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Abstract

We provide a limit theory for a general class of kernel smoothed U statistics that
may be used for specification testing in time series regression with nonstationary
data. The framework allows for linear and nonlinear models of cointegration and
regressors that have autoregressive unit roots or near unit roots. The limit theory
for the specification test depends on the self intersection local time of a Gaussian
process. A new weak convergence result is developed for certain partial sums of
functions involving nonstationary time series that converges to the intersection local
time process. This result is of independent interest and useful in other applications.
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1 Introduction

One of the advantages of nonparametric modeling is the opportunity for specification test-

ing of particular parametric models against general alternatives. The past three decades

have witnessed many developments in such specification tests involving nonparametric

and semiparametric techniques that allow for independent, short memory, and long range

dependent data. Recent research on the nonparametric modeling of nonstationary data

∗Wang acknowledges partial research support from Australian Research Council. Phillips acknowl-
edges research support from the NSF under Grant SES 09-56687.
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opens up some new possibilities that seem relevant to applications in many fields includ-

ing nonlinear diffusion models in continuous time (Bandi and Phillips, 2003; 2007) and

cointegration models in economics and finance.

Cointegration models were originally developed in a linear parametric framework (En-

gle and Granger, 1987) in econometrics that has been widely used in applications. That

framework was extended in Park and Phillips (1999, 2001) to allow for nonlinear paramet-

ric formulations under certain restrictions on the function nonlinearity. While consider-

ably broadening the class of allowable nonstationary models, the potential for parametric

misspecification in these models is still present and is important to test in applied work.

The hypothesis of linear cointegration is of particular interest in this context given the

vast empirical literature. Recent papers by Karlsen, Mykelbust and Tjøstheim (2007),

Wang and Phillips (2009a, 2009b, 2010), and Schienle (2008) have developed asymptotic

theory for nonparametric kernel regression of nonlinear cointegrated systems. This work

facilitates the comparison of various parametric specifications against a more general

nonparametric nonlinear alternative. Such comparisons may be based on weighted sums

of squared differences between the parametric and nonparametric estimates of the system

or on a kernel-based U statistic test which uses a smoothed version of the parametric

estimator in its construction (e.g, Gao, 2007, chapter 3).

A major obstacle in the development of such specification tests is the technical dif-

ficulty of developing a limit theory for these weighted sums which typically involve ker-

nel functions with multiple nonstationary regressor arguments. Few results are currently

available and because of this shortage, attempts to develop specification tests for nonlinear

models with nonstationarity have been highly specific and do not involve nonparametric

alternatives or kernel methods. Some examples of recent work in parametric models in-

clude Choi and Saikonnen (2004, 2009), Marmer (2008), Hong and Phillips (2010) and

Kasparis and Phillips (2009). An exception is the recent work for testing linearity in

autoregression and parametric time series regression by Gao et al. (2009a, 2009 b) who

obtained a limit distribution theory for a kernel based specification test in a setting that

involves martingale difference errors and random walk regressors.

The present paper makes a similar contribution and seeks to provide a general theory

of specification tests that is applicable for a wider class of nonstationary regressors that

includes both unit root and near unit root processes. The paper contributes to this

emerging literature in two ways. First, we provide a limit theory for a general class of
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kernel based specification tests of parametric nonlinear models that allows for near unit

root processes driven by short memory (linear process) errors. This limit theory should

be widely applicable to specification testing in nonlinear cointegrated systems.

Second, the limit theory of the specification test involves the self-intersection local

time of a Gaussian limit process. The result requires establishing weak convergence to

this self-intersection local time process, which is of independent interest, and a feasible

central limit theorem involving an empirical estimator of the intersection local time that

can be used to construct the test statistic. Thus, the results provide some new theory

for intersection local time, weak convergence, and specification test asymptotics that are

relevant in applications.

The paper is organized as follows. Section 2 lays out the nonparametric and parametric

models and assumptions. Section 3 gives the main results on specification test limit theory.

Section 4 provides the weak convergence theory for intersection local time. Section 5 gives

proofs of the local time limit theory, Section 6 gives proofs of the main results of the

paper, and Section 7 provides some supplemental technical results which are needed for

the development.

2 Model and Assumptions

We consider the nonlinear cointegrating regression model

yt+1 = f(xt) + ut+1, t = 1, 2, ..., n, (2.1)

where ut is a stationary error process and xt is a nonstationary regressor. We are interested

in testing the null hypothesis:

H0 : f(x) = f(x, θ), θ ∈ Ω0,

for x ∈ R, where f(x, θ) is a given real function indexed by a vector θ of unknown

parameters which lie in the parameter space Ω0.

To test H0 we make use of the following kernel-smoothed test statistic

Sn =
n∑

s,t=1,s 6=t

ût+1ûs+1 K
[
(xt − xs)/h

]
, (2.2)

involving the parametric regression residuals ût+1 = yt+1− f(xt, θ̂), where K(x) is a non-

negative real kernel function, h is a bandwidth satisfying h ≡ hn → 0 as the sample size

n →∞ and θ̂ is a parametric estimator of θ that is consistent under the null.

3



The statistic Sn in (2.2) has commonly been applied to test parametric specifications

in stationary time series regression (see Gao, 2007) and was used by Gao et al (2009a,

2009b) to test for linearity in autoregression and a parametric conditional mean function

in time series regression involving a random walk regressor.

Sn is a weighted U statistic with kernel weights that depend on standardized differ-

entials (xt − xs)/h of the regressor. The weights focus attention in the statistic on those

components in the sum where the nonstationary regressor xt nearly intersects itself. This

smoothing scheme gives prominence to product components ût+1ûs+1 in the sum where

s and t may differ considerably but for which the corresponding regressor process takes

similar values (that is, xt, xs ' x for some x), thereby enabling a test of H0.

The difficulty in the development of an asymptotic theory for Sn stems from the pres-

ence of the kernel weights K((xt − xs)/h) which focus on the self intersection properties

of xt in the sample. As n → ∞, this translates into the corresponding self intersection

properties of the stochastic process to which a standardized version of xt converges. To

establish asymptotics for Sn, we need to account for the limit behavior of this self inter-

section factor, which leads to a limit theory involving the self intersection local time of a

Gaussian process.

We use the following assumptions in our development.

Assumption 1. (i) {εt}t∈Z is a sequence of independent and identically distributed ( iid)

continuous random variables with Eε0 = 0, Eε2
0 = 1, and with the characteristic function

ϕ(t) of ε0 satisfying |t||ϕ(t)| → 0, as |t| → ∞. (ii)

xt = ρ xt−1 + ηt, x0 = 0, ρ = 1 + κ/n, 1 ≤ t ≤ n, (2.3)

where κ is a constant and ηt =
∑∞

k=0 φkεt−k with φ ≡
∑∞

k=0 φk 6= 0 and
∑∞

k=0 k1+δ|φk| <
∞ for some δ > 0.

Assumption 2. (i) {ut,Ft}t≥1, where Ft is a sequence of increasing σ-fields which is

independent of εk, k ≥ t + 1, forms a martingale difference satisfying E(u2
t+1|Ft) →a.s.

σ2 > 0 as t →∞ and supt≥1 E(|ut+1|4 | Ft) < ∞. (ii) xt is adapted to Ft and there exists

a correlated vector Brownian motion (W, V ) such that

( 1√
n

[nt]∑
j=1

εj,
1√
nσ

[nt]∑
j=1

uj+1

)
⇒D (W, V ) (2.4)

on D[0, 1]2 as n →∞.
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Assumption 3. K(x) is a nonnegative real function satisfying supx K(x) < ∞ and∫
|x|max{[β]+1,k+1K(x)dx < ∞, where β ≥ 0 and k ≥ 0 appear below in Assumption 4.

Assumption 4. (i) Under the null hypothesis H0, there is a sequence of positive real

numbers δn satisfying δn → 0 as n → ∞ such that supθ0∈Ω0
||θ̂ − θ0|| = oP (δn), where

|| · || denotes the Euclidean norm. (ii) There exists some ε0 > 0 such that ∂2f(x,θ)

∂θ2 is

continuous in both x ∈ R and θ ∈ Θ0, where Θ0 = {θ : ||θ − θ0|| ≤ ε0, θ0 ∈ Ω0}. (iii)

Uniformly for θ0 ∈ Ω0,∣∣∣∣∣∣∣∣∂f(x, θ)

∂θ
|θ=θ0

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣∂2f(x, θ)

∂θ2 |θ=θ0

∣∣∣∣∣∣∣∣ ≤ C(1 + |x|β),

for some constants β ≥ 0 and C > 0. (iv) Uniformly for θ0 ∈ Ω0, there exist 0 < γ ≤ 1

and an integer k ≥ 0 such that

‖g(x + y, θ0)− g(x, θ0)‖ ≤ C|y|
{

1 + |x|β−1 + |y|k, if β > 0,
1 + |x|γ−1 + |y|k, if β = 0,

for any x, y ∈ R, where g(x, θ) = ∂f(x,θ)
∂θ

.

Assumption 5. nh2 → ∞, δ2
nn

1+β
√

h → 0 and nh4 log2 n → 0, where β and δ2
n are

defined as in Assumption 4. Also E|ε0|ν < ∞, where ν = max{[4β]+1, 2[β]+2} with [β]

denoting the integer part of β.

Assumption 1 allows for both a unit root (κ = 0) and a near unit root (κ 6= 0) regressor

by virtue of the localizing coefficient κ and is standard in the near integrated regression

framework (Phillips, 1987, 1988; Chan and Wei, 1987). Compared to the estimation the-

ory developed in Wang and Phillips (2009a, b) and for technical convenience in the present

work we impose the stronger summability condition
∑∞

k=0 k1+δ|φk| < ∞ for some δ > 0

on the coefficients of the linear process ηt =
∑∞

k=0 φkεt−k driving the regressor xt. Under

these conditions, it is well known that the standardized process x[nt],n = x[nt]/
√

nφ con-

verges weakly to the Gaussian process G (t) =
∫ t

0
eκ(t−s)dW (s), where W (t) is a standard

Brownian motion. See (4.2) below.

Assumption 2 (i) is a standard martingale difference condition on the equation inno-

vations ut, so that cov(ut+1, xt) = E[xtE(ut+1 | Ft)] = 0. Wang and Phillips (2009b)

allowed for endogeneity in their nonparametric structure, so the equation error could be

serially dependent and cross-correlated with xt for |t − s| ≤ m0 for some finite m0. It is

not clear at the moment if the results of the present paper on testing extend to the more

general error structure considered in Wang and Phillips (2009b). Assumption 2 (ii) is a

standard functional law for partial sums of linear processes (e.g. Phillips and Solo, 1992).
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Assumption 3 is a standard condition on K(x) as in the stationary situation. The

integrability condition is weaker than the common alternative requirement that K(x) has

compact support.

As seen in Assumption 5, the sequence δn in Assumption 4(i) may be chosen as δ2
n =

n−(1+β)/2h−1/8. As h → 0, Assumption 4(i) holds under very general conditions, such

as those of Theorem 5.2 in Park and Phillips (2001). Roughly speaking, we may choose

θ̂ under the null such that supθ0∈Ω0
||θ̂ − θ0|| = OP (n−(1+β)/2), under our Assumption

4(ii)-(iv). Assumptions 4(ii)-(iv) are quite weak and include a wide class of functions.

Typical examples include polynomial forms like f(x, θ) = θ1 + θ2x + ... + θkx
k−1, where

θ = (θ1, ..., θk), power functions like f(x, α, β, γ) = α + β xγ, shift functions like f(x, θ) =

x(1 + θx)I(x ≥ 0), and weighted exponentials such as f(x, α, β) = (α + β ex)/(1 + ex).

However, Assumption 4 excludes models where f(x, θ) is integrable, because parametric

rates of convergence are known to be O
(
n1/4

)
in this case (see Park and Phillips, 2001).

It seems that cases with integrable f(x, θ) require different techniques and these are left

for future investigation.

As in estimation theory, the condition in Assumption 5 that the bandwidth h satisfy

nh2 → ∞ is necessary. The further condition that nh4 log2 n → 0 restricts the choice

of h and, at least with the techniques used here, it seems difficult to relax. We also

impose a higher moment condition on the innovation ε0 in Assumption 5 which helps in

the development of the limit theory.

3 Main Results on Specification

Our main result shows that Sn has a mixture normal distribution with a (variance) mixing

variate that depends on the intersection local time process of G (t) =
∫ t

0
eκ(t−s)dW (s). This

process is defined as

LG(t, u) = lim
ε→0

1

2ε

∫ t

0

∫ t

0

1[|(G(x)−G(y))− u| < ε]dxdy

=

∫ t

0

∫ t

0

δu[G(x)−G(y)]dxdy, (3.1)

where δu is the dirac function. LG(t, u) characterizes the amount of time over the interval

[0, t] that the process G (t) spends at a distance u from itself, and is well defined as shown

in Section 5. When u = 0, LG(t, 0) describes the self-intersection time of the process

G (t) . Using the definition of the dirac function, the extended occupation times formula
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(e.g. Revuz and Yor, 1999, p.232), and integration by parts with the local time measure,

we may write

LG(t, 0) = 2

∫ t

0

∫ y

0

δ0[G(x)−G(y)]dxdy

= 2

∫ t

0

`G (s, G (s)) ds

= 2

∫ ∞

−∞

∫ t

0

`G (s, a) d`G (s, a) da

=

∫ ∞

−∞
`G (t, a)2 da, (3.2)

where `G (t, a) is the local time spent by the process G at a over the time interval [0, t] ,

viz.

`G (t, a) =

∫ t

0

δa[G(s)]ds = lim
ε→0

1

2ε

∫ t

0

1[|G(s)− a| < ε]ds.

The process `G (s, G (s)) is the local time that the process G has spent at its current

position G (s) over the time interval [0, s] . It appears in the limit theory for nonparametric

nonstationary spurious regression (Phillips, 2009). Aldous (1986) gave (3.2) for the case

of Brownian motion.

Our main result follows.

THEOREM 3.1. Under Assumptions 1-5, we have

Sn

τn

→D η N

where τ 2
n = (8φ)−1 σ4 n3/2h

∫∞
−∞ K2(x)dx, η2 = LG(1, 0) is defined as in (3.2) denoting

the self intersection local time generated by the process G(t) =
∫ t

0
eκ(t−s)dW (s), and N is

a standard normal variate which is independent of η2.

It is readily seen that Sn may be decomposed as

Sn =
n∑

i,t=1
i6=t

[ui+1 + f(xi, θ)− f(xi, θ̂)] [ut+1 + f(xt, θ)− f(xt, θ̂)]K
[
(xt − xi)/h

]
=

n∑
i,t=1
i6=t

ui+1ut+1K
[
(xt − xi)/h

]
+ 2

n∑
i,t=1
i6=t

ui+1

[
f(xt, θ)− f(xt, θ̂)

]
K

[
(xt − xi)/h

]
+

n∑
i,t=1
i6=t

[
f(xi, θ)− f(xi, θ̂)

] [
f(xt, θ)− f(xt, θ̂)

]
K

[
(xt − xi)/h

]
= S1n + 2S2n + S3n, say. (3.3)
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It will be proved in Section 6.2 that terms S2n and S3n are negligible in comparison

with S1n. Therefore the limit theory of S1n plays a key role in the proof of Theorem

3.1. The following theorem gives a joint convergence result for S1n and its conditional

variance, which is of some independent interest.

THEOREM 3.2. Under Assumptions 1-3 and when nh2 → ∞ and nh4 log2 n → 0, we

have ( 1

σ dn

n∑
t=2

ut+1 Ynt,
1

d2
n

n∑
t=2

Y 2
nt

)
→D (η N, η2)

where Ynt =
∑t−1

i=1 ui+1K
[
(xt − xi)/h

]
, η2 = LG(1, 0) is the self intersection local time

generated by the process G =
∫ t

0
eκ(t−s)dW (s), N is a standard normal variate which is

independent of η2, and d2
n = (2 φ)−1σ2n3/2h

∫∞
−∞ K2(x)dx..

It is interesting to note that S1n is a martingale sequence with conditional variance∑n
t=2 Y 2

nt, suggesting that some version of the martingale central limit theorem (e.g. Hall

and Heyde, 1980, chapter 3) may be applicable. However, the problem is complicated by

the U statistic structure and the weak convergence of the conditional variance and use of

existing limit theory seems difficult. To investigate the asymtotics of S1n, we therefore

develop our own approach.

As part of this development, the next section provides a general weak convergence

theory to intersection local time. The condition required for this development is weaker

than the Assumption 1 used in establishing Theorem 3.1 and that section may be read

separately.

The result in Theorem 3.1 involves a standardization that depends on σ, which is the

limit of Eu2
t as t →∞. While convenient, this formulation obviously restricts direct use

of Theorem 3.1 in applications. However, the dependence on σ2 can be simply removed

by self-normalization. Define

V 2
n =

n∑
s,t=1,s 6=t

û2
t+1û

2
s+1 K2

[
(xt − xs)/h

]
.

We may prove, under Assumptions 1-5 and the null hypothesis, that

V 2
n

d2
n

=
2σ2

d2
n

n∑
t=2

Y 2
nt + oP (1)

=
σ4

d2
n

n∑
t,s=1
t6=s

K2
[
(xt − xs)/h

]
+ oP (1). (3.4)
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See Section 6.3. This result, together with Theorem 3.2, leads to the following feasible

central limit theorem that is useful in practical work.

THEOREM 3.3. Under Assumptions 1-5 and the null hypothesis, we have

Sn√
2 Vn

→D N (3.5)

It is interesting to note that the limit in Theorem 3.3 is normal and does not depend

on either of the parameters σ or φ. As a test statistic, Zn = Sn/
√

2 Vn therefore has a big

advantage in applications. We mention that, under very strict restrictions (namely that

xt is a random walk and xt is independent of ut), the result has been established in Gao

et al (2009a). We also mention that σ2 can be estimated by a localized version of the

usual residual based method, in particular

σ̂2
n =

∑n
t=1

[
yt − f̂(x)

]2
K[(xt − x)/h]∑n

t=1 K[(xt − x)/h]
,

where f̂(x) is a kernel estimate of f(x) defined by

f̂(x) =

∑n
t=1 ytK[(xt − x)/h]∑n
t=1 K[(xt − x)/h]

.

Under certain condition on f(x) and ut, we may prove σ2
n →P σ2. For more details in

this regard, we refer to Wang and Phillips (2009b).

