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Abstract

We study agents whose expected utility preferences are interdependent for informational or

psychological reasons. We characterize when two types can be “strategically distinguished” in

the sense that they are guaranteed to behave differently in some finite mechanism. We show

that two types are strategically distinguishable if and only if they have different hierarchies of

interdependent preferences. The same characterization applies for rationalizability, equilibrium,

and any interim solution concept in between. Our results generalize and unify results of Abreu

and Matsushima (1992), who characterize strategic distinguishability on fixed finite type spaces,

and Dekel, Fudenberg, and Morris (2006), (2007), who characterize strategic distinguishability

without interdependent preferences.
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1 Introduction

Consider a setting where agents have preferences over lotteries on a finite set of outcomes, and their

preferences are interdependent. Such interdependence may arise for informational reasons: an agent

believes that another agent’s preferences encode information that she thinks is relevant for her own

payoffs. Or interdependence may exist for psychological reasons: an agent may be more altruistic

to an agent who she thinks is more altruistic. Whatever the reason for the interdependence, the

standard approach to modelling such interdependence is to let each agent have a set of possible

“types,”where each type has a belief about the other agents’types, and each agent has a utility

function specifying her utility over outcomes given each profile of agents’types. A diffi culty with this

approach is that when types are described in this “implicit”, self-referential, way, the operational

content of such type descriptions is not clear. In particular, the distinction between informational

and psychological interdependence may not have observable implications. In this paper, we provide

a unified treatment of interdependent preferences and characterize when two such types can be

“strategically distinguished” in the sense that they are guaranteed to behave differently in some

finite mechanism.

To present our characterization of strategic distinguishability in the simplest possible environ-

ment, we assume that each agent’s preference can be represented by expected utilities that depend

on the other agents’type profile. Furthermore, we assume (1) uniform ranking: for each agent,

there are two outcomes, a “good outcome”and a “bad outcome,”such that he strictly prefers the

former to the latter given any profile of the other agents’ types, and (2) bounded utilities: his

utility indices lie in a prefixed bounded set when we normalize the utility of the “good outcome”to

1 and the “bad outcome”to 0. These assumptions are with loss of generality.1 But because of these

assumptions, we can find finitely many “extreme”utility indices such that each utility index in the

bounded set can be expressed as a convex combination of those extreme utility indices uniquely.

Fixing and interpreting such extreme utility indices as his “private states,”we express any of his

utility indices as a probability distribution over the private states, and interdependent preferences

by a type space based on the profile of these private states. Now each type has a hierarchy of beliefs

about the private states à la Mertens and Zamir (1985). An agent’s hierarchy of beliefs about the

private states represents a “hierarchy of interdependent preferences”: a first order belief represents

1The uniform ranking condition is weaker than the economic condition maintained in much of the implementation

literature, see Palfrey and Srivastava (1989) or Jackson (1991). The economic condition requires that a uniform strict

ranking over two alternatives by agent i is reversed by the ranking of another agent j. It is called an economic condition

because - in an exchange economy - giving one agent a strictly larger, and thus strictly preferred, bundle, requires

giving another agent a smaller, less preferred bundle. Nonetheless, uniform ranking remains a strong assumption and

we will discuss below how it can be relaxed.
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a preference over lotteries, which we call a “first order preference”; a second order belief represents a

preference over (Anscombe-Aumann) acts over the opponents’first order preferences, which we call

a “second order preference”, and so on. With such a representation, our main result states that two

types are strategically distinguishable if and only if they have different hierarchies of beliefs about

the private states and thus if they have different hierarchies of interdependent preferences. The

same characterization applies for interim correlated rationalizability, equilibrium, and any interim

solution concept in between (Theorems 1 and 2).

The question of strategic distinguishability is due to Abreu and Matsushima (1992) (AM).

AM characterize (full) virtual Bayesian implementability of social choice functions for a finite type

space under the solution concept of iterated deletion of strictly dominated strategies (as well as

equilibrium).2 A necessary condition is a “measurability” condition that, in the language of this

paper, requires that the social choice function gives the same outcome to profiles of types with the

same hierarchies of interdependent preferences. Lemma 2 of AM shows that two types in a given

finite type space are strategically distinguishable if and only if they have different hierarchies of

interdependent preferences. Subject to our uniform ranking assumption, we make two contributions

relative to AM: first, we do not require a finite type space. Second, we show that for every fixed

pair of distinct hierarchies of interdependent preferences, there is a single finite mechanism that

will strategically distinguish types with those hierarchies of interdependent preferences across all

type spaces, finite or infinite.

We use beliefs (and hierarchies of beliefs) over private states to represent preferences (and hi-

erarchies of interdependent preferences) over outcomes, and - for our main results - mechanisms

depend only on actions. It is straightforward to extend our results to allow for additional external

states: states that mechanisms can be made conditional on (Section 5.1). Now strategic distin-

guishability is characterized by hierarchies of beliefs over the private states as well as these external

states. Dekel, Fudenberg, and Morris (2006), (2007) (DFM) consider a setting where agents have

beliefs and higher order beliefs about external states, and show that two types have disjoint sets

of rationalizable actions in some finite game with external-state-dependent payoffs if and only if

they have different hierarchies of beliefs about the external states (Dekel, Fudenberg, and Morris

(2006, Lemma 4) and Dekel, Fudenberg, and Morris (2007, Proposition 1 and Corollary 2)). Our

results then reduce to DFM’s result when each agent has a single private state, i.e., when there is

common certainty of preferences and - in particular - no interdependence of preferences (Section

5.2). Indeed, DFM’s result would go through even if we restricted attention to special classes of

2A technical difference between AM and our paper is that we assume the outcome set to be finite whereas AM

consider a more general environment and allow for all simple lotteries, i.e., lotteries with finite support, over an

arbitrary, possibly infinite, outcome set.
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games such as zero sum games or common interest games.3

Thus our results can be seen as a unification and extension of the results of AM and DFM.

Like DFM and unlike AM, we use an explicit description of types (independent of the type space

they belong to) and can distinguish types on arbitrary type spaces. Like AM and unlike DFM,

we distinguish between types with different hierarchies of interdependent preferences and not just

types with different hierarchies of beliefs about external states, and thus we are more constrained

in the set of strategic settings we can confront agents with.

Our main result requires an innovation in the proof strategy. In order to strategically distinguish

two types with distinct hierarchies of interdependent preferences, we construct a finite mechanism

in which agents are asked to report first finite orders of preferences. The mechanism randomizes

over which “component”of the mechanism is used to select the outcome. For each agent i and each

order n, there is an (i, n)th component of the mechanism designed so that agent i has an incentive

to truthfully report her nth order preference if other agents have truthfully reported their (n− 1)th

and lower order preferences. A potential diffi culty with this proof strategy is that agent i’s report

of an nth order preference is an input not only into the (i, n)th component of the mechanism, but

also into the (j, n+ 1)th components, i.e., the components giving each other agent j an incentive

to truthfully report his (n + 1)th and higher order preferences. AM dealt with this diffi culty by

exploiting finiteness, and having the probability of (j,m)th components, for all m ≥ n + 1, occur

with much smaller probability than component (i, n). DFM can choose payoffs so that, for each

agent i, the (i, n)th components (for all n) giving agent i an incentive to report her preferences

truthfully have no implications for other agents’incentives. Neither trick is available in our setting,

as we have arbitrary type spaces and agents’preferences over outcomes may be arbitrarily linked.

Instead, we develop a robust scoring rule that not only gives an agent an incentive to report her nth

order preferences truthfully if others report their (n− 1)th and lower order preferences truthfully,

but also gives the agent an incentive to report her nth order preferences approximately truthfully if

others report their (n− 1)th and lower order preferences approximately truthfully. This enables us

to design a mechanism where the error size at each of a finite number of orders can be simultaneously

controlled.4

As an extension, we relax the restriction on preferences. Namely, we replace the uniform ranking

assumption by the “no complete indifference”assumption, i.e., we assume that no type is completely

indifferent over outcomes, but the “good outcome” and the “bad outcome”may depend on own

types as well as the opponents’types. Without the uniform ranking assumption, we may not be able

3Gossner and Mertens (2001) suggested such a result for zero sum games.
4A related issue arises in the work of Chambers and Lambert (2014), where the problem of eliciting dynamic

(rather than interactive) beliefs is studied.
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to define private states (i.e., extremal preferences) in a meaningful way, not to mention a hierarchy

of beliefs about the private states, as not all conditional preferences given type profiles may be

represented by a convex combination of finitely many extreme utility indices. But we can still

make sense of a hierarchy of interdependent preferences as a sequence of preferences, the first term

denoting a preference over lotteries (first order preference), the second term denoting a preference

over acts over the opponents’first order preferences (second order preference), and so on. With this

terminology, we can extend the main result and show that under the no complete indifference and

bounded utility assumptions, the latter of which may also be relaxed to a certain “λ-continuity”

assumption, two types are strategically distinguishable if and only if they have different hierarchies

of interdependent preferences.5 Similarly to the previous formulation, this characterization holds

for a suitably defined version of rationalizability, equilibrium, and any interim solution concept in

between.

With this extension, our results imply Lemma 2 of AM but not vice versa, as any given finite type

space satisfies the bounded utility assumption with a suffi ciently large bound, but the mechanism

constructed by AM can only distinguish a pair of distinct hierarchies of interdependent preferences

if, in addition, we fix the finite type space to which they belong.

The paper is organized as follows. In Section 2, we discuss an example where each agent’s

conditional preferences over lotteries, given the opponents’type profiles, are parameterized by a

single number in the interval [0, 1], and use the example to motivate why it is hierarchies of beliefs

about extreme points of possible preferences which characterize strategic distinguishability, and

point out why alternative ways of representing interdependent preferences - implicitly or explicitly

considered in the literature - are either not “rich enough” (since they do not describe possible

interdependent preference types of interest) or they are not “tight”(separating types that are not

strategically distinguishable). In Section 3, we formally introduce our model under the uniform

ranking and bounded utility assumptions. In Section 4, under these assumptions, we show that

strategic distinguishability is characterized by hierarchies of interdependent preferences represented

by hierarchies of beliefs about private states. In Section 5, we discuss two extensions, how to

incorporate external states, and how to replace the uniform ranking assumption by the no complete

indifference assumption. In Section 6, we discuss further connections to the literature.

5Without the bounded utility assumption or the λ-continuity assumption, strategic distinguishability would no

longer be characterized by hierarchies of interdependent preferences (Proposition 5).
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2 Strategically Distinguishable Hierarchies

Before introducing our formal framework, we give a motivating example to illustrate which types

can be strategically distinguished. Consider two “conditionally altruistic agents.”6 Each agent may

care about the other’s private consumption, so that she is altruistic. But an agent may also be

more altruistic if she thinks that the other agent is more altruistic, in which case she is conditionally

altruistic. Higher order conditional altruism is also possible. More concretely, suppose that a prize

is being allocated to either of the two agents. There is a probability ri ∈ [0, 1] such that agent

i is indifferent between the other agent getting the object for sure and getting the object herself

with probability ri. Thus, ri is an index of agent i’s altruism. Conditional altruism corresponds to

having a higher altruism index when the other agent has a higher index.

Agent i’s interdependent preference type will have the following hierarchical description:7

1. A first order preference given by an altruism index ri describing the agent’s preference over

lotteries over outcomes.

2. A second order preference over Anscombe-Aumann acts giving outcomes as functions of the

other agent’s altruism index.

3. A third order preference over Anscombe-Aumann acts giving outcomes as functions of the

other agent’s second order preference.

4. And so on....

As noted in the introduction, if the altruism index ri ∈ [0, 1] is identified with probability distri-

butions over states 0 and 1, then second order preferences correspond to probability distributions

over {0, 1} ×∆ ({0, 1}), which is isomorphic to {0, 1} × [0, 1]; a third order preference corresponds

to a probability distribution over {0, 1} ×∆ ({0, 1} × [0, 1]); and so on. Following standard results

in the belief hierarchy literature, we can identify these hierarchies of interdependent preferences

with a set T ∗ consisting of the universal set of belief hierarchies, satisfying coherence and common

certainty of coherence, about the extreme points of own altruism indices, where the set T ∗ satisfies

the homeomorphism

T ∗ ∼= ∆({0, 1} × T ∗).

Thus, each agent’s type is uniquely identified with a belief over {0, 1} × T ∗. The interpretation is
that the marginal belief on T ∗ corresponds to the agent’s belief over the other agent’s type; and the

6This discussion follows Levine (1998) and Gul and Pesendorfer (2016).
7We will formalize the notion of interdependent preference hierarchies in Section 3.4 by means of beliefs and higher

order beliefs over “private states”and in Section 5.3 more directly.
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conditional probability of state 1 given the other agent’s type corresponds to the agent’s expected

value of the altruism index, conditional on the other agent’s type.

Our main result will be that T ∗ describes the interdependent preference hierarchies that can

be strategically distinguished. To provide intuition for our main result, it is useful to discuss

three alternative descriptions of interdependent preference hierarchies that have been (implicitly

or explicitly) proposed in the literature. We show why each one of the descriptions is either not

rich enough —in the sense that it does not include possible interdependent preference hierarchies

— or is not tight, in the sense that it labels types differently even if they are not strategically

distinguishable.

First, we could say (as before) that a first order preference corresponds to an altruism index

ri ∈ [0, 1]. But then we could say that a second order preference is given by an agent’s altruism

index, and a belief over the other agent’s altruism index, and so by an element of [0, 1]×∆ ([0, 1]).

Iterating in this way, we would get a “private values (PV) universal belief space,”TPV , satisfying

the homeomorphism

TPV ∼= [0, 1]×∆(TPV ).

Thus, a type is identified with an altruism index and a belief over the other agent’s altruism

index. The space TPV clearly allows for all first order preferences. But it does not allow second

order preferences to depend on the other agent’s first order preference, and hence rules out the

interdependence we are trying to capture. TPV is thus not rich enough, although it is tight in that

every pair of distinct types is strategically distinguishable.

Second, we could identify types with belief hierarchies, satisfying coherence and common cer-

tainty of coherence, about both agents’altruism indices. A first order preference would now be an

element of ∆
(

[0, 1]2
)
. A second order preference would be an element of ∆([0, 1]2 × ∆([0, 1]2));

and so on. Iterating in this way, we would get the “payoff (P) universal type space,”satisfying the

homeomorphism

TP ∼= ∆
(
[0, 1]2 × TP

)
.

Now a type is identified with a belief over both agents’altruism indices and the type of the other

agent. The space TP is rich enough to allow for all interdependent preferences we are interested in,

but it is not tight as it labels types differently even if they are not strategically distinguishable. For

example, it labels a type of agent i who is sure that his altruism index is 1/2 differently from another

type having a 50/50 belief about whether his altruism index is 0 or 1. It also labels differently types

of agent i who have various beliefs about agent j’s altruism index rj , but all of whom are sure that

j is sure that j is “truly selfish”(i.e., rj = 0), and j will never behave in an altruistic way. Note

that what matters for agent i’s behavior in strategic settings is not what agent i believes about rj ,
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but what agent i believes about agent j’s belief about rj .

Third, we could identify types with beliefs and higher order beliefs about a large set of “payoff

types”that describe interdependent preferences (without beliefs). An agent knows his own payoff

type but may not know the other agent’s payoff type. Thus, suppose that we have a set Ψ of

possible payoff types for each agent and let r
(
ψ,ψ′

)
∈ [0, 1] specify an agent’s altruism index when

he has payoff type ψ and the other agent has payoff type ψ′, so r : Ψ2 → [0, 1]. Now an agent’s

first order preference will consist of a payoff type ψ. His second order preference will consist of

a payoff type ψ and a belief over the other agent’s payoff type, and will thus be an element of

Ψ×∆ (Ψ). And so on. Call the set of all such hierarchies the “interdependent payoff (IP) universal

belief space,”TIP ; it will satisfy the homeomorphism

TIP ∼= Ψ×∆(TIP ).

So a type now corresponds to a payoff type and a belief over the other agent’s type. Since we

assumed that agents knew their own “payoff types,”this is simply the private values universal type

space defined over Ψ instead of [0, 1] as we did for TPV or {0, 1} as we did for T ∗. This modelling
approach follows a standard practice in the literature of treating payoff interdependence and higher

order beliefs separately, and is widely used in the mechanism design literature, either implicitly or

explicitly. It is implicit in Dasgupta and Maskin (2000), who introduce “types”which determine

players’interdependent values and then consider ways of implementing the effi cient outcome that

do not depend on beliefs. It is explicit in the work of two of us on robust mechanism design

(Bergemann and Morris (2012)), where we assumed a space of possible “payoff types,”and allow

all beliefs and higher order beliefs about those payoff types.

