k 4 %ama pHf peyptemn _ %,Yera;erf,mn — %7p+a,m;p+ﬂn

_|_%,Yp+a;p+c7m (7p+f;p+c7n + 7p+0;p+f7n) + %,Yp-i-cm-i-a,mpyp-i-f;p-i-c,n

1 . 1 .
_ _wknwlnwvm,_ym,kl,_prra,v,erf + _wknwln,_ypqu,klaera p+b p+f + wkmwnmwlo,_prra,kl,prrf,n,o

2

kn

. 1 .
—w wlo,y In, mn p+a,kl,_yv,n,p+f + _wknwln,prra,kl,pqu + aera p+b p+b p+f

p+a,klamop+f _ wkvw W™y
+wlmwnm {7p+a;p+b7l (,yp+f>n;p+b + ,yp-i-byn;p-i-f) 4 7p-l-a;p-l-fJ,yp+c7n;p—|-c}

—9utm (7p+a;p+b7lamp+b p+f + ,yp+a;p+f>lamp+c p+c) _ wlnwm07p+a>p+f,l7n,m;o

_wlnwmk (,Yk;p-l-a,l + ,yp+a;k7l) ,Yp+f7m;n _ wlnwmn,yp+a;p+b7l,yp+b,m;p+f
1 . . . .
_§wln (,Y:D-i-cyp-i-a,l + ,YZH‘G»ZH‘CJ) QP pte o wlm,yp-‘ra,p-‘rf,l,m
2
mk [ kp+a p+b (. p+f,m;p+b p+b,mip+f kpt+a p+f . ptec,miptc Im_ p+e,lsm  pta p+f pte
—w {a (”y + v )+a y }—gw ol o
_§ (2 pta ptb ptc, ptb ptc p+f 4 qPte p+f pteqpte ptd p+d) +0 (n_l) )

6

Combining these results,

cum (RP+e, RPH) = n=Lgp+a 41 | p=2Ap+a v+ 4 0 (73

where
APtaptf  _— lap-i-a p+f p+b p+b _ lap-‘ra p+b pte pt+f ptb pte iap-i-a p+f pteqptb ptb pte
2 3 36
. . 1
_’_wkl,yl,p-i-f,p—i-a,k [2] _ §wk:mwln,yp+a,k:lam n p+f [2]
. 1 .
Jwlm <7p+b,p+b,lam pta p+f _ 5,yjowa,erlnlO/n pta p+b 2]

. 1 »
L kmim <_,Yp+a,k,p+f,l + g,prrb,klapqLa p+/f ptb

1 . . .
—gwkl7p+b’k’lo¢p+a p+f p+b _ wkl,prra,erf,kal p+b p+b [2] + wklwmnwvn,prra,v,l,prrfﬁkm [2]

’ ’
km, In kmwl n,prra,kl

1 sl . .
_§w wiw p+f.k"l +wklwml,yp+a,p+b,k,yp+b,m,p+f'

gl
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A.5 Third-order Cumulant of R
Using the results to derive the first and second-order cumulants, the third-order cumulant is written as
cum (RP*, RPHY, Rp-i—d)
= FE [Rp+aRp+bRp+d} _E [RP‘L‘I} E [Rp‘LbRp‘Ld} [3] + 2E [Rera] E [RPH’} E [R;D+d]
E[RYRYRY] - B [RE™] B [RYRY 3]+ B [RERIRIY 3]+ 0 (n %), (16)

where E [RPT] E [RPTPRPT] [3] = E [RPT?] E [RPTPRPY] + E [RPYY] E [RPTRPTY] + E [RPT] E [RPToRPTY]
and other terms are similarly defined. The first term of (16) is

TL2E [R11)+aRf+bR€+d:| _ ap-l—a p+b pt+d + 19) (n—l) )

The second term of (16) is

n2E [R;;-i-a} E |:R;f+bR11)+d:| _ {laera ptby prby wkl,_yl;pqLa,k . %,Yera,klwkmwlm} sptb ptd o (nfl) _
The third term of (16) is
n2E [R127+GR1117+17R117+‘1} — _%ap-i-a p+b p+d _ éap-i-a p+b1 p+by gpt+b p+d

: 1 -
_wklfprra’k’léerb p+d + _7p+a,klwkmwln5mn5p+b p+d +0 (TL 1) )

Combining these results, we obtain cum (RPT®, RPT? RPTd) = O (n=3).

