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Abstract

We identify a universal type space of possible interdependent (expected utility) preferences

of a group of agents satisfying two criteria. First, a type consists of a �detail free�description,

in a natural language, of the agents�interdependent preferences. Second, distinct types in the

universal type space must be �strategically distinguishable� in the sense that there must exist

a mechanism where those types are guaranteed to behave di¤erently in equilibrium.

Our results generalize and unify results of Abreu and Matsushima (1992b) (who character-

ized strategic distinguishability on �xed �nite type spaces) and Dekel, Fudenberg, and Morris

(2006), (2007) (who characterized strategic distinguishability on type spaces without preference

uncertainty and thus without interdependent preferences).
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1 Introduction

Consider the classical problem of allocating an object to one of two agents whose valuations (i.e.,

willingness to pay in terms of a numéraire good) are interdependent, so that one agent�s willingness

to pay depends on the other agent�s willingness to pay. The standard approach to modelling such

interdependent preferences is to let each agent have a set of possible �types,�where each type has

a belief about the other agent�s type, and each agent�s valuation depends on both agents�types. A

�direct mechanism�has each agent report his type, with the allocation of the object and agents�

payments functions of the reported types. There are elegant characterizations of when there exists

a direct mechanism where truth-telling is an equilibrium. But a usual criticism of this approach is

that the type space is a construct of the modeler and it is not clear what it means to ask an agent to

report a �type�that cannot be expressed in a natural language. Researchers have therefore devoted

considerable e¤ort to identifying �detail-free,� indirect, mechanisms - where agents are asked to

report something meaningful - that achieve the same objective.1

The objective of this paper is to provide a canonical description of possible interdependent

preference types that is detail free in the sense that types� interdependent preferences can be

described in a natural language without self-reference. We also want the de�nition to be operational

in the sense that two distinct types are guaranteed to behave di¤erently in at least one strategic

setting. We consider a general setting with arbitrary �nite sets of agents and outcomes. Agents

are assumed to have expected utility preferences over lotteries. A mechanism speci�es a �nite

set of possible messages for each agent and a lottery over outcomes for each message pro�le. We

study equilibrium behavior. We identify a universal type space of possible interdependent (expected

utility) preferences, expressed in a natural language, where distinct types in the universal type space

are �strategically distinguishable�in the sense that there exist mechanisms where those types are

guaranteed to behave di¤erently in equilibrium. Our approach does not make a distinction between

di¤erent reasons for the interdependence, such as whether it is based on objective signals, subjective

assessments or psychological/behavioral reasons.2

We describe an agent�s interdependent preference by a ��rst order preference�- in the example,

giving the agent�s willingness to pay for the object unconditional on the other agent�s valuation; a

�second order preference�- in the example, giving both (i) the agent�s beliefs about the other agent�s

unconditional willingness to pay; and (ii) the agent�s valuation of the object conditional on the

other agent�s �rst order preference; and so on... This gives a hierarchical description of the agent�s

1Dasgupta and Maskin (2000) and Perry and Reny (2002) provide detail-free mechanisms for more general allo-

cation problems.
2We discuss an example of psychological interdependence, and how it is incorporated, in the next Section.
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interdependent preferences in a natural language. In the example, the set of all such hierarchies of

interdependent preferences forms a universal type space of interdependent preferences, where each

agent�s type consists of (i) a belief over the other agent�s type; and (ii) a mapping specifying the

agent�s valuation of the object as a function of the other agent�s type.

But if we normalize valuations to be in the interval [0; 1], it is convenient, as a modelling device,

to imagine that there are two private states for each agent corresponding to his �true value�of 0 or

1; and the agent faces uncertainty about his �true value.�In this case, his set of possible valuations

is isomorphic to the set of probability distributions over f0; 1g. With this re-interpretation, our
universal type space of interdependent preferences is formally equivalent to a version of the classic

Mertens and Zamir (1985) universal type space of beliefs, but where beliefs are about private states

(corresponding to extreme points of possible preferences) and in particular, an agent�s beliefs about

the other agent�s private states are not relevant or recorded. Thus, our universal type space is a

set T � which is homeomorphic to the set of probability distributions over f0; 1g � T �. An agent�s
belief over the other agent�s type is then given by the marginal belief on the set T �. The agent�s

valuation of the object conditional on the other agent�s type is represented by the probability of

state 1 conditional on the other agent�s type. The subtlety in identifying the �right� universal

type space of interdependent preferences consists of identifying what is the �right�state space over

which the universal type space of beliefs is constructed: it consists of extreme points of a set of

possible preferences. We illustrate this subtlety in the next Section by pointing out why alternative

apparently intuitive approaches - including those usually explicitly or implicitly appealed to - fail to

satisfy our criteria of providing a natural language and characterizing strategic distinguishability.

The strategic distinguishability question is due to Abreu and Matsushima (1992b) (AM). AM

characterize (full) virtual Bayesian implementability of social choice functions for a �nite type space

under the solution concept of iterated deletion of strictly dominated strategies (as well as equilib-

rium). A necessary condition is a �measurability� condition that, in the language of this paper,

requires that the social choice function gives the same outcome to strategically indistinguishable

types. Lemma 2 of AM shows that two types are strategically distinguishable if and only if they

di¤er in their preference hierarchies. Thus our main result is an extension of Lemma 2 in AM from

�nite to in�nite type spaces (our result works for iterated deletion of strictly dominated strategies

as well as equilibrium).3 Our results make two main contributions relative to AM. First, our de�n-

3Abreu and Matsushima (1992b) also adapt arguments from the complete information setting (Abreu and Mat-

sushima (1992a)) to show that the measurability condition is essentially su¢ cient for virtual implementation. We

have not considered the extension of this argument to in�nite type spaces and thus do not know if a su¢ ciency result

could be proved. Bergemann and Morris (2009) and Brooks (2014) consider more special virtual implementation

problems using ideas from Abreu and Matsushima (1992b) and this paper.
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ition of universal types is independent of the type space in which they live. Second, AM require a

distinct mechanism for each �nite type space, even if we hold �xed the preference hierarchies we are

trying to distinguish in those �nite type spaces; by contrast, for any �xed pair of distinct preference

hierarchies, we give a single �nite mechanism that will strategically distinguish types with those

preference hierarchies across all �nite or in�nite type spaces satisfying a continuity condition.

With the private states interpretation, our results show that we can strategically distinguish

any pair of types if and only if they have distinct belief hierarchies about private states. Dekel,

Fudenberg, and Morris (2006), (2007) (DFM) consider a setting where agents have beliefs and higher

order beliefs about a common �external�state. They ask when and how we can distinguish types

based on arbitrary games where agents�payo¤s depend on the external state. It is an implication

of their results that two types can be strategically distinguished if and only if they have distinct

belief hierarchies about the external state.4 Thus our results parallel those of DFM, where our

uncertainty is about agents� (perhaps interdependent) payo¤s from �xed outcomes, rather than

about the external state that will determine payo¤s. We present an extension of our results, where

we add external states that mechanisms can be made contingent on. This generalization not only

embeds the DFM results in the original form, but also implies that the DFM results would go

through if we restricted attention to special classes of games such as zero sum games or common

interest games.5

Thus our results can be seen as a uni�cation and extension of the results of AM and DFM.

Like DFM and unlike AM, we express types in a detail-free way and distinguish types on arbitrary

type spaces. Like AM and unlike DFM, we distinguish between types with di¤erent hierarchies of

preferences and not just types with di¤erent hierarchies of beliefs about external states, and thus

we are more constrained in the set of strategic settings we can confront agents with.

The extension requires an innovation in the proof strategy. In order to strategically distinguish

two types with distinct preference hierarchies, we construct a mechanism in which agents are

asked to report their preference hierarchy. For each agent i and each order n, there is a positive

probability that a component of the mechanism is selected where outcomes are chosen to give

agent i an incentive to truthfully report her nth order preference conditional on other agents�

having truthfully reported their (n� 1)th and lower order preferences. A potential di¢ culty with
this proof strategy is that agent i�s report of her nth order preference is an input not only into the

component giving her an incentive to truthfully report her nth order preference, but also into the

components giving the other agents incentives to truthfully report their (n+1)th and higher order

preferences. Abreu and Matsushima (1992b) dealt with this di¢ culty by exploiting �niteness, and

4We discuss exactly which DFM results imply this in Section 4.5.
5Gossner and Mertens (2001) suggested such a result for zero sum games.
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having the probability of all components about (n+ 1)th and higher order preferences occur with

much smaller probability than components involving nth order preferences. Dekel, Fudenberg, and

Morris (2006) can choose payo¤s so that components giving each agent an incentive to report her

preferences have no implications for other agents. Neither trick is available in our setting, as we

have arbitrary type spaces and agents�preferences over outcomes may be arbitrarily linked. Instead,

we develop a robust scoring rule that not only gives an agent an incentive to report her nth order

preferences truthfully if others report their (n� 1)th and lower order preferences truthfully, but also
gives the agent an incentive to report her nth order preferences approximately truthfully if others

report their (n� 1)th and lower order preferences approximately truthfully. This enables us to
design a mechanism where the error size at each of a �nite number of orders can be simultaneously

controlled.6

Our results hold only if we exclude agents who are completely indi¤erent over all outcomes.

Clearly, completely indi¤erent types cannot be strategically distinguished from any other types.

We must also impose a continuity restriction on agents� preferences. Thus in the single good

allocation example, it is necessary that the agents�valuations are in a bounded interval. Without

such restrictions, we show that, while it is possible to �nd out agents� �rst order preferences

(in the example, their unconditional valuations of the object), it is not possible to strategically

distinguish two types that have the same �rst order preference. In the main body of the paper,

we impose continuity by assuming �simplex�restrictions on preferences, so that an agent�s ex post

preference over outcomes, conditional on any event that may occur, can be uniquely represented as

a convex combination of a �nite set of possible preferences over lotteries. The simplex assumption

allows us to develop our results in as standard language as possible, to draw tight and transparent

connections with the universal type space of Mertens and Zamir (1985), and to present our work

as a generalization and uni�cation of Abreu and Matsushima (1992b) and Dekel, Fudenberg, and

Morris (2006), (2007). Generalizing beyond the simplex case requires a more direct language for

preference hierarchies, as they cannot be simply expressed as belief hierarchies over private states.

Using this less standard but more direct alternative language (which is of independent interest),

we also show that our main equilibrium strategic distinguishability result generalizes beyond the

simplex case to weaker (��-continuity�) restrictions requiring that agents�preferences are uniformly

bounded away from complete indi¤erence.7

Our focus in this paper is on when two types are �strategically indistinguishable,� so that, in

6A related issue arises in the work of Chambers and Lambert (2014), where the problem of eliciting dynamic

(rather than interactive) beliefs is studied.
7This generalization is also needed to present Lemma 2 of Abreu and Matsushima (1992b) as a formal special case

of our results.
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any mechanism, there is a common equilibrium action which each of them might take. A more

demanding requirement is that two types are �strategically equivalent,�so that, in any mechanism,

the set of actions they might play are the same. Exploiting the connection with DFM, another result

that we can show is that two types are strategically equivalent under the solution concept of interim

correlated rationalizability (ICR) if and only if they have the same preference hierarchy (or belief

hierarchy over private states). We can then use this result to establish strategic distinguishability for

interim correlated rationalizability, for equilibrium and for any solution concept which is �ner than

ICR and coarser than equilibrium. However, this strategic equivalence result (unlike our equilibrium

and rationalizability strategic distinguishability results) depends on the simplex assumption and

does not extend to more general types spaces; this is an implication of results reported in Morris

and Takahashi (2012) and is not explored in this paper.

The paper is organized as follows. In Section 2, we return to the example where agents� ex

post preferences are parameterized by a single number in the interval [0; 1], and motivate why the

universal type space that we construct is the right one by spelling out why intuitive alternatives

are either too large or too small in terms of our objectives of providing a natural language and

characterizing strategic distinguishability. In Section 3, we present our main equilibrium strategic

distinguishability result when a simplex restriction is imposed on ex post preferences, using a

strategic equivalence result for rationalizability to prove the result. In Section 4, we discuss further

connections to the literature, including what happens when non-expected utility preferences are

permitted (Epstein and Wang (1996)), to what extent we could have separated the treatment of

belief types and ex post preference types (Gul and Pesendorfer (2010)), and the relation to classical

revealed preference theory (Afriat (1967)); we also discuss how allowing uncertainty about external

observable states enables us to make an exact connection with the work of Dekel, Fudenberg, and

Morris (2006), (2007). In Section 5, we report why continuity restrictions are necessary for our

results and report the weakest continuity restriction we know under which our main results go

through.

2 The �Right�Universal Type Space

Before introducing our formal framework, we give a motivating example to illustrate why we for-

malize the problem the way we do, and give intuition for our results. We �rst describe three very

di¤erent scenarios where each agent�s preference is summarized by a single payo¤ parameter in the

interval [0; 1]. We then motivate the mathematical description of the universal type space which

we propose independent of the interpretation of the payo¤ parameter. Finally, we explain why

alternative universal type spaces implicitly or explicitly proposed in the literature do not serve our
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purposes.

Thus suppose there are two agents, and each agent i has a payo¤ parameter ri in the interval

[0; 1]. This can be used to represent the scenario in the introduction: an agent�s payo¤ parameter

represents his willingness to pay for an object in terms of a numéraire good. Call this the �private

good�scenario.

For an alternative scenario, consider �conditional altruism.�8 Each of two agents may care about

the other�s private consumption, so that he is altruistic. But an agent may also be more altruistic if

he thinks that the other agent is more altruistic, in which case he is conditionally altruistic. Higher

order conditional altruism is also a possibility. In this case, agents�preferences are interdependent

for psychological reasons. More concretely, suppose that a prize is being allocated to either of the

two agents. Suppose that there is a probability ri 2 [0; 1] such that agent i is indi¤erent between the
other agent getting the object for sure and getting the object himself with probability ri. Thus ri

is an index of the agent i�s altruism. Conditional altruism corresponds to having a higher altruism

index when the other agent has a higher index.

