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Abstract

Nielsen (2009) shows that vector autoregression is inconsistent when there are com-
mon explosive roots with geometric multiplicity greater than unity. This paper dis-
cusses that result, provides a co-explosive system extension and an illustrative exam-
ple that helps to explain the �nding, gives a consistent instrumental variable proce-
dure, and reports some simulations. Some exact limit distribution theory is derived
and a useful new reverse martingale central limit theorem is proved.
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1. Background and Motivation

Financial exuberance and market bubbles have led to a new interest among empir-
ical researchers in autoregressive time series with explosive roots. Recent research
has focussed on the detection of bubble activity by means of right sided recursive
unit root tests (Phillips, Yu and Wu, 2010) and date stamping the origination and
termination of this type of phenomenon in the data (Phillips and Yu, 2010). These
methods have attracted the attention of empirical researchers interested in bubbles.
Theoretical econometric research has also attracted interest and increased relevance
for practical work by developing new concepts and associated limit theory for mildly
explosive processes (Phillips and Magdalinos, 2007) and by extending the notion of
co-movement to include co-explosive processes (Phillips and Magdalinos [PM], 2008;
Magdalinos and Phillips, 2009). These processes are relevant in practical work with
data where contagion e¤ects are suspected. Co-explosive processes arise when there
are common explosive roots and these lead to an asymptotic singularity in the signal
matrix, which produces complications in the limit theory.
In related work, Nielsen (2009, [NN]) considers a vector autoregression (VAR)

with common explosive roots and shows that least squares regression (and Gaussian
maximum likelihood) is inconsistent. This result is intriguing because the model is
correctly speci�ed in terms of its lag and error structure and falls within a framework
where OLS is well known to be generally consistent with good asymptotic properties.
The model is unremarkable except for the occurrence of common explosive roots with
geometric multiplicity exceeding unity. The simplest case is a VAR(1) with scalar
coe¢ cient matrix �I and � > 1: The common explosive roots produce co-explosive
behavior and lead to an asymptotic singularity in the signal matrix, analogous to that
studied in Phillips and Magdalinos (2008, [PM]) in structural models. The singularity
has fatal consequences in the VAR case. Importantly, Nielsen�s result provides a new
context where (unrestricted) maximum likelihood is inconsistent.
The present work explores the result by considering an example that helps to

explain the inconsistency in terms of the endogeneity that is induced by co-explosive
behavior. In an explosive autoregression the variables behave like exponential trends
(with random coe¢ cients) that are informative about the future trajectory. Co-
explosive behavior in a VAR produces common exponential trends that are close
to the future in the sense that certain linear combinations of the variables depend
explicitly on future residuals, thereby producing an endogeneity in the regressors.
To establish the limit theory here, a new reverse martingale central limit theorem

is proved that is of some independent interest. While least squares regression is
inconsistent, simple instrumental variable (IV) estimation with contemporaneous or
future values of the variables as instruments is shown to be consistent and to provide
a basis for econometric testing. The OLS regression inconsistency phenomenon can
also occur in triangular systems, such as those studied in PM (2008), and a similar
IV remedy may be implemented in that context.
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The inconsistency of OLS regression is to a random limit involving a matrix quo-
tient of random variables. The exact marginal limit distributions are obtained for
the case where the VAR innovations are Gaussian. The limit random variables are
bounded and the distributions have asymptotes at the boundaries. Simulations reveal
a corresponding bimodality in the �nite sample distributions.

2. Main Results

2.1. A Prototypical Model

For simplicity of exposition of the main ideas, we consider the bivariate VAR(1) model

xt = Rxt�1 + ut; t = 1; :::; n (1)

with R = �I2; � > 1; x0 = 0; and uncorrelated innovations ut with E (ut) = 0 for all t:
Note that no martingale di¤erence structure has been imposed on the innovations at
this point. Inconsistency of the OLS estimator in (1) applies for more general classes
of uncorrelated innovation processes, see Assumption 2 below, and martingale theory
will only be used for the derivation of the limit distribution of an IV correction in
Section 2.3.
The bivariate system in (1) can be written in component form as�

x1t
x2t

�
=

�
� 0
0 �

� �
x1t�1
x2t�1

�
+

�
u1t
u2t

�
; (2)

with the same explosive autoregressive coe¢ cient � > 1; so the algebraic and geomet-
ric multiplicity of this system is two. The results below extend in a straightforward
way to more complex multivariate VAR systems with common explosive roots.
As pointed out by Anderson (1959) and discussed in PM and NN, equality of the

autoregressive coe¢ cients in (2) induces co-explosive behavior in the series x1t and
x2t that results to a singular limit for the standardized sample moment matrix:

��2nX 0X = ��2n
nX
t=1

xt�1x
0
t�1 !a:s:

1

�2 � 1X (�)X (�)
0 (3)

where

X (�) =
1X
j=1

��juj = lim
n!1

xn
�n

a:s: (4)

When ut is a zero mean uncorrelated sequence with bounded second moments, the
in�nite series in (4) is shown to converge almost surely in Lemma 1 below. The
following assumption ensures that X (�) 6= 0 almost surely.
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Assumption 1. Each random variable in the sequence (ut)t2N admits an absolutely
continuous density with respect to Lebesgue measure.

To treat the limiting singularity that is induced by this co-explosive behavior, we
perform a coordinate rotation as developed in PM. Here it is convenient to use the
(sample size dependent) orthogonal transformation

zt = H 0
nxt; (5)

where

Hn =
1

kxnk

�
x1n �x2n
x2n x1n

�
=

1

kxnk
�
xn;R�

2
xn
�
; (6)

in which the orthogonal matrix

R�
2
=

�
0 �1
1 0

�
rotates vectors in the plane by an angle �=2 radians in the positive direction. In
view of (5), the transformed variate zt forms an array, but for notational simplicity
the additional subscript is not employed. The large sample behaviour of the ran-
dom rotation matrix in (6) is characterised by the following lemma, proved in the
Appendix.

Lemma 1. Let ut be a zero mean uncorrelated sequence with supt�0E kutk
2 < 1.

Then ��nxn !a:s: X (�) : Moreover, under Assumption 1, X (�) 6= 0 a:s: and

Hn !a:s:
1

kX (�)k
�
X (�) ;R�

2
X (�)

�
as n!1: (7)

The transformed regressor variate in (5) may be analysed by combining the iden-
tity

xt�1 = ��(n�t+1)xn �
nX
j=t

��(j�t+1)uj (8)

and the orthogonality condition
�
R�

2
xn
�0
xn = 0 as follows:

zt�1 = H 0
nxt�1 =

1

kxnk

�
x0nxt�1�

R�
2
xn
�0
xt�1

�
=

1

kxnk

�
x0nxt�1

�
�
R�

2
xn
�0
�n;t

�
=:

�
z1t�1
z2t�1

�
; (9)

which is conformably partitioned with xt, where

�n;t =

nX
j=t

��(j�t+1)uj (10)
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is a (forward �ltered) linear process with l1 summable coe¢ cients.
The transformed variate zt�1 has an explosive component (z1t�1) and a non-

explosive component (z2t�1). However, unlike similar transformations in models with
trend induced degeneracies (such as models with some deterministic trends and some
stochastic trends - see Park and Phillips, 1988, 1989), the non-explosive component
z2t�1 involves linear combinations that are data dependent and random, even asymp-
totically, as is apparent from the limit of R�

2
xn= kxnk in (7). It follows from the form

ofX (�) =
P1

j=1 �
�juj that the random linear combination present in z2t�1 introduces

an endogeneity into the regressor that leads to the inconsistency of least squares. In
particular, the component ��tut of X (�) is correlated with the regression error ut; as
is the component �n;t of the transformed regressor z2t�1:
Intriguingly, under a martingale di¤erence assumption on the innovation sequence

ut, the regressor xt�1 in the original system (1) satis�es E (utjxt�1) = 0 a:s:, thereby
ful�lling one of the usual conditions for consistent least squares estimation. However,
the limiting singularity in the sample moment matrix involves the data dependent
vector X (�) and induces an endogeneity in the (transformed) system which takes
into account the co-explosive behavior present in xt: To see the reason for the endo-
geneity more clearly, note that ��(t�1)xt�1 = X (�) �

P1
k=t �

�kuk; so the di¤erence
��(t�1)xt�1 � X (�) contains information about future disturbances and, in particu-
lar, is correlated with ut: When the system is unidimensional this a:s: limit behavior
is not enough to induce endogeneity. But in a multidimensional system with com-
mon explosive roots (and geometric multiplicity greater than unity) information is
sourced from more than one component of xt�1 and the resulting singularity in the
signal matrix reveals information about X (�) and the null space of the (asymptotic)
signal matrix. It is this information that leads to the residual process �n;t that is
correlated with ut:When geometric multiplicity is unity, there are cross e¤ects in the
coe¢ cient matrix R (which is no longer diagonal) that complicate the signal matrix
and eliminate the endogeneity in the regressor.
Given the form of z2t�1 and (10), it is apparent that dynamic timing also plays

a role in the endogeneity that is manifest in E
�
utj�n;t

�
6= 0 since �n;t itself depends

on ut: As we shall see, this type of endogeneity can arise even in the triangular (co-
explosive) system considered in PM. Like most forms of endogeneity, it can be dealt
with by suitable instrumentation that adjusts the dynamic timing, as discussed in
Section 2.3.
We now proceed with the asymptotic development, starting with the following

assumptions on the innovation sequence ut. We denote by

Ft = � (ut; ut�1; :::) and F t = � (ut; ut+1; :::) (11)

the natural �ltration and the reverse �ltration of the innovation sequence and let

Ut;j = utEFt+j�1
�
u0t+j

�
and Vt;j = EFt+1 (ut)u

0
t+j:
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Assumption 2. Let ut be a zero mean, uncorrelated sequence satisfying

max
1�t�n

E
�
kutk2 1 fkutk > �ng

�
! 0 as n!1: (12)

for any sequence (�n)n2N such that �n !1, and one of the following conditions: For
each t � 1 and some positive de�nite matrix �u

EFt�1 (utu
0
t) = �u a:s: and max

j�L;t�n

nX
r=2L

E �Ut;jU 0t+r;j� = o (n) (13)

or

EFt+1 (utu
0
t) = �u a:s: and max

j�L;t�n

nX
r=2L

E �Vt;jV 0
t+r;j

� = o (n) (14)

for any L 2 N such that L!1 and L=n! 0:

Condition (12) is a uniform integrability type of assumption on the sequence�
kutk2 : 1 � t � n

	
. Since both E kUt;jk2 E kVt;jk2 are bounded by (tr�u)2, see (38)

in the Appendix, both expectations in (13) and (14) exist. Assumptions (13) and (14)
impose a standard constant conditional variance condition on the sequence ut and an
asymptotic weak dependence condition on the sequences Ut;j and Vt;j; respectively.
The latter is trivially satis�ed when ut is a martingale di¤erence sequence in (13) or a
reverse martingale di¤erence sequence in (14). It also holds for uncorrelated processes
ut that are not martingale di¤erences but satisfy certain asymptotic independence
conditions, such as m-dependence. Recall that ut is an m-dependent sequence if and
only if the sequences of �-algebras Ft and F t+m are independent for all t and m � 1.
If ut is an uncorrelated L-dependent sequence (i.e. m-dependent with m = L), then
for all r � 2L and j 2 f1; :::; Lg:

E
�
Ut;jU

0
t+r;j

�
= E

�
Ut;jEFt+j�1

�
U 0t+r;j

��
= E

�
Ut;jEFt+j�1EFt+r+j�1

�
ut+r+ju

0
t+r

��
= E

�
Ut;jEFt+j�1

�
ut+r+ju

0
t+r

��
= E

�
Ut;jE

�
ut+r+ju

0
t+r

��
= 0;

by independence for r�j � L and uniform boundedness of
EFt+j�1EFt+r+j�1 �ut+r+ju0t+r�

in view of (38). Similarly,

E
�
Vt;jV

0
t+r;j

�
= E

�
EFt+r+1

�
utu

0
t+j

�
V 0
t+r;j

�
= E

�
Ut;jE

�
ut+r+ju

0
t+r

��
= 0;

showing that the second part of (13) and (14) apply for any L-dependent sequence
ut. This asymptotic independence assumption will be employed for the derivation of
a mixed normal limit distribution for the IV estimator of Theorem 3.
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2.2. Least Squares Limit Theory

Co-explosive behavior induces a singularity of the form (3) in the limiting sample
moment matrix. The degeneracy occurs along the direction vector [�X2 (�) ; X1 (�)] :
The inverse sample moment matrix sustains a similar singularity, which can be con-
veniently expressed in terms of the transformed system. More generally, Lemma 2
below describes the asymptotic behaviour of the inverse of sample moment matrices
involving the transformed variates zt�1 and zt+k for some �xed value of k � 0 . The
lemma also characterizes the condition number limit behavior of the least squares
regression matrix X 0X: The lemma is useful in developing a limit theory for both
least squares and instrumental variable estimates.

Lemma 2. Let ut be a zero mean sequence satisfying (12) and either (13) or (14)
for some positive de�nite matrix �u. The following hold as n!1 for any �xed k:

(i) n�1
Pn

t=1 utu
0
t !L1 �u

(ii) max1�j�L
n�1Pn

t=1 utu
0
t+j


L1
! 0

(iii) n�1
Pn

t=1 ut�
0
n;t+k !L1 0, k � 1

(iv) n�1
Pn

t=1 �n;t�
0
n;t+k !L1 �

�k (�2 � 1)�1�u, k � 0

(v)
�
1
n

Pn
t=1 zt�1z

0
t+k

��1 !p diag

 
0;

�
��k�1

�2�1

X(�)0R0
�
2
�uR�

2
X(�)

kX(�)k2

��1!
, k � �1

(vi) Let �max (X 0X) and �min (X 0X) denote the largest and smallest eigenvalues of
the matrix X 0X =

Pn
t=1 xt�1x

0
t�1, then

log f�max (X 0X)g
�min (X 0X)

!p 2 (log �)
�
�2 � 1

� kX (�)k2

X (�)0R0
�
2
�uR�

2
X (�)

> 0 a:s: (15)

where part (v) applies under Assumption 1 and L is de�ned in Assumption 2.

In order to obtain a central limit theorem (CLT), the asymptotic orthogonality
conditions of (13) and (14) must be replaced by the stronger assumption of martingale
and reverse martingale di¤erences with constant conditional variance. In view of the
forward �ltered nature of �n;t; sample covariances of this process and ut, such asPn

t=1 �n;t+1u
0
t; have a type of reverse martingale structure, which can be exploited to

develop a limit theory. The next result gives a new reverse martingale central limit
theorem that is useful for such sample covariances: One application of this result is
to the CLT stated in equation (26) of PM (2008)1.