The payoff type spaces in Dasgupta and Maskin (2000) and Bergemann and Morris (2012) are

not intended to be “universal.”Gul and Pesendorfer (2016) constructed a universal type space of

interdependent preferences, abstracting from any belief structure. In particular, they identify a

maximal set of interdependent payoff types which captures all distinctions that can be expressed

in a natural language. When they consider applications of their universal type space to incomplete

information settings, they treat incomplete information separately and thus implicitly allow all

beliefs and higher order beliefs over their universal payoff space.

Similarly to the space TP , the space TIP is rich enough to express all interdependent preferences

if the underlying payoff type space is large enough, but it is then not tight. An agent’s type in TIP

specifies what his payoff parameter would be given the other agent’s payoff type that he attaches

probability zero to. Thus, it contains information that the agent (subjectively) regards as counter-

factual. While there might be purposes for which we want a language to express this information, as

discussed in Gul and Pesendorfer (2016), such distinctions will not be strategically distinguishable
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in our sense. Concretely, suppose that there were two payoff types, an “unconditionally altruis-

tic" type ψ and a “conditionally altruistic” type ψ′ with r(ψ,ψ) = r(ψ,ψ′) = r(ψ′, ψ) = 1 and

r(ψ′, ψ′) = 0, and compare (i) a type of an agent who prefers sharing with the other agent be-

cause he is conditionally altruistic and is sure that the other agent is unconditionally altruistic;

and (ii) another type who prefers sharing with the other agent because he is unconditionally altru-

istic. These types will not be strategically distinguishable from each other, but will correspond to

different types in TIP .

Before moving to our main model, let us consider two broader interpretations of the example.

First, we could allow the altruism index to be in the interval [−B,B], with the interpretation that

ri > 1 corresponds to a super-altruistic agent who prefers the other agent to get the object to

getting it himself; and ri < 0 corresponds to a spiteful agent who would prefer that no one got the

object to the other agent getting the object. This case is discussed in Section 3.2.

Second, we could allow the parameter ri ∈ [0, 1] to have very different interpretations from

conditional altruism. For example, suppose that there were three outcomes, bad, intermediate

and good, and an agent always strictly preferred the good outcome to the bad outcome and ri

represented agent i’s von Neumann-Morgenstern utility index of the intermediate outcome. Or

suppose that ri ∈ [0, 1] corresponded to agent i’s willingness to pay for an object in terms of a

numeraire good. The discussion above applies unchanged to these alternative interpretations of

the payoff relevant parameter. The latter interpretation corresponds to the leading example in the

mechanism design work of Dasgupta and Maskin (2000) and Bergemann and Morris (2012).

3 Model

3.1 Conventions

We record some terminological conventions used throughout the paper. A finite set is endowed with

the discrete topology. A countable set is endowed with the discrete σ-algebra. A compact metric

space is endowed with the Borel σ-algebra. A countable product
∏∞
n=0Xn of measurable spaces

(Xn)∞n=0 is endowed with the product σ-algebra. If each Xn is a compact metrizable space, then∏∞
n=0Xn is endowed with the product topology; in this case,

∏∞
n=0Xn is compact and metrizable,

and its Borel σ-algebra coincides with the product of Borel σ-algebras on Xn. For a measurable

space X, we denote by ∆(X) the set of probability measures over X, endowed with the σ-algebra

generated by {µ ∈ ∆(X) | µ(E) ≥ p} for each measurable subset E ⊆ X and each p ∈ [0, 1]. If X

is a compact metric space, then ∆(X) is endowed with the weak-* topology; in this case, ∆(X) is

compact and metrizable, and its Borel σ-algebra coincides with the σ-algebra on ∆(X) generated
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from the Borel σ-algebra on X. For notational simplicity, we sometimes write µ(x) for µ({x}).
We let I be a non-empty finite set of agents, and Z be a finite set of outcomes with |Z| ≥ 2.

To keep our language as standard as possible, we find it convenient to identify expected utility

preferences with representations of those preferences in RZ . Thus, we say that for lotteries p, p′ ∈
∆ (Z), an agent with “preference”ui ∈ RZ prefers p to p′ if and only if∑

z∈Z
p (z)ui (z) ≥

∑
z∈Z

p′ (z)ui (z) .

3.2 Restrictions on Conditional Preferences

We will require that each agent i’s conditional preferences over lotteries, given the opponents’

type profiles, can be represented by a von Neumann-Morgenstern utility index within a given set

U•i ⊂ RZ that satisfies

1. uniform ranking: there exists a pair of outcomes z, z ∈ Z such that ui(z) > ui(z) for every

ui ∈ U•i ; we normalize each ui so that ui(z) = 1 and ui(z) = 0;8

2. bounded utility: there exists Bi ≥ 1 such that |ui(z)| ≤ Bi for every ui ∈ U•i and z ∈ Z

(given the above normalization).

Given U•i that satisfies the uniform ranking and bounded utility assumptions, we can embed

U•i into a simplex co(Ui) with vertices (i.e., extreme points) Ui = {u1
i , u

2
i , . . . , u

Ki
i } that satisfy

1. unique representation: no two distinct utility indices in co(Ui) represent the same preference;

2. non-constant utility: no utility index in co(Ui) is constant;

3. linear independence: u2
i − u1

i , u
3
i − u1

i , . . . , u
Ki
i − u1

i are linearly independent.

Property 1 comes from the normalization among representations. Property 2 rules out complete

indifference from co(Ui) and follows from uniform ranking. Property 3 is the linear independence

assumption; it requires that every preference in co(Ui) can be uniquely represented as a convex

combination of the extreme points. Our results hold for any (Ui)i∈I satisfying properties 1 through

3, and the uniform ranking and bounded utility assumptions are suffi cient conditions for them to

hold.
8For notational convenience, we require uniform ranking of a pair of pure outcomes. Our analysis would be

unchanged even if we required uniform ranking of a pair of lotteries.
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We can illustrate the embedding and why Property 3 holds by construction of extreme points

of a simplex. If |Z| ≥ 3 and agent i has uniform ranking between the first and second outcomes,

choose Ui = {u1
i , u

2
i , . . . , u

|Z|−1
i } such that

u1
i = (1, 0,−Bi,−Bi, . . . ,−Bi),

u2
i = (1, 0, Ci,−Bi, . . . ,−Bi),

u3
i = (1, 0,−Bi, Ci, . . . ,−Bi),
...

u
|Z|−1
i = (1, 0,−Bi,−Bi, . . . , Ci)

with suffi ciently large Ci. (For example, let Ci = (2|Z| − 5)Bi.)

To illustrate the uniform ranking and bounded utility assumptions, we will describe how the

conditional altruism example discussed in Section 2 fits into the framework of this Section. Suppose

that there are two agents and three outcomes, Z = {∅, 1, 2}, where the outcomes correspond to,
respectively, no one getting the prize, agent 1 getting the prize, and agent 2 getting the prize.

The set U1 consists of two vectors (0, 1, 0) and (0, 1, 1) corresponding to, respectively, the extreme

preferences where the agent 1 is indifferent between the other agent getting the prize (outcome 2)

and no one getting the prize (outcome ∅) and where the agent is indifferent between the other
agent getting the prize (outcome 2) and getting the prize herself (outcome 1). Symmetrically, U2

consists of two vectors (0, 0, 1) and (0, 1, 1).

We can also use this example to illustrate how the set of allowable preferences can be generalized.

For example, we could replace the two extreme preferences of agent 1 by (0, 1, B1) and (0, 1,−B1),

for some large B1 ≥ 1. This allows for the possibility that agent 1 strictly prefers agent 2 getting

the prize to getting the prize himself. And it allows a “spiteful”agent 1 who strictly prefers no one

getting the prize to agent 2 getting the prize. This continues to satisfy the uniform ranking and

bounded utility assumptions.

We will hold (Ui)i∈I fixed throughout our analysis, except in Sections 5.3—5.5. In Section 5.3,

we will discuss a sense in which our main results are independent of the choice of (Ui)i∈I .
9

Recall that while each co(Ui) represents a set of expected utility preferences over lotteries, co(Ui)

is isomorphic to the set of probability distributions over its extreme points, ∆ (Ui), and this will

play an important role in our presentation. In particular, a preference can then conveniently be

thought of as a probability distribution over “private states”Ui.

9 In Section 5.4, we will also discuss how to relax the uniform ranking and bounded utility assumptions.
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3.3 Type Spaces

We first describe implicit, self-referential, type spaces allowing interdependent preferences. Given

our embedding of each agent’s utility indices within a simplex, it is convenient to represent his

type as a probability distribution over private states (i.e., extreme points of that agent’s possible

preferences) and the opponents’type profiles.

A type space based on (Ui)i∈I , T = (Ti, µi)i∈I , consists of non-empty measurable spaces Ti of

agent i’s possible types, T−i ≡
∏
j 6=i Tj , and measurable mappings:

µi : Ti → ∆(Ui × T−i),

where µi assigns a belief µi(ti) ∈ ∆(Ui × T−i) to each type ti ∈ Ti. We interpret the marginal

probability distribution mrgT−i µi(ti) ∈ ∆(T−i) as type ti’s belief over the opponents’ type pro-

files, and (a version of) the conditional probability distribution given the opponents’type profiles

µi(ti)(· | ·) : T−i → ∆(Ui) as utility indices that represent type ti’s conditional preferences given

the opponents’type profiles. Thus µi(ti) represents type ti’s preferences over Anscombe-Aumann

acts defined on others’types. Note that correlation in µi(ti) ∈ ∆(Ui×T−i) is essential, as it allows
us to express the dependency of type ti’s preferences on the opponents’type profiles. Also note

that unlike the “interdependent payoff universal belief space”TIP in Section 2, our type space does

not specify type ti’s conditional preferences given the opponents’ type profiles that he attaches

probability zero to because the conditional probability distribution µi(ti)(· | ·) is identified only
almost surely with respect to mrgT−i µi(ti).

3.4 The Universal Type Space

Because co(Ui) is isomorphic to ∆(Ui), we can interpret Ui as a finite set of extreme “payoff

states”and ui ∈ co(Ui) as a probability distribution over those payoff states. Thus, we can treat

T = (Ti, µi)i∈I formally as a belief type space, where agents have beliefs and higher order beliefs

over private state spaces (Ui)i∈I . With minor modifications of Mertens and Zamir (1985) and

Brandenburger and Dekel (1993),10 both of which use a common state space, we define the universal

type space T ∗ = (T ∗i , µ
∗
i )i∈I based on (Ui)i∈I , where T ∗i is the set of all belief hierarchies of agent

i that satisfy coherence and common certainty of coherence, which is nonempty, compact, and

metrizable, and µ∗i is the natural homeomorphism

µ∗i : T ∗i → ∆(Ui × T ∗−i).
10See Heifetz and Neeman (2006) for a general construction of such a private value universal type space.
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Note that the belief hierarchy of each type in the universal type space coincides with the type itself.

Moreover, for every type space T = (Ti, µi)i∈I based on (Ui)i∈I , the mapping that maps each type

in Ti to his hierarchy of beliefs:

µ̂i : Ti → T ∗i

preserves the belief structure, i.e.,

µ∗i (µ̂i(ti))(E) = µi(ti)({(ui, t−i) ∈ Ui × T−i | (ui, (µ̂j(tj))j 6=i) ∈ E})

for every measurable subset E ⊆ Ui×T ∗−i. We sometimes write µ̂i(·; T ) to emphasize the underlying

type space. We will refer to T ∗i as the set of interdependent preference hierarchies, to highlight

the interpretation of this mathematical object in this paper. In particular, for each type ti, belief

hierarchy µ̂i(ti) represents his interdependent preference hierarchy in such a way that the first order

belief in µ̂i(ti) represents his preference over lotteries, the second order belief in µ̂i(ti) represents

his preference over Anscombe-Aumann acts defined over profiles of other agents’first order beliefs

(which represent their preferences over lotteries), etc....

3.5 Interim Correlated Rationalizability

A mechanism (or game form) is given by M = ((Mi)i∈I , O), where Mi is a non-empty set of

messages (actions) available to agent i, M =
∏
i∈IMi, and O : M → ∆(Z) is the outcome function.

In this mechanism, agents send messages m = (mi)i∈I ∈ M simultaneously, and the mechanism

assigns an outcome z with probability O(m)(z). A mechanismM = ((Mi)i∈I , O) is finite if Mi is

finite for every i ∈ I. Except in Section 4.2 and Appendix C.1, where we will formulate technical
lemmas in terms of single-agent infinite mechanisms, we restrict ourselves to finite mechanisms.

A type space T = (Ti, µi)i∈I and a mechanism M = ((Mi)i∈I , O) together define a Bayesian

game. We will later define and discuss equilibrium and other solution concepts for this game.

However, it is useful to first discuss a version of interim correlated rationalizability (ICR) in Dekel,

Fudenberg, and Morris (2007) to this setting. We differ from DFM with respect to the structure of

Bayesian games: we have private state spaces (Ui)i∈I while DFM have a common state space. We

also differ with respect to the interpretation: here, states represent extreme points of utility indices

that represent each agent’s possible conditional preferences while at least in a leading interpretation

of DFM, states represent external events on which the payoffs of the game are conditioned.11

11This difference in interpretation will be important in Sections 5.1 and 5.2. Correlation in an agent’s conjecture

about that agent’s private state and other agents’actions corresponds to interdependency of that agent’s preferences

on others agents’actions. In this sense, ICR can be seen as even more permissive in the present context. See Morris

and Takahashi (2012) for more on the foundations and interpretations of these solution concepts.
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Formally, given a type space T and a finite mechanismM, ICR is defined by induction as follows.

The induction is initialized with

R0
i (ti) = Mi,

with the inductive step defined by:

Rn+1
i (ti) =


mi ∈Mi

∣∣∣∣∣∣∣∣∣∣∣∣∣

there exists νi ∈ ∆(M−i × Ui × T−i) s.t.
(i) νi({(m−i, ui, t−i) ∈M−i × Ui × T−i | mj ∈ Rnj (tj) for every j 6= i}) = 1,

(ii) mrgUi×T−i νi = µi(ti),

(iii)
∫
M−i×Ui×T−i

∑
z∈Z ui(z)(O(mi,m−i)(z)−O(m′i,m−i)(z))

×νi(dm−i, dui, dt−i) ≥ 0 for every m′i ∈Mi


,

and the limit is defined by:

Ri(ti) =
∞⋂
n=0

Rni (ti).

Note that the inductive step is well defined since we can show inductively that {(mi, ti) ∈Mi×Ti |
mi ∈ Rni (ti)} is measurable in Mi × Ti for every i ∈ I and n ≥ 0. We say that mi is interim

correlated rationalizable for ti if mi ∈ Ri(ti). We sometimes write Ri(ti; T ,M) to emphasize the

underlying type space and mechanism.

As in Dekel, Fudenberg, and Morris (2007, Proposition 1 and Corollary 2), ICR depends only

on hierarchies of interdependent preferences.

Proposition 1 For every type space T = (Ti, µi)i∈I based on (Ui)i∈I , every agent i ∈ I, and every
type ti ∈ Ti, we have

Ri(ti; T ,M) = Ri(µ̂i(ti); T ∗,M)

for every finite mechanismM = ((Mi)i∈I , O).

We omit the proof of this Proposition, which requires a cosmetic modification of DFM’s proofs

to incorporate private state spaces.

4 Strategic Distinguishability

4.1 Strategic Distinguishability for ICR

For any interim solution concept, we say that two types are strategically indistinguishable if their

sets of solutions have a non-empty intersection for every finite mechanism. In this terminology, the

following Theorem establishes that hierarchies of interdependent preferences characterize strategic

distinguishability for ICR.
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Theorem 1 For every pair of type spaces T = (Ti, µi)i∈I and T ′ = (T ′i , µ
′
i)i∈I based on (Ui)i∈I ,

every agent i ∈ I, and every pair of types ti ∈ Ti and t′i ∈ T ′i , the following two conditions are

equivalent:

1. µ̂i(ti; T ) = µ̂i(t
′
i; T ′);

2. Ri(ti; T ,M) ∩Ri(t′i; T ′,M) 6= ∅ for every finite mechanismM.

Note that 1⇒ 2 follows from Proposition 1 and the nonemptyness of ICR. 2⇒ 1 follows from

the following Proposition, which we will show by establishing the contrapositive ¬1⇒ ¬2. Let d∗i
be a metric compatible with the product topology on T ∗i .