Finally, consider a third �cardinality� scenario. There are three outcomes, �best,��medium�

and �worst.� There is common certainty of agents�common ordinal preferences. Thus both agents

strictly prefer �best�to �worst�and both agents weakly prefer �best�to �medium�and �medium�

to �worst.� Their expected utilities preferences over lotteries on the three outcomes may di¤er,

however. An agent with preferences parameterized by ri 2 [0; 1] is indi¤erent between outcome
�medium�for sure and a lottery with probability ri on �best�and 1 � ri on �worst.� Thus if we
normalize the von Neumann-Morgenstern utility index of �best�to 1 and of �worst�to 0, then ri

measures the utility index of outcome �medium.�

We will propose the same universal type space of interdependent preferences, modulo the in-

terpretation of the payo¤ parameters r1 and r2, in the three scenarios.9 Agent i�s interdependent

preference type will have the following hierarchical description:

1. A �rst order preference given by payo¤ parameter ri describing the agent�s unconditional

preference.

2. A second order preference over Anscombe-Aumann acts giving outcomes as functions of the

other agent�s �rst order preference.

3. A third order preference over Anscombe-Aumann acts giving outcomes as functions of the

other agent�s second order preference.

8This discussion follows Levine (1998) and Gul and Pesendorfer (2010).
9We postpone until Section 3.2 a discussion of how these scenarios will �t formally into our framework.
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4. And so on....

In the private good scenario, a second order preference will give both (i) the agent�s belief

about the other agent�s unconditional valuation and (ii) specify the agent�s valuation conditional

on possible unconditional valuations of the other agent. In the conditional altruism scenario, a

second order preference consists of (i) a belief about the unconditional altruism of the other agent,

as well as (ii) specifying the agent�s altruism conditional on the other agent�s unconditional altruism.

In the cardinality scenario, a second order preference consists of (i) a belief about the other agent�s

cardinal valuation of the medium outcome, as well as (ii) specifying the agent�s valuation of the

medium outcome conditional on the other agent�s cardinal valuation.

We claim that - independent of the scenarios - the �right�universal type space for each agent

in this symmetric environment is the universal type space T � of beliefs based on f0; 1g, i.e., the set
of coherent belief hierarchies about the extreme points of own payo¤ parameters, associated with

the following homeomorphism

T � �= �(f0; 1g � T �):

Thus each agent�s type is uniquely identi�ed with a belief over f0; 1g � T �. The interpretation is
that the marginal belief on T � corresponds to the agent�s belief over the other agent�s type; and

the conditional probability of state 1 corresponds to the agent�s payo¤ parameter conditional on

the other agent�s type.

A useful way to see why it is the right space for our purposes is to consider three natural

alternative spaces sometimes implicitly or explicitly proposed and explain why they do not succeed

in our purposes of (i) expressing interdependent preference types in a natural language; and (ii)

characterizing strategic distinguishability.

First, we could identify types with their own payo¤ parameters and their beliefs over other

agents�types. For reasons that we will explain, we will call this the �private values (PV) universal

type space.�The private values universal type space TPV will satisfy the homeomorphism

TPV �= [0; 1]��(TPV ):

The space TPV is not large enough to express the interdependent preferences we are interested

in. It clearly identi�es a �rst order preference. But it does not allow second order preferences to

depend on the other agent�s �rst order preference. In other words, it rules out the interdependence

we are trying to capture and is thus too small. This space would be the �right� universal type

space if common certainty of private values were maintained.10 It corresponds to a strict subset of

our universal type space T � where beliefs about f0; 1g and T � are constrained to be independent.
10See, for example, Heifetz and Neeman (2006) for a general construction of such a private value universal type

space.
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Second, we could identify types with coherent belief hierarchies about all agents�payo¤ parame-

ters. Call this the �payo¤ (P) universal type space.� In this example, agents�ex post preferences

are parameterized by a pro�le (r1; r2) 2 [0; 1]2. The payo¤ universal type space will satisfy the
homeomorphism

TP �= �
�
[0; 1]2 � TP )

�
:

The space TP is large enough to express all interdependent preferences that we are interested in,

but it is too rich for our purposes. The language distinguishes between agent i being sure that

his payo¤ parameter is 1
2 and having a 50=50 belief about where his parameter is 0 or 1. But

this distinction is not meaningful in a natural language description of the agent�s preferences: in

the private good scenario, in each case, the agent has a willingness to pay for the object of 12 . If

we did allow such a richer language where these situations were treated di¤erently, it would not

be possible to strategically distinguish such types. Similarly, here an agent has a belief not only

about his own payo¤ parameter, but also about the other agent�s payo¤ parameter. Thus in the

conditional altruism scenario, we allow for the possibility that agent i is sure that agent j is �truly

altruistic� (i.e., rj = 1) even though i is sure that j is sure that j is �truly sel�sh�(i.e., rj = 0),

and j will never behave in an altruistic way. Again, it is not clear what i�s belief about j�s payo¤

parameter means, and if we allowed such a rich language, such a type would not be strategically

distinguishable from agent i who is sure that rj = 0.

Third, we could identify types with beliefs and higher order beliefs about a rich class of �payo¤

types�that described interdependence in ex post preferences. An agent knows his own payo¤ type

but may not know the other agent�s payo¤ type. We will call this the �interdependent payo¤ (IP)

universal type space.�Thus we may let � be a set of possible payo¤ types for each agent and let

r
�
�; �0

�
2 [0; 1] specify an agent�s payo¤ parameter when he has payo¤ type � and the other agent

has payo¤ type �0, where r : �2 ! [0; 1]. The interdependent payo¤ universal type space TIP will

satisfy the homeomorphism

TIP �= ���(TIP ):

Since we assumed that agents knew their own �payo¤ types,� this is simply the private values

universal type space de�ned over � instead of [0; 1] as we did for TPV . This modelling approach

follows a standard practise in the literature of treating payo¤ interdependence and higher order

beliefs separately, and is widely used in the mechanism design literature, either implicitly or explic-

itly. It is implicit in Dasgupta and Maskin (2000), who introduce �types�which determine players�

interdependent values and then consider ways of implementing the e¢ cient outcome that do not

depend on beliefs. It is explicit in the work of two of us on robust mechanism design (Bergemann

and Morris (2012)), where we assumed a space of possible �payo¤ types,�and allow any beliefs and
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higher order beliefs about those payo¤ types.

The payo¤ type spaces in Dasgupta and Maskin (2000) and Bergemann and Morris (2012)

are not intended to be universal. Gul and Pesendorfer (2010) constructed a universal type space

of interdependent ex post preferences, abstracting from any belief structure. In particular, they

identify a maximal set of interdependent payo¤ types which captures all distinctions that can be

expressed in a natural language. When they consider applications of their universal type space to

incomplete information settings, they treat incomplete information separately and thus implicitly

allow any beliefs and higher order beliefs over their universal payo¤ space.

Similarly to the space TP , the space TIP is large enough to express interdependent preferences if

the underlying payo¤ type space is rich enough, but it is then too rich for our purposes. An agent�s

type in TIP speci�es what his beliefs would be conditional on types of the other agents he attaches

probability zero to. Thus it contains counterfactual information. While there might be purposes

for which we want a language to express this information, as discussed in Gul and Pesendorfer

(2010), such distinctions will not be strategically distinguishable in our sense.11

Concretely, in the conditional altruism scenario, compare (i) an agent who shares with the other

agent because he is conditionally altruistic and is sure that the other agent is altruistic; and (ii) an

agent who shares with the other agent because he is unconditionally altruistic. In the private good

scenario, compare (i) an agent with interdependent values who is certain that a good is worth 1
2

because he is sure that the other agent has observed a good signal, and (ii) an agent with a private

value of 12 for the good. These agents will not be strategically distinguishable from each other, but

will correspond to di¤erent types in TIP .

3 Main Result

We let I be a non-empty �nite set of agents, and Z be a �nite set of outcomes with jZj � 2. We will
impose �simplex�restrictions on the possible ex post preferences of each agent. The interpretation

is that there is common certainty that each agent�s preference is within that set, conditional on any

event. To keep language as standard as possible, we �nd it convenient to identify expected utility

preferences with representations of those preferences in RZ . Thus an agent with preference ui 2
RZ prefers lottery p 2 �(Z) to lottery p0 2 �(Z) ifX

z2Z
p (z)ui (z) �

X
z2Z

p0 (z)ui (z) .

11Our notion of strategic distinguishibility concerns static games and static solution concepts. In dynamic games,

with sequentially rational solution concepts, counterfactuals are relevant for strategic analysis. In this case, a richer

type space, perhaps following the work of Battigalli and Siniscalchi (1999), would be required.
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3.1 Simplex Restrictions

For each agent i 2 I, we consider a convex polytope U i � RZ with vertices (i.e., extreme points)
Ui = fu1i ; u2i ; : : : ; u

Ki
i g such that

1. no two distinct utility indices in U i represent the same preference, i.e., if there exist ui; vi 2 U i,
� > 0, and � 2 R such that vi(z) = �ui(z) + � for all z 2 Z, then ui = vi;

2. no utility index in U i represents the complete indi¤erence, i.e., ui 6= (x; : : : ; x) for any ui 2 U i
and any x 2 R;

3. u2i � u1i ; u3i � u1i ; : : : ; u
Ki
i � u1i are linearly independent.

Property (1) is simply a normalization among representations. Property (2) rules out the pos-

sibility of complete indi¤erence within the set. Property (3) is the simplex assumption; it requires

that every preference in U i can be uniquely represented as a convex combination of the extreme

points. We will discuss further below how this assumption may fail and what the implications of

its failure are. We will hold a pro�le of simplex restrictions
�
U i
�
i2I �xed throughout our analysis

in the next two Sections.

Our interpretation is that U i represents a set of preferences. Each U i is isomorphic to the set

of probability distributions over its extreme points, �(Ui), and this will play an important role in

our presentation. A preference can then be thought of as a probability distribution over �private

states� Ui. We �nd it useful to sometimes use this language and interpretation (identifying ex

post preferences with a probability distribution over private states) in the analysis, although we

emphasize that these subjective states have no observable counterpart.

3.2 Illustrating Simplex Restrictions

Simplex restrictions can be illustrated by noting how the examples discussed in Section 2 �t into

the framework of this Section. Suppose that there are two agents. First, consider the cardinality

scenario. In this case, there were three outcomes, which we can write as Z = fw;m; bg, correspond-
ing respectively to �worst,��medium�and �best�outcomes. The set Ui is the same for each agent

i, consisting of the two vectors (0; 0; 1) and (0; 1; 1) corresponding to the extreme preferences where

the agent is indi¤erent between the medium outcome m and the worst outcome w and where the

agent is indi¤erent between the medium outcome m and the best outcome b.

For the conditional altruism scenario, we can again consider three outcomes, Z = f?; 1; 2g,
but where the outcomes now correspond to, respectively, no one getting the prize, agent 1 getting

the prize and agent 2 getting the prize. Now U1 is di¤erent from U2, but has the same structure.
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The set U1 consists of two vectors (0; 1; 0) and (0; 1; 1) corresponding to, respectively, the extreme

preferences where the agent 1 is indi¤erent between the other agent getting the prize (outcome 2)

and no one getting the prize (outcome ?) and where the agent is indi¤erent between the other
agent getting the prize (outcome 2) and getting the prize himself (outcome 1). Symmetrically, U2

consists of two vectors (0; 0; 1) and (0; 1; 1).

To �t the private good scenario into our �nite outcome setting, we must introduce outcomes

that play the role of a numéraire. Suppose that each agent can be allocated nothing (?), a known
good (k) or a new good of uncertain value (u). Each agent cares only about his private allocation.

Each agent prefers the known good to the unknown good, but his valuation of the unknown good

may be anywhere between getting nothing and getting the known good. Thus his valuation of the

unknown good corresponds to his willingness to pay for the new good in terms of probability of

getting the known good. Formally, the set of outcomes speci�es one of the three private outcomes

for each agent, so

Z = f?; k; ug2 = f??;?k;?u; k?; kk; ku; u?; uk; uug ,

where, for example, u? corresponds to agent 1 getting the new good and agent 2 getting nothing.
The set U1 consists of two vectors:

(0; 0; 0; 1; 1; 1; 0; 0; 0)

and

(0; 0; 0; 1; 1; 1; 1; 1; 1) ;

corresponding to the extreme preferences where the agent 1 is indi¤erent between the unknown

good (outcomes with z1 = u) and getting nothing (outcomes with z1 = ?) and where the agent
is indi¤erent between the unknown good and getting the known good (outcomes with z1 = k).

Symmetrically, U2 consists of two vectors:

(0; 1; 0; 0; 1; 0; 0; 1; 0)

and

(0; 1; 1; 0; 1; 1; 0; 1; 1) :

We can also use these examples to illustrate how restrictive the simplex assumption is. For

example, we can enrich these examples to allow more uncertainty about the ranking of outcomes.

More speci�cally, in the conditional altruism scenario, we could replace the two extreme preferences

of agent 1 by (0; 1; v) and (0; 1;�v), for some large v > 0. This allows for the possibility that agent
1 strictly prefers agent 2 getting the prize to getting the prize himself. And it allows a "spiteful"

12



agent 1 who strictly prefers no one getting the prize to agent 2 getting the prize. This continues to

be a simplex case.

But now suppose instead that we added a fourth outcome m0 to the cardinality scenario, so

Z = fw;m;m0; bg. Let outcome m0 also be �medium�in the sense that outcome b is always weakly

preferred to m0 and m0 is weakly preferred to w. Also suppose that we have no restriction on how

m is ranked relative to m0. These preferences are naturally represented by the convex hull of four

vectors (0; 0; 0; 1), (0; 0; 1; 1), (0; 1; 0; 1) and (0; 1; 1; 1). This set of preferences is not a simplex. For

example, the preference
�
0; 12 ;

1
2 ; 1
�
does not have a unique representation as a convex combination

of extreme points. It is a 50/50 combination of (0; 0; 0; 1) and (0; 1; 1; 1). But it is also a 50/50

combination of (0; 0; 1; 1) and (0; 1; 0; 1).

