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Abstract: This paper proposes a simple, fairly general, test for global
identi�cation of unconditional moment restrictions implied from point-
identi�ed conditional moment restrictions. The test is based on the Haus-
dor� distance between an estimator that is consistent even under global
identi�cation failure of the unconditional moment restrictions, and an
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The proposed test has a chi-squared limiting distribution and is also able
to detect weak identi�cation alternatives. Some Monte Carlo experiments
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1 Introduction

Economic models can often be characterized by conditional moment restrictions in
the underlying economic variables. For example rational expectations and dynamic
asset pricing models used in macroeconomics and international �nance give rise to
conditional moment restrictions in the form of stochastic Euler conditions. Alter-
natively, exogeneity or other statistical assumptions can also lead to conditional
moment restrictions.

The typical approach to estimate these models is to �nd a set of unconditional
moment restrictions implied from the conditional ones, and use Hansen's (1982) gen-
eralized method of moments (GMM) estimator, as for example Hansen and Singleton
(1982) did in their seminal paper on estimating a consumption based capital asset
pricing model.5 The key assumption in this unconditional GMM-based approach is
that the parameters identi�ed in the conditional moment restrictions can be globally
identi�ed by the implied unconditional moment restrictions. However, as recently
emphasized by Dominguez and Lobato (2004, henceforth DL), this needs not be
the case. These authors showed that the global identi�cation condition of GMM
can fail in nonlinear models, regardless on whether the instruments are optimally
chosen or not. Moreover, since the seminal theoretical works by Staiger and Stock
(1997) and Stock and Wright (2000), there is growing empirical evidence indicating
potential (weak) identi�cation problems in commonly used macroeconomic models:
Canova and Sala (2006) in dynamic stochastic general equilibrium models, Nason
and Smith (2008) in the new Keynesian Phillips curve, Yogo (2004) in consump-
tion Euler equations to name just a few. Given the popularity of unconditional
GMM-based approach and its potential identi�cation problem, it seems natural to
investigate the possibility of testing for global identi�cation of the unconditional
moment restrictions.6

This paper proposes a simple test for the hypothesis that the unconditional mo-
ment restrictions globally identify the true parameter identi�ed in the conditional
moment restrictions. The test is a Hausman-type test based on the Hausdor� dis-
tance between an estimator that is always consistent for the true parameter, namely
DL's consistent estimator, and a GMM-based estimator of the identi�ed set of the un-

5Further examples of applications of GMM abound in the economics and �nancial literature; see
e.g. the monograph by Hall (2005) and the anniversary issue on GMM of the Journal of Business

and Economics Statistics in 2002.
6It should be noted that our methodology can be applied to other estimators di�erent from

GMM such as the continuous updating estimator (Hansen, Heaton and Yaron (1996)) or any of the
members of the generalized empirical likelihood family (Newey and Smith (2004)).
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conditional moments.7 Under the null hypothesis of global identi�cation any member
of this estimated identi�ed set will be consistent and asymptotically normal under
some regularity conditions. Thus, the proposed test has a simple chi-squared limiting
distribution. Under the alternative of identi�cation failure, the Hausdor� distance is
expected to be non-zero, leading to a powerful test.

The proposed test can also be useful in the context of weakly identi�ed uncondi-
tional moment restriction models (Stock andWright (2000)), where the unconditional
moments may be close to zero in �nite samples for possibly a large set of parameter
values. Under weak identi�cation GMM estimators have nonstandard limiting dis-
tributions and traditional approaches to inference are not valid; see Stock, Wright
and Yogo (2005) for a review. The proposed test is able to detect weak identi�ca-
tion alternatives with probability tending to one as the sample size increases, and
with high probability in �nite samples for the data generating processes used in the
simulations.

Most of the existing tests for identi�cation have been con�ned to linear models;
see earlier contributions by Koopmans and Hood (1953) and Sargan (1958), and more
recent ones by Cragg and Donald (1993), Hahn and Hausman (2002), and Stock and
Yogo (2005). In linear models, global identi�cation reduces to a rank condition.
Although this rank condition can also be applied to nonlinear models, as in Wright
(2003), it is in general neither necessary nor su�cient for global identi�cation, see
Sargan (1983) and an example below illustrating this point. In addition to Wright's
(2003) test, the only available tests for identi�cation in nonlinear models we are aware
of are those of Arellano, Hansen and Sentana (2009), and Wright (2009).8 Arellano,
Hansen and Sentana's (2009) test is an overidenti�cation test (similar to that of
Carrasco and Florens (2000)) in which the parameter of interest is a continuous
reparametrization of the original (not identi�ed) one. Wright's (2009) test compares
the volume of a Wald con�dence set with that of Stock and Wright's (2000) S-
con�dence set in overidenti�ed unconditional moment restrictions. The proposed
test is a useful complement to these existing tests because it is does not require
the speci�cation of the identi�ed set, it can be applied to both just-identi�ed and
overidenti�ed models, and is computationally very simple.

