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Abstract

This paper analyzes the properties of standard estimators, tests, and con�dence sets

(CS�s) for parameters that are unidenti�ed or weakly identi�ed in some parts of the

parameter space. The paper also introduces methods to make the tests and CS�s robust

to such identi�cation problems. The results apply to a class of extremum estimators and

corresponding tests and CS�s that are based on criterion functions that satisfy certain

asymptotic stochastic quadratic expansions and that depend on the parameter that

determines the strength of identi�cation. This covers a class of models estimated using

maximum likelihood (ML), least squares (LS), quantile, generalized method of moments

(GMM), generalized empirical likelihood (GEL), minimum distance (MD), and semi-

parametric estimators.

The consistency/lack-of-consistency and asymptotic distributions of the estimators

are established under a full range of drifting sequences of true distributions. The as-

ymptotic sizes (in a uniform sense) of standard and identi�cation-robust tests and CS�s

are established. The results are applied to the ARMA(1, 1) time series model estimated

by ML and to the nonlinear regression model estimated by LS. In companion papers the

results are applied to a number of other models.

Keywords: Asymptotic size, con�dence set, estimator, identi�cation, nonlinear models,
strong identi�cation, test, weak identi�cation.

JEL Classi�cation Numbers: C12, C15.



1. Introduction

The main contributions of this paper are as follows. (i) We provide a uni�ed treat-

ment of a class of models in which lack of identi�cation and weak identi�cation occurs

in part of the parameter space. (ii) We analyze the asymptotic properties of extremum

estimators and t and quasi-likelihood ratio (QLR) tests and con�dence sets (CS�s). The

results extend standard results for extremum estimators under high-level conditions to

allow for singularity of the variance matrix. (iii) We introduce tests and CS�s that are

robust to identi�cation issues. (iv) We provide asymptotic results that are uniform over

distributions that generate the observations. This requires results for what we call the

region of �semi-strong�identi�cation, which bridges the gap between weak and strong

identi�cation. (v) We give a detailed analysis of the e¤ects of identi�cation weakness in

the workhorse ARMA(1, 1) time series model.

The main technical innovations of the paper are the following. (i) For the weak

identi�cation asymptotic results, we do a quadratic approximation around the point of

lack of identi�cation, rather than around the true parameter.1 (ii) In the semi-strong

identi�cation case, we obtain consistency using a non-stochastic limit of the criterion

function that has not appeared before in the literature.2 (iii) To obtain the asymptotic

distribution in the semi-strong identi�cation case, we use a quadratic expansion of the

criterion function that is novel in that it only holds in a rapidly shrinking (as n ! 1)
neighborhood of the true parameter, combined with a key rate of convergence result for

the estimator.3

We consider models in which the parameter � of interest is of the form � = (�; �; �);

where � is identi�ed if and only if � 6= 0; � is not related to the identi�cation of �; and
 = (�; �) is always identi�ed.4 This a canonical parametrization which may or may not

hold in the natural parameterization of the model, but is assumed to hold after suitable

reparametrization.

1In consequence, the leading term of the expansion does not depend on the unidenti�ed parameter,
which is key to determining the asymptotic properties of the extremum estimator. This introduces a
bias in the �rst derivative in the expansion� its mean is not zero.

2This limit is a non-stochastic quadratic form in the bias vector of the �rst derivative that appears
in the quadratic approximation in part (i). See the function �(�; 
0; !0) in (3.8) below.

3The shrinking neighborhood depends on the strength of identi�cation. The rate of convergence
result for the estimator establishes that the estimator lies in the shrinking neighborhood with probability
that goes to one. It is based on a di¤erent quadratic expansion� the quadratic expansion used for the
weak-identi�cation results in part (i).

4The parameters �; �; and � may be scalars or vectors.
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We suppose � is estimated by minimizing a criterion function Qn(�) over a parameter

space �; where n denotes the sample size. The true distribution that generates the data

is indexed by a parameter 
� = (��; ��) with parameter space �: Here �� denotes the true

value of � and �� indexes the part of the distribution of the data that is not determined

by ��: A key assumption used in the paper is the following.

Assumption A. If � = 0; Qn(�) does not depend on �; 8� = (�; �; �) = (0; �; �) 2 �;
8n � 1; for any true parameter 
� 2 �:5

Under Assumption A (and other conditions given below), Qn(�) is (relatively) �at with

respect to (wrt) � when � is close to 0: This causes di¢ culties with standard asymptotic

approximations because the second derivative matrix ofQn(�) is singular or near singular

and standard asymptotic approximations involve the inverse of this matrix.

Example 1. Consider the nonlinear regression model, Yi = ��h(Xi; �
�) + Z 0i�

� + Ui;

and the least squares criterion function Qn(�) = n�1
Pn

i=1(Yi� �h(Xi; �)�Z 0i�)2:6 The
parameter �� is not identi�ed when �� = 0: Assumption A holds. The �rst derivative of

Qn(�) wrt � is proportional to �: Hence, when � is close to zero, the criterion function

Qn(�) is relatively �at in the direction of �:

Example 2. Consider the ARMA(1, 1) model estimated by (quasi-) maximum likeli-

hood (ML). In this model, the AR and MA parameters are not identi�ed when their

values are equal. This occurs when the time series is serially uncorrelated� a case of con-

siderable interest in many practical applications.7 By de�nition, the observed ARMA(1,

1) time series fYt : 0 � t � ng satis�es

Yt = (�
� + ��)Yt�1 + "t � ��"t�1 for t = :::; 0; 1; :::; (1.1)

where the true MA parameter is ��; the true AR parameter is �� + ��; the innovations

f"t : t = :::; 0; 1; ::g are i.i.d. with mean zero and variance ��; and �� is the distribution
5Throughout the paper we use the term identi�cation/lack of identi�cation in the sense of identi�ca-

tion by a criterion function Qn(�); as speci�ed in Assumption A. Lack of identi�cation by the criterion
function Qn(�) is not the same as lack of identi�cation in the usual or strict sense of the term, although
there is a close relationship. For example, with a likelihood criterion function, the former implies the
latter. See Sargan (1983) for a related distinction between lack of identi�cation in the strict sense and
lack of �rst order identi�cation.

6Here �� is the true distribution of (Xi; Zi; Ui) and the latter is i.i.d. for i = 1; :::; n:
7Simulation results in Ansley and Newbold (1980) and Nelson and Startz (2007) demonstrate that

this causes substantial bias, variance, and size problems when the AR and MA parameters are close in
value. Ma and Nelson (2008) provide analogous simulation results for the nonlinear regression model
when �� is close to zero. We provide an asymptotic analysis of these problems.
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of (��)�1=2"t: When �
� = 0; the model is Yt = ��Yt�1 + "t � ��"t�1; which is equivalent

to Yt = "t: In this case, �� and �� + �� are not identi�ed.

In the ARMA(1, 1) model, the Gaussian quasi-log likelihood function for � = (�; �; �)

conditional on Y0 and "0 (multiplied by �n�1 and ignoring a constant) is

Qn(�) =
1

2
log � +

1

2�
n�1

nX
t=1

 
Yt � �

t�1X
j=0

�jYt�j�1

!2
: (1.2)

Assumption A holds because Qn(�) does not depend on � when � = 0:

The approach of the paper is to consider a general class of extremum estimators. The

criterion functions considered may be smooth or non-smooth functions of �: We place

high-level conditions on the behavior of the criterion function Qn(�); provide a variety

of more primitive su¢ cient conditions, and verify the latter in several examples.

We are concerned with cases in which the model is strongly identi�ed in part of

the parameter space, but unidenti�ed or weakly identi�ed in another part of the pa-

rameter space. In consequence, we establish the large sample properties of extremum

estimators, t and QLR tests and CS�s over the full range of strength-of-identi�cation

scenarios. These large sample properties provide good approximations to the statistics�

�nite-sample properties under all strengths of identi�cation, whereas standard asymp-

totic theory only provides good approximations under strong identi�cation. We deter-

mine the asymptotic size of standard t and quasi-likelihood ratio (QLR) tests and CS�s,

which often deviate from their nominal size in the presence of lack of identi�cation at

some points in the parameter space.8

We introduce methods of making standard tests and CS�s robust to lack of iden-

ti�cation, i.e., to have correct asymptotic size (in a uniform sense). These methods

include least-favorable (LF), type 1 robust, and type 2 robust critical values. With type

1 and type 2 robust critical values, the idea is to use an identi�cation-category selection

procedure to determine whether � is close to the non-identi�cation value 0 and, if so,

to adjust the critical value to take account of the e¤ect of non-identi�cation or weak

identi�cation on the behavior of the test statistic. We also introduce null-imposed (NI)

and plug-in versions of these robust critical values.

8Asymptotic size is de�ned to be the limit of exact (i.e., �nite-sample) size. For a test, exact size
is the maximum rejection probability over distributions in the null hypothesis. For a CI, exact size is
the minimum coverage probability over all distributions. Because exact size has uniformity built into
its de�nition, so does asymptotic size as de�ned here.

3



These methods apply to sub-vectors and low dimensional functions, r(�); of the

full parameter vector �: They allow for procedures that are asymptotically e¢ cient

when identi�cation is not weak. In general, they do not have asymptotic optimality

properties under weak identi�cation. Nevertheless, we investigate their power in the

linear IV regression model in which the CLR test of Moreira (2003) has approximate

asymptotic optimality properties, see Andrews, Moreira, and Stock (2006, 2008).9 We

�nd that one of the robust tests introduce here has power that is essentially the same

as that of the CLR test and, hence, is approximately asymptotically optimal in a class

of invariant tests. In addition, the robust tests are generally applicable and often have

the advantage of computational ease.

This paper applies the general results to the ARMA(1, 1) model and the nonlinear

regression model. The results for the ARMA(1, 1) model are summarized as follows. The

distributions of the ML estimators of the MA and AR parameters are greatly e¤ected

by weak identi�cation, both asymptotically and in �nite samples. Their distributions

are bi- or tri-modal, biased for non-zero true values, and far from the standard normal

distribution. The asymptotic distributions for the MA and AR parameter estimators

are the same under weak identi�cation. The uniform asymptotic approximations to the

�nite-sample distributions are remarkably good.

Standard t CI�s are found to have asymptotic and �nite-sample sizes that are very

poor� less than 0:60 for nominal 95% CI�s concerning the MA and AR parameters.

Standard CI�s based on the QLR statistic and a �2 critical value, on the other hand,

have asymptotic and �nite-sample sizes that are not correct, but are far superior to

those of standard jtj CI�s. Their asymptotic size is 0:933 for nominal 95% CI�s and their
�nite-sample sizes are close to this. The uniform asymptotic approximations for the

standard t and QLR CI�s work very well.

The nominal 95% robust CI�s have asymptotic and �nite-sample size that are equal

to, and close to, 0:95; respectively. This is true even for the robust CI�s based on the t

statistic. The best robust CI in terms of false coverage probabilities is a type 2 robust

CI based on the QLR statistic. The uniform asymptotic approximations for the robust

CI�s are found to work very well.

Two companion papers� Andrews and Cheng (2008a,b) (hereafter AC2 and AC3,

9Other procedures with asymptotic optimality/admissibility properties in models with potential
identi�cation failure include those of Elliott and Müller (2007, 2008) for some change-point models.
These models are not covered by this paper because the quadratic approximation condition fails.
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respectively) apply the results of this paper to a smooth transition threshold autoregres-

sive (STAR) model, a smooth transition switching regression model, a nonlinear binary

choice model, and a nonlinear regression model with endogenous regressors. Work is

underway on applications to limited dependent variable models with endogeneity and

a linear reduced-form equation for the endogenous variable(s), as in Nelson and Olson

(1978), Lee (1981), and Rivers and Vuong (1988). Han (2009) shows that, via reparame-

trization, a simple bivariate probit model with endogeneity falls into the class of models

considered here.10

Other examples covered by the results of this paper include MIDAS regressions in

empirical �nance, which combine data with di¤erent sampling frequencies, see Ghy-

sels, Sinko, and Valkanov (2007), models with autoregressive distributed lags, continu-

ous transition structural change models, continuous transition threshold autoregressive

models (e.g., see Chan and Tsay (1998)), seasonal ARMA(1, 1) models (e.g., see An-

drews, Liu, and Ploberger (1998)), models with correlated random coe¢ cients (e.g., see

Andrews (2001)), GARCH(p, q) models, and time series models with nonlinear deter-

ministic time trends of the form t� or (t� � 1)=�:11

Not all models with lack of identi�cation at some points in the parameter space fall

into the class of models considered here. The models considered here must satisfy a set

of criterion function (stochastic) quadratic approximation conditions, as described in

more detail below, that do not apply to some models of interest. For example, abrupt

transition structural change models, (unobserved) regime switching models, and abrupt

transition threshold autoregressive models are not covered by the results of the present

paper, e.g., see Picard (1985), Chan (1993), Bai (1997), Hansen (2000), Liu and Shao

(2003), Elliott and Müller (2007, 2008), Qu and Perron (2007), and Drton (2009) for

analyses of these models. In addition, the criterion functions considered here depend

on the parameter that determines the strength of identi�cation. This di¤ers from the

criterion functions considered in the weak IV literature.

Next, we discuss the literature that is related to this paper. Cheng (2008) considers

a nonlinear regression model with multiple nonlinear regressors and, hence, multiple

sources of lack of identi�cation. Here we consider a single source of lack of identi�cation,

10See Supplemental Appendix A for a brief discussion.
11Nonlinear time trends can be analyzed asymptotically in the framework considered in this paper via

sample size rescaling, i.e., by considering (t=n)� or ((t=n)� � 1)=�; e.g., see Andrews and McDermott
(1995).
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but cover a much wider variety of models.12

In the models considered in this paper, a test of H0 : � = 0 versus H1 : � 6= 0; is a
test for which � is a nuisance parameter that is unidenti�ed under the null hypothesis.

Testing problems of this type have been considered in the literature, e.g., see Davies

(1977, 1987), Andrews and Ploberger (1994, 1995), Hansen (1996), and Cho, Ishida, and

White (2010). In contrast, we consider a full range of nonlinear hypotheses concerning

(�; �; �) and CS�s, where � can be 0; close to 0; or far from 0:When the null hypothesis

involves (�; �); the identi�cation scenario is substantially more complicated than when

H0 is � = 0:

The weak instrumental variable (IV) literature, e.g., see Nelson and Startz (1990),

Dufour (1997), Staiger and Stock (1997), Stock and Wright (2000), Kleibergen (2002,

2005), Moreira (2003), Kleibergen and Mavroeidis (2009), and other papers referenced

in Andrews and Stock (2007), is related to the present paper because it considers weak

identi�cation. In the weak IV literature, the criterion functions considered are not

indexed by the parameters that are the source of weak identi�cation. Thus, in linear IV

models, the reduced form parameters do not appear in the criterion function. Similarly,

in Stock and Wright (2000), which applies to nonlinear models, high-level conditions

are placed on the population moment functions under which the IV�s are weak for some

parameters. On the other hand, in the present paper, the potential source of weak

identi�cation is an explicit part of the model.13 In consequence, the present paper and

the weak IV literature are complements.

However, in one case there is an overlap. The criterion function for the limited

information maximum likelihood (LIML) estimator in the linear IV regression model

can be written either as (i) a function of the parameters in the structural equation plus

the parameters in the accompanying reduced-form equations, which �ts the framework

of the present paper, or (ii) a function of the structural equation parameters only via

concentrating out the reduced-form parameters, as Anderson and Rubin (1949) and

Staiger and Stock (1997). This permits the comparison of the CLR test with the robust

tests introduced here, as discussed above.

The �nite-sample results of Dufour (1997) and Gleser and Hwang (1987) for CS�s

12In addition, the treatment of the nonlinear regression model here allows for a whole class of error
distributions, whereas Cheng (2008) considers a single error distribution.
13To help clarify the di¤erences, we show in Supplemental Appendix E that Stock and Wright�s (2000)

Assumption C fails in the nonlinear regression model when a nonlinear regression parameter is weakly
identi�ed due to its multiplicative coe¢ cient being close to zero.
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and tests are applicable to the models considered in this paper.14

Antoine and Renault (2009, 2010) and Caner (2010) consider GMM estimation with

instruments that lie in what we call the semi-strong category. Their emphasis is on

asymptotic e¢ ciency with semi-strong instruments, rather than the behavior of statistics

across the full range of strengths of identi�cation as is considered here.

In a recent paper, I. Andrews and Mikusheva (2011) consider an LM statistic in a

likelihood context with weak identi�cation.