3.3 Type Spaces

A type space T = (Ti; �i)i2I consists of non-empty measurable spaces Ti of agent i�s possible types,
T�i �

Q
j 6=i Tj , and measurable mappings:

�i : Ti ! �(Ui � T�i)

that assign each type ti 2 Ti with a belief �i(� j ti). Now for any Anscombe-Aumann acts f; f 0 :
T�i ! �(Z), type ti prefers f to f 0 ifZ

Ui�T�i

X
z2Z

ui(z)
�
f(z j t�i)� f 0(z j t�i)

�
�i(dui; dt�i j ti) � 0:

We interpret the marginal probability distribution mrg T�i �i(� j ti) 2 �(T�i) as type ti�s belief over
the opponents�type pro�les, and the conditional probability distribution �i(� j ti; t�i) 2 �(Ui) �= U i
as the utility index that represents type ti�s ex-post preference when the opponents�types are t�i.

Note that correlation in �(Ui�T�i) is essential, as it allows us to express interdependency of type
ti�s preferences and the opponents�types t�i.

3.4 The Universal Type Space

Because ex post preferences U i are isomorphic to �(Ui), we can also interpret Ui as a �nite set of

extreme �payo¤ states�and ui 2 U i as a probability distribution over payo¤ states. Thus we can
treat T = (Ti; �i)i2I formally as a belief type space, where di¤erent agents have beliefs and higher-
order beliefs over private state spaces (Ui)i2I . Thus, with minor modi�cations of Mertens and Zamir

(1985) and Brandenburger and Dekel (1993), we de�ne T �i as the set of all coherent hierarchies of

agent i�s beliefs, and construct the universal type space T � = (T �i ; ��i )i2I with homeomorphism

��i : T
�
i ! �(Ui � T ��i):

13



Moreover, for any type space T = (Ti; �i)i2I , the mapping that maps each type in Ti to its hierarchy
of beliefs:

�̂i : Ti ! T �i

preserves the belief structure, i.e.,

��i (E j �̂i(ti)) = �i(f(ui; t�i) j (ui; �̂�i(t�i)) 2 Eg j ti)

for any measurable subset E � Ui � T ��i. We sometimes write �̂i(�; T ) to emphasize its domain.

3.5 Rationalizability, Strategic Equivalence

and Strategic Distinguishability

A (�nite) mechanism (or game form) is given by M = ((Mi)i2I ; O), where Mi is a non-empty

�nite set of messages (actions) available to agent i, and O : M �
Q
iMi ! �(Z) is the outcome

function. In this mechanism, agents send messages m 2 M simultaneously, and the mechanism

assigns an outcome z with probability O(z j m). As usual, the domain of O is extended to �(M)

in the multi-linear way.

A type space T = (Ti; �i)i2I and a mechanism M = ((Mi)i2I ; O) together de�ne a game of

incomplete information (T ;M). We will later de�ne and discuss equilibrium and other solution

concepts for this game of incomplete information. However, it is useful to �rst discuss a suitably

modi�ed de�nition of solution concept of interim correlated rationalizability in Dekel, Fudenberg,

and Morris (2007) to this setting. The di¤erence from those papers is one of structure - here

there are private states (Ui)i2I instead of common states - as well as interpretation; here, the states

represent extreme points of the agents�possible ex post preferences, while in DFM, they represented

external events on which games�payo¤s were conditioned.12 We de�ne rationalizability as follows:

the induction is initialized with:

R0i (ti) =Mi;

the inductive step n+ 1 is de�ned by:

Rn+1i (ti) =

8>>>>><>>>>>:
mi 2Mi

�����������

there exists a measurable mapping ��i : Ui � T�i ! �(M�i) s.t.:

(i) ��i(Rn�i(t�i) j ui; t�i) = 1 for any ui 2 Ui and t�i 2 T�i;
(ii)

R
Ui�T�i

P
m�i2M�i

P
z2Z ui(z)(O(z j mi;m�i)�O(z j m0

i;m�i))

���i(m�i j ui; t�i)�i(dui; dt�i j ti) � 0; for any m0
i 2Mi:

9>>>>>=>>>>>;
;

12Allowing correlation in an agent�s conjecture about that agent�s private state and another agent�s action allows

correlation of preferences with others�actions. In this sense, ICR can be seen as even more permissive in this context.

See Morris and Takahashi (2012) for more on the foundations and interpretations of such solution concepts.
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which is equivalent to

Rn+1i (ti) =

8>>>>>>><>>>>>>>:
mi 2Mi

�������������

there exists �i 2 �(M�i � Ui � T�i) s.t.:
(i) �i(f(m�i; ui; t�i) j m�i 2 Rn�i(t�i)g) = 1;
(ii) mrg Ui�T�i �i = �i(ti);

(iii)
R
M�i�Ui�T�i

P
z2Z ui(z)(O(z j mi;m�i)�O(z j m0

i;m�i))

��i(dm�i; dui; dt�i) � 0; for any m0
i 2Mi:

9>>>>>>>=>>>>>>>;
;

and the limit set is de�ned by:

Ri(ti) =

1\
n=0

Rni (ti):

We sometimes write Ri(ti; T ;M) to emphasize the underlying type space T and mechanism

M. Similarly to Dekel, Fudenberg, and Morris (2007, Proposition 1 and Corollary 2), we can show

that rationalizability depends only on universal types.

Proposition 1 For any type space T = (Ti; �i)i2I , any agent i 2 I, and any type ti 2 Ti, we have

Ri(ti; T ;M) = Ri(�̂i(ti); T �;M)

for any mechanismM = ((Mi)i2I ; O).

The proof of this Proposition appears in the Appendix.

Following the terminology in the introduction, for the ICR solution concept, we say that two

types are strategically indistinguishable if their ICR actions have a non-empty intersection for every

mechanismM. We say that the types are strategically equivalent if there exists a mechanismM such

that their ICR action sets are the same. In this terminology, the following Theorem establishes that

the universal type space characterizes both strategic distinguishability and strategic equivalence for

ICR.

Theorem 1 For any two type spaces T = (Ti; �i)i2I and T 0 = (T 0i ; �
0
i)i2I , any agent i 2 I, and

any two types ti 2 Ti and t0i 2 T 0i , the following three conditions are equivalent:

1. �̂i(ti; T ) = �̂i(t0i; T 0);

2. Ri(ti; T ;M) \Ri(t0i; T 0;M) 6= ; for any mechanismM;

3. Ri(ti; T ;M) = Ri(t
0
i; T 0;M) for any mechanismM.

Note that 1) 3 follows from Proposition 1; 3) 2 follows from the nonemptyness of rational-

izability. Then 2 ) 1 follows from the following Proposition. Let d�i be a metric compatible with

the product topology on T �i .
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Proposition 2 For every " > 0, there exists a mechanismM = ((Mi)i2I ; O) such that

d�i (�̂i(ti; T ); �̂i(t0i; T 0)) > ") Ri(ti; T ;M) \Ri(t0i; T 0;M) = ;

for any two type spaces T = (Ti; �i)i2I and T 0 = (T 0i ; �0i)i2I based on (Ui)i2I , any agent i 2 I, and
any two types ti 2 Ti and t0i 2 T 0i .

The Proposition proves a little more than what is needed to prove Theorem 1: it shows that

if we �x a metric d�i and " > 0, we can strategically distinguish all types that are at least " apart

using the same mechanism. In the remainder of this sub-Section, we describe the mechanism we

use to prove this result, which is the main technical contribution of the paper. Proofs are in the

Appendix.

The strategy of proof is as follows. If two types are " apart in the metric compatible with

the product topology on T �i , then there must exist " > 0 and N such that the types Nth order

preferences are at least " apart. For each order n = 0; 1:::; N , we will choose an accuracy "n > 0.

For each agent i and n � 1, agent i will report an element of a "n�1-dense �nite subset of his nth
order preference. For each agent i and n � 1, there will be a component of the mechanism, chosen
with positive probability, that will pick an outcome as a function of agent i�s announcement of his

nth order preference and the announcements of the (n � 1)th and lower order preferences of the
other agents. The mechanism will have the property that as long as (n� 1)th and lower order
announcements are within "n�1 of the truth, then nth order announcements are within "n of the

truth.

The last step of the argument uses a robust scoring rule described the next sub-Section. We

show that, for every " > 0, we can �nd � > 0 and a scoring rule that gives an incentive to report

beliefs within " of his true beliefs even if the outcomes of the scoring rule may be arbitrarily

perturbed within �. This lemma can then be iteratively applied to construct the mechanism used

in the main proof.

Abreu and Matsushima (1992b) and Dekel, Fudenberg, and Morris (2006) followed similar

arguments up until the last step. But neither required the robust scoring lemma. AM exploited the

�niteness of the type space. They can choose an " > 0 such that the (j; n+1)th component occurs

with probability at most " times that of the (i; n)th component. Now " > 0 can be chosen uniformly

small enough so that agents can be strictly incentivized to report their preferences exactly at every

order.13 DFM allow for arbitrary, in�nite, type spaces, so it is not possible to �nd a uniform "

that makes AM argument work. In DFM, it is necessary to have agents report an approximation

13 In the related work of Bergemann and Morris (2009), there is a �nite set of possible �payo¤ types� and an

analogous trick can be applied.
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to their true belief at every order. But payo¤s for each agent can be chosen independently, so it is

possible to do the approximation one order at a time. Because neither strategy is available in our

setting, we need a novel robust scoring rule to make the argument work.

3.5.1 The Robust Scoring Rule and the Proof of Proposition 2

As a preliminary step, we �rst analyze a single-agent mechanism that reveals her state-dependent

preferences. In this subsection, �x a simplex U � RZ of ex post preferences with vertices U and a

compact metric space X of states with metric d. Let d� be a metric compatible with the weak-*

topology over �(U � X). Let F (X) be the set of (Anscombe-Aumann) acts over X, i.e., the set
of measurable functions f : X ! �(Z). Then each � 2 �(U � X) uniquely represents a state-
dependent preference over F (X). That is, the agent with preference � weakly prefers f to f 0 if and

only if Z
U�X

X
z2Z

u(z)(f(z j x)� f 0(z j x))�(du; dx) � 0:

We de�ne the choice function with respect to �:

C�(f; f
0) =

8<:f if � weakly prefers f to f 0;

f 0 if � strictly prefers f 0 to f;

for any f; f 0 2 F (X).
Let Fc(X) � F (X) be the set of continuous acts over X. Since X is a compact metric space,

by the Stone-Weierstrass theorem, there exists a countable dense subset F = ff1; f2; : : :g � Fc(X)
in the sup norm. Fix such an F .

We consider the following direct mechanism M0 = (M0; O0) for a single agent with message

set M0 = �(U �X) and outcome function O0 : M0 �X ! �(Z) given by

O0(z j m;x) =
1X
k=1

1X
l=1

2�k�lCm(fk; fl)(z j x); (1)

for each realized state x 2 X and reported preference m 2 M0. Under the mechanism M0, the

agent reports her preference. Then the social planner randomly draws a pair of acts from F and

assigns the agent with her preferred act according to her reported preference.14

In Lemma 1 below, we show that truth telling is optimalM0 for every type. Indeed, by invoking

the compactness of X, we show a �robust�version of optimality: in every mechanism close toM0,

14Note that M0 is not a �nite mechanism. The mechanism we will construct in the next Subsection to prove

Proposition 2, however, has �nite actions.
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the agent strictly prefers reporting almost true preferences to reporting others according to almost

true preferences.

Recall that for each message m, O0(� j m; �) is an act over X, which determines an outcome
z with probability O0(z j m;x) when the nature chooses x 2 X. We consider two sources of

perturbations to this act. First, with small probability, the outcome may not be chosen according

to O0(� j m;x). Formally, for each � > 0 and measurable space 
, we consider perturbed outcome
function O : M0�X�
! �(Z) such that kO(� j �; �; !)�O0k � supm2M0;x2X;z2Z jO(z j m;x; !)�
O0(z j m;x)j � � for any ! 2 
. Second, when nature is supposed to choose x, nature may instead
choose x0 in a neighborhood of x. Formally, for each � > 0, � 2 �(U �X), and measurable space

, let

��;�(U�X�
) =

8>><>>:mrg1;3;4�0 2 �(U �X � 
)

��������
9�0 2 �(U �X �X � 
) s.t.
(i) �0(f(u; x; x0; !) j d(x; x0) � �g) = 1;
(ii) mrg1;2�

0 = �

9>>=>>; ; (2)
where mrg��

0 with � � f1; 2; 3; 4g denotes the marginal of �0 with respect to the coordinates in
�. In words, ��;�(U � X � 
) is the set of preferences over noisy acts induced by the original
preference �.

Lemma 1 For every " > 0, there exists � > 0 such that the following is true for any preference

� 2 �(U �X), any pair of messages m;m0, any measurable space 
, and any perturbed outcome

function O : M0�X �
! �(Z): if d�(�;m) � �, d�(�;m0) > ", and kO(� j �; �; !)�O0k � � for
any ! 2 
, then any preference in ��;�(U �X � 
) strictly prefers O(� j m; �; �) to O(� j m0; �; �).

Recall that we follow the standard procedure and construct the universal type space T � =
(T �i ; �

�
i )i2I by hierarchies. Speci�cally, for each i 2 I, let Hi;0 = f�g be initialized with a single

element, and let Hi;n = Hi;n�1 ��(Ui �H�i;n�1) for each n � 1. Note that Hi;n =
Qn�1
k=0 �(Ui �

H�i;k). Then we can construct the universal type space T �i �
Q1
n=0�(Ui � H�i;n) as the set of

coherent hierarchies of agent i�s beliefs over his private states. Let di;n be a metric compatible with

the topology on the set of agent i�s n-th order beliefs, �(Ui �H�i;n�1).
Fix any " > 0. By the de�nition of the product topology, there exist �" > 0 and N 2 N such that,

for every fti;ng1n=1; ft0i;ng1n=1 2 T �i , if d�i (fti;ng1n=1; ft0i;ng1n=1) > ", then there exists some n � N

such that di;n(ti;n; t0i;n) > �". Pick such �" and N .