1The argument given in the proof of equation (26) of PM (2008) is incorrect because the sum
is not a martingale. However, upon reversion, as shown here in the proof of Lemma 3, a MG CLT
applies and the stated result holds by Lemma 2.
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Lemma 3. Let ut satisfy (12) and one of the following conditions:

(i) EFt+1 (ut) = 0 and EFt+1 (utu0t) = �u a:s: for all t,

(ii) EFt�1 (ut) = 0 and EFt�1 (utu
0
t) = �u a:s: for all t

where F t+1 and Ft�1 are de�ned in (11). Then, for any �xed k � 0, we have

1p
n

nX
t=1

�
�n;t+k+1 
 ut

�
) N

�
0;

1

�2 � 1�u 
 �u
�

as n!1: (16)

De�ne X 0 = [x1; :::; xn] and X 0
�1 = [x0; :::; xn�1] ; and the least squares regression

matrix R̂n = X 0X�1
�
X 0
�1X�1

��1
: The following result characterizes the limit of R̂n:

Theorem 1. Under the conditions of Lemma 2 and Assumption 1, the OLS esti-
mator in (1) has the following limit as n!1 :

R̂n �R ! p � �2 � 1
�

�uR�
2
X (�)X (�)0R0

�
2

X (�)0R0
�
2
�uR�

2
X (�)

= ��
2 � 1
�

�u

�
X2 (�)

2 �X1 (�)X2 (�)

�X1 (�)X2 (�) X1 (�)
2

�
�21X2 (�)

2 � 2�12X1 (�)X2 (�) + �22X1 (�)
2 : (17)

Remarks

1. The inconsistency of R̂n is explained by the endogeneity of the regressors dis-
cussed earlier. Lai and Wei (1981) showed consistency of least squares in time
series regression models with martingale di¤erence errors under second moment
conditions on the errors, an excitation condition on the smallest eigenvalue of
the regression matrix X 0X and a condition number requirement for which the
ratio

log f�max (X 0X)g
�min (X 0X)

!a:s: 0 as n!1: (18)

As demonstrated in Lemma 2(vi), the ratio in (18) converges in probability to
an almost surely positive random variable, thereby invalidating the condition
number requirement. Thus, the su¢ cient conditions for consistency given in
Lai and Wei (1981) fail in the present case. Interestingly, the asymptotic bias
of R̂n can be written is terms of the probability limit of the eigenvalue ratio on
the left side of (18). In particular, (15) and (17) imply that

R̂n �R!p �
�
plim
n!1

log �max (X
0X)

�min (X 0X)

�
�u

2 (log �) �

R�
2
X (�)X (�)0R0

�
2

X (�)0X (�)
: (19)
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2. All elements of the regression matrix R̂n converge to random variates that
depend on X (�) = (X1 (�) ; X2 (�))

0; the error covariance matrix �u and the
common explosive coe¢ cient �: The limit distribution (17) is singular and is
of rank unity, corresponding to X (�) : De�ning � = �

1=2
u R�

2
X (�) and h =

� (�0�)
�1=2

; the limit (17) may be written more simply as

��
2 � 1
�

�1=2u hh0��1=2u (20)

in terms of the vector h which is distributed on the unit sphere.

3. Figs. 1 and 2 show the results of simulations of the �tted regression coe¢ cients
in the least squares regression

x1t = �̂x1t�1 + �̂x2t�1 + û1t; (21)

for various values of n (= 200; 400; 800) against the limit distribution (17) (see
also (23) and (24) in Theorem 2) when the data are generated according to (1)
with � = 1:04 and

ut � iid N (0; I2) :

The �nite sample and limit distributions are bimodal in both cases, although
the limit distributions have compact support and the densities asymptote at
the boundaries. The limit distributions are obtained explicitly in Theorem 2
and discussed in the remarks below. The distribution of �̂ appears symmetric
about the origin. The �nite sample distribution of �̂� � is asymmetric, shows
downward bias, and the convergence to the limit distribution appears to be
a little slower. Similar �ndings were obtained for covariance structures with
�12 = E (u1tu2t) 6= 0:

4. The limit random variables corresponding to �̂ and �̂ in (21) are given in (17).
When ut � iid N (0; �2I2) ; these limits become

�̂� � ! p � �2 � 1
�

X2 (�)
2

X2 (�)
2 +X1 (�)

2 ; (22)

�̂ � � ! p
�2 � 1
�

X1 (�)X2 (�)

X2 (�)
2 +X1 (�)

2 ;

and since X (�) =d N
�
0; �2 (�2 � 1)�1 I2

�
; we have

�̂� �!p �
�2 � 1
�

�21
�21 + �22

; �̂ � � !p
�2 � 1
�

�1�2
�21 + �22

;

where � = (�1; �2)
0 =d N (0; I2) and � = 0: The exact marginal densities are

given in the following result.
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Theorem 2. If ut � iid N (0; �2I2) then the marginal densities of the limit distri-
butions of �̂� � and �̂ � � = �̂ are:

pdf�̂ (y) =
1

� f(�y) (a� + y)g1=2
; for y 2 (�a�; 0) (23)

pdf�̂ (y) =
2

�
�
a2� � 4y2

	1=2 ; for jyj < a�=2 (24)

where a� = (�2 � 1) =�:

Remarks

1. The supports of the limit distributions (23) and (24) are �nite and are deter-
mined by a�: As � ! 1; a� ! 0 and the supports shrink to the origin, which
corresponds to the (well known) consistent estimation of � and � when � = 1:

Fig. 1: Finite sample densities of �̂� � from R = 80; 000 replications in the
�tted model X1t = �̂X1t�1 + �̂X2t�1 + û1t with � = 1:04 and �12 = 0: The limit
density has bounded support and is computed from the exact formula (23).
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Fig. 2: Finite sample densities of �̂ from R = 80; 000 replications in the �tted
model X1t = �̂X1t�1 + �̂X2t�1 + û1t with � = 1:04 and �12 = 0: The limit
density has bounded support and is computed from the exact formula (24).

2. Figs. 1 and 2 also show the limit densities pdf�̂ (y) and pdf�̂ (y) for � = 1:04
and a� = 0:078: The density pdf�̂ (y) is that of a (translated) arc sine law.
Each of the densities has bounded support and asymptotes at the limits of the
domain of de�nition. Importantly, the support of pdf�̂ (y) is negative, whereas
the support of pdf�̂ (y) is symmetric about the origin. The implied downward
bias in the limit distribution of �̂ is explained by the presence of the co-explosive
time series x2t�1 in the regression (21). The regressor x2t�1 is asymptotically
collinear to x1t�1 when � > 1. The explosive signal is then shared between these
two regressors, reducing the impact of the own lagged dependent variable x1t�1
and, in this case, producing an inconsistency and resulting in the downward
bias for �̂ in the limit that is apparent in (22) and Fig. 1. As discussed earlier,
the inconsistency arises from the endogeneity induced by the co-movement of
the regressors and the random nature of the directional vector X (�) of the
co-movement which depends on the regression error ut:

3. The bimodality in the �nite sample distributions shown in Figs. 1 and 2 is
also a consequence of the common explosive signal that is shared between the
regressors x1t�1 and x2t�1: The distributions of the corresponding regression

coe¢ cients interact by way of the linear combination
�
�̂+ �̂X2 (�) =X1 (�)

�
which serves as the �e¤ective�own lag coe¢ cient in the regression (21). This
interaction either attenuates or accentuates the downward bias in �̂; producing a
compensating bimodality in the two distributions and compensating asymptotes
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in the two limit distributions.

2.3. Consistent Estimation by Instrumental Variables

As indicated above, dynamic timing plays a role in the inconsistency of least squares
regression because of the dependence of the forward �ltered process �n;t and hence
the (transformed) regressor z2t�1 on the contemporaneous error ut: This dependence
can be avoided by the use of a suitable instrumental variable. In particular, future
values of the system variables remove this dependency and we may use xt+k for any
integer k � 0 as an instrument for xt�1: The corresponding IV estimators of R have
the simple form

R̂n;k =

n�kX
t=1

xtx
0
t+k

 
n�kX
t=1

xt�1x
0
t+k

!�1
; k 2 f0; 1; 2; :::g .

The estimator R̂n;k is consistent and has the following limit distribution.

Theorem 3.