In practice the proposed test can be used as follows: if the null hypothesis of global

7We stress that our methodology can be based on any consistent estimator for the conditional
moment restrictions parameters, as for example those proposed by Carrasco and Florens (2000),
Donald, Imbens and Newey (2003), Kitamura, Tripathi and Ahn (2004). We chose DL's estimator
because of its simple implementation; in particular no tuning parameters, such as the bandwidth
or the rate of growth of the approximating functions, are necessary.

8Inoue and Rossi (2008) propose a test for a related but di�erent hypothesis to ours. They test
for the equality of two parameter values identi�ed by two di�erent GMM objective functions.
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identi�cation is rejected one should use DL. If the null hypothesis is accepted then
the standard GMM estimator can be used. Note that DL's estimator is not e�cient
whereas its one-step e�cient version (Section 4 of DL) requires the computation of
conditional expectations and it is therefore subject to the curse of dimensionality.
Thus from a theoretical and practical point of view the use of the standard GMM
seems preferable when the null hypothesis is accepted.

The rest of this paper is organized as follows. The next section brie�y re-
views standard GMM estimation and the associated potential identi�cation prob-
lem. Section 3 makes explicit the null and alternative hypotheses and introduces the
Hausman-type test statistic for global identi�cation. Section 4 develops the asymp-
totic theory, whereas Section 5 reports a Monte Carlo experiment showing that the
new test possesses satisfactory �nite-sample properties. Section 6 concludes. Finally
an Appendix contains formulae for the variances and the proof of the main theorem.

2 GMM and Global Identi�cation Failure

The model we consider is de�ned by a set of conditional moment restrictions

E[h(Yt; �0) j Xt] = 0 almost surely (a.s.); at some unique �0 2 � � Rp; (1)

for a measurable moment function h : Rdy � � �! R
dh that is assumed to be

known up-to the �nite dimensional parameter �0. For the sake of exposition we
only consider the case dh = 1; the extension of our methods to the case dh > 1
being straightforward. The vector-valued stochastic process fZt � (Y 0

t ; X
0
t)
0gt2Z is

a strictly stationary and ergodic time series. Henceforth, jAj and A0 denote the
Euclidean norm jAj � (tr(A0A))1=2 and the transpose of a matrix A; respectively.
The conditioning variable Xt takes values in R

dx and can contain lagged values of
Yt and other exogenous variables. Throughout the paper we shall assume that the
conditional moment (1) uniquely identi�es the parameter �0.

The standard unconditional GMM estimator for �0 is constructed as follows.
Given an r�1 vector of �instruments� a(Xt) with r � p, possibly depending on �0, the
unconditional GMM estimator �̂GMM is de�ned as any solution of the optimization
problem

min
�2�

Qn(�) �
 
1

n

nX
t=1

f(Zt; �)

!0
Wn

 
1

n

nX
t=1

f(Zt; �)

!
; (2)

where f(Zt; �) � a(Xt)h(Yt; �) and Wn is a possibly stochastic matrix satisfying
some mild conditions; see Assumption A3 below. The critical assumption in the
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unconditional GMM is that the identi�ed set �I � f� 2 � : E[f(Zt; �)] = 0g by the
unconditional moment restrictions is a singleton �I = f�0g, i.e.,

E[f(Zt; �)] = 0 =) � = �0: (3)

This is the global identi�cation assumption of GMM. This assumption was questioned
by DL. They provided some examples where (3) is not satis�ed. The following
example generalizes in an important way one of the examples of DL.

Example 1 (DL's Example 2): Assume that (Y;X) satis�es E[Y jX] = �20X+�0X
2

at �0 = 5=4. For the unconditional moment restriction E[a(X)(Y � �2X� �X2)] = 0
with a scalar instrument a(X), it can be shown that �I = f�0; �1g, where �1 =
(�E[X2a(X)]=E[Xa(X)]) � �0. So, global identi�cation of �0 holds if and only
if E[a(X)a�(X)] = 0; where a�(X) = 2�0X + X2. This example contains three
important features. (i) Note that a�(X) is the optimal instrument of (1) pro-
vided V ar[Y jX] = 1. Hence, the use of the optimal instrument (i.e. a(X) =
a�(X)) leads to global identi�cation failure, regardless of the distribution of X.
(ii) The identi�cation failure for the instrument a(X) = a�(X) occurs even if the
rank condition E[a�(X)2] > 0 is satis�ed. The full rank condition in GMM does
not imply nor is implied by global identi�cation. (iii) When the feasible opti-
mal instrument a(X) = 2�X + X2 is employed, the moment conditions becomes
E[(2�X + X2)(Y � �2X � �X2)] = 0. In this case, it can be proved that the pa-
rameter is not identi�ed when X � N(1; �2), provided �2 < 2:0163. In particular, if
�2 = 1, the identi�ed set is �I = f5=4;�5=4;�3g. �

The previous example illustrates the identi�cation problem of the unconditional
GMM, but is this a pathological example or is the rule rather than the exception?
The following theorem complements the examples given in DL and con�rms our
intuition that the problem is quite general.

Theorem 1: A necessary and su�cient condition of E[f(Zt; �1)] = 0 with �1 6= �0
for some distribution of Zt with support Z in a �xed measurable space is

0 2 R �
(

nX
i=1

pif(zi; �1); zi 2 Z;
nX
i=1

pi = 1; pi � 0; n 2 N
)
:

Proof of Theorem 1: By Lemma 3 in Chamberlain (1987) we can assume without
loss of generality that the distribution of Zt has a �nite support on Z: Thus, the
proof follows from the de�nition of R. �
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Related results to Theorem 1 are available in the mathematical literature. Most
notably, Riesz (1911) �rst proved Theorem 1 for univariate and bounded Zt; see also
Theorem 3.4 in Krein and Nudelman (1977). Recently, in his Theorem 1, Georgiou
(2005) proved Theorem 1 here under the assumption that Z is a closed interval in
R
dy � Rdx . The proof in Georgiou (2005) clearly depends on the latter assumption

and is much more cumbersome than the one given here.
To circumvent the identi�cation problem of the unconditional GMM, DL pro-

posed a consistent estimator based on a continuum number of unconditional moment
restrictions that are equivalent to the original conditional moment restrictions (1),
and hence preserve the identi�cation of �0: This DL estimator plays a crucial role in
our arguments and is introduced in the next section.

3 Test for Identi�cation

This section formally introduces our null and alternative hypotheses and the test
statistic for global identi�cation of the unconditional moment restrictions implied
from the conditional ones. Let P0 be the true unknown (joint) probability measure
of Zt, andM be the set of all possible measures for Zt consistent with Assumptions
A2 and A3 below. De�ne the subset of measures which are compatible with the
conditional moment restrictions (1) as

Pc =

�
P 2M :

�
h(y; �0)dPY jX=x = 0 a.s at some unique �0 2 �

�
;

where PY jX=x is the conditional probability measure of Yt given Xt = x. On the
other hand, the subset of measures where the parameter value �0, identi�ed from
(1), is also globally identi�ed from the unconditional moments is de�ned as

Pu =

�
P 2 Pc :

�
f(z; �)dP = 0 only at � = �0

�
:

Based on the above notation, our testing problem is written as

H0 : P0 2 Pu; HA : P0 2 Pc n Pu: (4)

Note that the correct speci�cation of the conditional moment restriction (1) is al-
ways maintained in our testing problem.9 Several test statistics are available in

9If the conditional model is misspeci�ed but DL's population objective function is uniquely
minimized, say at ��, then it can be shown that all our theory goes through provided we replace �0
with �� and use some adequate asymptotic variance estimator. Details are omitted to save space.
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the literature for the correct speci�cation hypothesis, i.e., P0 2 Pc, such as Bierens
(1982).

We now introduce our identi�cation test based on the following intuition. Under
the null hypothesis H0, it holds that �I = f�0g and the unconditional GMM estima-
tor �̂GMM is consistent for �0 under some regularity conditions; under the alternative
hypothesis H1, the identi�ed set �I contains elements di�erent from �0 and �̂GMM

is typically inconsistent. On the other hand there are estimators that are consistent
for �0 under both the null and alternative hypotheses, which can provide a basis
for a Hausman-type test statistic. To construct such an estimator there are at least
two available possibilities: one based on unknown instruments that lead to unique
identi�cation, for instance a(X) = E[h(Y; �)jX], and another based on the char-
acterization of the conditional moment (1) by an in�nite number of unconditional
moments,10

E[h(Yt; �0) j Xt] = 0 a.s.() H(x; �0) � E[h(Yt; �0)1(Xt � x)] = 0 a.s. x 2 Rdx ;

see Billingsley (1995, Theorem 16.10iii). In other words, �0 is the unique solution of
the minimization problem

min
�2�

�

Rdx

jH(x; �)j2 dFX(x);

where FX is the cumulative distribution function of Xt. This suggests the following
minimum-distance estimator proposed in DL