For each i 2 I and n � N , we apply Lemma 1 by substitutingX = H�i;n�1 =
Q
j 6=i
Qn�2
k=0 �(Uj�

H�j;k), d(t�i;n�1; t0�i;n�1) = maxj 6=imax1�k�n�1 dj;k(tj;k; t
0
j;k), and d� = di;n. Pick a countable

dense subset of Fc(H�i;n�1), and de�ne O0i;n : �(Ui � H�i;n�1) � H�i;n�1 ! �(Z) as in (1). By

Lemma 1, there exist 0 < "0 � "1 � � � � � "N�1 � "N � �"=2 such that if di;n(ti;n;mi;n) � "n�1,
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di;n(ti;n;m
0
i;n) > "n, and jOi;n(� j �; �; !) � O0i;nj � "n�1 for any ! 2 
, then any preference in

�"n�1;ti;n(Ui �H�i;n�1 � 
) strictly prefers Oi;n(� j mi;n; �; �) to Oi;n(� j m0
i;n; �; �).

We de�ne a mechanism M = ((Mi)i2I ; O) as follows. For each i 2 I and n � N , let Mi;n be

any "n�1-dense �nite subset of �(Ui �H�i;n�1) with respect to di;n, and Mi =
QN
n=1Mi;n. De�ne

O : M ! �(Z) by

O(z j m) = 1� �
jIj(1� �N )

X
i2I

NX
n=1

�n�1O0i;n(z j mi;n;m�i;1; : : : ;m�i;n�1)

for each m 2M and z 2 Z, where � > 0 is small enough to satisfy (1� �)=� � (jIj � 1)(1� "0)="0.

Claim 1 For any type space T = (Ti; �i)i2I , any agent i 2 I, and any type ti 2 Ti, we have

mi 2 Rni (ti; T ;M)) di;n(�̂i;n(ti);mi;n) � "n

for any n � N .

We can now complete the proof of Proposition 2.

Proof of Proposition 2. Pick any pair of type spaces T and T 0, i 2 I, ti 2 Ti, and t0i 2 T 0i .
Suppose that there exists mi = (mi;1; : : : ;mi;N ) 2 Ri(ti; T ;M) \ Ri(t0i; T 0;M). For every n � N ,
since ai 2 Rni (ti; T ;M) \Rni (t0i; T 0;M), we have

di;n(�̂i;n(ti; T ); �̂i;n(t0i; T 0)) � di;n(�̂i;n(ti; T );mi;n) + di;n(�̂i;n(t
0
i; T 0);mi;n) � 2"n � �"

by Claim 1. Thus d�i (�̂i(ti; T ); �̂i(t0i; T 0)) � ".

3.6 Equilibrium and Strategic Distinguishability

Our analysis thus far concerned the solution concept of interim correlated rationalizability. Our

focus in this paper is on equilibrium. Equilibria do not always exist on large type spaces. However,

even when equilibria do not exist on large type spaces, equilibria may exist on belief-closed subsets

of the large type space. We will follow Sadzik (2010) in de�ning such �local� equilibria. We say

that a pro�le � = (�i)i2I of measurable mappings �i : bTi ! �(Mi) is a local equilibrium of (T ;M)

on a belief closed subspace bT = (bTi; �ijbTi)i2I ifZ
Ui�T�i

X
m�i2M�i

X
z2Z

ui(z)(O(z j mi;m�i)�O(z j m0
i;m�i))

0@Y
j 6=i
�j(mj j tj)

1A�i(dui; dt�i j ti) � 0
for any agent i, any ti 2 bTi, and any mi;m

0
i 2 Mi with �i(mi j ti) > 0. We denote by Ei(ti) the

set of messages played with positive probability in local equilibrium on a belief closed subspace

containing ti. We also write Ei(ti; T ;M).
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Proposition 3 For any type space T = (Ti; �i)i2I , any agent i 2 I, and any type ti 2 Ti, we have

Ei(ti; T ;M) � Ei(�̂i(ti); T �;M)

for any mechanismM = ((Mi)i2I ; O).

Proof. The proposition follows because if �� = (��i )i2I is a local equilibrium of (T �;M), then

by the belief-preserving property of �̂i, � = (�i)i2I with �i = ��i � �̂i is a local equilibrium of

(T ;M).

In general, equilibrium exists only under much stronger conditions that interim correlated ra-

tionalizability. But a su¢ cient condition for existence is that each Ti is countable and Mi is �nite

(a maintained assumption of the paper). This gives us:

Theorem 2 For any two countable type spaces T = (Ti; �i)i2I and T 0 = (T 0i ; �
0
i)i2I , any agent

i 2 I, and any two types ti 2 Ti and t0i 2 T 0i , the following two conditions are equivalent:

1. �̂i(ti; T ) = �̂i(t0i; T 0);

2. Ei(ti; T ;M) \ Ei(t0i; T 0;M) 6= ; for any mechanismM.

Proof. 1 ) 2 follows from Proposition 3 and the existence of equilibria; 2 ) 1 follows

from Theorem 1 (indeed Proposition 2) and the fact that local equilibrium is a re�nement of

rationalizability.

It is immediate to extend Theorem 2 to other interim solution concepts that are nonempty,

coarser than equilibrium, and �ner than interim correlated rationalizability. Strategic equivalence,

however, holds only for interim correlated rationalizability and not for equilibrium. It is well known

from environments with common certainty of preferences that solution concepts such as equilibrium

and interim independent rationalizability depend on redundant types. See Dekel, Fudenberg, and

Morris (2007), Ely and Peski (2006) and Sadzik (2010).

4 Discussion

4.1 The Expected Utility Assumption

We maintained the assumption of expected utility maximization. Epstein and Wang (1996) con-

struct a universal type space of non-expected utility preferences, incorporating non-expected utility

preferences such as ambiguity aversion, but maintaining monotonicity as well as additional regu-

larity conditions. The universal type space we study when we relax the simplex assumption in
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the next Section is expressed in a similar language to Epstein and Wang (1996). Unlike Epstein

and Wang (1996), however, we impose independence to get an expected utility representation, and

dispense with monotonicity to incorporate the interdependence of preferences we want to capture.

di Tillio (2008) allows general preferences, and thus does not require monotonicity or independence,

but restricts attention to preferences over �nite outcomes at every order of the hierarchy.15

4.2 Separating Beliefs from Payo¤s

Our approach integrates the treatment of payo¤s (or ex post preferences) with beliefs and higher

order beliefs about those payo¤s. But the standard approach in the literature has been to discuss

the two separately. In particular, as we discussed in Section 2, an alternative construction is to �rst

identify a universal space of interdependent payo¤ types (with a single �characteristic�), following

Gul and Pesendorfer (2010), and then allow for all possible beliefs and higher order beliefs over

those payo¤ types. But this construction gives a di¤erent space from our universal space. In

particular, it is neither coarser nor �ner than our construction. The alternative construction makes

distinctions which our space does not because, as discussed in Section 2, it will separate types that

di¤er only in what their ex post preferences would be conditional on zero probability events. On

the other hand, our construction allows ex post preferences to vary depending on others�beliefs.

Thus I might be more altruistic if I believe that you believe that I am altruistic. This cannot arise

in the alternative construction, where payo¤ types depend only on others�payo¤ types, not their

beliefs. Thus we allow ex post preferences to depend on beliefs, as in the �psychological games�

literature of Geanakoplos, Pearce, and Stacchetti (1989) and Battigalli and Dufwenberg (2009).

However, preferences depend only on other agents�beliefs about others�types and not - as in the

psychological games literature - on beliefs about actions.16

However, even though our universal space is quite di¤erent from this alternative construction,

it still makes sense to ask if and how we can distinguish between �payo¤ types�and �belief types�

in a natural way in our universal space. Just as beliefs cannot be pinned down in (single person)

expected utility representations of preferences unless we �x a numéraire, there is indeterminacy in

beliefs in our construction based on the choice of representations of the extreme preferences Ui.

But particular applications may suggest a numéraire over which the modeler wishes to treat utility

15The strategic distinguishability question does not appear to have been addressed without expected utility pref-

erences. Chambers (2008) shows the impossibility of constructing a uniform scoring rule to distinguish preferences

and beliefs in a non-expected utility setting, which suggests that positive results about strategic distinguishability

would be hard to obtain. Grant, Meneghel, and Tourky (2014) analyze �Savage games� played on subjective state

spaces, allowing both expected utility maximizers and more general preferences; in both cases, they do not construct

a universal type space or consider strategic distinguishability.
16Such beliefs can be captured as �characteristics� in Gul and Pesendorfer (2010).
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as state independent, which will pin down the representation. A universal type of agent i can then

be characterized by a belief over others�types, and ex post preferences over outcomes conditional

on others�types. We can use the separation to interpret existing works.

Dasgupta and Maskin (2000) consider mechanisms where agents report what their valuations

would be conditional on others�valuations taking particular values. This is a subset of the infor-

mation expressed in our universal type space. Under their maintained assumptions about what

is common knowledge among the agents, this is enough information to identify true valuations.

Bergemann and Morris (2009) �x a payo¤ type space and show that payo¤ types can be strategi-

cally distinguished without reference to their beliefs and higher order beliefs if and only if there is

not �too much�interdependence in ex post preferences.

4.3 Strategic Revealed Preference

We have identi�ed an operational de�nition of types. Two types are strategically distinguishable

if there exists a mechanism where they are guaranteed to behave di¤erently. This de�nition is

operational, and does not make reference to information or signals that agents have observed. We

do not consider whether agents�interdependent types�preferences are based on information because

we do not know what the operational counterpart to that information is.17

Classical single person revealed preference theory characterizes when a set of choice functions are

consistent with rational choice (Afriat (1967)), with the weak axiom of revealed preference (WARP)

being the key restriction on choice rules. If, in additional to standard rationality assumptions, we

looked at choices over lotteries and added the independence assumption, we would obtain more

restrictions. A primitive single person revealed preference question would then be if you can tell

the di¤erence between two di¤erent expected utility preferences over lotteries. A standard argument

says that we can construct a pair of lotteries such that one preference will lead to one strict ordering,

and the other preference will lead to the opposite strict ordering. Our strategic distinguishability

question is a many person analogue of this question.18

17This contrasts with one approach in the epistemic game theory literature that argues that it is necessary to

include an explicit description of signals to analyze environments with asymmetric information. See, for example,

Battigalli, Tillio, Grillo, and Penta (2011).
18There is a small literature developing strategic analogues of classic single agent decision theory. See, for example,

Sprumont (2000). There are many di¤erences between this paper and that literature. Thus Sprumont (2000) �x the

action set while we allow for arbitrary action sets. Their theory is ordinal and does not impose expected utility while

ours is cardinal and does impose expected utility.
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4.4 Incorporating External States

We made a modelling choice to restrict attention to �uncontingent mechanisms,�O : M ! �(Z),

where agents�actions alone determined outcomes. We modelled agents�interdependent preferences,

which entailed modelling the agents�incomplete information about each others�preferences. The

maintained interpretation was that this incomplete information was about preferences which, math-

ematically, could be represented as beliefs over private states corresponding to extreme points of

their own ex post preferences.

However, game theorists often talk about incomplete information about external and veri�able

states which may in�uence which outcomes the mechanism will choose. If we write � for a �nite

(or compact metric) space of external states that in�uence outcomes, then we can consider a richer

class of contingent mechanisms, O : M � � ! �(Z). With a richer class of mechanisms, we will

be able to more �nely strategically distinguish types, since these external states may also impact

preferences and beliefs and higher order beliefs about them may also be revealed. We excluded

discussion of such external states earlier because they were incidental to our primary exercise of

characterizing the universal type space of interdependent preferences. But reporting this extension

now allows us to connect our result to those of DFM, according to their original interpretation, in

an exact way (see the next sub-Section). The results and proofs do not change, once we alter our

de�nitions of type spaces, mechanisms and solution concepts to re�ect � in the appropriate way.

Thus we will merely state how the de�nitions must be changed in order for our previous results to

hold as stated.

A type space T = (Ti; �i)i2I now consists of non-empty measurable spaces Ti of agent i�s possible
types and measurable mappings �i : Ti ! �(Ui � � � T�i), i.e., a belief type space over private
states and external states (Ui��)i2I . The universal type space T � = (T �i ; ��i )i2I is constructed with
the homeomorphism ��i : T

�
i ! �(Ui ��� T ��i). For any type space T = (Ti; �i)i2I , the mapping

�̂i : Ti ! T �i maps each type in Ti to its hierarchy of beliefs over (Ui � �)i2I . A mechanism

M = ((Mi)i2I ; O) consists of non-empty �nite sets Mi of messages available to agent i and the

outcome function O : M ��! �(Z). The de�nition of rationalizability becomes:

R0i (ti) =Mi;

Rn+1i (ti) =

8>>>>><>>>>>:
mi 2Mi

�����������

there exists a measurable mapping ��i : Ui ��� T�i ! �(M�i) s.t.:

(i) ��i(Rn�i(t�i) j ui; �; t�i) = 1 for any ui 2 Ui, � 2 � and t�i 2 T�i;
(ii)

R
Ui���T�i

P
m�i2M�i

P
z2Z ui(z)(O(z j mi;m�i; �)�O(z j m0

i;m�i; �))

���i(m�i j ui; �; t�i)�i(dui; d�; dt�i j ti) � 0; for any m0
i 2Mi:

9>>>>>=>>>>>;
;

Ri(ti) =

1\
n=0

Rni (ti):
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We say that a pro�le � = (�i)i2I of measurable mappings �i : bTi ! �(Mi) is a local equilibrium

on a belief closed subspace bT = (bTi; �ijbTi)i2I ifZ
Ui���T�i

X
m�i2M�i

X
z2Z

ui(z)(O(z j mi;m�i; �)�O(z j m0
i;m�i; �))

0@Y
j 6=i
�j(mj j tj)

1A�i(dui; d�; dt�i j ti) � 0
for any agent i, any ti 2 bTi, and any mi;m

0
i 2Mi with �i(mi j ti) > 0.

Now Theorems 1 and 2 remain true as stated. Our previous analysis corresponds to the special

case where � is a singleton.

4.5 Common Certainty of Preferences

We now argue that if we extend our framework to incorporate external states (as in the previous

sub-Section), but impose the restriction that there is common certainty of ex post preferences, then

we map our problem and results back to the environment studied by Dekel, Fudenberg, and Morris

(2006), (2007).19

Say that there is common certainty of preferences if each Ui is a singleton fuig, where ui 2 RZ

is not constant over Z. This is an example of a simplex restriction as de�ned in Section 3.1.20

Under common certainty of preferences, there is uncertainty and higher order uncertainty about

external states but no uncertainty about preferences. Thus the universal type space is simply the

Mertens-Zamir universal type space, corresponding to the set of coherent belief hierarchies about

external states �.