4 Convergence to Intersection Local Time

Consider a linear process {ηj, j ≥ 1} defined by ηj =
∑∞

k=0 φk εj−k, where {εj, j ∈ Z} is a

sequence of iid random variables with Eε0 = 0 and Eε2
0 = 1, and the coefficients φk, k ≥ 0,

are assumed to satisfy
∑∞

k=0 |φk| < ∞ and φ ≡
∑∞

k=0 φk 6= 0. Let

yk,n = ρ yk−1,n + ηk, y0,n = 0, ρ = 1 + κ/n, (4.1)

where κ is a constant. The array yk,n, k ≥ 0, is known as a nearly unstable process or, in

the econometric literature, as a near-integrated time series. Write xk,n = yk,n/
√

nφ. The

classical invariance principle gives

x[nt],n ⇒ G(t) :=

∫ t

0

eκ(t−s)dW (s) = W (t) + κ

∫ t

0

eκ(t−s)W (s)ds, (4.2)

on D[0, 1], where W (t) is a standard Brownian motion (e.g. Phillips, 1987; Buchmann

and Chan, 2007; Wang and Phillips, 2009b). Furthermore, {εj, j ∈ Z} can be redefined
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on a richer probability space which also contains a standard Brownian motion W1(t) such

that

sup
0≤t≤1

|x[nt],n −G1(t)| = oP (1). (4.3)

where G1(t) = W1(t) + κ
∫ t

0
eκ(t−s)W1(s)ds. Indeed, by noting on the richer space that

sup
0≤t≤1

∣∣ 1√
n

[nt]∑
j=1

εj −W1(t)
∣∣ = oP (1) (4.4)

[see, e.g., Csörgö and Révész (1981)], and using this result in place of the fact that

1√
n

∑[nt]
j=1 εj ⇒ W (t) on D[0, 1], the same technique as in the proof of Phillips (1987) [see

also Chan and Wei (1987)] yields

sup
0≤t≤1

∣∣ 1√
n

[nt]∑
j=1

ρ[nt]−jεj −G1(t)
∣∣ = oP (1).

The result (4.3) can now be obtained by the same argument, with minor modifications,

as in the proof of Proposition 7.1 in Wang and Phillips (2009b).

The aim of this section is to investigate the asymptotic behavior of a functional S[nr]

of the xk,n, defined by

S[nr] =
cn

n2

[nr]∑
k,j=1

g
[
cn (xk,n − xj,n)

]
, (4.5)

where g is a real function on R, and cn is a certain sequence of positive constants. Under

certain conditions on g(x), ε0 and cn, it is established that, for each fixed 0 < r < 1, S[nr]

converges to an intersection local time process of G(t), Explicitly, we have the following

main result.

THEOREM 4.1. Suppose that
∫∞
−∞ |g(x)|dx < ∞, ω ≡

∫∞
−∞ g(x)dx 6= 0 and

∫∞
−∞ |Eeitε0|dt <

∞. Then, for any cn →∞, n/cn →∞ and fixed r ∈ [0, 1],

S[nr] →D ω LG(r, 0), (4.6)

where LG(t, u) is the intersection local time of G(t) defined in (3.1) Furthermore, under

the same probability probability space for which (4.3) holds, we have that, for any cn →∞
and n/cn →∞,

sup
0≤r≤1

∣∣∣S[nr] − ω LG1(r, 0)
∣∣∣ →P 0. (4.7)
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The integrability condition on the characteristic function of ε0 can be weakened if we

place further restrictions on g(x). Indeed we have the following theorem.

THEOREM 4.2. Theorem 4.1 still holds if
∫∞
−∞ |Eeitε0|dt < ∞ is replaced by the Cramér

condition, i.e., lim sup|t|→∞ |Eeitε0| < 1, and in addition to the stated conditions already

on g(x) we have |g(x)| ≤ M/(1 + |x|1+b) for some b > 0 , where M is a constant.

It is interesting to notice that the additional condition on g(x) in Theorem 4.2 cannot

be reduced without further restriction on ε0 like that in Theorem 4.1. This claim can

be explained as in Example 4.2.2 of Borodin and Ibragimov (1995) with some minor

modifications. On the other hand, the asymptotic behavior of S[nr] when cn = 1 is quite

different, as seen in the following theorem.

THEOREM 4.3. Suppose that g(x) is Borel measurable function satisfying

lim
h→0

∫ K

K

|x|α−1 sup
|u|≤h

|g(x + u)− g(x)|dx = 0, (4.8)

for all K > 0 and some 0 < α ≤ 1. Then, under the same probability space for which

(4.3) holds, we have

sup
0≤r≤1

∣∣∣ 1

n2

[nr]∑
k,j=1

g
(
xk,n − xj,n

)
−

∫ r

0

∫ r

0

g[G1(u)−G1(v)]dudv
∣∣∣ = oP (1). (4.9)

We mention that the condition (4.8) is quite weak. Indeed, the same example as in

Berkes and Horváth (2006) shows that (4.8) cannot be replaced by

lim
h→0

∫ K

K

|x|α−1|g(x + u)− g(x)|dx = 0,

for all K > 0 and some 0 < α ≤ 1.

Local time has figured in much recent work on parametric and nonparametric esti-

mation with nonstationary data. Motivated by nonlinear regression with integrated time

series (Park and Phillips, 1999, 2001) and nonparametric estimation of nonlinear coin-

tegration models, many authors (Phillips and Park, 1998; Karlsen and Tjøstheim, 2001;

Karlsen et al., 2007); Wang and Phillips, 2009a) have used or proved weak convergence to

the local time of a stochastic process, including results of the following type: under certain

conditions on the function g, the limiting stochastic process G(t), a sequence cn → ∞,

and normalized data xk,n

cn

n

[nr]∑
k=1

g(cn xk,n) →D ω `G(1, 0), (4.10)

11



where `G(t, s) is the local time of the process G(t) at the spatial point s. We refer to

Borodin and Ibragimov (1995) (and its references for related work) for the particular

situation where cnxk,n is a partial sum of iid random variables, and to Akonom (1993),

Phillips and Park (1998), Jeganathan (2004), and De Jong and Wang (2005) for the case

where cnxk,n is a partial sum of a linear process. Wang and Phillips (2009a, theorem 2.1)

generalized these results to include not only linear process partial sums but also cases

where cnxk,n is a partial sum of a Gaussian process, including fractionally integrated time

series.

Our present research on the statistic S[nr] in (4.5) has a similar motivation to this

earlier work on convergence to a local time process. However, the statistic S[nr] has

a much more complex U statistic form and the technical difficulties of establishing weak

convergence are greater. The approach of Wang and Phillips (2009a, theorem 2.1) remains

useful, however, and is implemented in the proofs of Theorems 3.1-3.3.

Finally we mention some earlier work investigating the intersection local time process

and weak convergence for certain specialized situations. This work restricts the function

g in (4.5) to the indicator function and the discrete process yk,n in (4.1) to a lattice

random walk taking integer values. See, for instance, Aldous (1986), van der Hofstad, et

al. (1997), van der Hofstad and Wolfgang (2001), and van der Hofstad, et al. (2003). The

present paper seems to the first to consider weak convergence to intersection local time

for a general linear process and a general function g.

5 Proofs of Local Time Convergence

Here and elsewhere in the paper we let C, C1, C2, ... be constants that may differ at each

appearance. In order to prove Theorems 4.1-4.3, we first claim that, for any finite t, x,

LG(t, x) can be defined as an L2 limit of LN
G (t, x) := L−N,N

G (t, x) as N →∞, where

LM,N
G (t, x) =

1

2π

∫ N

M

e−i ux

∫ t

0

∫ t

0

eiu[G(s)−G(s1)]ds ds1 du. (5.1)

In this regard, it suffices to show that, for any fixed t, x,

E|LM,N
G (t, x)|2 → 0, (5.2)

12



as M, N →∞. Indeed, the result (5.2) implies the L2 convergence of LN
G (t, x). Hence, in

the framework of L2-theory, we have

lim
N→∞

LN
G (t, x) =

1

2π

∫ ∞

−∞
e−i ux

∫ t

0

∫ t

0

eiu(G(s)−G(s1)ds ds1 du

=
1

2π

∫ ∞

−∞
e−i ux

∫ ∞

−∞
eiuyLG(t, y)dy du

=

∫ ∞

−∞
LG(t, y)dy

1

2π

∫ ∞

−∞
eiu(y−x)du

= LG(t, x),

which implies the claim. To prove (5.2), note that

E|LM,N
G (t, x)|2 =

1

(2π)2

∫ N

M

∫ N

M

ei (u1−u)x

∫ t

0

∫ t

0

∫ t

0

∫ t

0

Eeiu[G(s)−G(s1)]−iu1[G(s2)−G(s3)]

ds ds1 ds2 ds3 du du1

≤ C
∑

ij∈{1,2,3,4}
i1 6=i2 6=i3 6=i4

∫ N

M

∫ N

M

Πi1,i2,i3,i4(u, u1) dudu1, (5.3)

where, with fi1,i2,i3,i4(u, u1) = Eeiu[G(xi1
)−G(xi2

)]−iu1[G(xi3
)−G(xi4

)],

Πi1,i2,i3,i4(u, u1) =

∫
...

∫
0<x1<x2<x3<x4<t

∣∣ fi1,i2,i3,i4(u, u1)
∣∣ dx1 dx2 dx3 dx4 .

The result (5.2) will follow if each term in the right hand of (5.3) converges to 0, as

M, N → ∞. Only consider i1 = 4, i3 = 3, i2 = 2, i4 = 1, and without loss of generality,

assume t = 1. All others are similar except more simpler. Note that, for any s1 ≤ s2,

G(s2) =

∫ s2

0

eκ(s2−u)dW (u) = eκ(s2−s1) G(s1) +

∫ s2

s1

eκ(s2−u)dW (u).

Write G∗(s1, s2) =
∫ s2

s1
eκ(s2−u)dW (u). Simple calculations show that G∗(s1, s2) ∼ N(0, σ2

s1s2
)

where σ2
s1s2

=
∫ s2

s1
e2κ(s2−u)du ≥ γ0(s2 − s1) for some γ0 > 0. This, together with the in-

dependence between G(s1) and G∗(s1, s2), yields that, for 0 < x1 < x2 < x3 < x4 ≤ 1

|f4,2,3,1(u, u1)| = |E exp
{
iuG(x4)− iu1G(x3)− iuG(x2) + iu1G(x1)

}
|

= |E exp
{
iuG∗(x3, x4) + i(ueκ(x4−x3) − u1)G(x3)− iuG(x2) + iu1G(x1)

}
|

≤ |E exp
{
iuG∗(x3, x4) + i(ueκ(x4−x3) − u1)G

∗(x2, x3)
}
|

≤ exp
{
− γ0u

2(x4 − x3)/2− γ0(ueκ(x4−x3) − u1)
2(x3 − x2)/2

}
.

13



Hence it is readily seen that∫ N

M

∫ N

M

Π4,2,3,1(u, u1) dudu1

≤
∫ N

M

∫ N

M

∫ 1

0

∫ 1

0

exp
{
− γ0u

2x/2− γ0(ueκx − u1)
2y/2

}
dxdydudu1

≤
∫ N

M

∫ 1

0

exp
{
− γ0u

2x/2
}

dxdu

∫ ∞

−∞

∫ 1

0

exp
{
− γ0u

2
1y/2

}
dydu1

≤ C

∫ N

M

u−2du → 0,

as M, N →∞, as required.

Proof of Theorem 4.1. We first prove the results (4.6) and (4.7) under an additional

condition:

Con: g(x) is continuous and ĝ(t) has a compact support,

where ĝ(x) =
∫∞
−∞ eixtg(t)dt. (5.4)

To start, noting that g(x) = 1
2π

∫∞
−∞ eitxĝ(−t)dt, we have

cn

n2

[nr]∑
k,j=1

g
[
cn (xk,n − xj,n)

]
=

1

2πn2

[nr]∑
k,j=1

∫ ∞

−∞
ĝ(−s/cn) eis (xk,n−xj,n)ds

= R1n(r) + R2n(r), (5.5)

where, for some A > 0,

R1n(r) =
1

2πn2

[nr]∑
k,j=1

∫
|s|≤A

ĝ(−s/cn) eis (xk,n−xj,n)ds,

R2n(r) =
1

2πn2

[nr]∑
k,j=1

∫
|s|>A

ĝ(−s/cn) eis (xk,n−xj,n)ds.

Furthermore, R1n(r) can be written as

R1n(r) =
1

2π

∫
|s|≤A

ĝ(−s/cn)

∫ r

0

∫ r

0

eis (x[nu],n−x[nv],n)du dv ds + oP (1).

Recall cn → ∞. It is readily seen that sup|s|≤A |ĝ(−s/cn) − ĝ(0)| → 0 for any fixed

A > 0. Hence, by recalling (4.2), it follows from the continuous mapping theorem that,

for any A > 0 and fixed r,

R1n(r) →D
ĝ(0)

2π

∫
|s|≤A

∫ r

0

∫ r

0

eis[G(u)−G(v)]dudv ds, (5.6)
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as n →∞. On the other hand, under the same probability space used in (4.3), we have

sup
0≤r≤1

∣∣R1n(r)− ĝ(0)

2π

∫
|s|≤A

∫ r

0

∫ r

0

eis[G1(u)−G1(v)]dudv ds
∣∣

≤ 1

2π

∫
|s|≤A

∣∣ĝ(−s/cn)− ĝ(0)
∣∣ds

+
|ĝ(0)|
2π

∫
|s|≤A

∫ 1

0

∫ 1

0

∣∣eis(x[nu],n−G1(u)+x[nv],n−G1(v)) − 1
∣∣dudvds

≤ o(1) + O(1) sup
0≤u≤1

|x[nu],n −G1(u)| = oP (1). (5.7)

By (5.6) and (5.7), noting that ĝ(0) = ω and, as A →∞, 1
2π

∫
|s|≤A

∫ r

0

∫ r

0
eis[G(u)−G(v)]dudv ds

converges to LG(r, 0) in L2 uniformly on r ∈ [0, 1], the results (4.6) and (4.7) will follow

under the additional condition (5.4), if we prove

sup
0≤r≤1

E|R2n(r)|2 → 0, (5.8)

as n →∞ first and then A →∞.

In order to prove (5.8), we need some preliminaries. Write η′r =
∑r

q=1 εqφr−q and

y′λ,n =
λ∑

r=1

ρλ−rη′r =
λ∑

q=1

εq

λ−q∑
r=0

ρλ−q−rφr =
λ∑

q=1

εq a(λ− q),

where a(v) =
∑v

r=0 ρv−rφr. Simple calculations show that, whenever k ≥ j ≥ l ≥ m,

s (y′k,n − y′j,n)− t (y′l,n − y′m,n)

= s
k∑

q=j+1

εq a(k − q) + s

j∑
q=l+1

εq [a(k − q)− a(j − q)]

+
l∑

q=m+1

εq

{
s [a(k − q)− a(j − q)]− t a(l − q)

}
+

m∑
q=1

εq

{
s [a(k − q)− a(j − q)]− t [a(l − q)− a(m− q)]

}
.

By virtue of the independence between εq, it follows that, whenever k ≥ j ≥ l ≥ m,∣∣∣E exp
{[

is (y′k,n − y′j,n)− it (y′l,n − y′m,n)
]}∣∣∣ ≤ I1(s) I2(s, t),

where

I1(s) =
∣∣∣E exp

{
is

k∑
q=j+1

εq a(k − q)
}∣∣∣,

I2(s, t) =
∣∣∣E exp

(
i

l∑
q=m+1

εq

{
s [a(k − q)− a(j − q)]− t a(l − q)

})∣∣∣.
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We may claim that there exist constants γ1 > 0 and γ2 > 0 such that∫
|s|≥A

I1

( s√
nφ

)
|ĝ(−s/cn)|ds ≤ C

[
cn e−γ1

√
k−j +

∫
|s|≥A

e−γ2 (k−j+1)s2/nds
]
, (5.9)

and for each s ∈ R,∫
|t|≥A

I2

( s√
nφ

,
t√
nφ

)
|ĝ(−t/cn)|dt ≤ C

[
cn e−γ1

√
l−m +

∫
e−γ2(l−m+1)t2/n dt

]
.(5.10)

In order to prove (5.10), write Ω1 (Ω2, respectively) for the set of m ≤ q ≤ (l +m)/2 such

that

|s [a(k − q)− a(j − q)]− t a(l − q)| ≥
√

n|φ|

(|s [a(k − q)− a(j − q)]− t a(l − q)| <
√

n|φ|, respectively). Also let

B1 =
∑
q∈Ω2

a(l − q)2, B2 =
∑
q∈Ω2

a(l − q)[a(k − q)− a(j − q)]

and B3 =
∑

q∈Ω2
[a(k − q)− a(j − q)]2. By Hölder’s inequality, B2

2 ≤ B3B1 and hence∑
q∈Ω2

{
s [a(k − q)− a(j − q)]− t a(l − q)

}2

= s2B3 − 2s tB2 + t2 B1 = B1(t− s B2/B1)
2 + s2(B3 −B2

2/B1)

≥ B1(t− sB2/B1)
2.

Next, using the fact that there exist constants γ′1 > 0 and γ′2 > 0 such that

∣∣Eei ε1 t
∣∣ ≤

{
e−γ′1 if |t| ≥ 1,

e−γ′2t2 if |t| ≤ 1,
(5.11)

since Eε1 = 0, Eε2
1 = 1 and ε1 satisfies the Cramér condition lim sup|t|→∞ |Eeitε1| < 1, it

follows from the independence of εt that, for all l ≥ m,

I2

( s√
nφ

,
t√
nφ

)
≤ exp

{
− γ′1#(Ω1)− γ′2 (nφ2)−1

∑
q∈Ω2

{
s [a(k − q)− a(j − q)]− t a(l − q)

}2}
≤ exp

{
− γ′1#(Ω1)− γ′2 B1 (nφ2)−1 (t− sB2/B1)

2
}
, (5.12)

where #(A) denotes the number of elements in A. Note that Ω1 + Ω2 = (l −m)/2 and

|a(v)| ≥ e−|κ||φ|/4 for all sufficiently large v [see (7.14) in Wang and Phillips (2009b)]. It is

readily seen that, there exists a n0 such that for all l−m ≥ n0, B1 ≥ C (l−m), whenever
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#(Ω1) ≤
√

l −m. Using these facts in (5.12), we find that, whenever l −m ≥ n0,∫
|t|≥A

I2

( s√
nφ

,
t√
nφ

)
|ĝ(−t/cn)|dt

≤
∫

#(Ω1)≥
√

l−m

e−γ′1#(Ω1)| ĝ(−t/cn)|dt + C

∫
#(Ω1)≤

√
l−m

e−γ′2 B1 (nφ2)−1 (t−sB2/B1)2 dt

≤ C cn e−γ′1
√

l−m

∫
|ĝ(t)| dt + C1

∫
e−C γ′2 (l−m)t2/n dt

)
≤ C2

[
cn e−γ1

√
l−m +

∫
e−γ2(l−m+1)t2/n dt

]
,

for some γ1 > 0 and γ2 > 0. This prove (5.10), since (5.10) is obvious if 0 ≤ l −m ≤ n0.

Similarly, it follows from (5.11) and the fact that |a(v)| ≥ e−|κ||φ|/4 for all sufficiently

large v that, there exist ε > 0 and n1 such that for all k − j ≥ n1, if |s| ≥ ε
√

n, then

I1

( s√
nφ

)
≤ e−γ′1(k−j)/2,

and if |s| ≤ ε
√

n, then

I1

( s√
nφ

)
≤ e−C γ′2s2

Pk
q=j+1 a(k−q)2/n ≤ e−γ1 (k−j+1)s2/n,

for some γ2 > 0. By virtue of these facts, it is readily seen that∫
|s|≥A

I1

( s√
nφ

)
|ĝ(−s/cn)|ds

≤ e−γ1(k−j)/2

∫
|s|≥ε

√
n

|ĝ(−s/cn)|ds +

∫
A≤|s|≤ε

√
n

e−γ2 (k−j+1)s2/nds

≤ C
[
cn e−γ1

√
k−j +

∫
|s|≥A

e−γ2 (k−j+1)s2/nds
]
.

which yields (5.9).

