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Abstract

This paper studies moderate deviation behaviors of the generalized method of moments and
generalized empirical likelihood estimators for generalized estimating equations, where the number
of equations can be larger than the number of unknown parameters. We consider two cases for the
data generating probability measure: the model assumption and local contaminations or deviations
from the model assumption. For both cases, we characterize the first-order terms of the moderate
deviation error probabilities of these estimators. Our moderate deviation analysis complements
the existing literature of the local asymptotic analysis and misspecification analysis for estimating
equations, and is useful to evaluate power and robust properties of statistical tests for estimating
equations which typically involve some estimators for nuisance parameters.

1 Introduction

This paper studies moderate deviation behaviors of the generalized method of moments (GMM) and

generalized empirical likelihood (GEL) estimators for generalized estimating equations, where the num-

ber of equations can be larger than the number of unknown parameters.1 We consider two cases for

the data generating probability measure: the model assumption and local contaminations or deviations

from the model assumption. For the model assumption or correct specification case, our moderate de-

viation analysis extends the conventional local asymptotic analysis for the GMM and GEL estimators

focusing on n−1/2-neighborhoods (see, Hall (2005) and Newey and Smith (2004)) toward moderate de-

viation regions focusing on cn-neighborhoods with cn → 0 but cnn1/2 →∞, where n is the sample size.
∗E-mail: taisuke.otsu@yale.edu. Website: http://cowles.econ.yale.edu/faculty/otsu.htm. Address: P.O. Box 208281,

New Haven, CT 06520-8281, USA. Phone: +1-203-432-9771. Fax: +1-203-432-6167.
†Financial support from the National Science Foundation (SES-0720961) is gratefully acknowledged.
1See, e.g., Imbens (2002) and Kitamura (2007) for a review on the GMM and GEL approaches on generalized estimating

equations particularly in econometrics.
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For the local contamination or local misspecification case, our moderate deviation analysis extends the

conventional misspecification analysis for estimating equations focusing on globally misspecified models

(see, White (1994)) to locally misspecified models drifting to the model assumption as n → ∞. For

the model assumption and local contamination cases, we characterize the first-order terms of the mod-

erate deviation error probabilities of the GMM and GEL estimators. Our moderate deviation analysis

complements the existing literature of the local asymptotic analysis and misspecification analysis, and

is useful to evaluate power and robust properties of statistical tests for estimating equations which

typically involve some estimators for nuisance parameters.

Since Godambe (1960) at least, there are numerous empirical applications and theoretical studies

on estimating equations; see, e.g., Hardin and Hilbe (2002) and Hall (2005) for a review. If the number

of estimating equations is identical to the number of unknown parameters (called just-identification),

we can apply the conventional method of moments estimator for point estimation, and its large and

moderate deviation behaviors have been studied in the literature (e.g., Sievers (1978), Kallenberg (1983),

Kester and Kallenberg (1986), Jensen and Wood (1998), Inglot and Kallenberg (2003), and Arcones

(2006)). However, particularly in econometrics and longitudinal data analysis, it is often the case that

the number of estimating equations is larger than the number of unknown parameters (called over-

identification). In this case the method of moments is not directly applicable and several estimation

methods have been proposed in the literature, such as the GMM (Hansen (1982)) and GEL (Smith (1997)

and Newey and Smith (2004)) which includes empirical likelihood (Owen (1988) and Qin and Lawless

(1994)), Euclidean likelihood (Hansen, Heaton and Yaron (1996)), and exponential tilting (Kitamura and

Stutzer (1997) and Imbens, Spady and Johnson (1998)) as special cases. See also Imbens (1997). These

papers mostly focused on the local asymptotic properties of the GMM or GEL estimator under the model

assumption, i.e., the local error probability P
(√

n
∣∣∣θ̂ − θ0

∣∣∣ ≥ z) for an estimator θ̂ of θ0 with z > 0 and

a correctly specified P . On the other hand, Otsu (2009) has investigated the large deviation properties

of the GMM and GEL estimators, i.e., the large deviation error probability Pn
(√

n
∣∣∣θ̂ − θ0

∣∣∣ ≥ √nz) for

a locally contaminated Pn. Otsu (2009) showed that under some regularity conditions the GMM and

GEL estimators have exponentially small large deviation error probabilities. The focus of this paper

is on the moderate deviation error probability Pn
(√

n
∣∣∣θ̂ − θ0

∣∣∣ ≥ zn) with zn → ∞ but zn = o
(
n1/2

)
.

Compared to the literature on the method of moments estimator for the just-identified case, to our best

knowledge, there is no theoretical work on moderate deviation analysis of the GMM and GEL estimators

for the over-identified case.

The technical contribution of this paper is to derive the first-order terms of the moderate deviation

error probabilities of the GMM and GEL estimators for over-identified estimating equations. The

moderate deviation results are derived under two setups for the data generating probability measure:

the model assumption and local contaminations. These setups are adopted by Inglot and Kallenberg

(2003) who derived moderate deviation results for some minimum contrast estimators. Our results

can be considered as extensions of Inglot and Kallenberg (2003) to over-identified estimating equations
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estimated by the GMM or GEL. It should be noted that although our results are extensions of the

previous results to the over-identified case, theoretical arguments for these extensions are not trivial.

The GMM estimator is defined as a minimizer of a quadratic form of the sample estimating equations

and the GEL estimator is defined as a minimax solution of the GEL criterion function. Therefore,

existing technical tools to analyze moderate deviation errors are not directly applicable to our context.

As the literature suggests (e.g., Kallenberg (1983), Kallenberg (1999), and Inglot and Kallenberg

(2003)), there are several reasons to investigate moderate deviation behaviors of estimators under the

model assumption or local contaminations. First, moderate deviation analysis is a fundamental tool

to assess the quality of estimators and plays a complementary role to the local asymptotic and large

deviation analyses. Second, moderate deviation results are useful to evaluate power and robust prop-

erties of statistical tests which involve some estimators for nuisance parameters. In our context, the

validity of the over-identified estimating equations is checked by the minimized GMM or GEL objective

function, and parameter hypotheses are typically checked by likelihood ratio-type statistics using the

GMM or GEL objective function. Both test statistics involve parameter estimators, and our moderate

deviation results can be applied to evaluate power or robust properties of these tests when the data

are generated from locally contaminated or misspecified measures. Third, moderate deviation analysis

can provide some optimality criteria to evaluate statistical estimators or tests. For example, this paper

shows asymptotic optimality results in a moderate deviation sense for the two-step GMM and GEL

estimators over the GMM estimators with non-optimal weights; see Remarks 3.8 and 3.11 below.

This paper is organized as follows. Section 2 introduces our basic setup. Section 3 presents main

results. Section 4 concludes. We use the following notation. Let |A| = trace (A′A) be the Euclidean

norm of a scalar, vector, or matrix A, Bc, int (B), and cl (B) be the complement, interior, and closure

of a set B, respectively, C and c be generic positive constants that should be large and small enough,

respectively, and “a.e.” means “almost every”.

2 Setup

Suppose we observe a random sample (X1n, . . . , Xnn) of size n with support X ⊆ Rdx . We wish to

estimate a vector of unknown parameters θ0 ∈ Θ ⊆ Rdθ defined by the generalized estimating equations

E [g (X, θ0)] =
ˆ
g (x, θ0) dP (x) = 0, (1)

where g : X×Θ→ Rdg is a vector of measurable functions with dg ≥ dθ. Except for the functional form
of the estimating function g, we do not impose any parametric restriction on the distributional form

of P . When dg = dθ (i.e., θ0 is just-identified by the estimating equations), we can apply the method

of moments to estimate θ0 and there are several existing results on moderate deviation behaviors of

the method of moments estimator (e.g., Kallenberg (1983) and Inglot and Kallenberg (2003)). On

the other hand, when dg > dθ (i.e., θ0 is over-identified by the estimating equations), the method of
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moments estimator does not exist in general and we typically employ the GMM or GEL estimator

or their variants to estimate θ0. Although our results apply to the just-identified case as well, where

the GMM and GEL estimators coincide with the method of moments estimator, this paper mainly

focuses on the over-identified case. There are numerous empirical examples and theoretical studies of

over-identified estimating equations. However, to our best knowledge, there is no paper which studies

moderate deviation properties of the GMM or GEL estimator. This paper studies moderate deviation

behaviors of these estimators under the model assumption (1) or local contaminations from the model

assumption. More specifically, we consider the following data generating measure for the triangular

array {(X1n, . . . , Xnn)}n∈N.