Given that each Ui is a singleton, picking a contingent mechanism is equivalent to picking a

game (a speci�cation of payo¤s as a function of message/action pro�les and external states), with

the proviso that the set of feasible payo¤ vectors is given by the convex hull of the set of payo¤

vectors that can arise from a given outcome. Write V for the set of payo¤ pro�les that can be

induced by some lottery over outcomes, so that

V = convf(ui(z))i2I 2 RI j z 2 Zg:

Now consider a game G = ((Mi)i2I ; g), where Mi is the set of actions for agent i,

g : M ��! V;

19There is an alternative interpretation of DFM under which they can be seen as a special case of the results in this

paper without appeal to �external� states. Observe that uncontingent mechanisms and states - pro�les of extremal

preferences, in our simplex formulation - jointly de�ne a set of utility functions from message pro�les and states to

payo¤s, i.e., a game. If the outcome space were su¢ ciently rich, this problem would reduce to DFM. If not, results

in this paper would identify strategic distinguishability in restricted classes of games.
20Property 2 in Section 3.1 is maintained and the other properties are vacuous in this case.
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and gi (m; �) is the payo¤ of agent i if action pro�le m is chosen and the external state is �.

Call such a game a V -game. Each contingent mechanism M = ((Mi)i2I ; O) induces a V -game

G = ((Mi)i2I ; g) with

g(m; �) =

 X
z

ui(z)O(z j m; �)
!
i2I

for any m 2M and � 2 �; conversely, any V -game can be induced by some contingent mechanism.
Our de�nition of interim correlated rationalizability in this case corresponds exactly to that in

Dekel, Fudenberg, and Morris (2006), (2007). Our Theorem 1 now proves that two types have the

same belief hierarchy over � if and only if they have the same ICR actions in all V -games. In the

case that V is a non-degenerate product set, i.e.,

V =
Y
i2I
[vi; vi]

with vi < vi for any i 2 I, this result was already proved in Dekel, Fudenberg, and Morris (2006),
(2007). Speci�cally, for any non-degenerate product set V , Dekel, Fudenberg, and Morris (2006,

Lemma 4) show that if two types have distinct belief hierarchies, then there is a V -game where

they have disjoint rationalizable action sets;21 conversely, Dekel, Fudenberg, and Morris (2007,

Proposition 1 and Corollary 2) show that two types with the same belief hierarchy have the same

ICR actions (for �nite types and general types, respectively) in any V -game.

The assumption that the set V is a non-degenerate product set has a natural counterpart in

our setting. Say that we have a private good environment if the outcome space Z has a product

structure Z =
Q
i2I Zi, and each agent i�s utility from outcome z depends only on the ith component

zi, so ui (z) = eui (zi) for some eui : Zi ! R. In this case, the set of feasible payo¤ vectors has the
product structure

V =
Y
i2I
[vi; vi] ,

where

vi = min
zi2Zi

eui (zi) and vi = max
zi2Zi

eui (zi) .
But our Theorem 1 did not rely on the private good environment assumption. If the common

certainty of preferences assumption is maintained but the private good assumption is dropped,

then the set V of feasible payo¤ pro�les could be any convex polytope whose projection in any

21Dekel, Fudenberg, and Morris (2006, Lemma 4) prove something a little stronger: for any distance between

nth order beliefs, we can �nd " > 0 such that any action which is �-rationalizable for one type is not even (� + ")-

rationalizable for the other type.
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dimension is non-degenerate. For example, our Theorem would apply to environments where

V =

(
v 2 [�1; 1]I

�����X
i2I
vi = 0

)

so we restricted attention to zero sum games. And it would apply to environments where

V =
�
v 2 [0; 1]I jvi = vj for all i; j 2 I

	
,

so we restricted to common interest games. Thus, while the original proof of Dekel, Fudenberg, and

Morris (2006, Lemma 4) relied on the assumption that any payo¤ vectors are feasible, our Theorem

1 - with external states added and common certainty of preferences assumed - establishes that it

would remain true if DFM had restricted attention to zero sum games, common interest games, or

many other subsets of games which restricted how agents�payo¤s can vary.

Gossner and Mertens (2001) show that a zero sum game of incomplete information has a value

which depends only on the probability distribution over Mertens-Zamir hierarchies and is increasing

in informativeness in Blackwell�s sense. The argument requires a strategic distinguishability result

for the case of zero sum games.22 While the formulation of our strategic distinguishability question

and the proof are di¤erent from those arising in Gossner and Mertens (2001), the argument above

suggests when and how the approach in this paper could be used to develop analogous strategic

distinguishability exercises in di¤erent classes of games.

5 General Hierarchies of Preferences and �-Continuity

We imposed a simplex restriction on agents�ex post preferences. We made this assumption because

it not only su¢ ced for the compactness properties that we need for our main results, but also allowed

us to state the results in as standard a language as possible.

The simplex restriction is a strong restriction in many ways. It does not have a clear inter-

pretation based on preferences. It has the strong implication that there exists a pair of lotteries

for each agent with a strict ranking that is independent of his own type as well as the opponents�

types. This property was not assumed by Abreu and Matsushima (1992b) and thus our simplex

results do not formally imply their Lemma 2.

Without the simplex assumption, it is not natural to represent preferences by beliefs over

ex post preferences. Thus, in this Section, we introduce an alternative language for describing

preferences and preference hierarchies more directly. We show that without any restriction on ex

22Gossner and Mertens (2001) is an abstract of unpublished work; we are grateful to Olivier Gossner for privately

sharing notes from the complete paper.
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post preferences, no mechanism can strategically distinguish two types with the same �rst order

preference (i.e., the same preference over lotteries). Finally, we explore the restriction of what

we call ��-continuity,� which is weaker than any simplex restriction, and yet su¢ cient for the

strategic distinguishability result. Namely, we establish that as long as we restrict attention to

�-continuous types, two types are strategically distinguishable if and only if they are mapped to

distinct preference hierarchies.

Note that we keep the discussion in this Section rather informal. We also restrict attention to

countable type spaces and to the solution concept of equilibrium. A more formal treatment and

proofs are presented in Supplemental Appendix, which also shows how the results can be extended

to general type spaces and more permissive rationalizability solution concepts.

5.1 No Restriction on Ex Post Preferences

We relax the simplex restriction, and allow for a more general class of interdependent expected util-

ity preferences. For simplicity, we consider a countable type space represented by T = (Ti; �i; ui)i2I
with

�i : Ti ! �(T�i);

ui : Ti � T�i � Z ! R;

where for each ti 2 Ti, ui(� j ti; �) is absolutely summable with respect to �i(� j ti), i.e.,
P
t�i;z

jui(z j
ti; t�i)j�i(t�i j ti) < 1. Given a mechanism M = ((Mi)i2I ; O) with O : M ! �(Z), a pro�le

� = (�i)i2I of behavioral strategies �i : Ti ! �(Mi) is an equilibrium if

X
t�i2T�i

X
m�i2M�i

X
z2Z

ui(z j ti; t�i)(O(z j mi;m�i)�O(z j m0
i;m�i))

0@Y
j 6=i
�j(mj j tj)

1A�i(t�i j ti) � 0
for any agent i 2 I, any type ti 2 Ti, and any (truthful and deviating) messages mi;m

0
i 2Mi with

�i(mi j ti) > 0.
The above type space T = (Ti; �i; ui)i2I is based on belief-utility representations, and unlike

in the case of simplex restriction, each preference has multiple belief-utility representations, all

of which are equally unnatural. A more natural approach is to work directly with preferences

as follows. For a countable set X, recall that F (X) denotes the set of all (Anscombe-Aumann)

acts over X. Let P (X) be the set of all preferences % over F (X) represented by � 2 �(X) and
�-absolutely summable state-dependent utility u : X � Z ! R as follows:

f % f 0 ,
X
x2X

X
z2Z

u(z j x)(f(z j x)� f 0(z j x))�(x) � 0:
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With this P -notation, a type space is simply expressed as T = (Ti; �i)i2I with

�i : Ti ! P (T�i);

where �i(ti) is the preference of type ti over acts over the opponents�types. This new language

is rich enough to describe all necessary information about the type space, including the notion of

equilibrium without explicit references to belief-utility representations. We could have expressed

our earlier simplex results in this language also, but chose not to do so in order to highlight the

tight connection with the existing literature.23

Given a mechanismM, a behavioral strategy pro�le � is an equilibrium if �i(ti) weakly prefers

O(� j mi; �) � ��i to O(� j m0
i; �) � ��i for any i; ti;mi;m

0
i with �i(mi j ti) > 0.24 As before,

let Ei(ti; T ;M) denote the set of all messages that can be played with positive probability in

equilibrium. Given a type space T = (Ti; �i)i2I with �i : Ti ! P (T�i), we write �̂i;1 (ti) for the

unconditional preference of type ti over lotteries, and call it his �rst order preference. Note that

we have �̂i;1 (ti) 2 P (f�g), where f�g denotes an arbitrary singleton set. We also write �̂i;2 (ti)
for the restriction of type ti�s preference over acts that depend only on the opponents��rst order

preferences, i.e., for any f; f 0, �̂i;2 (ti) weakly prefers f to f 0 if and only if �i(ti) weakly prefers f �
�̂�i;1 to f 0 � �̂�i;1, and we call it his second order preference;25 thus �̂i;2 (ti) 2 P ((P (f�g))jIj�1). We
de�ne third order, and higher order, preferences similarly, and we write �̂i(ti) = (�̂i;1(ti); �̂i;2(ti); : : :)

for the hierarchy of type ti�s higher order preferences. Let Hf be the set of all preference hierarchies

of �nite types.

Now the following result will continue to be true.

Proposition 4 For any two countable type spaces T = (Ti; �i)i2I and T 0 = (T 0i ; �0i)i2I , any agent
i 2 I, and any two types ti 2 Ti and t0i 2 T 0i , if �̂i(ti; T ) = �̂i(t

0
i; T 0), then Ei(ti; T ;M) \

Ei(t
0
i; T 0;M) 6= ; for any mechanismM.

However, the converse will not be true. In particular, we have:

23 In an earlier version of this work, Bergemann, Morris, and Takahashi (2011), we expressed simplex results (implied

by a �worst outcome assumption�) in this preference language.
24Note that we have O(� j mi; �) � ��i 2 F (T�i) de�ned by

(O(� j mi; �) � ��i)(z j t�i) =
X

m�i2M�i

O(z j mi;m�i)
Y
j 6=i

�j(mj j tj)

for each t�i 2 T�i and z 2 Z. Similarly, we have O(� j m0
i; �) � ��i 2 F (T�i).

25Note that we have f � �̂�i;1 2 F (T�i) de�ned by

(f � �̂�i;1)(z j t�i) = f (z j (�̂j;1(tj))j 6=i)

for each t�i 2 T�i and z 2 Z. Similarly, we have f 0 � �̂�i;1 2 F (T�i).
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Proposition 5 Suppose that two preference hierarchies of �nite types h = (%1;%2; : : :); h0 =
(%01;%02; : : :) 2 Hf share the same �rst order preference, i.e., %1 = %01. Then for any agent

i 2 I and any mechanism M = ((Mi)i2I ; O), there exist two �nite type spaces T = (Ti; �i)i2I and
T 0 = (T 0i ; �

0
i)i2I and two types ti 2 Ti and t0i 2 T 0i such that �̂i (ti; T ) = h, �̂i (t0i; T 0) = h0, and

Ei(ti; T ;M) \ Ei(t0i; T 0;M) 6= ;.

The proof is in the Supplemental Appendix. In what follows, we use an example to illustrate

why a mechanism like the one constructed in Section 3.5.1 cannot strategically distinguish types

with distinct hierarchies of preferences.

Take the conditional altruism scenario, and consider a mechanism with two messages 0 and 1

for each agent and the outcome being in the form of

O(� j m1;m2) = (1� ")O1(� j m1) + "O2(� j m1;m2)

with " � 0, where O1 is to solicit agent 1�s report about his �rst order preference, whereas O2

is to solicit both agents�reports about their higher order preferences. To �x ideas, suppose that

O1(� j m1 = 0) gives the prize to nobody and agent 1 with probability 1
2 each, and O1(� j m1 = 1)

gives the prize to agent 2; O2(� j m1;m2) gives the prize to agents 1 and 2 with probability m1m2
2 ,

and to nobody with the remaining probability 1�m1m2. Consider a type space, where each agent i

has two possible types 0 and 1, each type believes that the opponent�s type is 0 or 1 with probability
1
2 , and payo¤ parameters (the payo¤ from the opponent getting the prize) are given by

t2 = 0 1

t1 = 0 1 + v; 1 + v 1� v; 1
1 1; 1� v 1; 1

with v 2 R. Note that all types have the same expected value of the payo¤parameter 1+v2 +
1�v
2 = 1,

and hence have the same preference hierarchy as the truly altruistic type with complete information,

independently of v.

In this case, if " = 0, then agent 1 has an incentive to report m1 = 1 (as a dominant action)

according to his �rst order preference. But since there is no interaction term between m1 and m2,

no information about higher order preferences can be revealed in equilibrium actions. In contrast,

if " > 0, then for su¢ ciently large v, type 0 of agent 1 no longer has a dominant action, and indeed,

the strategy pro�le of reporting mi = ti becomes an equilibrium. In sum, there is no " � 0 that

keeps agent 1�s incentive to report his �rst order preference truthfully and yet solicits higher order

preferences from any agent.

Note that this example hinges crucially on the di¤erence between us and AM: our exercise of

strategic distinguishability (Theorems 1 and 2) is to construct a mechanism independently of an
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underlying type space, whereas AM �x a �nite type space �rst and then construct a mechanism.

This example also illustrates a trade-o¤ between " and v. There is no " > 0 that keeps m1 = 1 a

dominant action for agent 1 independently of v. But if we knew a bound of v, then we could choose

" small enough (in the magnitude of 1=jvj) so that m1 = 1 is a dominant action for agent 1. The

notion of �-continuity in the next sub-Section formalizes this idea in a general type space.