We are now ready to prove (5.8). Write η′′r =
∑0

q=−∞ εqφr−q. Note that ηr = η′r + η′′r .

Simple calculations show that

s (xk,n − xj,n)− t (xl,n − xm,n) = s (y′k,n − y′j,n)− t (y′l,n − y′m,n) + F (ε0, ε−1, ...),

where F (ε0, ε−1, ...) depends only on εj, j ≤ 0, which is independent of s (y′k,n − y′j,n) −
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t (y′l,n − y′m,n). It now follows from (5.9) and (5.10) that

E|R2n(r)|2 ≤ C

n4

n∑
k,j,l,m=1

∫
|s|≥A

∫
|t|≥A

|ĝ(−s/cn)| |ĝ(−t/cn)|∣∣∣E[
eis (xk,n−xj,n) e−it (xl,n−xm,n)

]∣∣∣ ds dt

≤ C

n4

n∑
k,j,l,m=1

∫
|s|≥A

∫
|t|≥A

|ĝ(−s/cn)| |ĝ(−t/cn)|∣∣∣E exp
{[

is (y′k,n − y′j,n)− it (y′l,n − y′m,n)
]}∣∣∣ ds dt

≤ C1

n4

∑
k≥j≥l≥m

∫
|s|≥A

I1

( s√
nφ

)
|ĝ(−s/cn)|ds

∫
|t|≥A

I2

( s√
nφ

,
t√
nφ

)
|ĝ(−t/cn)|dt

≤ C2

n4

∑
1≤j≤k≤n

[
cn e−γ1

√
k−j +

∫
|s|≥A

e−γ2 (k−j+1)s2/nds
]

×
∑

1≤m≤l≤n

[
cn e−γ1

√
l−m +

∫
e−γ2(l−m+1)t2/n dt

]
≤ C2

[ cn

n2

∑
1≤j≤k≤n

e−γ1

√
k−j +

∫
|s|≥A

1

n2

∑
1≤j≤k≤n

e−γ2 (k−j+1)s2/nds
]

×
[ cn

n2

∑
1≤m≤l≤n

e−γ1

√
l−m +

∫
1

n2

∑
1≤m≤l≤n

e−γ2 (l−m+1)s2/nds
]

≤ C3

[cn

n
+

∫
|s|≥A

∫ 1

0

∫ u

0

e−γ2 (u−v)s2

dvdu ds
]

×
[cn

n
+

∫ ∫ 1

0

∫ u

0

e−γ2 (u−v)s2

dvdu ds
]

→ 0,

when n → ∞ first and then A → ∞. This proves (5.8), and hence the results (4.6) and

(4.7) under the additional condition (5.4).

We next remove the additional condition (5.4). Recall
∫∞
−∞ |g(x)|dx < ∞. We first

claim that, for any ε > 0, we may construct a gδ0(x) satisfying (5.4),
∫∞
−∞ |gδ0(x)|dx < ∞

and ∫ ∞

−∞
|g(x)− gδ0(x)|dx < ε. (5.13)

Since Theorem 4.1 holds true for gδ0(x), it remains to show that

cn

n2

n∑
k,j=1

∣∣g[
cn (xk,n − xj,n)

]
− gδ0

[
cn (xk,n − xj,n)

]∣∣ = OP (ε). (5.14)
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This follows from (5.13) and the assumption that
∫∞
−∞ |Eeitε0|dt < ∞. Indeed, under this

assumption, similar arguments to those in the proof of Corollary 3.2 in Wang and Phillips

(2009a) show that
√

n(xk,n − xj,n)/
√

k − j, for all 1 ≤ j < k ≤ n, has a density hk,j(x)

which is uniformly bounded by a constant K. This fact implies that

cn

n2

n∑
k,j=1

E
∣∣g[

cn (xk,n − xj,n)
]
− gδ0

[
cn (xk,n − xj,n)

]∣∣
=

2cn

n2

∑
1≤j<k≤n

∫ ∞

−∞

∣∣g(cn

√
n x√

k − j

)
− gδ0

(cn

√
n x√

k − j

)∣∣hk,j(x)dx +
cn |g(0)|

n

≤ 2K

∫ ∞

−∞
|g(x)− gδ0(x)|dx

1

n5/2

∑
1≤j<k≤n

√
k − j +

cn |g(0)|
n

= O(ε),

which yields (5.14).

It remains only to construct a gδ0(x) satisfying (5.4), (5.13) and
∫∞
−∞ |gδ0(x)|dx < ∞.

This can be done according to the similar idea as in the proof of Theorem 4.2.1 in Borodin

and Ibragimov (1995). For the sake of completeness, we describe this process as follows.

First of all, for given ε > 0, there exists a continuous function fε(x) having a compact

support such that ∫ ∞

−∞
|g(x)− gε(x)|dx ≤ ε/2. (5.15)

See Proposition 15.3.3 of Gasquet and Witomski (1999). Next, set

gδ(x) =
δ

π

∫ ∞

−∞

sin2[(x− y)/δ]

(x− y)2
gε(y)dy. (5.16)

Since ∫ ∞

−∞

sin2(x)

x2
eitxdx =

{
π(1− |t|/2), if |t| < 2
0, otherwise,

it is readily seen that, for any δ > 0, gδ(x) is continuous and

ĝδ(t) =

∫ ∞

−∞
eitxgδ(x)dx

=
1

π

∫ ∞

−∞
gε(y)eitydy

∫ ∞

−∞

sin2(x)

x2
eitδ xdx,

has a compact support. That is, gδ(x) satisfies the condition (5.4). Furthermore, by

noting
∫∞
−∞

sin2(x)
x2 dx = π and

gδ(x) =
1

π

∫ ∞

−∞

sin2(y)

y2
gε(x + δy)dy,
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simple calculations show that, as δ → 0,∫ ∞

−∞
|gδ(x)− gε(x)|dx ≤ 1

π

∫ ∞

−∞

∫ ∞

−∞

sin2(y)

y2

∣∣gε(x + δy)− gε(x)
∣∣dxdy → 0. (5.17)

Consequently, for any ε > 0, there exists a gδ0(x) satisfying (5.4),
∫∞
−∞ |gδ0(x)|dx < ∞

and ∫ ∞

−∞
|g(x)− gδ0(x)|dx ≤

∫ ∞

−∞
|g(x)− gε(x)|dx +

∫ ∞

−∞
|gδ0(x)− gε(x)|dx

≤ ε/2 + ε/2 = ε.

This completes the construction of gδ(x). The proof of Theorem 4.1 is now complete. 2

Proof of Theorem 4.2. By checking the proof of Theorem 4.1, the integrability con-

dition
∫∞
−∞ |Eeitε0|dt < ∞, which is stronger than the Cramér condition lim sup|t|→∞ |Eeitε0| <

1, is only used to remove the additional condition (5.4). So, to prove Theorem 4.2, it is

sufficient to show that this can be done by an alternative method under the additional

condition on g(x). Explicitly, we only need to prove that, for any ε > 0, there exist

g+
δ0

(x) and g−δ0
(x) such that g−δ0

(x) ≤ g(x) ≤ g+
δ0

(x), both g+
δ0

(x) and g−δ0
(x) satisfy (5.4),∫∞

−∞(|g+
δ0

(x)|+ |g−δ0
(x)|)dx < ∞ and∫ ∞

−∞

[
g+

δ0
(x)− g−δ0

(x)
]
dx < ε. (5.18)

Indeed it follows from these facts that

cn

n

[nr]∑
k,j=1

g
[
cn (xk,n − xj,n)

]
≤ cn

n

[nr]∑
k,j=1

g+
δ0

[
cn (xk,n − xj,n)

]
→D

∫ ∞

−∞
g+

δ0
(x)dx LG(r, 0) ≤ (

∫ ∞

−∞
g(x)dx + ε) LG(r, 0),

cn

n

[nr]∑
k,j=1

g
[
cn (xk,n − xj,n)

]
≥ cn

n

[nr]∑
k,j=1

g−δ0

[
cn (xk,n − xj,n)

]
→D

∫ ∞

−∞
g−δ0

(x)dx LG(r, 0) ≥ (

∫ ∞

−∞
g(x)dx− ε) LG(r, 0).

This yields (4.6) since ε is arbitrary. In a similar way we may prove (4.7).

The constructions of g+
δ0

(x) and g−δ0
(x) again are similar to those in the proof of The-

orem 4.2.1 in Borodin and Ibragimov (1995). To start with, we notice that, for ∀ε > 0,

there exist two continuous functions g+
ε (x) and g−ε (x) such that g−ε (x) ≤ g(x) ≤ g+

ε (x)

and ∫ ∞

−∞

[
g+

ε (x)− g−ε (x)
]
dx < ε. (5.19)
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See, e.g., part (b) and (c) in the proof of Theorem 4.2.1 in Borodin and Ibragimov (1995).

Here g±ε (x) can be chosen such that |g±ε (x)| ≤ M/(1 + |x|1+b) for some b > 0, under the

same conditions on |g(x)|. Using g+
ε (x) and g−ε (x), as in (5.16), define

f+
δ (x) =

δ

π

∫ ∞

−∞

sin2[(x− y)/δ]

(x− y)2
g+

ε (y)dy,

f−δ (x) =
δ

π

∫ ∞

−∞

sin2[(x− y)/δ]

(x− y)2
g−ε (y)dy.

Also write (defining sin(y)/y = 1 for y = 0)

f(x) =
∞∑

n=1

n−1−b/2 sin2(x− n)

(x− n)2
.

Simple calculation shows that

c1 (1 + |x|−1−b/2) ≤ f(x) ≤ c2 (1 + |x|−1−b/2), (5.20)

where c1 > 0 and c2 > 0 are constants. On the other hand, as in the proof of (5.17), for

any ε > 0, there exists a δ1 such that for all 0 < δ ≤ δ1,∫ ∞

−∞

∣∣f+
δ (x)− g+

ε (x)
∣∣dx ≤ ε,

∫ ∞

−∞

∣∣f−δ (x)− g−ε (x)
∣∣dx ≤ ε. (5.21)

It can also be proved (see below) that, for any ε > 0, there exists a δ2 such that for all

0 < δ ≤ δ2, ∣∣f+
δ (x)− g+

ε (x)
∣∣dx ≤ ε f(x),

∣∣f−δ (x)− g−ε (x)
∣∣dx ≤ ε f(x). (5.22)

Now the required g+
δ0

(x) and g−δ0
(x) can be defined by

g+
δ0

(x) = f+
δ0

(x) + ε f(x) and g−δ0
(x) = f−δ0

(x)− ε f(x),

where δ0 = min{δ1, δ2}. Indeed, as in the proof of Theorem 4.1, both g+
δ0

(x) and g+
δ0

(x)

satisfy the additional condition (5.4). By virtue of (5.22),

g−δ0
(x) ≤ g−ε (x) ≤ g(x) ≤ g+

ε (x) ≤ g+
δ0

(x),

and by (5.19)–(5.21), we have that
∫∞
−∞(|g+

δ0
(x)|+ |g−δ0

(x)|)dx < ∞ and∫ ∞

−∞

[
g+

δ0
(x)− g−δ0

(x)
]
dx ≤

∫ ∞

−∞

[
g+

ε (x)− g−ε (x)
]
dx +

∫ ∞

−∞

∣∣f+
δ0

(x)− g+
ε (x)

∣∣dx

+

∫ ∞

−∞

∣∣f−δ0
(x)− g−ε (x)

∣∣dx + 2ε

∫ ∞

−∞
f(x)dx

≤ C ε,
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where C is a constant.

We next prove (5.22). We have

∣∣f+
δ (x)− g+

ε (x)
∣∣ ≤ 1

π

∫ ∞

−∞

sin2(y)

y2

∣∣g+
ε (x + δy)− g+

ε (x)
∣∣dy

≤ 1

π

( ∫
|x|≤A
y∈R

+

∫
|x|>A

|δy|≥|x|/2

+

∫
|x|>A

|δy|<|x|/2

)sin2(y)

y2

∣∣g+
ε (x + δy)− g+

ε (x)
∣∣dy

:= R1A + R2A + R3A, (5.23)

where A is chosen later. Recall that (5.20) and |g±ε (x)| ≤ M/(1 + |x|1+b) for some b > 0.

For any ε > 0, there exists an A0 > 0 such that, whenever A ≥ A0,

R3A ≤ 2M (A/2)−b/2 [1 + (|x|/2)−1−b/2]I(|x| ≥ A)

≤ ε f(x)I(|x| ≥ A)/3. (5.24)

For this A0, routine calculations yield that there exists a δ2 such that, for all 0 < δ ≤ δ2,

R1A0 ≤ ε f(x)I(|x| ≤ A0)/3, (5.25)

since g+
ε (x) is continuous, and

R2A0 ≤ Mδ

π

∫
|y|≥|x|/2

y−2
[
|x|−1−b + (1 + |x + y|1+b)−1

]
dy I(|x| ≥ A)

≤ ε f(x)I(|x| ≥ A)/3. (5.26)

Taking A = A0 in (5.23), it follows from (5.23)-(5.26) that, for any ε > 0, there exists a δ2

such that for all 0 < δ ≤ δ2,
∣∣f+

δ (x)−g+
ε (x)

∣∣ ≤ ε f(x). Similarly we have
∣∣f−δ (x)−g−ε (x)

∣∣ ≤
ε f(x). This proves (5.22) and hence completes the proof of Theorem 4.2. 2

Proof of Theorem 4.3. The idea for the proof of this theorem is similar to Berkes

and Horváth (2006). First notice that, for any ε > 0, there exists N0 such that for all

N ≥ N0,

P
(

sup
0≤u,v≤1

|G1(u)−G1(v)| ≥ N/2
)
≤ 2P

(
sup

0≤u≤1
|G1(u)| ≥ N/4

)
≤ ε.

This, together with (4.3), also implies that, for all N ≥ N0,

P
(

sup
1≤k,j≤n

|xk,n − xj,n| ≥ N
)

≤ 2P
(

sup
0≤u≤1

|x[nu],n −G1(u)| ≥ N/2
)

+ P
(

sup
0≤u,v≤1

|G1(u)−G1(v)| ≥ N/2
)

≤ 2ε.
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Write

gN(x) =

{
g(x) if |x| ≤ N ,
0 if |x| > N .

By virtue of the above facts and noting that

1

n2

[nr]∑
k,j=1

gN

(
xk,n − xj,n

)
=

∫ r

0

∫ r

0

gN

(
x[nu],n − x[nv],n

)
dudv + oP (1),

(4.9) will follow if we prove, for ∀ε > 0 and N ≥ N0,

P (ΛN ≥ ε) → 0, as n →∞, (5.27)

where

ΛN =

∫ 1

0

∫ 1

0

∣∣gN

(
x[nu],n − x[nv],n

)
− gN [G1(u)−G1(v)]

∣∣dudv.

In fact, for any ε > 0 and h > 0, we have

P (ΛN ≥ ε) ≤ 2P ( sup
0≤u≤1

|x[nu],n −G1(u)| ≥ h/2)

+P
( ∫ 1

0

∫ 1

0

sup
|t|≤h

∣∣gN [G1(u)−G1(v) + t]− gN [G1(u)−G1(v)]
∣∣dudv ≥ ε

)
.

(5.28)

By (4.3), we may choose h = hn → 0 such that

P ( sup
0≤u≤1

|x[nu],n −G1(u)| ≥ h/2) → 0, as n →∞. (5.29)

Recall (??) and note that G1(u) − G1(v) ∼ N(0, var[G1(u) − G1(v)]). For this chosen

h = hn → 0, it is readily seen that, for some α > 0,

P
( ∫ 1

0

∫ 1

0

sup
|t|≤h

∣∣gN [G1(u)−G1(v) + t]− gN [G1(u)−G1(v)]
∣∣dudv ≥ ε

)
≤ ε−1

∫ 1

0

∫ 1

0

E sup
|t|≤h

∣∣gN [G1(u)−G1(v) + t]− gN [G1(u)−G1(v)]
∣∣dudv

≤ C ε−1

∫ 1

0

∫ 1

0

1√
|u− v|

∫ ∞

−∞
sup
|t|≤h

|gN(x + t)− gN(x)|e−C x2/|u−v|dx dudv

≤ C1 ε−1

∫ 1

0

∫ 1

0

1

|u− v|α
dudv

∫ N

−N

|x|α−1 sup
|t|≤h

|g(x + t)− g(x)|dx

≤ C2 ε−1

∫ N

−N

|x|α−1 sup
|t|≤h

|g(x + t)− g(x)|dx

→ 0, as n →∞, (5.30)

where we have used (4.8) and the fact that t1−αe−t2/2 ≤ C for all 0 ≤ t < ∞. Taking

(5.29) and (5.30) into (5.28), we prove (5.27), and also complete the proof of Theorem 4.3.

2
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6 Proofs of main results

This section provides the proofs of Theorems 3.1-3.3. Some technical propositions needed

here will be postponed to the next section. Again, we let C, C1, C2, ... be constants which

may differ at each appearance. We start with Theorem 3.2.

6.1 Proof of Theorem 3.2. We first assume |ut| ≤ A, where A is a constant. This

restriction will be removed later. Write Gn(t) = x[nt]/
√

nφ and Vn(t) =
∑[nt]

j=1 uj+1/
√

nσ.

Under Assumptions 1-2, the same arguments as in Buchmann and Chan (2007) or Wang

and Phillips (2009b) with minor modifications show that

(Gn, Vn) ⇒D (G, V ), (6.1)

on D[0, 1]2, where G(t) = W (t) + κ
∫ t

0
eκ(t−s)W (s)ds. By virtue of (6.1), it follows from

the so-called Skorohod-Dudley-Wichura representation theorem that there is a common

probability space (Ω,F , P ) supporting (G0
n, V

0
n ) and (G, V ) such that

(Gn, Vn) =d (G0
n, V

0
n ) and (G0

n, V
0
n ) →a.s. (G, V ) (6.2)

in D[0, 1]2 with the uniform topology. Moreover, as in the proof of Lemma 2.1 in Park

and Phillips (2001), V 0
n can be chosen such that, for each n ≥ 1

V 0
n (k/n) = V (τnk/n), k = 1, 2, ..., n, (6.3)

where τn,k, 1 ≤ k ≤ n, are stopping times with respect to F0
n,k in (Ω,F , P ) with

F0
n,k = σ

{
V (r), r ≤ τn,k/n; G0

n(s/n), s = 1, ..., k + 1
}
,

satisfying τn,0 = 0,

sup
1≤k≤n

∣∣∣τn,k − k

nδ

∣∣∣ →a.s 0 (6.4)

as n →∞ for any 1/2 < δ < 1, and

E
[
(τn,k − τn,k−1) | F0

n,k−1

]
= σ−2 E

[
u2

k+1 | Fk

]
and

E
[
(τn,k − τn,k−1)

2m | F0
n,k−1

]
≤ C σ−4m E

[
u4m

k+1 | Fk

]
, m ≥ 1, a.s. (6.5)

for some constant C > 0. We mention that result (6.5) does not explicitly appear in

Lemma 2.1 of Park and Phillips (2001). However it can be obtained by a construction

along the same lines as Theorem A1 of Hall and Heyde (1980).
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It follows from (6.3) that, under the extended probability space,( 1

σ dn

n∑
t=2

ut+1 Ynt,
1

d2
n

n∑
t=2

Y 2
nt

)
=d

( n∑
t=2

[
V (τn,t/n)− V (τn,t−1/n)

]
Y ∗

n,t,
1

n

n∑
t=2

Y ∗2
nt

)
(6.6)

where, with cn =
√

nφ/h,

Y ∗
nt =

nσ

dn

t−1∑
i=1

[
V (τn,i/n)− V (τn,i−1/n)

]
K

{
cn [G0

n(t/n)−G0
n(i/n)]

}
.