�̂C = argmin
�2�

�

Rdx

jHn(x; �)j2 dFn;X(x);

where Hn(x; �) = n�1=2
Pn

t=1 h (Yt; �) 1(Xt � x), and Fn;X is the empirical distri-
bution function of fXtgnt=1: For computational purposes it is better to write the

10This characterization generally holds for the unconditional moments in the form of
E[h(Yt; �0)w(Xt; x)] = 0 a.s. x 2 � � Rq, where w(�; x) is a suitable parametric family of functions;
see Stinchcombe and White (1998), Bierens and Ploberger (1997) and Escanciano (2006b) for ex-
amples of � and w. To simplify the exposition, we follow DL and choose w(Xt; x) = 1(Xt � x),
but it must be stressed that all the theory that follows holds with other choices of w(Xt; x) as well.
For practical reasons, when dx is moderate or large (say > 3 for commonly used sample sizes) it
is better to use other weighting functions di�erent from w(Xt; x) = 1(Xt � x): The reason is that
in a given sample it could be the case that most of the indicators 1(Xt � x) are zero when x is
evaluated at the sample. Alternative weighting functions such as those proposed in Bierens (1982)
and Escanciano (2006a) solve this practical de�ciency.
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above objective function by a quadratic form of �errors�. If we denote h(�) �
(h(Y1; �); :::; h(Yn; �))

0 and P � (1(Xt � Xs)t;s), then DL's estimator can be sim-
ply computed as

�̂C = argmin
�2�

h(�)0(P 0P )h(�).

Under certain regularity conditions DL's estimator �̂C is strongly consistent and
asymptotically normal under both the null and alternative hypotheses in (4). Since
the unconditional GMM estimator �̂GMM is consistent and asymptotically normal
only under the null H0, this suggests to construct a Hausman-type test statistic for
H0 based on the contrast between �̂C and �̂GMM , i.e.,

Tn(�̂GMM) � n
�
�̂C � �̂GMM

�0
��1n

�
�̂C � �̂GMM

�
; (5)

where �n is a consistent estimator for the asymptotic variance-covariance matrix �
of
p
n(�̂C � �̂GMM), and �n and � are both de�ned in Appendix A. However, since

under the alternative HA we may expect many solutions to the optimization problem
(2), the test statistic Tn(�̂GMM) may not be uniquely de�ned even in �nite samples.
Example 1 illustrates this issue.

Example 1 (Cont.): There are two solutions to the estimating function
n�1

Pn
t=1 a(Xt)(Yt � �2Xt � �X2

t ) = 0, namely

�n�1Pn
t=1X

2
t a(Xt)�

q
(�n�1Pn

t=1X
2
t a(Xt))

2
+ 4 (n�1

Pn
t=1Xta(Xt)) (n�1

Pn
t=1 Yta(Xt))

2n�1
Pn

t=1Xta(Xt)
:

Denote by �̂GMM;+ and �̂GMM;� these two solutions. Associated to these two so-

lutions we have two possible values for the test statistic (5), i.e., Tn(�̂GMM;+) and

Tn(�̂GMM;�).

To solve the di�culty of de�ning the test statistic when there is more than one global
minimum in (2), we propose a modi�ed test statistic based on the Hausdor� distance

Tn � max
�2�̂GMM

Tn(�) = max
�2�̂GMM

n
�
�̂C � �

�0
��1n

�
�̂C � �

�
;

where �̂GMM is a suitable estimator of the identi�ed set �I . In particular cases such
as Example 1, there is a natural choice for �̂GMM ; namely �̂GMM = f�̂GMM;+; �̂GMM;+g.
In general, we suggest to construct �̂GMM using the following algorithm; see Veall
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(1990) for a related method. First we generate m 2 N random independent initial
conditions from a random variable taking values in � and compute the resulting m
minima Qn(�̂

(j)
GMM) for j = 1; : : : ;m, where Qn(�) is the GMM objective function in

(2). We de�ne �̂GMM as the set of values �̂
(j)
GMM satisfying

�̂GMM = f�̂(j)GMM : Qn(�̂
(j)
GMM) � min

1�j�m
Qn(�̂

(j)
GMM) + ang; (6)

where an = 1=(n log(n)). For this choice of an (or indeed any other one satisfying
an = o(1=n)) any member of �̂GMM is characterized by the same pointwise asymp-
totic distribution under the null hypothesis H0; see Theorem 5.23 in van der Vaart
(2000). This is the key point of the paper because it implies that under H0 the
asymptotic behavior of the statistic Tn can be studied using standard methods.