5.2 �-Continuity

For a given � > 0, we say that a preference % 2 P (X) is �-continuous if there exists a pair of
outcomes z and z0 such that z � z0 and for any f; f 0 2 F (X),

(1� �) z + �f % (1� �) z0 + �f 0:

That is, we require that the preference relation z � z0 be maintained at least weakly even if we mix
these uncontingent outcomes z and z0 with a small probability of state-contingent lotteries (i.e.,

acts) f and f 0. In other words, �-continuity imposes a bound on the �intensity�of state dependency

measured by the utility di¤erence between any two acts relative to the utility di¤erence between

any two outcomes. Let P�(X) be the set of all �-continuous preferences in P (X). P�(X) for small

� > 0 can be thought of all preferences excluding a neighborhood of preferences that are completely

indi¤erent over all outcomes. A type is said to be �-continuous if it belongs to a type space where

all types are �-continuous.

We can now prove a converse to Proposition 4 for �-continuous preferences:

Proposition 6 Fix � > 0. For any two �-continuous type spaces T = (Ti; �i)i2I and T 0 =
(T 0i ; �

0
i)i2I , any agent i 2 I, and any two types ti 2 Ti and t0i 2 T 0i , if �̂i(ti; T ) 6= �̂i(t

0
i; T 0), then

there existsM with Ei(ti; T ;M) \ Ei(t0i; T 0;M) = ;.

Thus Propositions 4 and 6 together show a version of Theorem 2 for countable and �-continuous

preferences.26 Lemma 2 of Abreu and Matsushima (1992b) is a special case of Proposition 6, since

�nite type spaces are �-continuous.

26 In the Supplemental Appendix, we will construct a universal type space of interdependent preferences without a

topological structure, analogous to the topology free construction of the universal type space in Heifetz and Samet

(1998). However, one can also follow the classical construction of the universal type space like in Mertens and Zamir

(1985) by exploiting the compact metrizability of P�(X).
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A Appendix

Proof of Proposition 1. We will show

8i 2 I; 8ti 2 Ti; Rni (ti; T ;M) = Rni (�̂i(ti); T �;M) (Equivn)

by induction on n.

It is obvious that (Equiv0) holds.

Suppose that (Equivn) holds for n � 0. Fix any i 2 I and any ti 2 Ti. For any mi 2
Rn+1i (ti; T ;M), there exists �i 2 �(M�i�Ui�T�i) such that �if(m�i; ui; t�i) j m�i 2 Rn�i(t�i; T ;M)g =
1,mrg Ui�T�i �i = �i(ti), and

R
M�i�Ui�T�i

P
z2Z ui(z)(O(z j mi;m�i)�O(z j m0

i;m�i))�i(dm�i; dui; dt�i) �
0 for any m0

i 2Mi. Let ��i 2 �(M�i � Ui � T ��i) be such that

��i (E) = �i(f(m�i; ui; t�i) j (m�i; ui; �̂�i(t�i)) 2 Eg)

for any measurable subset E �M�i � Ui � T�i. Then we have

��i f(m�i; ui; t
�
�i) j m�i 2 Rn�i(�̂�i(t�i); T �;M)g

= ��i f(m�i; ui; t
�
�i) j m�i 2 Rn�i(t�i; T ;M)g = 1

by the induction hypothesis, mrg Ui�T ��i �
�
i = �

�
i (�̂i(ti)) by the belief-preserving property of �̂i, andZ

M�i�Ui�T ��i

X
z2Z

ui(z)(O(z j mi;m�i)�O(z j m0
i;m�i))�

�
i (dm�i; dui; dt

�
�i)

=

Z
M�i�Ui�T�i

X
z2Z

ui(z)(O(z j mi;m�i)�O(z j m0
i;m�i))�i(dm�i; dui; dt�i) � 0

for any m0
i 2 Mi. Thus mi 2 Rn+1i (�̂i(ti); T �;M). Since this holds for any mi 2 Rn+1i (ti; T ;M),

we have Rn+1i (ti; T ;M) � Rn+1i (�̂i(ti); T �;M).

Conversely, for any mi 2 Rn+1i (�̂i(ti); T �;M), there exists a measurable mapping

���i : Ui�T ��i ! �(M�i) such that ���i(R
n
�i(�̂�i(t�i); T �;M) j ui; t��i) = 1 and

R
Ui�T ��i

P
z2Z ui(z)(O(z j

mi; �
�
�i(� j ui; t��i)) � O(z j m0

i; �
�
�i(� j ui; t��i)))��i (dui; dt��i j �̂i(ti)) � 0 for any m0

i 2 Mi. Let

��i : Ui � T�i ! �(M�i) be such that

��i(m�i j ui; t�i) = ���i(m�i j ui; �̂�i(t�i))

for any m�i 2M�i, any ui 2 Ui, and any t�i 2 T�i. Then we have ��i(Rn�i(t�i; T ;M) j ui; t�i) =
���i(R

n
�i(�̂�i(t�i); T �;M) j ui; �̂�i(t�i)) = 1. Also, by the belief-preserving property of �̂i, we haveZ

Ui�T�i

X
m�i2M�i

X
z2Z

ui(z)(O(z j mi;m�i)�O(z j m0
i;m�i))��i(m�i j ui; t�i)�i(dui; dt�i j ti)

=

Z
Ui�T ��i

X
m�i2M�i

X
z2Z

ui(z)(O(z j mi;m�i)�O(z j m0
i;m�i))�

�
�i(m�i j ui; t��i)��i (dui; dt��i j �̂i(ti)) � 0
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for any m0
i 2 Mi. Thus mi 2 Rn+1i (ti; T ;M). Since this holds for any mi 2 Rn+1i (�̂i(ti); T �;M),

we have Rn+1i (ti; T ;M) � Rn+1i (�̂i(ti); T �;M).

Combining the both directions, we have (Equivn+1).

Proof of Lemma 1. Suppose not. Then there exists " > 0 such that for every n 2 N, there
exist �n;mn;m

0
n 2 �(U �X) with d�(�n;mn) � 1=n and d�(�n;m0

n) > ", measurable space 
n,

perturbed outcome function On : M0 �X �
n ! �(Z) with kOn(� j �; �; !)�O0k � 1=n for every
! 2 
n, �0n 2 �(U �X �X �
n) such that �0n (f(u; x; x0; !) j d(x; x0) � �g) = 1, mrg 1;2 �0n = �n,
and mrg 1;3;4 �

0
n weakly prefers On(� j m0

n; �; �) to On(� j mn; �; �). Since X is a compact metric space,

by taking a subsequence if necessary, we can �nd ��;m0;� 2 �(U � X) such that �n ! �� and

m0
n ! m0;� as n!1. Note that mn ! �� as n!1, and �� 6= m0;�. Let

u� =

Z X
z

u(z)O0(z j ��; x)d��(u; x):

Claim 2 We have

lim
n!1

Z X
z

u(z)O0(z j mn; x)d�n(u; x) = u
�;

lim sup
n!1

Z X
z

u(z)O0(z j m0
n; x)d�n(u; x) < u

�:

Proof of Claim 2. The claim follows from showing that

lim
n!1

Z X
z

u(z)Cmn(fk; fl)(z j x)d�n(u; x) =
Z X

z

u(z)C��(fk; fl)(z j x)d��(u; x);

lim sup
n!1

Z X
z

u(z)Cm0
n
(fk; fl)(z j x)d�n(u; x) �

Z X
z

u(z)C��(fk; fl)(z j x)d��(u; x);

for each k; l, and that the second inequality holds with strict inequality for some k; l. The �rst

equality and the second weak inequality follow from the standard revealed preference argument.

To show the strict inequality, since �� 6= m0;� and F � Fc(X) is dense in the sup norm, there exist
k; l such that �� strictly prefers fk to fl while m0;� strictly prefers fl to fk. Since m0

n strictly prefers

fl to fk for su¢ ciently large n, we have:

lim
n!1

Z X
z

u(z)Cm0
n
(fk; fl)(z j x)d�n(u; x)

= lim
n!1

Z X
z

u(z)fl(z j x)d�n(u; x)

=

Z X
z

u(z)fl(z j x)d��(u; x)
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<

Z X
z

u(z)fk(z j x)d��(u; x)

=

Z X
z

u(z)C��(fk; fl)(z j x)d��(u; x):

which establishes the claim.

Claim 3 We have

lim
n!1

 Z X
z

u(z)On(z j m;x0; !)d�0n(u; x; x0; !)�
Z X

z

u(z)O0(z j m;x)d�n(u; x)
!
= 0

and the convergence is uniform in m 2M0.

Proof of Claim 3. Note that�����
Z X

z

u(z)On(z j m;x0; !)d�0n(u; x; x0; !)�
Z X

z

u(z)O0(z j m;x)d�n(u; x)
�����

�
�����
Z X

z

u(z)On(z j m;x0; !)d�0n(u; x; x0; !)�
Z X

z

u(z)O0(z j m;x0)d�0n(u; x; x0; !)
�����

+

�����
Z X

z

u(z)O0(z j m;x0)d�0n(u; x; x0; !)�
Z X

z

u(z)O0(z j m;x)d�n(u; x)
����� :

The �rst term is bounded by (1=n)maxu;z;z0 ju(z)�u(z0)j since kOn(� j �; �; !)�O0k � 1=n for every
! 2 
n.

To show that the second term converges to 0 uniformly in m, it is enough to show that

lim
n!1

 Z X
z

u(z)f(z j x0)d�0n(u; x; x0; !)�
Z X

z

u(z)f(z j x)d�n(u; x)
!
= 0

for each f 2 Fc(X). Since X is a compact metric space, f is uniformly continuous. Therefore, for

any � > 0, there exists N such that maxz jf(z j x)� f(z j x0)j < � whenever d(x; x0) � 1=N . For
every n � N , we have�����

Z X
z

u(z)f(z j x0)d�0n(u; x; x0; !)�
Z X

z

u(z)f(z j x)d�n(u; x)
�����

�
�����
Z X

z

u(z)f(z j x0)d�0n(u; x; x0; !)�
Z X

z

u(z)f(z j x)d�0n(u; x; x0; !)
�����

+

�����
Z X

z

u(z)f(z j x)d�0n(u; x; x0; !)�
Z X

z

u(z)f(z j x)d�n(u; x)
����� :
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The �rst term is bounded by �maxu;z;z0 ju(z) � u(z0)j; the second term is equal to zero since

mrg 1;2 �
0
n = �n.

We can now complete the proof of Lemma 1. Claims 2 and 3 contradict the assumption that

mrg 1;3;4 �
0
n weakly prefers On(� j m0

n; �; �) to On(� j mn; �; �).
Proof of Claim 1. The proof is by induction on n. Suppose that for each k � n � 1,

mi 2 Rn�1i (ti; T ;M) implies di;k(�̂i;k(ti);mi;k) � "k � "n�1 for any agent i 2 I and any type

ti 2 Ti. Suppose that there exists m�
i 2 Rni (ti; T ;M) such that di;n(�̂i;n(ti);m

�
i;n) > "n. Then

there exists �i 2 �(M�i � Ui � T�i) such that �i(f(m�i; ui; t�i) j m�i 2 Rn�1�i (t�i; T ;M)g) = 1,
mrgUi�T�i�i = �i(ti), and �i weakly prefers O(� j m

�
i ; �) to O(� j m0

i; �) for any m0
i 2Mi.

Collect all the terms in O that depend on mi;n, and de�ne Oi;n : Mi;n �M�i ! �(Z) by

Oi;n(z j mi;n;m�i)

= �

0@O0i;n(z j mi;n;m�i;1; : : : ;m�i;n�1) +
X

j2Infig

NX
k=n+1

�k�nO0j;k(z j mj;k;m�j;1; : : : ;m�j;k�1)

1A ;
where mi;k = m

�
i;k for k 6= n when they appear in the second term, and

� = 1=

 
1 + (jIj � 1)

NX
k=n+1

�k�n

!

is a normalization constant. Let 
 =
QN
k=nM�i;k. Since we chose su¢ ciently small �, we have

kOi;n(� j �; �; !)�O0i;nk � "0 � "n�1 for any ! 2 
. Let ��i 2 �(M�i � Ui �H�i;n�1) be such that

��i (E) = �i(f(m�i; ui; t�i) j (m�i; ui; �̂�i;1(t�i); : : : ; �̂�i;n�1(t�i)) 2 Eg)

for any measurable E �M�i � Ui �H�i;n�1. By the induction hypothesis,

��i (f(m�i; ui; t�i;1; : : : ; t�i;n�1) j max
j 6=i

max
1�k�n�1

dj;k(tj;k;mj;k) � "n�1g) = 1:

We also have mrgUi�H�i;n�1�
�
i = �̂i;n(ti). Thus, we have mrgM�i�Ui�

�
i 2 �"n�1;�̂i;n(ti)(M�i � Ui).

SinceMi;n is "n�1-dense in �(Ui�H�i;n�1), there exists m0
i;n 2Mi;n such that di;n(�̂i;n(ti);m

0
i;n) �

"n�1. By Lemma 1,mrgM�i�Ui�
�
i strictly prefersOi;n(� j m0

i;n; �) toOi;n(� j m�
i;n; �), thusmrgM�i�Ui�

�
i

strictly prefers O(� j m0
i;n;m

�
i;�n; �) to O�(� j m�

i ; �). This is a contradiction.
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B Supplemental Appendix

We present a formal treatment of general interdependent expected utility preferences and the �-

continuity restriction. One way to de�ne state-dependent expected utility preferences for a general

measurable space X is to have a preference % over acts over X represented by a belief � 2 �(X)
and a �-integrable state-dependent utility u : X � Z ! R as follows:

f % f 0 ,
Z
X

X
z2Z

u(z j x)(f(z j x)� f 0(z j x))�(dx) � 0:

Instead, we use a �signed measure�over X � Z, a real-valued countably additive set function, to
represent % as

f % f 0 ,
Z
X�Z

(f(z j x)� f 0(z j x))�(dx; dz) � 0:

The representation by a signed measure � is formally equivalent to, via the Radon-Nikodym theo-

rem, but more convenient than the representation by a belief-utility pair (�; u). For example, u is

meaningful only up to �-null events, and hence multiple belief-utility pairs can represent the same

preference. Indeed, although multiple signed measures can also represent the same preference, it is

not di¢ cult to pick a particular normalization. For example, if % is not completely indi¤erent over
all outcomes, then we can choose z; z0 2 Z such that z � z0 and represent % uniquely by a signed

measure � over X � Z such that �(X � fzg) = 1 and �(E � fz0g) = 0 for any E � X.
In what follows, we use state-dependent expected utility preferences, brie�y described above,

to de�ne type spaces of interdependent preferences, preference hierarchies, and the universal type

space. Along the way, we introduce various notions directly based on preferences so that we

can guarantee easily that these notions are well de�ned and independent of representations and

normalizations. But we also rephrase these notions, whenever possible, in terms of signed-measure

representations to ease the reader into possibly unfamiliar notations.