Proposition 2 For every ε > 0, there exists a finite mechanismM such that

d∗i (µ̂i(ti; T ), µ̂i(t
′
i; T ′)) > ε⇒ Ri(ti; T ,M) ∩Ri(t′i; T ′,M) = ∅

for every pair of type spaces T = (Ti, µi)i∈I and T ′ = (T ′i , µ
′
i)i∈I based on (Ui)i∈I , every agent i ∈ I,

and every pair of types ti ∈ Ti and t′i ∈ T ′i .

The Proposition proves a little more than what is needed to prove Theorem 1: it shows that

if we fix a metric d∗i and ε > 0, we can strategically distinguish all types that are at least ε apart

using the same mechanism. In the remainder of this Subsection, we describe the mechanism used

to prove this result, which is the main technical contribution of the paper.

The strategy of proof is as follows. If two types are ε apart in the metric compatible with

the product topology on T ∗i , then there must exist ε > 0 and N such that the types’Nth order

preferences are at least ε apart. We will choose “accuracy”levels 0 < ε0 ≤ ε1 ≤ · · · ≤ εN . For each
agent i and n ≥ 1, agent i will report an element of an εn−1-dense finite subset of his possible nth

order preferences. For each agent i and n ≥ 1, there will be a component of the mechanism, chosen

with positive probability, that will pick an outcome as a function of agent i’s report about his nth

order preference and the other agents’reports about their (n − 1)th and lower order preferences.

The mechanism will have the property that as long as the other agents’reports are within εn−1 of

their true preferences, then agent i’s best responses are within εn of his true nth order preference.

Using this property inductively, we will show that each agent’s ICR reports about his nth order

preference are within εn of his true nth order preference.

The second last step of the argument uses a robust scoring rule described in the next Subsection.

We show that, for every ε > 0, we can find δ > 0 and a scoring rule that gives the agent an incentive

to report preferences within ε of his true preference even if the outcomes of the scoring rule may
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be arbitrarily perturbed within δ. This Lemma can then be iteratively applied to construct the

mechanism used in the main proof.

Abreu and Matsushima (1992) and Dekel, Fudenberg, and Morris (2006) follow similar argu-

ments up until the second last step. AM exploit the finiteness of the type space. They can choose

an ε > 0 such that the (j, n+ 1)th component occurs with probability at most ε times that of the

(i, n)th component. Now ε > 0 can be chosen uniformly small enough so that agents can be strictly

incentivized to report their true preferences exactly at every order.12 DFM allow for arbitrary,

possibly infinite, type spaces, so it is not possible to find a uniform ε that makes the argument in

AM work. In DFM, it is necessary to have each agent report an element of a finite grid of beliefs

at every order. But payoffs can be chosen independently across agents, so it is possible to do the

approximation inductively. Because neither proof strategy is available in our setting, we need a

novel robust scoring rule to make the argument work.

4.2 The Robust Scoring Rule

As a preliminary step, we first analyze a single-agent mechanism that reveals his state-dependent

preferences. In this Subsection, fix a compact metric space X of states with metric d. Let d∆ be a

metric compatible with the weak-* topology over ∆(U ×X). Let F (X) be the set of (Anscombe-

Aumann) acts over X, i.e., the set of measurable functions f : X → ∆(Z). Then each µ ∈ ∆(U×X)

uniquely represents a state-dependent preference over F (X). That is, the agent with preference µ

weakly prefers f to f ′ if and only if∫
U×X

∑
z∈Z

u(z)(f(x)(z)− f ′(x)(z))µ(du, dx) ≥ 0.

We define the choice function with respect to µ:

Cµ(f, f ′) =

f if µ weakly prefers f to f ′,

f ′ if µ strictly prefers f ′ to f,

for every f, f ′ ∈ F (X).

Let Fc(X) ⊆ F (X) be the set of continuous acts over X. Since X is a compact metric space,

by the Stone-Weierstrass theorem, there exists a countable dense subset F = {f1, f2, . . .} ⊂ Fc(X)

in the sup norm. Fix such an F .

12 In the related work of Bergemann and Morris (2009), there is a finite set of possible “payoff types” and an

analogous trick can be applied.
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We consider the following direct mechanism M0 = (M0, O0) for a single agent with message

set M0 = ∆(U ×X) and outcome function O0 : M0 ×X → ∆(Z) given by

O0(m,x)(z) =
∞∑
k=1

∞∑
l=1

2−k−lCm(fk, fl)(x)(z), (1)

for each realized state x ∈ X and each reported preference m ∈ M0. Under the mechanism M0,

the agent reports a preference. Then the mechanism randomly draws an ordered pair (fk, fl) of

acts from F with probability 2−k−l, and then assigns the agent with the preferred act according to

the reported preference.13

In Lemma 1 below, we show that truth telling is optimal in M0 for every preference. Indeed,

by invoking the compactness of X, we show a “robust”version of optimality: in every mechanism

close to M0, the agent strictly prefers reporting his approximately true preferences to reporting

any other.

Recall that for each message m, O0(m, ·) is an act over X, which determines an outcome z with
probability O0(m,x)(z) when nature chooses x ∈ X. We consider two sources of perturbations

to this act. First, with small probability, the outcome may not be chosen according to O0(m,x).

Formally, for each δ > 0 and measurable space Ω, we consider a perturbed outcome function

O : M0 ×X × Ω→ ∆(Z) such that

‖O(·, ·, ω)−O0‖ ≡ sup
m∈M0,x∈X,z∈Z

|O(m,x, ω)(z)−O0(m,x)(z)| ≤ δ

for every ω ∈ Ω. Second, when nature is supposed to choose x, nature may instead choose x′ in a

neighborhood of x. Formally, for each δ > 0, µ ∈ ∆(U ×X), and measurable space Ω, let

∆δ,µ(U×X×Ω) =


µ′′ ∈ ∆(U ×X × Ω)

∣∣∣∣∣∣∣∣∣∣∣

there exists µ′ ∈ ∆(U ×X ×X ′ × Ω) with X ′ = X s.t.

(i) µ′(U × {(x, x′) | d(x, x′) ≤ δ} × Ω) = 1,

(ii) mrgU×Xµ
′ = µ,

(iii) mrgU×X′×Ωµ
′ = µ′′


,

(2)

be the set of preferences over noisy acts induced by the original preference µ.14

Lemma 1 For every ε > 0, there exists δ > 0 such that the following is true for every preference

µ ∈ ∆(U×X), every pair of messagesm,m′, every measurable space Ω, and every perturbed outcome

13Note that M0 is not a finite mechanism. The mechanism we will construct in the next Subsection to prove

Proposition 2, however, is finite.
14We introduce X ′ as a copy of X to notationally distinguish the marginal of µ′ on X (the “first X”) and on X ′

(the “second X”).
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function O : M0 ×X × Ω → ∆(Z): if d∆(µ,m) ≤ δ, d∆(µ,m′) > ε, and ‖O(·, ·, ω) − O0‖ ≤ δ for

every ω ∈ Ω, then every preference in ∆δ,µ(U ×X × Ω) strictly prefers O(m, ·, ·) to O(m′, ·, ·).

The proof is in Appendix A.

We call the mechanism M0 = (M0, O0) a “robust scoring rule” because it elicits the agent’s

preference in the following robust way. For each fixed preference of the agent, every message that

is close to that fixed preference is strictly preferred by the agent to every message which is at some

distance from that preference, under every mechanism close to our scoring rule and every preference

close to the fixed preference. The arguments of AM and DFM also use scoring rules, and we extend

their use to elicit hierarchies of interdependent preferences or beliefs. For their arguments, it is

enough to use a standard scoring rule. The extra generality of our setting necessitates the use of a

robust scoring rule.

4.3 Proof of Proposition 2

We first prepare for notations for belief hierarchies. Recall that we follow the standard procedure

and construct the universal type space T ∗ = (T ∗i , µ
∗
i )i∈I of belief hierarchies. Specifically, for each

i ∈ I, letting Hi,0 = {∗} be initialized with a single element, we denote by Hi,n = Hi,n−1 ×∆(Ui ×
H−i,n−1) =

∏n−1
k=0 ∆(Ui × H−i,k) the set of higher order beliefs up to nth order for each n ≥ 1.

Then we can construct the universal type space T ∗i ⊂
∏∞
n=0 ∆(Ui ×H−i,n) as the set of agent i’s

belief hierarchies satisfying coherence, in the sense that lower order beliefs are marginals of higher

order beliefs, and common certainty of coherence. Recall that d∗i is a metric compatible with the

product topology on T ∗i . Let di,n be a metric compatible with the topology on the set of agent i’s

nth order beliefs, ∆(Ui ×H−i,n−1).

Fix any ε > 0. By the definition of the product topology, there exist ε̄ > 0 and N ∈ N such
that, for every (ti,n)∞n=1, (t

′
i,n)∞n=1 ∈ T ∗i , if d∗i ((ti,n)∞n=1, (t

′
i,n)∞n=1) > ε, then there exists some n ≤ N

such that di,n(ti,n, t
′
i,n) > ε̄. Pick such ε̄ and N .

For each i ∈ I and n ≤ N , we apply Lemma 1 by substituting

X = H−i,n−1 =
∏
j 6=i

n−2∏
k=0

∆(Uj ×H−j,k),

d = max
j 6=i,1≤k≤n−1

dj,k,

d∆ = di,n.

Pick a countable dense subset of Fc(H−i,n−1), and define O0
i,n : ∆(Ui×H−i,n−1)×H−i,n−1 → ∆(Z) as

in (1). By Lemma 1, there exist 0 < ε0 ≤ ε1 ≤ · · · ≤ εN ≤ ε̄/2 such that if di,n(ti,n,mi,n) ≤ εn−1,
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di,n(ti,n,m
′
i,n) > εn, and ‖Oi,n(·, ·, ω) − O0

i,n‖ ≤ εn−1 for every ω ∈ Ω, then every preference in

∆εn−1,ti,n(Ui ×H−i,n−1 × Ω) strictly prefers Oi,n(mi,n, ·, ·) to Oi,n(m′i,n, ·, ·).
We define a finite mechanism M = ((Mi)i∈I , O) as follows. For each i ∈ I and n ≤ N , let

Mi,n be any εn−1-dense finite subset of ∆(Ui×H−i,n−1) with respect to di,n, and Mi =
∏N
n=1Mi,n.

Define O : M → ∆(Z) by

O(m)(z) =
1− δ

|I|(1− δN )

∑
i∈I

N∑
n=1

δn−1O0
i,n(mi,n,m−i,1, . . . ,m−i,n−1)(z)

for each m ∈M and z ∈ Z, where δ > 0 is small enough to satisfy (1− δ)/δ ≥ (|I| − 1)(1− ε0)/ε0.

Lemma 2 For every type space T = (Ti, µi)i∈I based on (Ui)i∈I , every agent i ∈ I, and every type
ti ∈ Ti, we have

mi ∈ Rni (ti; T ,M)⇒ di,n(µ̂i,n(ti),mi,n) ≤ εn

for every n ≤ N .

The proof of this Lemma is in Appendix A. We can now complete the proof of Proposition 2.

Proof of Proposition 2. Let M be the finite mechanism defined above. Pick any pair of

type spaces T and T ′ based on (Ui)i∈I , i ∈ I, ti ∈ Ti, and t′i ∈ T ′i . Suppose that there exists

mi = (mi,1, . . . ,mi,N ) ∈ Ri(ti; T ,M) ∩ Ri(t′i; T ′,M). For every n ≤ N , since ai ∈ Rni (ti; T ,M) ∩
Rni (t′i; T ′,M), we have

di,n(µ̂i,n(ti; T ), µ̂i,n(t′i; T ′)) ≤ di,n(µ̂i,n(ti; T ),mi,n) + di,n(µ̂i,n(t′i; T ′),mi,n) ≤ 2εn ≤ ε̄

by Lemma 2. Thus, d∗i (µ̂i(ti; T ), µ̂i(t
′
i; T ′)) ≤ ε.

4.4 Strategic Distinguishability for Equilibrium

Our analysis thus far concerned the solution concept of ICR. We now change our focus to equi-

librium. Given a type space T and a finite mechanism M, we say that a profile σ = (σi)i∈I of

measurable behavioral strategies σi : Ti → ∆(Mi) is an equilibrium if

∫
Ui×T−i

∑
m−i∈M−i

∑
z∈Z

ui(z)(O(mi,m−i)(z)−O(m′i,m−i)(z))

∏
j 6=i

σj(tj)(mj)

µi(ti)(dui, dt−i) ≥ 0

for every i ∈ I, every ti ∈ Ti and every mi,m
′
i ∈Mi with σi(ti)(mi) > 0. We denote by Ei(ti; T ,M)

the set of actions played by type ti with positive probability in some equilibrium.

We have the following (called the “pull-back property”in Friedenberg and Meier (2015)):
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Proposition 3 For every type space T = (Ti, µi)i∈I based on (Ui)i∈I , every agent i ∈ I, and every
type ti ∈ Ti, we have

Ei(ti; T ,M) ⊇ Ei(µ̂i(ti); T̂ ,M)

for every finite mechanism M = ((Mi)i∈I , O), where T̂ = (T̂i, µ
∗
i |T̂i)i∈I is a belief closed subspace

of the universal type space T ∗ = (T ∗i , µ
∗
i )i∈I with T̂i = µ̂i(Ti) for each i ∈ I.

The proof is in Appendix A.

We say that a type space T = (Ti, µi)i∈I is countable if Ti is countable for every i ∈ I. Equilibria
do not always exist on uncountable type spaces: see Simon (2003), Friedenberg and Meier (2015)

and Hellman (2014). However, since the mechanism is finite, the existence of equilibria is guaranteed

on any countable type space.15 This gives us:

Theorem 2 For every pair of countable type spaces T = (Ti, µi)i∈I and T ′ = (T ′i , µ
′
i)i∈I based on

(Ui)i∈I , every agent i ∈ I, and every pair of types ti ∈ Ti and t′i ∈ T ′i , the following two conditions
are equivalent:

1. µ̂i(ti; T ) = µ̂i(t
′
i; T ′);

2. Ei(ti; T ,M) ∩ Ei(t′i; T ′,M) 6= ∅ for every finite mechanismM.

Proof. For the 1 ⇒ 2 direction, we denote t∗i := µ̂i(ti; T ) = µ̂i(t
′
i; T ′). By Proposition 3, we

have

Ei(ti; T ,M) ∩ Ei(t′i; T ′,M) ⊇ Ei(t∗i ; T̂ ,M) ∩ Ei(t∗i ; T̂ ′,M),

where T̂ = (T̂i, µ
∗
i |T̂i)i∈I and T̂

′ = (T̂ ′i , µ
∗
i |T̂ ′i )i∈I are countable belief closed subspaces of the uni-

versal type space T ∗ = (T ∗i , µ
∗
i )i∈I with T̂i = µ̂i(Ti; T ) and T̂ ′i = µ̂i(T

′
i ; T ′) for each i ∈ I. Let

T̂ ′′ = (T̂i ∩ T̂ ′i , µ∗i |T̂i∩T̂ ′i )i∈I . Applying Proposition 3 to inclusion maps from T̂
′′ to T̂ and to T̂ ′,

we can show that the restriction of every equilibrium of (T̂ ,M) or of (T̂ ′,M) to T̂ ′′ is also an
equilibrium of (T̂ ′′,M). Conversely, by the fixed-point argument sketched in footnote 15, we can

15To see this, let Ti ⊆ N without loss of generality. Then the set (∆(Mi))
Ti of behavior strategies of agent i is a

nonempty, compact and convex subset of a locally convex and Hausdorff topological vector space RTi×Mi (endowed
with the product topology), and agent i’s payoff function

vi(σ) =
∑
ti∈Ti

2−ti
∑

ui∈Ui,t−i∈T−i

∑
m∈M

∑
z∈Z

ui(z)O(m)(z)

(∏
j∈I

σj(tj)(mj)

)
µi(ti)(ui, t−i)

is affi ne in σi and continuous in σ (under the product topology) by the Lebesgue convergence theorem. Thus, the

existence of equilibria follows from Berge’s maximum theorem and the Kakutani—Fan—Glicksberg fixed-point theorem

in the usual way.
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show that every equilibrium of (T̂ ′′,M) extends to equilibria of (T̂ ,M) and of (T̂ ′,M) (called the

“extension property”in Friedenberg and Meier (2015)). Thus, both Ei(t∗i ; T̂ ,M) and Ei(t∗i ; T̂ ′,M)

are equal to Ei(t∗i ; T̂ ′′,M), which is nonempty.