To establish our main result, we extend
∑n

i=2

[
V (τn,t/n)− V (τn,t−1/n)

]
Y ∗

n,t to a con-

tinuous martingale. This can be done by defining

Mn(r) =

j−1∑
t=2

Y ∗
nt

[
V (

τn,t

n
)− V (

τn,t−1

n
)
]
+ Y ∗

n,j

[
V (r)− V (

τn,j−1

n
)
]
, (6.7)

for τn,j−1/n < r ≤ τn,j/n, j = 1, 2, ..., n, and

Mn(r) =
n∑

t=2

Y ∗
nt

[
V (

τn,t

n
)− V (

τn,t−1

n
)
]
+

1√
n

[
V (r)− V (

τn,n

n
)
]
, (6.8)

for r ≥ τn,n/n. It is readily seen that Mn is a continuous martingale with quadratic

variation process [Mn] given by

[Mn]r =

j−1∑
t=2

Y ∗2
nt

(τn,t

n
− τn,t−1

n

)
+ Y ∗2

n,j

(
r − τn,j−1

n

)
(6.9)

for τn,j−1/n < r ≤ τn,j/n, j = 1, 2, ..., n, and

[Mn]r =
n∑

t=2

Y ∗2
nt

(τn,t

n
− τn,t−1

n

)
+

1

n

(
r − τn,n

n

)
(6.10)

for r ≥ τn,n/n. Similarly, the covariance process [Mn, V ] of Mn and V is given by

[Mn, V ]r =

j−1∑
t=2

Y ∗
nt

(τn,t

n
− τn,t−1

n

)
+ Y ∗

n,j

(
r − τn,j−1

n

)
, (6.11)

for τn,j−1/n < r ≤ τn,j/n, j = 1, 2, ..., n, and

[Mn, V ]r =
n∑

t=2

Y ∗
nt

(τn,t

n
− τn,t−1

n

)
+

1√
n

(
r − τn,n

n

)
, (6.12)

for r ≥ τn,n/n.
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Write ρn(t) = inf{s : [Mn]s > t}, a sequence of time changes. Note that [Mn]∞ = ∞
for every n ≥ 1 and

[Mn, V ]ρn(t) →P 0, as n →∞, (6.13)

for every t ∈ R, by (6.15) in Proposition 6.1 below. Theorem 2.3 of Revuz and Yor (1999,

page 524) yields that, if we call Bn (i.e., Bn(r) = Mn{ρn(r)}) the DDS Brownian motion

(see, for example, Revuz and Yor (1999), page 181) of the continuous martingale Mn

defined by (6.7) and (6.8), then Bn converges in distribution to a Wiener process W . Since

the law of the processes Bn are all given by Wiener measure, it is plain that Bn(r) ⇒ W (r)

(mixing), where the concept of mixing can be found in Hall and Heyde (1980, page

56). This, together with (6.16) in Proposition 6.2 below, yields that (Bn(r), [Mn]1) ⇒
(W (r), η2), where W is independent of η2 = LG(1, 0), defined as in (3.1). Now, by noting

that Mn(1) is equal to Bn([Mn]1), the continuous mapping theorem implies that

(Mn(1), [Mn]1) →D (η N, η2), (6.14)

where N is a normal variate independent of η.

By virtue of (6.6) and (6.14), the required result of the theorem follows (6.17) and

(6.18) in Proposition 6.2 and Proposition 6.3 below.

It remains to show the following Propositions 6.1-6.3, which will be given in Section

7.2-7.4, respectively. The proof of Theorem 3.2 under |uj| ≤ A is now complete.

PROPOSITION 6.1. In addition to Assumptions 1-3, assume that |uj| ≤ A, nh2 →∞
and h log2 n → 0. Then, as n →∞,

[Mn, V ]r → 0, in Probab. (6.15)

uniformly on r ∈ [0, T ], where T is an arbitrary given constant.

PROPOSITION 6.2. In addition to Assumptions 1-3, assume that |uj| ≤ A, nh2 →∞
and nh4 log2 n → 0. Under the extended probability space used in (6.2), we have

[Mn]1 →P η2, (6.16)

where η2 = LG(1, 0) is defined as in (3.1), and

[Mn]1 −
1

n

n∑
t=1

Y ∗2
nt = oP (1). (6.17)
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PROPOSITION 6.3. In addition to Assumptions 1-3, assume that |uj| ≤ A, nh2 →∞
and nh4 log2 n → 0. Then,

Mn(1)−
n∑

t=2

Y ∗
nt

[
V (

τn,t

n
)− V (

τn,t−1

n
)
]

= oP (1). (6.18)

We next remove the restriction |uj| ≤ A. To this end, let

u1j = ujI(|uj| ≤ A/2)− E
[
ujI(|uj| ≤ A/2) | Fj−1

]
,

u2j = ujI(|uj| > A/2)− E
[
ujI(|uj| > A/2) | Fj−1

]
,

and

Y1nt =
t−1∑
i=1

u1,i+1 K[(xt − xi)/h], Y2nt =
t−1∑
i=1

u2,i+1 K[(xt − xi)/h].

With these notation, we may write

1

dn

n∑
t=2

ut+1 Ynt =
1

dn

n∑
t=2

u1,t+1 Y1nt +
1

dn

n∑
t=2

u1,t+1 Y2nt +
1

dn

n∑
t=2

u2,t+1 Ynt

:=
1

dn

n∑
t=2

u1,t+1 Y1nt + Λ1n + Λ2n, (6.19)

1

d2
n

n∑
t=2

Y 2
nt =

1

d2
n

n∑
t=2

Y 2
1nt +

2

d2
n

n∑
t=2

Y1nt Y2nt +
1

d2
n

n∑
t=2

Y 2
2nt

:=
1

d2
n

n∑
t=2

Y 2
1nt + Λ3n + Λ4n. (6.20)

Recall that |u1j| ≤ A and u1j is a martingale difference satisfying

E(u2
1t | Ft−1) = E(u2

t I(|ut| ≤ A) | Ft−1)−
[
E(utI(|ut| ≤ A) | Ft−1)

]2 → σ2, a.s.

as j, A →∞. It follows from the previous proof that, when n →∞ first and then A →∞,( 1

σ dn

n∑
t=2

u1,t+1 Y1nt,
1

d2
n

n∑
t=2

Y 2
1nt

)
→D (η N, η2). (6.21)

Now it is readily seen that the required result will follow if we prove

Λin →P 0, i = 1, 2, 3, 4, (6.22)

as n →∞ first and then A →∞. In fact, by virtue of (7.26) in Lemma 7.6 below,

sup
1≤i≤n

Eu2
i ≤ sup

1≤i≤n
(Eu4

i )
1/4 < ∞
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and supx K(x) < ∞, we have, for 1 ≤ t ≤ n,

EY 2
nt ≤ 2 sup

x
K(x) Eu2

t + 2E
( t−2∑

i=1

ui+1 K[(xt − xi)/h]
)2

≤ C sup
1≤i≤n

Eu2
i

(
1 + h2

√
t log t + h

√
t
)
≤ C1h

√
n,

since h log n → 0 and nh2 →∞. Similarly

EY 2
1nt ≤ C sup

1≤i≤n
Eu2

i I(|ui| ≤ A)
(
1 + h2

√
t log t + h

√
t
)
≤ C1h

√
n,

EY 2
2nt ≤ C sup

1≤i≤n
Eu2

i I(|ui| > A)
(
1 + h2

√
t log t + h

√
t
)
≤ C1A

−2h
√

n.

These results, together with the fact that u1j and u2j both are martingale difference

satisfying

sup
j

E(u2
1,j+1 | Fj) ≤ sup

j
[E(u4

j | Fj)]
1/2 ≤ C,

sup
j

E(u2
2,j+1 | Fj) ≤ sup

j
E(u2

jI|uj |>A | Fj) ≤ A−2 sup
j

E(u4
j | Fj) ≤ CA−2,

yield that, as n →∞ first and then A →∞,

EΛ2
1n ≤ C

n3/2h

n∑
t=2

EY 2
2nt ≤ CA−2 → 0,

EΛ2
2n ≤ CA−2

n3/2h

n∑
t=2

EY 2
nt ≤ CA−2 → 0,

EΛ4n ≤ C

n3/2h

n∑
t=2

EY 2
2nt ≤ CA−2 → 0,

E|Λ3n| ≤ C

n3/2h

n∑
t=2

(EY 2
1nt)

1/2(EY 2
2nt)

1/2 ≤ CA−1 → 0.

This proves (6.22) and hence the proof of Theorem 3.2 is complete. 2

6.2 Proof of Theorem 3.1. By virtue of (3.3) and Theorem 3.2, it suffices to show

that

S2n = oP (n3/4
√

h) and S3n = oP (n3/4
√

h). (6.23)

To prove (6.23), we require the following propositions. Their proofs will be given in

Sections 7.5 and 7.6 respectively.
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PROPOSITION 6.4. Suppose that Assumptions 1-2 hold, E|ε0|max{[α],2} < ∞ and p(x)

satisfies
∫

(|p(x)|+ p2(x))dx < ∞. Then, for any α > 0, h > 0 and 1 ≤ s ≤ n− 1,

E
{
|us+1| (1 + |xs|α−1) |p[(xs+1 − xs)/h]|

}
≤ Ch1/2(1 + s(α−1)/2); (6.24)

for any α > 0, h > 0 and t ≥ s + 2,

E
{

(1 + |us+1|)(1 + |xs|α−1) |p[(xt − xs)/h]|
}

≤ Ch(1 + s(α−1)/2)/
√

t− s. (6.25)

If in addition
∫
|x|max{[α1],[α2]}+1|p(x)|dx < ∞ and E|ε0|[α1]+[α2]+2 < ∞, then for any

α1, α2 ≥ 0, h > 0 and 0 ≤ s < t < i,

E
{

(1 + |xs|α1) (1 + |xt|α2)|p[(xi − xt)/h]| |p[(xi − xs)/h]|
}
≤ Ch2 sα1/2tα2/2

√
t− s

√
i− t

; (6.26)

for any α1, α2 ≥ 0, h > 0 and t 6= s, s + 1,

E
{

g(us+1)g1(ut+1)(1 + |xs|α1)(1 + |xt|α2)K[(xt − xs)/h]
}

≤ Ch sα1/2tα2/2

√
t− s

, (6.27)

where g(x) and g1(x) are positive real functions such that

sup
s≥1

E
{
[g(us+1) + g1(us+1)] | Fs

}
< ∞.

PROPOSITION 6.5. Write Z2i = ui+1 g(xi)
∑n

t=i+1 K
[
(xt − xi)/h

]
, where |g(x)| ≤

C(1+|x|β) for some β ≥ 0. Then, under Assumptions 1-3 and E|ε0|max{[4β]+1, 2[β]+2} < ∞,

we have

E
( n∑

i=1

Z2i

)2

≤ C n5/2+βh3/2(h1/2 log n + 1). (6.28)

We now turn back to the proof of (6.23). To this end, for δ > 0, let Ωn = {θ̂ : ||θ̂−θ|| ≤
δ δn, θ ∈ Ω0}, where δn is given in Assumption 4 (i). Recall Assumption 4 and note that

Ωn ⊂ Θ0 for all n sufficiently large. It follows by Taylor expansion that, whenever n is

sufficiently large and θ̂ ∈ Ωn,

S2n = (θ − θ̂)
n∑

i=1

ui+1

n∑
t=i+1

∂f(xt, θ)

∂θ
K

[
(xt − xi)/h

]
+ ∆1n + ∆2n

= ∆n + ∆3n + ∆1n + ∆2n, (6.29)
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where,

∆1n = (θ − θ̂)
n∑

i=1

ui+1

i−1∑
t=1

∂f(xt, θ)

∂θ
K

[
(xt − xi)/h

]
,

∆2n ≤ C |θ̂ − θ|2
n∑

i,t=1
i6=t

|ui+1|(1 + |xt|β) K
[
(xt − xi)/h

]
,

∆n = (θ − θ̂)
n∑

i=1

ui+1
∂f(xi, θ)

∂θ

n∑
t=i+1

K
[
(xt − xi)/h

]
,

and with Ks(x) = |x|sK(x) and ν(x) =

{
1 + |x|β−1, if β > 0,
1 + |x|γ−1, if β = 0;

,

∆3n ≤ C h |θ̂ − θ|
n∑

i=1

|ui+1| ν(xi|)
n∑

t=i+1

(
K1

[
(xt − xi)/h

]
+ Kk+1

[
(xt − xi)/h

])
.

Recall δ2
nn

1+β
√

h → 0 by Assumption 5. It follows from (6.28) in Proposition 6.5 with

g(x) = ∂f(x,θ)
∂θ

that, whenever θ̂ ∈ Ωn,

E∆2
n ≤ Cδ2 δ2

n n5/2+βh3/2(h1/2 log n + 1) = o(n3/2h). (6.30)

Similarly, using (6.24)-(6.25) and (6.27) in Proposition 6.4, simple calculations show that

E(|∆2n|+ |∆3n|) ≤ Cδ2 δ2
n

(
h1/2

n∑
s=1

sβ/2 + h
n∑

s,t=1
s 6=t

sβ/2√
|t− s|

)

+Cδ h δn

(
h1/2

n∑
s=1

(1 + s(β−1)/2) + h
n∑

s=1

n∑
t=s+2

(1 + s(β−1)/2)√
t− s

)
≤ Cδ

(
hδ2

nn
(3+β)/2 + h2δnn

max{3/2,1+β/2})
= o(n3/4

√
h), (6.31)

since δ2
nn

1+β
√

h → 0 and nh4 log2 n → 0. As for ∆1n, by recalling x1, ..., xt are Ft-

measurable by Assumption 2, it follows from Assumptions 2-5 and (6.26)-(6.27) with
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p(x) = K(−x) that

E∆2
1n ≤ Cδ2 δ2

n

n∑
i=1

E
{( i−1∑

t=1

∂f(xt, θ)

∂θ
K

[
(xt − xi)/h

])2
E(u2

t+1 | Ft)
}

≤ C1 δ2 δ2
n

n∑
i=1

∑
1≤s<t≤i−1

E
{

(1 + |xs|β)(1 + |xt|β)K[(xt − xi)/h]|K[(xs − xi)/h]|
}

+C1 δ2 δ2
n

n∑
i=1

i−1∑
t=1

E
{

(1 + |xt|2β)K2[(xt − xi)/h]|
}

≤ C2 δ2 δ2
n h2

n∑
i=1

∑
1≤s<t≤i−1

sβ/2tβ/2

√
i− t

√
t− s

+ C2 δ2 δ2
n h

n∑
i=1

i−1∑
t=1

tβ√
i− t

≤ C3δ
2 δ2

n

(
h2n2+β + hn3/2+β

)
= o(n3/2h). (6.32)

Combining (6.29)–(6.32), we obtain, for any δ > 0,

P (|S2n| ≥ δ n3/4
√

h)

≤ P (|S2n| ≥ δ n3/4
√

h, θ̂ ∈ Ωn) + P (||θ̂ − θ|| ≥ δ δn)

≤ 1

δ2n3/2h
E

(
∆2

n + ∆2
1n

)
+

1

δn3/4
√

h
E

(
|∆2n|+ |∆3n|

)
+ P (||θ̂ − θ|| ≥ δ δn)

→ 0, as n →∞.

This proves the first part of (6.23). Similarly, by noting

E|S3n| ≤ C E
{

(θ̂ − θ)2

n∑
i,t=1
i6=t

∣∣∂f(xi, θ)

∂θ

∣∣ ∣∣∂f(xt, θ)

∂θ

∣∣ K
[
(xt − xi)/h

]}

≤ C δ2 δ2
n

n∑
i,t=1
i6=t

E
{

(1 + |xi|β) (1 + |xt|β) K
[
(xt − xi)/h

]}

≤ C δ2 δ2
n

n∑
i,t=1
i6=t

h iβ√
|t− i|

≤ Cδ2 h δ2
nn

3/2+β = o(n3/4
√

h), (6.33)

whenever θ̂ ∈ Ωn and n is sufficiently large, we obtain, for any δ > 0,

P (|S3n| ≥ δ n3/4
√

h)

≤ P (|S3n| ≥ δ n3/4
√

h, θ̂ ∈ Ωn) + P (||θ̂ − θ|| ≥ δ δn)

≤ 1

δn3/4
√

h
E|S3n|+ P (||θ̂ − θ|| ≥ δ δn)

→ 0, as n →∞.

This proves the second part of (6.23), and hence the proof of Theorem 3.1 is complete. 2
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6.3 Proof of Theorem 3.3. It suffices to show (3.4). This is similar to the proof of

Theorem 3.1. So we only give a outline. We may write

V 2
n =

( n∑
s,t=1

s 6=t,|s−t|≤1

+
n∑

s,t=1
|s−t|≥2

)
û2

t+1û
2
s+1 K2

[
(xt − xs)/h

]
:= V1n + V2n,

where we further have

V2n =
n∑

s,t=1
|s−t|≥2

u2
s+1u

2
t+1K

2
[
(xt − xs)/h

]
+

n∑
s,t=1
|s−t|≥2

(û2
s+1 − u2

s+1) û2
t+1 K2

[
(xt − xs)/h

]
+

n∑
s,t=1
|s−t|≥2

u2
s+1 (û2

t+1 − u2
t+1) K2

[
(xt − xs)/h

]
:= V3n + V4n + V5n.

As in the proof of Theorem 3.1, the result (3.4) will follow if we prove

V3n = σ4

n∑
s,t=1
s 6=t

K2
[
(xt − xs)/h

]
+ oP (n3/2h), (6.34)

and

E|Vkn| = oP (n3/2h), k = 1, 4, 5, (6.35)

whenever θ̂ ∈ Ωn, where Ωn = {θ̂ : ||θ̂ − θ|| ≤ δ δn, θ ∈ Ω0}.
The result (6.35) is simple for k = 1. Indeed, by recalling |f(xs, θ) − f(xs, θ̂)| ≤

Cδ δn(1 + |xs|β) when θ̂ ∈ Ωn, û2
s+1 ≤ 2(u2

s+1 + |f(xs, θ)− f(xs, θ̂)|2) and supx K(x) < ∞,

simple calculations show that

E|V1n| ≤ C
n∑

s,t=1
s 6=t,|s−t|≤1

(Eû4
s+1)

1/2 (Eû4
4+1)

1/2

≤ C
n∑

s,t=1
s 6=t,|s−t|≤1

[
Eu4

s+1 + δ δ4
n E(1 + |xs|4β)

]1/2 [
Eu4

t+1 + δ δ4
n E(1 + |xt|4β)

]1/2

≤ C n(1 + δ δ4
nn

2β) = o(n3/2h),

since nh2 → ∞ and δ2
nn

1+β
√

h → 0, where we have used (7.11) in Lemma 7.2 below.
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Similarly, it follows from (6.27) in Proposition 6.4 that

E|V4n|+ E|V5n| ≤ Cδn

n∑
s,t=1
|s−t|≥2

E
{
|us+1|u2

t+1 (1 + |xs|β) K
[
(xt − xs)/h

]}
+Cδ2

n

n∑
s,t=1
|s−t|≥2

E
{
u2

t+1 (1 + |xs|2β) K
[
(xt − xs)/h

]}
+Cδ3

n

n∑
s,t=1
|s−t|≥2

E
{
|us+1| (1 + |xs|β) (1 + |xt|2β) K

[
(xt − xs)/h

]}
+Cδ4

n

n∑
s,t=1
|s−t|≥2

E
{
(1 + |xs|2β) (1 + |xt|2β) K

[
(xt − xs)/h

]}
≤

n∑
s,t=1
|s−t|≥2

Ch√
t− s

(
δnn

β/2 + δ2
nn

β + δ3
nn

3β/2 + δ4
nn

2β
)

= o(n3/2h),

since nh2 →∞ and δ2
nn

1+β
√

h → 0. This proves (6.35) for k = 4 and 5.