On the other hand under the alternative hypothesis HA, no general pointwise
asymptotic theory is available; �̂GMM is not a consistent estimator for �I and stan-
dard methods cannot be applied (see for example Chernozhukov, Hong and Tamer
(2007)). As a result we are unable to fully characterize the asymptotic power proper-
ties of our test for general alternatives. We can however show consistency of the test
under a general class of unidenti�ed models that includes weak identi�cation alterna-
tives. This is because in this case the asymptotic properties of the GMM estimators
(and hence those of �̂GMM) are well-known; see Stock and Wright (2000). The sim-
ulations of Section 4 below suggest that the �nite sample power of the proposed test
is high for small and moderate sample sizes.

4 Asymptotic Theory

4.1 Asymptotic Null Distribution

This section investigates the asymptotic null distribution of the test statistic Tn. Let
Ft � �(Yt�1; Xt; :::) be the �-�eld generated by the information set obtained up to
time t, and Gt(x) � E[E[h(Yt; �0)

2 j Xt]1(Xt � x)jFt�1]. We impose the following
assumptions.

Assumption A1: There exists a unique �0 2 � such that E[h(Yt; �0)jXt] = 0 a.s.

Assumption A2: (i) f(Y 0
t ; X

0
t)
0gt2Z is a strictly stationary and ergodic process with

an absolutely continuous distribution function FX for Xt; (ii) E[h(Yt; �0)jFt] =
E[h(Yt; �0)jXt] a.s.; (iii) h : Rdy � � �! R is continuous in � a.s. and is con-
tinuously di�erentiable in a neighborhood N of �0, E[sup�2� jh(Yt; �)j] < 1, and
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E[sup�2N j(@=@�0)h(Yt; �)j] < 1; (iv) � is compact and �0 belongs to the interior
of �; (v) the matrix �GG0 ; given in Appendix A, is nonsingular; (vi) there ex-
ist a constant s > 0 and stationary sequence fCtgt2Z with E jCtj < 1 such that
jGt(x1)�Gt(x2)j � Ct jx1 � x2js for each x1; x2 2 Rdx .

Assumption A3: f : Rdy+dx �� �! R
r is continuous in � a.s. and is continuously

di�erentiable in N , E[sup�2� jf(Zt; �)j] < 1, and E[sup�2N j(@=@�0)f(Zt; �)j] < 1.
Wn !P W; with a symmetric positive de�nite matrix W . �0W�, given in Appendix
A, is nonsingular.

Assumption A4: The matrix � is positive de�nite and the estimator �n !P �:

Assumption A1 imposes identi�cation of �0 in the conditional moment restrictions.
Assumption A2 guarantees consistency and asymptotic normality of the DL estimator
�̂C . Our Assumption A2 is in general weaker than conditions assumed in DL and
related literature. For example, DL assumed E[jh(Yt; �0)j4 jXj1+�] < 1, whereas
we only require the second-order moments. Also, DL required the density of Xt

conditioning on Ft�1 to be bounded and continuous. By Hölder's inequality, this
latter assumption implies our Assumption A2(c) with s1 = �=(1 + �) for some � >

0; provided E[jh(Yt; �0)j2(1+�)] < 1: Finally the smoothness condition for h can
be relaxed at the cost of longer proofs; see Escanciano (2009). Assumption A3 is
standard in the literature of GMM. Assumption A4 involves the variance matrix �
used in the construction of the test. Its expression and a consistent estimator can be
found in Appendix A.
Under these assumptions, we obtain the asymptotic null distribution of our global
identi�cation test statistic Tn.

Theorem 2: Suppose Assumptions A1-A4 hold. Under H0 , the test statistic Tn
with �̂GMM in (6) satis�es

Tn !d �
2
p:

The proof of Theorem 2 can be found in Appendix B.

4.2 Power Properties

This section shows that the proposed test is consistent under a high-level condition
that is satis�ed for a general class of unidenti�ed or weakly identi�ed unconditional
moment restriction models, including weak identi�ed alternatives as de�ned by Stock
and Wright (2000).
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Assumption A5: For �̂GMM de�ned in (6), it holds limn!1max�2�̂GMM

p
n j� � �0j =

1 a.s.

Theorem 3: Suppose Assumptions A1-A5 hold. Then Tn !P 1.

The proof of Theorem 3 is straightforward, and hence it is omitted. We now verify
that Assumption A5 holds for weakly identi�ed unconditional moment restriction
models in the sense of Stock and Wright (2000). Assume that there exists a measur-
able function m satisfying m(�0) = 0 and

E

"
1

n

nX
t=1

f(Zt; �)

#
=
m(�)p

n
;

for each n 2 N and � 2 �. In this case the asymptotic distribution of the DL
estimator �̂C does not change under Assumptions A1 and A2, whereas a simple
extension of the results in Stock and Wright (2000, Theorem 1) yields that any
member of �̂GMM converges in distribution to a stochastic limit that is di�erent
from �0 with probability one. Hence, under the conditions in Stock and Wright
(2000) we conclude that Assumption A5 holds, and our test is consistent against
weak identi�cation alternatives.