The 2 ⇒ 1 direction, or its contrapositive ¬1 ⇒ ¬2, follows from Proposition 2 and the fact

that equilibrium is a refinement of ICR.

The 1⇒ 2 direction of Theorem 2 has been known in the literature. For example, in the setting

with common certainty of conditional preferences over lotteries, Yildiz (2015) shows the existence

of an invariant equilibrium defined over all finite types, which depends only on Mertens—Zamir

belief hierarchies about external states.16

It is immediate from Theorems 1 and 2 that hierarchies of interdependent preferences character-

ize strategic distinguishability for other interim solution concepts that are coarser than equilibrium

and finer than ICR, for example, interim independent rationalizability.

5 Extensions

5.1 Incorporating External States

We have so far considered “uncontingent”mechanisms M = ((Mi)i∈I , O) with O : M → ∆(Z),

where agents’messages alone determine outcomes. We modelled agents’interdependent preferences,

which entailed modelling the agents’ incomplete information about each others’preferences. We

showed that strategic distinguishability - using uncontingent mechanisms - was characterized by

hierarchies of interdependent preferences.

However, game theorists often talk about incomplete information about external states, which

we shall denote by θ ∈ Θ (instead of or in addition to “private states”that we have introduced to

express interdependent preferences). For simplicity, we assume Θ to be finite. Obviously, it will not

be possible to elicit agents’beliefs and higher order beliefs about external states without allowing

for richer mechanisms that assign outcomes contingent on those external states. Thus we consider

“Θ-contingent”mechanismsM = ((Mi)i∈I , O) with O : M ×Θ→ ∆(Z), where the domain of the

outcome function is extended to M × Θ. With this richer class of mechanisms, we will be able to

achieve a finer strategic distinction of types, since these external states may also impact preferences,

and beliefs and higher order beliefs about them may also be revealed. We excluded discussion of

such external states earlier because they were incidental to our primary exercise of characterizing

strategic distinguishability for interdependent preferences. But reporting this extension now allows

us to connect our result to those of DFM, according to their original interpretation, in an exact

16See Section 5.2 for an interpretation of common certainty of conditional preferences in our setting.
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way (see the next Subsection). The results and proofs do not change, once we alter our definitions

of type spaces, mechanisms and solution concepts to reflect Θ in the appropriate way. Thus, we

will merely state how the definitions must be changed in order for our previous results to hold as

stated.

A type space T = (Ti, µi)i∈I now consists of non-empty measurable spaces Ti of agent i’s possible

types and measurable mappings µi : Ti → ∆(Ui×Θ×T−i), i.e., a belief type space over private states
and external states (Ui×Θ)i∈I representing agents’higher order preferences, their beliefs and higher

order beliefs about Θ, and the interaction of the two. The universal type space based on (Ui×Θ)i∈I ,

T ∗ = (T ∗i , µ
∗
i )i∈I , is constructed with the homeomorphism µ∗i : T ∗i → ∆(Ui × Θ × T ∗−i). For every

type space T = (Ti, µi)i∈I based on (Ui×Θ)i∈I , the mapping µ̂i : Ti → T ∗i maps each type in Ti to

its hierarchy of beliefs over (Ui ×Θ)i∈I . A Θ-contingent mechanism M = ((Mi)i∈I , O) consists of

non-empty sets Mi of messages available to agent i and the outcome function O : M ×Θ→ ∆(Z).

Given a type space T = (Ti, µi)i∈I and a finite Θ-contingent mechanism M = ((Mi)i∈I , O), we

define ICR by

R0
i (ti) = Mi,

Rn+1
i (ti) =


mi ∈Mi

∣∣∣∣∣∣∣∣∣∣∣∣∣

there exists νi ∈ ∆(M−i × Ui ×Θ× T−i) s.t.
(i) νi({(m−i, ui, θ, t−i) | mj ∈ Rnj (tj) for every j 6= i}) = 1,

(ii) mrgUi×Θ×T−i νi = µi(ti),

(iii)
∫
M−i×Ui×Θ×T−i

∑
z∈Z ui(z)(O(mi,m−i, θ)(z)−O(m′i,m−i, θ)(z))

×νi(dm−i, dui, dθ, dt−i) ≥ 0 for every m′i ∈Mi


,

Ri(ti) =
∞⋂
n=0

Rni (ti).

A profile σ = (σi)i∈I of measurable behavioral strategies σi : Ti → ∆(Mi) is an equilibrium if

∫
Ui×Θ×T−i

∑
m−i∈M−i

∑
z∈Z

ui(z)(O(mi,m−i, θ)(z)−O(m′i,m−i, θ)(z))

∏
j 6=i

σj(tj)(mj)

µi(ti)(dui, dθ, dt−i) ≥ 0

for every i ∈ I, every ti ∈ Ti, and every mi,m
′
i ∈Mi with σi(ti)(mi) > 0.

Now Theorems 1 and 2 remain true after replacing “based on (Ui)i∈I”by “based on (Ui×Θ)i∈I”

and “mechanism” by “Θ-contingent mechanism” and interpreting “µ̂i(ti; T )” and “µ̂i(t
′
i; T ′)” as

hierarchies of beliefs over (Ui×Θ)i∈I . Our previous analysis corresponds to the special case where

Θ is a singleton.
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5.2 Common Certainty of Conditional Preferences

We now maintain the extension incorporating external states (from the previous Subsection), but

impose the restriction that there is “common certainty of conditional preferences,” i.e., there is

common certainty of how each outcome translates into a von Neumann-Morgenstern utility index.

This corresponds to the setting of DFM, where it is implicitly assumed that there is common

certainty of the payoffs associated with an action profile and an external state. This gives us one

way of formally relating our results to those in DFM.17

We say that there is common certainty of conditional preferences if each Ui is a singleton

{ui}, where ui ∈ RZ is not constant over Z. Under common certainty of conditional preferences,
there is uncertainty and higher order uncertainty about external states but no uncertainty about

conditional preferences. Thus, the universal type space is simply the Mertens-Zamir universal type

space, corresponding to the set of belief hierarchies about external states Θ satisfying coherence

and common certainty of coherence.

Given that each Ui is a singleton, picking a contingent mechanism M = ((Mi)i∈I , O) with

O : M × Θ → ∆(Z) is equivalent to picking a game with incomplete information about Θ (a

specification of payoffs as a function of message/action profiles and external states), with the

proviso that the set of feasible payoff vectors is given by the convex hull of the set of payoff vectors

that can arise from some given outcome. Write V for the set of payoff profiles that can be induced

by some lottery over outcomes, so that

V = conv{(ui(z))i∈I ∈ RI | z ∈ Z}.

Now consider a game G = ((Mi)i∈I , g), whereMi is the set of actions for agent i and g : M×Θ→ RI

assigns a payoff profile to each pair of action profile and the external state. We say that G is
a V -game if g(m, θ) ∈ V for every m ∈ M and every θ ∈ Θ. Every contingent mechanism

M = ((Mi)i∈I , O) with O : M ×Θ→ ∆(Z) induces a V -game G = ((Mi)i∈I , g) with

g(m, θ) =

(∑
z∈Z

ui(z)O(m, θ)(z)

)
i∈I

for each m ∈ M and each θ ∈ Θ; conversely, every V -game can be induced by some contingent

mechanism.
17There is an alternative interpretation of DFM under which their results can be seen as a special case of the

results in this paper without appeal to “external”states. Observe that uncontingent mechanisms and private states

- profiles of extremal preferences, in our simplex representation - jointly define a set of utility functions from message

profiles and states to payoffs, i.e., a game with incomplete information over (Ui)i∈I . If the outcome space were

suffi ciently rich, this problem would reduce to a version of DFM. If not, results in this paper would identify strategic

distinguishability in restricted classes of games.
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Our definition of ICR in this case corresponds exactly to that in DFM. Our Theorem 1 now

proves that two types have the same belief hierarchy over Θ if and only if they have the same ICR

actions in all V -games. In the case that V is a non-degenerate product set, i.e.,

V =
∏
i∈I

[vi, vi]

with vi < vi for every i ∈ I, this result was already proved in DFM. Specifically, for every non-
degenerate product set V , Dekel, Fudenberg, and Morris (2006, Lemma 4) show that if two types

have distinct belief hierarchies, then there is a V -game where they have disjoint ICR action sets;18

conversely, Dekel, Fudenberg, and Morris (2007, Proposition 1 and Corollary 2) show that two

types with the same belief hierarchy have the same ICR actions (for finite types and general types,

respectively) in every V -game.

The assumption that the set V is a non-degenerate product set has a natural counterpart in

our setting. Say that we have a private good environment if the outcome space Z has a product

structure Z =
∏
i∈I Zi, and each agent i’s utility from outcome z depends only on the ith component

zi, so ui (z) = ũi (zi) for some ũi : Zi → R. In this case, the set of feasible payoff vectors has the
product structure

V =
∏
i∈I

[vi, vi] ,

where

vi = min
zi∈Zi

ũi (zi) and vi = max
zi∈Zi

ũi (zi) .

But our Theorem 1 did not rely on the private good environment assumption. If the assumption

of common certainty of conditional preferences is maintained but the private good assumption is

dropped, then the set V of feasible payoff profiles could be any convex polytope whose projection in

each dimension is non-degenerate. For example, our Theorem would apply to environments where

V =

{
v ∈ [−1, 1]I

∣∣∣∣∣∑
i∈I

vi = 0

}

so we restricted attention to zero sum games. And it would apply to environments where

V =
{
v ∈ [0, 1]I |vi = vj for all i, j ∈ I

}
,

so we restricted attention to common interest games. Thus, while the original proof of Dekel, Fu-

denberg, and Morris (2006, Lemma 4) relied on the assumption that all payoff vectors are feasible,

18Dekel, Fudenberg, and Morris (2006, Lemma 4) prove something a little stronger: for every distance between

nth order beliefs, we can find ε > 0 such that no action is both δ-interim correlated rationalizable for one type and

(δ + ε)-interim correlated rationalizable for the other type.
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our Theorem 1 - with external states added and common certainty of conditional preferences as-

sumed - establishes that it would remain true if DFM had restricted attention to zero sum games,

common interest games, or many other subsets of games which restricted how agents’payoffs can

vary.

Gossner and Mertens (2001) show that a zero sum Bayesian game has a value which depends only

on the probability distribution over Mertens-Zamir hierarchies and is increasing in informativeness

in Blackwell’s sense. The argument requires a strategic distinguishability result for the case of zero

sum games.19 While the formulation of our strategic distinguishability question and the proof are

different from those arising in Gossner and Mertens (2001), the argument above suggests when

and how the approach in this paper could be used to develop analogous strategic distinguishability

exercises in different classes of games.

5.3 Strategic Distinguishability without Simplex Representations

The simplex representation was convenient in stating and proving our results, and relating them to

the existing literature. We will now state our main result without reference to a simplex representa-

tion. A cost of doing so is that we lose our utility representations of interdependent preferences. We

do so nonetheless in order to verify the independence of the result from the simplex representation

chosen, and also as a prelude to relaxing our uniform ranking and bounded utility assumptions in

the next section, where a simplex representation is not available.

Let X be a countable set of states.20 Recall that F (X) denotes the set of all acts over X. Let

P (X) be the set of all preferences % over F (X) represented by a belief about states µ ∈ ∆(X) and

a µ-absolutely summable state-dependent utility index u : X × Z → R, i.e.,
∑

x |u(x, z)|µ(x) < ∞
for every z ∈ Z, as follows:

f % f ′ ⇔
∑
x∈X

∑
z∈Z

u(x, z)(f(x)(z)− f ′(x)(z))µ(x) ≥ 0.

With this notation, we can define a countable type space T = (Ti, πi)i∈I with

πi : Ti → P (T−i),

where for each type ti ∈ Ti, πi(ti) denotes the preference of type ti over acts over the opponents’
types. We write π̂i,1 (ti) for the restriction of πi(ti) to lotteries, and call it his first order preference.

We also write π̂i,2 (ti) for the restriction of πi(ti) to acts that depend only on the opponents’first

19Gossner and Mertens (2001) is an abstract of unpublished work; we are grateful to Olivier Gossner for privately

sharing notes from the complete paper.
20We assume countable state spaces to avoid measurability issues as well as to guarantee the existence of equilibria.
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order preferences, and we call it his second order preference. We define third order, and higher

order, preferences similarly, and we write π̂i(ti) = (π̂i,1(ti), π̂i,2(ti), . . .) for the hierarchy of type ti’s

higher order preferences.

We now impose the uniform ranking and bounded utility assumptions on preferences. Given

a pair of outcomes z, z ∈ Z and a utility bound B ≥ 1, we say that a preference % ∈ P (X) is

(z, z, B)-bounded if it is represented by (µ, u) such that

1. uniform ranking: u(x, z) > u(x, z) for every x ∈ X; we normalize each u(x, ·) so that u(x, z) =

1 and u(x, z) = 0;

2. bounded utility: |u(x, z)| ≤ B for every z ∈ Z (given the above normalization).

Let Pz,z,B(X) be the set of all (z, z, B)-bounded preferences over F (X). Given a profile B =

(zi, zi, Bi)i∈I of pairs of outcomes zi, zi ∈ Z and utility bounds Bi ≥ 1, we say that a countable

type space T = (Ti, πi)i∈I is B-bounded if πi(ti) ∈ Pzi,zi,Bi(T−i) for every i ∈ I and ti ∈ Ti.
Given a countable type space T = (Ti, πi)i∈I and a finite mechanismM = ((Mi)i∈I , O), we say

that a profile σ = (σi)i∈I of behavioral strategies σi : Ti → ∆(Mi) is an equilibrium if πi(ti) weakly

prefers O(mi, ·) ◦ σ−i to O(m′i, ·) ◦ σ−i for every agent i ∈ I, every type ti ∈ Ti, and every messages
mi,m

′
i ∈ Mi with σi(ti)(mi) > 0.21 Let Ei(ti) denote the set of actions played by type ti with

positive probability in some equilibrium. Given B = (zi, zi, Bi)i∈I , we also define the set of actions

that are B-boundedly rationalizable for type ti, denoted by Ri,B(ti), as follows:

R0
i,B(ti) = Mi,

Rn+1
i,B (ti) =


mi ∈Mi

∣∣∣∣∣∣∣∣∣∣∣

there exists %i ∈ Pzi,zi,Bi(M−i × T−i) s.t.
(i) %i is certain of

∏
j 6=i graph(Rnj,B),

(ii) mrgT−i %i = πi(ti),

(iii) %i weakly prefers O(mi, ·) to O(m′i, ·) for every m′i ∈Mi


,

Ri,B(ti) =
∞⋂
n=0

Rni,B(ti),

where we say that % ∈ P (X) is certain of E ⊆ X if X \ E is Savage-null with respect to %, i.e.,
f ∼ f ′ whenever f and f ′ agree on E, and the marginal of % ∈ P (X × Y ) on X, denoted by

mrgX % ∈ P (X), is the restriction of % to F (X).

Then we have the following result.

21We define O(mi, ·) ◦σ−i as an act over T−i given by O(mi, σ−i)(t−i)(z) =
∑
m−i

O(mi,m−i)(z)
∏
j 6=i σj(tj)(mj)

for every t−i ∈ T−i and z ∈ Z.
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Theorem 3 Fix a profile of uniform rankings and utility bounds B = (zi, zi, Bi)i∈I . For every pair

of countable and B-bounded type spaces T = (Ti, πi)i∈I and T ′ = (T ′i , π
′
i)i∈I , every agent i ∈ I, and

every pair of types ti ∈ Ti and t′i ∈ T ′i , the following three conditions are equivalent:

1. π̂i(ti; T ) = π̂i(t
′
i; T ′);

2. Ri,B(ti; T ,M) ∩Ri,B(t′i; T ′,M) 6= ∅ for every finite mechanismM;

3. Ei(ti; T ,M) ∩ Ei(t′i; T ′,M) 6= ∅ for every finite mechanismM;

Proof. For each i ∈ I, let Ui be the set of extreme points of a simplex such that co(Ui) contains

all utility indices ui with ui(zi) = 1, ui(zi), and |ui(z)| ≤ Bi for every z ∈ Z. Note that two types
have the same hierarchy of interdependent preferences if and only if they can be represented in

(Ui)i∈I -based type spaces with the same hierarchy of beliefs over (Ui)i∈I . 1 ⇒ 3 follows from

Theorem 2 and this fact. 3⇒ 2 follows from the fact that equilibrium is a refinement of B-bounded
rationalizability. 2 ⇒ 1 follows from Theorem 1, the previous fact, and the fact that B-bounded
rationalizability is a refinement of ICR based on (Ui)i∈I .