In order to prove (6.34), let K∗(x) = 1
2
[K(x) + K(−x)]. It is readily seen that K∗(x)

is symmetric and K∗(x) still satisfies Assumption 3. Simple calculations show that

V3n =
n∑

s,t=1
|s−t|≥2

u2
s+1u

2
t+1K

∗2[(xt − xs)/h
]

= σ4

n∑
s,t=1
|s−t|≥2

K2
[
(xt − xs)/h

]
+ 2

n∑
s,t=1
t≥s+2

(u2
t+1 + σ2)

[
u2

s+1 − E(u2
s+1 | Fs)

]
K∗2[(xt − xs)/h

]
+2

n∑
s,t=1
t≥s+2

(u2
t+1 + σ2)

[
E(u2

s+1 | Fs)− σ2
]
K∗2[(xt − xs)/h

]
:= V3n1 + V3n2 + V3n3. (6.36)

Note that
∑n

s 6=t,|s−t|≤1 K2
[
(xt − xs)/h

]
≤ 2 n supx K2(x) = o(n3/2h), since nh2 → ∞. It

follows that

V3n1 = σ4

n∑
s,t=1
s 6=t

K2
[
(xt − xs)/h

]
+ oP (n3/2h). (6.37)
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The conditional arguments, together with (7.27) in lemma 7.6 below, implies that

E|V3n2| ≤ 2
n∑

t=3

E
{

E
[
(u2

t+1 + σ2) | Ft

] ∣∣ t−2∑
s=1

[
u2

s+1 − E(u2
s+1 | Fs)

]
K∗2[(xt − xs)/h

]∣∣}
≤ C

n∑
t=3

{
E

∣∣ t−2∑
s=1

[
u2

s+1 − E(u2
s+1 | Fs)

]
K∗2[(xt − xs)/h

]∣∣2}1/2

≤ C

n∑
t=3

(h2
√

t log t + h
√

t)1/2

≤ Cn5/4
√

h(h log n + 1)1/2 = o(n3/2h), (6.38)

since nh2 → 0 and nh4 log2 n → 0. To estimate V3n3, we rewrite V3n3 as

V3n3 =
n−3∑
s=1

[
E(u2

s+1 | Fs)− σ2
] n∑

t=s+2

(u2
t+1 + σ2) K∗2[(xt − xs)/h

]
.

Recall that, by (6.27) in Proposition 6.4,

E
{
(u2

t+1 + σ2) K∗2[(xt − xs)/h
]}
≤ Ch√

t− s
,

whenever t ≥ s + 1. It is readily seen that

n−3∑
s=1

n∑
t=s+2

E(u2
t+1 + σ2) K∗2[(xt − xs)/h

]
≤ C n3/2h,

and for any cn/n → 0,

cn∑
s=1

n∑
t=s+2

E(u2
t+1 + σ2) K∗2[(xt − xs)/h

]
≤ C cn

√
n h = o(n3/2h).

By virtue of these facts and E(u2
s+1 | Fs) → σ2, a.s., it follows from Lemma 7.3 below

that

E|V3n3|1/2 = o(n3/4
√

h). (6.39)

The results (6.38) and (6.39) imply that V3n2 + V3n3 = oP (n3/2h). This, together with

(6.36)-(6.37), yields (6.34). The proof of Theorem 3.3 is now complete. 2

7 Proofs of propositions

Except where mentioned explicitly, the notation in this section is the same as in previous

sections. In Section 7.1, we introduce some previous lemmas. The proofs of Propositions

4.1-4.5 will be given in Sections 7.2-7.6.
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7.1 Preliminaries. First note that

xt =
t∑

j=1

ρt−j ηj =
t∑

j=1

ρt−j

j∑
i=−∞

εiφj−i

= ρt−s xs +
t∑

j=s+1

ρt−j

s∑
i=−∞

εiφj−i +
t∑

j=s+1

ρt−j

j∑
i=s+1

εiφj−i

:= ρt−s xs + ∆s,t + x′s,t, (7.1)

where

x′s,t =
t−s∑
j=1

ρt−j−s

j∑
i=1

εi+sφj−i =
t∑

i=s+1

εi

t−i∑
j=0

ρt−j−i φj.

Write d2
s,t =

∑t
i=s+1 ρ2(t−i)(

∑t−i
j=0 ρ−jφj)

2 = E(x′s,t)
2. Without loss of generality, assume

ds,t 6= 0 for all 0 ≤ s < t ≤ n. Otherwise, x′s,t = 0, a.s. This occurs only in the situation

such as φ0 = φ1 = ... = φk0
= 0 with a finite k0. Hence t − s must be small and the

main results can be obtained by a routine modification. By virtue of this fact, for all

0 ≤ s < t ≤ n, we have that C1(t− s) ≤ d2
s,t ≤ C2(t− s) and

1√
t−s

x′s,t has a density hs,t(x), (7.2)

which is uniformly bounded by a constant C0. See (7.14) and Proposition 7.2 (page 1934

there) of Wang and Phillips (2009b) with a minor modification. Furthermore we may

prove that,

conditional on Fs, xt/
√

t has a density hs,t(x− x∗s/
√

t− s), (7.3)

where x∗s = ρt−s xs + ∆s,t, and under Assumption 1,

sup
x
|hs,t(x + y)− hs,t(x)| ≤ C |y|, (7.4)

|∆s,t| ≤ e
s∑

i=−∞

|εi|
t∑

j=s+1

|φj−i| ≤ C
∞∑

k=0

(k + 1)−1−δ|εs−k|. (7.5)

Indeed (7.3) follows from (7.2) because of the independence between Fs and εk, k ≥ s + 1

and (7.5) is obvious by recalling
∑∞

k=0 k1+δ|φk| < ∞. If we write ϕs,t(u) = Eeiux′s,t/
√

t−s,

arguments similar to those in the proof of Corollary 2.2 in Wang and Phillips (2009a) yield

that, uniformly for 0 ≤ s < t ≤ n,
∫∞
−∞(1 + |u|)|ϕs,t(u)|du < ∞. It follows by inversion of

the characteristic function ϕs,t(u) that

sup
x
|hs,t(x + y)− hs,t(x)| =

1√
2π

∣∣∣ ∫ ∞

−∞

(
e−iu(x+y) − e−iux

)
ϕs,t(u)du

∣∣∣
≤ C |y|

∫ ∞

−∞
|u||ϕs,t(u)|du ≤ C1 |y|,
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which implies (7.4).

By making use of (7.2)-(7.5), we may establish the following lemmas which play a key

part in the proofs of our main results.

LEMMA 7.1. Assume that p(x) satisfies
∫
|p(x)|dx < ∞. Let Assumptions 1-2 hold.

Then,

(i) for any 0 ≤ s < t ≤ n and h > 0,

E
{
p(xt/h)

∣∣Fs

}
=

h√
t− s

∫ ∞

−∞
p
(
ρt−s xs/h + x

)
hs,t

( hx√
t− s

)
dx + Ln (7.6)

where

|Ln| ≤ Ch

t− s

(
1 +

∞∑
k=0

(k + 1)−1−δ|εs−k|
) ∫ ∞

−∞
|p(x)|dx ;

(ii) for any 2 ≤ s + 2 ≤ t ≤ n and h > 0,∣∣∣ E
{

g(us+1)p(xt/h)
∣∣Fs

} ∣∣∣ ≤ Ch

t− s

∫ ∞

−∞
|p(x)|dx , (7.7)

where g(x) satisfies that E
[
g(us+1) | Fs

]
= 0, s ≥ 1 and sups≥1 E

[
g(us+1)

2 | Fs

]
≤ C;

(iii) for any 0 ≤ s < t ≤ n,

E
(
|p(xt/h)|

∣∣Fs

)
≤ Ch√

t− s

∫ ∞

−∞
|p(x)|dx ; (7.8)

(iv) for any 2 ≤ s + 2 ≤ t ≤ n and h > 0,

E
{
|us+1| |p(xt/h)|

∣∣Fs

}
≤ C hE(|us+1| | Fs)√

t− s

∫ ∞

−∞
|p(x)|dx ; (7.9)

(v) for any s + 1 ≤ k1, ..., km ≤ t and 2 ≤ s + m + 2 ≤ t ≤ n and h > 0,

E
{

(1 + |us+1|)
m∏

u=1

|εku | |p(xt/h)|
∣∣Fs

}
≤ Ch√

t− s−m

∫ ∞

−∞
|p(x)|dx . (7.10)

Proof. By virtue of the independence between Fs and εk, k ≥ s + 1, it follows from

(7.1)–(7.2) that

E
{

p(xt/h) | Fs

}
=

h√
t− s

∫ ∞

−∞
p
(
ρt−s xs/h + ∆s,t/h + x

)
hs,t

( hx√
t− s

)
dx

=
h√
t− s

∫ ∞

−∞
p
(
ρt−s xs/h + x

)
hs,t

[ h√
t− s

(x−∆s,t/h)
]
dx

=
h√
t− s

∫ ∞

−∞
p
(
ρt−s xs/h + x

)
hs,t

( hx√
t− s

)
dx + Ln
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where, by (7.4)–(7.5),

Ln ≤ h√
t− s

sup
x

∣∣hs,t

(
x− ∆s,t√

t− s

)
− hs,t(x)

∣∣ ∫ ∞

−∞
|p

(
ρt−s xs/h + x

)
|dx

≤ Ch

t− s
|∆s,t|

∫ ∞

−∞
|p(x)|dx

≤ Ch

t− s

(
1 +

∞∑
k=0

(k + 1)−1−δ|εs−k|
) ∫ ∞

−∞
|p(x)|dx .

This proves (7.6). Similarly, it follows from (7.1) and (7.2) that

E
{

g(us+1)p(xt/h)
∣∣Fs

}
=

h√
t− s− 1

∫ ∞

−∞
E

{
g(us+1)p

(ρt−sxs

h
+

∆s,t

h
+

(x′s,t − x′s+1,t)

h
+ y

)∣∣Fs

}
hs+1,t

( hy√
t− s− 1

)
dy

=
h√

t− s− 1

∫ ∞

−∞
p
(ρt−sxs

h
+

∆s,t

h
+ y

)
E

{
g(us+1)hs+1,t

[ h√
t− s− 1

{
y − (x′s,t − x′s+1,t)/h

}]∣∣Fs

}
dy.

This, together with E(g(us+1) | Fs) = 0 and (7.4), yields∣∣∣E{
us+1p(xt/h)

∣∣Fs

}∣∣∣
≤ Ch

t− s

∫ ∞

−∞
|p

(ρt−sxs

h
+

∆s,t

h
+ y

)
| dy E

{
|g(us+1)| |x′s,t − x′s+1,t| | Fs

}
≤ Ch

t− s

∫ ∞

−∞
|p(y)| dy,

where we have used the fact:

E
{
|g(us+1)| |x′s,t − x′s+1,t| | Fs

}
≤ C

(
E

{
g2(us+1) | Fs

})1/2(
Eε2

1

)1/2 ≤ C.

This proves (7.7). The proofs of (7.8) and (7.9) are simple. Note that, whenever 2 ≤
s + m + 2 ≤ t ≤ n, similar to (7.2) we find that

1√
t−s−m

(
x′s+1,t −

∑m
u=1 εku

∑t−ku

j=0 ρt−ku−jφj

)
has a density, say h′s,t(x),

which is uniformly bounded by a constant C0. It follows from (7.2) and independence
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between εj that, for k1, ..., km ≤ t and 2 ≤ s + m + 2 ≤ t ≤ n,

E
{

(1 + |us+1|)
m∏

u=1

|εku | |p(xt/h)|
∣∣Fs

}
=

h√
t− s

E
{

(1 + |us+1|)
m∏

u=1

|εku |∫ ∞

−∞

∣∣∣p(ρt−s−1xs+1

h
+

∆s+1,t

h
+

∑m
u=1 εku

∑t−ku

j=0 ρt−ku−jφj

h
+ y

)∣∣∣ |h′s,t( yh√
t− s

)
| dy | Fs

}
≤ C0h√

t− s

∫ ∞

−∞
|p(y)|dy E

[
(1 + |us+1|)

m∏
u=1

|εku |
∣∣Fs

]
≤ Ch√

t− s

∫ ∞

−∞
|p(y)|dy,

which yields (7.10). The proof of Lemma 7.1 is now complete. 2

LEMMA 7.2. Suppose Assumption 1 holds. For any 1 ≤ s < t and α > 0, we have

E
(
|xt|α−1

)
≤ C t(α−1)/2, (7.11)

provided E|ε0|max{[α],2} < ∞;

E
{
|xt|α | Fs

}
≤ C

[
(t− s)α/2 + |xs|α +

( ∞∑
k=0

(k + 1)−1−δ|εs−k|
)α]

, (7.12)

provided E|ε0|max{[α]+1,2} < ∞.

Proof. If α − 1 is an integer greater than 2, (7.11) is well-known. If α ≥ 1, it follows

from |xt|α−1 ≤ t(α−1)/2(1 + |xt/
√

t|max{[α],2}) that

E
(
|xt|α−1

)
≤ t(α−1)/2(1 + E|xt/

√
t|max{[α],2}) ≤ C t(α−1)/2.

If 1 ≥ α > 0, by recalling (7.3), we have

E
(
|xt/

√
t|α−1 | F0

)
=

∫ ∞

−∞
|x|α−1p0,t(x− x∗0/

√
t)dx

≤ C0

∫
|x|≤1

|x|α−1dx +

∫
|x|≥1

p0,t(x− x∗0/
√

t)dx ≤ C,

and hence E
(
|xt|α−1

)
≤ C t(α−1)/2. Combining all these fact, we obtain (7.11).

Recall |ρ| ≤ C and
∑∞

j=1 |φj| < ∞. It is readily seen that E|x′s,t|α ≤ C(t − s)α/2,

where x′s,t is defined as in (7.1). Now the result (7.12) follows from (7.1), (7.2) and the

fact that, whenever α ≥ 0,

(|x|+ |y|+ |z|)α ≤ Cα(|x|α + |y|α + |z|α),

where Cα is a constant depending only on α. 2
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LEMMA 7.3. Let Ak and Bk be two sequence of random variables satisfying Ak → 0, a.s.

and |Ak| ≤ C,
∑n

k=1 E|Bn| ≤ Λ2
n and for any cn/n → 0,

∑cn

k=1 E|Bn| = o
(
Λ2

n

)
. Then,

E
∣∣ n∑

k=1

An Bn

∣∣1/2
= o

(
Λn

)
. (7.13)

Proof. Note that (|x|+ |y|)1/2 ≤ |x|1/2 + |y|1/2 and

|
n∑

k=1

An Bn| ≤ C

√
n∑

k=1

|Bn|+ max√
n≤k≤n

|Ak|
n∑

k=1

|Bn|.

It follows that

E
∣∣ n∑

k=1

An Bn

∣∣1/2 ≤ C (

√
n∑

k=1

E|Bn|)1/2 + (E max√
n≤k≤n

|Ak|)1/2
( n∑

k=1

E|Bn|
)1/2

= o
(
Λn

)
,

as, by the dominated convergence theorem,

lim
n→∞

E max√
n≤k≤n

|Ak| = E lim
n→∞

max√
n≤k≤n

|Ak| = 0.

This proves Lemma 7.3. 2

LEMMA 7.4. Let pj(x), j = 1, 2, 3, be positive functions satisfying
∫∞
−∞ pj(x)dx < ∞

and supxpj(x) < ∞. Then, under Assumption 1, we have

E p1[(xt − xi)/h] ≤ Ch√
t− i

∫ ∞

−∞
p1(x)dx, (7.14)

E p1[(xt − xi)/h] p2[(xt − xj)/h]

≤ Ch2

√
t− j

√
j − i

∫ ∞

−∞
p1(x)dx

∫ ∞

−∞
p2(y)dy, for i < j, (7.15)

E p1[(xt − xi)/h] p2[(xt − xj)/h] p3[(xt − xk)/h]

≤ C h3

√
t− k

√
k − j

√
j − i

∫ ∞

−∞
p1(y) dy

∫ ∞

−∞
p2(y) dy

∫ ∞

−∞
p3(y) dy, (7.16)

for i < j < k. For the K(x) defined in Assumption 3, write

χs,t(i, j, k, l) = E
{

K
[
(xs − xi)/h

]
K

[
(xs − xj)/h

]
K

[
(xt − xk)/h

]
K

[
(xt − xl)/h

]}
.

Similar to (7.14)-(7.16), we also have

(i) if t > s, s− 2 ≥ i, j, i 6= j, k = i and l = j or l = s− 1 or l = s then

χs,t(i, j, k, l) ≤ Ch3

√
t− s

1√
s− i1

, (7.17)
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where i1 = max{i, j};
(ii) if t > s, s− 2 ≥ i, j, k, i 6= j 6= k and l = i or l = s− 1 or l = s, then

χs,t(i, j, k, l) ≤ Ch4

√
t− s

1√
s− i1

1√
i2 − i3

, (7.18)

where i1 = max{i, j, k}, i3 = min{i, j, k} and i2 is the median value of i, j, k.

Proof. We only prove (7.16) and (7.18) for i < j < k and l = s − 1. The other

results are similar but simpler. In order to prove (7.16), let p∗(x) = p1(x − xi/h)p2(x −
xj/h)p3(x− xk/h). Note that p∗(x) is Fk-measurable and∫ ∞

−∞
p∗(x)dx =

∫ ∞

−∞
p1[x + (xk − xi)/h]p2[x + (xk − xj)/h]p3(x)dx

≤ C

∫ ∞

−∞
p3(x)dx < ∞. (7.19)

It follows from (7.8) with p(x) = p∗(x) that

Ep∗(x) = E
{
E

[
p∗(x) | Fk

]}
≤ ch√

t− s

∫ ∞

−∞
E

{
p1[x + (xk − xi/h)]p2[x + (xk − xj)/h]

}
p3(x)dx

≤ C h3

√
t− k

√
k − j

√
j − i

∫ ∞

−∞
p1(y) dy

∫ ∞

−∞
p2(y) dy

∫ ∞

−∞
p3(y) dy,

where, in the last inequality, we have used the result (7.15). This proves (7.16).