Assumption P.

(i) For each n ∈ N, (X1n, . . . , Xnn) is an independently and identically distributed (i.i.d.) sample from

the probability measure Pn having the density dPn
dP with respect to P satisfying

dPn
dP

(x) = 1 + anAn (x) ,

where {an}n∈N is a sequence of constants satisfying an → 0 and An : X → R is a measurable

function satisfying

sup
n∈N

sup
x∈X
|An (x)| <∞,

ˆ
An (x) dP (x) = 0,

ˆ
An (x)2 dP (x) = 1. (2)

(ii) P is the probability measure under the model assumption and there exists a unique solution θ0 ∈
Θ ⊆ Rdθ for the estimating equations E [g (X, θ0)] =

´
g (x, θ0) dP (x) = 0.

Hereafter the mathematical expectations under P and Pn are denoted by E [·] and En [·], respectively.
Assumption P is an adapted version of Inglot and Kallenberg (2003, Assumption (A)) to the estimating

equation context. This setup allows two cases for the data generating measure Pn.

(a) Model assumption (an = 0): The data are generated from Pn = P and the estimating equations

En [g (X, θ0)] = 0 are satisfied.

(b) Local contamination (an 6= 0): The data are generated from Pn 6= P and the estimating equations

En [g (X, θ0)] = 0 may or may not be satisfied. However, since an → 0, the data generating

measure Pn converges to the model assumption measure P as the sample size increases.

Note that except for the convergence of an to zero and some boundedness conditions in (2), we do not

impose any additional restrictions on the way of deviations from the model assumption measure P . In

this sense, our treatment on the local contamination is nonparametric. Since the generalized estimating

equations are commonly applied to the case where the researcher does not have enough prior knowledge

on the parametric distributional form of data, this nonparametric treatment on the local contaminations

is suitable for our setup.
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This paper considers three popular estimators for the generalized estimating equations: (i) the GMM

estimator with some weight matrix, (ii) the optimally weighted two-step GMM estimator, and (iii) the

GEL estimator. To deal with the over-identified estimating equations, where the method of moments

estimator (a solution of 1
n

∑n
i=1 g (Xin, θ) = 0 with respect to θ) does not exist in general, the GMM

estimator with the dg × dg weight matrix Ŵ minimizes the quadratic form of the sample estimating

equations 1
n

∑n
i=1 g (Xin, θ), i.e.,

θ̂1 = arg min
θ∈Θ

(
1
n

n∑
i=1

g (Xin, θ)

)′
Ŵ

(
1
n

n∑
i=1

g (Xin, θ)

)
. (3)

It is known that under the model assumption, Pn = P , mild regularity conditions guarantee that the

GMM estimator θ̂1 is consistent for θ0 and asymptotically normal (see, e.g., Hall (2005)),

√
n
(
θ̂1 − θ0

)
d→ N (0, VW ) ,

where VW = (G′WG)−1G′WΩWG (G′WG)−1,

G = E

[
∂g (X, θ0)

∂θ′

]
, Ω = E

[
g (X, θ0) g (X, θ0)′

]
,

and W is the (probability) limit of Ŵ . The asymptotic variance VW depends on the limiting weight

matrix W and is minimized (in the positive semi-definite sense) when W = Ω−1. Although the optimal

weight Ω−1 is unknown, we can estimate it by using θ̂1 as a preliminary estimator, i.e.,

Ω̂−1 =

(
1
n

n∑
i=1

g
(
Xin, θ̂1

)
g
(
Xin, θ̂1

)′)−1

. (4)

By using the estimated optimal weight matrix Ω̂−1, the optimally weighted two-step GMM estimator is

defined as

θ̂2 = arg min
θ∈Θ

(
1
n

n∑
i=1

g (Xin, θ)

)′
Ω̂−1

(
1
n

n∑
i=1

g (Xin, θ)

)
. (5)

Under the model assumption, Pn = P , mild regularity conditions guarantee the weak consistency of

Ω̂−1 to Ω−1 and the asymptotic normality of θ̂2,

√
n
(
θ̂2 − θ0

)
d→ N

(
0,
(
G′Ω−1G

)−1
)
.

It is known that the two-step GMM estimator θ̂2 attains the semiparametric efficiency (or information)

bound under the model assumption (Chamberlain (1987) and Bickel et al. (1993)).

As an alternative class of estimators to the two-step GMM, we consider the GEL estimator:

θ̂3 = arg min
θ∈Θ

max
λ∈Λ

n∑
i=1

ρ
(
λ′g (Xin, θ)

)
. (6)
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In contrast to the two-step GMM estimator θ̂2, the GEL estimator does not require preliminary estima-

tion for Ω−1. Under suitable conditions this minimax problem can be interpreted as the dual problem

of the minimum empirical discrepancy problem (see, Newey and Smith (2004, Theorem 2.2)),

θ̂3 = arg min
θ∈Θ

min
{pi}ni=1

n∑
i=1

h (pi) , (7)

subject to
n∑
i=1

pi = 1,
n∑
i=1

pig (Xin, θ) = 0,

for some h. Thus, the GEL estimator θ̂3 can be interpreted as a constrained maximum likelihood

estimator by the nonparametric likelihood function
∑n

i=1 h (pi), which puts probability weights {pi}ni=1

on the observed points of {Xin}ni=1 subject to the estimating equation constraints
∑n

i=1 pig (Xin, θ) = 0.

Although the formulation in (7) is intuitive to understand the rationale of the GEL estimator, this

formulation is not practical because of the n-variable optimization problem for {pi}ni=1. We employ

the dual formula in (6) to define the GEL estimator, which is used in practice to compute the GEL

estimator.

To implement the GEL estimation, we need to specify the criterion function ρ (or h). The GEL

estimator contains several existing estimators for generalized estimating equations as special cases:

• Empirical likelihood: ρ (v) = log (1− v) and h (p) = − log p,

• Euclidean likelihood: ρ (v) = − (1 + v)2 /2 and h (p) = p2,

• Exponential tilting: ρ (v) = − exp (v) and h (p) = p log p,

• Cressie and Read (1984) divergence: ρ (v) = − (1+γv)(γ+1)/γ

1+γ and h (v) = pγ+1−1
γ(γ+1) for γ ∈ R.

Newey and Smith (2004) showed that for a general class of the criterion functions ρ or h, the GEL

estimator θ̂3 has the same asymptotic distribution as the optimally weighted two-step GMM estimator

θ̂2 under the model assumption Pn = P , i.e.,
√
n
(
θ̂3 − θ0

)
d→ N

(
0,
(
G′Ω−1G

)−1
)
. Furthermore,

Newey and Smith (2004) investigated higher-order properties of the GEL estimator under the model

assumption and found that the GEL estimator has better higher-order bias properties than the two-step

GMM estimator.

The above asymptotic normality results approximate the local error probabilities P
(√

n
∣∣∣θ̂j − θ0

∣∣∣ ≥ z)
for z > 0 and j = 1, 2, 3 based on the central limit theorems under the model assumption. On the other

hand, Otsu (2009) studied the large derivation error probabilities Pn
(√

n
∣∣∣θ̂j − θ0

∣∣∣ ≥ √nz) under Pn,

which allows local contaminations, and showed that under some regularity conditions the GMM and GEL

estimators have exponentially small large deviation error probabilities, i.e., Pn
(√

n
∣∣∣θ̂j − θ0

∣∣∣ ≥ √nz) ≤
Ce−cn for some C, c > 0. The purpose of this paper is to bridge these two asymptotic results by char-

acterizing the first-order terms of the moderate deviation error probabilities Pn
(√

n
∣∣∣θ̂j − θ0

∣∣∣ ≥ zn) for

zn →∞ but zn = o
(
n1/2

)
.
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We close this section by pointing out some differences with the existing moderate deviation results

on the method of moments or minimum contrast estimators. The literature mostly focuses on the just-

identified case and considers the method of moments estimator (i.e., a solution of 1
n

∑n
i=1 g (Xin, θ) =

0 with dg = dθ) or the minimum contrast estimator (i.e., a minimizer of some objective function∑n
i=1 γ (Xin, θ) with respect to θ or a solution of

∑n
i=1 ∂γ (Xin, θ) /∂θ = 0). It should be mentioned

that our moderate deviation analysis is a non-trivial extension of the previous results at least in three

senses. First, the GMM estimators θ̂1 and θ̂2 are defined as minimizers of quadratic forms of the

sample estimating functions 1
n

∑n
i=1 g (Xin, θ), instead of a single summation of some contrast function.