For general alternatives the power of our test has to be analyzed on a case-by-case
basis, given that there is no general pointwise limit distribution theory for estimation
under lack of identi�cation. For instance, in Example 1 we can prove Assumption
A5 by simple arguments.

Example 1 (Cont.): Suppose that a(X) is such that E[a(X)a�(X)] 6= 0, so the
unconditional moment restriction E[a(X)(Y � �2X� �X2)] = 0 does not identify �0.
It can be shown that �̂GMM;+ and �̂GMM;� are consistent and asymptotically normal

for �1 and �0; respectively. If we de�ne �̂GMM � f�̂GMM;�; �̂GMM;+g, then by �1 6= �0,
we obtain

lim
n!1

max
�2�̂GMM

p
n j� � �0j = lim

n!1
max

np
n
����̂GMM;� � �0

��� ;pn ����̂GMM;+ � �0

���o =1 a.s.

Thus, our test is consistent for this example. Note that in this example, there exists a
consistent and asymptotically normal estimator for �0 even under identi�cation fail-
ure, namely �̂GMM;�. Hence, this example nicely illustrates that taking the Hausdor�
distance is crucial to make our test consistent.
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5 Monte Carlo Simulations

In this section we investigate the �nite-sample performance of the proposed test
using some Monte Carlo experiments. First we consider Example 1 using feasible
instruments and several marginal distributions for the conditioning variable X. This
example is useful because it illustrates a simple situation in which existing tests for
identi�cation either cannot be used or could potentially lead to misleading conclu-
sions. The model is

Y = �20X + �0X
2 + ";

where " is distributed as N(0; 1) independently of X; and �0 = 5=4. For the uncon-
ditional GMM, we consider the unconditional moment restriction using the optimal
instrument a�(X; �) = 2�X +X2, i.e.,

E[(2�X +X2)(Y � �2X � �X2)] = 0: (7)

As in DL we consider four possible distributions for X, namely X s N(0; 1), X s

N(1; 3), X s N(1; 1), and X s N(1; 2). In the �rst two cases, the parameter �0
is identi�ed and GMM provides consistent estimates. In the third and fourth cases
there are, respectively, three and two solutions to the unconditional moments so that
(7) does not globally identify �0 and GMM is inconsistent.

To approximate �̂GMM as given in (6) we generate m = 20 random independent
initial conditions from N(0; 1). Table I reports the rejection probabilities (RP) for
the sample sizes n = 50, 100, 200, and 500 at the 1, 5 and 10 percent nominal level
using 1000 Monte Carlo replications.

Table I: RP for DL's Example 2

Size Power
X n 1% 5% 10% X 1% 5% 10%

N(0; 1) 50 0.032 0.049 0.081 N(1; 2) 0.642 0.644 0.662
100 0.016 0.038 0.077 0.631 0.637 0.662
200 0.013 0.043 0.087 0.573 0.589 0.614
500 0.006 0.045 0.105 0.577 0.591 0.609

N(1; 3) 50 0.178 0.194 0.221 N(1; 1) 0.978 0.979 0.980
100 0.088 0.105 0.148 0.978 0.998 0.998
200 0.039 0.071 0.121 0.999 0.999 0.999
500 0.009 0.048 0.101 1.000 1.000 1.000

The size performance of our test is satisfactory for both DGPs in the null hy-
pothesis, although there are some size distortions when X s N(1; 3) for n = 50.
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Table I also shows that the power performance of our test is satisfactory. The �nite
sample power against the alternative with X s N(1; 1) is high already for n = 50.
For the alternative with X s N(1; 2) the test has a satisfactory power, but it is lower
than for X s N(1; 1), and it does not increase with the sample size. This result is
consistent with the fact that the alternative corresponding to X s N(1; 2) is very
close to the identi�cation region �2 < 2:0163.

Before we consider the second example it should be noted that neither of Wright's
(2003) and Wright's (2009) tests can be used in this example because the full rank
condition holds regardless of the identi�cation and because the original model is not
overidenti�ed. Also Inoue and Rossi's (2008) test could lead to a misleading con-
clusion as the following example suggests. Suppose that X s N(1; 3) and that a
researcher applying their test chooses the GMM estimator with the optimal instru-
ment assuming homoskedasticity and the GMM estimator with a constant instru-
ment. The former identi�es the true parameter, however the latter does not by the
results of the example. Indeed unreported simulations show that in this case their
test rejects the null hypothesis of identi�cation with probability one when n = 200.
Interestingly the proposed test would also be useful in this context because it would
allow to �nd out which estimator is causing the rejection of Inoue and Rossi's null
hypothesis.