Nelson and Startz (2007) introduces the zero-information-limit condition, which ap-

plies to the models considered in this paper, and discuss its implications. Ma and Nelson

(2008) considers tests based on linearization for models of the type considered in this

paper. Neither of these papers establishes the large sample properties of estimators,

tests, and CS�s along the lines given in this paper.

Sargan (1983) provides asymptotic results for linear-in-variables and nonlinear-in-

parameters simultaneous equations models in which some parameters are unidenti�ed.

Phillips (1989) and Choi and Phillips (1992) provide �nite-sample and asymptotic re-

sults for linear simultaneous equations and linear spurious regression models in which

some parameters are unidenti�ed. Their results do not overlap very much with those

in this paper because the present paper is focussed on nonlinear models. Their as-

ymptotic results are pointwise in the parameters, which covers the unidenti�ed- and

strongly-identi�ed categories, but not the weakly-identi�ed and semi-strongly-identi�ed

categories described above.

Supplemental Appendix E applies the results of the present paper to the nonlinear

regression model with i.i.d. or stationary and ergodic regressors. One also can apply the

approach of this paper to the case where the regressors are integrated. In this case, the

general results given below do not apply directly. However, by using the asymptotics

for nonlinear and nonstationary processes developed by Park and Phillips (1999, 2001),

the approach goes through, as shown recently by Shi and Phillips (2011).15

The remainder of the paper is organized as follows. Section 2 introduces the ex-

tremum estimators, criterion functions, tests, con�dence sets, and drifting sequences

14This paper considers the case where the potentially unidenti�ed parameter � lies in a bounded set
�: In this case, Cor. 3.4 of Dufour (1997) implies that if the diameter of a CS for � is as large as the
diameter of � with probability less than 1 � 2� then the CS has (exact) size less than 1 � � (under
certain assumptions).
15Shi and Phillips (2011) employs the same method of computing asymptotic size and of constructing

identi�cation-robust CS�s as was introduced in an early version of this paper and Cheng (2008).
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of distributions considered in the paper. Section 3 states the high-level assumptions

employed and provides the asymptotic results for the extremum estimators. Section

4 establishes the asymptotic distributions of t and QLR statistics and determines the

asymptotic size of standard t and QLR CS�s. Section 5 introduces methods of construct-

ing robust tests and CS�s whose asymptotic size equals their nominal size and applies

them to t and QLR tests and CS�s. Section 6 provides asymptotic and �nite-sample

numerical results for the ARMA(1, 1) model. Supplemental Appendix A gives a verbal

description of the steps in the proofs of the results in Sections 3-5 and su¢ cient condi-

tions for some of the high-level conditions stated in Section 3. Supplemental Appendix

B provides proofs of the results given in Sections 3-5. Supplemental Appendix C veri�es

the assumptions of the paper for the ARMA example. Supplemental Appendix D pro-

vides additional Monte Carlo simulation results for the ARMA example. Supplemental

Appendices E and F verify the assumptions of the paper for the nonlinear regression

and linear IV regression models, respectively.

AC2 provides primitive su¢ cient conditions for the high-level assumptions of this

paper for the class of estimators based on sample averages that are smooth functions

of the parameter �; which includes ML and LS estimators. AC3 provides su¢ cient

conditions for the high-level assumptions for the class of GMM estimators and provides

general results for Wald tests.

All limits below are taken �as n ! 1:� Let Xn(�) = op�(1) mean that sup�2�
jjXn(�)jj = op(1); where jj�jj denotes the Euclidean norm. Let �for all �n ! 0�abbreviate

�for all sequences of positive scalar constants f�n : n � 1g for which �n ! 0:�Let �min(A)

and �max(A) denote the smallest and largest eigenvalues, respectively, of a matrix A:

All vectors are column vectors. For notational simplicity, we often write (a; b) instead

of (a0; b0)0 for vectors a and b: Also, for a function f(c) with c = (a; b) (= (a0; b0)0);

we often write f(a; b) instead of f(c): Let 0d denote a d-vector of zeros. Because it

arises frequently, we let 0 denote a d�-vector of zeros, where d� is the dimension of

a parameter �: Let ) denote weak convergence of a sequence of stochastic processes

indexed by � 2 � for some space �:
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2. Estimator and Criterion Function

2.1. Extremum Estimators

By de�nition, the estimator b�n (approximately) minimizes a criterion function Qn(�)

over an �optimization parameter space��:16

b�n 2 � and Qn(b�n) = inf
�2�

Qn(�) + o(n�1): (2.1)

The function Qn(�) depends on the observations fWi : i � ng; which may be i.i.d.,
i.n.i.d., or temporally dependent.17

As stated above, � is partitioned into three sub-vectors:

� = (�; �; �) = ( ; �); where  = (�; �): (2.2)

The parameter � 2 Rd� is unidenti�ed when � = 0 (2 Rd�): The parameter  = (�; �) 2
Rd is always identi�ed. The parameter � 2 Rd� does not e¤ect the identi�cation of �:

The argument � of the criterion function need not determine the distribution of

the data. We introduce an additional parameter � such that 
 = (�; �) completely

determines the distribution of the data.18 The true distribution of the observations

fWi : i � ng is denoted F
 where 
 2 �: We let P
 and E
 denote probability and
expectation under F
:

The parameter space � for the true parameter 
; referred to as the �true parameter

16The o(n�1) term in (2.1), and in (3.2) and (3.3) below, is a �xed sequence of constants that does
not depend on the true parameter 
 2 � and does not depend on � in (3.2). The o(n�1) term makes it
clear that the in�ma in these equations need not be achieved exactly. This allows for some numerical
inaccuracy in practice and also circumvents the issue of the existence of parameter values that achieve
the in�ma. In contrast to many results in the extremum estimator literature, the o(n�1) term is not a
random op(n

�1) term here.
17The indices i and t are inter-changeable in this paper. For the general results and cross-section

examples, the observations are indexed by i (= 1; :::; n): To conform with standard notation, the obser-
vations are indexed by t (= 1; :::; n or = �r; :::; n for some r � 0) in time series examples, such as the
ARMA(1, 1) example.
18In a nonlinear regression model estimated by least squares, � indexes the regression function and

possibly a �nite-dimensional feature of the distribution of the errors, such as its variance, and � indexes
the remaining characteristics of the distribution of the errors, which may be in�nite dimensional. In an
unconditional likelihood scenario, no parameter � appears. In a conditional likelihood scenario, with
conditioning variables fXi : i � 1g; � indexes the distribution of fXi : i � 1g: In a moment condition
model, � is a �nite-dimensional parameter that appears in the moment functions and � indexes those
aspects of the distribution of the observations that are not determined by �:
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space,�is assumed to be compact and of the form:

� = f
 = (�; �) : � 2 ��; � 2 ��(�)g; (2.3)

where the true parameter space for �; ��; is a compact subset of Rd� and ��(�) � ��

8� 2 �� for some compact metric space �� with a metric that induces weak convergence
of the bivariate distributions (Wi;Wi+m) for all i;m � 1:19 ;20 ;21

2.2. Con�dence Sets and Tests

We are interested in the e¤ect of lack of identi�cation or weak identi�cation on

the behavior of the extremum estimator b�n: In addition, we are interested in its e¤ects
on CS�s for various functions r(�) of � and on tests of null hypotheses of the form

H0 : r(�) = v:

A CS is obtained by inverting a test. For example, a nominal 1� � CS for r(�) is

CSn = fv : Tn(v) � cn;1��(v)g; (2.4)

where Tn (v) is a test statistic, such as a t; Wald, or QLR statistic, and cn;1�� (v) is a
critical value for testing H0 : r(�) = v: Critical values considered in this paper may de-

pend on the null value v of r(�) as well as on the sample size n: The coverage probability

of a CS for r(�) is

P
(r(�) 2 CSn) = P
(Tn(r(�)) � cn;1��(r(�))): (2.5)

The paper focuses on the smallest �nite-sample coverage probability of a CS over

the parameter space, i.e., the �nite-sample size of the CS. It is approximated by the

19The true parameter space �� is the space of parameter values that the researcher speci�es as includ-
ing the true value. The optimization parameter space � is the space over which the researcher optimizes
the sample criterion function. For reasons stated below, see the discussion preceding Assumption B1,
we allow for a di¤erence between � and ��:
20The metric d�� on �� must satisfy: if 
 ! 
0; then (Wi;Wi+m) under 
 converges in distribution

to (Wi;Wi+m) under 
0: Note that � is a metric space with metric d�(
1; 
2) = jj�1��2jj+d��(�1; �2);
where 
j = (�j ; �j) 2 � for j = 1; 2:
21The asymptotic results below give uniformity results over the parameter space �: If one has a

non-compact parameter space ��1 for the parameter �; instead of �
�; then one can apply the results

established here to show that the uniformity results hold for all compact subsets �� of ��1 that satisfy
the given conditions.
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asymptotic size, which is de�ned to be

AsySz = lim inf
n!1

inf

2�

P
(r(�) 2 CSn) = lim inf
n!1

inf

2�

P
(Tn(r(�)) � cn;1��(r(�))): (2.6)

For a test, we are interested in its maximum null rejection probability, which is the

size of the test. A test�s asymptotic size is an approximation to the latter. The test�s

null rejection probability is P
(Tn(v) > cn;1��(v)) for 
 = (�; �) 2 � with r(�) = v and

its asymptotic size is AsySz = lim supn!1 sup
2�:r(�)=v P
(Tn(v) > cn;1��(v)):

2.3. Drifting Sequences of Distributions

In (2.6), the uniformity over 
 2 � for any given sample size n is crucial for the
asymptotic size to be a good approximation to the �nite-sample size. The value of 


at which the �nite-sample size of a CS or test is attained often varies with the sample

size. Therefore, to determine the asymptotic size we need to derive the asymptotic

distribution of the test statistic Tn(vn) under sequences of true parameters 
n = (�n; �n)
and vn = r(�n) that may depend on n:22 Similarly, to investigate the �nite-sample

behavior of the extremum estimator under weak identi�cation, we need to consider its

asymptotic behavior under drifting sequences of true distributions� as in Staiger and

Stock (1997), Stock and Wright (2000), and numerous other papers that consider weak

instruments.

Suppose the true value of the parameter is �n = (�n; �n; �n) for n � 1; where n

indexes the sample size. The behavior of extremum estimators and tests depends on

the magnitude of jj�njj and varies across the three categories of sequences f�n : n � 1g
de�ned in Table I.23

22Drifting sequences of parameters have been shown to play a crucial role in the literature on the (uni-
form) asymptotic size properties of tests and CS�s when the statistics of interest display discontinuities
in their pointwise asymptotic distributions, see Mikusheva (2007), Andrews and Guggenberger (2009,
2010) and Andrews, Cheng, and Guggenberger (2009). The situation considered here is an example of
the latter phenomenon.
23Hahn and Kuersteiner (2002) and Antoine and Renault (2009, 2010) refer to sequences in our semi-

strong category as nearly weak. For this paper at least, we prefer our terminology because estimators
are consistent and asymptotically normal under semi-strong sequences, just as under sequences in the
strong category. The only di¤erence is that their rate of convergence is slower.
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Table I. Identi�cation Categories
Category f�ng Sequence Identi�cation Property of �

I(a) �n = 0 8n � 1 Unidenti�ed
I(b) �n 6= 0 and n1=2�n ! b 2 Rd� Weakly identi�ed

(and, hence, jj�njj = O(n�1=2))
II �n ! 0 and n1=2jj�njj ! 1 Semi-strongly identi�ed
III �n ! �0 6= 0 Strongly identi�ed

In consequence, the following sequences f
ng are key:

� (
0) = ff
n 2 � : n � 1g : 
n ! 
0 2 �g ; (2.7)

� (
0; 0; b) =
�
f
ng 2 � (
0) : �0 = 0 and n1=2�n ! b 2 (R [ f�1g)d�

	
; and

� (
0;1; !0) =
�
f
ng 2 �(
0) : n1=2jj�njj ! 1 and �n=jj�njj ! !0 2 Rd�

	
;

where 
0 = (�0; �0; �0; �0) and 
n = (�n; �n; �n; �n):
24

The sequences in � (
0; 0; b) are in Categories I and II and are sequences for which

f�ng is close to 0: �n ! 0: When jjbjj < 1; f�ng is within O(n�1=2) of 0 and the
sequence is in Category I. The sequences in � (
0;1; !0) are in Categories II and III

and are more distant from � = 0: n1=2jj�njj ! 1: The sets �(
0; 0; b) and �(
0;1; !0)

are not disjoint. Both contain sequences in Category II.

Throughout the paper we use the terminology: �under f
ng 2 �(
0)�to mean �when
the true parameters are f
ng 2 �(
0) for any 
0 2 �;��under f
ng 2 �(
0; 0; b)�to
mean �when the true parameters are f
ng 2 �(
0; 0; b) for any 
0 2 � with �0 = 0

and any b 2 (R [ f�1g)d� ;�and �under f
ng 2 �(
0;1; !0)�to mean �when the true

parameters are f
ng 2 �(
0;1; !0) for any 
0 2 � and any !0 2 Rd� with jj!0jj = 1:�
Lemma 2.1 below shows that the AsySz of a sequence of CS�s is determined by the

asymptotic coverage probabilities of the CS�s under the drifting sequences of distribu-

tions in � (
0; 0; b) and � (
0;1; !0) :

Consider the CS for r(�) in (2.4). Denote the coverage probability of the CS under


n = (�n; �n) by CPn(
n) = P
n(Tn(r(�n)) � cn;1��(r(�n))): Let

h = (b; 
0) and H = fh = (b; 
0) : jjbjj <1; 
0 2 � with �0 = 0g: (2.8)

24Note that the 0 in �(
0; 0; b) and the 1 in �(
0;1; !0) stand for di¤erent things. In the former,
�0 = 0; and in the latter n

1=2jj�njj ! 1:

12



Assumption ACP: (i) For any f
ng 2 � (
0; 0; b) with jjbjj < 1; CPn(
n) ! CP (h)

for some CP (h) 2 [0; 1]; where h = (b; 
0) 2 H:
(ii) For any f
ng 2 � (
0;1; !0) ; lim infn!1CPn(
n) � CP1 for some CP1 2 [0; 1]:
(iii) For some f
ng 2 � (
0;1; !0) ; CPn(
n)! CP1:

(iv) For some � > 0; 
 = (�; �; �; �) 2 � with 0 � jj�jj < � implies that e
 = (e�; �; �; �) 2
� for all e� 2 Rd� with 0 � jje�jj < �:

Here ACP abbreviates asymptotic coverage probability.

Lemma 2.1. Suppose Assumption ACP holds. Then, AsySz = minfinfh2H CP (h);
CP1g:

Comments. 1. Assumption ACP is veri�ed below for standard t and QLR CS�s,

as well as several CS�s that are robust to weak identi�cation. Lemma 2.1 then gives

their AsySz: Note that Assumption ACP(ii) requires asymptotic results for the semi-

strongly-identi�ed Category II sequences, not just the strongly-identi�ed Category III

sequences.

2. The sets � (
0; 0; b) and � (
0;1; !0) are distinguished by whether n1=2jj�njj !
jjbjj with jjbjj < 1 or jjbjj = 1: Similarly, Assumptions ACP(i) and ACP(ii)&(iii)

are distinguished by jjbjj < 1 and jjbjj = 1: The reason this distinction arises and

is important is that the asymptotic behavior of the normalized (generalized) stochastic

�rst derivative of the criterion function Qn(�) depends on whether jjbjj <1 or jjbjj =1:

If jjbjj <1; its limit is the sum of deterministic and stochastic terms, because the signal

and noise are of the same order of magnitude. If jjbjj = 1; its limit is deterministic,

because the signal dominates the noise (see (3.7) below).

3. Lemma 2.1 is proved by showing that one can reduce uniform coverage probability
results to coverage probability results under suitable subsequences. Then, one shows that

results under such subsequences are implied by results under suitable full sequences. The

proof follows the lines of the argument in Andrews and Guggenberger (2010).

3. Assumptions and Estimation Results

3.1. Parameter Space Assumptions

First, we specify conditions on the parameter spaces � and �: To obtain asymptotic

size results for tests and CS�s, the parameter space must be speci�ed precisely. Without

13



loss of generality (wlog), the optimization parameter space � can be written as

� = f� = ( ; �) :  2 	(�); � 2 �g; where
� = f� : ( ; �) 2 � for some  g and

	(�) = f : ( ; �) 2 �g for � 2 �: (3.1)

Allowing 	(�) to depend on � is needed in the ARMA(1, 1) example among others.25

We consider the case where the optimization parameter space � includes �� in its

interior (Assumption B1(i) below). Because � is user selected, often this can be ac-

complished by the choice of �: Given int(�) � ��; the true value of � cannot lie on

the boundary of the optimization parameter space. In consequence, the asymptotic

distribution of b�n is not a¤ected by boundary constraints for any sequence of true para-
meters in ��: This allows us to focus in this paper on the e¤ects of weak identi�cation,

independently from boundary constraints, on the behaviour of estimators, tests, and

CS�s.26

De�ne ��� = f� 2 �� : jj�jj < �g; where �� is the true parameter space for �: The
optimization parameter space � satis�es:

Assumption B1. (i) int(�) � ��:
(ii) For some � > 0; � � f� 2 Rd� : jj�jj < �g�Z0�� � ��� for some non-empty open
set Z0�Rd� and � as in (3.1).