Second, the two-step GMM estimator θ̂2 contains the preliminary GMM estimator θ̂1. Thus, we need to

incorporate estimation errors of θ̂1 to analyze the moderate deviation properties of θ̂2. Third, the GEL

estimator is defined as a minimax solution rather than a simple minimization solution. This minimax

structure also complicates our moderate deviation analysis.

3 Main Results

In this section, we present the moderate deviation properties of the GMM and GEL estimators. Hereafter

denote G (x, θ) = ∂g (x, θ) /∂θ′. We first consider θ̂1 in (3), the GMM estimator with the weight matrix

Ŵ . We impose the following assumptions.

Assumption G1.

(i) Θ is compact and θ0 ∈ int (Θ). There exist a measurable function L : X → [0,∞) and constants

α, T1 ∈ (0,∞) such that |g (x, θ1)− g (x, θ2)| ≤ L (x) |θ1 − θ2|α for all θ1, θ2 ∈ Θ and a.e. x,

and E [exp (T1L (X))] < ∞. For each θ ∈ Θ, there exists a constant T2 ∈ (0,∞) satisfying

E [exp (T2 |g (X, θ)|)] <∞.

(ii) There exist a measurable function H : X → [0,∞), constants β, T3 ∈ (0,∞), and a neighborhood

N around θ0 such that |G (x, θ)−G (x, θ0)| ≤ H (x) |θ − θ0|β for all θ ∈ N and a.e. x, and

E [exp (T3H (X))] < ∞. There exists a constant T4 ∈ (0,∞) satisfying E [exp (T4 |G (X, θ0)|)] <
∞. G has the full column rank. Ω is positive definite.

Assumption W. There exists a sequence of dg × dg matrices {Wn}n∈N such that

Pn

(∣∣∣Ŵ −Wn

∣∣∣ ≥ n−1/2zn

)
≤ exp

{
−z

2
n

2
+O

(
z3
n√
n

)
+O (log zn)

}
,

for any sequence {zn}n∈N satisfying zn → ∞ and n−1/2zn → 0, and Wn → W with a positive definite

matrix W .

Assumption G1 restricts the shape of the estimating function g. Assumption G1 (i) is on the global

shape of g over the parameter space Θ. Compared to the setups for the method of moments estimators

(e.g., Jensen and Wood (1998) and Inglot and Kallenberg (2003)), it is not easy to avoid the compactness
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assumption on Θ without imposing additional restrictions on the shape of g, such as concavity of the

GMM objective function in θ. The Lipschitz-type condition on g is common in the literature and is

satisfied with α = 1 if g is differentiable on Θ for a.e. x and the derivative has an exponential moment.

Boundedness conditions of exponential moments are required to control large and moderate deviation

probabilities for the sum of the estimating functions. Assumption G1 (ii) controls the local shape of

the estimating functions g in a neighborhood of θ0. The Lipschitz-type assumption on the derivative

G (x, θ) is satisfied with β = 1 if g is second-order differentiable in a neighborhood of θ0 for a.e. x and

the derivative has an exponential moment.

The boundedness conditions for several exponential moments in Assumption G1 are restrictive and

unnecessary to derive local asymptotic properties such as the asymptotic normality of the GMM esti-

mator. However, to investigate the tail behaviors of the estimators, it is hard to proceed without these

bounded exponential moments. For example, the conventional Cramér-type large and moderate devia-

tion theorems for sums of random samples typically require existence of moment generating functions

(see, e.g., Dembo and Zeitouni (1998)). Also note that even for the just-identified case, we need similar

boundedness conditions for the moment functions and their derivatives to study large and moderate

deviation properties of the method of moments estimator (see, Kallenberg (1983), Jensen and Wood

(1998), and Inglot and Kallenberg (2003)).

Assumption W is a high-level assumption on the weight matrix Ŵ . This assumption should be

checked for each specific choice of Ŵ . If Ŵ is a constant positive definite matrix (i.e., Ŵ = Wn = W ),

this assumption is trivially satisfied. If Ŵ is defined as a sample mean, the conventional moderate

deviation theorems for iid sums, such as Book (1976), Yurinskii (1976), Jurečková, Kallenberg and

Veraverbeke (1988), and Dembo and Zeitouni (1998), can be applied to verify this assumption.

Under these assumptions, we can characterize the moderate deviation behavior of the GMM esti-

mator θ̂1 with the weight matrix Ŵ as follows.

Theorem 3.1. Suppose that Assumptions P, G1, and W hold.

(i) For all n large enough and δ ∈ (0,∞) small enough, there exists a unique θ1n ∈ {θ ∈ Θ : |θ − θ0| ≤ δ}
such that

En [G (X, θ1n)]′WnEn [g (X, θ1n)] = 0,

θ1n = θ0 − an
(
G′WG

)−1
G′WE [An (X) g (X, θ0)] + o (an) . (8)

(ii) For any sequence {zn}n∈N satisfying zn →∞ and n−1/2zn → 0,

Pn

(√
n
∣∣∣(G′WΩWG

)−1/2
G′WG

(
θ̂1 − θ1n

)∣∣∣ ≥ zn) = exp
{
−z

2
n

2
+O

(
anz

2
n

)
+O

(
z3
n√
n

)
+O (log zn)

}
.

Remark 3.1. Part (i) of this theorem shows the existence of a unique natural parameter θ1n, which

solves the population analog of the first-order condition of the GMM estimator θ̂1. Under the model

assumption Pn = P , θ1n becomes θ0, the “true” parameter under correct specification. Under the local
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contamination Pn 6= P , it is more natural to employ θ1n as a parameter to be estimated by θ̂1. Using the

terminology of misspecification analysis, θ1n may be interpreted as a “pseudo-true value” (White, 1994)

in our local contamination context. Also, θ1n can be interpreted as a projection of the data generating

measure Pn to the parameter space Θ using the quadratic distance based on the population analog of

the GMM objective function in (3), i.e., θ1n = arg minθ∈ΘEn [g (X, θ)]′WnEn [g (X, θ)].

Remark 3.2. Part (ii) of this theorem says that even if the critical value zn diverges, the tail probability

of
√
n
(
θ̂1 − θ1n

)
can be still approximated by the normal distributionN (0, VW ). The conventional local

asymptotic theory based on a central limit theorem says that the GMM estimator θ̂1 is asymptotically

normal under the model assumption Pn = P , i.e., P
(√

n
∣∣∣(G′WΩWG)−1/2G′WG

(
θ̂1 − θ1n

)∣∣∣ ≥ z)→
1−2Φ (z) with the standard normal distribution function Φ. On the other hand, under similar assump-

tions, Otsu (2009) showed that the large deviation error probability of the GMM estimator is exponen-

tially small, i.e., for every z > 0, there exist C, c > 0 such that Pn
(√

n
∣∣∣θ̂1 − θ1n

∣∣∣ ≥ √nz) ≤ Ce−cn

for all n large enough. The moderate deviation result in Theorem 3.1 (ii) bridges these two asymptotic

results by focusing on the tail probabilities with the critical value zn →∞ but zn = o
(
n1/2

)
.

Remark 3.3. By taking the limit n → ∞ for the result in Theorem 3.1 (ii), the moderate deviation

rate function is obtained as

lim
n→∞

z−2
n logPn

(√
n
∣∣∣(G′WΩWG

)−1/2
G′WG

(
θ̂1 − θ1n

)∣∣∣ ≥ zn) = −1
2
.

Remark 3.4. The statements in Theorem 3.1 hold even if we replace G,W , and Ω with En [G (X, θ1n)],

Wn, and En
[
g (X, θ1n) g (X, θ1n)′

]
, respectively.

Remark 3.5. Although it is natural to consider the concentration of θ̂1 around the natural parameter

θ1n, we can also derive an analogous moderate deviation result for the contrast θ̂1 − θ0, i.e., if

∆1n = n1/2anz
−1
n

(
G′WΩWG

)−1/2
G′WEn [An (X)G (X, θ0)]→ ∆1, (9)

with |∆1| ∈ [0, 1),2 then

Pn

(√
n
∣∣∣(G′WΩWG

)−1/2
G′WG

(
θ̂1 − θ0

)∣∣∣ ≥ zn)
= exp

{
−(1− |∆1|)2 z2

n

2
+O

(
|∆1n −∆1| z2

n

)
+O

(
anz

2
n

)
+O

(
z3
n√
n

)
+O (log zn)

}
.