A.6 Fourth-order Cumulant of R

In this subsection, let

t; = qPteptbpteptd
ty = opTaptbgpteptd | spta pregptd ptd | spta ptdsp+b pte
ty = oPta ptbi p+b1  p+b pte ptd 4 P tb pbi p+bi \pta pte erd7
4qpte ptby ptbigpta ptb ptd | ptd ptby ptbipta ptb p-l-c7
ta = afte ptb ptbrpte ptd ptbr | pta pte ptbi  ptb ptd ptbr  (pta ptd ptbyptb pte ptbs

Using the results to obtain the first, second, and third-order cumulants,

cum (R, Rrtb grte grtd)
— B [RrteRetbRrteRrd] _ [RrteRet] g [ReHeRr) (3] — E [RPYe] E [RPTORPHCRP) [4)
+2E [RP1*] E [RPT?] E [RPTeRPT] [6] — 6E [RPTY] E [RPTY] E [RPTC] E [RPT]
= E|RYRYRYRY| - B [RYRYY B [RYRIYY 18]+ B [RETRYRY R 4
~E Ry RY™] B [RYRY™| 0121+ B [RET R RYRY (6] - B[R RE™| B [RYRYT (6]
+E {R§+aR;1)+szla+cR;ln+d} 4 - E [R§+aRzla+b} E [Rzl)-i-chlH-d} 12 - E [R12)+a] E {Rzla+szln+cR;1)+d} [4]

—E[RE {RQ”R{*CR{”} 2]+ 2E [RLY] E [Ré’*b} E [Rf*CRfﬂ 6]+ 0 (n4). (17)
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The first term of (17) is
n3E {R;1)+aRzla+szla+chln+d — qrtartbpteptd L O (p=1),
The second term of (17) is
n3E [ReraRleb} E {Rf”Rﬁ’*d} [3] = grta pbgpte pHd | grta pegpth pHd 4 girta prdgpt pe | O (1) |
The third and fourth terms of (17) are
n3E {RngaR;erszlﬂrchlﬂrd} 4] - n3E [RngaR;qub} E {Rzlﬂrchlﬂrd} [12]
= —6t, + 2ty — %tg + §t4 + %W*‘l*“wkmwlmaf’*b phe phd y]

— Wk {,yp-i-a,k;lap-i-b p+c p+d + 7;D-‘raJ’f;p-i-balp-i-c p+d + ,yp-‘ra,k;p-i-calp-i-b p+d + 7;D+a,*’C;;D-i-dal;u-i-b p+0} [4]

4 {7p+a;p+d7lwlmamp+b pte 4 7p-l-a;p-l-c,lwlmoémp-i-b p+d + ,yp-‘ra;p-‘rb,lwlmamp-‘rc p+d} [4] +0 (n_l) _
The fifth and sixth terms of (17) are
TLSE |:Rz2)+aRg+bR€+chl)+d:| [6] _ ’I’LBE |:R12)+aRl27+b:| E |:R€+CR11)+d:| [6]

1 5 1 . .
= 3t —ty+ 6t3 _ §t4 + gwkl (7p+a>k7lap+b ptc ptd + ,yp-i-b,kylap-i-a pte p+d) [6]

1 . . . .
+§wkl (,yp-i-a,k»p-‘rcalp-i-b p+d + ,yp-l-a,k»p-‘rdalp-i-b pte 4 7;D-‘:-lv,k,p-i-calp-i-a p+d + ,yp-l-b,k,p-i-dalp-i-a p+c+) [6]

5 kl (,yp-l-c,k:,p-i-a . Ilp+b p+d ,yp-l-c,k:,p-l-b . lp+a p+d ,yp-i-d,k:,p-l-a . Ilp+b p+c ,yp-l-d,k,p—i-b . Ilpt+a p—i—c) [6]
kl, ml +a,k;p+c . p+bm;p+d +a,k;p+d . p+bm;p+c +c,k;p+a . p+d,m;p+b +d,k;p+a . pt+c,m;p+b
+w®w (ﬂyp p ,-YZD p + ,Yp p ,Yp p + ,Yp p ,-YZD P + ,-YZD p ,-YZD p ) [6]

+a,k;p+c . p+d,m;p+b +a,k;p+d . p+c,m;p+b +c,k;p+a . p+bm;p+d +d,k;p+a . p+bm;p+c
p p ,-YZD p _|_,YP p ,YP p _|_,YP p ,-YZD p + ,-YZD p ,-YZD p ) [6]

okl yml (v

_%wkmwlm (,_Yp+a,kloép+b p+c p+d + ,_Yp+b,klap+a ptc p+d) [6] +0 (nfl) .

The seventh and eighth terms of (17) are
1
B [RyFRYRYRY Y 4] - n® B [RERYY| B[ RYRE) (12 = 20 - sti+0(n™).

Using the results to derive the first, second, and third cumulants, the last three terms of (17) are of order O (n_4).

Combining these results, we obtain cum (RPT®, RPT?, RPT¢ RPFY) = O (n™*).

A.7 Proof of Theorem 3.1
In Section 3.1, we have
n~'T, = (Ry + Ry + R3)p+a (R + Rz + R3)p+a +0, (n_5/2) ;

where Ry, Ry and R3 are given by (3), (4) and (14), respectively. The first four cumulants of R = R; + Ry + R3
are given by (6), (7) and (8), respectively.