(iii) � is compact.

Assumption B1(ii) ensures that � is compatible with Assumptions C1, C3, and C5

below.27

The true parameter space � satis�es:

Assumption B2. (i) � is compact and (2.3) holds.

25We write � in terms of the sets � and 	(�); rather than sets 	 and �( ); because below we carry
out quadratic expansions of Qn( ; �) wrt  for each � 2 � and this yields stochastic processes that are
indexed by the �xed set � and that converge weakly as processes on �:
26If the true and optimization parameters spaces both equal a set �; then the uniform results of this

paper apply to any subset �� of � that satis�es the conditions listed below, but they do not apply to
the entire true parameter space � because of boundary e¤ects.
27Assumption B1(iii) is used to show that certain continuous functions on � introduced in Assump-

tions C6 and C7 below, which have unique minima on �; satisfy �identi�able uniqueness�properties.
Assumption B1(iii) could be avoided by imposing �identi�able uniqueness�properties directly in As-
sumptions C6 and C7.
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(ii) For some � > 0; 
 = (�; �; �; �) 2 � with 0 � jj�jj < � implies that e
 = (e�; �; �; �) 2
� for all e� 2 Rd� with 0 � jje�jj < �:

(iii) For � > 0 is in (ii), 9
 = (�; �; �; �) 2 � with 0 < jj�jj < �:

Assumption B2(ii) ensures that Assumption ACP(iv) holds. Assumptions B2(ii) and

(iii) guarantee that there exist elements 
 of � whose � values are non-zero but are

arbitrarily close to zero, which is the region of near lack of identi�cation, and that � is

compatible with Assumption C5 below.

3.2. Concentrated Estimator and Probability Limit Results

De�ne the concentrated extremum estimator b n(�) (2 	(�)) of  for given � 2 �
by

Qn(b n(�); �) = inf
 2	(�)

Qn( ; �) + o(n�1): (3.2)

Let Qc
n(�) denote the concentrated sample criterion function Qn(b n(�); �): De�ne an

extremum estimator b�n (2 �) by
Qc
n(b�n) = inf

�2�
Qc
n(�) + o(n�1): (3.3)

We assume that the extremum estimator b�n in (2.1) can be written as b�n =

(b n(b�n); b�n):28
Next, we specify the limit of the sample criterion function Qn(�) along drifting se-

quences of true parameters f
ng 2 �(
0) whose limit is 
0 2 � and determine the

probability limit of b�n:
Assumption B3. (i) For some non-stochastic real-valued function Q(�; 
0) on �� �;
sup�2� jQn(�)�Q(�; 
0)j !p 0 under f
ng 2 �(
0); 8
0 2 �:
(ii) When �0 = 0; for every neighborhood	0 (� Rd ) of  0 = (�0; �0); inf�2�(inf 2	(�)=	0
Q( ; �; 
0)�Q( 0; �; 
0)) > 0; 8
0 = ( 0; �0; �0) 2 �:
(iii) When �0 6= 0; for every neighborhood �0 (� �) of �0 = (�0; �0; �0); inf�2�=�0

Q (�; 
0)�Q (�0; 
0) > 0; 8
0 = (�0; �0) 2 �:

Assumption B3(i) de�nes the (asymptotic) population criterion function Q (�; 
0) :

Assumption B3(ii) provides a condition for the identi�cation of � and � despite the

28If (3.2) and (3.3) hold and b�n = (b n(b�n); b�n); then (2.1) automatically holds.
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non-identi�cation of � when �0 = 0: Uniformity over � is required due to the non-

identi�cation of �. A condition of this type also is used in Andrews (1993) for the uniform

consistency of a family of estimators. Assumption B3(iii) is a standard identi�cation

condition for � when �0 6= 0: A condition of this sort is veri�ed for various extremum
estimators in Newey and McFadden (1994).

A set of primitive su¢ cient conditions for Assumptions B3(ii) and B3(iii) is given in

Assumption B3� in Supplemental Appendix A.

Lemma 3.1. Suppose Assumptions A and B3 hold. Under f
ng 2 �(
0); where 
0 =
(�0; �0; �0; �0);

(a) when �0 = 0; sup�2� jjb n(�)�  njj !p 0 and b n �  n !p 0; and

(b) when �0 6= 0; b�n � �n !p 0:

Comment. When �0 = 0; the asymptotic behavior of b�n is determined below.
3.3. Close to � = 0 Assumptions and Estimation Results

The following Assumptions C1-C8 are used to determine the asymptotic distributions

of estimators and test statistics under sequences of true parameters f
ng 2 �(
0; 0; b)
with jjbjj <1 and to establish the consistency of b�n under sequences f
ng 2 �(
0; 0; b)
with jjbjj =1: The "C" denotes that the sequences of parameters f
ng considered are
close to the point of non-identi�cation.

The �rst assumption, Assumption C1, requires that the criterion function Qn(�) has

a stochastic quadratic expansion in  around the non-identi�cation point  0;n = (0; �n)

uniformly in � 2 �: Assumptions C2 and C3 concern the behavior of the (generalized)
�rst derivative in the expansion. Assumption C4 concerns the behavior of the (general-

ized) second derivative. Assumptions C5 and C7 arise because the quadratic expansion

is about the non-identi�cation point  0;n; rather than the true value  n: Assumptions

C6-C8 are used when determining the asymptotic behavior of b�n:
We now de�ne a sequence of scalar constants fan(
n) : n � 1g that provides the

normalization required so that the (generalized) �rst derivative in the quadratic expan-

sion in Assumption C1 is non-degenerate asymptotically.29 These constants appear in

29See Lemma 9.1 in Supplemental Appendix B.
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the conditions on the remainder term of the approximation in Assumption C1. De�ne

an(
n) =

(
n1=2 if f
ng 2 �(
0; 0; b) and jjbjj <1
jj�njj�1 if f
ng 2 �(
0; 0; b) and jjbjj =1:

(3.4)

Note that jj�njj�1 < n1=2 for n large when jjbjj = 1; because n1=2jj�njj ! 1:30 Hence,

an(
n) � n1=2 for n large.

Assumption C1. Under f
n = (�n; �n; �n; �n)g 2 �(
0; 0; b); for some � > 0; 8� =
( ; �) 2 �� = f� 2 � : jj�jj < �g;
(i) the sample criterion function Qn( ; �) has a quadratic expansion in  around  0;n =

(0; �n) for given �:

Qn( ; �) = Qn( 0;n; �) +D Qn( 0;n; �)
0( �  0;n) +

1

2
( �  0;n)

0D  Qn( 0;n; �)( �  0;n) +Rn( ; �);

where D Qn( 0;n; �) 2 Rd is a stochastic generalized �rst partial-derivative vector

and D  Qn( 0;n; �) 2 Rd �d is a generalized second partial-derivative matrix that is

symmetric and may be stochastic or non-stochastic,

(ii) the remainder, Rn( ; �); satis�es

sup
 2	(�):jj � 0;njj��n

ja2n(
n)Rn( ; �)j
(1 + jjan(
n)( �  0;n)jj)2

= op�(1)

for all constants �n ! 0; and

(iii) D�Qn(�) and D��Qn(�) do not depend on � when � = 0; where � = (�; �; �) 2 �;
D�Qn(�) denotes the last d� elements of D Qn(�); and D��Qn(�) is the lower d� � d�

block of D  Qn(�):

Because the expansion in Assumption C1 is about the point of lack of identi�cation

 0;n; rather than the true value  n; the leading term Qn( 0;n; �) does not depend on

� by Assumption A. This is key. It implies that b�n = (b n; b�n) not only minimizes
Qn( ; �); but also Qn( ; �) � Qn( 0;n; �): The latter has the quadratic expansion in

Assumption C1 with linear and quadratic terms whose asymptotic properties one can

determine using Assumptions C2-C5 below.

30The quantity an(
n) actually depends on the entire sequence f
ng because b depends on f
ng:
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Su¢ cient conditions for Assumption C1 when Qn(�) is a sample average that is

smooth in � are given in Lemma 8.6 in Supplemental Appendix A. In this case, D Qn(�)

and D  Qn(�) are the pointwise partial and second partial derivatives of Qn(�): For

the non-smooth sample average case, su¢ cient conditions are given in Lemma 8.7 in

Supplemental Appendix A. In this case, D Qn(�) is a �stochastic derivative�of Qn(�);

which typically equals the pointwise derivative for points where the latter exists, and

D  Qn(�) is the (non-stochastic) second partial derivative of the expected value of

Qn(�): This case covers quantile estimators and ML and LS estimators in continuous,

but not smooth, threshold autoregressive models, as in Chan and Tsay (1998). Su¢ cient

conditions for Assumption C1 when Qn(�) is a GMM or MD criterion function, smooth

or non-smooth in �; are given in AC3.

If D Qn(�) and D  Qn(�) are the pointwise partial and second partial derivatives of

Qn(�); then Assumption C1(iii) is implied by Assumption A. Otherwise, in the presence

of Assumption A, Assumption C1(iii) is not restrictive.

Note that Assumption C1 is compatible with semi-parametric estimators.

The (generalized) �rst derivative of Qn (�) wrt  is assumed to satisfy:

Assumption C2. (i) D Qn (�) takes the form D Qn (�) = n�1
Pn

i=1m(Wi; �) for some

function m(Wi; �) 2 Rd 8� 2 ��; for any true parameter 
� 2 �:
(ii) E
�m(Wi;  

�; �) = 0 8� 2 �; 8i � 1 when the true parameter is 
� 8
� =
( �; ��; ��) 2 � with �� = 0:31

De�ne an empirical process fGn(�) : � 2 �g by

Gn(�) = n�1=2
nX
i=1

�
m(Wi;  0;n; �)� E
nm(Wi;  0;n; �)

�
: (3.5)

The recentered and rescaled (generalized) �rst derivative of Qn (�) wrt  is assumed

to satisfy an empirical process CLT:

Assumption C3. Under f
ng 2 �(
0; 0; b); Gn(�)) G(�; 
0); where G(�; 
0) is a mean
zero Gaussian process indexed by � 2 � with bounded continuous sample paths and

some covariance kernel 
(�1; �2; 
0) for �1; �2 2 �:
31In some time series examples D Qn (�) is of the form n�1

Pn
i=1mi(�); where mi(�) depends on

fWj : 81 � j � ig: Assumption C2 can be relaxed to cover such cases without any changes to the results
of the paper. In such cases, Assumption C3 below still can hold provided fmi(�) : i � ng satis�es a
suitable �asymptotic weak dependence�condition, such as near-epoch dependence.
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Numerous empirical process results in the literature can be used to verify this as-

sumption, including results in Pollard (1984, 1990), Andrews (1994), and van der Vaart

and Wellner (1996).

The (generalized) second derivative of Qn(�) wrt  is assumed to satisfy:

Assumption C4. (i) Under f
ng 2 �(
0; 0; b); sup�2� jjD  Qn( 0;n; �)�H(�; 
0)jj !p

0 for some non-stochastic symmetric d � d -matrix-valued function H(�; 
0) on �� �
that is continuous on � 8
0 2 �:
(ii) �min(H(�; 
0)) > 0 and �max(H(�; 
0)) <1 8� 2 �; 8
0 2 � with �0 = 0:

De�ne the d � d�-matrix of partial derivatives of the average population moment

function wrt the true � value, ��; to be

Kn(�; 

�) = n�1

nX
i=1

@

@��0
E
�m(Wi; �): (3.6)

The domain of the function Kn(�; 

�) is �� � �0; where �� = f� 2 � : jj�jj < �g;

�0 = f
a = (a�; �; �; �) 2 � : 
 = (�; �; �; �) 2 � with jj�jj < � and a 2 [0; 1]g; and
� > 0 is as in Assumption B2(ii). The set �0 is not empty by Assumptions B2(ii) and

(iii).

Assumption C5. (i) Kn(�; 

�) exists 8(�; 
�) 2 �� � �0; 8n � 1:

(ii) For some non-stochastic d �d�-matrix-valued functionK( 0; �; 
0); Kn( n; �; e
n)!
K( 0; �; 
0) uniformly over � 2 � for all non-stochastic sequences f ng and fe
ng
such that e
n 2 �; e
n ! 
0 = (0; �0; �0; �0) for some 
0 2 �; ( n; �) 2 �; and

 n !  0 = (0; �0):

(iii) K( 0; �; 
0) is continuous on � 8
0 2 � with �0 = 0:

Assumption C5 is not restrictive. A set of primitive su¢ cient conditions for Assump-

tion C5 is given in Supplemental Appendix A.

For simplicity, K ( 0; �; 
0) is abbreviated as K (�; 
0) : Note that ( n; e
n) in As-
sumption C5(ii) is in �� � �0 for n large.
Due to the expansion about  0;n; rather than about the true value  n; in Assumption

C1, a bias is introduced in the �rst derivative D Qn( 0;n; �)� its mean is not zero. In

consequence, its behavior di¤ers between Category I and II sequences. With Category I

sequences, it converges (after suitable normalization) to the sum of the stochastic term

G(�) and the non-stochastic term K(�; 
0)b due to the bias and the two are of the same

order of magnitude. With Category II sequences, the true �n is farther from the point
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of expansion 0 than with Category I sequences and, in consequence, the non-stochastic

bias term is of a larger order of magnitude than the stochastic term. In this case, the

limit is K(�; 
0)!0; which is non-stochastic.

Speci�cally, Assumptions C2, C3, and C5 are used to show the following key result:

an(
n)D Qn( 0;n; �)

= [Gn(�) + (Kn( 0;n; �; 
n) + o(1))n1=2�n]n
�1=2an(
n)

)
(
G(�; 
0) +K(�; 
0)b if n1=2�n ! b 2 Rd�

K(�; 
0)!0 if jjn1=2�njj ! 1 and �n=jj�njj ! !0;
(3.7)

where the convergence holds under f
ng 2 �(
0; 0; b):32

Next, we introduce the limits of the concentrated criterion function Qc
n(�)

= Qn(b n(�); �) after suitable normalization. De�ne a �weighted non-central chi-square�
process f�(�; 
0; b) : � 2 �g and a non-stochastic function f�(�; 
0; !0) : � 2 �g by

�(�; 
0; b) = �
1

2
(G(�; 
0) +K(�; 
0) b)

0H�1(�; 
0) (G(�; 
0) +K(�; 
0)b) and

�(�; 
0; !0) = �
1

2
!00K(�; 
0)

0H�1(�; 
0)K(�; 
0)!0: (3.8)

Under Assumptions C3, C4, and C5(iii), f�(�; 
0; b) : � 2 �g has bounded continuous
sample paths a.s.

Let Q0;n = Qn( 0;n; �); where  0;n = (0; �n) as in Assumption C1. Note that Q0;n
does not depend on � by Assumption A.

Lemma 3.2. Suppose Assumptions A, B1-B3, and C1-C5 hold. Under f
ng 2 �(
0; 0; b);
(a) when jjbjj <1; n(Qc

n(�)�Q0;n)) �(�; 
0; b); and
(b) when jjbjj =1 and �n=jj�njj ! !0 for some !0 2 Rd� with jj!0jj = 1;
jj�njj�2(Qc

n(�)�Q0;n)!p �(�; 
0; !0) uniformly over � 2 �:

To obtain the asymptotic distribution of b�n when �n = O(n�1=2) via the continuous

mapping theorem, we use the following assumption.

Assumption C6. Each sample path of the stochastic process f�(�; 
0; b) : � 2 �g in
some set A(
0; b) with P
0(A(
0; b)) = 1 is minimized over � at a unique point (which

typically depends on the sample path), denoted ��(
0; b); 8
0 2 � with �0 = 0; 8b with
jjbjj <1:

32See Lemma 9.1 in Supplemental Appendix B.
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In Assumption C6, ��(
0; b) is random. In Supplemental Appendix A, we provide

a primitive su¢ cient condition for Assumption C6 for the case when � is a scalar, i.e.,

d� = 1; which covers many cases of interest.