The idea to prove (7.18) for i < j < k and l = s− 1 is similar. Indeed, by using (7.8),

we have

Ms := E
{

K
[
(xt − xk)/h

]
K

[
(xt − xs−1)/h

]
| Fs

}
≤ Ch√

t− s

∫ ∞

−∞
E

{
K[x + (xs−1 − xk/h)]

}
K(x)dx,

Ns := E
{

K
[
(xs − xi)/h

]
K

[
(xs − xj)/h

]
| Fs−1

}
≤ Ch

∫ ∞

−∞
E

{
K[x + (xj − xi)/h]

}
K(x)dx,

Similarly, uniformly on x, y ∈ R, it follows from (7.8) that

E
{
K[x + (xj − xi)/h]K[y + (xs−1 − xk)/h]

}
= E

{
K[x + (xj − xi)/h]E

(
K[y + (xs−1 − xk)/h] | Fk

)}
≤ Ch√

s− k
E

{
K[x + (xj − xi)/h]

∫ ∞

−∞
K(y + z − xk/h)dx

}
≤ C1h√

s− k
EK[x + (xj − xi)/h]

≤ Ch2

√
s− k

1√
j − i

.
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These facts, together with conditional arguments, yield that

χs,t(i, j, k, s− 1) = E
{

K
[
(xs − xi)/h

]
K

[
(xs − xj)/h

]
Ms

}
≤ Ch√

t− s

∫ ∞

−∞
E

{
K

[
(xs − xi)/h

]
K

[
(xs − xj)/h

]
K[x + (xs−1 − xk/h)]

}
K(x)dx

=
Ch√
t− s

∫ ∞

−∞
E

{
K[x + (xs−1 − xk/h)] Ns

}
K(x)dx

≤ Ch2

√
t− s

∫ ∞

−∞

∫ ∞

−∞
E

{
K[x + (xj − xi)/h]K[y + (xs−1 − xk)/h]

}
K(x)K(y) dxdy

≤ Ch4

√
t− s

1√
s− k

1√
j − i

This proves (7.16) for i < j < k and l = s− 1. The proof of Lemma 7.4 is now complete.

2

LEMMA 7.5. Write

I(i, j, k, l, s, t) = E
{

ui+1uj+1uk+1ul+1K
[
(xs − xi)/h

]
K

[
(xs − xj)/h

]
K

[
(xt − xk)/h

]
K

[
(xt − xl)/h

]}
.

In addition to Assumptions 1-3, assume |uj| ≤ A. Then,

(i) for t > s, s− 2 ≥ i, j, k, l and i < j < k < l,

|I(i, j, k, l, s, t)| ≤ Ch4
( 1

t− s

1√
s− l

+
1√

t− s

1

s− l

) 1√
l − k

1√
j − i

; (7.20)

(ii) for t ≥ l + 2, 1 ≤ i < j ≤ s− 2, l ≥ s + 1 and k < l

|I(i, j, k, l, s, t)| ≤

{
Ch4

t−l
1√
l−k

1√
s−j

1√
j−i

, if k ≥ s,
Ch4

t−l
1√
l−s

1√
s−j

1√
j−i

, if k < s.
(7.21)

(iii) for t = s and s− 2 ≥ i, j, k, l and i < j < k < l,

|I(i, j, k, l, t, t)| ≤ C1h
4

t− l

1√
l − k

1√
k − j

1√
j − i

. (7.22)

Proof. First for (7.20). It follows (7.6) of Lemma 7.1 with p(x) = K(x− xk/h)K(x−
xl/h) that

Ts := E
{

K
[
(xt − xk)/h

]
K

[
(xt − xl)/h

]
| Fs

}
=

h√
t− s

∫ ∞

−∞
p
(
ρt−s xs/h + x

)
hs,t

( hx√
t− s

)
dx + Ln
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where

|Ln| ≤ Ch

t− s

(
1 +

∞∑
u=0

(u + 1)−1−δ|εs−u|
) ∫ ∞

−∞
|p(x)|dx .

Now conditional arguments, together with |hst(y)| ≤ C0 and some simple calculations,

yield that

|I(i, j, k, l, s, t)|

=
∣∣∣E{

ui+1uj+1uk+1ul+1K
[
(xs − xi)/h

]
K

[
(xs − xj)/h

]
Ts

}∣∣∣
≤ C0h√

t− s

∫ ∞

−∞

∣∣∣E{
ui+1uj+1uk+1ul+1K

[
(xs − xi)/h

]
K

[
(xs − xj)/h

]
p
(
ρt−s xs/h + x

)}∣∣∣dx + A4 E
{

K
[
(xs − xi)/h

]
K

[
(xs − xj)/h

]
|Ln|

}
≤ C0h√

t− s

∫ ∞

−∞
|EI1(x)|K(x) dx +

Ch

t− s

( ∫ ∞

−∞
E|I2(x)|K(x) dx

+
∞∑

u=0

(u + 1)−1−δ

∫ ∞

−∞
E

{
|εs−u||I2(x)|

}
K(x) dx

)
, (7.23)

where

I1(x) = ui+1uj+1uk+1ul+1K
[
(xs − xi)/h

]
K

[
(xs − xj)/h

]
K

[
x + (xl − xk)/h

]
,

I2(x) = K
[
(xs − xi)/h

]
K

[
(xs − xj)/h

]
K

[
x + (xl − xk)/h

]
.

It follows from (7.7) with p(y) = K(y − xi/h)K(y − xj/h) that

T1s :=
∣∣E{

ul+1 K
[
(xs − xi)/h

]
K

[
(xs − xj)/h

]
| Fl

}∣∣
≤ Ch

s− l

∫ ∞

−∞
K(y − xi/h)K(y − xj/h)dy

=
Ch

s− l

∫ ∞

−∞
K(y)K[y + (xj − xi)/h]dy.

Hence, using conditional arguments and (7.8) repeatedly, we have

|EI1(x)| ≤ A3 E
(

K
[
x + (xl − xk)/h

] ∣∣T1s

∣∣)
≤ Ch

s− l

∫ ∞

−∞
E

{
K[x + (xl − xk)/h] K[y + (xj − xi)/h]

}
K(y)dy

≤ C1h

s− l

h√
l − k

h√
j − l

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
K(x + z) K(y + u) K(y)dydzdu

≤ C2h
3

s− l

1√
l − k

1√
j − i

. (7.24)
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The same idea as in the proof of (7.24), but with (7.10) instead of (7.8), yields that

E|I2(x)|+ E
{
|εs−u||I2(x)|

}
≤ Ch3

√
s− l

1√
l − k

1√
j − i

, (7.25)

for all 0 ≤ u < ∞. Note that
∑∞

u=0(u+1)−1−δ < ∞. Taking (7.24) and (7.25) into (7.23),

we obtain

|I(i, j, k, l, s, t)| ≤ Ch4
( 1

t− s

1√
s− l

+
1√

t− s

1

s− l

) 1√
l − k

1√
j − i

,

which yields (7.20).

Next for (7.22). It follows from (7.7) with p(y) = K(y − xi/h)K(y − xj/h)K(y −
xk/h)K(y − xl/h) that∣∣E{

ul+1 K
[
(xs − xi)/h

]
K

[
(xs − xj)/h

]
K

[
(xs − xk)/h

]
K

[
(xs − xl)/h

]
| Fl

}∣∣
≤ Ch

s− l

∫ ∞

−∞
K(y − xi/h)K(y − xj/h)K(y − xk/h)K(y − xl/h)dy

=
Ch

s− l

∫ ∞

−∞
K[y + (xl − xi)/h]K[y + (xl − xj)/h]K[y + (xl − xk)/h]K(y)dy.

This, together with (7.16) in Lemma 7.4, yields that

|I(i, j, k, l, s, s)|

≤ CA3h

s− l

∫ ∞

−∞
E

{
K[y + (xl − xi)/h]K[y + (xl − xj)/h]K[y + (xl − xk)/h]

}
K(y)dy

≤ C1h
4

s− l

1√
l − k

1√
k − j

1√
j − i

( ∫ ∞

−∞
K(y)dy

)4

≤ C1h
4

s− l

1√
l − k

1√
k − j

1√
j − i

,

which implies (7.22).

Finally for(7.21). The same idea as above, together with (7.16) in Lemma 7.4, yields

that

|I(i, j, k, l, s, t)|

≤ A3 E
(
K

[
(xs − xi)/h

]
K

[
(xs − xj)/h

]
∣∣E{

ul+1K
[
(xt − xk)/h

]
K

[
(xt − xl)/h

]
| Fl

}∣∣)
≤ Ch

t− l

∫ ∞

−∞
E

{
K

[
(xs − xi)/h

]
K

[
(xs − xj)/h

]
K[x + (xl − xk)/h]

}
K(x)dx

≤


Ch2

t−l
1√
l−k

E
{

K
[
(xs − xi)/h

]
K

[
(xs − xj)/h

]}
, if k ≥ s,

Ch2

t−l
1√
l−s

E
{

K
[
(xs − xi)/h

]
K

[
(xs − xj)/h

]}
, if k < s,

≤

{
Ch4

t−l
1√
l−k

1√
s−j

1√
j−i

, if k ≥ s,
Ch4

t−l
1√
l−s

1√
s−j

1√
j−i

, if k < s.
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The proof of Lemma 7.5 is complete. 2

LEMMA 7.6. Write Ztkr =
∑t−r

i=k ui+1K
[
(xt − xi)/h

]
. Under Assumptions 1-3, for

1 ≤ k ≤ t− r and r ≥ 2, we have,

EZ2
tkr ≤ C max

1≤i,j≤n
E[|ui|(1 + |uj|)](h log t + 1) h

√
t− r − k. (7.26)

Similarly, we have

E
{ t−2∑

i=1

[
u2

i+1 − E(u2
i+1 | Fj)

]
K2

[
(xt − xi)/h

]}2

≤ C
(
h2
√

t log t + h
√

t
)
. (7.27)

If in addition |uj| ≤ A, where A is a constant, then

EZ4
t12 ≤ Ch4t3/2 log t + Ch3t3/2, (7.28)

and for any 1 ≤ m ≤ t/2,

EZ∗2
tm ≤ Ch2t2

m3/2
+

Ch2t log(t−m)√
m

+
Ch2t

m
, (7.29)

where Z∗
tm =

∑t−m−1
i=1 ui+1E

(
K

[
(xt − xi)/h

]
| Ft−m

)
.

Proof. First consider (7.26). For i = j − 1 or j, it follows from (7.8) with p(x) =

K(x− xi/h)K(x− xj/h) that∣∣∣E{
ui+1uj+1K

[
(xt − xi)/h

]
K[(xt − xj)/h]

}∣∣∣
≤ E

{
|ui+1||uj+1|E

(
K

[
(xt − xi)/h

]
K[(xt − xj)/h] | Fj+1

)}
≤ Ch√

t− j
E(|ui+1||uj+1|). (7.30)

Similarly, for i ≤ j − 2, we have

E
{
|ui+1|K

[
x + (xj − xi)/h

]}
≤ E

{
|ui+1|E

(
K

[
x + (xj − xi)/h

]
| Fi+1

)}
≤ Ch√

t− j
E(|ui+1|), (7.31)

uniformly for x ∈ R. The result (7.31), together with the usage of (7.7) with p(x) =

K(x− xi/h)K(x− xj/h), yields that∣∣∣E{
ui+1uj+1K

[
(xt − xi)/h

]
K[(xt − xj)/h]

}∣∣∣
≤ E

{
|ui+1|

∣∣E(
uj+1K

[
(xt − xi)/h

]
K[(xt − xj)/h] | Fj

) ∣∣}
≤ Ch

t− j

∫ ∞

−∞
E

{
|ui+1|K

[
x + (xj − xi)/h

]}
K(x)dx

≤ Ch2

t− j

1√
j − i

E|ui+1|. (7.32)
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Combining (7.30) and (7.32), we obtain that, for 1 ≤ k ≤ t− r and r ≥ 2,

EZ2
tkr = 2

( t−r∑
i,j=k
j−i≥2

+
t−r∑

i,j=k
0≤j−i≤1

)
E

{
ui+1uj+1K

[
(xt − xi)/h

]
K[(xt − xj)/h]

}

≤ C max
1≤i,j≤n

E[|ui|(1 + |uj|)]
( t−r∑

i,j=k
j−i≥2

h2

t− j

1√
j − i

+
t−r∑

i,j=k
0≤j−i≤1

h√
t− j

)
≤ C max

1≤i,j≤n
E[|ui|(1 + |uj|)](h log t + 1) h

√
t− r − k,

which yields (7.26).

The proof of (7.27) is similar. We omit the details.

We next prove (7.28). Recalling supx K(x) < ∞, |uj| ≤ A and the notation defined in

Lemma 7.5, we have

EZ4
1t ≤

t−2∑
i,j,k,l=1
i6=j 6=k 6=l

∣∣I(i, j, k, l, t, t)
∣∣ + C

t−2∑
i,j,k=1
i6=j 6=k

E
{

K
[
(xt − xi)/h

]
K

[
(xt − xj)/h

]
K

[
(xt − xk)/h

]}

+C
t−2∑
i,j=1
i6=j

E
{

K
[
(xt − xi)/h

]
K

[
(xt − xj)/h

]}
+ C

t−2∑
i=1

EK
[
(xt − xi)/h

]
≤ V1t + V2t + V3t + V4t. (7.33)

Using (7.22), we have

V1t ≤ Ch4

t−2∑
l=4

l−1∑
k=3

k−1∑
j=2

j−1∑
i=1

1

t− l

1√
l − k

1√
k − j

1√
j − i

≤ Ch4t3/2 log t. (7.34)

Using (7.14)-(7.16) with p1(x) = p2(x) = p3(x) = K(x), we obtain

V2t + V3t + V4t ≤
t−2∑
k=3

k−1∑
j=2

j−1∑
i=1

Ch3

√
t− k

1√
k − j

1√
j − i

+
t−2∑
j=2

j−1∑
i=1

Ch2

√
t− j

1√
j − i

+
t−2∑
j=1

Ch√
t− j

≤ Ch3t3/2 + Ch2t + Ch
√

t ≤ Ch3t3/2, (7.35)

since t ≤ n and nh2 →∞. By virtue of (7.33)-(7.35), we obtain (7.28).

Finally for (7.29). For i < j, write

IIi,j = E
{

ui+1uj+1E
(
K

[
(xt − xi)/h

]
| Ft−m

)
E

(
K

[
(xt − xj)/h

]
| Ft−m

)}
.
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Using (7.6), (7.8) and |uj| ≤ A, simple calculations show that

IIi,j =
h√
m

∫ ∞

−∞
E

{
ui+1uj+1E

(
K

[
(xt − xi)/h

]
| Ft−m

)
K

[
(ρmxt−m − xj)/h + x

]}
ht−m,t(

hx√
m

) dx + V5n

=
h2

m

∫ ∞

−∞

∫ ∞

−∞
E

{
ui+1uj+1K

[
(ρmxt−m − xi)/h + y

]
K

[
(ρmxt−m − xj)/h + x

]}
ht−m,t(

hx√
m

) ht−m,t(
hy√
m

) dxdy + V5n + V6n, (7.36)

where hs,t(z) is the density given in (7.2),

|V5n| ≤ Ch

m
E

{(
1 +

∞∑
k=0

(k + 1)−1−δ|εt−m−k|
)
|E

(
K

[
(xt − xi)/h

]
| Ft−m

)
|
}

≤ Ch2

m3/2
,

|V6n| ≤ Ch2

m3/2

∫ ∞

−∞
E

{(
1 +

∞∑
k=0

(k + 1)−1−δ|εt−m−k|
)
K

[
(ρmxt−m − xj)/h + x

]}
dx

≤ Ch2

m3/2
.

On the other hand, using (7.7) with p(z) = K
[
(ρmz − xi/h + y

]
K

[
(ρmz − xj/h + x

]
,∣∣∣E{

uj+1K
[
(ρmxt−m − xi)/h + y

]
K

[
(ρmxt−m − xj)/h + x

]
| Fj

}∣∣∣
≤ Ch

t−m− j

∫ ∞

−∞
K

[
(ρmz − xi/h + y

]
K

[
(ρmz − xj/h + x

]
dz

≤ Ch

t− j

∫ ∞

−∞
K(ρmz)K

[
ρmz + (xj − xi)/h + y − x

]
dz.

Taking these estimates into (7.36) and recalling hs,t(z) ≤ C0 and
∫∞
−∞ hs,t(z)dz = 1, we

obtain

IIi,j ≤ C1h
3

m (t− j)
E

{∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
K(ρmz)K

[
ρmz + (xj − xi)/h + y − x

]
ht−m,t(

hx√
m

) dxdy dz
}

+
Ch2

m3/2

≤ C3h
2

√
m (t− j)

+
Ch2

m3/2
.
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This, together with (7.8), yields that

E
∣∣ t−m−1∑

i=1

ui+1E
(
K

[
(xt − xi)/h

]
| Ft−m

)∣∣2
≤ 2

∑
1≤i<j≤t−m−1

IIi,j + A2

t−m−1∑
i=1

E
∣∣E(

K
[
(xt − xi)/h

]
| Ft−m

)∣∣2
≤ 2

∑
1≤i<j≤t−m−1

( C3h
2

√
m (t− j)

+
Ch2

m3/2

)
+ C

t−m−1∑
i=1

h2

m

≤ Ch2t2

m3/2
+

Ch2t log(t−m)√
m

+
Ch2t

m
.

This proves (7.29) and also completes the proof of Lemma 7.6. 2

7.2 Proof of Proposition 6.1. Write τ ∗n,t = τn,t−τn,t−1 and recall E(τ ∗n,t | F0
n,t−1) =

σ−2E[u2
t+1 | Ft] by (6.5). We have, for 0 ≤ r ≤ T ,

[Mn, V ]r =
1

n

[nr]∧n∑
t=1

Y ∗
nt +

1

nσ2

[nr]∧n∑
t=1

Y ∗
nt

[
τ ∗n,t − E(τ ∗n,t | F0

n,t−1)
]

+
1

nσ2

[nr]∧n∑
t=1

Y ∗
nt

[
E(u2

t+1 | Ft)− σ2
]
+ Rn(r)

:= Z1n(r) + Z2n(r) + Z3n(r) + Rn(r), (7.37)

where, by recalling τn,j−1 < nr ≤ τn,j and (6.4),

sup
0≤r≤T

|Rn(r)| ≤ sup
0≤r≤1

|Rn(r)|+ sup
1≤r≤T

|Rn(r)|

≤ n−1 max
1≤k≤n

[
|[nr]− (j − 1)| |Y ∗

nk| τ ∗n,k

]
+ (T + |1− τn,n/n|)/

√
n

≤ C nδ−1 max
1≤k≤n

[|Y ∗
nk| τ ∗n,k] + C/

√
n, (7.38)

for any δ > 1/2. Since |uk| ≤ C, it follows from (6.5), (7.28) in Lemma 7.6 and

Y ∗
nt =d

√
n

dn

Zt11 (7.39)

(where Ztkr =
∑t−r

i=k ui+1K
[
(xt − xi)/h

]
is defined as in Lemma 7.6) that

E max
1≤k≤n

[|Y ∗
nk| τ ∗n,k] ≤

{ n∑
k=1

E
[
|Y ∗

nk|4 E
(
τ ∗4n,k | F0

n,t−1

)]}1/4

≤ C (nh2)−1/4
(
EZ4

t11

)1/4 ≤ C (nh2)−1/4
(
C + EZ4

t12

)1/4

≤ C (nh2)−1/4
(
1 + h4

n∑
t=2

t3/2 log t + h3

n∑
t=1

t3/2
)1/4

≤ C n3/8 h1/4, (7.40)
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whenever nh2 → ∞ and h log2 n → 0. Taking this estimate into (7.38), we obtain

sup0≤r≤T |Rn(r)| = oP (1) by choosing δ < 1/8. Note that {Y ∗
nt

[
τ ∗n,t−E(τ ∗n,t | F0

n,t−1)
]
, F0

n,t}1≤t≤n

forms a martingale difference. It follows from the maximal inequality for martingales, (6.5)

and (7.26) in Lemma 7.6 that

E sup
0≤r≤T

|Z2n(r)|2 ≤ C

n2

n∑
t=1

E
{
Y ∗2

nt E(τ ∗2n,t | F0
n,t−1)

}
≤ C1

nd2
n

n∑
t=1

E
(
Zt11

)2 ≤ C2

n5/2h

n∑
t=1

(1 + h
√

t) ≤ C/n,

which yields that sup0≤r≤T |Z2n(r)| = oP (1). To estimate Z3n(r), recall

E|Y ∗
nt| ≤

C

n1/4
√

h
(E|Zt11|2)1/2 ≤ C1(t/n)1/4.