We now analyze the two-step GMM estimator θ̂2. The following assumption is imposed.

Assumption G2. For each n ∈ N, there exist constants T5, T6, T7 ∈ (0,∞) such that E
[
exp

(
T5L (X)2

)]
<

∞, E [exp (T6L (X) |g (X, θ0)|)] <∞, and E
[
exp

(
T7

∣∣g (X, θ0) g (X, θ0)′
∣∣)] <∞.

2If n1/2anz
−1
n → 0, then the condition in (9) is satisfied with ∆1 = 0. If n1/2anz

−1
n → c, then we need to choose

An (X) to satisfy
˛̨̨
c (G′WΩWG)

−1/2
G′WEn [An (X)G (X, θ0)]

˛̨̨
→ |∆1| < 1, which is guaranteed by assuming, e.g.,

supn∈N supx∈X |An (x)| ≤ |G′WΩWG|1/2

|c||G′WE[|G(X,θ0)|]| − δ for some δ > 0. Similar comments apply to the conditions in (10) and

(13) below (by setting W = Ω−1).
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Assumption G2 is an additional boundedness condition on the estimating function g, which is used

to control the moderate deviation behavior of the optimal weight matrix estimator Ω̂−1. The moderate

deviation properties of the two-step GMM estimator is obtained as follows.

Theorem 3.2. Suppose that Assumptions P, G1, W, and G2 hold.

(i) For all n large enough and δ ∈ (0,∞) small enough, there exists a unique θ2n ∈ {θ ∈ Θ : |θ − θ0| ≤ δ}
such that

En [G (X, θ2n)]′En
[
g (X, θ1n) g (X, θ1n)′

]−1
En [g (X, θ2n)] = 0,

θ2n = θ0 − an
(
G′Ω−1G

)−1
G′Ω−1E [An (X) g (X, θ0)] + o (an) .

(ii) For any sequence {zn}n∈N satisfying zn →∞ and n−1/2zn → 0,

Pn

(√
n
∣∣∣(G′Ω−1G

)1/2 (
θ̂2 − θ2n

)∣∣∣ ≥ zn) = exp
{
−z

2
n

2
+O

(
anz

2
n

)
+O

(
z3
n√
n

)
+O (log zn)

}
.

Remark 3.6. Similar remarks to Theorem 3.1 apply here. θ2n is the natural parameter for the two-step

GMM estimator θ̂2, which solves the population analog of the first-order condition of θ̂2. The statements

in Theorem 3.2 hold even if we replace G and Ω with En [G (X, θ2n)] and En
[
g (X, θ1n) g (X, θ1n)′

]
,

respectively. The moderate deviation rate function is obtained as

lim
n→∞

z−2
n logPn

(√
n
∣∣∣(G′Ω−1G

)1/2 (
θ̂2 − θ2n

)∣∣∣ ≥ zn) = −1
2
.

Also, we can derive an analogous moderate deviation result for the estimation error θ̂2 − θ0 around θ0,

i.e.,

Pn

(√
n
∣∣∣(G′Ω−1G

)1/2 (
θ̂2 − θ0

)∣∣∣ ≥ zn)
= exp

{
−(1− |∆2|)2 z2

n

2
+O

(
|∆2n −∆2| z2

n

)
+O

(
anz

2
n

)
+O

(
z3
n√
n

)
+O (log zn)

}
,

if

∆2n = n1/2anz
−1
n

(
G′Ω−1G

)−1/2
G′Ω−1En [An (X)G (X, θ0)]→ ∆2, (10)

with |∆2| ∈ [0, 1).

Remark 3.7. A crucial difference with Theorem 3.1 is that now the moderate deviation probability

of
√
n
(
θ̂2 − θ2n

)
is approximated by the normal distribution N

(
0,
(
G′Ω−1G

)−1
)

whose variance is

always smaller or equal (in the positive semi-definite sense) to that of the GMM estimator θ̂1 with some

weight Ŵ . In other words, the distribution of
√
n
(
θ̂2 − θ2n

)
is more concentrated around zero than

that of
√
n
(
θ̂1 − θ1n

)
. Let min eig (A) be the minimum eigenvalue of a matrix A. From Theorems 3.1

(ii) and 3.2 (ii), a similar argument to Inglot and Kallenberg (2003, Corollary 3.3) implies

logPn
(√

n
∣∣∣θ̂2 − θ2n

∣∣∣ ≥ zn)
logPn

(√
n
∣∣∣θ̂1 − θ1n

∣∣∣ ≥ zn) →
(

min eig
(
G′Ω−1G

)
min eig (VW )

)2

≤ 1, (11)

for any positive definite W .
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Remark 3.8. If we assume Pn = P , then the natural parameter becomes θ1n = θ2n = θ0 and the result

obtained in (11) becomes limn→∞
logP(√n|θ̂2−θ0|≥zn)
logP(√n|θ̂1−θ0|≥zn) ≤ 1. This result can be seen as an extension of

the asymptotic optimality of the two-step GMM estimator in the local asymptotics to the moderate

deviation zone.

Remark 3.9. An intuition for the results in Remarks 3.7 and 3.8 may be explained as follows. Similar

to the local asymptotic analysis, dominant components to analyze the moderate deviation properties of
√
n
(
θ̂1 − θ1n

)
and
√
n
(
θ̂2 − θ2n

)
are still characterized by their score functions

(G′WG)−1G′W 1√
n

∑n
i=1 g (Xi, θ1n) and

(
G′Ω−1G

)−1
G′ 1√

n

∑n
i=1 g (Xi, θ2n), respectively. On the other

hand, moderate deviation theorems for sums of independent random variables (e.g., Dembo and Zeitouni

(1998)) guarantee that the moderate deviation properties for the sums (after normalization) can be

characterized by the tail of the standard normal distribution. Thus, the asymptotic efficiency of θ̂2

compared to θ̂1 in the local asymptotics is maintained in the moderate deviation zone.

To derive the moderate deviation properties of the GEL estimator, we impose the following assump-

tions.

Assumption G3.

(i) Θ is compact and θ0 ∈ int (Θ). ρ (·) is strictly concave and ρ1 (0) = ρ2 (0) = −1. Λ is compact

and 0 ∈ int (Λ). For each θ ∈ Θ, the maximizer λ∗ (θ) = arg maxλ∈ΛE [ρ (λ′g (X, θ))] satisfies

λ∗ (θ) ∈ int (Λ). g (x, θ) is differentiable on Θ for a.e. x. There exists a constant T8 ∈ (0,∞)

satisfying E [exp (T8 |g (X, θ0)|)] < ∞. For each θ ∈ Θ, there exist a constant T9 ∈ (0,∞) and

neighborhoods Nθ and Nλ∗(θ) around θ and λ∗ (θ), respectively, satisfying

E
[
exp

(
T9 supϑ∈Nθ supλ∈Nλ∗(θ) |ρ1 (λ′g (X,ϑ))G (X,ϑ)|

)]
<∞.

(ii) There exist a constant T10 ∈ (0,∞) and neighborhoods Nρ and N ′ρ around θ0 and 0, respectively,

satisfying E
[
exp

(
T10 supθ∈Nρ supλ∈N ′ρ

∣∣ρ2 (λ′g (X, θ)) g (X, θ) g (X, θ)′
∣∣)] <∞.

Assumption G3 (i) is a replacement of Assumption G1 (i). All examples of the GEL criterion function

ρ listed in Section 2 are strictly concave and satisfy ρ1 (0) = ρ2 (0) = −1. Although technical arguments

become more complicated, the compactness assumption on Λ may be avoided by adding a similar

assumption to Inglot and Kallenberg (2003, Assumption (R2’)) which controls the global behaviors of

the contrast function outside some compact set for λ. The last condition in Assumption G3 (i), which

corresponds to the bounded exponential moment for L (X) in Assumption G1 (i), restricts the slope of

the GEL objective function with respect to θ. This condition needs to be checked for specific choices of

ρ and g. Assumption G3 (ii) contains additional conditions to control the local curvatures of the GEL

objective function with respect to λ in a neighborhood of 0.