(i) Under the assumptions of Lemma 3 and Assumption 1

p
nvec

�
R̂n;k �R

�
) ��k+1

�
�2 � 1

� R�
2
X (�)X (�)0R0

�
2

 I2

X (�)0R0
�
2
�uR�

2
X (�)

U (25)

as n ! 1, for each �xed k � 0, where U is a N
�
0; (�2 � 1)�1�u 
 �u

�
random vector. If (12) is replaced by uniform integrability of the sequence�
kutk2

�
t2N, then U and X (�) are uncorrelated random vectors.

(ii) If, in addition to the assumptions of Lemma 3, ut is an L-dependent sequence
for some L 2 N such that L!1 and L=n! 0, U and X (�) are independent
random vectors and

p
nvec

�
R̂n;k �R

�
) �k+1

p
�2 � 1MN

 
0;
R�

2
X (�)X (�)0R0

�
2

 �u

X (�)0R0
�
2
�uR�

2
X (�)

!
:

(26)

Remarks

1. The limit theory (25) relies on the central limit theorem for sample covariance
matrices given by (16) and shows that the IV estimator R̂n;k is

p
n-consistent.

However, as X (�) is not necessarily Gaussian, lack of correlation between the
Gaussian random vector U and X (�) does not guarantee independence. In

11



other words, a (reverse) martingale di¤erence assumption on the innovations
ut is not su¢ cient for asymptotic mixed normality of the IV estimator R̂n;k.
However, the limit random vector in (25) will have a mixed normal distribution
if asymptotic independence is imposed on the sequence ut.

2. Observe that the limit distribution of
p
n
�
R̂n;k �R

�
is degenerate in the direc-

tionX (�) in view of the singularity of the limit randommatrixR�
2
X (�)X (�)0R0

�
2
:

In particular, as shown in the proof of Theorem 3 we have the representation

p
n
�
R̂n;k �R

�
=

1p
n

Pn�k
t=1 ut�

0
n;t+k+1

�R�
2
xn

kxnk

��R�
2
xn

kxnk

�0
�R�

2
xn

kxnk

�0
1
n

Pn�k
t=1 �n;t�

0
n;t+k+1

�R�
2
xn

kxnk

� +Op

�
1p
n

�
;

so that
p
n
�
R̂n;k �R

�
xn= kxnk = op (1) :

3. When the sequence ut is independent, the mixed normal limit (26) facilitates
inference, which may be conducted in the usual manner in view of the following
arguments. First, from Lemma 1 and Lemma 2(iii) we obtain 

1

n

nX
t=1

xt�1x
0
t+k

!�1
= Hn

 
1

n

nX
t=1

zt�1z
0
t+k

!�1
H 0
n

! p �k+1
�
�2 � 1

� R�
2
X (�)X (�)0R�

2

X (�)0R0
�
2
�uR�

2
X (�)

:

Next, de�ne the residual moment matrix �̂uk = n�1
Pn

t=1 ûtkû
0
tk; where the

residuals are constructed using the IV estimator: ûtk = xt� R̂n;kxt�1: As shown
in the Appendix,

�̂uk !p �u; (27)

and then 
1

n

nX
t=1

xt�1x
0
t+k

!�1

 �̂u !a:s �

k+1
�
�2 � 1

� R�
2
X (�)X (�)0R�

2

X (�)0R0
�
2
�uR�

2
X (�)

!

 �u;

giving a consistent estimator of the covariance matrix in (26). Thus, inference
about R may be conducted using the standard formula for the variance matrix
of R̂k; that is

�Pn
t=1 xt�1x

0
t+k

��1 
 �̂u:
4. The variance of the limit distribution (26) increases with k and is minimized for
k = 0: This is explained by the fact that the instrument xt+k is most e¤ective
for xt�1 when k = 0; and the relevance of the instrument deteriorates as k
increases.
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3. Co-explosive Cointegrated Systems

PM (2008) studied a triangular system with possibly co-explosive regressors. A sim-
pler version of this system, which will be su¢ cient to demonstrate our �ndings, is
given by

yt = Awt + "t; (28)

wt = xt; xt = Rxt�1 + ut (29)

R =

�
� 0
0 �

�
; � > 1; (30)

where A is an m � 2 matrix of cointegrating coe¢ cients, xt is a bivariate vector of
co-explosive autoregressions initialized at x0 = 0; and vt = ("0t; u

0
t)
0 is a sequence of

independent, identically distributed (0;�) random vectors with absolutely continuous
density, where

� =

�
�" 0
0 �u

�
(31)

is a positive de�nite matrix partitioned conformably with vt. The regressor xt is
therefore uncorrelated with the system shocks "t:
PM noted that asymptotic behavior of the least squares estimator

Ân =

 
nX
t=1

ytx
0
t

! 
nX
t=1

xtx
0
t

!�1
depends on the relationship between the regressors in (29), i.e. on the precise form
of the autoregressive matrix R. When R has the form (30), so the regressors are
co-explosive, Ân is consistent for A; but has a degenerate mixed normal limiting
distribution with convergence rate n1=2. In particular, Theorem 2.3 of PM shows
that r

n

�2 � 1

�
Ân � A

�
) MN

�
0; H? (H

0
?�uuH?)

�1
H 0
? 
 �""

�
= MN

 
0;

R�
2
X (�)X (�)0R0

�
2

X (�)0R0
�
2
�uuR�

2
X (�)


 �""

!
(32)

where H? = R�
2
X (�) = kX (�)k in the notation of the limiting rotation matrix (7)

given earlier. In proving (32), PM assumed that � has the block diagonal structure
(31), so that xt is uncorrelated with "t: However, as shown in the Appendix, (32)
continues to hold when the covariance structure is given by

� =

�
�" �"u
�u" �u

�
; with �u" 6= 0: (33)
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From this result, it would seem that co-explosive behavior in the regressors does
not cause an inconsistency, contrary to the VAR regression result (17) in Theorem 3.
However, suppose that wt = xt�1 in (29), so that there is a simple time lag in the long
run structural relation. Such a lag has no e¤ect on conventional cointegration limit
theory. However, as we now demonstrate, in the context of co-explosive time series,
the impact of dynamic timing is considerable. Let the corresponding least squares
estimator of A; when wt = xt�1; be ~An =

�Pn
t=1 ytx

0
t�1
� �Pn

t=1 xt�1x
0
t�1
��1

:

Theorem 4. In the model (28)-(30) with wt = xt�1 and � is given by (33)

~An � A!p �
�2 � 1

X (�)0R0
�
2
�uR�

2
X (�)

�"uR�
2
X (�)X (�)0R0

�
2
as n!1:

Evidently, when there are co-explosive regressors, the critical factor in determining
consistency of least squares regression is the dynamic timing of the regression system
rather than independence (exogeneity) of the regressor in the system. As in the case
of vector autoregression, consistency in estimation can be accomplished by using xt
as an instrument for xt�1 in the regression. This �nding shows that weak exogeneity
in regression with explosive regressors can depend subtly on dynamic timing and
in a manner quite di¤erent from stationary systems. Under the condition ("t; ut) �
iid (0;�) ; convention would dictate that xt�1 is weakly exogenous for A in the system
yt = Axt�1 + "t; but jointly dependent and correlated with "t in the system yt =
Axt + "t: Curiously, however, in the presence of co-explosive regressors, least squares
is consistent in the system yt = Axt+"t but inconsistent in the system yt = Axt�1+"t:
The explanation is the same as that for a VAR regression. In particular, the limiting
singularity in the sample moment matrix that is caused by co-explosive behavior
induces an endogeneity in the regressor xt�1: As before, dynamic timing plays a role
in the resulting endogeneity because upon transformation to resolve the e¤ects of
co-explosive behavior, the stationary component of the transformed regressor, which
is forward looking and depends on ut; is correlated with "t when �u" 6= 0:

4. Conclusions

Besides the intriguing nature of the inconsistency in co-explosive VARs and structural
systems, the limit distributions of the least squares estimates have some interesting
features. The supports of the limit distributions are bounded and the densities have
asymptotes at the boundary. In the VAR case, the limit distribution of the centred
(own) autoregressive estimator �̂ � � is an arc sine law and its support is on the
negative part of the real line. The �nite sample distributions are bimodal with modes
that are close to the boundary asymptotes in the limit distributions. When the
explosive parameter �! 1; the support of the limit distribution shrinks to the origin
and the least squares estimates are again consistent.
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5. Proofs

Lemma 0. Condition (12) implies that the sequence
n�n;t+k2 ; 1 � t � n

o
is uni-

formly integrable:

max
1�t�n

E
��n;t+k2 1��n;t+k > �n

	�
! 0 as n!1 (34)

for any sequence �n !1 and any �xed k � 0.