Theorem 3 is a simple rewriting of Theorems 1 and 2.

This statement of the theorem addresses the following two issues that arise from our modeling

choice.

Too Rich Type Spaces First, in Section 2, among other universal type spaces, we discussed

a payoff universal type space TP for our conditional altruism example, but dismissed it as it was

too rich for two distinct types to be strategically distinguishable. Indeed, if we adopted too rich a

universal type space, two different universal types may not be strategically distinguishable. To be

specific, let us arbitrarily pick a profile of finite sets of utility indices Ωi ⊂ co(Ui) and an (Ωi)i∈I -

based type space TΩ = (Ti, µi)i∈I with µi : Ti → ∆(Ωi × Ti). If Ωi is not the set of extreme points

of a simplex, then a point in co(Ωi) may be represented by two different convex combinations

of Ωi, and hence two types with different hierarchies of beliefs over (Ωi)i∈I may have the same

hierarchy of interdependent preferences. By Theorem 3, two countable types are strategically

distinguishable if and only if they have different hierarchies of interdependent preferences. Thus,

we cannot strategically distinguish two types with the same hierarchy of interdependent preferences

even if they have different hierarchies of beliefs over (Ωi)i∈I .

Change of “Coordinate Systems” Second, we may be able to represent the same type space in

two different ways, (Ui)i∈I -based and (U ′i)i∈I -based type spaces, where both are the sets of extreme

points of simplices. Clearly, the same hierarchy of interdependent preferences can be represented
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differently by hierarchies of beliefs over (Ui)i∈I and over (U ′i)i∈I , which, in turn, can have different

versions of ICR. However, although ICR depends on the simplex profile, equilibrium does not. Thus

strategic distinguishability for equilibrium, whether a pair of types have disjoint equilibrium action

sets or not, does not depend on the simplex profile.22 Moreover, two types have the same hierarchy

of beliefs over (Ui)i∈I if and only if they have the same hierarchy of beliefs over (U ′i)i∈I . In this

sense, the choice of the simplex profile is irrelevant for our characterization that identifies which

pair of types have the same hierarchy of beliefs over (Ui)i∈I .

5.4 Relaxing the Uniform Ranking and Bounded Utility Assumptions

Here, we show that it is possible to relax the uniform ranking assumption and assume instead

that preferences are not completely indifferent over outcomes.23 At the same time, we also replace

the bounded utility assumption by what we call the “λ-continuity” assumption, which imposes

conditions on preferences directly.

Given λ ∈ (0, 1/2], we say that a preference % ∈ P (X) is λ-continuous if

1. no complete indifference over outcomes: there exists a pair of outcomes z, z ∈ Z such that

z � z;

2. λ-continuity: (1− λ) z + λf % (1− λ) z + λf ′ for every f, f ′ ∈ F (X) (given the above pair

z, z)).

Thus we require that % not be completely indifferent over outcomes, and that the preference

relation z � z be maintained at least weakly even if we mix these outcomes z and z with a small

probability of arbitrary acts f and f ′, respectively. Thus λ-continuity imposes a bound on the

state sensitivity of preferences. In terms of expected utility representations, a preference % ∈ P (X)

represented by µ ∈ ∆(X) and u : X × Z → R is λ-continuous if and only if

max
z,z′∈Z

∑
x∈X

(u(x, z)− u(x, z′))µ(x) > 0,

∑
x∈X

max
z,z′∈Z

(u(x, z)− u(x, z′))µ(x) ≤ 1− λ
λ

max
z,z′∈Z

∑
x∈X

(u(x, z)− u(x, z′))µ(x).

Therefore, λ-continuity for suffi ciently small λ is a weakening of the bounded utility assumption.

To see this, if a preference is (z, z, B)-bounded, then with our normalization of utility indices, the

22 In fact, strategic distinguishability for ICR does not depend on the simplex profile, either, but we do not make

the argument here, which would require repeating the proofs of Theorem 1 and Proposition 2.
23The absence of complete indifference is a maintained assumption in the virtual and Bayesian implementation

literature, e.g., Abreu and Sen (1991) and Duggan (1997) as well as Abreu and Matsushima (1992) .
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left-hand side of the second inequality is bounded above by 2B, while the right-hand side is bounded

below by (1− λ)/λ. Thus the inequality holds as long as λ ≤ 1/(2B + 1).

Let Pλ(X) be the set of all λ-continuous preferences over F (X). A countable type space

T = (Ti, πi)i∈I is λ-continuous if πi(ti) ∈ Pλ(T−i) for every i ∈ I and ti ∈ Ti. We define the set
of actions that are B-boundedly rationalizable for type ti, denoted by Ri,λ(ti), similarly to Ri,B(ti);

we simply replace Pzi,zi,Bi by Pλ.

We can now state our strategic distinguishability results for λ-continuous preferences.

Theorem 4 Fix λ ∈ (0, 1/2]. For every pair of countable and λ-continuous type spaces T =

(Ti, πi)i∈I and T ′ = (T ′i , π
′
i)i∈I , every agent i ∈ I, and every pair of types ti ∈ Ti and t′i ∈ T ′i , the

following three conditions are equivalent:

1. π̂i(ti; T ) = π̂i(t
′
i; T ′);

2. Ri,λ(ti; T ,M) ∩Ri,λ(t′i; T ′,M) 6= ∅ for every finite mechanismM;

3. Ei(ti; T ,M) ∩ Ei(t′i; T ′,M) 6= ∅ for every finite mechanismM.

The proof is in Appendix C. Note that our strategic distinguishability results hold for equi-

librium, λ-continuous rationalizability and everything in between. Thus, Lemma 2 of Abreu and

Matsushima (1992) is a special case of Theorem 4 since every finite type space with no complete

indifference over outcomes is λ-continuous with some λ > 0, and for this value of λ, their solu-

tion concept of iterated elimination of strictly dominated actions is in between equilibrium and

λ-continuous rationalizability.24

5.5 Relaxing the λ-Continuity Assumption

A type of an agent with completely indifferent preferences cannot be distinguish from an agent with

any other preferences, so the no complete indifference assumption must be maintained. But what

can we say if we drop the bounded utility or λ-continuity assumption altogether? The following

result will continue to be true.
24There are two technical differences between AM’s formulation and ours. As noted in footnote 2, AM allow for all

simple (i.e., finite support) lotteries over any (possibly infinite) set of outcomes. AM show that if we focus on finite

(or “regular”) mechanisms, and rule out mechanisms that involve integer games, then a social choice function that

is virtually implementable in mixed-strategy equilibrium must satisfy the measurability condition. Duggan (1997)

provides an example of a social choice function that is not measurable, but can be exactly implemented in pure-

strategy equilibrium by a finite mechanism. Serrano and Vohra (2010) extend Duggan’s argument and show that the

social choice function is indeed exactly implementable in mixed-strategy equilibrium by an infinite mechanism.
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Proposition 4 For every pair of countable type spaces T = (Ti, πi)i∈I and T ′ = (T ′i , π
′
i)i∈I , every

agent i ∈ I, and every pair of types ti ∈ Ti and t′i ∈ T ′i , we have

π̂i(ti; T ) = π̂i(t
′
i; T ′)⇒ Ei(ti; T ,M) ∩ Ei(t′i; T ′,M) 6= ∅

for every finite mechanismM.

However, Proposition 2 does not extend without any a priori bound on utilities. Note that we

are not asking whether two types can be strategically distinguished or not; we are asking whether

strategic distinguishability is characterized merely by interdependent preference hierarchies. And

the latter requires distinguishing two sets of types, each of which corresponds to an interdependent

preference hierarchy. In Proposition 2, we constructed a finite mechanism, depending only on ε > 0

and simplex profile (Ui)i∈I , that can strategically distinguish two sets of types as long as the two

sets correspond to two belief hierarchies over (Ui)i∈I that are ε apart from each other. Here, we will

show that without the bounded utility or λ-continuity assumption, there is no finite mechanism

that can strategically distinguish two sets of types that correspond to two interdependent preference

hierarchies with the same first order preference (even if they differ in the second and higher order

preferences).25

Proposition 5 For every pair of interdependent preference hierarchies of finite types h = (%1,%2, . . .),

h′ = (%′1,%′2, . . .) such that %1 = %′1, every agent i ∈ I, and every finite mechanism M =

((Mi)i∈I , O), there exist a pair of finite type spaces T = (Ti, µi, ui)i∈I and T ′ = (T ′i , µ
′
i, u
′
i)i∈I

and a pair of types ti ∈ Ti and t′i ∈ T ′i such that π̂i (ti; T ) = h, π̂i (t′i; T ′) = h′, and Ei(ti; T ,M) =

Ei(t
′
i; T ′,M).

The proof is in Appendix C. In what follows, we use an example to illustrate the diffi culty of

strategically distinguishing higher order preferences without restrictions.

In what follows, we use an example to illustrate why a mechanism like the one constructed

in Section 4.2 cannot strategically distinguish types with distinct hierarchies of interdependent

preferences. Take the conditional altruism example, and consider a mechanism with two messages

0 and 1 for each agent and the outcome being in the form of

O(m1,m2)(z) = (1− ε)O1(m1)(z) + εO2(m1,m2)(z)

with ε ≥ 0, where O1 is to solicit agent 1’s report about his first order preference, whereas O2

is to solicit both agents’reports about their higher order preferences. To fix ideas, suppose that

25Proposition 5 is stated and proved for finite types, which suffi ces to show the impossibility of strategic distin-

guishability, but would continue to hold with countable types.
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O1(m1 = 0) gives the prize to nobody and agent 1 with probability 1/2 each, and O1(m1 = 1) gives

the prize to agent 2; O2(m1,m2) gives the prize to agents 1 and 2 with probability m1m2/2, and to

nobody with the remaining probability 1 −m1m2. Consider a type space, where each agent i has

two possible types 0 and 1, each type believes that the opponent’s type is 0 or 1 with probability

1/2, and payoff parameters (the payoff from the opponent getting the prize) are given by

t2 = 0 1

t1 = 0 1 + v, 1 + v 1− v, 1
1 1, 1− v 1, 1

with v ∈ R. Note that all types have the same expected value of the payoff parameter (1 + v)/2 +

(1− v)/2 = 1, and hence have the same interdependent preference hierarchy as the truly altruistic

type with complete information, independently of v.

In this case, if ε = 0, then agent 1 has an incentive to report m1 = 1 (as a dominant action)

according to his first order preference. But since there is no interaction term between m1 and m2,

no information about higher order preferences can be revealed in equilibrium actions. In contrast,

if ε > 0, then for suffi ciently large v, type 0 of agent 1 no longer has a dominant action, and indeed,

the strategy profile of reporting mi = ti becomes an equilibrium. In sum, there is no ε ≥ 0 that

keeps agent 1’s incentive to report his first order preference truthfully and yet solicits higher order

preferences from both agents.

Note that this example hinges crucially on the difference between us and AM: our exercise of

strategic distinguishability (Theorems 1 and 2) is to construct a mechanism independently of an

underlying type space, whereas AM fix a finite type space first and then construct a mechanism.

This example also illustrates a trade-off between ε and v. There is no ε > 0 that keeps m1 = 1

a dominant action for agent 1 independently of v. But if we knew a bound on v, then we could

choose ε small enough (in the magnitude of 1/|v|) so that m1 = 1 is a dominant action for agent 1.

6 Discussion

6.1 Strategic Equivalence

For any interim solution concept, we say that two types are strategically equivalent if they have

the same set of solutions for every finite mechanism. It follows from Proposition 1 and Theorem

1 that hierarchies of beliefs over (Ui)i∈I characterize strategic equivalence for ICR. However, the

corresponding result does not hold for equilibrium even if we restrict attention to countable type

spaces. It is well known from the setting with common certainty of conditional preferences that so-

lution concepts such as equilibrium and interim independent rationalizability depend on redundant
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types. See Dekel, Fudenberg, and Morris (2007), Ely and Peski (2006) and Sadzik (2010).

6.2 Separating Beliefs from Payoffs

Our approach integrates the treatment of payoffs (or utility indices that represent conditional

preferences over lotteries) with beliefs and higher order beliefs about those payoffs. But the standard

approach in the literature has been to discuss the two separately. In particular, as we discussed in

Section 2, an alternative construction is to first identify a general space of interdependent payoff

types, such as that of Gul and Pesendorfer (2016), and then allow for all possible beliefs and higher

order beliefs over those payoff types. But this construction gives a space of interdependent types

different from our space of strategically distinguishable types. In particular, as we discussed in

Section 2, this alternative construction is not tight because it will label types differently even if

they differ only in what their conditional preferences would be given zero probability events. On

the other hand, it is not rich enough because it does not allow conditional preferences to depend

on others’beliefs. For example, I might be more altruistic if I believe that you believe that I am

altruistic. This cannot arise in the Gul and Pesendorfer (2016) construction, where payoff types

depend only on others’payoff types, not their beliefs. Thus, we allow conditional preferences to

depend on beliefs, as in the “psychological games”literature of Geanakoplos, Pearce, and Stacchetti

(1989) and Battigalli and Dufwenberg (2009). However, preferences depend only on other agents’

beliefs about others’ types and not - as in the psychological games literature - on beliefs about

actions.26

However, even though our space is quite different from this alternative construction, it still

makes sense to ask if and how we can distinguish between “payoff types” and “belief types” in

a natural way in our space. Just as beliefs cannot be pinned down in (single person) expected

utility representations of preferences unless we fix a numéraire, there is indeterminacy in beliefs

in our construction based on the choice of representations of the extreme preferences Ui. But

particular applications may suggest a numéraire over which the modeler wishes to treat utility

as state independent, which will pin down the representation. A type of agent i can then be

characterized by a belief over others’types, and conditional preferences over lotteries given others’

types. We can use the separation to interpret existing works.

6.3 Operational Meaning and Revealed Preference

Two types are strategically distinguishable if and only if there exists a finite mechanism where they

are guaranteed to behave differently. No additional information is required to identify the interde-

26Such beliefs can be captured as “characteristics” in Gul and Pesendorfer (2016).
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pendent hierarchies. As we discussed in Sections 5.1 and 5.2, if mechanisms could depend on some

external states, it would be possible to learn about agents’beliefs are higher order beliefs about

external states. If mechanisms cannot depend on any additional data, the interdependent hierar-

chies are all that can be operationally identified, and we cannot distinguish between psychological

or informational origins of the interdependence.