The boundedness conditions for exponential moments in Assumption G3 are typically more strin-

gent and difficult to verify than the ones for the GMM estimator (Assumption G1) or the ones for

the method of moments estimator (Inglot and Kallenberg (2003)). For example, in the case of the
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empirical likelihood estimator (i.e., ρ (v) = log (1− v)), the last condition in Assumption G3 (i) be-

comes E
[
exp

(
T9 supϑ∈Nθ supλ∈Nλ∗(θ)

∣∣∣ 1
1−λ′g(X,ϑ)G (X,ϑ)

∣∣∣)] < ∞, and the condition in Assumption

G3 (ii) becomes E
[
exp

(
T10 supθ∈Nρ supλ∈N ′ρ

∣∣∣ 1
(1−λ′g(X,θ))2 g (X, θ) g (X, θ)′

∣∣∣)] < ∞. Such restrictions

and complications are attributable to the fact that the GEL estimator is defined as a minimax solution

using auxiliary parameters λ.

Under these assumptions, the moderate deviation properties of the GEL estimator is obtained as

follows.

Theorem 3.3. Suppose that Assumptions P, G1 (ii), and G3 hold.

(i) For all n large enough and δ ∈ (0,∞) small enough, there exists a unique θ3n ∈ {θ ∈ Θ : |θ − θ0| ≤ δ}
such that

En [G (X, θ3n)]′En
[
g (X, θ3n) g (X, θ3n)′

]−1
En [g (X, θ3n)] = 0,

θ3n = θ0 − an
(
G′Ω−1G

)−1
G′Ω−1E [An (X) g (X, θ0)] + o (an) . (12)

(ii) For any sequence {zn}n∈N satisfying zn →∞ and n−1/2zn → 0,

Pn

(√
n
∣∣∣(G′Ω−1G

)1/2 (
θ̂3 − θ3n

)∣∣∣ ≥ zn) = exp
{
−z

2
n

2
+O

(
anz

2
n

)
+O

(
z3
n√
n

)
+O (log zn)

}
.

Remark 3.10. Similar remarks to Theorems 3.1 and 3.2 apply here. θ3n is the natural parameter for the

GEL estimator θ̂3. The statements in Theorem 3.3 hold even if we replace G and Ω with En [G (X, θ3n)]

and En
[
g (X, θ3n) g (X, θ3n)′

]
, respectively. The moderate deviation rate function is obtained as

lim
n→∞

z−2
n logPn

(√
n
∣∣∣(G′Ω−1G

)1/2 (
θ̂3 − θ3n

)∣∣∣ ≥ zn) = −1
2
.

Also, we can derive the moderate deviation result for the estimation error θ̂3 − θ0 around θ0, i.e.,

Pn

(√
n
∣∣∣(G′Ω−1G

)1/2 (
θ̂3 − θ0

)∣∣∣ ≥ zn)
= exp

{
−(1− |∆3|)2 z2

n

2
+O

(
|∆3n −∆3| z2

n

)
+O

(
anz

2
n

)
+O

(
z3
n√
n

)
+O (log zn)

}
,

if

∆3n = n1/2anz
−1
n

(
G′Ω−1G

)−1/2
G′Ω−1En [An (X)G (X, θ0)]→ ∆3, (13)

with |∆3| ∈ [0, 1).

Remark 3.11. Similar to the two-step GMM estimator, the moderate deviation error probability of
√
n
(
θ̂3 − θ3n

)
is approximated by the normal distribution N

(
0,
(
G′Ω−1G

)−1
)
. From Theorem 3.3 (i),

we can see that the GEL estimator also enjoys the asymptotic optimality in the moderate deviation sense,

i.e., logPn(√n|θ̂3−θ3n|≥zn)
logPn(√n|θ̂2−θ2n|≥zn) → 1. This result can be seen as an extension of the asymptotic equivalence

between the two-step GMM and GEL estimators under the local asymptotics to the moderate deviation

region.
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Remark 3.12. This paper mainly focuses on the case of over-identification, i.e., dg > dθ. If the

estimating equations are just-identified, i.e., dg = dθ, then the above three estimators coincide with

the method of moments estimator and the above theorems become variants of the moderate deviation

results in Inglot and Kallenberg (2003).

4 Conclusion

This paper studies moderate deviation behaviors of the generalized method of moments (GMM) and

generalized empirical likelihood (GEL) estimators for generalized estimating equations. As data gen-

erating probability measures, we consider the model assumption and locally contaminated measures.

For both cases, we characterize the first-order terms of the moderate deviation error probabilities of

the GMM and GEL estimators. There are several directions of the future research. First, to compare

the two-step GMM and GEL estimators which have the same moderate deviation rate function, it is

important to study higher-order terms of those moderate deviation probabilities. For example, we can

expect that the rate function of the GEL estimator depends on the criterion function ρ, and this rate

function allows us to compare the competing members of the GEL estimators, such as the empirical

likelihood and exponential tilting. Second, the GMM and GEL estimators are commonly applied to

time series or panel data. Therefore, it is useful to extend the obtained results to more general data

environments. Finally, it is interesting to extend the present results to more general models, such as

non-compact parameter spaces and non-differentiable estimating functions (e.g., quantile restrictions).
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A Mathematical Appendix

Hereafter let xn = (x1n, . . . , xnn), ĝ (θ) = 1
n

∑n
i=1 g (Xin, θ), and Ĝ (θ) = 1

n

∑n
i=1G (Xin, θ).

A.1 Proof of Theorem 3.1

Proof of (i). First, we show the continuity of

Qn (θ) = En [g (X, θ)]′WnEn [g (X, θ)]− En [g (X, θ0)]′WnEn [g (X, θ0)] ,

in θ ∈ N , where the neighborhood N is defined in Assumption G1 (ii). By Assumption P, Qn (θ) is well

defined on Θ. Pick any ϑ, θ ∈ N . By an expansion of En [g (X,ϑ)] around ϑ = θ,

|Qn (ϑ)−Qn (θ)| ≤ 2
∣∣∣En [G (X, ϑ̄)]′WnEn [g (X, θ)]

∣∣∣ |ϑ− θ|+∣∣∣En [G (X, ϑ̄)]′WnEn
[
G
(
X, ϑ̄

)]∣∣∣ |ϑ− θ|2 ,
(14)

where ϑ̄ is a point on the line joining ϑ and θ. From Assumptions P and G1,

|En [g (X, θ)]| ≤ |E [g (X, θ)]|+ an |E [An (X) g (X, θ)]| <∞,∣∣En [G (X, ϑ̄)]∣∣ ≤ ∣∣E [G (X, ϑ̄)]∣∣+ an
∣∣E [An (X)G

(
X, ϑ̄

)]∣∣ <∞, (15)

for each n ∈ N, where the last inequality follows from
∣∣E [G (X, ϑ̄)]∣∣ ≤ E [H (X)]

∣∣ϑ̄− θ0

∣∣β+E [|G (X, θ0)|] <
∞ using Assumption G1 (ii). From (14) and (15), Qn (θ) is continuous on N for each n ∈ N.

Second, we show the differentiability of Qn (θ) in θ ∈ N . Pick any θ ∈ N and ε 6= 0 small enough

so that θ + εej ∈ N , where ej = (0, . . . , 0, 1, 0, . . . , 0) is the j-th unit vector. Let Gj (X, θ) be the

j-th column of G (X, θ). By a Taylor expansion of En [g (X, θ + εej)] around ε = 0 combined with

Assumptions P and G1 and (15),∣∣ε−1 {Qn (θ + εej)−Qn (θ)} − 2En [Gj (X, θ)]′WnEn [g (X, θ)]
∣∣ ≤ C (|ε̄|β + |ε|α

)
,

where ε̄ is a point between ε and 0. Thus, by taking ε→ 0 (so, ε̄→ 0 as well), we obtain the differen-

tiability of Qn (θ) in θ ∈ N for each n ∈ N with the derivative Dn (θ) = 2En [G (X, θ)]′WnEn [g (X, θ)].

Third, we show the existence of θ1n defined in (8). Let Q (θ) = E [g (X, θ)]′WnE [g (X, θ)] and NQ =

{θ ∈ Θ : |θ − θ0| < δ, Q (θ) < ε}. Pick any δ, ε ∈ (0,∞) small enough so that cl (NQ) ⊂ {θ ∈ Θ : |θ − θ0| ≤ δ} ⊂
N . For any θ ∈ N c

Q \ {θ ∈ Θ : |θ − θ0| ≤ δ}, Assumption P implies

Qn (θ) = Q (θ) + 2anE [An (X) g (X, θ)]′WnE [g (X, θ)]

+a2
n

(
E [An (X) g (X, θ)]′WnE [An (X) g (X, θ)]− E [An (X) g (X, θ0)]′WnE [An (X) g (X, θ0)]

)
> ε/2, (16)

for all n large enough. From Qn (θ0) = 0, the point θ1n = arg minθ∈cl(NQ)Qn (θ) (which always exists by

the Weierstrass theorem) is a global minimizer of Qn (θ) on {θ ∈ Θ : |θ − θ0| ≤ δ}. Also, since θ1n /∈ N c
Q,
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the minimizer θ1n belongs to NQ (i.e., an interior solution of minθ∈cl(NQ)Qn (θ)), which implies that

θ1n satisfies the first-order condition Dn (θ1n) = 0.