Proof. Denote An;t =
��n;t+k > �n

	
. Since,

�n;t+k �Pn�t�k
j=0 ��(j+1) kut+k+jk,

we obtain, for each t 2 f1; :::; ng

E
��n;t+k2 1An;t� �

n�t�kX
j;i=0

��(j+i+2)E
��
kut+k+jk1An;t

� �
kut+k+ik1An;t

��
�

n�t�kX
j;i=0

��(j+i+2)
�
E kut+k+jk2 1An;t

�1=2 �
E kut+k+ik2 1An;t

�1=2
� max

1�s�n
E
�
kusk2 1An;t

� 1X
j=0

��(j+1)

!2
:

Since the last series is convergent, the above bound shows that

max
1�t�n

max
1�s�n

E
�
kusk2 1An;t

�
! 0 as n!1

for any sequence �n !1 is su¢ cient for (34). Now

max
1�t;s�n

E
�
kusk2 1An;t

�
� max

1�t;s�n
E
�
kusk2 1

n
kusk > �1=2n

o
1An;t

�
+ max
1�t;s�n

E
�
kusk2 1

n
kusk � �1=2n

o
1An;t

�
� max

1�s�n
E
�
kusk2 1

n
kusk > �1=2n

o�
+ �n max

1�t�n
P (An;t)

� o (1) +
1

�n
max
1�t�n

E
�n;t+k2 = o (1)

for any sequence �n !1 as n!1, by U.I. of the sequence kusk2 and the Chebyshev
inequality. This establishes (34).

Proof of Lemma 1. We prove a:s: convergence of the in�nite series in (4) by apply-
ing the Rademacher-Mencho¤ convergence theorem for orthogonal random variables
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(Theorem 2.3.2 of Stout, 1974). Since (��tut)t�1 is an orthogonal sequence of random
vectors with

1X
t=1

�
log2 t

�
E
��tut2 � sup

j�1
E kujk2

1X
t=1

t2��2t <1;

Pn
t=1 �

�tut converges a:s: as n!1. Therefore, the in�nite series X (�) in (4) exists
as the a:s: limit of

Pn
t=1 �

�tut = ��nxn and is non-zero almost surely by Assumption
1. Almost sure convergence of Hn follows by applying ��nxn !a:s: X (�) to (6) and
using continuity of norms.

Proof of Lemma 2. Let j � 0: Denoting by Ht;j either Ft+j�1 or F t+1,

1

n

nX
t=1

utu
0
t+j =

1

n

nX
t=1

�
utu

0
t+j � EHt;j

�
utu

0
t+j

��
+
1

n

nX
t=1

EHt;j

�
utu

0
t+j

�
: (35)

We will show that uniform integrability (U.I.) of the sequence kutk2 implies that the
�rst term on the right of (35) converges to 0 in L1 norm. Choose a sequence (kn)n2N
such that kn !1 and kn=n1=2 ! 0 as n!1 and de�ne the random matrices

vt;j = utu
0
t+j � EHt;j

�
utu

0
t+j

�
v
(n)
t;j = utu

0
t+j1 fkutk � kng � EHt;j

�
utu

0
t+j1 fkutk � kng

�
:

It is easy to see that
n
v
(n)
t;j : 1 � t � n

o
is a zero mean uncorrelated sequence: when

Ht;j = Ft+j�1, v(n)t;j is a (matrix valued) Ft+j martingale di¤erence array; when
Ht;j = F t+1, v(n)t;j is a reverse martingale di¤erence array in the sense that it is

F t-adapted and EFt+1v
(n)
t;j = 0 for all t, so uncorrelatedness follows from the law

of iterated expectations as in the forward martingale di¤erence case. The identity
1� 1 fkutk � kng = 1 fkutk > kng yields 1n

nX
t=1

�
vt;j � v

(n)
t;j

�
L1

=
1

n

nX
t=1

utu0t+j1 fkutk > kng � EHt;j

�
utu

0
t+j1 fkutk > kng

�
L1

� 2
1

n

nX
t=1

E (kutk kut+jk1 fkutk > kng)

� 2
1

n

nX
t=1

�
E
�
kutk2 1 fkutk > kng

�
E
�
kut+jk2

��1=2
� 2

�
tr (�u) max

1�t�n
E
�
kutk2 1 fkutk > kng

��1=2
! 0 (36)
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as n!1 by U.I. of kutk2. Also, since
n
v
(n)
t;j : 1 � t � n

o
is an uncorrelated sequence,

the Jensen inequality for conditional expectations yields

E

 1n
nX
t=1

v
(n)
t;j


2

=
1

n2

nX
t=1

E
v(n)t;j 2 � 2

n2

nX
t=1

E
�
kutk2 kut+jk2 1 fkutk � kng

�
+
2

n2

nX
t=1

E
�
EHt;j

(kutk kut+jk1 fkutk � kng)
�2

� 4

n2

nX
t=1

E
�
kutk2 kut+jk2 1 fkutk � kng

�
� 4tr (�u)

k2n
n
! 0

since kn = o
�
n1=2

�
. Hence, n�1

Pn
t=1 v

(n)
t;j ! 0 in L2 and, in view of (36), n�1

Pn
t=1 vt;j !

0 in L1. Moreover, this convergence applies uniformly for j � 0, so (35) yields

sup
j�0

 1n
nX
t=1

utu
0
t+j �

1

n

nX
t=1

EHt;j

�
utu

0
t+j

�
L1

! 0 as n!1: (37)

Part (i) of the lemma follows immediately by (37) since EHt;j
(utu

0
t) = �u a:s: for all

t by (13) and (14).
For part (ii), we will show that the second term of (37), which is equal to ei-

ther n�1
Pn

t=1 Ut;j or n
�1Pn

t=1 Vt;j according to whether Ht;j equals Ft+j�1 or F t+1,
converges to 0 in L2 uniformly for j 2 f1; :::; Lg. First note that

E kUt;jk2 � E kutk2E
�EFt+j�1 (ut+j)2�

� E kutk2E
�
EFt+j�1 kut+jk

2� = (tr�u)2 (38)

by the Cauchy-Schwarz inequality followed by the Jensen inequality for conditional
expectations and the �rst part of (13). An identical argument shows that E kVt;jk2 �
(tr�u)