De�ne the Gaussian process f�(�; 
0; b) : � 2 �g by

�(�; 
0; b) = �H�1(�; 
0)(G(�; 
0) +K(�; 
0)b)� (b; 0d�); (3.9)

where (b; 0d�) 2 Rd : Note that, by (3.8) and (3.9), �(�; 
0; b) = �(1=2)(�(�; 
0; b) +
(b; 0d�))

0H(�; 
0)(�(�; 
0; b)+(b; 0d�)):As in Assumption C6, �
�(
0; b) = argmin

�2�
�(�; 
0; b):

The following is one of the main results of the paper. It provides the asymptotic

distribution of the estimator b�n and the optimized objective functionQn(b�n) for Category
I sequences.

Theorem 3.1. Suppose Assumptions A, B1-B3, and C1-C6 hold. Under f
ng 2
�(
0; 0; b) with jjbjj <1;

(a)

 
n1=2(b n �  n)b�n

!
!d

 
�(��(
0; b); 
0; b)

��(
0; b)

!
and

(b) n
�
Qn(b�n)�Q0;n

�
!d inf�2� �(�; 
0; b):

Comments. 1. De�ne the Gaussian process f��(�; 
0; b) : � 2 �g by

��(�; 
0; b) = S��(�; 
0; b) + b; (3.10)

where S� = [Id� : 0d��d� ] is the d� � d selector matrix that selects � out of  : The

asymptotic distribution of n1=2b�n (without centering at �n) under �(
0; 0; b) with jjbjj <
1 is given by ��(��(
0; b); 
0; b): This quantity appears in the asymptotic distributions

of t statistics below.

2. Assumption C6 is not needed for Theorem 3.1(b).

3. Using Theorem 3.1, Figure 1 provides the asymptotic and �nite-sample densities

of the ML estimator of the MA parameter � in the ARMA(1, 1) model when the true

� value, �0; is 0:4: It gives the densities for b = 0; �2; �4; and �12; where b indexes
the magnitude of the di¤erence � between the AR and MA parameters.33 Speci�cally,

for the �nite-sample results, b = n1=2�; n = 250; and "t � N(0; 1): Note that for

n = 250; the values b = 0; �2; �4; and �12 correspond to � being 0:0; �0:13; �0:25;
33The asymptotic density in Figure 1 is invariant to the sign of b:
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Figure 1. Asymptotic and Finite-Sample (n=250) Densities of the Estimator of the MA
Parameter � in the ARMA(1, 1) Model when �0 = 0:4:

and �0:76; respectively. For n = 100; these b values correspond to � being 0:0; �0:2;
�0:4; and �1:2; respectively. The optimization parameter spaces for the MA and AR
parameters are [�:85; :85] and [�:90; :90]; respectively. The true parameter spaces are
[�:80; :80] and [�:85; :85]; respectively.34 For the asymptotic and �nite-sample results
50; 000 simulations repetitions are used.

Figure 1 shows that the ML estimator has a distribution that is very far from a

normal distribution in the unidenti�ed and weakly-identi�ed cases. In these cases, there

is a build-up of mass at the boundaries of the optimization space. There also is a bias

towards 0: Figure 1 indicates that the asymptotic approximations based on Theorem

3.1 work strikingly well. There are some di¤erences between the asymptotic and �nite-

sample densities, but they are small.

4. Figure 2 provides analogous results to those of Figure 1 for the ML estimator of �;
the di¤erence between the AR and MA parameters. Figure 2 shows a very pronounced

bi-modal distribution in the unidenti�ed case and a side-lobe in one weakly-identi�ed

case. As in Figure 1, the asymptotic approximations are found to work exceptionally

well.
34These choices cover a broad range of parameters, but avoid unit root and boundary e¤ects. These

parameter spaces satisfy Assumptions B1 and B2.
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Figure 2. Asymptotic and Finite-Sample (n=250) Densities of the Estimator of �
(Centered at the True Value) in the ARMA(1, 1) Model when �0 = 0:4:

3.4. Intermediate Assumptions and Estimation Results

Next, we specify an assumption that is used in the proof of consistency of b�n in the
�less close, local to � = 0�case in which �n ! 0 and n1=2jj�njj ! 1:

Assumption C7. The non-stochastic function �(�; 
0; !0) is uniquely minimized over
� 2 � at �0 8
0 2 � with �0 = 0:

In Assumption C7, the minimizing value �0 is non-random. In some examples,

such as the ARMA(1, 1) example, Assumption C7 can be veri�ed directly. In other

examples, Assumption C7 can be veri�ed using the Cauchy-Schwarz inequality or a

matrix version of it, see Tripathi (1999), when K (�; 
0) and H (�; 
0) take proper

forms. For example, see the veri�cation of Assumption C7 for the nonlinear regression

example in Supplemental Appendix E and the veri�cation of Assumption C7 for GMM

estimators in AC3.

Lemma 9.3 in Supplemental Appendix B shows that when � = �0; K(�; 
0) =

�H(�; 
0)S 0�; where S� = [Id� : 0] 2 Rd��d ; whereas this relationship does not hold for

� 6= �0 in general.

Lemma 3.3. Suppose Assumptions A, B1-B3, C1-C5, and C7 hold. Under f
ng 2
�(
0;1; !0); (a) b�n � �n !p 0 and (b) b n �  n !p 0:
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The following assumption is used when obtaining a key rate of convergence result

for b n for sequences f
ng for which �n ! 0 and n1=2jj�njj ! 1:

Assumption C8. Under f
ng 2 �(
0; 0; b); @
@ 0E
nD Qn( ; �n)j = n ! H (�0; 
0) :

By Assumption C4(i), H (�; 
0) is the probability limit of D  Qn( 0;n; �n) under

f
ng 2 �(
0; 0; b): When Qn(�) is a twice di¤erentiable sample average, D Qn (�) and

D  Qn (�) are its �rst and second-order partial derivatives wrt  ; respectively. One can

switch E and @ under certain regularity conditions, so that (@=@ 0)E
nD Qn( n; �n) is

the expectation of D  Qn( n; �n) in this case. Hence, Assumption C8 can be veri�ed

by a uniform LLN and the continuity of D  Qn( ; �) in  :35

Lemma 3.4. Suppose Assumptions A, B1-B3, C1-C5, C7, and C8 hold. Then, k�nk
�1

� (b n �  n) = op (1) under f
ng 2 �(
0;1; !0) with �0 = 0:

Comment. Lemma 3.4 is a key result because it allows one to apply the quadratic ex-
pansion in Assumption D1 below, which only holds in a rapidly shrinking neighborhood

of the true value for Category II sequences f
ng:

3.5. Distant from � = 0 Assumptions and Estimation Results

Assumptions D1-D3 below are used to derive asymptotic distributions under se-

quences of true parameters f
ng 2 �(
0;1; !0): The "D" denotes that the sequences of

true parameters considered are more distant from the point of non-identi�cation than

are the sequences in the "C" assumptions.

We de�ne a matrix B(�) that is used to normalize the (generalized) second-derivative

matrix D2Qn(�n) of Qn(�n) (which is introduced in Assumption D1 below) so that it is

nonsingular asymptotically, as speci�ed in Assumption D2. Let

B(�) =

"
Id 0d �d�

0d��d �(�)Id�

#
2 Rd��d� ; where

�(�) =

(
� if � is a scalar

jj�jj if � is a vector.
(3.11)

35When Qn(�) is non-smooth, one can show that E
nD Qn(�) is close to the �rst-order partial
derivative of Q(�; 
0) wrt  ; roughly by switching E
n and D under some regularity conditions, and
D  Qn (�) is typically taken to be the second-order partial derivative of Q(�; 
0) wrt  in this case.
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We use a di¤erent de�nition of B(�) in the scalar and vector � cases because in the

scalar case the use of �; rather than jj�jj; produces noticeably simpler (but equivalent)
formulae, but in the vector case jj�jj is required.

Assumption D1. When the true parameters are f
ng 2 �(
0;1; !0);

(i) the sample criterion function Qn(�) has a quadratic expansion in � around �n:

Qn(�) = Qn(�n) +DQn(�n)
0(� � �n) +

1

2
(� � �n)D

2Qn(�n)(� � �n) +R�n(�);

where DQn(�n) 2 Rd� is a stochastic generalized �rst derivative vector and D2Qn(�n) 2
Rd��d� is a generalized second derivative matrix that is symmetric and may be stochastic

or non-stochastic, and

(ii) the remainder, R�n(�); satis�es

sup
�2�n(�n)

jnR�n(�)j
(1 + jjn1=2B(�n)(� � �n)jj)2

= op(1)

for all constants �n ! 0; where �n (�n) = f� 2 � : k �  nk � �n k�nk and k� � �nk �
�ng:

The quadratic approximation in Assumption D1 only holds for � in a neighborhood

�n (�n) of �n whose radius shrinks as the sample size gets larger. In particular, the

distance between  and  n shrinks faster than jj�njj when �n ! 0: It is for this reason

that the rate of convergence result in Lemma 3.4 is a key result.36

The su¢ cient conditions for Assumption C1 referenced in the previous sub-section

also are su¢ cient for Assumption D1. The quantities DQn(�n) and D2Qn(�n) take simi-

lar forms toD Qn( 0;n; �) andD  Qn( 0;n; �) (see the discussion following Assumption

C1), but involve derivatives wrt �; not  ; and hence are not functions of �:

The next assumption requires good behavior of the (generalized) second derivative

of Qn(�n) after it has been rescaled to eliminate its singularity when �n ! 0:

Assumption D2. Under f
ng 2 �(
0;1; !0); Jn = B�1(�n)D
2Qn(�n)B

�1(�n) !p

J(
0) 2 Rd��d� ; where J(
0) is nonsingular and symmetric.

The next assumption requires the rescaled (generalized) �rst derivative to satisfy a

CLT.
36The quadratic approximation requires � 2 �n(�n) because for such � = (�; �; �) one has

jj�jj=jj�njj = 1 + o(1) and, hence, the rescaling that enters the Hessian is asymptotically equivalent
whether it is based on � or the true value �n:
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Assumption D3. (i) Under f
ng 2 �(
0;1; !0); n
1=2B�1(�n)DQn(�n) !d G

�(
0) �
N(0d� ; V (
0)); for some symmetric d� � d�-matrix V (
0):

37

(ii) V (
0) is positive de�nite 8
0 2 �:

The following is a key result. It provides the asymptotic distribution of the estimatorb�n and the optimized objective function Qn(b�n) for Category II and III sequences.
Theorem 3.2. Suppose Assumptions A, B1-B3, C1-C5, C7, C8, and D1-D3 hold.

Under f
ng 2 �(
0;1; !0);

(a) n1=2B(�n)(b�n � �n)!d �J�1(
0)G�(
0) � N(0d� ; J
�1(
0)V (
0)J

�1(
0)) and

(b) n(Qn(b�n)�Qn(�n))!d �1
2
G�(
0)

0J�1(
0)G
�(
0):

In sum, the asymptotic results of the paper for b�n = (b�n;b�n; b�n) are as follows: The
estimator b n = (b�n;b�n) is n1=2-consistent for all categories of sequences f�ng in Table I.
The estimator b�n is inconsistent for Category I sequences and consistent for Categories
II and III. The asymptotic distribution of n1=2(b n� n) (= n1=2((b�n;b�n)� (�n; �n))) is a
functional of a Gaussian process with a mean that is (typically) non-zero for Category I

sequences (due to the inconsistency of b�n) and is normal with mean zero for Categories
II and III. The asymptotic distribution of b�n is a functional of the same Gaussian
process for Category I sequences. These estimation results permit the calculation of the

asymptotic biases of (b�n;b�n; b�n) for Category I sequences as a function of the strength
of identi�cation. The asymptotic distribution of n1=2jj�njj(b�n��n) is normal with mean
zero for Category II sequences. The asymptotic distribution of n1=2(b�n � �n) is normal

with mean zero for Category III sequences.

4. t and QLR Con�dence Sets and Tests

In this section, we determine the asymptotic size of standard CS�s for a function r(�)

(2 Rdr) of � obtained by inverting t and QLR tests of the hypotheses H0 : r(�) = v

for v 2 r(�): We also consider standard t and QLR tests of H0: In Section 5 below, we

introduce robust CS�s whose asymptotic size is guaranteed to equal their nominal size.

For brevity, results for Wald CS�s for vector-valued functions r(�) are given in AC3.

37In the vector � case, J(
0) and V (
0) may depend on !0 as well as 
0:
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4.1. t Statistics

The t statistic is de�ned as follows. Let

�(
0) = J�1 (
0)V (
0)J
�1(
0) and b�n = bJ�1n bVn bJ�1n ; (4.1)

where bJn and bVn are estimators of J(
0) and V (
0) that do not depend on the nuisance
parameter �:

The t statistic is de�ned when r(�) is real-valued, i.e., dr = 1: It takes the form

Tn(v) =
n1=2(r(b�n)� v)

(r�(b�n)B�1(b�n)b�nB�1(b�n)r�(b�n)0)1=2 ; (4.2)

where r�(�) = (@=@�0)r(�) = [r (�) : r�(�)] 2 Rdr�d� ; r (�) = (@=@ 0)r(�) 2 Rdr�d ;

and r�(�) = (@=@�0)r(�) 2 Rdr�d� :

Although this de�nition of the t statistic involves B�1(b�n); it is the same as the stan-
dard de�nition used in practice. By Theorem 3.2(a), when �0 6= 0; B�1(�0)�(
0)B

�1(�0)

is the asymptotic covariance matrix of b�n: In the t statistic, the asymptotic covariance is
replaced by the estimator B�1(b�n)b�nB�1(b�n): The same form of the t statistic is used

under all sequences of true parameters 
n 2 �(
0):
In the results below, we consider the behavior of the t statistic when the null hypoth-

esis holds. Thus, under a sequence f
ng; we consider the sequence of null hypotheses
H0 : r(�) = vn; where vn equals r(�n) and 
n = (�n; �n): We employ the following

notational simpli�cation:

Tn = Tn(vn); where vn = r(�n): (4.3)

The function of interest, r(�); satis�es the following assumption.

Assumption R. (i) r(�) 2 R is continuously di¤erentiable on �:
(ii) r�(�) 6= 0d� 8� 2 �:
(iii) d�� = 1(r�(�) 6= 0d�) does not depend on � 8� 2 �� = f� 2 � : jj�jj < �g for some
� > 0:

A su¢ cient condition for Assumption R is: r(�) = R01�; where R1 2 Rd� and R1 6= 0:
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4.2. Variance Matrix Estimators

The estimators of the components of the asymptotic variance matrix are assumed to

satisfy the following Assumptions V1 and V2. Two forms of Assumption V1 are needed:

one for scalar � and one for vector �:38 For brevity, we only state the scalar � version

here. The vector � version is given in Supplemental Appendix A.

When � is a scalar, let J(�; 
0) and V (�; 
0) for � 2 � be some non-stochastic d��d�
matrix-valued functions such that J(�0; 
0) = J(
0) and V (�0; 
0) = V (
0); where J(
0)

and V (
0) are as in Assumptions D2 and D3. Let

�(�; 
0) = J�1(�; 
0)V (�; 
0)J
�1(�; 
0) and �(�; 
0) = �( 0; �; 
0): (4.4)

Let ���(�; 
0) denote the upper left (1,1) element of �(�; 
0):

Assumption V1 below applies when � is a scalar.

Assumption V1 (scalar �). (i) bJn = bJn(b�n) and bVn = bVn(b�n) for some (stochastic)
d� � d� matrix-valued functions bJn(�) and bVn(�) on � that satisfy sup�2� jj bJn(�) �
J(�; 
0)jj !p 0 and sup�2� jjbVn(�) � V (�; 
0)jj !p 0 under f
ng 2 �(
0; 0; b) with

jjbjj <1:

(ii) J(�; 
0) and V (�; 
0) are continuous in � on � 8
0 2 � with �0 = 0:
(iii) �min(�(�; 
0)) > 0 and �max(�(�; 
0)) <1 8� 2 �; 8
0 2 � with �0 = 0:

The following assumption applies with both scalar and vector �:

Assumption V2. Under �(0;1; !0); bJn !p J(
0) and bVn !p V (
0):

4.3. Asymptotic Distribution of the t Statistic

Next, we provide the asymptotic distribution of the t statistic under H0: De�ne

T (�; 
0; b) =
r (�)�(�; 
0; b)

(r (�)�  (�; 
0; b)r (�)
0)1=2

; (4.5)

where r (�) = r ( 0; �) 2 R1�d ; �(�; 
0; b) 2 Rd ; �  (�; 
0; b) is the upper left d �d 
block of �(�; 
0; b); �(�; 
0; b) = �(�; 
0) in the scalar � case (and is de�ned di¤erently

in the vector � case, see (8.2) in Supplemental Appendix A.), �(�; 
0) is de�ned in (4.4),

38The reason for the di¤erence is that the normalizing matrix B(�) is di¤erent in these two cases.
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Figure 3. Asymptotic and Finite-Sample (n=250) Densities of the t Statistic for the MA
Parameter � in the ARMA(1, 1) Model when �0 = 0:4 and the Standard Normal
Density (Black Line).

and ��(�; 
0; b) is de�ned in (3.10). Also, de�ne

T�(�; 
0; b) =
jj��(�; 
0; b)jj(r( 0; �)� r( 0; �0))

(r�(�)���(�; 
0; b)r�(�)
0)1=2

; (4.6)

where ���(�; 
0; b) is the lower right d� � d� block of �(�; 
0; b); and r�(�) = r�( 0; �):

The following theorem provides the asymptotic null distribution of the t statistic for

a scalar restriction. (The null holds by the de�nition Tn = Tn(vn) in (4.3).)