Our exercise here is largely guided by the analogy between subjective beliefs and preferences,

originated by Savage (1954) in single-agent environments and extended by Epstein and Wang

(1996), di Tillio (2008) and Ganguli and Heifetz (2012) to multi-agent environments. At a technical

level, our argument relies on mathematical similarities between probability measures and signed

measures. At some subtle level, however, we need to understand a �patchwork�of possibly multiple

signed-measure representations of a single preference, which we will discuss further in Section B.5.

B.1 State-Dependent Expected Utility Preferences

For a measurable space X (implicitly endowed with its �-algebra), let ca(X) be the set of all �nite

signed measures over X. For � 2 ca(X), k�k = supE;E0�X(�(E) � �(E0)) < 1 denotes the total
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variation of �; j�j denotes the total variation measure on X, de�ned by j�j(E) = k�(�\E)k for each
E � X. If X is a compact metric space (implicitly endowed with its Borel �-algebra), ca(X) is the

dual of the set of continuous functions with the sup norm (the Riesz representation theorem).

Recall that F (X) denotes the set of all acts over X. If X is a compact metric space, Fc (X) �
F (X) denotes the set of all continuous acts over X.

Let P (X) be the set of all state-dependent expected utility preferences over F (X) represented

by � 2 ca(X � Z) as follows:

f % f 0 ,
Z
X�Z

(f(z j x)� f 0(z j x))�(dx; dz) � 0:

We say that a preference % 2 P (X) is certain of E � X if X n E is Savage-null with respect

to %. For a preference % 2 P (X) represented by � 2 ca(X � Z), % is certain of E if and only if

�(E0 � fzg) = �(E0 � fz0g) for any E0 � X n E and z; z0 2 Z.
We endow P (X) with the �-algebra generated by f% 2 P (X) j f % f 0g for any f; f 0 2 F (X).

If X is a compact metric space, we also endow P (X) with the topology generated by f% 2 P (X) j
f � f 0g for any f; f 0 2 Fc(X); in this case, the Borel �-algebra on P (X) coincides with the original
�-algebra on P (X).27

Given two measurable spaces X and Y , a measurable mapping ' : X ! Y and a preference

% 2 P (X), we can de�ne the induced preference 'P (%) as the preference over F (Y ) such that for
any f; f 0 2 F (Y ), it weakly prefers f to f 0 if and only if % weakly prefers f �' to f 0 �'. It is easy
to show that if % 2 P (X) is represented by a signed measure � 2 ca(X � Z), then the induced
preference 'P (%) is represented by the induced signed measure � � ('�1; idZ) 2 ca(Y � Z). We
thus have 'P (%) 2 P (Y ). Note that 'P : P (X)! P (Y ) is measurable; moreover, if X and Y are

compact metric spaces and ' : X ! Y is continuous, then 'P : P (X)! P (Y ) is also continuous.

The �marginal� is an important example of induced preferences. Given a product measurable

space X�Y and a preference % 2 P (X�Y ), the projection mapping from X�Y to X induces the

marginal of %, denoted by mrgX % 2 P (X). In other words, we �rst identify F (X) as a subset of
F (X�Y ), where outcomes do not depend on the Y -coordinate, and then de�ne the marginal of % as
the preference over F (X) that can be identi�ed with the restriction of % to such Y -independent acts
in F (X�Y ). This notion corresponds to the notion of marginal of a probability or signed measure.
Indeed, if % is represented by a signed measure � 2 ca(X�Y �Z), then mrgX % is represented by
27Since Fc(X) � F (X), any Borel-measurable subset of P (X) is measurable. Conversely, let D = fE � X j f% 2

P (X) j yEy0 % y00Ey
000g is Borel-measurable for any y; y0; y00; y000 2 �(Z)g, where yEy0 denotes the act that takes

values y on E and y0 on X nE. Then D is a Dynkin system, and contains all closed subsets of X by Urysohn�s lemma.

Thus D coincides with the Borel �-algebra on X, and hence f% 2 P (X) j f % f 0g is Borel-measurable if f and f 0 are
in the form of yEy0 with Borel-measurable E � X. This extends to all simple acts and to all acts in the usual way.
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the marginal of � on X�Z, mrgX�Z � 2 ca(X�Z), where (mrgX�Z �)(E�fzg) = �(E�Y �fzg)
for any E � X and z 2 Z.

For a more speci�c example, consider a measurable space X, an arbitrary singleton set f�g and
a preference % 2 P (X). Then the constant mapping from X to f�g induces the unconditional
preference of % over lotteries. If � 2 ca(X � Z) represents %, then mrg Z � 2 ca(Z) �= RZ is
a von Neumann-Morgenstern utility index that represents the unconditional preference of % over

lotteries.

B.2 Type Spaces and the Universal Type Space

A type space is given by T = (Ti; �i)i2I , where, for each i 2 I, Ti is a measurable space of agent
i�s types, and �i : Ti ! P (T�i) is a measurable mapping that maps his types to preferences.

Let H0 = f�g (an arbitrary singleton set) and Hn = Hn�1 � P (H jIj�1
n�1 ) =

Qn�1
k=0 P (H

jIj�1
k ) for

each n � 1. Let H =
Q1
n=0 P (H

jIj�1
n ) be the set of all hierarchies of preferences.

Given a type space T = (Ti; �i)i2I , we de�ne the preference hierarchy of a type ti 2 Ti,

�̂i(ti) = (�̂i;1(ti); �̂i;2(ti); : : :), as follows: �̂i;1(ti) is the unconditional preference of �i(ti) over

lotteries, and for each n � 2, �̂i;n(ti) is the preference of type ti over acts over the opponents��rst
(n�1) order preferences, i.e., �̂i;n(ti) = (�̂�i;1; : : : ; �̂�i;n�1)P (�i(ti)). It is easy to show inductively
that �̂i;n : Ti ! P (H

jIj�1
n�1 ) is measurable for any n � 1, and hence �̂i : Ti !

Q1
n=0 P (H

jIj�1
n ) is also

measurable.

Following Heifetz and Samet (1998), we de�ne T �i as the set of all preference hierarchies h 2 H
such that h = �̂i(ti) for some type space T = (Ti; �i)i2I and some type ti 2 Ti. We de�ne

��i : T
�
i ! P (T ��i) by

��i (t
�
i ) = �̂

P
�i(�i(ti)):

We can show that ��i is well de�ned (i.e., independent of particular type space T and particular type
ti) and measurable.28 We thus have the universal type space T � = (T �i ; ��i )i2I . By construction, a
28For each n � 0, let pr�i;n : T

�
i ! H

jIj�1
n be the projection mapping. Fix any f; f 0 2 F (H

jIj�1
n ). For each

t�i = (%1;%2; : : :) 2 T �i , there exist a type space T = (Ti; �i)i2I and a type ti 2 Ti such that t�i = �̂i(ti). Then we

have

��i (t
�
i ) weakly prefers f � pr�i;n to f

0 � pr�i;n
, �i(ti) weakly prefers f � �̂P�i;n to f 0 � �̂P�i;n
, %n+1 weakly prefers f to f

0:

Thus ft�i 2 T �i j ��i (t�i ) weakly prefers f � pr�i;n to f 0 � pr�i;ng is well de�ned and measurable. Since this is true for
any n and any f; f 0 2 F (H jIj�1

n ), ft�i 2 T �i j ��i (t�i ) weakly prefers f to f 0g is well de�ned and measurable for any
f; f 0 2 F (T ��i), and hence ��i : T �i ! P (T ��i) is well de�ned and measurable.
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pro�le (�̂i)i2I of mappings is a preference-preserving morphism, also known as a type morphism in

Heifetz and Samet (1998), from any type space T to T � in the following sense.29

Proposition 7 For any type space T = (Ti; �i)i2I and any i 2 I, we have ��i � �̂i = �̂P�i � �i.

B.3 Proof of Proposition 4

The following result drops the simplex assumption in Proposition 3.

Proposition 8 For any type space T = (Ti; �i)i2I , any agent i 2 I, and any type ti 2 Ti, we have

Ei(ti; T ;M) � Ei(�̂i(ti); T �;M)

for any mechanismM = ((Mi)i2I ; O).

Proof. The proof is analogous to that of Proposition 3; we only need to replace the belief-

preserving property by the preference-preserving property established in Proposition 7.

Proposition 4 follows from Proposition 8 and the existence of equilibria for countable types.

B.4 Proof of Proposition 5

Given a type space T = (Ti; �i)i2I and a mechanism M = ((Mi)i2I ; O), we de�ne the set of

rationalizable actions, denoted by Ri(ti) or Ri(ti; T ;M) as follows:

R0i (ti) =Mi;

Rn+1i (ti) =

8>>>>><>>>>>:
mi 2Mi

�����������

there exists %i 2 P (M�i � T�i) s.t.
(i) %i is certain of the graph of Rn�i;
(ii) mrg T�i %i = �i(ti);
(iii) %i weakly prefers O(� j mi; �) to O(� j m0

i; �); for any m0
i 2Mi:

9>>>>>=>>>>>;
;

Ri(ti) =
1\
n=0

Rni (ti):

29 In passing, we note that any preference-preserving morphism preserves preference hierarchies, and that (�̂i)i2I

is the unique preference-preserving morphism from T to T �.
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Lemma 2 For any �nite type space T = (Ti; �i)i2I and any mechanism M = ((Mi)i2I ; O), we

have the following:

1. We have mi =2 R1i (ti) if and only if there exists �i 2 �(Mi) such that

(a) O(� j �i;m�i)�O(� j mi;m�i) is independent of m�i 2M�i, and

(b) �i(ti) strictly prefers O(� j �i;m�i) to O(� j mi;m�i) for some (and hence for all)

m�i 2M�i.30

2. Ri(ti) = R1i (ti).

Proof. For part 1, the if direction is immediate. To show the only-if direction, let �i(ti) be

represented by �wi : T�i � Z ! R as follows:

f % f 0 ,
X
t�i;z

(f(z j t�i)� f 0(z j t�i)) �wi(t�i; z) � 0:

If mi =2 R1i (ti), then there is no wi : M�i � T�i � Z ! R such thatX
m�i

wi(m�i; t�i; z) = �wi(t�i; z) for all t�i; z;X
m�i;t�i;z

(O(z j mi;m�i)�O(z j m0
i;m�i))wi(m�i; t�i; z) � 0 for all m0

i:

By Farkas�lemma, there exist D : T�i � Z ! R and �i 2 �(Mi) such that

D(z j t�i)� (O(z j �i;m�i)�O(z j mi;m�i)) = 0 for all t�i;m�i; z;X
t�i;z

D(z j t�i) �wi(t�i; z) > 0:

Thus O(� j �i;m�i)�O(� j mi;m�i) is independent of m�i, and �i(ti) strictly prefers O(� j �i;m�i)

to O(� j mi;m�i).

For part 2, �x any player i 2 I. For each j 6= i and tj 2 Tj , if mj 2 R1j (tj), then let �j(� j mj ; tj)

be the point mass on mj . If mj =2 R1j (tj), then by part 1, there exists �j(� j mj ; tj) 2 �(Mj) such

that for any z 2 Z, O(z j �j(� j mj ; tj);m�j) � O(z j mj ;m�j) is independent of m�j . Without

loss of generality, we assume that �j(� j mj ; tj) 2 �(R1j (tj)). For each m�i 2 M�i and t�i 2 T�i,
30We de�ne O(� j �i;m�i) by

O(z j �i;m�i) =
X
m0
i

O(z j m0
i;m�i)�i(m

0
i)

for each z 2 Z.
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de�ne ��i(� j m�i; t�i) 2 �(R1�i(t�i)) by ��i(m
0
�i j m�i; t�i) =

Q
j 6=i �j(m

0
j j mj ; tj) for each

m0
�i 2 R1�i(t�i).
Pick any ti 2 Ti and any mi 2 R1i (ti). Then there exists %i 2 P (M�i � T�i) such that

mrg T�i %i = �i(ti) and mi is a best response with respect to %i. We will show that mi survives in

the second step of iteration.

Let �i(ti) be represented by �wi : T�i�Z ! R. Let %i be represented by wi : M�i�T�i�Z ! R
such that

P
m�i

wi(m�i; �; �) = �wi. De�ne w0i : M�i � T�i � Z ! R by

w0i(m
0
�i; t�i; z) =

X
m�i

��i(m
0
�i j m�i; t�i)wi(m�i; t�i; z)

for m0
�i 2M�i, t�i 2 T�i and z 2 Z. Denote by %0i 2 P (M�i � T�i) the preference represented by

w0i. First, since ��i(� j m�i; t�i) 2 �(R1�i(t�i)) for any m�i 2 M�i and t�i 2 T�i, %0i is certain of
the graph of R1�i. Second, we haveX

m0
�i

w0i(m
0
�i; t�i; z) =

X
m�i;m0

�i

��i(m
0
�i j m�i; t�i)wi(m�i; t�i; z)

=
X
m�i

wi(m�i; t�i; z)

= �wi(t�i; z);

and hence mrg T�i %
0
i = �i(ti). Third, for any m

0
i 2Mi, we haveX

m0
�i

O(z j m0
i;m

0
�i)w

0
i(m

0
�i; t�i; z)

=
X

m�i;m0
�i

O(z j m0
i;m

0
�i)��i(m

0
�i j m�i; t�i)wi(m�i; t�i; z)

=
X
m�i

O(z j m0
i; ��i(� j m�i; t�i))wi(m�i; t�i; z)

=
X
m�i

(O(z j m0
i;m�i) +D(z j m�i; t�i))wi(m�i; t�i; z)

=
X
m�i

O(z j m0
i;m�i)wi(m�i; t�i; z) +

X
m�i

D(z j m�i; t�i)wi(m�i; t�i; z)

for any t�i 2 T�i and z 2 Z, where D(z j m�i; t�i) := O(z j m0
i; ��i(� j m�i; t�i))�O(z j m0

i;m�i)

is independent of m0
i by the de�nition of ��i(� j m�i; t�i). Since mi is a best response with respect

to %i represented by wi, it is also a best response with respect to %0i represented by w0i.