2. Therefore, for any L 2 N such that L!1 L=n! 0,

E

1n
nX
t=1

Ut;j


2

=
1

n2

nX
t=1

E kUt;jk2 + 2
1

n2

nX
t=1

nX
s=t+1

E
�
Ut;jU

0
s;j

�
=

2

n2

nX
t=1

"
nX

s=t+2L+1

EUt;jU
0
s;j +

t+2LX
s=t+1

EUt;jU
0
s;j

#
+O

�
n�1
�

� 2

n2

nX
t=1

 
n�tX

s=2L+1

EUt;jU 0t+s;j+ 2Ltr (�u)
!
+O

�
n�1
�

� 2

n
max
j�L

max
t�n

nX
s=2L+1

EUt;jU 0t+s;j+O

�
L

n

�
= o (1)
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as n!1 by (13). An identical argument shows that (14) implies that n�1
Pn

t=1 Vt;j !L2

0 uniformly for j 2 f1; :::; Lg. This shows part (ii).
For part (iii), (10) and part (ii) yield, for any �xed k � 1,1n

nX
t=1

ut�
0
n;t+k


L1

=

 1n
nX
t=1

ut

n�t�kX
j=0

��(j+1)u0t+k+j


L1

=

 1n
nX
t=1

ut

L�kX
j=0

��(j+1)u0t+k+j


L1

+O
�
��L
�

� max
1�l�L

 1n
nX
t=1

utu
0
t+l


L1

1X
j=0

��(j+1) = o (1) ;

for any integer L for which part (ii) applies. For part (iv), the de�nition of �n;t in
(10) yields the following identities:

�n;t = ��k�n;t+k +

k�1X
j=0

��(j+1)ut+j and �n;t+k = ��1�n;t+k+1 + ��1ut+k (39)

for any t � n and any �xed k � 0. Since, by part (iii),1n
nX
t=1

 
k�1X
j=0

��(j+1)ut+j

!
� 0n;t+k


L1

�
k�1X
j=0

��(j+1)

 1n
nX
t=1

ut+j�
0
n;t+k


L1

! 0;

the �rst identity in (39) implies that1n
nX
t=1

�n;t�
0
n;t+k � ��k

1

n

nX
t=1

�n;t+k�
0
n;t+k


L1

! 0 as n!1 (40)

for all �xed k � 0. The second identity in (39) yields

�n;t+k�
0
n;t+k = ��2

�
�n;t+k+1�

0
n;t+k+1 + ut+k�

0
n;t+k+1 + �n;t+k+1u

0
t+k + ut+ku

0
t+k

�
:

Summing over t 2 f1; :::; ng yields

�
1� ��2

� 1
n

nX
t=1

�n;t+k�
0
n;t+k = ��2

1

n

nX
t=1

ut+ku
0
t+k +Rn

where the remainder term

Rn =
��2

n

 
�n;n+k+1�

0
n;n+k+1 � �n;k+1�

0
n;k+1 +

nX
t=1

ut+k�
0
n;t+k+1 +

nX
t=1

�n;t+k+1u
0
t+k

!
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tends to 0 in L1 by part (iii). Therefore, 1n
nX
t=1

�n;t+k�
0
n;t+k �

1

�2 � 1
1

n

nX
t=1

ut+ku
0
t+k


L1

! 0 as n!1 (41)

for all �xed k � 0. Part (iv) of the lemma follows by combining (40), (41) and the
law of large numbers for n�1

Pn
t=1 utu

0
t of part (i).

For part (v), using (9) to expand z1t�1 and z2t�1, we obtain the following rates of
convergence for the elements of the matrix

Pn
t=1 zt�1z

0
t+k for each �xed k � �1:

nX
t=1

z1t�1z1t+k = Op
�
�2n
�

(42)

max

(
nX
t=1

z1t�1z2t+k;

nX
t=1

z2t�1z1t+k

)
= Op (�

n) : (43)

The �rst part of (43) can be deduced by (9) and the following bound:
nX
t=1

xt�1�
0
n;t+k+1


L1

�
nX
t=1

�
E kxt�1k2E

�n;t+k+12�1=2 � C
nX
t=1

 
t�2X
j=0

�2j

!1=2
= O (�n)

where C =tr�u=
p
�2 � 1. Since k is �xed, the second part of (43) can be deduced by

an identical argument. For (42), the identity zt+k = �k+1zt�1 +H
0
n

Pk
j=0 �

k�jut+j for
all k � �1 (when k = �1 the empty sum is equal to 0) yields

nX
t=1

z1t�1z1t+k = �k+1
nX
t=1

z21t�1 +
x0n
kxnk

nX
t=1

xt�1

 
kX
j=0

�k�jut+j

!0
xn
kxnk

= �k+1
nX
t=1

z21t�1 +O (�n)

where the last order of magnitude is obtained by the same argument used to prove
(43). Now (42) follows since, by direct computation of

Pn
t=1E kxt�1k

2. For the
remaining element, using (9) and part (iv), we obtain as n!1

1

n

nX
t=1

z2t�1z2t+k =

�R�
2
xn

kxnk

�0
1

n

nX
t=1

�n;t�
0
n;t+k+1

�R�
2
xn

kxnk

�
!p

��k�1

�2 � 1

�
R�

2

X (�)

kX (�)k

�0
�u

�
R�

2

X (�)

kX (�)k

�
: (44)
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The determinant of the matrix
Pn

t=1 zt�1z
0
t+k is given by

Dn =

 
nX
t=1

z1t�1z1t+k

! 
nX
t=1

z2t�1z2t+k

!
�
 

nX
t=1

z2t�1z1t+k

! 
nX
t=1

z1t�1z2t+k

!

=

 
nX
t=1

z1t�1z1t+k

! 
nX
t=1

z2t�1z2t+k

!�
1 +Op

�
n�1
�	
: (45)

Using (42)-(45), the inverse of the signal matrix is given by 
1

n

nX
t=1

zt�1z
0
t+k

!�1
=

1

n�1Dn

� Pn
t=1 z2t�1z2t+k �

Pn
t=1 z1t�1z2t+k

�
Pn

t=1 z2t�1z1t+k
Pn

t=1 z1t�1z1t+k

�
=

�
n (
Pn

t=1 z1t�1z1t+k)
�1 �Op (��2n

Pn
t=1 z1t�1z2t+k)

�Op (��2n
Pn

t=1 z2t�1z1t+k) n (
Pn

t=1 z2t�1z2t+k)
�1

�
where the last equality holds up to 1 +Op (n�1). Thus, for each �xed k � �1 

1

n

nX
t=1

zt�1z
0
t+k

!�1
=

�
1 +Op

�
1

n

���
Op (n�

�2n) Op (�
�n)

Op (�
�n)

�
1
n

Pn
t=1 z2t�1z2t+k

��1 � (46)

and the result follows from (44).
For part (vi), after a long but elementary calculation, the identities

nX
t=1

x2it�1 =
1

�2 � 1

 
x2in � 2�

nX
t=1

xit�1uit �
nX
t=1

u2it

!
nX
t=1

x1t�1x2t�1 =
1

�2 � 1

 
x1nx2n � �

nX
t=1

x1t�1u2t � �
nX
t=1

x2t�1u1t �
nX
t=1

u1tu2t

!
nX
t=1

xit�1ujt = xin

nX
t=1

��(n�t+1)ujt � ��1
nX
t=1

uitujt �
nX
t=1

 
nX

s=t+1

�t�1�suis

!
ujt

for each i; j 2 f1; 2g yield the following expressions for the determinant and trace of
the sample moment matrix:

��2n

n
det (X 0X) =

1

(�2 � 1)2
��2n

n

 
x21n

nX
t=1

u22t + x22n

nX
t=1

u21t � 2x1nx2n
nX
t=1

u1tu2t

!