Theorem 4.1. Suppose Assumptions A, B1-B3, C1-C8, D1-D3, R, and V1-V2 hold
and dr = 1:

(a) Under f
ng 2 �(
0; 0; b) with jjbjj <1 and d�� = 0; Tn !d T (�
�(
0; b); 
0; b):

(b) Under f
ng 2 �(
0; 0; b) with jjbjj <1 and d�� = 1; Tn !d T�(�
�(
0; b); 
0; b):

(c) Under f
ng 2 �(
0;1; !0); Tn !d N(0; 1):

Comments. 1. When d�� = 0; the scalar restriction only involves  by Assumption

R(iii). When d�� = 1; the restriction involves � and possibly  : However, the randomness

in b n is dominated by that in b�n under the conditions of Theorem 4.1(b) because b n is
consistent but b�n is not. In consequence, the asymptotic distribution in Theorem 4.1(b)
is as if the restriction is only on �:
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Figure 4. Asymptotic 0.95 Quantiles of the jtj and QLR Statistics for Tests Concerning
the MA Parameter � in the ARMA(1, 1) Model.

2. Using Theorem 4.1, Figure 3 provides the asymptotic and �nite-sample (n = 250)
densities of the t statistic for tests concerning the MA parameter � in the ARMA(1,

1) model for �0 = 0:4 and b = 0; �2; �4; and �12: The black line in Figure 3 is the
standard normal density, which is the strong-identi�cation asymptotic density of the t

statistic. Figure 3 shows that the t statistic has a noticeably non-normal shape due

to skewness and kurtosis for small jbj; although it is much less non-normal than the
distribution of the corresponding estimator.39

3. Figure 4(a) provides graphs of the 0:95 asymptotic quantiles of the jtj statistic
for � as a function of jbj:40 For small to medium jbj values, the graphs exceed the 0:95
quantile under strong identi�cation (given by the horizontal black line). This implies

that jtj test and CI�s that employ the standard critical value (based on the normal
distribution) have incorrect asymptotic size. The exceedance is very large. For example,

for �0 = 0:8 and b = 0; the quantile is roughly 10; whereas for strong identi�cation

(jbj =1) it is roughly 2:
4. The results of Theorem 4.1 are used below to obtain the asymptotic size of

standard and robust t CI�s. But �rst, we provide analogous results for the QLR statistic.

39The distributions of the estimator of � and the t statistic for � are not the same up to a scale shift
even asymptotically. This occurs because the variance estimator that appears in the t statistic involves
an estimator of �; which is not consistent when jbj <1: It is random even in the limit.
40The asymptotic quantiles are invariant to the sign of b; but the �nite-sample quantiles are not.
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4.4. QLR Statistics

Here, we consider the quasi-likelihood ratio (QLR) statistic. In this sub-section,

dr � 1: The function r(�) is assumed to be smooth and to be of the form

r(�) =

"
r1( )

r2(�)

#
; (4.7)

where r1( ) 2 Rdr1 ; dr1 � 0 is the number of restrictions on  ; r2(�) 2 Rdr2 ; dr2 � 0 is
the number of restrictions on �; and dr = dr1 + dr2 :

Given the form in (4.7), our results for the QLR statistic do not cover the case

where a single restriction depends on both  and �: This can be restrictive. However,

in some cases, it is possible to obtain results for restrictions of this type by a simple

reparametrization, see Comment 3 to Theorem 4.2 below.

For v 2 r(�); we de�ne a restricted estimator e�n(v) of � subject to the restriction
that r(�) = v: By de�nition,

e�n(v) 2 �; r(e�n(v)) = v; and Qn(e�n(v)) = inf
�2�:r(�)=v

Qn(�) + o(n�1): (4.8)

For testing H0 : r(�) = v; the QLR test statistic is

QLRn(v) = 2n(Qn(e�n(v))�Qn(b�n))=bsn; (4.9)

where bsn is a real-valued scaling factor that is employed in some cases to yield a QLR
statistic that has an asymptotic �2dr null distribution under strong identi�cation. See

Assumptions RQ2 and RQ3 below.

4.5. QLR Assumptions

If r(�) includes restrictions on �; i.e., dr2 > 0; then not all values � 2 � are consistent
with the restriction r2(�) = v2: For v2 2 r2(�); the set of � values that are consistent

with r2(�) = v2 is denoted by

�r(v2) = f� 2 � : r2(�) = v2 for some � = ( ; �) 2 �g: (4.10)

If dr2 = 0; then by de�nition �r(v2) = � 8v2 2 r2(�):
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We assume r(�) satis�es:

Assumption RQ1. (i) r(�) is continuously di¤erentiable on �:
(ii) r�(�) is full row rank dr 8� 2 �:
(iii) r(�) satis�es (4.7).

(iv) dH(�r(v2);�r(v0;2))! 0 as v2 ! v0;2 8v0;2 2 r2(��):
(v) Q( ; �; 
0) is continuous in  at  0 uniformly over � 2 � (i.e., sup�2� jQ( ; �; 
0)�
Q( 0; �; 
0)j ! 0 as  !  0) 8
0 2 � with �0 = 0:
(vi) Q(�; 
0) is continuous in � at �0 8
0 2 � with �0 6= 0:

In Assumption RQ1(iv), dH denotes the Hausdor¤ distance. Assumptions RQ1(i)

and RQ1(ii) are standard. Assumption RQ1(iv) is easy to verify in most cases. Assump-

tions RQ1(v) and RQ1(vi) are not restrictive.

Even under strong identi�cation, it is known that the QLR statistic has an asymp-

totic �2dr null distribution only under additional assumptions to those used for Wald

and Lagrange multiplier (LM) statistics.41 The following correspond to these additional

conditions.

Assumption RQ2. (i) V (
0) = s(
0)J(
0) for some non-random scalar constant

s(
0) 8
0 2 �; or (ii) V (
0) and J(
0) are block diagonal (possibly after reordering

their rows and columns), the restrictions r(�) only involve parameters that correspond

to one block of V (
0) and J(
0); call them V11(
0) and J11(
0); and for this block

V11(
0) = s(
0)J11(
0) for some non-random scalar constant s(
0) 8
0 2 �:

Assumption RQ3. The scalar statistic bsn satis�es bsn !p s(
0) under f
ng 2 �(
0; 0; b)
and under f
ng 2 �(
0;1; !0):

For example, Assumptions RQ2(i) and RQ3 hold with s(
0) = bsn = 1 for a correctly
speci�ed log-likelihood criterion function, a GMM criterion function with asymptotically

optimal weight matrix, and an empirical likelihood criterion function. For a homoskedas-

tic nonlinear regression model, Assumptions RQ2(i) and RQ3 hold with s(
0) equal to

the error variance �2 and bsn equal to a consistent estimator of �2; such as the sample
variance based on the residuals.
41The reason is that the weight matrices of the Wald and LM statistics can be designed speci�cally to

achieve an asymptotic �2dr null distribution, whereas with the QLR statistic no weight matrix appears
and at most one has a real-valued scaling factor bsn with which to make adjustments.
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4.6. Asymptotic Distribution of the QLR Statistic

Now we determine the asymptotic distribution of the QLR statistic under the se-

quences f
ng 2 �(
0; 0; b) and f
ng 2 �(
0;1; !0) when the null hypotheses are true,

i.e., when v = vn = r(�n) for 
n = (�n; �n) 8n � 1: These results are needed to obtain
asymptotic size results for QLR-based CS�s. The results for the QLR statistic rely on

results for the restricted estimator e�n(vn): These results are complicated by the fact that
not all values � 2 � are necessarily consistent with the restrictions r(( n; �)) = vn: For

brevity, results for the restricted estimators are stated in Supplemental Appendix B.

We use the following notational simpli�cations:

QLRn = QLRn(vn) and e�n = e�n(vn); where vn = r(�n) and 
n = (�n; �n): (4.11)

The matrix r�(�) of partial derivatives of r(�) can be written as

r�(�) =
@

@�0
r(�) =

"
r1; ( ) 0dr1�d�

0dr2�d r2;�(�)

#
; (4.12)

where r1; ( ) = (@=@ 
0)r1( ) 2 Rdr1�d and r2;�(�) = (@=@�0)r2(�) 2 Rdr2�d� :

For notational simplicity, let �r;0 = �r(v0;2); where v0;2 = r2(�0) and 
0 = (�0; �0) 2
�: That is, �r;0 is the set of values � that are compatible with the restrictions on � when


0 is the true parameter value.

Next, we introduce the limit under f
ng 2 �(
0; 0; b) with jjbjj <1 of the restricted

concentrated criterion function after suitable normalization. For � 2 �; de�ne

�r(�; 
0; b) = �(�; 
0; b) +
1

2
�(�; 
0; b)

0P (�; 
0)
0H(�; 
0)P (�; 
0)�(�; 
0; b); where

P (�; 
0) = H�1(�; 
0)r1; ( 0)
0 �r1; ( 0)H�1(�; 
0)r1; ( 0)

0��1 r1; ( 0) (4.13)

and �(�; 
0; b) is de�ned in (3.9). The d � d -matrix P (�; 
0) is an oblique projection
matrix that projects onto the space spanned by the rows of r1; ( 0):

The following result gives the asymptotic distribution of the QLR statistic under

sequences f
ng 2 �(
0; 0; b) with jjbjj <1:

Theorem 4.2. Suppose Assumptions A, B1-B3, C1-C5, RQ1, and RQ3 hold. Under
f
ng 2 �(
0; 0; b) with jjbjj < 1; QLRn !d 2(inf�2�r;0 �r(�; 
0; b) � inf�2� �(�; 
0; b))
=s(
0):
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Figure 5. Asymptotic and Finite-Sample (n=250) Densities of the QLR Statistic for the
MA Parameter � in the ARMA(1, 1) Model when �0 = 0:4 and the �21 Density (Black
Line).

Comments. 1. Using Theorem 4.2, Figure 5 provides the asymptotic and �nite-sample
(n = 250) densities of the QLR statistic for tests concerning the MA parameter � in

the ARMA(1, 1) model for �0 = 0:4 and b = 0; �2; �4; and �12: The black line in
Figure 5 is the �21 density, which is the strong-identi�cation asymptotic density of the

QLR statistic. Figure 5 indicates that the QLR statistic is well approximated by a �21
distribution even under weak identi�cation. This suggests that the QLR statistic yields

tests and CI�s that are substantially less sensitive to weak identi�cation than t-based

tests and CI�s are.

2. Figure 4(b) provides graphs of the 0:95 asymptotic quantiles of the QLR statistic
for � as a function of jbj: For small to medium jbj values, the graphs exceed the 0:95
quantile under strong identi�cation (given by the horizontal black line). Thus, tests

and CI�s based on the standard critical values (from the �21 distribution) have incorrect

asymptotic size. For the QLR statistic the exceedance is much smaller than for the jtj
statistic. For the QLR statistic, for �0 = 0:8 and b = 0; the quantile is roughly 4:4;

whereas for strong identi�cation it is roughly 3:8:

3. The proof of Theorem 4.2 requires an extension of the argmax theorem, e.g.,

see Lemma 3.2.1 of van der Vaart and Wellner (1996, p. 286), to the case where the
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maximum is taken over a sample-size dependent sequence of sets.42 See Lemma 9.10 in

Supplemental Appendix B. This Lemma may be of use in other contexts.

4. Assumption RQ1(iii) rules out the case where any single restriction depends on
both  and �: But, in some cases, a reparametrization can be used to obtain results for

such restrictions. Suppose d� = d�: Consider restrictions of the form r(�) = (r1( ); � +

�): In this case, the asymptotic distribution of the QLR statistic in Theorems 4.2 and

4.3 (below) is the same as its distribution when r(�) = (r1( ); �): We use this result in

the ARMA(1, 1) example to obtain CI�s for the AR parameter, which equals � + �:43

5. The proof of Theorem 4.2 can be altered easily to yield some results for the QLR
test under sequences of alternative hypothesis distributions, which yield asymptotic

power results for QLR-based tests. Suppose the restrictions r(�) depend only on �;

i.e., dr1 = 0 and r(�) = r2(�): The sequence of true values of r2(�) satis�es r2(�n) !
r2(�0) = v0;2 as n!1: Now, suppose the null hypothesis value of r2(�) is vnull0;2 ; where

vnull0;2 6= v0;2: Then, the asymptotic distribution of QLRn for this null hypothesis under

the alternative hypothesis distributions f
ng 2 �(
0; 0; b) is given by the expression in
Theorem 4.2 but with �r;0 = �r(v0;2) replaced by �r(vnull0;2 ): This covers both local and

�xed alternatives.

Next, we give results for the QLR statistic under sequences f
ng 2 �(
0;1; !0):

De�ne

�QLR(
0) = G�(
0)
0J�1(
0)P�(
0)

0J(
0)P�(
0)J
�1(
0)G

�(
0); where

P�(
0) = J�1(
0)r�(�0)
0 �r�(�0)J�1(
0)r�(�0)0��1 r�(�0) (4.14)

and J(
0) and G
�(
0) are de�ned in Assumptions D2 and D3. The matrix P�(
0) is an

oblique projection matrix that projects onto the space spanned by the rows of r�(�0):

Theorem 4.3. Suppose Assumptions A, B1-B3, C1-C5, C7, C8, D1-D3, RQ1, and

RQ3 hold. Under f
ng 2 �(
0;1; !0); QLRn !d �QLR(
0)=s(
0):

Comment. When Assumption RQ2 holds, by Theorem 4.3 and some calculations,

under f
ng 2 �(
0;1; !0);

QLRn !d �QLR(
0)=s(
0) � �2dr : (4.15)

42The argmax/min theorem provides the asymptotic distribution of a maximizer/minimizer of a
stochastic process that converges weakly to some limit process.
43See Section 9.4.4 of Supplemental Appendix B for more details.
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4.7. Asymptotic Size of Standard t and QLR Con�dence Sets

Now, we establish the asymptotic size of standard CS�s obtained by inverting t and

QLR statistics using Lemma 2.1 and Theorems 4.1-4.3. The standard nominal 1 � �

symmetric two-sided t; upper one-sided t; lower one-sided t, and QLR CS�s take the

form in (2.4) with Tn(v) = jTn(v)j; Tn(v); �Tn(v); and QLRn(v); respectively, and

cn;1��(v) = z1��=2; z1��; z1��; and �2dr;1��; where Tn(v) is de�ned in (4.2), QLRn(v) is

de�ned in (4.9), z1�� is the 1�� quantile of a standard normal distribution, and �2dr;1��
is the 1� � quantile of the �2dr distribution.

For h = (b; 
0) with jjbjj <1 and H as in (2.8), de�ne

T (h) =

(
T (�

�(
0; b); 
0; b) if d�� = 0

T�(�
�(
0; b); 
0; b) if d�� = 1;

and

QLR(h) = 2( inf
�2�r;0

�r(�; 
0; b)� inf
�2�

�(�; 
0; b))=s(
0): (4.16)

As de�ned, T (h) is the asymptotic distribution of Tn under f
ng 2 �(
0; 0; b) for jjbjj <
1 given in Theorem 4.1(a) or 4.1(b) depending on the rank of r�(�); which is denoted

by d��: Only one of the cases applies for any particular parameter of interest r(�) and it

is known which applies. Here, QLR(h) is the asymptotic distribution of QLRn under

f
ng 2 �(
0; 0; b) for jjbjj <1 given in Theorem 4.2.

Let cjtj;1��(h); ct;1��(h); c�t;1��(h); and cQLR;1��(h) denote the 1 � � quantiles of

jT (h)j; T (h); �T (h); and QLR(h); respectively, for h 2 H:
As in (2.6), AsySz denotes the asymptotic size of a CS of nominal level 1� �: The

asymptotic size results for the t and QLR CS�s use the following distribution function

(df) continuity assumptions which typically are not restrictive.