In the second experiment, we investigate the �nite-sample performance of our
test in a consumption capital asset pricing model (CCAPM) with a constant rela-
tive risk aversion preferences model that has been used in much of the literature on
GMM identi�cation; see e.g. Stock and Wright (2000), Wright (2003), Inoue and
Rossi (2008), and Wright (2009). The CCAPM data are generated using Tauchen
and Hussey's (1991) method which involves �tting a 16-state Markov chain to con-
sumption and dividend growth calibrated so as to approximate the �rst-order vector
autoregression 2

4 log
�

Ct
Ct�1

�
log
�

Dt

Dt�1

�
3
5 = �+ �

2
4 log

�
Ct�1

Ct�2

�
log
�
Dt�1

Dt�2

�
3
5+

�
uct
udt

�
;

where Ct is the consumption, Dt is the dividend � is a 2 � 1 vector, � is a 2 � 2
matrix of constants, and (uct; udt)

0 � N (0;�). Assets prices are then generated so
that they satisfy the stochastic Euler equation

E[�Rt+1

�
Ct+1

Ct

��

� 1 j Ft] = 0 a:s:;

where � is the discount factor, Rt is the gross stock return, and 
 is the coe�cient
of relative risk aversion. Following Inoue and Rossi (2008), we use the instruments
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Xt = (1; Rt; Ct=Ct�1)0, and consider �ve di�erent combinations of the parameters
� = (�; 
)0, �, �, and �, as listed in Table II.

Table II: parameter values for CCAPM

Model � � � � 


SI

�
0
0

� � �0:5 0:1
0:1 �0:5

� �
0:01 0:005
0:005 0:01

�
0.97 1.3

PI1

�
0:018
0:013

� �
0 0
0 0

� �
0:0012 0:0017
0:0017 0:0146

�
0.97 1.3

PI2

�
0:018
0:013

� �
0 0
0 0

� �
0:0012 0:0017
0:0017 0:0146

�
1.139 13.7

WI1

�
0:021
0:004

� q
90
n

� �0:161 0:017
0:414 0:117

� �
0:0012 0:0017
0:0017 0:0146

�
0.97 1.3

WI2

�
0:021
0:004

� q
90
n

� �0:161 0:017
0:414 0:117

� �
0:0012 0:0017
0:0017 0:0146

�
1.139 13.7

The �rst one (SI) is for the strongly identi�ed case; the second and third ones (PI1
and PI2) are for two partially identi�ed cases where the instruments are independent
of Rt+1; Ct+1=Ct; the last two ones (WI1 and WI2) are for two weakly identi�ed
cases; see Inoue and Rossi (2008) for further details. Table III reports the rejection
probabilities of the proposed test and those of Wright's (2003) test for his null of
lack of identi�cation.

Table III: RP of the proposed test and Wright's (2003)

� = 0:01 � = 0:05 � = 0:10
Model n Wright Proposed Wright Proposed Wright Proposed
SI 50 0.660 0.051 0.748 0.101 0.795 0.171

200 0.983 0.016 0.987 0.061 0.988 0.116
PI1 50 0.075 0.186 0.142 0.224 0.202 0.284

200 0.036 0.292 0.097 0.334 0.141 0.374
PI2 50 0.702 0.203 0.751 0.240 0.778 0.282

200 0.530 0.303 0.606 0.352 0.657 0.394
WI1 50 0.220 0.538 0.330 0.729 0.389 0.810

200 0.219 0.781 0.337 0.869 0.407 0.914
WI2 50 0.220 0.756 0.511 0.804 0.533 0.829

200 0.219 0.826 0.281 0.874 0.322 0.892
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In the SI case both tests perform well. The proposed test is slightly oversized for
n = 50 but its accuracy improves as the sample size increases. In the two PI cases
the proposed test has some power for n = 50, but it increases with the sample size.
On the other hand Wright's (2003) test performs rather di�erently for the two cases:
it is slightly oversized for PI1 but it is very oversized for the second case. Finally the
proposed test has good power in both WI cases even for n = 50.