+Op

�
1p
n

�
!p

1

(�2 � 1)2
�
X1 (�)

2 �22 +X2 (�)
2 �21 � 2X1 (�)X2 (�)�12

�
(47)

20



��2ntr (X 0X) =
��2n

�2 � 1
�
x21n + x22n

�
+Op

�
��n
�
!p

1

�2 � 1
�
X1 (�)

2 +X2 (�)
2� : (48)

The asymptotic behaviour of the eigenvalues of X 0X can be obtained from (47) and
(48):

�max (X
0X) =

1

2

�
tr (X 0X) +

q
(trX 0X)2 � 4 det (X 0X)

�
= tr (X 0X) +Op

�
det (X 0X)

(trX 0X)

�
;

�min (X
0X) =

1

2

�
tr (X 0X)�

q
(trX 0X)2 � 4 det (X 0X)

�
=

det (X 0X)

tr(X 0X)
+Op

"
(det (X 0X))2

(trX 0X)3

#
:

Combining the above expressions and noting from (48) that tr (��2nX 0X)!p kX (�)k2 = (�2 � 1) >
0 a:s: we obtain

log �max (X
0X)

�min (X 0X)
=

tr (X 0X) log [�2ntr (��2nX 0X)]

det (X 0X)
f1 + op (1)g

=
2 (log �) tr (��2nX 0X)

n�1��2n det (X 0X)
f1 + op (1)g

!p

2 (log �) (�2 � 1)
�
X1 (�)

2 +X2 (�)
2�

�22X1 (�)
2 + �21X2 (�)

2 � 2�12X1 (�)X2 (�)

= 2 (log �)
�
�2 � 1

� kX (�)k2

X (�)0R0
�
2
�uR�

2
X (�)

by (47) and (48), as required. Almost sure positivity of the above probability limit
is ensured since � > 1, kX (�)k > 0 a:s: by Assumption 1 and R0

�
2
�uR�

2
is a positive

de�nite matrix.

Proof of Lemma 3. We �rst give the proof under condition (i) of the lemma. For
each �xed k � 0, let

Sn;� =

nX
t=�

�n;t �n;t =
1p
n
�n;t+k+1 
 ut:

and F t be the reverse �ltration de�ned in (11). Then (Sn;� ;F � ; 1 � � � n) is a reverse
martingale array that can be reversed into a martingale array (Mn;� ;Gn;� ; 1 � � � n)
by letting

Mn;� = Sn;n�� and Gn;� = Fn�� ;
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since Gn;� = � (un�� ; un��+1; :::) is now a (forward) �ltration with respect to � and
�n;n��+k+1 is Gn;��1-measurable for all k � 0. The identities

n�1X
�=0

�Mn;� =
n�1X
�=0

�n;n�� =
nX
t=1

�n;t = Sn;1 (49)

then imply that the limit distribution of Sn;1 can be derived by a standard martingale
CLT on

Pn�1
�=0 �Mn;� , e.g. Corollary 3.1 of Hall and Heyde (1980). The conditional

variance of Mn;� is given by

n�1X
�=0

EGn;��1
�
�n;n���

0
n;n��

�
=

1

n

n�1X
�=0

�n;n��+k+1�
0
n;n��+k+1 
 EFn��+1

�
un��u

0
n��
�

=
1

n

nX
j=1

�j+k+1�
0
j+k+1 
 �u

!p
1

�2 � 1�u 
 �u;

by Lemma 2 (ii) since k is �xed.
To establish the Lindeberg condition, we employ Lemma 0. Letting t = n � �

in the index of summation of (49), and noting that Gn;n�t�1 = F t+1, the Lindeberg
condition is equivalent to

nX
t=1

EFt+1
��n;t2 1Bn;t(�)� = 1

n

nX
t=1

�n;t+k+12EFt+1 �kutk2 1Bn;t(�)�!p 0 (50)

for any � > 0, where the events Bn;t (�) are de�ned by

Bn;t (�) =
��n;t > �

	
=
��n;t+k+1 kutk > pn�	

�
n�n;t+k+1 > n1=4

p
�
o
[
n
kutk > n1=4

p
�
o
:

Hence, the right side of (50) is bounded by I1 (n) + I2 (n) ; where

I1 (n) =
1

n

nX
t=1

�n;t+k+12 1n�n;t+k+1 > n1=4
p
�
o
EFt+1

�
kutk2

�
I2 (n) =

1

n

nX
t=1

�n;t+k+12EFt+1 �kutk2 1nkutk > n1=4
p
�
o�

:

Since EFt+1
�
kutk2

�
=tr(�u) for all t, I1 (n)!L1 0 as n!1 by (34). To show that

I2 (n)!L1 0, let

 n;� = max
1�t�n

E
�
kutk2 1

n
kutk > n1=4

p
�
o�

:
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By (12) we know that  n;� ! 0 as n ! 1 for any � > 0. Using the identity

1 = 1
n�n;t+k+12 >  

�1=2
n;�

o
+ 1

n�n;t+k+12 �  
�1=2
n;�

o
we obtain

I2 (n) � 1

n

nX
t=1

�n;t+k+12 1n�n;t+k+1 >  
�1=2
n;�

o
EFt+1

�
kutk2

�
+ 

�1=2
n;�

1

n

nX
t=1

EFt+1
�
kutk2 1

n
kutk > n1=4

p
�
o�

:

Since, for any � > 0,  �1=2n;� ! 1 as n ! 1 and EFt+1
�
kutk2

�
is constant, taking

expectations and using (34) and (12) we obtain

kI2 (n)kL1 �  
�1=2
n;�

1

n

nX
t=1

E
�
kutk2 1

n
kutk > n1=4

p
�
o�
+ o (1)

�  
�1=2
n;� max

1�t�n
E
�
kutk2 1

n
kutk > n1=4

p
�
o�
+ o (1)

=  
1=2
n;� + o (1) = o (1) :

Under condition (ii) of the lemma, ut is a martingale di¤erence sequence and the
above argument does not apply in general. However, Sn;1 can be approximated by
a martingale array as follows: Let (�n)n2N be an integer valued sequence such that
�n !1 and �n=

p
n! 0 as n!1: Then, changing the order of summation,

Sn;1 =
�kp
n

nX
t=1

nX
j=t+k+1

��(j�t) (uj 
 ut) =
�kp
n

nX
j=k+2

j�k�1X
t=1

��(j�t) (uj 
 ut)

=
�kp
n

nX
j=k+2

j�1X
i=k+1

��i (uj 
 uj�i) =
�kp
n

nX
j=�n

j�1X
i=k+1

��i (uj 
 uj�i) +Op

�
�np
n

�

= �k
1p
n

nX
j=�n

 
uj 


�nX
i=k+1

��iuj�i

!
+Op

�
���nn1=2

�
; (51)

where all approximations apply in L1 norm. Clearly, �n;j = n�1=2uj

P�n

i=k+1 �
�iuj�i

23



is an Fj martingale di¤erence array with
nX

j=�n

EFj�1
�
�n;j�

0
n;j

�
= �u 


1

n

nX
j=�n

�nX
i;l=k+1

��i�luj�iu
0
j�l

= �u 

�nX
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��i�l

 
1

n
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uj�iu
0
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!

= �u 

�nX
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��2i

 
1

n

nX
j=�n

uj�iu
0
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!
+ op (1)

=
��2k

�2 � 1�u 
 �u + op (1) (52)

where the third line follows by Lemma 2(ii) with L = �n and dominated convergence,
and the last line by Lemma 2(i). Combining (51) with (52) yields the required
asymptotic variance. The Lindeberg condition can be established by an identical
argument to part (i).

Proof of Theorem 1. Using the representation Hn =
1

kxnk
�
xn;R�

2
xn
�
and (46)

with k = �1 we obtain

R̂n �R =
nX
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utx
0
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0
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nX
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n
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35H 0
n

=

24Op ���n� ; n�1 nX
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1

n
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=
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1

n
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!
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�
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(53)

since
��nPn

t=1 utx
0
t�1

L1
� (tr�u)

1=2 ��n
Pn

t=1

�
E kxt�1k2

�1=2 �tr�u= (�2 � 1)3=2.
Using (9) and the second identity in (39) we can write

1

n

nX
t=1

utz2t�1 = � 1
n

nX
t=1

ut�
0
n;tR�

2

xn
kxnk

= ���1
 
1

n

nX
t=1

utu
0
t +

1

n

nX
t=1

ut�n;t+1

!
R�

2

xn
kxnk

= ���1�uR�
2

xn
kxnk

+ op (1) (54)
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by parts (i) and (iii) of Lemma 2. Combining (53) and (54) we obtain

R̂n �R = ���1
"�R�

2
X (�)

kX (�)k

�0
�u

�2 � 1
R�

2
X (�)

kX (�)k

#�1
�u
R�

2
X (�)

kX (�)k

�R�
2
X (�)

kX (�)k

�0
+ op (1)

= ��
2 � 1
�

�uR�
2
X (�)X (�)0R0

�
2

X (�)0R0
�
2
�uR�

2
X (�)

+ op (1)

by Lemma 1 and (44) with k = �1.