Classical single person revealed preference theory characterizes when a set of choice functions are

consistent with rational choice (Afriat (1967)), with the weak axiom of revealed preference (WARP)

being the key restriction on choice rules. If, in addition to standard rationality assumptions, we

looked at choices over lotteries and added the independence assumption, we would obtain more

restrictions. A primitive single person revealed preference question would then be if you can tell

the difference between two different expected utility preferences over lotteries. A standard argument

says that we can construct a pair of lotteries such that one preference will lead to one strict ordering,

and the other preference will lead to the opposite strict ordering. Our strategic distinguishability

question is a many person analogue of this revealed preference question.27

6.4 The Expected Utility Assumption

We maintained the assumption of expected utility maximization, but dispensed with monotonic-

ity to incorporate the interdependence of preferences we want to capture. Epstein and Wang

(1996) construct a universal type space of non-expected utility preferences, incorporating non-

expected utility preferences such as ambiguity aversion, but maintaining monotonicity as well as

additional regularity conditions. Di Tillio (2008) allows general preferences, and thus does not

require monotonicity or independence, but restricts attention to preferences over finite outcomes

at every order of the hierarchy.28

27There is a small literature developing strategic analogues of classic single agent decision theory. See, for example,

Sprumont (2000). There are many differences between this paper and that literature. Thus, Sprumont (2000) fixes

the action set while we allow for arbitrary action sets. His theory is ordinal and does not impose expected utility

while ours is cardinal and does impose expected utility.
28The strategic distinguishability question does not appear to have been addressed without expected utility prefer-

ences. Chambers (2008) shows the impossibility of constructing a uniform scoring rule to distinguish preferences and

beliefs in a non-expected utility setting, which suggests that positive results about strategic distinguishability would

be hard to obtain. Grant, Meneghel, and Tourky (2016) analyze “Savage games”played on subjective state spaces,

allowing both expected utility maximizers and more general preferences; in neither case do they consider strategic

distinguishability.
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A Proofs in Section 4

Proof of Lemma 1

Suppose not. Then there exists ε > 0 such that for every n ∈ N, there exist µn,mn,m
′
n ∈ ∆(U×X)

with d∆(µn,mn) ≤ 1/n and d∆(µn,m
′
n) > ε, measurable space Ωn, perturbed outcome function

On : M0 × X × Ωn → ∆(Z) with ‖On(·, ·, ω) − O0‖ ≤ 1/n for every ω ∈ Ωn, µ′n ∈ ∆(U × X ×
X ′ × Ωn) with X ′ = X such that µ′n (U × {(x, x′) | d(x, x′) ≤ δ} × Ωn) = 1, mrgU×X µ

′
n = µn,

and mrgU×X′×Ω µ
′
n weakly prefers On(m′n, ·, ·) to On(mn, ·, ·). Since X is a compact metric space,

by taking a subsequence if necessary, we can find µ∗,m′,∗ ∈ ∆(U × X) such that µn → µ∗ and

m′n → m′,∗ as n→∞. Note that mn → µ∗ as n→∞, and µ∗ 6= m′,∗. Let

u∗ =

∫ ∑
z

u(z)O0(µ∗, x)(z)dµ∗(u, x).

Claim 1 We have

lim
n→∞

∫ ∑
z

u(z)O0(mn, x)(z)dµn(u, x) = u∗,

lim sup
n→∞

∫ ∑
z

u(z)O0(m′n, x)(z)dµn(u, x) < u∗.

Proof of Claim 1. The claim follows from showing that

lim
n→∞

∫ ∑
z

u(z)Cmn(fk, fl)(x)(z)dµn(u, x) =

∫ ∑
z

u(z)Cµ∗(fk, fl)(x)(z)dµ∗(u, x),

lim sup
n→∞

∫ ∑
z

u(z)Cm′n(fk, fl)(x)(z)dµn(u, x) ≤
∫ ∑

z

u(z)Cµ∗(fk, fl)(x)(z)dµ∗(u, x),

for each k, l, and that the second inequality holds with strict inequality for some k, l. The first

equality and the second weak inequality follow from the standard revealed preference argument.

To show the strict inequality, since µ∗ 6= m′,∗ and F ⊂ Fc(X) is dense in the sup norm, there exist

k, l such that µ∗ strictly prefers fk to fl while m′,∗ strictly prefers fl to fk. Since m′n strictly prefers
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fl to fk for suffi ciently large n, we have:

lim
n→∞

∫ ∑
z

u(z)Cm′n(fk, fl)(x)(z)dµn(u, x)

= lim
n→∞

∫ ∑
z

u(z)fl(x)(z)dµn(u, x)

=

∫ ∑
z

u(z)fl(x)(z)dµ∗(u, x)

<

∫ ∑
z

u(z)fk(x)(z)dµ∗(u, x)

=

∫ ∑
z

u(z)Cµ∗(fk, fl)(x)(z)dµ∗(u, x).

which establishes the claim.

Claim 2 We have

lim
n→∞

(∫ ∑
z

u(z)On(m,x′, ω)(z)dµ′n(u, x, x′, ω)−
∫ ∑

z

u(z)O0(m,x)(z)dµn(u, x)

)
= 0

and the convergence is uniform in m ∈M0.

Proof of Claim 2. Note that∣∣∣∣∣
∫ ∑

z

u(z)On(m,x′, ω)(z)dµ′n(u, x, x′, ω)−
∫ ∑

z

u(z)O0(m,x)(z)dµn(u, x)

∣∣∣∣∣
≤
∣∣∣∣∣
∫ ∑

z

u(z)On(m,x′, ω)(z)dµ′n(u, x, x′, ω)−
∫ ∑

z

u(z)O0(m,x′)(z)dµ′n(u, x, x′, ω)

∣∣∣∣∣
+

∣∣∣∣∣
∫ ∑

z

u(z)O0(m,x′)(z)dµ′n(u, x, x′, ω)−
∫ ∑

z

u(z)O0(m,x)(z)dµn(u, x)

∣∣∣∣∣ .
The first term is bounded above by (1/n) maxu,z,z′ |u(z)− u(z′)| since ‖On(·, ·, ω)−O0‖ ≤ 1/n for

every ω ∈ Ωn.

To show that the second term converges to 0 uniformly in m, it is enough to show that

lim
n→∞

(∫ ∑
z

u(z)f(x′)(z)dµ′n(u, x, x′, ω)−
∫ ∑

z

u(z)f(x)(z)dµn(u, x)

)
= 0

for each f ∈ Fc(X). Since X is a compact metric space, f is uniformly continuous. Therefore, for

every η > 0, there exists N such that maxz |f(x)(z)− f(x′)(z)| < η whenever d(x, x′) ≤ 1/N . For
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every n ≥ N , we have∣∣∣∣∣
∫ ∑

z

u(z)f(x′)(z)dµ′n(u, x, x′, ω)−
∫ ∑

z

u(z)f(x)(z)dµn(u, x)

∣∣∣∣∣
≤
∣∣∣∣∣
∫ ∑

z

u(z)f(x′)(z)dµ′n(u, x, x′, ω)−
∫ ∑

z

u(z)f(x)(z)dµ′n(u, x, x′, ω)

∣∣∣∣∣
+

∣∣∣∣∣
∫ ∑

z

u(z)f(x)(z)dµ′n(u, x, x′, ω)−
∫ ∑

z

u(z)f(x)(z)dµn(u, x)

∣∣∣∣∣ .
The first term is bounded above by ηmaxu,z,z′ |u(z)− u(z′)|; the second term is equal to zero since

mrgU×X µ
′
n = µn.

We can now complete the proof of Lemma 1 since Claims 1 and 2 contradict the assumption

that mrgU×X′×Ω µ
′
n weakly prefers On(m′n, ·, ·) to On(mn, ·, ·).

Proof of Lemma 2

The proof is by induction on n. Suppose that for each k ≤ n − 1, mi ∈ Rn−1
i (ti; T ,M) implies

di,k(µ̂i,k(ti),mi,k) ≤ εk ≤ εn−1 for every agent i ∈ I and every type ti ∈ Ti. Suppose that there exists
m∗i ∈ Rni (ti; T ,M) such that di,n(µ̂i,n(ti),m

∗
i,n) > εn. Then there exists νi ∈ ∆(M−i × Ui × T−i)

such that νi({(m−i, ui, t−i) | m−i ∈ Rn−1
−i (t−i; T ,M)}) = 1, mrgUi×T−iνi = µi(ti), and νi weakly

prefers O(m∗i , ·) to O(m′i, ·) for every m′i ∈Mi.

Collect all the terms in O that depend on mi,n, and define Oi,n : Mi,n ×M−i → ∆(Z) by

Oi,n(mi,n,m−i)(z)

= α

O0
i,n(mi,n,m−i,1, . . . ,m−i,n−1)(z) +

∑
j∈I\{i}

N∑
k=n+1

δk−nO0
j,k(mj,k,m−j,1, . . . ,m−j,k−1)(z)

 ,

where mi,k = m∗i,k for k 6= n when they appear in the second term, and

α = 1/

(
1 + (|I| − 1)

N∑
k=n+1

δk−n

)

is a normalization constant. Let Ω =
∏N
k=nM−i,k. Since we chose suffi ciently small δ, we have

‖Oi,n(·, ·, ω)−O0
i,n‖ ≤ ε0 ≤ εn−1 for every ω ∈ Ω. Let ν∗i ∈ ∆(M−i × Ui ×H−i,n−1) be such that

ν∗i (E) = νi({(m−i, ui, t−i) | (m−i, ui, (µ̂j,k(tj))j 6=i,1≤k≤n−1) ∈ E})

for each measurable E ⊆M−i × Ui ×H−i,n−1. By the induction hypothesis,

ν∗i

({
(m−i, ui, t−i,1, . . . , t−i,n−1)

∣∣∣∣ max
j 6=i,1≤k≤n−1

dj,k(tj,k,mj,k) ≤ εn−1

})
= 1.
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We also have mrgUi×H−i,n−1ν
∗
i = µ̂i,n(ti). Thus, we have mrgM−i×Uiν

∗
i ∈ ∆εn−1,µ̂i,n(ti)(M−i × Ui).

SinceMi,n is εn−1-dense in ∆(Ui×H−i,n−1), there exists m′i,n ∈Mi,n such that di,n(µ̂i,n(ti),m
′
i,n) ≤

εn−1. By Lemma 1,mrgM−i×Uiν
∗
i strictly prefersOi,n(m′i,n, ·) toOi,n(m∗i,n, ·), and thusmrgM−i×Uiν

∗
i

strictly prefers O(m′i,n,m
∗
i,−n, ·) to O∗(m∗i , ·). This is a contradiction.

Proof of Proposition 3

Fix any equilibrium σ̂ = (σ̂i)i∈I of Bayesian game (T̂ ,M). Let σ = (σi)i∈I be a profile of mappings

σi : Ti → ∆(Mi) given by σi = σ̂i ◦ µ̂i. For every i ∈ I, since σ̂i and µ̂i are both measurable, σi is
also measurable. Also, for every i ∈ I and every mi,m

′
i ∈Mi with σi(ti)(mi) > 0, we have

∫
Ui×T−i

∑
m−i∈M−i

∑
z∈Z

ui(z)(O(mi,m−i)(z)−O(m′i,m−i)(z))

∏
j 6=i

σj(tj)(mj)

µi(ti)(dui, dt−i)

=

∫
Ui×T−i

∑
m−i∈M−i

∑
z∈Z

ui(z)(O(mi,m−i)(z)−O(m′i,m−i)(z))

∏
j 6=i

σ̂j(µ̂j(tj))(mj)

µi(ti)(dui, dt−i)

=

∫
Ui×T̂−i

∑
m−i∈M−i

∑
z∈Z

ui(z)(O(mi,m−i)(z)−O(m′i,m−i)(z))

∏
j 6=i

σ̂j(t̂j)(mj)

µ∗i (µ̂i(ti))(dui, dt̂−i)

≥ 0,

where the second equality follows since (µ̂i)i∈I is belief-preserving, and the last inequality follows

since σ̂i(µ̂i(ti))(mi) = σi(ti)(mi) > 0 and σ̂ is an equilibrium of (T̂ ,M). Therefore, σ is an

equilibrium of Bayesian game (T ,M).

B Interdependent Preferences and λ-Continuity

We present a formal and self-contained treatment of general interdependent expected utility pref-

erences and the λ-continuity restriction. This treatment will be used in Appendix C.

One way to define state-dependent expected utility preferences for a general measurable space

X is to have a preference % over acts over X represented by a belief about states µ ∈ ∆(X) and a

µ-integrable state-dependent utility index u : X × Z → R as follows:

f % f ′ ⇔
∫
X

∑
z∈Z

u(x, z)(f(x)(z)− f ′(x)(z))µ(dx) ≥ 0.

Instead, we use a finite signed measure over X × Z to represent % as

f % f ′ ⇔
∫
X×Z

(f(x)(z)− f ′(x)(z))ν(dx, dz) ≥ 0.
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The representation by a finite signed measure ν is formally equivalent to, via the Radon-Nikodym

theorem, but more convenient than the representation by a belief-utility pair (µ, u). For example,

u is meaningful only up to µ-null events, and hence multiple belief-utility pairs can represent the

same preference. Indeed, although multiple signed measures can also represent the same preference,

it is not diffi cult to pick a particular normalization. For example, if % is not completely indifferent
over all outcomes, then we can choose z, z ∈ Z such that z � z and represent % uniquely by a

signed measure ν over X × Z such that ν(X × {z}) = 1 and ν(E × {z}) = 0 for every measurable

E ⊆ X.
In what follows, we use state-dependent expected utility preferences, described above, to define

type spaces of interdependent preferences, interdependent preference hierarchies, and the universal

type space. Along the way, we introduce various notions directly based on preferences so that we

can guarantee easily that these notions are well defined and independent of representations and

normalizations. But we also rephrase these notions, whenever possible, in terms of signed-measure

representations to ease the reader into possibly unfamiliar notations.

Our exercise here is largely guided by the analogy between subjective beliefs and preferences,

originated by Savage (1954) in single-agent environments and extended by Epstein andWang (1996),

Di Tillio (2008) and Ganguli, Heifetz, and Lee (2016) to multi-agent environments. At a technical

level, our argument relies on mathematical similarities between probability measures and signed

measures. At some subtle level, however, we need to understand a “patchwork”of possibly multiple

signed-measure representations of a single preference, which we will discuss further in Section B.3.

B.1 State-Dependent Expected Utility Preferences

For a measurable space X, let ca(X) be the set of all finite signed measures over X. For ν ∈ ca(X),

‖ν‖ = supmeasurable E,E′⊆X(ν(E) − ν(E′)) < ∞ denotes the total variation of ν; |ν| denotes the
total variation measure on X, defined by |ν|(E) = ‖ν(· ∩ E)‖ for each measurable E ⊆ X. If X

is a compact metric space, ca(X) is the dual of the set of continuous functions with the sup norm

(the Riesz representation theorem).

Recall that F (X) denotes the set of all acts overX, i.e., all measurable functions f : X → ∆ (Z).

If X is a compact metric space, Fc (X) ⊆ F (X) denotes the set of all continuous acts over X.

Let P (X) be the set of all state-dependent expected utility preferences over F (X) represented

by ν ∈ ca(X × Z) as follows:

f % f ′ ⇔
∫
X×Z

(f(x)(z)− f ′(x)(z))ν(dx, dz) ≥ 0.

We say that a preference % ∈ P (X) is certain of measurable E ⊆ X if X \E is Savage-null with
respect to %. For a preference % ∈ P (X) represented by ν ∈ ca(X×Z), % is certain of measurable
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E ⊆ X if and only if ν(E′ × {z}) = ν(E′ × {z′}) for every measurable E′ ⊆ X \ E and every

z, z′ ∈ Z.
We endow P (X) with the σ-algebra generated by {% ∈ P (X) | f % f ′} for each f, f ′ ∈ F (X).

If X is a compact metric space, we also endow P (X) with the topology generated by {% ∈ P (X) |
f � f ′} for each f, f ′ ∈ Fc(X); in this case, the Borel σ-algebra on P (X) coincides with the original

σ-algebra on P (X).29

Given two measurable spaces X and Y , a measurable mapping ϕ : X → Y and a preference

% ∈ P (X), we can define the induced preference ϕP (%) as the preference over F (Y ) such that,

for every f, f ′ ∈ F (Y ), it weakly prefers f to f ′ if and only if % weakly prefers f ◦ ϕ to f ′ ◦ ϕ.
(Note that f ◦ ϕ, f ′ ◦ ϕ ∈ F (X).) It is easy to show that if % ∈ P (X) is represented by a signed

measure ν ∈ ca(X × Z), then the induced preference ϕP (%) is represented by the induced signed

measure ν ′ ∈ ca(Y × Z), where ν ′(E) = ν({(x, z) ∈ X × Z | (ϕ(x), z) ∈ E}) for each measurable
E ⊆ Y ×Z. We thus have ϕP (%) ∈ P (Y ). Note that ϕP : P (X)→ P (Y ) is measurable; moreover,

if X and Y are compact metric spaces and ϕ : X → Y is continuous, then ϕP : P (X) → P (Y ) is

also continuous.

The “marginal” is an important example of induced preferences. Given a product measurable

space X × Y and a preference % ∈ P (X × Y ), the projection mapping prX : X × Y → X induces

the marginal, denoted by mrgX := (prX)P : P (X × Y ) → P (X). In other words, given that we

identify F (X) as a subset of F (X × Y ), where outcomes do not depend on the Y -coordinate, we

define the marginal of % ∈ P (X×Y ) on X, mrgX % ∈ P (X), as the restriction of % to F (X). This

notion corresponds to the notion of marginal of a probability or signed measure. Indeed, if % is

represented by a signed measure ν ∈ ca(X × Y × Z), then mrgX % is represented by the marginal
of ν on X × Z, mrgX×Z ν ∈ ca(X × Z), where (mrgX×Z ν)(E × {z}) = ν(E × Y × {z}) for each
measurable E ⊆ X and each z ∈ Z.