Fourth, we show the uniqueness of θ1n. To this end, it is sufficient to show that Dn (θ) is one-to-one

on the set {θ ∈ Θ : |θ − θ0| ≤ δ} for sufficiently small δ. Pick any θ, θ + ϑ ∈ {θ ∈ Θ : |θ − θ0| < δ} ⊂ N
(taking δ small enough) with ϑ 6= 0. From the triangle inequality,

|Dn (θ + ϑ)−Dn (θ)| ≥
∣∣2G′WGϑ

∣∣− ∣∣Dn (θ + ϑ)−Dn (θ)− 2G′WGϑ
∣∣ . (17)

Since G is full rank and W is positive definite (Assumptions G1 (ii) and W), the first term |2G′WGϑ|
is a positive constant. Also the second term of (17) satisfies

1
2

∣∣Dn (θ + ϑ)−Dn (θ)− 2G′WGϑ
∣∣ ≤ C |ϑ| an + C |Wn −W |+ C

(
En [H (X)] δβ + an

)
,

where the inequality follows from an expansion of En [g (X, θ + ϑ)] around ϑ = 0 and

|En [G (X, θ)]−G| ≤ En [H (X)] |θ − θ0|β + Can, (18)

for each θ ∈ {θ ∈ Θ : |θ − θ0| < δ} (by Assumptions P and G1 (ii)). Since the first term of (17) is

positive and the second second term of (17) can be arbitrary small for sufficiently small δ and large n,

we obtain |Dn (θ + ϑ)−Dn (θ)| > 0 for all δ small enough and n large enough. Therefore, θ1n exists

uniquely for all n large enough.

Finally, we show (8). By expanding Dn (θ1n) = 0 around θ1n = θ0 with Assumption P and (18),

0 = G′W
{
anE [An (X) g (X, θ0)] +G′ (θ1n − θ0)

}
+O

(
(an + |θ1n − θ0|) |Wn −W |+ |θ1n − θ0|1+β + |θ1n − θ0|2 + an |θ1n − θ0|β + an |θ1n − θ0|+ a2

n

)
.

Solving this equation for θ1n yields (8).

Proof of (ii). Let

B1n =
{∣∣∣θ̂1 − θ0

∣∣∣ ≤ ε, Ĝ(θ̂1

)′
Ŵ ĝ

(
θ̂1

)
= 0
}
, BGn =

{∣∣∣Ĝ (θ0)−G
∣∣∣ ≤ cGn−1/2zn

}
,

BHn =

{
1
n

n∑
i=1

H (Xi) ≤ E [H (X)] + 1

}
, BWn =

{∣∣∣Ŵ −Wn

∣∣∣ ≤ cWn−1/2zn

}
,

Yin = I
−1/2
1n G′1nWng (Xin, θ1n) , T1n = I

−1/2
1n G′1nWnG1n

(
θ̂1 − θ1n

)
,

I1n = G′1nWnΩ1nWnG1n, I1 = G′WΩWG, t1n = |θ1n − θ0|β + n−1/2zn,

G1n = En [G (X, θ1n)] , Ω1n = En
[
g (X, θ1n) g (X, θ1n)′

]
,

for ε, cG, cW ∈ (0,∞). Note that since |I1n − I1| → 0 and I1 is positive definite (by Assumptions G1 (ii)

and W), I−1/2
1n exists for all n large enough. For a.e. xn ∈ B1n and all n large enough, an expansion of
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Ĝ
(
θ̂1

)′
Ŵ ĝ

(
θ̂1

)
= 0 around θ̂1 = θ1n yields

0 =
1
n

n∑
i=1

Yin + T1n + I
−1/2
1n

{(
Ĝ
(
θ̂1

)
−G1n

)′
Ŵ +G′1n

(
Ŵ −Wn

)}
ĝ (θ1n)

+I−1/2
1n


(
Ĝ
(
θ̂1

)
−G1n

)′
Ŵ Ĝ

(
θ̄1

)
+G′1nŴ

(
Ĝ
(
θ̄1

)
−G1n

)
+G′1n

(
Ŵ −Wn

)
G1n

(θ̂1 − θ1n

)
, (19)

where θ̄1 is a point between θ̂1 and θ1n. Observe that for a.e. xn ∈ B1n ∩BGn ∩BHn ∩BWn and all n

large enough and ε small enough so that {θ ∈ Θ : |θ − θ0| < ε} ⊂ N , Assumptions P and G1 guarantee∣∣∣Ĝ(θ̂1

)
−G1n

∣∣∣ ≤ C

(∣∣∣θ̂1 − θ1n

∣∣∣β + t1n

)
, |G1n| ≤ C |θ1n − θ0|β + |G| , (20)∣∣∣Ŵ −Wn

∣∣∣ ≤ cWn
−1/2zn, |I1n| ≤ C

(
|θ1n − θ0|+ |θ1n − θ0|β + |Wn −W |

)
+ |I1| .

Thus, for a.e. xn ∈ B1n∩BGn∩BHn∩BWn and all n large enough and ε small enough, the norms of the

third and fourth terms of (19) are bounded by C
(
|T1n|β + t1n

) ∣∣ 1
n

∑n
i=1 Yin

∣∣and C (|T1n|β + t1n

)
|T1n|,

respectively. Combining these results, for a.e. xn ∈ B1n ∩ BGn ∩ BHn ∩ BWn and all n large enough

and ε small enough,∣∣∣∣∣ 1n
n∑
i=1

Yin

∣∣∣∣∣ ≥
1− C

{
|T1n|β + t1n +

(
|T1n|β + t1n

)2
}

1 + C
(
|T1n|β + t1n

) |T1n| ,

∣∣∣∣∣ 1n
n∑
i=1

Yin

∣∣∣∣∣ ≤
1 + C

{
|T1n|β + t1n +

(
|T1n|β + t1n

)2
}

1− C
(
|T1n|β + t1n

) |T1n| .

Let B̃1n = B1n ∩ BGn ∩ BHn ∩ BWn. Since t1n → 0 by θ1n − θ0 → 0 (from Part (i) of this theorem)

and n−1/2zn → 0, it holds that for all n large enough and ε small enough, and some sequence cn → 0,

Pn

(
|T1n| ≥ n−1/2zn

)
≤ Pn

(∣∣∣∣∣n−1/2
n∑
i=1

Yin

∣∣∣∣∣ ≥ (1− cn) zn

)
+ Pn

(
B̃c

1n

)
, (21)

Pn

(
znn

−1/2 ≤ |T1n|
)
≥ Pn

(∣∣∣∣∣n−1/2
n∑
i=1

Yin

∣∣∣∣∣ ≥ (1 + cn) zn

)
− Pn

(
B̃c

1n

)
.

From Otsu (2009), which establishes the large deviation results Pn (Bc
1n) ≤ Ce−cn and Pn (BHc

n) ≤
Ce−cn, and Assumption W,

Pn

(
B̃c

1n

)
≤ Pn (Bc

1n) + Pn (BGcn) + Pn (BHc
n) + Pn (BW c

n) .