It is readily seen that
∑n

t=1 E|Y ∗
nt| ≤ Cn and for any cn/n → 0,

∑cn

t=1 E|Y ∗
nt| ≤ Cc

5/4
n n−1/4 =

o(n). By virtue of these facts and E[u2
t+1 | Ft] →a.s. σ2, it follows from Lemma 7.3 that

E sup
0≤r≤T

|Z3n(r)|1/2 ≤ C√
n

E
( n∑

t=1

|Y ∗
nt||

[
E(u2

t+1 | Ft)− σ2
]
|
)1/2

= o(1),

which yields that sup0≤r≤T |Z3n(r)| = oP (1).

Hence, it suffices to show that

sup
0≤r≤T

|Z1n(r)| =d
1√
n dn

max
1≤k≤n

∣∣ k∑
t=1

t−1∑
i=1

ui+1K[(xt − xi)/h]
∣∣ = oP (1). (7.41)

Note that, with ηn = εn n and m = ηn/2 where εn is chosen such that εn → 0 and

ε
−1/2
n h log2 n → 0,

max
1≤k≤n

∣∣ k∑
t=1

t−1∑
i=1

ui+1K[(xt − xi)/h]
∣∣ ≤ C n + max

1≤k≤n

∣∣ k∑
t=1

Zt12|

≤ C n + 2

ηn∑
t=1

|Zt12|+
∑

ηn+1≤t≤n

∣∣ t−2∑
i=t−m+1

ui+1K
[
(xt − xi)/h

]∣∣
+ max

ηn+1≤k≤n

∣∣ k∑
t=ηn+1

t−m∑
i=1

ui+1K
[
(xt − xi)/h

]∣∣
:= C n + 2 R1n + R2n + R3n. (7.42)

By (7.26) in Lemma 7.6, it follows that

ER1n ≤
ηn∑
t=1

(E|Zt12|2)1/2 ≤ C h1/2

ηn∑
t=1

t1/4 ≤ C1 εn n5/4h1/2, (7.43)

ER2n ≤
∑

ηn+1≤t≤n

(E
∣∣Zt(m−1)2

∣∣2)1/2

≤ Cn m1/4
√

h ≤ C1 ε1/4
n n5/4h1/2. (7.44)
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By virtue of (7.43) and (7.44), we have

C n + 2 R1n + R2n ≤ C n5/4h1/2
[
1/(nh2)1/4 + OP (ε1/4

n )
]

= oP (n5/4h1/2).

Taking this fact into (7.42), the result (7.41) will follow if we prove

R3n = max
ηn+1≤k≤n

∣∣ k∑
t=ηn+1

Zt1m

∣∣ = oP (n5/4
√

h). (7.45)

It is readily seen that

R3n ≤ max
ηn+1≤k≤n

∣∣ k∑
t=ηn+1

{
Zt1m − E(Zt1m | Ft−m)

}∣∣ +
n∑

t=ηn+1

∣∣ E(Zt1m | Ft−m)
∣∣

:= R3n1 + R3n2.

Note that, for fixed m, {Zt1m − E(Zt1m | Ft−m, Ft−m}t≥1 forms a martingale difference.

It follows that

ER2
3n1 ≤ C

n∑
t=1

EZ2
t1m ≤ C h

n∑
t=1

t1/2 ≤ C1 hn3/2, (7.46)

which yields that R3n1 = oP (n5/4
√

h).

As for R3n2, by noting that ui+1 is Ft−m measurable when i ≤ t −m − 1, it follows

from (7.29) in Lemma 7.6 that

ER3n2 ≤ Cn +
n∑

t=m+1

E
∣∣ t−m−1∑

i=1

ui+1E
(
K

[
(xt − xi)/h

]
| Ft−m

)∣∣
≤ Cn +

n∑
t=m+1

(
E

∣∣ t−m−1∑
i=1

ui+1E
(
K

[
(xt − xi)/h

]
| Ft−m

)∣∣2)1/2

≤ Cn + C

n∑
t=m+1

( h2t2

m3/2
+

h2t log(t−m)√
m

+
h2t

m

)1/2

≤ Cn + Ch
( n2

m3/4
+

n3/2 log n

m1/4
+

n3/2

m1/2

)
≤ Cn + Cε−1/4

n n5/4h log n

= oP (n5/4
√

h),

since ε
−1/4
n

√
h log n = o(1). This proves (7.45), and hence the proof of Proposition 6.1 is

complete. 2
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7.3 Proof of Proposition 6.2. As in the proof of Proposition 6.1, write τ ∗n,t =

τn,t − τn,t−1. Recall E(τ ∗n,t | F0
n,t−1) = σ−2E[u2

t+1 | Ft] by (6.5). We have,

[Mn]1 =
1

n

n∑
t=1

Y ∗2
nt +

1

nσ2

n∑
t=1

Y ∗2
nt

[
τ ∗n,t − E(τ ∗n,t | F0

n,t−1)
]

1

nσ2

n∑
t=1

Y ∗2
nt

[
E(u2

t+1 | Ft)− σ2
]
+ R∗

n

:=
1

n

n∑
t=1

Y ∗2
nt + Z1n + Z2n + Rnj, (7.47)

where, for some 1 ≤ j ≤ n satisfying τn,j−1 < n ≤ τn,j,

|Rnj| ≤ 1

n

(
1− τn,n

n

)
+

1

n

n∑
t=j

Y ∗2
nt τ ∗n,t .

Note that j is a random variable satisfying

n− j ≤ max
1≤j≤n

|τn,j − j|+ 1/n = o(nδ), a.s. (7.48)

for any δ > 0, due to (6.4). It is readily seen that

|Rnj| ≤ oP (1) +
1

n

n∑
t=n−nδ

Y ∗2
nt τ ∗nt = oP (1), (7.49)

where we have used the fact that, for any δ > 0,

1

n

n∑
t=n−nδ

E
[
Y ∗2

nt τ ∗nt

]
≤ 1

n

n∑
t=n−nδ

E
(
|Y ∗2

tn |E
[
(τn,t − τn,t−1)

2 | F0
n,t−1

])
≤ C

n3/2h

n∑
t=n−nδ

EZ2
t11 ≤

C

n3/2

n∑
t=n−nδ

(1 + h log t)
√

t

≤ C

n3/2

[
n3/2 − (n− nδ)3/2

]
= o(1), (7.50)

due to (6.4), (7.39), (7.26) in Lemma 7.6 and h log2 n → 0.

By noting that {Y ∗2
nt

[
τ ∗n,t −E(τ ∗n,t | F0

n,t−1)
]
, F0

n,t−1}t≥1 forms a martingale difference,

it follows from (6.5) and (7.28) in Lemma 7.6 that

EZ2
1n ≤ C

n2

n∑
t=1

E
{

Y ∗4
nt E(τ ∗2n,t | F0

n,t−1)
}

≤ C

nd2
n

n∑
t=1

E
∣∣ n∑

i=1

ui+1K
(xt − xi

h

)∣∣4
≤ C

n5/2h

n∑
t=1

(
C + h4t3/2 log t + h3t3/2

)
≤ Ch2(1 + h log n) = o(1),
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since h log2 n → 0, which implies that Z1n = oP (1). To estimate Z2n, recall that, by (7.26)

in Lemma 7.6,

EY ∗2
nt ≤ Cn

d2
n

E
∣∣ t−1∑

i=1

ui+1K
(xt − xi

h

)∣∣2 ≤ C (t/n)1/2.

It is readily seen that
∑n

t=1 EY ∗2
nt ≤ Cn and for any cn/n → 0,

∑cn

t=1 EY ∗2
nt ≤ Cc

3/2
n n−1/2 =

o(n). By virtue of these facts and E[u2
t+1 | Ft] →a.s. σ2, it follows from Lemma 7.3 that

E|Z2n|1/2 ≤ C√
n

E
( n∑

t=1

Y ∗2
nt |

[
E(u2

t+1 | Ft)− σ2
]
|
)1/2

= o(1),

which yields that Z2n = oP (1).

By virtue of all these facts, namely Z1n + Z2n + Rnj = oP (1), and (7.47), we obtain

(6.17). We next prove (6.16), which will follow if we prove that, under the extended

probability space,

1

n

n∑
t=1

Y ∗2
nt →P η2. (7.51)

Recall (6.2)-(6.3). Simple calculations show that

1

n

n∑
t=1

Y ∗2
nt =

σ2

d2
n

[nr]∑
t=1

t−1∑
i=1

K2
{
cn [G0

n(t/n)−G0
n(i/n)]

}
+ R∗

1n + R∗
2n, (7.52)

where

R∗
1n =d

1

d2
n

n∑
t=1

t−1∑
i=1

(u2
i+1 − σ2)K2

[
(xt − xi)/h

]}
,

R∗
2n =d

2

d2
n

n∑
t=1

t−1∑
i,j=1
i6=j

ui+1uj+1K
[
(xt − xi)/h

]
K

[
(xt − xj)/h

]
.

By virtue of (6.2)-(6.3) and Theorem 4.1, under the extended probability space,∣∣∣σ2

d2
n

n∑
t=1

t−1∑
i=1

K2
{
cn [G0

n(t/n)−G0
n(i/n)]

}
− η2

∣∣∣ →P 0. (7.53)

So, it remains to show that

|R∗
in| = oP (1), i = 1, 2. (7.54)

The proof of (7.54) for i = 1 follows from the same arguments as in the establishment

of V3n2 +V3n3 = oP (n3/2h), given in the proof of Theorem 3.3. To prove (7.54) with i = 2,
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we write

R∗
2n =d

4

d2
n

n∑
t=2

t−1∑
i=2

i−1∑
j=1

ui+1uj+1K
[
(xt − xi)/h

]
K

[
(xt − xj)/h

]
= R∗

3n + R∗
4n, (7.55)

where, by using the convention that
∑t

i=s = 0 if t < s,

R∗
3n =

4

d2
n

n∑
t=1

t−2∑
j=1

utuj+1K
[
(xt − xt−1)/h

]
K

[
(xt − xj)/h

]
R∗

4n =
4

d2
n

n∑
t=1

Zt,

where

Zt =
t−2∑
i=1

i−1∑
j=1

ui+1uj+1K
[
(xt − xi)/h

]
K

[
(xt − xj)/h

]
.

Recall |ut| ≤ A. It follows easily from (7.15) with p1(x) = p2(x) = K(x) in Lemma 7.4

that

E|R∗
3n| ≤ C

n3/2h

n∑
t=1

t−2∑
j=1

E
{

K
[
(xt − xt−1)/h

]
K

[
(xt − xj)/h

]}
≤ Ch

n3/2

n∑
t=1

t−2∑
j=1

1√
t− j

≤ C1 h → 0. (7.56)

As for R∗
4n, we have

ER∗2
4n ≤ C

n3h2

n∑
t,s=1

E(Zt Zs)

=
2C

n3h2

n∑
t=2

t−1∑
s=1

E(Zt Zs) +
C

n3h2

n∑
t=1

EZ2
t . (7.57)

In the following, we will show that

EZ2
t ≤ C t3/2h3, (7.58)

and for s < t,

E(Zs Zt) ≤ Ch4

√
t− s

{
s2[log(t− s) + log s] +

s5/2

√
t− s

+ s(t− s) log(t− s)
}

+
Ch3s√
t− s

. (7.59)
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Taking (7.58) and (7.59) into (7.57), we obtain

ER∗2
4n ≤ C

n3h2

n∑
t=1

t−2∑
s=1

E(Zt Zs) +
C

n3h2

n∑
t=1

EZ2
t

≤ C h2
√

n log n + Cn−1/2h → 0,

since nh4 log2 n → 0. This, together with (7.55) and (7.56), yields that

E|R∗
2n| ≤ E|R∗

3n|+ (ER∗2
4n)1/2 → 0, as n →∞,

which implies (7.54) with i = 2.

We next prove (7.58) and (7.59). The result (7.58) is simple. Indeed, by letting

Zt12 =
∑t−2

i=1 ui+1K
[
(xt − xi)/h

]
as before, it is readily seen that

2Zt = Z2
t12 −

t−2∑
i=1

u2
i+1K

2
[
(xt − xi)/h

]
.

This, together with (7.28) and (7.14)-(7.15) in Lemma 7.4, implies that

EZ2
t ≤ 1

4
EZ4

t12 +
A4

4
E

( t−2∑
i=1

K2
[
(xt − xi)/h

])2

≤ C t3/2h3 + C h2
∑

1≤i<j≤t−2

1√
t− j

1√
j − i

+ C h
t−2∑
i=1

1√
t− i

≤ C1(t
3/2h3 + h2t + h

√
t) ≤ C2 t3/2h3,

since t ≤ n and nh2 →∞. This proves (7.58).

To prove (7.59), by noting that, for s < t,

s−2∑
i,j=1
i<j

t−2∑
k,l=1
k<l

=
s−2∑
i,j=1
i<j

( s−2∑
k,l=1
k<l

+
s∑

l=s−1

l−1∑
k=1

+
t−2∑

l=s+1

l−1∑
k=1

)
and

4
s−2∑
i,j=1
i<j

s−2∑
k,l=1
k<l

=
s−2∑
i,j=1
i6=j

s−2∑
k,l=1
k 6=l

=
s−2∑

i6=j 6=k 6=l

+4
s−2∑

i6=j 6=k
l=i

+2
s−2∑
i6=j

k=i,l=j

,

we may write, with the notation I(...) as in Lemma 7.5,

ZsZt =
s−2∑
i,j=1
i<j

t−2∑
k,l=1
k<l

I(i, j, k, l, s, t)

= I1st + I2st + I3st + I4st + I5st, (7.60)
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where, by symmetry and (7.20),

|EI1st| =
∣∣ s−2∑

i6=j 6=k 6=l

EI(......)
∣∣

≤ Ch4

t− s

∑
1≤i<j<k<l≤s−2

1√
s− l

1√
l − k

1√
j − i

+
Ch4

√
t− s

∑
1≤i<j<k<l≤s−2

1

s− l

1√
l − k

1√
j − i

≤ Ch4
( s5/2

t− s
+

s2 log s√
t− s

)
; (7.61)

by |uj| ≤ A and (7.18) with l = i in Lemma 7.4,

|EI2st| = 4
∣∣ s−2∑

i6=j 6=k
l=i

EI(......)
∣∣

≤ 4A4

s−2∑
i6=j 6=k

E
{

K
[
(xs − xi)/h

]
K

[
(xt − xi)/h

]
K

[
(xs − xj)/h

]
K

[
(xt − xk)/h

]}
≤ Ch4

√
t− s

∑
1≤i<j<k≤s−2

1√
s− k

1√
j − i

≤ Ch4s2

√
t− s

; (7.62)

by |uj| ≤ A and (7.17) with k = i and l = j in Lemma 7.4,

|EI3st| = 2
∣∣ s−2∑

i6=j
k=i,l=j

EI(......)
∣∣

≤ 4A4

s−2∑
i6=j

E
{

K
[
(xs − xi)/h

]
K

[
(xt − xi)/h

]
K

[
(xs − xj)/h

]
K

[
(xt − xj)/h

]}
≤ Ch3

√
t− s

∑
1≤i<j≤s−2

1√
s− j

≤ Ch3s3/2

√
t− s

; (7.63)
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by (7.21) in Lemma 7.5,

|EI5st| =
s−2∑
i,j=1
i<j

t−2∑
l=s+1

( s−1∑
k=1

+
l−1∑
k=s

)∣∣EI(......)
∣∣

≤
s−2∑
i,j=1
i<j

t−2∑
l=s+1

s−1∑
k=1

Ch4

t− l

1√
l − k

1√
s− j

1√
j − i

+
s−2∑
i,j=1
i<j

t−2∑
l=s+1

l−1∑
k=s

Ch4

t− l

1√
l − s

1√
s− j

1√
j − i

≤ Ch4s
( t−2∑

l=s+1

s−1∑
k=1

1

t− l

1√
l − k

+
t−2∑

l=s+1

l−1∑
k=s

1

t− l

1√
l − s

)
≤ Ch4s

[√
t− s log(t− s) +

s log(t− s)√
t− s

]
. (7.64)

As for I4st, by noting

s−2∑
i,j=1
i<j

s∑
l=s−1

l−1∑
k=1

=
1

2

s−2∑
i,j=1
i6=j

( s∑
l=s−1

s−2∑
k=1

+
s∑

l=s−1

l−1∑
k=s−1

)

=
1

2

s−2∑
i,j,k=1
i6=j 6=k

s∑
l=s−1

+
s−2∑
i,j

i6=j,k=i

s∑
l=s−1

+
1

2

s−2∑
i,j=1
i6=j

s∑
l=s−1

l−1∑
k=s−1

,

it follows from |uj| ≤ A, (7.17)-(7.18) in Lemma 7.4,

|EI4st| ≤
s−2∑
i,j=1
i<j

s∑
l=s−1

l−1∑
k=1

∣∣EI(......)
∣∣

≤ A4
(1

2

s−2∑
i,j,k=1
i6=j 6=k

s∑
l=s−1

+
s−2∑
i,j

i6=j,k=i

s∑
l=s−1

+
1

2

s−2∑
i,j=1
i6=j

s∑
l=s−1

l−1∑
k=s−1

)
χst(i, j, k, l)

≤ Ch4

√
t− s

∑
1≤i<j<k≤s−2

1√
s− k

1√
j − i

+
Ch3

√
t− s

∑
1≤i<j≤s−2

1√
s− j

≤ Ch4s2

√
t− s

, (7.65)

since s ≤ n and nh2 →∞.