Assumption V3. The df of T (h) is continuous at z�=2 and z1��=2; z�; and z1�� 8h 2 H
in the two-sided, upper one-sided, and lower-sided cases, respectively.

Assumption RQ4. The df of QLR(h) is continuous at (i) �2dr;1�� and (ii) suph2H
cQLR;1��(h):

Theorem 4.4. (a) Suppose Assumptions A, B1-B3, C1-C8, D1-D3, R, and V1-V3

hold and dr = 1: The standard nominal 1�� symmetric two-sided, upper one-sided, and
lower one-sided t CI�s have AsySz = minfinfh2H P (jT (h)j � z1��=2); 1��g; minfinfh2H
P (T (h) � z1��); 1� �g; and minfinfh2H P (�T (h) � z1��); 1� �g; respectively.
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Figure 6. Coverage Probabilities of Standard jtj and QLR CI�s for the MA Parameter �
in the ARMA(1, 1) Model when �0 = 0:

(b) Suppose Assumptions A, B1-B3, C1-C5, C7, C8, D1-D3, RQ1-RQ3, and RQ4(i)

hold. Then, the standard nominal 1�� QLR CS has AsySz = minfinfh2H P (QLR(h) �
�2dr;1��); 1� �g:

Comment. 1. Depending on the distributions of fT (h) : h 2 Hg and fQLR(h) : h 2
Hg; the t and QLR CS�s have asymptotic sizes equal to 1� � or less than 1� �:

2. Figure 6 reports asymptotic and �nite-sample coverage probabilities (CP�s) of
nominal 95% standard jtj and QLR CI�s (which employ normal and �21 critical values,
respectively) for the MA parameter � in the ARMA(1, 1) model. The CP�s are given as

a function of b (� 0) for true �0 = 0:0; for n = 100; 250; 500; and1 (i.e., asymptotic).44

The CP�s of the jtj CI are very low for jbj values less than 10: For b = 0; the asymptotic
and �nite-sample CP�s are all below 0:60: Hence, the size of this nominal 95% CI is

less than 0:60 asymptotically and in �nite samples.45 Figure 6 shows that the under-

coverage of the standard QLR CI for � is much less severe than for the jtj CI. Note that
the asymptotic CP�s in Figure 6 provide a very good approximation to the �nite-sample

CP�s.

44In Figures 6 and 7 below, the graphs for n = 100 are not given for all values of b because b is
restricted by the parameter space. The same is true for the graphs for n = 250 in Figures 6, 7(a), and
7(b). See Supplemental Appendix D for details. These parameter space restrictions are responsible for
the wiggles that occur in some of the n = 100 and 250 graphs in Figures 6 and 7 near the right end of
the graphs.
45More speci�cally, the asymptotic sizes of the nominal 95% standard jtj and QLR CI�s for � are

computed to be 0:523 and 0:933; respectively. These results also apply to CI�s for the AR parameter �:
This is based on a grid of �0 values with grid size :05 for j�0j � :60 and grid size :025 for :625 � j�0j �
:825:
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In sum, the asymptotic results for tests and CS�s vary over the three categories

in Table I. For Category I sequences, standard tests and CS�s have asymptotic rejec-

tion/coverage probabilities that may di¤er, sometimes substantially, from their nominal

level. In consequence, the asymptotic size of standard tests and CS�s often is sub-

stantially di¤erent from the desired nominal size. For Category II and III sequences,

standard tests and CS�s have the desired asymptotic rejection/coverage probability prop-

erties. For hypotheses or CS�s that involve �; their power/non-coverage properties are

standard for Category II and III sequences.

5. Robust Con�dence Sets

In this section, we construct robust CS�s for r(�) that have correct asymptotic size. A

robust CS is obtained by inverting a test statistic, denoted here generically by Tn; using
a robust critical value that di¤ers from a standard strong-identi�cation critical value

(such as a normal or �2dr quantile). The robust critical value can be data dependent.

The test statistic Tn can be the t statistic de�ned in (4.3), the absolute value of the
t statistic, the QLR statistic de�ned in (4.11), the Wald statistic analyzed in AC3, or

some other statistic.

A robust critical value takes into account the fact that the test statistic, Tn; has
a non-standard asymptotic distribution under f
ng 2 �(
0; 0; b) with jjbjj < 1: As a

result, a larger critical value often is required under weak identi�cation, i.e., jjbjj < 1;

than under semi-strong or strong identi�cation, i.e., jjbjj =1:

A simple robust critical value is the �least-favorable�(LF) critical value that is large

enough for all identi�cation categories. This yields a CS with correct asymptotic size,

but one that typically is overly long and is not as informative as desirable when the

model is strongly identi�ed.

In consequence, we introduce data-dependent critical values that improve upon the

LF critical value by using an identi�cation-category-selection (ICS) procedure in the

construction of the critical value. Two methods are considered: type 1 and type 2. The

�rst is relatively simple. The second has preferable statistical properties, but is more

intensive computationally.

We also introduce versions of these robust critical values that (i) impose the known

null hypothesis value and (ii) plug-in consistent estimators of consistently estimable

nuisance parameters in the formulae for the robust critical values. We recommend em-
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ploying combined null-imposed/plug-in versions of the robust critical values whenever

possible because they yield the smallest critical values and still deliver asymptotically

correct size. However, they may be more burdensome computationally than other ver-

sions of the robust critical values.

5.1. Least Favorable Critical Values

Let T (h) denote the asymptotic distribution of Tn under f
ng 2 �(
0; 0; b); where
h = (b; 
0) 2 H and h and H are de�ned in (2.8). Let cT ;1��(h) denote the 1 � �

quantile of T (h) for h 2 H: For example, when Tn is the two-sided t statistic jTnj of
Section 4, then T (h) and cT ;1��(h) equal jT (h)j and cjtj;1��(h); respectively.
Under semi-strong and strong identi�cation, i.e., f
ng 2 �(
0;1; !0); Tn is assumed

to have a standard asymptotic distribution, such as the standard normal or chi-squared

distribution, as is typically the case. Let cT ;1��(1) denote the 1 � � quantile of this

distribution.

The LF critical value is

cLFT ;1�� = maxfsup
h2H

cT ;1��(h); cT ;1��(1)g: (5.1)

The LF critical value can be improved (i.e., made smaller) by exploiting the knowl-

edge of the null hypothesis value of r(�): For example, if the null hypothesis speci�es the

value of � to be 3; then the supremum in (5.1) does not need to be taken over all h 2 H;
only over the h values for which � = 3: We call such a critical value a null-imposed

(NI) LF critical value. Using a NI-LF critical value increases the computational burden

because a di¤erent critical value is employed for each null hypothesis value.

To be precise, let

H(v) = fh = (b; 
0) 2 H : jjbjj <1; r(�0) = vg; (5.2)

where 
0 = (�0; �0): By de�nition, H(v) is the subset isH that is consistent with the null

hypothesis H0 : r(�0) = v; where �0 denotes the true value. The NI-LF critical value,

denoted cLFT ;1��(v); is de�ned by replacing H by H(v) in (5.1) when the null hypothesis

value is r(�0) = v: Note that v takes values in the set Vr = fv0 : r(�0) = v0 for some

h = (b; 
0) 2 Hg:46

46When r(�) = � and the null hypothesis imposes that � = v; the parameter b can be imposed to
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When part of 
 is unknown under H0 but can be consistently estimated, then a plug-

in LF (or plug-in NI-LF) critical value can be used that has correct size asymptotically

and is smaller than the LF (or NI-LF) critical value. The plug-in critical value replaces

elements of 
 with consistent estimators in the formulae in (5.1) and the supremum over

H (or H(v)) is reduced to a supremum over the resulting subset of H; denoted bHn; for

which the consistent estimators appear in each vector 
: For example, if � is consistently

estimated by b�n; then H is replaced by bHn = fh = (b; 
) 2 H : 
 = (�;b�n; �; �)g or
H(v) is replaced by H(v)\ bHn: Note that the parameter b is not consistently estimable,

so it cannot be replaced by a consistent estimator.

5.2. Data-Dependent Robust Critical Values: Type 1

Here we improve on the LF critical value by employing an ICS procedure that uses

the data to determine whether b is �nite. If b is deemed to be �nite, i.e., � is weakly

identi�ed (or unidenti�ed), then the LF critical value is used. Otherwise, the standard

asymptotic critical value is used. This ICS critical value is closely related to a method

suggested in Andrews (1999, Sec. 6.4; 2000, Sec. 4) for boundary problems and to the

generalized moment selection critical value method used in Andrews and Soares (2010)

and some other papers for inference in partially-identi�ed models based on moment

inequalities. It also is related to, but quite distinct from, the approach in Forchini and

Hillier (2003).47

The ICS procedure chooses between the identi�cation categories IC0 : jjbjj <1 and

IC1 : jjbjj =1: The (unrestricted) statistic used for identi�cation-category selection is

An =
�
nb�0nb��1��;nb�n=d��1=2 ; (5.3)

where b���;n is the upper left d��d� block of b�n and b�n is the estimator of the covariance
matrix de�ned in (4.1). We use An to assess the strength of identi�cation.

Alternatively, one can use a null-imposed ICS (NI-ICS) statistic. For the restric-

tion r(�n) = vn; the NI-ICS statistic is An(vn) = (ne�0ne��1��;ne�n=d�)1=2; where e�n is
the restricted estimator of � (subject to r(�) = vn) and e���;n is an estimator of its
equal n1=2v: In this case, H(v) = Hn(v) = fh = (b; 
0) 2 H : b = n1=2vg: The asymptotic size results
given below for NI-LF CI�s and robust CI�s with NI critical values hold in this case.
47Forchini and Hillier (2003) advocate carrying out inference conditional on a test statistic that

measures the strength of identi�cation. They focus on estimation. Here we consider tests and inference
that is unconditional.
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asymptotic variance. Speci�cally, we take e���;n to be the upper left d� � d� block

of e�n; where e�n = eP?n eJ�1n eVn eJ�1n eP?0n ; eJn = bJn(e�n); eVn = bVn(e�n); eP?n = Id� � ePn;ePn = eJ�1n r�(e�n)0(r�(e�n) eJ�1n r�(e�n)0)�1r�(e�n); and bJn(�) and bVn(�) are as in Assumption
V1. This form for e���;n is based on the asymptotic results for the restricted estimatore�n given in Supplemental Appendix B. The NI-ICS statistic has better ICS properties
under the null hypothesis than the unrestricted ICS statistic because it exploits the

restrictions, but it is misspeci�ed under the alternative. Hence, the preference for one

ICS statistic over the other may depend on the model of interest.

Let f�n : n � 1g be a sequence of constants, i.e., tuning parameters, that diverges
to in�nity as n!1: One selects IC0 if An � �n and one selects IC1 otherwise. Under
IC0; An is Op(1): Hence, one consistently selects IC0 provided �n diverges to in�nity.
We assume:

Assumption K. (i) �n !1 and (ii) �n=n1=2 ! 0:

For example, �n = (lnn)1=2; which is analogous to the BIC penalty term, satis�es

Assumption K.

Using the ICS procedure described above, the type 1 robust CS with nominal level

1� � is obtained by inverting a test based on Tn with critical value ecT ;1��;n de�ned by
ecT ;1��;n = ( cLFT ;1�� if An � �n

cT ;1��(1) if An > �n:
(5.4)

The type 1 robust critical value ecT ;1��;n can be improved by employing NI and/or plug-
in versions of it. They are de�ned by replacing H by H(v); bHn; or H(v) \ bHn; as in

Section 5.1. The type 1 NI robust critical value is denoted ecT ;1��;n(v) for v 2 Vr:
5.3. Data-Dependent Robust Critical Values: Type 2

Next, we consider a type 2 robust critical value that does not require the tuning

parameter �n to diverge to in�nity as n!1: In consequence, asymptotic size-correction

factors �1 and �2 can be introduced. These size correction factors are designed to

improve the asymptotic approximations. The type 2 robust critical value also provides

a continuous transition from a weak-identi�cation critical value to a strong-identi�cation

critical value using a transition function s(x): This robust critical value is akin to the

method employed in Andrews and Jia (2008) for moment inequality models.
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Let s(x) be a continuous function on [0;1) that satis�es: (i) 0 � s(x) � 1; (ii) s(x) is
non-increasing in x; (iii) s(0) = 1; and (iv) s(x)! 0 as x!1: Examples of transition

functions include (i) s(x) = exp(�c � x) for some c > 0 and (ii) s(x) = (1 + c � x)�1 for
some c > 0:48 ;49 In the ARMA example, we use the function s(x) = exp(�x=2):
The type 2 robust critical value is

bcT ;1��;n = ( cB if An � �

cS + [cB � cS] � s(An � �) if An > �; where

cB = cLFT ;1�� +�1; cS = cT ;1��(1) + �2; (5.5)

and �1 � 0 and �2 � 0 are de�ned below. Here, �B�denotes Big, and �S�denotes

Small. When An � �; bcT ;1��;n equals the LF critical value cLFT ;1�� plus a size-correction
factor�1:When An > �; bcT ;1��;n is a convex combination of cLFT ;1��+�1 and cT ;1��(1)+
�2; where �2 is another size-correction factor and the weight given to the standard

critical value cT ;1��(1) increases with the strength of identi�cation, as measured by
An � �:

The unrestricted ICS statistic An satis�es An !d A(h) under f
ng 2 �(
0; 0; b) with
jjbjj <1; where A(h) is de�ned by

A(h) =
�
��(�

�; 
0; b)
0��1�� (�

�; 
0)��(�
�; 
0; b)=d�

�1=2
; (5.6)

where �� abbreviates ��(
0; b) and ��(�; 
0; b) and ���(�; 
0) are de�ned in (3.10) and

(4.4), respectively.50 ;51 ;52

For any �1 and �2; under 
n 2 �(
0; 0; b) with jjbjj < 1; the asymptotic null

rejection probability of a test based on the statistic Tn and the robust critical value
48The asymptotic size results given in Theorem 5.1 below also hold for the abrupt transition function

s(x) = 1� 1(x > 0); which is discontinuous at x = 0; provided one adds the assumption that P (A(h) =
�) = 0 8h 2 H; where A(h) is de�ned in (5.6) below. The latter condition is satis�ed in most examples.
49If cLFT ;1�� =1; one should take s(x) to equal 0 for x su¢ ciently large and de�ne 1� 0 in (5.5) to

equal 0: Then, the critical value bcT ;1��;n is in�nite if An is small and is �nite if An is su¢ ciently large.
50The convergence in distribution follows from Theorem 3.1(a) and Assumption V1.
51In the vector � case, ���(�; 
0) is replaced by ���(�; !

�(�; 
0; b); 
0) in (5.6), where ���(�; !; 
0)
is de�ned in (8.1) and !�(�; 
0; b) is de�ned in (8.2) in Supplemental Appendix A. When the type 2
robust critical value is considered in the vector � case, h is de�ned to include !0 2 Rd� with jj!0jj = 1
as an element, i.e., h = (b; 
0; !0) and H = fh = (b; 
0; !0) : jjbjj <1; 
0 2 � with �0 = 0; jj!0jj = 1g:
52Analogously, the NI-ICS statistic An(vn) satis�es: An(vn) !d A(h; v0) under f
ng 2 �(
0; 0; b)

with jjbjj < 1; where, for brevity, A(h; v0) is de�ned in Comment 3 to Theorem 9.1 in Supplemental
Appendix B. When the NI-ICS statistic is employed, A(h) is replaced by A(h; v0) in all formulae that
follow.
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bcT ;1��;n is shown to equal
NRP (�1;�2;h) = P (T (h) > cB & A(h) � �) + P (T (h) > cA(h) & A(h) > �)

= P (T (h) > cB) + P (T (h) 2 (cA(h); cB] & A(h) > �); where

cA(h) = cS + (cB � cS) � s(A(h)� �): (5.7)

The constants �1 and �2 are chosen such that NRP (�1;�2;h) � � 8h 2 H: In

particular, we de�ne

�1 = sup
h2H1

�1(h); where �1(h) � 0 solves NRP (�1(h); 0;h) = �

or �1(h) = 0 if NRP (0; 0;h) < � and

H1 = f(b; 
0) : (b; 
0) 2 H & jjbjj � jjbmaxjj+Dg; and
�2 = sup

h2H
�2(h); where �2(h) solves NRP (�1;�2(h);h) = �

or �2(h) = 0 if NRP (�1; 0;h) < �: (5.8)

By de�nition bmax is such that cT ;1��(h) is maximized over h 2 H at hmax = (bmax; 
max) 2
H for some 
max 2 � and D is a non-negative constant, such as 1:53 ;54 As de�ned, �1

and �2 can be computed sequentially, which is computationally convenient.