Proof of Theorem 2. For the limit density of �̂ de�ne Y = �a� �21
�21+�

2
2
with a� =

�2�1
�
; and observe that Y = �a�h21; where

h =

�
h1
h2

�
:=

�
�1
�2

� �
�21 + �22

��1=2
(55)

is uniformly distributed on the sphere h0h = 1 (cf. Phillips, 1984). Using the repre-
sentation (h1; h2) = (cos �;� sin �) ; we have Y = �a� cos2 � and so

dY=d� = 2a� cos � sin � = 2a�

�
�Y
a�

�1=2�
1� �Y

a�

�1=2
= 2 (�Y )1=2 (a� + Y )1=2 :

A full range of values of h21 is accommodated by restricting the domain of � to the
subinterval [0; �=2] : Over this domain � is uniformly distributed with density 2

�
: We

deduce that

pdfY (y) =
2

�

���� d�dY
���� = 1

�

1

(�y)1=2 (a� + y)1=2
; for y 2 (�a�; 0) :

This density is that of an arc sine law and is shown in Fig. 1 for � = 1:04 and
a� = 0:078:

Next, for the limit density of �̂ de�ne Z = a�
�1�2
�21+�

2
2
: Using (55) we have

Z = a�h1h2 = �a� cos � sin � = �a� sin (2�) =2
so that the Jacobian is

dZ=d� = a� cos (2�) = a�

�
1� 4

a2�
Z2
�1=2

=
�
a2� � 4Z2

	1=2
:

Again we can restrict the domain of � to the subinterval [0; �=2] with density 2
�
, as

the Jacobian involves only Z2 = a2�h
2
1h
2
2 and is therefore invariant to the sign of h1h2:

It follows that the density of Z is

pdfZ (z) =
2

�

���� d�dZ
���� = 2

�

1�
a2� � 4Z2

	1=2 ; for z 2
�
�a�
2
;
a�
2

�
;

as stated.
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Proof of Theorem 3. For any �xed k � 0 orthogonality of the matrix Hn and
(46) yield, up to 1 +Op (n�1),

R̂n;k �R =
1

n

n�kX
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=
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�n)
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�
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By computing the second moment of
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t=1 ut�
0
n;t+k+1 and of
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t=1 utx

0
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that
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t=1 utz2t+k = Op
�
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�
and
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t=1 utz1t+k = Op (�

n). Hence,
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n

"
Op
�
n��n

�
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t=1 z2t+kut
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t=1 z2t�1z2t+k
+Op (1) 12

#
H 0
n (56)

where 12 = (1; 1)
0. Since Hn = Oa:s: (1) by Lemma 1, the IV estimator becomes

p
n
�
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�
=

1p
n
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�
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(57)

Given an integer valued sequence (Ln)n2N satisfying Ln ! 1 and Ln=n ! 0 as
n!1; and de�ne the sequences

XLn =
LnX
j=1

��juj and Un;k =
1p
n

n�kX
t=2Ln+1

�
�n;t+k+1 
 ut

�
: (58)

By Lemma 1 and direct calculation,

Xn �XLn !a:s: 0 and

 1pn
n�kX
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�
�n;t+k+1 
 ut

�
� Un;k


2

L2

= O

�
Ln
n

�
: (59)

Lemma 3 then implies that Un;k ) U as n!1; where U is aN
�
0; (�2 � 1)�1�u 
 �u

�
random vector. Therefore, using (59), and applying Lemma 2(iv) to the denominator
of (57) yields

p
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�
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 I2
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2
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If (kXLnk kUn;kk)n�1 is a U.I. sequence, E (X (�)U 0) = limn!1E
�
XLnU

0
n;k

�
= 0, so

X (�) and U are uncorrelated. It remains to show the required uniform integrability.
If (12) is replaced by the stronger condition that

�
kutk2

�
t2N is a U.I. sequence, uniform

integrability of the sequence
�
kXLnk

2�
n�1 can be established by using an identical

argument to the proof of Lemma 0. Thus, since E kUn;kk2 � c = (tr�u)
2 = (�� 1)

for all n, letting Gn;� = fkXLnk kUn;kk > �g, Cn;� =
n
kXLnk > �1=2

o
and Dn;� =n
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o
the Cauchy Schwarz inequality yields, as �!1,
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c2

�1=2
+ o (1) = o (1) ;

by the Chebyshev inequality and uniform integrability of
�
kXLnk

2�
n�1.

If, in addition, (ut) is an Ln-dependent sequence, Un;k and Xn in (58) are inde-
pendent, so U and X (�) are independent random vectors and the limit in (60) has
the mixed normal distribution given in (26).

Proof of (27). Using the identity ûtk = ut�
�
R̂n;k �R

�
xt�1 for the residuals, the

estimator of �u can be written as:
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The consistency result in (27) will follow from Lemma 2(i) and
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To show (62), using the orthogonality of Hn and (56) we obtain�
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� nX
t=1

xt�1u
0
t =

�
R̂n;k �R

�
Hn

nX
t=1

zt�1u
0
t

=
1

n

"
Op
�
n��n

�
12;

Pn�k
t=1 z2t+kut +Op (12)

n�1
Pn�k

t=1 z2t�1z2t+k

# � Pn
t=1 z1t�1u

0
tPn

t=1 z2t�1u
0
t

�

= Op (1) I2 +
1

n

�Pn�k
t=1 z2t+kut

�
(
Pn

t=1 z2t�1u
0
t)

n�1
Pn�k

t=1 z2t�1z2t+k

= Op
�
n1=2

�
I2; (63)

since
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0
t = Op (�

n) by PM,
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0
t = Op (n) by (54) and
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by Lemma 3. This shows that the second and third terms of (61) have order
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the fact that R̂n;k �R = Op
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and (63) imply that
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Since zn = (kxnk ; 0)0 = Oa:s: (�
n), (56) yields�

R̂n;k �R
�
Hnzn =

1

n
Op
�
n��n

�
kxnk 12 = Op (1) 12:

This shows that the last term of (61) has order Op (n�1) and establishes (62).

Proof of (32) when �u" 6= 0 . Letting vt = (ut; "
0
t)
0, Fv;t = � (vt; vt�1; :::) and

F t
v = � (vt; vt+1; :::) and replacing ut by vt in the assumptions of Lemma 3, we can
show that
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where �u and �" are de�ned in (33). The proof of (64) is identical to the proof of
Lemma 3. Using (46) and proceeding as in the proof of Theorem 3, we obtain
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where Ln and XLn are de�ned as in the proof of Theorem 3. The proof then follows
by (64) and asymptotic mixed normality is ensured by the independence assumption
on the sequence vt.

Proof of Theorem 4. Proceeding as in the proof of Theorem 3,
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; (65)

by Lemma 2(ii). Using the identity �n;t = ��1
�
ut + �n;t+1

�
we obtain
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n

nX
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"t�
0
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nX
t=1
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0
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n
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since n�1
Pn

t=1 "t�
0
n;t+1 ! 0 in L1 as in Lemma 2(iii). The result follows by combining

(65) and (66).
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