≤ Ce−cn + Pn (BGcn) + exp
{
−
c2
W z

2
n

2
+O

(
z3
n√
n

)
+O (log zn)

}
. (22)

Now consider the moderate deviation probability Pn (BGcn). From Assumptions P and G1 (ii), we have

En [exp (T4 |G (X, θ0)|)] < C for all n ∈ N. Then for each v ∈ Rdg , j = 1, . . . , dθ, and k ∈ N,

En

[(
v′Gj (X, θ0)

)k] ≤ |v|k En
[
|Gj (X, θ0)|k

]
≤ |v|k T−k4 k!En

[
(k!)−1 |Gj (X, θ0)|k

]
≤ |v|k T−k4 k!En [exp (T4 |Gj (X, θ0)|)] <∞.
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Therefore, we can apply Yurinskii (1976, Theorem 3.1), which implies

Pn (BGcn) ≤ exp
{
−
c2
Gz

2
n

2
+O

(
z3
n√
n

)
+O (log zn)

}
. (23)

From (22), (23), and taking cW and cG small enough, there exists some c̄ ∈ (0, 1) satisfying

Pn

(
B̃c

1n

)
≤ exp

{
− c̄z

2
n

2
+O

(
z3
n√
n

)
+O (log zn)

}
. (24)

Also, since En [Yin] = 0, En [YinY ′in] equals the identity matrix, and En
[
exp

(
T̄ |Yin|

)]
< C for some

T̄ ∈ (0,∞) (by |G1n| ≤ C, |Wn| ≤ C, |Ω1n| ≤ C, and Assumption G1 (i)), we can apply the same

argument as the proof of Inglot and Kallenberg (2003, Lemma 4.2) which yields

Pn

(∣∣∣∣∣n−1/2
n∑
i=1

Yin

∣∣∣∣∣ ≥ zn
)

= exp
{
−z

2
n

2
+O

(
z3
n√
n

)
+O (log zn)

}
. (25)

Combining (21), (24), and (25), we obtain the conclusion.

A.2 Proof of Theorem 3.2

Based on Theorem 3.1, it is sufficient to show that Assumption W is satisfied with Ŵ = Ω̂−1,Wn = Ω−1
1n ,

and W = Ω−1. A detailed proof is available from the author upon request.

A.3 Proof of Theorem 3.3

Proof of (i). First, we show the continuity of

Qρn (θ) = En
[
ρ
(
λn (θ)′ g (X, θ)

)]
− En

[
ρ
(
λn (θ0)′ g (X, θ0)

)]
,

in θ ∈ N , where the neighborhood N around θ0 appears in Assumption G1 (ii) and

λn (θ) = arg maxλ∈ΛEn [ρ (λ′g (X, θ))]. Note that the maximizer λn (θ) exists for each θ ∈ Θ and n ∈ N
by Assumption G3 (i) and the Weierstrass theorem. Therefore, Qρn (θ) is well defined for each θ ∈ Θ

and n ∈ N. Since ρ (·) is strictly concave and Λ is compact, the maximum theorem guarantees that

λn (θ) is continuous in θ ∈ N for each n ∈ N. Pick any ϑ, θ ∈ N . By expansions of ρ
(
λn (ϑ)′ g (X,ϑ)

)
and g (X,ϑ) around λn (ϑ) = λn (θ) and ϑ = θ, respectively,

|Qρn (ϑ)−Qρn (θ)| ≤
∣∣∣En [ρ1

(
λn (θ)′ g

(
X, ϑ̃

))
G
(
X, ϑ̃

)]∣∣∣ |λn (θ)| |ϑ− θ|

+
∣∣∣En [ρ1

(
λ̃′ng (X,ϑ)

)
g (X,ϑ)

]∣∣∣ |λn (ϑ)− λn (θ)| , (26)

for each n ∈ N, where λ̃n is a point on the line joining λn (ϑ) and λn (θ) and ϑ̃ is a point on the line

joining ϑ and θ. From Assumptions P, G1 (ii), and G3 (i),∣∣∣En [ρ1

(
λn (θ)′ g

(
X, ϑ̃

))
G
(
X, ϑ̃

)]∣∣∣ <∞, ∣∣∣En [ρ1

(
λ̃′ng (X,ϑ)

)
g (X,ϑ)

]∣∣∣ <∞, (27)
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for each n ∈ N. From (26), (27), and continuity of λn (θ) in θ ∈ N , Qρn (θ) is continuous in θ ∈ N for

each n ∈ N.

Second, we show the differentiability of Qρn (θ) in θ ∈ N . Pick any θ ∈ N and ε 6= 0. By expansions

of ρ
(
λn (θ + εej)

′ g (X, θ + εej)
)
and g (X, θ + εej) around λn (θ + εej) = λn (θ) and ε = 0, respectively,∣∣ε−1 {Qρn (θ + εej)−Qρn (θ)} − En

[
ρ1

(
λn (θ)′ g (X, θ)

)
Gj (X, θ)′

]
λn (θ)

∣∣
≤

∣∣∣∣En [ρ1

(
λn (θ + ε̇ej)

′ g (X, θ + ε̇ej)
)
g (X, θ + ε̇ej)

′] dλn (θ + ε̇ej)
dθj

∣∣∣∣
+
∣∣En [ρ1

(
λn (θ)′ g (X, θ + ε̇ej)

)
Gj (X, θ + ε̇ej)− ρ1

(
λn (θ)′ g (X, θ)

)
Gj (X, θ)

]∣∣ |λn (θ)| (28)

for any ε small enough, where λ̇n is a point between λn (θ + εej) and λn (θ), and ε̇ is a point between

ε and 0. The implicit function theorem guarantees the existence of dλn(θ+ε̇ej)
dθj

for any ε small enough.

Also, since λn (θ)→ λ̄ (θ) ∈ int (Λ) for each θ ∈ N , λn (θ) satisfies the first-order condition

En
[
ρ1

(
λn (θ)′ g (X, θ)

)
g (X, θ)

]
= 0, (29)

for each θ ∈ N , which implies that the first term of (28) is zero. So, by taking ε→ 0 (so, ε̇→ 0 as well)

with Assumptions P, G1 (ii), and G3 (i) and (27), we obtain the differentiability of Qρn (θ) on N for

each n ∈ N with the derivative Dρn (θ) = En
[
ρ1

(
λn (θ)′ g (X, θ)

)
G (X, θ)′

]
λn (θ).

Third, we show the existence of θ3n. Let Qρ (θ) = E
[
ρ
(
λ̄ (θ)′ g (X, θ)

)]
and

N3 = {θ ∈ Θ : |θ − θ0| < δ, Qρ (θ) < ε}. Pick δ, ε ∈ (0,∞) small enough so that

cl (N3) ⊂ {θ ∈ Θ : |θ − θ0| ≤ δ} ⊂ N . For any θ ∈ N c
3 \ {θ ∈ Θ : |θ − θ0| ≤ δ}, expansions around

λn (θ) = λ̄ (θ) and λn (θ0) = 0 with Assumption P yield

Qρn (θ) = Qρ (θ) + E
[
ρ
(
λ̇′ng (X, θ)

)
g (X, θ)′

] (
λn (θ)− λ̄ (θ)

)
+ anE

[
An (X) ρ

(
λn (θ)′ g (X, θ)

)]
−E

[
ρ
(
λ̈′ng (X, θ0)

)
g (X, θ0)′

]
λn (θ0)− anE

[
An (X) ρ

(
λn (θ0)′ g (X, θ0)

)]
> ε/2, (30)

for all n large enough, where λ̇n is a point on the line joining λn (θ) and λ̄ (θ) and λ̈n is a point on the

line joining λn (θ0) and 0. From Qρn (θ0) = 0, the point θ3n = arg maxθ∈cl(N3)Qρn (θ) (which always

exists by the Weierstrass theorem) is a global maximizer of Qρn (θ) on {θ ∈ Θ : |θ − θ0| ≤ δ}. Also,

since θ3n /∈ N c
3 , the maximizer θ3n belongs to N3 (i.e., θ3n is a interior solution of maxθ∈cl(N3)Qρn (θ)),

which implies that θ3n satisfies the first-order condition Dρn (θ3n) = 0.

Fourth, we show the uniqueness of θ3n. To this end, it is sufficient to show that Dρn (θ) is one-to-one

on the set {θ ∈ Θ : |θ − θ0| ≤ δ} for sufficiently small δ. Pick any θ, θ + ϑ ∈ {θ ∈ Θ : |θ − θ0| < δ} ⊂ N
(taking δ small enough) with ϑ 6= 0. From the triangle inequality,

|Dρn (θ + ϑ)−Dρn (θ)| ≥
∣∣G′Ω−1Gϑ

∣∣− ∣∣Dρn (θ + ϑ)−Dρn (θ)−G′Ω−1Gϑ
∣∣ . (31)

18



From Assumption G1 (ii),
∣∣G′Ω−1Gϑ

∣∣ is a positive constant. By the triangle inequality,∣∣Dρn (θ + ϑ)−Dρn (θ)−G′Ω−1Gϑ
∣∣

≤
∣∣G′ (λn (θ + ϑ)− λn (θ)− Ω−1Gϑ

)∣∣
+
∣∣En [ρ1

(
λn (θ + ϑ)′ g (X, θ + ϑ)

)
G (X, θ + ϑ)′

]
−G′

∣∣ |λn (θ + ϑ)− λn (θ)|

+
∣∣En [ρ1

(
λn (θ + ϑ)′ g (X, θ + ϑ)

)
G (X, θ + ϑ)′

]∣∣ |λn (θ)|+
∣∣En [ρ1

(
λn (θ)′ g (X, θ)

)
G (X, θ)

]∣∣ |λn (θ)|

= A1 +A2 +A3 +A4.