The adjustment via �1 size corrects for b values that are at or near bmax: Size cor-

rection is needed here because the ICS statistic An is larger than � with a positive

probability asymptotically even under sequences of true parameters for which the LF

critical value is needed to achieve correct asymptotic size.

The adjustment via �2 size corrects for relatively large values of b: Size correction

may be needed here to handle the di¤erence between the ideal critical value for the

given value of b and the robust critical value that is determined by the transition function

s(An��): Typically, this discrepancy is small and only a small adjustment �2 is needed.

53When NRP (0; 0;h) > �; a unique solution �1(h) typically exists because NRP (�1; 0;h) is always
non-increasing in �1 and is typically strictly decreasing and continuous in �1: If no exact solution to
NRP (�1(h); 0;h) = � exists, then �1(h) is taken to be any value for which NRP (�1(h); 0;h) � � and
�1(h) � 0 is as small as possible. Analogous comments apply to the equation NRP (�1;�2(h);h) = �
and the de�nition of �2(h):
54When the LF critical value is achieved at jjbjj =1; i.e., cT ;1��(1) � suph2H cT ;1��(h); the stan-

dard asymptotic critical value cT ;1��(1) yields a test or CI with correct asymptotic size and constants
�1 and �2 are not needed. Hence, here we consider the case where jjbmaxjj <1: If suph2H cT ;1��(h)
is not attained at any point hmax; then bmax can be taken to be any point such that cT ;1��(hmax) is
arbitrarily close to suph2H cT ;1��(h) for some hmax = (bmax; 
max) 2 H:
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Given the de�nitions of �1 and �2; the rejection probability is close to the nominal

level � when h is close to hmax (due to the adjustment with �1) and when jjbjj is large
(due to the adjustment with �2):

The type 2 robust critical value can be improved by employing NI and/or plug-in

versions of it, denoted by bcT ;1��;n(v); as in Section 5.1, see Supplemental Appendix A
for details.

For any given value of �; the type 2 robust CS has correct asymptotic size due

to the choice of �1 and �2: In consequence, we choose � based on the false coverage

probabilities (FCP�s) of the robust CS. When dr = 1; an FCP of a CI for r(�) is the

probability that the CI includes a value di¤erent from the true value r(�): Small FCP�s

are closely linked to short CI�s, see Pratt (1961).

The method we use to choose � is to minimize the average asymptotic FCP of the

robust CS at a chosen set of points.55 We are interested in a robust CS for r(�): Let

K denote the set of � values from which we select. First, for given h 2 H; we choose

a null value vH0(h) that di¤ers from the true value v0 = r(�0) (where h = (b; 
0) and


0 = (�0; �0)): The null value vH0(h) is selected such that the robust CS based on a

reasonable choice of �; such as � = 1:5 or 2; has a FCP that is in a range of interest,

such as close to 0:50:56 ;57 Second, we compute the FCP of the value vH0(h) for each

robust CS with � 2 K: Third, we repeat steps one and two for each h 2 H; where H is

a representative subset of H:58 The optimal choice of � is the value that minimizes over

K the average FCP at vH0(h) over h 2 H:

5.4. Asymptotic Size of Robust t and QLR CS�s

In this section, we show that the LF and data-dependent robust CS�s de�ned above

have correct asymptotic size when Tn equals the t statistic, the absolute value of the
55For t and Wald CS�s, asymptotic FCP�s follow from the results in this paper and AC3. For QLR

CI�s, the results of this paper only cover restrictions involving �; see Comment 4 to Theorem 4.2. For
other restrictions, one can use a large �nite sample size when determining �:
56For reasonable choices, the value of � used to obtain vH0

(h) typically has very little e¤ect on the
�nal comparison across di¤erent values of �: For example, this is true in the ARMA(1, 1) example
considered below.
57When b is close to 0; the FCP may be larger than 0:50 for all admissible v due to weak identi�cation.

In such cases, vH0(h) is taken to be the admissible value that minimizes the FCP for the selected value
of � that is being used to obtain vH0

(h):
58When r(�) = � or r(�) = � + �; we do not include h values in H for which b = 0 because when

b = 0 there is no information about � and it is not necessarily desirable to have a small FCP.
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t statistic, or the QLR statistic. Analogous results for robust Wald CS�s are given in

AC3.

The asymptotic size results of this section rely on the following df continuity condi-

tions, which are not restrictive in most examples.

Assumption LF. (i) The df of T (h) is continuous at cT ;1��(h) 8h 2 H:
(ii) If cLFT ;1�� > cT ;1��(1); cLFT ;1�� is attained at some hmax 2 H:

Assumption NI-LF. (i) The df of T (h) is continuous at cT ;1��(h; v) 8h 2 H(v);

8v 2 Vr:
(ii) For some v 2 Vr; cLFT ;1��(v) = cT ;1��(1) or cLFT ;1��(v) is attained at some hmax 2 H:

For h 2 H; de�ne bcT ;1��(h) as bcT ;1��;n is de�ned in (5.5) but with A(h) in place
of An: The distribution of bcT ;1��(h) is the asymptotic distribution of bcT ;1��;n under
f
ng 2 �(
0; 0; b) for jjbjj <1:

Assumption Rob2. (i) P (T (h) = bcT ;1��(h)) = 0 8h 2 H:
(ii) If �2 > 0; NRP (�1;�2;h

�) = � for some point h� 2 H; where �1 and �2 are

de�ned in (5.8).

The NI asymptotic quantile bcT ;1��(h; v) and Assumption NI-Rob2 are de�ned analo-
gously to bcT ;1��(h) and Assumption Rob2. See Supplemental Appendix A for details.
For Tn equal to jTnj; Tn;�Tn; orQLRn; we have T (h) equal to jT (h)j; T (h);�T (h); or

QLR(h); respectively, the quantile cT ;1��(h) equal to cjtj;1��(h); ct;1��(h); c�t;1��(h); or

cQLR;1��(h) de�ned just below (4.16), the quantile cT ;1��(1) equal to z1��=2; z1��; z1��;
or �2dr;1��; and the quantities c

LF
T ;1��; c

LF
T ;1��(v); ecT ;1��;n; ecT ;1��;n(v); bcT ;1��;n; bcT ;1��;n(v);bcT ;1��(h); and bcT ;1��(h; v) de�ned as above with T = jtj; t; �t; or QLR; respectively.

Theorem 5.1. (a) Suppose Assumptions A, B1-B3, C1-C8, D1-D3, R, and V1-V2 hold
and dr = 1: Then, the nominal 1 � � symmetric two-sided, upper one-sided, and lower

one-sided robust t CI�s all have AsySz = 1 � � when based on the following critical

values: (i) LF, (ii) NI-LF, (iii) type 1 robust, (iv) type 1 robust with NI critical values,

(v) type 2 robust, and (vi) type 2 robust with NI critical values, provided the following

additional Assumptions hold, respectively: (i) LF, (ii) NI-LF, (iii) K and V3, (iv) K

and V3, (v) Rob2, and (vi) NI-Rob2, where T (h) in Assumptions LF, NI-LF, Rob2,
and NI-Rob2 is equal to jT (h)j; T (h); and �T (h) in the two-sided, upper one-sided, and
lower-sided cases, respectively.
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(b) Suppose Assumptions A, B1-B3, C1-C5, C7, C8, D1-D3, RQ1-RQ3, and RQ4(i)

hold. Then, the nominal 1�� QLR CS has AsySz = 1�� when based on the following
critical values: (i) LF, (ii) NI-LF, (iii) type 1 robust, (iv) type 1 robust with NI critical

values, (v) type 2 robust, and (vi) type 2 robust with NI critical values, provided the

following additional Assumptions hold, respectively: (i) LF, (ii) NI-LF, (iii) K, RQ4,

V1, and V2, (iv) K, RQ4, V1, and V2, (v) C6, Rob2, V1, and V2, and (vi) C6, NI-

Rob2, V1, and V2, where T (h) in Assumptions LF, NI-LF, Rob2, and NI-Rob2 is equal
to QLR(h):

Comments. 1. Plug-in versions of the robust CI�s considered in Theorem 5.1 also have
asymptotically correct size under continuity assumptions on cT ;1��(h) that typically are

not restrictive. For brevity, we do not provide formal results here. Theorem 5.1 also

applies to robust tests that employ the NI-ICS statistic An(vn) in place of An:

2. If part (ii) of Assumption LF, NI-LF, Rob2, or NI-Rob2 does not hold, then the
corresponding part of Theorem 5.1(a) or (b) still holds, but with AsySz � 1 � �: For

example, Assumption LF(ii) fails in the unusual case that cLFT ;1�� =1 and Assumption

NI-LF(ii) fails if cLFT ;1��(v) =1 8v 2 Vr:
3. Figure 7 reports the asymptotic and �nite-sample CP�s of type 2 robust jtj and QLR
CI�s for the MA parameter � in the ARMA(1, 1) model as a function of b (� 0) for

�0 = 0:0 and 0:4: The type 2 robust CI�s use NI critical values and the (unrestricted) ICS

statistic An: They employ the transition function s(x) = exp(�x=2) and the constants
� = 1:5 andD = 1: The choices of s(x) andD were determined via some experimentation

to be good choices in terms of yielding CP�s that are relatively close to the nominal size

0:95 across di¤erent values of b: Given s(x) and D; the choice of � was determined using

the method described at the end of Section 5.3 based on minimizing average FCP�s.

The details are given in Supplemental Appendix D. It turns out that a wide range of

� values yields similar average FCP�s, so the particular choice of � = 1:5 is not at all

crucial.59 ;60

Figures 7(a) and 7(b) show that the CP�s of both the jtj and QLR CI�s are greater
than or equal to 0:95 for all b when �0 = 0:0: However, the QLR CI is closer to being
59This is shown in several tables in Supplemental Appendix D. The reason for similar average FCP�s

across di¤erent � values is that if � is changed, the constants �1 and �2 change in a manner that
substantially o¤sets the e¤ect of the change in �: This occurs because, for any given �; the constants
�1 and �2 must yield a CI with the desired size.
60The value � = 1:5 is used for all CI�s considered, whether they are jtj or QLR-based and whether

they are for � or �: This value of � minimizes the average FCP measured to two signi�cant digits for
all cases considered, see the tables in Supplemental Appendix D.
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Figure 7. Coverage Probabilities of Robust jtj and QLR CI�s for the MA Parameter � in
the ARMA(1, 1) Model when �0 = 0 and �0 = 0:4; � = 1:5; and s(x) = exp(�x=2):

similar, both asymptotically and in �nite-samples. Only for jbj � 3 are its CP�s greater
than 0:95: The asymptotic approximations provided by Theorem 5.1 perform very well

in Figures 7(a) and 7(b).

The results in Figure 7(d) for the QLR CI for �0 = 0:4 are quite similar to those

in Figure 7(b) for �0 = 0:0: For the jtj CI in Figure 7(c) for �0 = 0:4; however, there

is a greater discrepancy between the asymptotic and �nite-sample results than when

�0 = 0:0: In addition, there is some under-coverage. For n = 100; the CP�s of jtj CI are
as low as 0:93 for some b values. However, the magnitude of the under-coverage of the

robust jtj CI is very small compared to that of the standard jtj CI.

5.5. Asymptotic Power Comparisons for Robust QLR Tests

In this section, we compare the power of type 2 robust QLR tests to the CLR test

of Moreira (2003) in the linear IV regression model. The CLR test is approximately

asymptotically optimal under weak and strong identi�cation in the classes of invariant

similar and invariant tests, see Andrews, Moreira, and Stock (2006, 2008). This is the

only model covered by the general results of this paper for which an asymptotically
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optimal test exists under weak identi�cation, as far as we are aware. Hence, this is a

good benchmark model to consider.

In short, we �nd that the type 2 robust test based on the NI-ICS statistic has

power that is essentially equal to that of the CLR test. Hence, this robust test has

approximately asymptotically optimal power. The type 2 robust test based on the

unrestricted ICS statistic generally has lower power than the CLR test.

The structural model we consider is

y1;i = y2;i� + u�i and y2;i = Z 0i� + v�i ; (5.9)

where (u�i ; v
�
i )
0 � N(0;��) for a p.d. 2� 2 matrix ��; (u�i ; v�i ) and Zi are independent,

f(Z 0i; u�i ; v�i )0 : i = 1; :::; ng are i.i.d., y1;i; y2;i; u�i ; v�i 2 R; Zi 2 Rk; � 2 R; � 2 Rk:61 ;62

The reduced-form equations are

y1;i = � � Z 0i� + ui and y2;i = Z 0i� + vi; (5.10)

where ui = u�i + v�i �; vi = v�i ; and (ui; vi)
0 � N(0;�):

Let � = vech(��1) 2 R3: The log-likelihood function for � = (�; �; �) (multiplied by
�n�1 and ignoring a constant) is

Qn(�) =
1

2
log j�j+ 1

2
n�1

nX
i=1

"i(�; �)
0��1"i(�; �); where

"i(�; �) = (y1;i � � � Z 0i�; y2;i � Z 0i�)
0 2 R2: (5.11)

Assumption A holds because Qn(�) does not depend on � when � = 0:

For brevity, Supplemental Appendix F provides the details of the parameter space,

the quantities that appear in the assumptions and asymptotic distributions, formulae for

61Using the notation of this paper, in which � determines the strength of identi�cation of �; the
parameters (�; �) in (5.9) are reversed from the usual notation used in the IV regression literature.
62For simplicity, we consider a model without exogenous variables Xi in either equation because they

do not a¤ect the asymptotic power comparisons. As is well known, such variables can be projected
out and the results given here apply with Zi being viewed as the projection residual, e.g., see Section
2 of Andrews, Moreira, and Stock (2006) with a population projection in place of a sample projection.
Provided Xi includes an intercept, this yields Zi to have mean zero.
Also for simplicity and because they do not a¤ect the power comparisons, we assume the errors

are normally distributed. The results can be extended to non-normal �nite variance errors, provided
(u�i ; v

�
i ) is symmetrically distributed or the instruments have mean zero. By the discussion above, the

latter is not restrictive.
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Figure 8. Power Functions for the CLR, Robust QLR, LM, and AR Tests for the
Structural Parameter � in the Linear IV Model, k = 5; � = 0:95 ; 0:5; � = 5; 20: The
ICS Statistic for the Robust QLR Test Is the Null-Imposed Wald Statistic.

the asymptotic power calculations (see (13.18), (13.21), and (13.23)), and the veri�cation

of the assumptions for this model.

We now report asymptotic power comparisons for tests concerning the structural

parameter �: We consider a type 2 robust QLR test that uses an NI-ICS statistic and

one that uses an unrestricted ICS statistic. We compare them to the CLR test, as well

as the LM test of Kleibergen (2002) and Moreira (2009) and the well-known Anderson-

Rubin (AR) test. We report results for the same parameter con�gurations as in Andrews,

Moreira, and Stock (2006). The asymptotic power of the tests just depends on � = b0b;

where b = limn!1 n
1=2�n 2 Rk indexes the strength of the IV�s, the number of IV�s k;

the correlation between the reduced form errors �; and ���H0 ; where � denotes the true
value of � and �H0 is the null value of �; which we set to 0 wlog. The signi�cance level of

the tests is 5%: All results are based on 50,000 simulation repetitions. See Supplemental

Appendix F for further details concerning the numerical work.

Figure 8 provides results for � = 5; 20; k = 5; � = 0:95 ; 0:5; and ��1=2 2 [�6; 6]:
Figure 8 shows that the power of the robust QLR test that uses the NI-ICS statistic is

essentially the same as that of the CLR test.

Figures in Supplemental Appendix D show a number of related results. First, the
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conclusion based on Figure 8 for k = 5 also holds for k = 2; 10: Second, the robust QLR

test with NI-ICS statistic is close to being asymptotically similar. Third, the robust

QLR test with unrestricted ICS statistic has power below that of the CLR test, more

so when � = 0:95 than when � = 0:5: Fourth, the standard QLR CI for � exhibits

substantial size distortions. For nominal level 95%; its asymptotic size varies between

0:6 and 0:9 depending upon the parameter con�gurations.

6. ARMA Example

In this section, we provide asymptotic results for the ARMA(1, 1) model speci�ed

in (1.1). It is been known for many years that common moving average (MA) and

autoregressive (AR) roots leads to identi�cation failure in the ARMA(1, 1) model in

the important scenario where the series is white noise, see Ansley and Newbold (1980).