By virtue of (7.60)-(7.65), the result (7.59) follows from a simple calculation. The

proof of Proposition 6.2 is now complete. 2
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7.4 Proof of Proposition 6.3. As in (7.47), we have

Mn(1) =
n∑

t=2

[
V (τn,t/n)− V (τn,t−1/n)

]
Y ∗

n,t + Rnj, (7.66)

where, for some 1 ≤ j ≤ n satisfying τn,j−1 < n ≤ τn,j,

|Rnj| ≤ 1√
n
|V (1)− V (τn,n/n)|+ |Y ∗

n,j| |V (1)− V (τn,j−1/n)|

+
∣∣ n∑

t=j

[
V (τn,t/n)− V (τn,t−1/n)

]
Y ∗

n,t

∣∣
:= Z3n + Z4n + Z5n. (7.67)

Write Ωj = {j : n− j ≤ nδ, where τn,j−1 < n ≤ τn,j}. It follows from (6.4) that

P (j /∈ Ωj) → 0.

This yields that, for any ε > 0,

P (Z5n ≥ ε) ≤ P (j /∈ Ωj) + P (j ∈ Ωj, Z5n ≥ ε)

≤ o(1) + ε−2 E
(
I(j∈Ωj)Z

2
5n

)
. (7.68)

Note that Ωj is F0
n,t−1-measurable for t ≥ j and

E
{[

V (τn,t/n)− V (τn,t−1/n)
]
| Fn,t−1

}
= 0.

It follows from the conditional arguments and (7.50) that

E
(
I(j∈Ωj)Z

2
5n

)
≤ E

(
I(j∈Ωj)

n∑
t=j

[
V (τn,t/n)− V (τn,t−1/n)

]2
Y ∗2

n,t

)
≤

n∑
t=n−nδ

E
([

V (τn,t/n)− V (τn,t−1/n)
]2

Y ∗2
n,t

)
≤

n∑
t=n−nδ

E
(

Y ∗2
n,t E

[[
V (τn,t/n)− V (τn,t−1/n)

]2 | F0
n,t−1

])
≤ 1

n

n∑
t=n−nδ

E
(

Y ∗2
n,t

[
τn,t − τn,t−1

])
→ 0.

This yields that Z5n = o(1). By virtue of (6.4), Z3n = op(1) is obvious. As for Z4n, similar
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to the proof of (7.68), we have

P (Z4n ≥ ε) ≤ P (j /∈ Ωj) + P (j ∈ Ωj, Z4n ≥ ε)

≤ o(1) + ε−2 E
(
I(j∈Ωj)Z

2
4n

)
≤ o(1) +

n∑
t=n−nδ

E
(
Y ∗2

n,t sup
τn,t−1<n≤τn,t

[
V (1)− V (τn,t−1/n)

]2
)

≤ o(1) +
n∑

t=n−nδ

E
{

Y ∗2
n,t E

(
sup

τn,t−1<n≤τn,t

[
V (1)− V (τn,t−1/n)

]2 | F0
n,t−1

)}
≤ o(1) +

1

n

n∑
t=n−nδ

E
(

Y ∗2
n,t

[
τn,t − τn,t−1

])
→ 0. (7.69)

Taking all these estimates into (7.67), we obtain the required (6.18). 2

7.5 Proof of Proposition 6.4. We only prove (6.26). By using conditional argu-

ments and Lemmas 7.1-7.2, the other results are similar but simpler. Note that

1 + |xt|α2 ≤ tα2/2
[
1 + (xt/

√
t)α2

]
≤ Cα tα2/2

[
1 + (|xt − xi|/

√
t)[α2]+1 + (|xs − xi|/

√
t)[α2]+1 + (|xs|/

√
t)[α2]+1

]
.

We have that

E
{

(1 + |xs|α1) (1 + |xt|α2)|p[(xi − xt)/h]| |p[(xi − xs)/h]|
}

≤ Cα tα2/2E
{

(1 + |xs|α1)
[
1 + (|xs|/

√
t)[α2]+1

]
|p[(xi − xt)/h]| |p[(xi − xs)/h]|

}
+Cα tα2/2E

{
(1 + |xs|α1)p[α2]+1[(xi − xt)/h]| |p[(xi − xs)/h]|

}
+Cα tα2/2E

{
(1 + |xs|α1) |p[(xi − xt)/h]| |p[α2]+1[(xi − xs)/h]|

}
:= I1n + I2n + I3n. (7.70)

It follows from (7.8) with p(x) = |p(x− xt/h)| |p(x− xs/h)| that

Ξt := E
(
|p[(xi − xt)/h]| |p[(xi − xs)/h]| | Ft

)
≤ Ch√

i− t

∫ ∞

−∞
|p(x− xt/h)| |p(x− xs/h)| dx

=
Ch√
i− t

∫ ∞

−∞
|p(x)| |p[x + (xt − xs)/h]| dx.
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Similarly, uniformly for x ∈ R, it follows from (7.8) first and then (7.11) that

E
{

(1 + |xs|α1)
[
1 + (|xs|/

√
t)[α2]+1

]
|p(x + (xt − xs)/h)|

}
≤ Ch√

t− s

∫ ∞

−∞
|p(x + y)|dy E

{
(1 + |xs|α1)

[
1 + (|xs|/

√
t)[α2]+1

] }
≤ C1hsα/2

√
t− s

.

By virtue of these facts, it is readily seen that

I1n = Cα tα2/2 E
{

(1 + |xs|α1)
[
1 + (|xs|/

√
t)[α2]+1

]
Ξt

}
≤ Ch tα2/2

√
i− t

∫ ∞

−∞
|p(x)|E

{
(1 + |xs|α1)

[
1 + (|xs|/

√
t)[α2]+1

]
|p(x + (xt − xs)/h)|

}
dx

≤ C1 h2

√
i− t

sα1/2tα2/2

√
t− s

.

Similarly, we have

I2n + I3n ≤ C h2

√
i− t

sα1/2tα2/2

√
t− s

.

Taking these estimates into (7.70), we obtain the required (6.26). The proof of Proposition

6.4 is now complete. 2

7.6 Proof of Proposition 6.5. We will repeatedly use the following fact:

E(|us+1| | Fs) ≤
[
E(|us+1|2 | Fs)

]1/2 ≤
[
E(|us+1|4 | Fs)

]1/4 ≤ C.

Let Z∗
2i = ui+1 g(xi)

∑n
t=i+2 K

[
(xt − xi)/h

]
. We may write

Z2i = ui+1 g(xi)K
[
(xi+1 − xi)/h

]
+ Z∗

2i. (7.71)

The result (6.28) will follow if we prove

EZ∗2
2i ≤ Cnh2iβ, (7.72)

E(Z∗
2i Z

∗
2j) ≤ C

√
nh3/2 (1 + h1/2 log n) iβ/2 jβ/2, (7.73)

for i < j, and

E
( n∑

i=1

ui+1 g(xi)K
[
(xi+1 − xi)/h

])2

≤ C n2+β
√

h, (7.74)

Indeed, by (7.71)-(7.74), it is readily seen that

E
( n∑

i=1

Z2i

)2

≤ C n2+β
√

h + Cnh2

n∑
i=1

iβ + C
√

nh3/2 (1 + h1/2 log n)
∑

1≤i<j≤n−1

iβ/2 jβ/2

≤ C n5/2+βh3/2(h1/2 log n + 1),
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since nh2 →∞, which yields (6.28).

We next prove (7.72)-(7.74). To this end, write

J(i, j, s, t) = E
[
ui+1uj+1g(xi)g(xj)K

[
(xs − xi)/h

]
K

[
(xt − xj)/h

]]
.

If i = j and s = t ≥ i + 2, by recalling supi≥1 E(u4
i+1 | Fi) < ∞ and supx K(x) < ∞, it

follows from (6.27) in Proposition 6.4 that

J(i, i, t, t) ≤ sup
x

K(x) E
{

u2
i+1(1 + |xi|2β)K

[
(xt − xi)/h

]}
≤ Chiβ√

t− i
.

Similarly, if i = j and i + 2 ≤ s < t, then by (7.8) and (6.27)

J(i, i, s, t) = E
{

u2
i+1g(xi)

2K[(xs − xi)/h]E
(
K

[
(xt − xi)/h

]
| Fs

)}
≤ Ch√

t− s
E

{
u2

i+1(1 + |xi|2β) K
[
(xs − xi)/h

]}
≤ Ch2iβ√

t− s

1√
s− i

.

By virtue of these estimates, it is readily seen that

EZ∗2
2i = 2

∑
i+2≤s<t≤n

J(i, i, s, t) +
n∑

t=i+2

J(i, i, t, t)

≤ Ch2
∑

i+2≤s<t≤n

1√
t− s

1√
s− i

iβ + Ch
n∑

t=i+2

1√
t− i

iβ

≤ C(nh2 +
√

nh) iβ ≤ C nh2iβ,

since nh2 →∞, which yields (7.72).

To prove (7.73), for i < j and m0 = 1 + [β], write Ω = {s : s = j + 1 or i + 1 ≤ s ≤
i + m0 + 1} and assume

∑s
i=k = 0 if s < k. We have

E
(
Z∗

2i Z
∗
2j

)
=

( ∑
s∈Ω

n∑
t=j+2

+

j∑
s=i+m0+2

n∑
t=j+2

+
n∑

s=j+2

n∑
t=j+2

)
J(i, j, s, t)

:= A1i + A2i + A3i. (7.75)

First calculate A2i. For i < j, i + m0 + 2 ≤ s ≤ j and t ≥ j + 2, it follows from (7.7) with

p(x) = K(x− xj/h) that

J(i, j, s, t) ≤ E
{
|ui+1||g(xi)||g(xj)|K

[
(xs − xi)/h

] ∣∣E(
uj+1K[(xt − xj)/h] | Fj

)∣∣}
≤ Ch

t− j
E

{
|ui+1||g(xi)||g(xj)|K

[
(xs − xi)/h

] }
. (7.76)
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Furthermore, by recalling |g(x)| ≤ C(1 + |x|β) for some β ≥ 0, the result (7.12) implies

that

E
{
|ui+1||g(xi)||g(xj)|K

[
(xs − xi)/h

] }
≤ CE

[
|ui+1|(1 + |xi|β)K

[
(xs − xi)/h

]
E

{
(1 + |xj|β) | Fs

}]
≤ C1(j − s)β/2]E

{
|ui+1|(1 + |xi|β)K

[
(xs − xi)/h

] }
+C1 E

{
|ui+1|(1 + |xi|β|) |xs|β K

[
(xs − xi)/h

] }
+C1 E

{
|ui+1|(1 + |xi|β|)

( ∞∑
k=0

(k + 1)−1−δ|εs−k|
)β

K
[
(xs − xi)/h

] }
:= Bi1 + Bi2 + Bi3. (7.77)

It follows from (6.27) in Proposition 6.4 that

Bi1 + Bi2 ≤ Ch√
s− i

iβ/2jβ/2. (7.78)

To calculate Bi3, first notice that

( ∞∑
k=0

(k + 1)−1−δ|εs−k|
)β ≤ 1 +

( ∞∑
k=0

(k + 1)−1−δ|εs−k|
)[β]+1

= 1 +
∞∑

k1,...,km0=0

m0∏
u=1

(ku + 1)−1−δ

m0∏
u=1

|εt−ku |,

and by using (7.10) in Lemma 7.1 with p(x) = K(x− xi/h),

E
{
|ui+1|(1 + |xi|β|)

m0∏
u=1

|εs−ku |K
[
(xs − xi)/h

] }
≤ E

{
(1 + |xi|β|)

m0∏
u=1

s−ku≤i

|εs−ku |E
(
|ui+1|

m0∏
u=1

s≥s−ku≥i+1

|εs−ku |K
[
(xs − xi)/h

]
| Fi

)}

≤ Ch√
s− i−m0

E
{

(1 + |xi|β|)
m0∏
u=1

s−ku≤i

|εs−ku |
}

≤ Ch√
s− i

[
E(1 + |xi|β|)2

]1/2
(
E

m0∏
u=1

s−ku≤i

|εs−ku |2
)1/2

≤ Ch√
s− i

iβ/2.
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These facts imply that

Bi3 ≤ CE
[
|ui+1|(1 + |xi|β|)

{
1 +

( ∞∑
k=0

(k + 1)−1−δ|εt−k|
)1+[β]}

K
[
(xt − xi)/h

] ]
≤ C E

{
|ui+1|(1 + |xi|β|) K

[
(xs − xi)/h

] }
+

∞∑
k1,...,km0=0

m0∏
u=1

(ku + 1)−1−δE
{
|ui+1|(1 + |xi|β|)

m0∏
u=1

|εs−ku |K
[
(xs − xi)/h

] }
≤ Ch√

s− i
iβ/2. (7.79)

Combining (7.76)-(7.79), we get

A2i ≤
j∑

s=i+m+2

n∑
t=j+2

Ch

t− j

C1h√
s− i

iβ/2jβ/2

≤ C
√

nh2 log n iβ/2jβ/2. (7.80)

Next calculate A1i. For i < j, s ∈ Ω and t ≥ j + 2, similar arguments to those above

show that ∣∣J(i, j, s, t)
∣∣

≤ E
[
|ui+1| |uj+1| |g(xi)||g(xj)|K

[
(xs − xi)/h

] ∣∣E(
K[(xt − xj)/h] | Fj+1

)∣∣]
≤ Ch√

t− j
E

[
|ui+1| |uj+1| |g(xi)||g(xj)|K

[
(xs − xi)/h

] ]
≤ Ch√

t− j

{
E

(
|ui+1|2 |g(xi)|2K2

[
(xs − xi)/h

])}1/2 {
E

[
|u2

j+1g
2(xj)|

]}1/2

≤ Ch√
t− j

h1/2

(s− i)1/4
[E(1 + |xi|2β]1/2[E(1 + |xj|2β)]1/2

≤ Ch√
t− j

h1/2

(s− i)1/4
iβ/2jβ/2.

This yields

Ai1 ≤ Ch3/2iβ/2jβ/2

n∑
t=j+2

1√
t− j

i+m0+1∑
s=i+1

1

(s− i)1/4

≤ C m0

√
nh3/2 iβ/2jβ/2. (7.81)
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Finally, we calculate A3i. It follows from (7.6) that, for i < j, j + 2 ≤ s < t ≤ n,

J(i, j, s, t)

= E
[
ui+1uj+1g(xi)g(xj)K

[
(xs − xi)/h

]
E

{
K

[
(xt − xj)/h

]
| Fs

}]
=

h√
t− s

∫ ∞

−∞
E

{
ui+1uj+1g(xi)g(xj)K

[
(xs − xi)/h

]
K

[
(ρt−s xs − xj)/h + x

]}
hs,t

( hx√
t− s

)
dx + C1n

:= Cn + C1n, (7.82)

where

|C1n| ≤ Ch

t− s
E

{
|ui+1||uj+1||g(xi)g(xj)|K

[
(xs − xj)/h

] (
1 +

∞∑
k=0

(k + 1)−1−δ|εs−k|
)}

.

Note that, by (7.10) in Lemma 7.1 and Proposition 6.4,

J∗k (i, j, s, t)

:= E
{
|ui+1||uj+1||g(xi)g(xj)|K

[
(xs − xj)/h

]
(1 + |εs−k|)

}
= E

{
|ui+1||g(xi)g(xj)|E

[
|uj+1|K

[
(xs − xj)/h

]
(1 + |εs−k|) | Fj

]}
≤ Ch√

s− j
E

{
|ui+1||g(xi)g(xj)|

}
≤ Ch√

s− j

[
E

{
u2

i+1(1 + |xi|2β)
}]1/2 [

E(1 + |xj|2β)
]1/2

≤ Ch√
s− j

iβjβ/2, for s− k ≥ j + 1;

and similarly,

J∗k (i, j, s, t) = E
{
|ui+1||g(xi)g(xj)| (1 + |εs−k|) E

[
|uj+1|K

[
(xs − xj)/h

]
| Fj

]}
≤ Ch√

s− j
E

{
|ui+1||g(xi)g(xj)| (1 + |εs−k|)

}
≤ Ch√

s− j

[
E

{
u2

i+1(1 + |xi|2β)
}]1/2 [

E(1 + |xj|4β)
]1/4 {

E(1 + |εs−k|)4
}1/4

≤ Ch√
s− j

iβjβ/2, for s− k ≤ j

By virtue of these estimates, it is readily seen that

|C1n| ≤ Ch

t− s

∞∑
k=0

(k + 1)−1−δ J∗k (i, j, s, t) ≤ Ch2

t− s

1√
s− j

iβjβ/2. (7.83)
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On the other hand, by noting that (7.7) with p(y) = K(y − xj/h)K(ρt−sy − xi/h + x)

yields that ∣∣∣E{
uj+1K

[
(xs − xj)/h

]
K

[
(ρt−s xs − xi)/h + x

]
| Fj

}∣∣∣
≤ Ch

s− j

∫ ∞

−∞
K(y − xj/h)K(ρt−sy − xi/h + x)dy ≤ C1h

s− j
,

the conditional argument implies that

|Cn| ≤ Ch2

√
t− s

1

s− j
E

{
|ui+1||g(xi)g(xj)|

}
≤ Ch2

√
t− s

1

s− j

[
E

{
u2

i+1(1 + |xi|2β)
}]1/2 [

E(1 + |xj|2β)
]1/2

≤ Ch2

√
t− s

1

s− j
iβ/2jβ/2. (7.84)

It follows from (7.82)-(7.84) that, for i < j and j + 2 ≤ s < t ≤ n,

|J(i, j, s, t)| ≤ ch2
( 1√

t− s

1

s− j
+

1

t− s

1√
s− j

)
iβ/2jβ/2.

Similarly, for i < j and j + 2 ≤ s = t ≤ n, we have

|J(i, j, t, t)| = E
{
|ui+1| |g(xi)g(xj)|

∣∣E(
uj+1K

[
(xt − xi)/h

]
K[(xt − xj)/h] | Fj

)∣∣}
≤ Ch

t− j
E

{
|ui+1| |g(xi)g(xj)|

}
≤ Ch

t− j
iβ/2jβ/2.

It is now readily seen that

|A3i| ≤
n∑

t=j+2

|J(i, j, t, t)|+ 2
∑

j+2≤s<t≤n

|J(i, j, s, t)|

≤ Ciβ/2jβ/2
[ n∑

t=j+2

h

t− j
+

∑
j+2≤s<t≤n

( h2

√
t− s

1

s− j
+

1

t− s

1√
s− j

)]
≤ C

√
n h2 log n iβ/2jβ/2, (7.85)

since nh2 →∞. The result (7.73) follows from (7.75), (7.80), (7.81) and (7.85).

Finally, we prove (7.74). Using similar arguments to those above, we have

J(i, i, i + 1, i + 1) = E
(
u2

i+1 g2(xi)K
2
[
(xi+1 − xi)/h

])
≤

{
E

[
(1 + |xi|4β)E(u4

i+1 | Fi)
]}1/2 {

EK4
[
(xi+1 − xi)/h

]}1/2

≤ C
√

h iβ,

63



and Hölder’s inequality implies that

J(i, j, i + 1, j + 1) ≤ J1/2(i, i, i + 1, i + 1) J1/2(j, j, j + 1, j + 1)

≤ C
√

h iβ/2jβ/2.

It follows that

E
( n∑

i=1

ui+1 g(xi)K
[
(xi+1 − xi)/h

])2

≤
n∑

i=1

J(i, i, i + 1, i + 1) + 2
∑

1≤i<j≤n−1

J(i, j, i + 1, j + 1)

≤ C n2+β
√

h,

which yields (7.74). The proof of Proposition 6.5 is now complete. 2
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