For a more specific example, consider a measurable space X, an arbitrary singleton set {∗} and
a preference % ∈ P (X). Then the constant mapping from X to {∗} induces the restriction of the
preference % to lotteries. If ν ∈ ca(X × Z) represents %, then mrgZ ν ∈ ca(Z) ∼= RZ is a von
Neumann-Morgenstern utility index that represents the restriction of the preference % to lotteries.
29Since Fc(X) ⊆ F (X), every Borel-measurable subset of P (X) is measurable. Conversely, let D =

{E ⊆ X | E is Borel-measurable in X, and {% ∈ P (X) | yEy′ % y′′Ey
′′′} is Borel-measurable in P (X) for every

y, y′, y′′, y′′′ ∈ ∆(Z)}, where yEy′ denotes the act over X that takes values y on E and y′ on X \ E. Then D is

a Dynkin system, and contains all closed subsets of X by Urysohn’s lemma. Since the family of all closed subsets of

X is a π-system, by the π-λ theorem, D coincides with the Borel σ-algebra on X. Hence {% ∈ P (X) | f % f ′} is
Borel-measurable in P (X) for all acts f and f ′ in the form of yEy′ with Borel-measurable E ⊆ X. This extends to

all simple acts and to all acts in the usual way.
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B.2 Type Spaces and the Universal Type Space

A type space is given by T = (Ti, πi)i∈I , where, for each i ∈ I, Ti is a measurable space of agent i’s
types, and πi : Ti → P (T−i) is a measurable mapping that maps his types to preferences.

Let H0 = {∗} (an arbitrary singleton set) and Hn = Hn−1 × P (H
|I|−1
n−1 ) =

∏n−1
k=0 P (H

|I|−1
k ) for

each n ≥ 1. Let H =
∏∞
n=0 P (H

|I|−1
n ) be the set of all hierarchies of interdependent preferences.

Given a type space T = (Ti, πi)i∈I , we define the interdependent preference hierarchy of a type

ti ∈ Ti, π̂i(ti) = (π̂i,1(ti), π̂i,2(ti), . . .), as follows: π̂i,1(ti) is the restriction of the preference πi(ti) to

lotteries, and for each n ≥ 2, π̂i,n(ti) is the preference of type ti over acts over the opponents’first

(n−1) order preferences, i.e., π̂i,n(ti) = (π̂−i,1, . . . , π̂−i,n−1)P (πi(ti)).30 It is easy to show inductively

that π̂i,n : Ti → P (H
|I|−1
n−1 ) is measurable for every n ≥ 1, and hence π̂i : Ti →

∏∞
n=0 P (H

|I|−1
n ) is

also measurable.

Following Heifetz and Samet (1998), we define T ∗i as the set of all interdependent preference

hierarchies t∗i ∈ H such that t∗i = π̂i(ti) for some type space T = (Ti, πi)i∈I and some type ti ∈ Ti.
We define π∗i : T ∗i → P (T ∗−i) by

π∗i (t
∗
i ) = π̂P−i(πi(ti)),

where ti ∈ Ti in some type space T = (Ti, πi)i∈I such that t∗i = π̂i(ti).31 We can show that π∗i is well

defined (i.e., independent of the particular type space T and particular type ti) and measurable.32

30Recall the notion of induced preferences. For each ti ∈ Ti, we define π̂i,1(ti) ∈ P ({∗}) by

π̂i,1(ti) weakly prefers y to y
′ ⇔ πi(ti) weakly prefers y to y

′

for each y, y′ ∈ F ({∗}) = ∆(Z).

For each n ≥ 2 and each f ∈ F (H
|I|−1
n−1 ), we have f ◦ (π̂−i,1, . . . , π̂−i,n−1) ∈ F (T−i) defined by

(f ◦ (π̂−i,1, . . . , π̂−i,n−1))(t−i) = f((π̂j,k(tj))j 6=i,1≤k≤n−1)

for each t−i ∈ T−i. Thus, for each ti ∈ Ti, we define π̂i,n(ti) ∈ P (H
|I|−1
n−1 ) by

π̂i,n(ti) weakly prefers f to f
′ ⇔ πi(ti) weakly prefers f ◦ (π̂−i,1, . . . , π̂−i,n−1) to f

′ ◦ (π̂−i,1, . . . , π̂−i,n−1)

for each f, f ′ ∈ F (H
|I|−1
n−1 ).

31For each f ∈ F (T ∗−i), we have f ◦ π̂−i ∈ F (T−i) defined by

(f ◦ π̂−i)(t−i) = f((π̂j(tj))j 6=i)

for each t−i ∈ T−i. Then we have π∗i (t∗i ) ∈ P (T ∗−i) defined by

π∗i (t
∗
i ) weakly prefers f to f

′ ⇔ πi(ti) weakly prefers f ◦ π̂−i to f ′ ◦ π̂−i

for each f, f ′ ∈ F (T ∗−i).
32For each n ≥ 0, let pr−i,n : T ∗−i → H

|I|−1
n be the projection mapping. Fix any f, f ′ ∈ F (H

|I|−1
n ). For each

t∗i = (%1,%2, . . .) ∈ T ∗i , there exist a type space T = (Ti, πi)i∈I and a type ti ∈ Ti such that t∗i = π̂i(ti). Then we
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We thus have the universal type space T ∗ = (T ∗i , π
∗
i )i∈I . By construction, the profile (π̂i)i∈I of

mappings π̂i : Ti → T ∗i is a preference-preserving morphism, also known as a type morphism in

Heifetz and Samet (1998), from T to T ∗ in the following sense.33

Proposition 6 For every type space T = (Ti, πi)i∈I and every agent i ∈ I, we have

π∗i ◦ π̂i = π̂P−i ◦ πi,

i.e., for every type ti ∈ Ti and every f, f ′ ∈ F (T ∗−i), π
∗
i (π̂i(ti)) weakly prefers f to f

′ if and only if

πi(ti) weakly prefers f ◦ π̂−i to f ′ ◦ π̂−i.

B.3 Compactness and Metrizability of Pλ(X)

Let P0(X) be the set of preferences in P (X) that are not completely indifferent over all outcomes.

By excluding the preference that is completely indifferent over F (X), we can show that P0(X) is

Hausdorff if X is a compact metric space.34

Lemma 3 If X is a compact metric space, then P0(X) is Hausdorff.

Proof. Pick any pair of preferences %,%′ ∈ P0(X) such that % 6= %′. Then there exist

f, f ′ ∈ F (X) such that % and %′ have different preferences between f and f ′. Since neither % nor
%′ is completely indifferent, we can assume without loss of generality that f � f ′ and f ′ �′ f .35

Let ν, ν ′ ∈ ca(X×Z) be finite signed measures that represent % and %′, respectively. Applying
Lusin’s theorem to (X ×Z, |ν|+ |ν ′|), we can assume without loss of generality that f, f ′ ∈ Fc(X).

Thus, % and %′ are separated by two disjoint open sets generated by f and f ′.
We define λ-continuity as follows.

Definition 1 For a given λ ∈ (0, 1/2], we say that a preference % is λ-continuous if there exist

z, z ∈ Z such that z � z and (1− λ) z + λf % (1− λ) z + λf ′ for every f, f ′ ∈ F (X).

have

π∗i (t
∗
i ) weakly prefers f◦pr−i,n to f ′◦pr−i,n ⇔ πi(ti) weakly prefers f◦π̂P−i,n to f ′◦π̂P−i,n ⇔ %n+1 weakly prefers f to f

′.

Thus, {t∗i ∈ T ∗i | π∗i (t∗i ) weakly prefers f ◦ pr−i,n to f ′ ◦ pr−i,n} is well defined and measurable. Since this is true
for every n and every f, f ′ ∈ F (H

|I|−1
n ), {t∗i ∈ T ∗i | π∗i (t∗i ) weakly prefers f to f ′} is well defined and measurable for

every f, f ′ ∈ F (T ∗−i), and hence π
∗
i : T ∗i → P (T ∗−i) is well defined and measurable.

33 In passing, we note that every preference-preserving morphism preserves interdependent preference hierarchies,

and that (π̂i)i∈I is the unique preference-preserving morphism from T to T ∗.
34 Indeed, Lemma 3 holds as long as we exclude the preference that is completely indifferent over F (X).
35For example, if f ∼ f ′ and f ′ �′ f , then pick f ′′, f ′′′ ∈ F (X) such that f ′′ � f ′′′. Then by slightly mixing f with

f ′′ and f ′ with f ′′′, we can make the first preference relation strict while maintaining the second preference relation.
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If X is a compact metric space, then by Lusin’s theorem, we can require (1− λ) z + λf %
(1− λ) z + λf ′ only for all f, f ′ ∈ Fc (X) without loss of generality.

Let Pz,z,λ(X) be the set of all λ-continuous preferences for a fixed pair of outcomes z, z ∈ Z.
Let Pλ(X) =

⋃
z,z∈Z Pz,z,λ(X) be the set of all λ-continuous preferences.

Note that λ-continuity is preserved for induced preferences. That is, given each measurable

mapping ϕ : X → Y , if we have % ∈ Pz,z,λ(X), then we also have ϕP (%) ∈ Pz,z,λ(Y ); if we have

% ∈ Pλ(X), then we also have ϕP (%) ∈ Pλ(Y ).

Fix a pair of outcomes z, z ∈ Z and λ ∈ (0, 1/2]. Then each % ∈ Pz,z,λ(X) is uniquely

represented by ν ∈ caz,z,λ(X × Z), where

caz,z,λ(X × Z) =


ν ∈ ca(X × Z)

∣∣∣∣∣∣∣∣∣∣∣

ν(X × {z}) = 1

ν(E × {z}) = 0 for every measurable E ⊆ X∫
X×Z(f(x)(z)− f ′(x)(z))ν(dx, dz) ≤ (1− λ)/λ

for every f, f ′ ∈ F (X)


.

In words, we normalize a signed-measure representation by first shifting the conditional expected

utility of getting z given each event to 0, and then scaling the expected utility of getting z to 1. The

condition that
∫
X×Z(f(x)(z)− f ′(x)(z))ν(dx, dz) ≤ (1− λ)/λ for every f, f ′ ∈ F (X) is a rewriting

of the definition of λ-continuity in terms of signed-measure representations. Via this normalization,

Pz,z,λ(X) is measurably isomorphic to caz,z,λ(X ×Z); furthermore, if X is a compact metric space,

then Pz,z,λ(X) is topologically isomorphic (i.e., homeomorphic) to caz,z,λ(X×Z) endowed with the

weak-* topology.

Note that this normalization is preserved for induced preferences. That is, given each mea-

surable mapping ϕ : X → Y , if ν belongs to caz,z,λ(X × Z), then the induced signed measure

ν ◦ (ϕ−1, idZ) belongs to caz,z,λ(Y × Z) with the same z, z ∈ Z and λ ∈ (0, 1/2]. Therefore,

if % ∈ Pz,z,λ(X) is represented by a normalized signed measure ν ∈ caz,z,λ(X × Z), then the

induced preference ϕP (%) ∈ Pz,z,λ(Y ) is represented by the already normalized signed measure

ν ◦ (ϕ−1, idZ) ∈ caz,z,λ(Y × Z).

Since each measurable function g : X×(Z\{z})→ R with ‖g‖ ≤ 1/(|Z|−1) in the sup norm can

be written as g(x, z) = f(x)(z)−f ′(x)(z) with some f, f ′ ∈ F (X), we have ‖ν‖ ≤ (|Z|−1)(1−λ)/λ

for every ν ∈ caz,z,λ(X×Z). Conversely, since ‖f−f ′‖ ≤ 1 in the sup norm for every f, f ′ ∈ F (X),

we have ν ∈ caz,z,λ(X ×Z) for every ν ∈ ca(X ×Z) such that ν(X × {z}) = 1, ν(E × {z}) = 0 for

every measurable E ⊆ X, and ‖ν‖ ≤ (1− λ)/λ.

Lemma 4 If X is a compact metric space, then Pz,z,λ(X) is compact and metrizable for every

z, z ∈ Z and every λ ∈ (0, 1/2].
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Proof. By the remark after Definition 1, Pz,z,λ(X) is closed in P0(X). Also, caz,z,λ(X×Z) can

be seen as a subset of the ball {ν ∈ ca(X × (Z \ {z})) | ‖ν‖ ≤ (|Z| − 1)(1− λ)/λ}, which is weak-*
compact by the Riesz representation theorem and Alaoglu’s theorem, and weak-* metrizable by the

Stone-Weierstrass theorem. Thus, caz,z,λ(X × Z) is compact and metrizable, and so is Pz,z,λ(X).

Note that Lemma 4 relies on λ-continuity with λ ∈ (0, 1/2].

Recall that Pλ(X) =
⋃
z,z∈Z Pz,z,λ(X). If |Z| ≥ 3, then this union is not disjoint, i.e., a given

preference % ∈ Pλ(X) may belong to Pz,z,λ(X) with multiple pairs of (z, z). In this case, we do not

choose any specific pair as “canonical”. Instead, we view Pλ(X) as a “patchwork”of finitely many

Pz,z,λ(X), each of which is homeomorphic to caz,z,λ(X × Z).

Proposition 7 If X is a compact metric space, then Pλ(X) is compact and metrizable for every

λ ∈ (0, 1/2].

Proof. By Lemmas 3 and 4, Pλ(X) is a finite union of compact and metrizable subspaces

Pz,z,λ(X), and hence Pλ(X) is compact and metrizable. (The metrizability follows from the Nagata-

Smirnov metrization theorem. See Nagata (1985, Theorem 6.12).)

B.4 λ-Continuous Type Spaces

Fix λ ∈ (0, 1/2]. We say that a type space T = (Ti, πi)i∈I is λ-continuous if πi(ti) ∈ Pλ(T−i) for

every i ∈ I and every ti ∈ Ti. Note that in a λ-continuous type space, each type has a λ-continuous
preference and common certainty of λ-continuous preferences. Moreover, the value of λ is fixed

uniformly in types.

Let Hλ,0 = {∗}, Hλ,n = Hλ,n−1 × Pλ(H
|I|−1
λ,n−1) for each n ≥ 1, and Hλ =

∏∞
n=0 Pλ(H

|I|−1
λ,n ).

By Proposition 7, Hλ,n is compact and metrizable for every n ≥ 0. We endow Hλ with the

product topology, and hence Hλ is also compact and metrizable. Since λ-continuity is preserved

for induced preferences, the interdependent preference hierarchy of every λ-continuous type is also

λ-continuous. That is, for every λ-continuous type space T = (Ti, πi)i∈I and every type ti ∈ Ti, we
have π̂i(ti) ∈ Hλ. (Recall that π̂i(ti) denotes the interdependent preference hierarchy of ti.)36

36Following Mertens and Zamir (1985) and Brandenburger and Dekel (1993), but replacing Kolmogorov’s ex-

tension theorem by a version generalized to signed measures with uniformly bounded total variations, we can de-

fine the universal λ-continuous type space T ∗λ = (T ∗i,λ, π
∗
i,λ)i∈I with the compact and metrizable set T ∗i,λ of all

λ-continuous preference hierarchies satisfying coherence and common certainty of coherence and the homeomorphism

π∗i,λ = π∗i |T∗i,λ : T ∗i,λ → Pλ(T ∗−i,λ). We do not need these facts, though.
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C Proofs in Section 5

The proofs in this section will use the self-contained treatment of general interdependent expected

utility preferences in Appendix B.

C.1 Proof of Proposition 4

The following result generalizes Proposition 3.

Proposition 8 For every type space T = (Ti, πi)i∈I , every agent i ∈ I, and every type ti ∈ Ti, we
have

Ei(ti; T ,M) ⊇ Ei(π̂i(ti); T̂ ,M)

for every finite mechanism M = ((Mi)i∈I , O), where T̂ = (T̂i, π
∗
i |T̂i)i∈I is a preference closed

subspace of the universal type space T ∗ = (T ∗i , π
∗
i )i∈I with T̂i = π̂i(Ti) for each i ∈ I.

Proof. The proof is analogous to that of Proposition 3; we only need to replace the belief-

preserving property by the preference-preserving property established in Proposition 6.