Results for testing the null hypothesis of white noise in an ARMA(1, 1) model have been

provided by Hannan (1982) and Andrews and Ploberger (1996). However, no papers

provide an asymptotic analysis of standard estimators, CI�s, or tests for any other null

hypothesis (such as tests concerning the MA or AR parameter) that deal with the

identi�cation issue. We do so here. We also provide identi�cation robust CI�s.63

6.1. Key Quantities

We now specify the key quantities that arise in the ARMA model. More speci�cally,

these quantities arise in Assumptions B1-B3, C1-C8, D1-D3, V1, and V2 and in the

form of the asymptotic distributions. For brevity, these assumptions are veri�ed in

Supplemental Appendix C.

The (conditional) log likelihood function Qn(�) is speci�ed in (1.2). The condition-

ing value "0 is asymptotically negligible, so for simplicity (and wlog for the asymptotic

results) we set "0 = Y0 in the log likelihood. See Supplemental Appendix C for details

regarding the calculation of Qn(�): Let �0 denote the distribution of �
�1=2
0 "t: For nota-

63The results for this example can be extended to the case where the mean of the strictly stationary
time series Yt is �0: In this case, (1.1) holds with Yt and Yt�1 replaced by Yt � �0 and Yt�1 � �0;
respectively. The mean �0 can be estimated by ML, in which case Yt is replaced by Yt � � in the
criterion function and the criterion function is minimized wrt � as well as the other parameters, or
�0 can be estimated by Y n = n�1

Pn
t=1 Yt; in which case Yt is replaced by Yt � Y n in the criterion

function. In either case, the asymptotic results concerning (�; �; �) are the same whether or not �0 is
estimated, due to the block diagonality of the information matrix between � and (�; �; �):

50



tional simplicity, we sometimes write the true and generic AR parameters as �0 = �0+�0

and � = � + �; respectively.

The optimization and true parameter spaces � and �� are

� = f� = (�; �; �)0 : � 2 [�L � �; �U � �]; � 2 [�L; �U ]; � 2 � = [�L; �U ]g and
�� = f� = (�; �; �)0 : � 2 [��L � �; ��U � �]; � 2 [��L; ��U ]; � 2 [��L; ��U ]g; (6.1)

where �1 < �L < �L < �U < �U < 1; 0 < �L < �U < 1; �L < ��L < ��U < �U ;

�L < ��L < ��L < ��U < ��U < �U ; and �L < ��U < ��U < �U : By the de�nition of �; the

autoregressive parameter � = � + � lies in [�L; �U ]:
64

Let �t denote the normalized innovation �
�1=2"t; which has mean zero and variance

one. The true parameter space for 
 = (�; �) is

� = f
 = (�; �) : � 2 ��; � 2 ��g; where
�� is some compact subset of � wrt the metric d�; and

� = f� : E��t = 0; E��2t = 1; E�(�2t � 1)2 � �1; E�j�tj4+�2 � Kg (6.2)

for some constants �1; �2 > 0 and 0 < K <1; where d� is some metric on the space of

distributions on R that induces weak convergence. With these de�nitions of �; ��; and

�; Assumptions B1 and B2 hold, see Supplemental Appendix C.

In the ARMA example, the function Q(�; 
0) in Assumption B3(i) is

Q(�; 
0) = E
0�t(�); where �t(�) =
1

2
log � +

1

2�

 
Yt � �

1X
j=0

�jYt�j�1

!2
: (6.3)

The generalized derivatives of Qn(�) wrt  ; which appear in Assumption C1, are the

ordinary �rst and second partial derivatives of the approximation Q1n (�) to Qn(�): Here,

Q1n (�) is de�ned by

Q1n (�) =
1

2
log � +

1

2�
n�1

nX
t=1

 
Yt � �

1X
j=0

�jYt�j�1

!2
; (6.4)

where the sum over j runs to 1; rather than to t� 1:
64The conditions �L < �L and �U < �U imply that � can take values in a neighborhood of zero for

any value of � 2 �:
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Assumption C1 is veri�ed with

D Qn(�) = n�1
nX
t=1

� ;t(�) =

 
��;t(�)

��;t(�)

!
; where

��;t(�) = ���1
 
Yt � �

1X
j=0

�jYt�j�1

! 1X
k=0

�kYt�k�1 and

��;t(�) = �
1

2
��2

0@ Yt � �
1X
j=0

�jYt�j�1

!2
� �

1A : (6.5)

Assumption C2(i) holds in this example with m(Wi; �) = � ;t(�): Assumption C2(ii)

holds because, for all 
� 2 � with �� = 0; E
���;t( �; �) = ����1E
�"t
P1

j=0 �
jYt�j�1 =

0 and E
���;t( 
�; �) = �(1=2)���2(E
�"2t � ��) = 0 using (6.2) and the de�nitions of

��;t(�) and ��;t(�) in (6.5).

The empirical process fGn(�) : � 2 �g in Assumption C3 is

Gn(�) = n�1=2
nX
t=1

 
���1n Yt

P1
k=0 �

kYt�k�1

�(1=2)��2n (Y 2
t � �n)

!
�
 
�E
n�

�1
n Yt

P1
k=0 �

kYt�k�1

�E
n(1=2)�
�2
n (Y

2
t � �n)

!
:

(6.6)

The limit process fG(�; 
0) : � 2 �g in Assumption C3 is the Gaussian process

G(�; 
0) =

 P1
j=0 �

jZj

(1=2)��20 (E
0 ("
2
t � �0)

2
)1=2Z

!
; (6.7)

where Z; Z0; Z1; ::: are independent standard normal random variables. The mean

of G(�; 
0) is zero. The covariance kernel of G(�; 
0) is 
(�1; �2; 
0) = Diagf(1 �
�1�2)

�1; (1=4)��40 E
0 ("
2
t � �0)

2g 2 R2�2: The convergence in Assumption C3 is estab-

lished using the method in Andrews and Ploberger (1996).

The matrices D  Qn( 0;n; �) and H(�; 
0) in Assumption C4 are: for 
0 2 � with
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�0 = 0;

D  Qn( 0;n; �) = n�1
nX
t=1

"
���;t( 0;n; �) ���;t( 0;n; �)

���;t( 0;n; �) ���;t( 0;n; �)

#
; where

���;t( 0;n; �) = ��1n

 1X
j=0

�jYt�j�1

!2
; ���;t( 0;n; �) = ��2n Yt

1X
k=0

�kYt�k�1;

���;t( 0;n; �) = �(1=2)��2n + ��3n Y 2
t ; and

H(�; 
0) = E
0�  ;t( 0; �) =

"
(1� �2)�1 0

0 (2�20)
�1

#
: (6.8)

The matrix H(�; 
0) satis�es Assumption C4(ii) because inf�2�(1 � �2)�1 = (1 �
max2fj�Lj; j�U jg)�1 > 0:
The matrixKn(�; 
0); which appears in Assumption C5(i), is complicated and, hence,

for brevity, is given in (10.34), (10.36), and (10.38) in Supplemental Appendix C. Its

limit, K(�; 
0); which appears in Assumption C5 is much simpler and is given by

K(�; 
0) =

 
�(1� �0�)

�1

0

!
: (6.9)

Combining (6.7)-(6.9), the stochastic process �(�; 
0; b) is

�(�; 
0; b) = �
1

2

 
G(�; 
0) +

 
�b=(1� �0�)

0

!!0 "
1� �2 0

0 2�20

#

�
 
G(�; 
0) +

 
�b=(1� �0�)

0

!!
: (6.10)

Assumption C6 is veri�ed in this example using Assumption C6�� and Lemma 8.5

given in Supplemental Appendix A.

In the ARMA example, the function �(�; 
0; !0) in Assumption C7 is

�(�; 
0; !0) = �
1� �2

2(1� �0�)2
: (6.11)

It is uniquely minimized at � = �0; as required by Assumption C7, because its derivative

wrt � is (� � �0)=(1� �0�)
3; which is zero for � = �0; strictly negative for � < �0; and

strictly positive for � > �0:
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For brevity, the quantity (@=@ 0)E
nD Qn( ; �n)j = n in Assumption C8 and the
veri�cation of Assumption C8 is given in of Supplemental Appendix C.

The matrix B(�) for the ARMA example is B(�) = Diagf1; 1; �g 2 R3�3: The

generalized derivatives of Qn(�) wrt � that appear in Assumption D1 are the ordinary

�rst and second partial derivatives of Q1n (�); de�ned in (6.4). The �rst derivatives are

DQn(�) = n�1
nX
t=1

��;t(�) = n�1
nX
t=1

(��;t(�); ��;t(�); ��;t(�))
0; where

��;t(�) = ���1
 
Yt � �

1X
j=0

�jYt�j�1

!
�

1X
k=0

k�k�1Yt�k�1; (6.12)

and ��;t(�) and ��;t(�) are given in (6.5). For brevity, the second derivatives are given

in (10.11)-(10.13) of Supplemental Appendix C.

Assumption D2 holds in this example with J(
0) equal to

J(
0) = Diag

8<:��10 E
0

 1X
j=0

�j0Yt�j�1

!2
; (2�20)

�1; ��10 E
0

 1X
j=0

j�j�10 Yt�j�1

!29=;
+

 
��10 E
0

 1X
j=0

�j0Yt�j�1

! 1X
k=0

k�k�10 Yt�k�1

!
�

264 0 0 1

0 0 0

1 0 0

375 : (6.13)

To verify Assumption D3(i) in this example, we have

n1=2B�1(�n)DQn(�n) = �n�1=2
nX
t=1

0B@ ��1n "t
P1

k=0 �
k
nYt�k�1

(1=2)��2n ("2t � �n)

��1n "t
P1

k=0 k�
k�1
n Yt�k�1

1CA!d N(0; V (
0));

(6.14)

where the equality holds by the de�nitions in (6.5) and (6.12) and the convergence in

distribution holds by a triangular array martingale di¤erence CLT.
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The matrix V (
0) equals

Diag

8<:��10 E
0

 1X
j=0

�j0Yt�j�1

!2
;
E
0 ("

2
t � �0)

2

4�40
; ��10 E
0

 1X
j=0

j�j�10 Yt�j�1

!29=;
+

 
��10 E
0

 1X
j=0

�j0Yt�j�1

! 1X
k=0

k�k�10 Yt�k�1

!
�

264 0 0 1

0 0 0

1 0 0

375 : (6.15)

Note that J(
0) = V (
0) if (2�
2
0)
�1 = (4�40)

�1E
0 ("
2
t � �0)

2
; which holds when "t has a

normal distribution.65

In this example, ��(�; 
0; b) of (3.10) equals �(1� �2)(
P1

j=0 �
jZj � (1� �0�)

�1b):

We estimate J(
0) and V (
0) by bJn = bJn(b�n) and bVn = bVn(b�n); respectively, where66
bJn(�) = Diag

(
��1n�1

nX
t=1

 
t�1X
j=0

�jYt�j�1

!
2; (2�2)�1; ��1n�1

nX
t=1

 
t�1X
j=0

j�j�1Yt�j�1

!
2

)

+

 
��1n�1

nX
t=1

 
t�1X
j=0

�jYt�j�1

!
t�1X
k=0

k�k�1Yt�k�1

!
�

264 0 0 1

0 0 0

1 0 0

375 (6.16)

and bVn(�) equals bJn(�) but with its (2; 2) element, (2�2)�1; replaced by
(4�2)�1n�1

nX
t=1

0@ Yt � �
t�1X
j=0

�jYt�j�1

!2
� �

1A2

: (6.17)

For brevity, the quantities J(�; 
0) and V (�; 
0) in Assumption V1 (scalar �) are

given in (10.57) and (10.58) of Supplemental Appendix C.

The asymptotic null distribution of the t statistic for tests concerning the MA para-

meter � is determined by Theorem 4.1(b). Under f
ng 2 �(
0; 0; b) with jbj < 1; it is

65The veri�cation of the conditions needed for the CLT, the derivation of the form of V (
0); and the
veri�cation of Assumption D3(ii) are given in Supplemental Appendix C.
66For hypotheses and CI�s that involve only � and/or �; the (2; 2) elements of bJn and bVn are not

needed. In such cases, the matrices bJn and bVn with their second rows and columns deleted are the
same. For Assumptions V1 and V2 to hold for the quantity in (6.17) more moments need to be
assumed on "t: Speci�cally, in � (de�ned in (6.2)), the condition E�j�tj4+�2 � K needs to be replaced
by E�j�tj8+�2 � K for the proof to go through. This condition is only needed for hypotheses and CI�s
that involve the innovation variance �:
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the distribution of

T�(�
�; 
0; b) =

���P1
j=0(�

�)jZj � (1� �0�
�)�1b

��� (1� (��)2)(�� � �0)

(���(��)22)1=2
; (6.18)

where �� abbreviates ��(
0; b); fZj : j � 0g are i.i.d. N(0; 1) random variables,

��(
0; b) = argmin
�2�

� 1
2

 1X
j=0

�jZj � (1� �0�)
�1b

!2
(1� �2);

���(�) =

" P1
j=0 �

2j
P1

j=0 j�
2j�1P1

j=0 j�
2j�1 P1

j=0 j
2�2j�2

#�1
; (6.19)

and ���(�)22 denotes the (2; 2) element of ���(�):67 The limit distribution in (6.18) only

depends on b and �0: Under f
ng 2 �(
0;1; !0); the t statistic for the MA parameter

� has a N(0; 1) asymptotic null distribution by Theorem 4.1(c).

We consider QLR tests and CS�s involving functions of (�; �); not �: In consequence,

the key Assumption RQ2(ii) for the QLR statistic holds.68 It holds because V (
0) and

J(
0) are block diagonal (after re-ordering their rows and columns) between the (�; �)

and � parameters and the blocks of V (
0) and J(
0) that correspond to the (�; �)

parameters are equal, see (6.13) and (6.15). In consequence, bsn = 1 in this example and
the standard critical value is �2dr;1��:

By Theorem 4.2, for a test concerning the MA parameter �; the asymptotic null

distribution of the QLR statistic under f
ng 2 �(
0; 0; b) with jbj <1 is the distribution

of

2

�
�(�0; 
0; b)� inf

�2�
�(�; 
0; b)

�
(6.20)

= �
 1X
j=0

�j0Zj � (1��20)�1b
!2
(1� �20) + inf

�2�

 1X
j=0

�jZj � (1��0�)�1b
!2
(1� �2)

This limit distribution only depends on b and �0:69 Under f
ng 2 �(
0;1; !0); the QLR

67The �rst equality in (6.19) holds using the expression for �(�; 
0; b) in this example given in (6.10)
plus simpli�cations based on (6.7)-(6.9).
68This assumption is needed for the QLR statistic to have a �2dr asymptotic null distribution under

strong identi�cation.
69The equality in (6.20) uses the simpli�cations in (6.19).
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statistic has a �21 asymptotic null distribution by Theorem 4.3 and (4.15).

6.2. AR Parameter

The estimator b�n = b�n + b�n of the AR parameter has the same asymptotic distri-
bution as the estimator for the MA estimator b�n under f
ng 2 �(
0; 0; b): This holds
because b�n = b�n+op(1) when jjbjj <1 and jj�njj�1(b�n��n) = jj�njj�1(b�n��n)+op(1)
when jjbjj = 1: In consequence, the t statistics for � and � have the same asymptotic

null distribution under f
ng 2 �(
0; 0; b): Furthermore, they have the same N(0; 1)

asymptotic null distribution under f
ng 2 �(
0;1; !0): For tests concerning the AR

parameter �; the QLR statistic has the same asymptotic null distribution as given above

for tests concerning the MA parameter �: This holds by Comment 4 to Theorem 4.2

and Section 9.4.4 of Supplemental Appendix B. Hence, the asymptotic size properties

of each test and CI considered here is the same for both � and �:

6.3. Numerical Results

Figures 1-7 above provide a variety of asymptotic and �nite-sample numerical results

for the ARMA(1, 1) model. Additional numerical results are reported in Supplemental

Appendix D. These include (i) analogous �gures to the �gures given above but for

�0 = 0:0 and 0:7; rather than �0 = 0:4; (ii) analogous �gures to those above but for the

AR parameter � = � + �; rather than the MA parameter �; (iii) tables of asymptotic

and �nite-sample coverage probabilities for jtj and QLR CI�s for � and �; and (iv) tables
giving FCP results for NI-LF and type 2 robust CI�s for � and �: Generally speaking,

the results for (i) and (ii) are similar to the results reported above. For brevity, details

concerning the numerical results are provided in Supplemental Appendix D. Table S-I

in Supplemental Appendix D provides the cLFT ;1��(v); �1(v); and �2(v) values necessary

to compute the type 2 NI robust critical values for the jtj and QLR test statistics for
computing CI�s for the MA and AR parameters.
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