6 Conclusions

There are growing evidences that many unconditional moment restriction models
used in empirical economics are potentially not (or weakly) identi�ed. In this paper
we propose a Hausman-type test statistic that can be used to test the null hypothesis
of identi�cation for the unconditional moment restrictions. Our test has a number
of appealing properties that we summarize as follows: it is computationally sim-
ple, does not require any choice of tuning parameters and has a simple chi-squared
limiting distribution. Furthermore it can be applied to dependent data and to just
identi�ed models as well. The test is consistent against weak identi�cation alterna-
tives, although we are not able to fully characterize its asymptotic properties under
a general alternative of no identi�cation. Monte Carlo simulations suggest that the
proposed test has good �nite sample size and power properties under both the alter-
native of lack of identi�cation and weak identi�cation. These results illustrate the
general applicability and usefulness of the proposed test.

7 Appendix

7.1 Appendix A: Asymptotic Variance and Its Estimator

De�ne h�(Yt; �) � (@=@�0)h(Yt; �), f�(Zt; �) � (@=@�0)f(Zt; �), � � E[f�(Zt; �0)], S �
E[f(Zt; �0)f(Zt; �0)

0], G(x; �) � E[h�(Yt; �)1(Xt � x)], J(x) := E[G(Xt; �)1(x �
Xt)], and �GG0 � �

G(x; �0)G(x; �0)
0dFX(x). Let Ip be the p� p identity matrix and

~I � [I;�I] be a p� 2p matrix. Then, the variance � is de�ned as

� � ~IV AV 0 ~I 0;

where V �
�
��1GG0 0

0 (�0W�)�1

�
and

A �
�

E[h2 (Yt; �0) J(Xt)J(Xt)
0] E[J(Xt)h(Yt; �0)f(Zt; �0)

0]W�
(E[J(Xt)h(Yt; �0)f(Zt; �0)

0]W�)0 �0WSW�

�
:
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Let �n � n�1
Pn

t=1 f�(Zt; �̂C), Sn � n�1
Pn

t=1 f(Zt; �̂C)f(Zt; �̂C)
0,

Gn(x; �̂C) � n�1
Pn

t=1 h�(Yt; �̂C)1(Xt � x), Jn(x) � n�1
Pn

t=1Gn(Xt; �̂C)1(x � Xt),

and �GG0;n = n�1
Pn

t=1Gn(Xt; �̂C)Gn(Xt; �̂C)
0. A consistent estimator of � is de�ned

as
�n � ~IVnAnV

0
n
~I 0; (8)

where Vn and An replace population expectations with sample counterparts and make
use of the previous quantities in a routine fashion. The consistency of �n follows
easily under Assumptions A1-A3.

7.2 Appendix B: Proof of Theorem 2

By standard arguments, see e.g. Theorem 1 in DL, Assumptions A1 and A2 imply
that �̂C !P �0, and likewise Assumption A3 implies �̂GMM !P �0 under H0. By the
de�nition of �̂GMM , we can apply Theorem 5.23 of van der Vaart (2000) to �̂GMM ,
and hence the �rst-order conditions of the estimators imply that for su�ciently large
n,

� p
n(�̂C � �0)p

n(�̂GMM � �0)

�
= �

�
��11n 0
0 ��12n

�264
1p
n

nP
t=1

Gn(Xt; �̂C)Hn(Xt; �0)

~�0nWn
1p
n

nP
t=1

f(Zt; �0)

3
75 ;

where �1n � 1p
n

nP
t=1

Gn(Xt; �̂C)Gn(Xt; ��c), �2n � ~�0nWn
��n, ~�n � 1

n

nP
t=1

f�(Zt; �̂GMM),

��n � 1
n

nP
t=1

f�(Zt; ��GMM), and ��c and ��GMM are mean values. The uniform law of large

numbers of Ranga Rao (1962) and standard arguments imply that ~�n; ��n !P �,

Gn (x; �)!a:s: G (x; �) ; uniformly in (x; �) ;

and Vn !P V .
By Theorem A1 in Delgado and Escanciano (2007), see also Theorem 1 in Escan-

ciano (2007), it follows that Hn (x; �0) is asymptotically stochastic equicontinuous
in x with respect to the pseudo-metric d(x1; x2) � jFX(x1)� FX(x2)j. Hence, from
Lemma 3.1 in Chang (1990) we conclude that

1p
n

nX
t=1

Gn(Xt; �̂C)Hn(Xt; �0) =
1p
n

nX
t=1

h(Yt; �0)J(Xt) + oP (1):
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Hence, the theorem follows from a straightforward application of a multivariate cen-
tral limit theorem of strictly stationary and ergodic martingales, see e.g. Billingsley
(1961), applied to the vector

2
64

1p
n

nP
t=1

h(Yt; �0)J(Xt)

1p
n

nP
t=1

f(Zt; �0)

3
75 :

The conclusion follows by the continuous mapping theorem. �
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