Proposition 4 follows from Proposition 8 and the existence of equilibria for countable types

(recall the proof of Theorem 2).

Proof of Proposition 5

Given a type space T = (Ti, πi)i∈I and a finite mechanismM = ((Mi)i∈I , O), we define the set of

actions that are preference rationalizable for type ti, denoted by PRi(ti) or PRi(ti; T ,M) as follows:

PR0
i (ti) = Mi,

PRn+1
i (ti) =


mi ∈Mi

∣∣∣∣∣∣∣∣∣∣∣

there exists %i ∈ P (M−i × T−i) s.t.
(i) %i is certain of

∏
j 6=i graph(PRnj ),

(ii) mrgT−i %i = πi(ti),

(iii) %i weakly prefers O(mi, ·) to O(m′i, ·) for every m′i ∈Mi


,

PRi(ti) =

∞⋂
n=0

PRni (ti).

Note that the inductive step is well defined since we can show inductively that graph(PRni ) is

measurable in Mi × Ti for every i ∈ I and n ≥ 0.

Lemma 5 For every finite type space T = (Ti, πi)i∈I and every finite mechanismM = ((Mi)i∈I , O),

we have the following:
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1. We have mi /∈ PR1
i (ti) if and only if there exists σi ∈ ∆(Mi) such that:

(a) O(σi,m−i)−O(mi,m−i) is independent of m−i ∈M−i, and

(b) πi(ti) strictly prefers O(σi,m−i) to O(mi,m−i) for some (and hence for all) m−i ∈
M−i.37

2. PRi(ti) = PR1
i (ti).

Proof. For part 1, the if direction is immediate. To show the only-if direction, let πi(ti) be

represented by w̄i : T−i × Z → R as follows:

f % f ′ ⇔
∑
t−i,z

(f(t−i)(z)− f ′(t−i)(z))w̄i(t−i, z) ≥ 0.

If mi /∈ PR1
i (ti), then there is no wi : M−i × T−i × Z → R such that∑

m−i

wi(m−i, t−i, z) = w̄i(t−i, z) for all t−i, z,∑
m−i,t−i,z

(O(mi,m−i)(z)−O(m′i,m−i)(z))wi(m−i, t−i, z) ≥ 0 for all m′i.

By Farkas’lemma, there exist D : T−i × Z → R and σi ∈ ∆(Mi) such that

D(t−i, z)− (O(σi,m−i)(z)−O(mi,m−i)(z)) = 0 for all t−i,m−i, z,∑
t−i,z

D(t−i, z)w̄i(t−i, z) > 0.

Thus, O(σi,m−i)(z)−O(mi,m−i)(z) is independent of m−i, and πi(ti) strictly prefers O(σi,m−i)

to O(mi,m−i).

For part 2, fix any player i ∈ I. For each j 6= i and tj ∈ Tj , if mj ∈ PR1
j (tj), then let σj(mj , tj)

be the point mass on mj . If mj /∈ PR1
j (tj), then by part 1, there exists σj(mj , tj) ∈ ∆(Mj) such

that for every z ∈ Z, O(σj(· | mj , tj),m−j)(z) − O(mj ,m−j)(z) is independent of m−j . Without

loss of generality, we assume that σj(mj , tj) ∈ ∆(PR1
j (tj)). For each m−i ∈ M−i and t−i ∈ T−i,

define σ−i(m−i, t−i) ∈ ∆(
∏
j 6=i PR

1
j (tj)) by σ−i(m−i, t−i)(m′−i) =

∏
j 6=i σj(mj , tj)(m

′
j) for each

m′−i ∈ PR1
−i(t−i).

Pick any ti ∈ Ti and any mi ∈ PR1
i (ti). Then there exists %i ∈ P (M−i × T−i) such that

mrgT−i %i = πi(ti) and mi is a best response with respect to %i. We will show that mi survives in

the second step of iteration.

37We define O(σi,m−i) by O(σi,m−i)(z) =
∑
m′i
O(m′i,m−i)(z)σi(m

′
i) for each z ∈ Z.
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Let πi(ti) be represented by w̄i : T−i×Z → R. Let %i be represented by wi : M−i×T−i×Z → R
such that

∑
m−i

wi(m−i, ·, ·) = w̄i. Define w′i : M−i × T−i × Z → R by

w′i(m
′
−i, t−i, z) =

∑
m−i

σ−i(m−i, t−i)(m
′
−i)wi(m−i, t−i, z)

for m′−i ∈M−i, t−i ∈ T−i and z ∈ Z. Denote by %′i ∈ P (M−i × T−i) the preference represented by
w′i. First, since σ−i(m−i, t−i) ∈ ∆(

∏
j 6=i PR

1
j (tj)) for every m−i ∈ M−i and every t−i ∈ T−i, %′i is

certain of
∏
j 6=i graph(PR1

j ). Second, we have∑
m′−i

w′i(m
′
−i, t−i, z) =

∑
m−i,m′−i

σ−i(m−i, t−i)(m
′
−i)wi(m−i, t−i, z)

=
∑
m−i

wi(m−i, t−i, z)

= w̄i(t−i, z),

and hence mrgT−i %
′
i = πi(ti). Third, for every m′i ∈Mi, we have∑

m′−i

O(m′i,m
′
−i)(z)w

′
i(m

′
−i, t−i, z)

=
∑

m−i,m′−i

O(m′i,m
′
−i)(z)σ−i(m−i, t−i)(m

′
−i)wi(m−i, t−i, z)

=
∑
m−i

O(m′i, σ−i(m−i, t−i))(z)wi(m−i, t−i, z)

=
∑
m−i

(O(m′i,m−i)(z) +D(m−i, t−i, z))wi(m−i, t−i, z)

=
∑
m−i

O(m′i,m−i)(z)wi(m−i, t−i, z) +
∑
m−i

D(m−i, t−i, z)wi(m−i, t−i, z)

for every t−i ∈ T−i and every z ∈ Z, whereD(m−i, t−i, z) := O(m′i, σ−i(m−i, t−i))(z)−O(m′i,m−i)(z)

is independent of m′i by the construction of σ−i(m−i, t−i). Since mi is a best response with respect

to %i represented by wi, it is also a best response with respect to %′i represented by w′i.

Lemma 6 For every pair of finite type spaces T = (Ti, πi)i∈I and T ′ = (T ′i , π
′
i)i∈I , every agent

i ∈ I, and every pair of types ti ∈ Ti and t′i ∈ T ′i , if π̂i,1 (ti; T ) = π̂i,1 (t′i; T ′), then we have

PRi(ti; T ,M) = PRi(t
′
i; T ′,M)

for every finite mechanismM = ((Mi)i∈I , O).

Proof. The result follows from Lemma 5.

Proposition 5 follows from rewriting the statement of Lemma 6 in terms of equilibrium.
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The Robust Scoring Rule

As in Section 4.2, we analyze a single-agent mechanism that reveals her state-dependent preferences.

Fix λ ∈ (0, 1/2]. Fix a compact metric space X with metric d. By Proposition 7, Pλ(X) is also

a compact metric space, whose metric is denoted by dP . The choice function with respect to

% ∈ Pλ(X) is given by

C%(f, f ′) =

f if % weakly prefers f to f ′,

f ′ if % strictly prefers f ′ to f

for every f, f ′ ∈ F (X).

By the Stone-Weierstrass theorem, there exists a countable dense subset F = {f1, f2, . . .} ⊂
Fc(X) in the sup norm.

We consider the following direct mechanism M0 = (M0, O0) for a single agent with message

set M0 = Pλ(X) and outcome function O0 : M0 ×X → ∆(Z) given by

O0(m,x)(z) =

∞∑
k=1

∞∑
l=1

2−k−lCm(fk, fl)(x)(z) (3)

for each realized state x ∈ X and reported preference m ∈M0.

For each δ > 0, % ∈ Pλ(X), and measurable space Ω, we define

Pλ,δ,%(X × Ω) =


%′′ ∈ Pλ(X × Ω)

∣∣∣∣∣∣∣∣∣∣∣

there exists %′ ∈ Pλ(X ×X ′ × Ω) with X ′ = X s.t.

(i) %′ is certain of {(x, x′) | d(x, x′) ≤ δ} × Ω,

(ii) mrgX%′ = %,
(iii) mrgX′×Ω%′ = %′′


.

Lemma 7 Fix λ ∈ (0, 1/2]. For every ε > 0, there exists δ > 0 such that the following is true

for every preference % ∈ Pλ(X), every pair of messages m,m′, every measurable space Ω, and

every perturbed outcome function O : M0 × X × Ω → ∆(Z): if dP (%,m) ≤ δ, d∆(%,m′) > ε,

and ‖O(·, ·, ω) − O0‖ ≤ δ for every ω ∈ Ω, then every preference in Pλ,δ,%(X × Ω) strictly prefers

O(m, ·, ·) to O(m′, ·, ·).

Proof. Suppose not. Then there exists ε > 0 such that for every n ∈ N, there exist
%n,mn,m

′
n ∈ Pλ(X) with dP (%n,mn) ≤ 1/n and dP (%n,m′n) > ε, measurable space Ωn, per-

turbed outcome function On : M0 × X × Ωn → ∆(Z) with ‖On(·, ·, ω) − O0‖ ≤ 1/n for every

ω ∈ Ωn, %′n ∈ Pλ(X×X ′×Ωn) with X ′ = X such that %′n is certain of {(x, x′) | d(x, x′) ≤ δ}×Ωn,

mrgX %′n = %n, and mrgX′×Ω%′n weakly prefers On(m′n, ·, ·) to On(mn, ·, ·). By taking a subse-
quence if necessary, we can assume without loss of generality that %′n ∈ Pz,z,λ(X×X ′×Ωn) with a
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fixed pair (z, z), and hence %n ∈ Pz,z,λ(X) with the same pair (z, z). By Proposition 7, by taking

a subsequence if necessary, we can find %∗,m′,∗ ∈ Pλ(X) such that %n → %∗ and m′n → m′,∗ as

n → ∞. Note that mn → %∗ as n → ∞, and %∗ 6= m′,∗. Also note that %∗ ∈ Pz,z,λ(X). Let

νn, ν
∗ ∈ caz,z,λ(X ×Z) and ν ′n ∈ caz,z,λ(X ×X ′×Ωn×Z) represent %n, %∗, and %′n, respectively.

Note that mrg1,4 ν
′
n = νn.

Let

u∗ =

∫
O0(%∗, x)(z)dν∗(x, z).

Claim 3 We have

lim
n→∞

∫
O0(mn, x)(z)dνn(x, z) = u∗,

lim sup
n→∞

∫
O0(m′n, x)(z)dνn(x, z) < u∗.

Proof of Claim 3. The claim follows from showing that

lim
n→∞

∫
Cmn(fk, fl)(x)(z)dνn(x, z) =

∫
C%∗(fk, fl)(x)(z)dν∗(x, z),

lim sup
n→∞

∫
Cm′n(fk, fl)(x)(z)dνn(x, z) ≤

∫
C%∗(fk, fl)(x)(z)dν∗(x, z),

for each k, l, and that the second inequality holds with strict inequality for some k, l. The first

equality and the second weak inequality follow from the standard revealed preference argument. To

show the strict inequality, since %∗ 6= m′,∗ and F ⊂ Fc(X) is dense in the sup norm, there exist k, l

such that %∗ strictly prefers fk to fl while m′,∗ strictly prefers fl to fk. Since m′n strictly prefers
fl to fk for suffi ciently large n, we have

lim
n→∞

∫
Cm′n(fk, fl)(x)(z)dνn(x, z)

= lim
n→∞

∫
fl(x)(z)dνn(x, z)

=

∫
fl(x)(z)dν∗(x, z)

<

∫
fk(x)(z)dν∗(x, z)

=

∫
C%∗(fk, fl)(x)(z)dν∗(x, z).

Claim 4 We have

lim
n→∞

(∫
On(m,x′, ω)(z)dν ′n(x, x′, ω, z)−

∫
O0(m,x)(z)dνn(x, z)

)
= 0

and the convergence is uniform in m ∈M0.
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Proof of Claim 4. Note that∣∣∣∣∫ On(m,x′, ω)(z)dν ′n(x, x′, ω, z)−
∫
O0(m,x)(z)dνn(x, z)

∣∣∣∣
≤
∣∣∣∣∫ On(m,x′, ω)(z)dν ′n(x, x′, ω, z)−

∫
O0(m,x′)(z)dν ′n(x, x′, ω, z)

∣∣∣∣
+

∣∣∣∣∫ O0(m,x′)(z)dν ′n(x, x′, ω, z)−
∫
O0(m,x)(z)dνn(x, z)

∣∣∣∣ .
The first term is bounded above by supω∈Ωn ‖On(·, ·, ω)−O0‖‖ν ′n‖ ≤ (|Z| − 1)(1− λ)/(nλ).

To show that the second term converges to 0 uniformly in m, it is enough to show that

lim
n→∞

(∫
f(x′)(z)dν ′n(x, x′, ω, z)−

∫
f(x)(z)dνn(x, z)

)
= 0

for each f ∈ Fc(X). Since X is a compact metric space, f is uniformly continuous. Therefore, for

every η > 0, there exists N such that maxz |f(x)(z)− f(x′)(z)| < η whenever d(x, x′) ≤ 1/N . For

every n ≥ N , we have∣∣∣∣∫ f(x′)(z)dν ′n(x, x′, ω, z)−
∫
f(x)(z)dνn(x, z)

∣∣∣∣
≤
∣∣∣∣∫ f(x′)(z)dν ′n(x, x′, ω, z)−

∫
f(x)(z)dν ′n(x, x′, ω, z)

∣∣∣∣
+

∣∣∣∣∫ f(x)(z)dν ′n(x, x′, ω, z)−
∫
f(x)(z)dνn(x, z)

∣∣∣∣ .
The first term is bounded above by η‖ν ′n‖ ≤ η(|Z| − 1)(1− λ)/λ; the second term is equal to zero

since mrgX×Z ν
′
n = νn.

Claims 3 and 4 contradict the assumption that mrgX′×Ω%′n weakly prefers On(m′n, ·, ·) to
On(mn, ·, ·).

Proof of Theorem 4

Fix λ ∈ (0, 1/2]. Given a λ-continuous type space T = (Ti, πi)i∈I and a finite mechanism M =

((Mi)i∈I , O), we define the set of actions that are λ-continuously rationalizable for type ti, denoted
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by Ri,λ(ti) or Ri,λ(ti; T ,M), as follows:

R0
i,λ(ti) = Mi,

Rn+1
i,λ (ti) =


mi ∈Mi

∣∣∣∣∣∣∣∣∣∣∣∣∣

there exists %i ∈ Pλ(M−i × T−i) s.t.
(i) %i is certain of

∏
j 6=i graph(Rnj,λ),

(ii) mrgT−i %i = πi(ti),

(iii) %i weakly prefers O(mi, ·) to O(m′i, ·)
for every m′i ∈Mi


,

Ri,λ(ti) =
∞⋂
n=0

Rni,λ(ti).

Note that the inductive step is well defined since we can show inductively that graph(Rni,λ) is

measurable in Mi × Ti for every i ∈ I and n ≥ 0.

Let dλ be a metric compatible with the product topology on the set Hλ of λ-continuous prefer-

ence hierarchies.

Proposition 9 Fix λ ∈ (0, 1/2]. For every ε > 0, there exists a finite mechanismM = ((Mi)i∈I , O)

such that

dλ(π̂i(ti; T ), π̂i(t
′
i; T ′)) > ε⇒ Ri,λ(ti; T ,M) ∩Ri,λ(t′i; T ′,M) = ∅

for every pair of λ-continuous type spaces T = (Ti, πi)i∈I and T ′ = (T ′i , π
′
i)i∈I , every agent i ∈ I,

and every pair of types ti ∈ Ti and t′i ∈ T ′i .

Sketch of the Proof. The proof is analogous to that of Proposition 2. By Proposition

7, H |I|−1
λ,n−1 is compact and metrizable, and hence we can let X = H

|I|−1
λ,n−1 and apply Lemma 7

repeatedly.

Proof of Theorem 4. 1 ⇒ 3 follows from Proposition 4. 3 ⇒ 2 follows from the fact that

equilibrium is a refinement of λ-continuous preference rationalizability. 2⇒ 1, or its contrapositive

¬1⇒ ¬2, follows from Proposition 9.
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