Once we expand n~ 1T}, in (2) and compute its cumulants, the derivation of an Edgeworth expansion for the
distribution of T}, is exactly the same as that of Chen and Cui (2007, Theorems 1 and 2).
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A.8 Proof of Theorem 3.2

The proof is similar to that of Chen and Cui (2007, Theorem 3). Pick any ¢ € R. Theorem 3.1 (i) implies
Pr{T, <t} =F,_,(t) —n 'tfrp(t) Be+ O (n7?),

where F,_,, is the cumulative distribution function of the x? (r — p) distribution. Let T* be a bootstrap resample
of T;, using the implied probabilities {p;};—; in (10). By applying the same argument in Brown and Newey
(2002, pp. 510-511) (i.e., applying the same argument for Theorem 3.1 (i) to T;* given the original sample
X, = (X1,...,Xn)), we can obtain

Pr{T; <t|Xu} = Fr—p (t) ="' Bitfrpy (1) + O, (n7?), (18)

where E: is a bootstrap counterpart of B, obtained by replacing all population moments with the weighted
averages based on {p;}.—, . Since (i) B, is a simulation estimator of E [T*| X,] (where the error by simulation
is asymptotically negligible for suitably chosen B), (i) (r — p) " E[T#|X,] =1+ n"'Bf + 0, (n=3/%) by (18),
and (iii) B = B. + 0, (n=1/%) by Brown and Newey (2002, Theorem 1), we obtain

BC =14+n'B.+ O, (n_3/2> .
Therefore, an application of the delta method (Hall, 1992, Section 2.7) yields

Pr{Tu < cafle} = Pr{Tu < ca (1477 Be)} 40 (%) =1—a+0 (n7%2).
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B Tables and Figures

p 6 r GMM EL BEL AEL
0.2 100 2 0.049 0.057 0.053 0.045
100 5 0.041 0.054 0.048 0.040

100 10 0.037 0.099 0.058 0.031

20 2 0.039 0.042 0.049 0.041
20 5 0.040 0.051 0.056 0.047
20 10 0.034 0.075 0.049 0.031

0.8 100 2 0.045 0.047 0.053 0.048
100 5 0.061 0.068 0.053 0.047
100 10 0.047 0.092 0.055 0.027

20 2 0.062 0.048 0.047 0.037
20 5 0.095 0.061 0.061 0.053
20 10 0.125 0.080 0.050 0.020

Table 1: Rejection frequencies of tests at 5% level with n = 200 (normal case)

p 6 r GMM EL BEL AEL
0.2 100 2 0.041 0.047 0.046 0.042
100 5 0.047 0.071 0.056 0.046

100 10 0.039 0.110 0.060 0.012

20 2 0.050 0.049 0.058 0.055
20 5 0.040 0.056 0.052 0.042
20 10 0.026 0.082 0.054 0.015

0.8 100 2 0.057 0.060 0.048 0.046
100 5 0.045 0.071 0.057 0.043
100 10 0.054 0.127 0.064 0.009

20 2 0.049 0.047 0.050 0.040
20 5 0.077 0.059 0.0561 0.041
20 10 0.129 0.124 0.066 0.016

Table 2: Rejection frequencies of tests at 5% level with n = 200 (standardized ¢ (5) case)
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p 6 r GMM EL BEL AEL
0.2 100 2 0.048 0.056 0.058 0.052
100 5 0.042 0.076 0.062 0.044

100 10 0.032 0.126 0.060 0.013

20 2 0.046 0.047 0.056 0.053
20 5 0.035 0.058 0.048 0.044
20 10 0.039 0.092 0.057 0.019

0.8 100 2 0.055 0.061 0.057 0.052
100 5 0.049 0.077 0.054 0.041
100 10 0.048 0.125 0.063 0.011

20 2 0.058 0.0561 0.051 0.044
20 5 0.082 0.084 0.064 0.053
20 10 0.139 0.129 0.066 0.015

Table 3: Rejection frequencies of tests at 5% level with n = 200 (standardized x? (3) case)

n r GMM EL BEL AEL
100 2 0.040 0.063 0.056 0.052
3 0135 0.105 0.074 0.047

5 0244 0.161 0.077 0.016

7 0370 0.255 0.087 0.000

200 2 0.048 0.054 0.054 0.052
3 0.106 0.069 0.057 0.048

5 0243 0.114 0.072 0.035

7 0326 0.167 0.089 0.008

Table 4: Rejection frequencies of tests at 5% level with o = 0.2
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Rejection Frequency

Figure 1: Rejection frequencies for different values of sample sizes with r = 5, p = 0.8, and 62 = 20

Figure 2: Rejection frequencies for different values of 62 with r =5, p = 0.8, and n = 200
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Figure 3: Frequencies of the event “not reject in the first stage but reject in the second stage” with r = 5, p = 0.8,
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Figure 10: Calibrated power for Case 2
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