By expanding (29) around λn (θ) = 0 and solving for λn (θ),

λn (θ) = Ω̂ρ (θ)−1En [g (X, θ)] , (32)

where Ω̂ρ (θ) = En

[
ρ2

(
λ̃′ng (X, θ)

)
g (X, θ) g (X, θ)′

]
and λ̃n is a point on the line joining λn (θ) and

0 (note that by Assumptions G1 (ii) and G3, Ω̂ρ (θ) is invertible for any δ small enough and n large

enough). Thus, an expansion around θ = θ0 combined with Assumptions P and G3 (ii) and (15) yields

|λn (θ)| ≤ C (an + δ). Similarly, we have |λn (θ + ϑ)| ≤ C (an + δ). Thus, from Assumption G3 (i), we

have A2, A3, A4 ≤ C (an + δ). We now consider A1. From (32) (which also holds for λn (θ + ϑ)),

λn (θ + ϑ)− λn (θ)− Ω−1Gϑ

=
(
En

[
ρ2

(
λ̇′ng (X, θ + ϑ)

)
g (X, θ + ϑ) g (X, θ + ϑ)′

]−1
− Ω−1

)
En [g (X, θ + ϑ)]

+
(

Ω−1 − Ω̂ρ (θ)−1
)
En [g (X, θ)] + Ω−1 (En [g (X, θ + ϑ)]− En [g (X, θ)]−Gϑ) = A11 +A12 +A13,

where λ̇n is a point between λn (θ + ϑ) and 0. An expansion around θ = θ0 and Assumption G1 (ii)

imply |En [g (X, θ)]| ≤
∣∣∣En [G(X, θ̃)]∣∣∣ |θ − θ0| ≤ Cδ and thus |A12| ≤ Cδ (using Assumption G3 (ii)).

Similarly, we have |En [g (X, θ + ϑ)]| ≤ Cδ and |A11| ≤ Cδ. For A13, an expansion around ϑ = 0

combined with Assumptions P and G1 (ii) yield |A13| ≤ C
(
δβ + an

)
. Combining these results, we can

see that the first term of (31) is positive and the second second term of (31) can be arbitrary small for

sufficiently small δ and large n. Therefore, we obtain |Dρn (θ + ϑ)−Dρn (θ)| > 0 for all δ small enough

and n large enough, which implies that θ3n exists uniquely for all n large enough.

Finally, we show (12). From (32),

0 = Dρn (θ3n) =
(
En
[
ρ1

(
λn (θ3n)′ g (X, θ3n)

)
G (X, θ3n)

]
+G

)′ Ω̂ρ (θ3n)−1En [g (X, θ3n)]

−G′
(

Ω̂ρ (θ3n)−1 − Ω−1
)
En [g (X, θ3n)]−G′Ω−1En [g (X, θ3n)]

= A5 −A6 −A7. (33)

For A5, the triangle inequality, Assumption G3 (ii), and an expansion around λn (θ3n) = 0 imply

|A5| ≤ C |En [G (X, θ3n)]−G| |En [g (X, θ3n)]|

+C
∣∣∣En [ρ2

(
λ̃′ng (X, θ3n)

)
G (X, θ3n)′ g (X, θ3n)

]∣∣∣ |λn (θ3n)| |En [g (X, θ3n)]|

≤ C
(
|θ3n − θ0|β + an

)
(|θ3n − θ0|+ an) + (|θ3n − θ0|+ an)2 ,
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where the second inequality follows from Assumptions P, G1 (ii), and G3 (i), an expansion ofEn [g (X, θ3n)]

around θ3n = θ0, and (32) (which guarantees |λn (θ3n)| ≤ C (|θ3n − θ0|+ an)). Similarly, A6 satisfies

|A6| ≤ C (|θ3n − θ0|+ an)2. For A7, an expansion around θ3n = θ0 yields

A7 = G′Ω−1En [g (X, θ0)] +G′Ω−1G (θ3n − θ0) +O
(
|θ3n − θ0|1+β + an |θ3n − θ0|

)
,

where θ̄3 is a point between θ3n and θ0. Inserting these results to (33) and solving for θ3n, we have (12).

Proof of (ii). Pick any n ∈ N. Let λ̂ (θ) = arg maxλ∈Λ
1
n

∑n
i=1 ρ (λ′g (Xi, θ)),

B3n =
{∣∣∣θ̂3 − θ0

∣∣∣ ≤ ε, D̂ρ

(
θ̂3

)
= 0
}
, BΩn =

{∣∣∣∣∣ 1n
n∑
i=1

g (Xin, θ0) g (Xin, θ0)′ − Ω

∣∣∣∣∣ ≤ cΩn
−1/2zn

}
,

D̂ρ (θ) =
1
n

n∑
i=1

ρ1

(
λ̂ (θ)′ g (Xin, θ)

)
G (Xin, θ)

′ λ̂ (θ) , Y3in = −I−1/2
3n G′3nΩ−1

3n g (Xin, θ3n) ,

T3n = −I1/2
3n

(
θ̂3 − θ3n

)
, I3n = G′3nΩ−1

3nG3n, I3 = G′Ω−1G,

G3n = En [G (X, θ3n)] , Ω3n = En
[
g (X, θ3n) g (X, θ3n)′

]
, t3n = |θ3n − θ0|β + n−1/2zn,

for ε ∈ (0,∞). Since |I3n − I3| → 0 and I3 is positive definite (by Assumption G1 (ii)), I−1/2
3n exists for

all n large enough. For a.e. xn ∈ B3n, the condition D̂ρ

(
θ̂3

)
= 0 for θ̂3 satisfies

0 =
1
n

n∑
i=1

Y3in + T3n − I−1/2
3n

{(
Ĝ
(
θ̂3

)
−G3n

)′
Ω̂ρ

(
θ̂3

)−1
−G′3n

(
Ω̂ρ

(
θ̂3

)−1
− Ω−1

3n

)}
ĝ (θ3n)

−I−1/2
3n


(
Ĝ
(
θ̂3

)
−G3n

)′
Ω̂ρ

(
θ̂3

)−1
Ĝ
(
θ̄3

)
−G′3n

(
Ω̂ρ

(
θ̂3

)−1
− Ω−1

3n

)
Ĝ
(
θ̄3

)
−G′3nΩ−1

3n

(
Ĝ
(
θ̄3

)
−G3n

)

(
θ̂3 − θ3n

)
,

for all n large enough, where the second equality follows from (32) and an expansion around λ̂
(
θ̂3

)
= 0

(λ̄3 is a point on the line joining λ̂
(
θ̂3

)
and 0), and the third equality follows from an expansion around

θ̂3 = θ3n (θ̄3 is a point on the line joining θ̂3 and θ3n). Note that for a.e. xn ∈ B3n ∩BGn ∩BHn ∩BΩn

with any ε small enough so that {θ ∈ Θ : |θ − θ0| < ε} ⊂ N , a similar argument to (20) yields∣∣∣Ĝ(θ̂3

)
−G3n

∣∣∣ ≤ C |θ3n − θ0|β + |G| ,
∣∣∣∣Ω̂ρ

(
θ̂3

)−1
− Ω−1

3n

∣∣∣∣ ≤ C (∣∣∣θ̂3 − θ3n

∣∣∣β + t3n

)
,∣∣Ω−1

3n

∣∣ ≤ C |θ3n − θ0|β +
∣∣Ω−1

∣∣ , |I3n| ≤ C
(
|θ3n − θ0|+ |θ3n − θ0|β

)
+ |I3| .

Thus, for a.e. xn ∈ B3n ∩BGn ∩BHn ∩BΩn with any ε small enough and n large enough,∣∣∣∣∣ 1n
n∑
i=1

Y3in + T3n

∣∣∣∣∣ ≤ C (|T3n|β + t3n

) ∣∣∣∣∣ 1n
n∑
i=1

Y3in

∣∣∣∣∣+ C

{
|T3n|β + t3n +

(
|T3n|β + t3n

)2
}
|T3n| .

Therefore, the same argument to the proof of Theorem 3.1 yields the conclusion.
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