Lemma 3 For any two �nite type spaces T = (Ti; �i)i2I and T 0 = (T 0i ; �
0
i)i2I , any agent i 2 I,

and any two types ti 2 Ti and t0i 2 T 0i , if �̂i;1 (ti; T ) = �̂i;1 (t0i; T 0), then we have

Ri(ti; T ;M) = Ri(t
0
i; T 0;M)
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for any mechanismM = ((Mi)i2I ; O).

Proof. Follows from Lemma 2.

Proposition 5 follows from rewriting the statement of Lemma 3 in terms of equilibrium.

B.5 Compactness and Metrizability of P�(X)

Let P0(X) be the set of preferences in P (X) that are not completely indi¤erent over all outcomes.

By excluding the preference that is completely indi¤erent over F (X), we can show that P0(X) is

Hausdor¤ if X is a compact metric space.31

Lemma 4 If X is a compact metric space, then P0(X) is Hausdor¤.

Proof. Pick any pair of preferences %;%0 2 P0(X) such that % 6= %0. Then there exist

f; f 0 2 F (X) such that % and %0 have di¤erent preferences between f and f 0. Since neither % nor
%0 is completely indi¤erent, we can assume without loss of generality that f � f 0 and f 0 �0 f .32

Let �; � 0 2 ca(X�Z) be �nite signed measures that represent % and %0, respectively. Applying
Lusin�s theorem to (X � Z; j�j+ j� 0j), we can assume without loss of generality that f; f 0 2 Fc(X)
. Thus % and %0 are separated by two disjoint open sets generated by f and f 0.

We de�ne �-continuity as follows.

De�nition 1 We say that a preference % is �-continuous with � > 0 if there exist z; z0 2 Z such

that z � z0 and (1� �) z + �f % (1� �) z0 + �f 0 for any f; f 0 2 F (X).

If X is a compact metric space, then by Lusin�s theorem, we can require (1� �) z + �f %
(1� �) z0 + �f 0 only for any f; f 0 2 Fc (X) without loss of generality.

Let Pz;z0;�(X) be the set of all �-continuous preferences for a �xed pair of outcomes z; z0 2 Z.
Let P�(X) =

S
z;z02Z Pz;z0;�(X) be the set of all �-continuous preferences.

Note that �-continuity is preserved for induced preferences. That is, given any measurable

mapping ' : X ! Y , if we have % 2 Pz;z0;�(X), then we also have 'P (%) 2 Pz;z0;�(Y ); if we have
% 2 P�(X), then we also have 'P (%) 2 P�(Y ).
31 Indeed, Lemma 4 holds as long as we exclude the preference that is completely indi¤erent over F (X), but

excluding all preferences that are completely indi¤erent over all outcomes is crucial for establishing Lemma 7 and

hence Proposition 10.
32For example, if f � f 0 and f 0 �0 f , then pick f 00; f 000 2 F (X) such that f 00 � f 000. Then by slightly mixing f with

f 00 and f 0 with f 000, we can make the �rst preference relation strict while maintaining the second preference relation.
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Fix a pair of outcomes z; z0 2 Z and � > 0. Then each % 2 Pz;z0;�(X) is uniquely represented
by � 2 caz;z0;�(X � Z), where

caz;z0;�(X � Z) =

8>>>>><>>>>>:
� 2 ca(X � Z)

�����������

�(X � fzg) = 1
�(E � fz0g) = 0 for any E � XR
X�Z(f(z j x)� f

0(z j x))�(dx; dz) � (1� �)=�
for any f; f 0 2 F (X)

9>>>>>=>>>>>;
:

In words, we normalize a signed-measure representation by �rst shifting the ex post utility of

getting z0 conditional on any event to 0, and then scaling the expected utility of getting z to 1. The

condition that
R
X�Z(f(z j x)�f

0(z j x))�(dx; dz) � (1��)=� for any f; f 0 2 F (X) is a rewriting of
the de�nition of �-continuity in terms of signed-measure representations. Via this normalization,

Pz;z0;�(X) is measurably isomorphic to caz;z0;�(X�Z); furthermore, if X is a compact metric space,

then Pz;z0;�(X) is topologically isomorphic (i.e., homeomorphic) to caz;z0;�(X � Z) endowed with
the weak* topology.

Note that this normalization is preserved for induced preferences. That is, given any measurable

mapping ' : X ! Y , if � belongs to caz;z0;�(X�Z), then the induced signed measure � � ('�1; idZ)
belongs to caz;z0;�(Y � Z) with the same z; z0 2 Z and � > 0. Therefore, if % 2 Pz;z0;�(X)

is represented by a normalized signed measure � 2 caz;z0;�(X � Z), then the induced preference
'P (%) 2 Pz;z0;�(Y ) is represented by the already normalized signed measure � � ('�1; idZ) 2
caz;z0;�(Y � Z).

Since any measurable function g : X�(Z nfz0g)! R with kgk � 1=(jZj�1) in the sup norm can
be written as g(x; z) = f(z j x)�f 0(z j x) with some f; f 0 2 F (X), we have k�k � (jZj�1)(1��)=�
for any � 2 caz;z0;�(X � Z). Conversely, since kf � f 0k � 1 in the sup norm for any f; f 0 2 F (X),
we have � 2 caz;z0;�(X � Z) for any � 2 ca(X � Z) such that �(X � fzg) = 1, �(E � fz0g) = 0 for
any E � X, and k�k � (1� �)=�.

Lemma 5 If X is a compact metric space, then Pz;z0;�(X) is compact and metrizable for any

z; z0 2 Z and � > 0.

Proof. By the remark after De�nition 1, Pz;z0;�(X) is closed in P0(X). Also, caz;z0;�(X � Z)
can be seen as a subset of the ball f� 2 ca(X � (Z n fz0g)) j k�k � (jZj � 1)(1 � �)=�g, which is
weak*-compact by the Riesz representation theorem and Alaoglu�s theorem, and weak*-metrizable

by the Stone-Weierstrass theorem. Thus caz;z0;�(X � Z) is compact and metrizable, and so is
Pz;z0;�(X).

Note that Lemma 5 relies on �-continuity with � > 0.
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Recall that P�(X) =
S
z;z02Z Pz;z0;�(X). If jZj � 3, then this union is not disjoint, i.e., a given

preference % 2 P�(X) may belong to Pz;z0;�(X) with multiple pairs of (z; z0). In this case, we do
not choose any speci�c (z; z0) pair as �canonical�. Instead, we view P�(X) as a �patchwork� of

�nitely many Pz;z0;�(X), each of which is homeomorphic to caz;z0;�(X � Z).

Proposition 9 If X is a compact metric space, then P�(X) is compact and metrizable for any

� > 0.

Proof. By Lemmas 4 and 5, P�(X) is a �nite union of compact and metrizable subspaces

Pz;z0;�(X), and hence P�(X) is compact and metrizable. (The metrizability follows from the Nagata-

Smirnov metrization theorem. See Nagata (1985, Theorem 6.12).)

B.6 The Robust Scoring Rule

As in Section 3.5.1, we analyze a single-agent mechanism that reveals her state-dependent pref-

erences. Fix � > 0. Fix a compact metric space X with metric d. By Proposition 9, P�(X) is

also a compact metric space, whose metric is denoted by dP . The choice function with respect to

% 2 P�(X) is given by

C%(f; f
0) =

8<:f if % weakly prefers f to f 0;

f 0 if % strictly prefers f 0 to f

for any f; f 0 2 F (X).
By the Stone-Weierstrass theorem, there exists a countable dense subset F = ff1; f2; : : :g �

Fc(X) in the sup norm.

We consider the following direct mechanism M0 = (M0; O0) for a single agent with message

set M0 = P�(X) and outcome function O0 : M0 �X ! �(Z) given by

O0(z j m;x) =
1X
k=1

1X
l=1

2�k�lCm(fk; fl)(z j x) (3)

for each realized state x 2 X and reported preference m 2M0.

For each � > 0, % 2 P�(X), and measurable space 
, let

P�;�;%(X � 
) =

8>><>>:mrg2;3%0 2 P�(X � 
) j
9%0 2 P�(X �X � 
) s.t.
(i) %0 is certain of f(x; x0; !) j d(x; x0) � �g;
(ii) mrg1%0 = %

9>>=>>; ;
where mrg�%0 with � � f1; 2; 3g denotes the marginal of %0 with respect to the coordinates in �.
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Lemma 6 Fix � > 0. For every " > 0, there exists � > 0 such that the following is true for any

preference % 2 P�(X), any pair of messages m;m0, any measurable space 
, and any perturbed

outcome function O : M0 �X � 
 ! �(Z): if dP (%;m) � �, d�(%;m0) > ", and kO(� j �; �; !) �
O0k � � for any ! 2 
, then any preference in P�;�;%(X � 
) strictly prefers O(� j m; �; �) to
O(� j m0; �; �).

Proof. Suppose not. Then there exists " > 0 such that for every n 2 N, there exist
%n;mn;m

0
n 2 P�(X) with dP (%n;mn) � 1=n and dP (%n;m0

n) > ", measurable space 
n, per-

turbed outcome function On : M0 � X � 
n ! �(Z) with kOn(� j �; �; !) � O0k � 1=n for every

! 2 
n, %0n 2 P�(X �X �
n) such that %0n is certain of f(x; x0; !) j d(x; x0) � �g, mrg 1%0n = %n,
andmrg 2;3%0n weakly prefers On(� j m0

n; �; �) to On(� j mn; �; �). By taking a subsequence if necessary,
we can assume without loss of generality that %0n 2 Pz;z0;�(X �X � 
n) with a �xed (z; z0) pair,
and hence %n 2 Pz;z0;�(X) with the same (z; z0) pair. By Proposition 9, by taking a subsequence if
necessary, we can �nd %�;m0;� 2 P�(X) such that %n ! %� and m0

n ! m0;� as n!1. Note that
mn ! %� as n!1, and %� 6= m0;�. Also note that %� 2 Pz;z0;�(X). Let �n; �� 2 caz;z0;�(X � Z)
and � 0n 2 caz;z0;�(X�X�
n�Z) represent %n, %�, and %0n, respectively. Note thatmrg 1;4 � 0n = �n.

Let

u� =

Z
O0(z j %�; x)d��(x; z):

Claim 4 We have

lim
n!1

Z
O0(z j mn; x)d�n(x; z) = u

�;

lim sup
n!1

Z
O0(z j m0

n; x)d�n(x; z) < u
�:

Proof of Claim 4. The claim follows from showing that

lim
n!1

Z
Cmn(fk; fl)(z j x)d�n(x; z) =

Z
C%�(fk; fl)(z j x)d��(x; z);

lim sup
n!1

Z
Cm0

n
(fk; fl)(z j x)d�n(x; z) �

Z
C%�(fk; fl)(z j x)d��(x; z);

for each k; l, and that the second inequality holds with strict inequality for some k; l. The �rst

equality and the second weak inequality follow from the standard revealed preference argument. To

show the strict inequality, since %� 6= m0;� and F � Fc(X) is dense in the sup norm, there exist k; l
such that %� strictly prefers fk to fl while m0;� strictly prefers fl to fk. Since m0

n strictly prefers
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fl to fk for su¢ ciently large n, we have

lim
n!1

Z
Cm0

n
(fk; fl)(z j x)d�n(x; z)

= lim
n!1

Z
fl(z j x)d�n(x; z)

=

Z
fl(z j x)d��(x; z)

<

Z
fk(z j x)d��(x; z)

=

Z
C%�(fk; fl)(z j x)d��(x; z):

Claim 5 We have

lim
n!1

�Z
On(z j m;x0; !)d� 0n(x; x0; !; z)�

Z
O0(z j m;x)d�n(x; z)

�
= 0

and the convergence is uniform in m 2M0.

Proof of Claim 5. Note that����Z On(z j m;x0; !)d� 0n(x; x0; !; z)�
Z
O0(z j m;x)d�n(x; z)

����
�
����Z On(z j m;x0; !)d� 0n(x; x0; !; z)�

Z
O0(z j m;x0)d� 0n(x; x0; !; z)

����
+

����Z O0(z j m;x0)d� 0n(x; x0; !; z)�
Z
O0(z j m;x)d�n(x; z)

���� :
The �rst term is bounded by sup!2
n kOn(� j �; �; !)�O0kk� 0nk � (jZj � 1)(1� �)=(n�).

To show that the second term converges to 0 uniformly in m, it is enough to show that

lim
n!1

�Z
f(z j x0)d� 0n(x; x0; !; z)�

Z
f(z j x)d�n(x; z)

�
= 0

for each f 2 Fc(X). Since X is a compact metric space, f is uniformly continuous. Therefore, for

any � > 0, there exists N such that maxz jf(z j x)� f(z j x0)j < � whenever d(x; x0) � 1=N . For
every n � N , we have����Z f(z j x0)d�0n(x; x0; !; z)�

Z
f(z j x)d�n(x; z)

����
�
����Z f(z j x0)d� 0n(x; x0; !; z)�

Z
f(z j x)d� 0n(x; x0; !; z)

����
+

����Z f(z j x)d� 0n(x; x0; !; z)�
Z
f(z j x)d�n(x; z)

���� :
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The �rst term is bounded by �k� 0nk � �(jZj � 1)(1 � �)=�; the second term is equal to zero since

mrg 1;4 �
0
n = �n.

Claims 4 and 5 contradict the assumption that mrg 2;3%0n weakly prefers On(� j m0
n; �; �) to

On(� j mn; �; �).

B.7 �-Continuous Type Spaces and the Universal �-Continuous Type Space

We say that a type space T = (Ti; �i)i2I is �-continuous if �i(ti) 2 P�(T�i) for any i 2 I and ti 2 Ti.
As we argued in Section 5, �-continuity is a weak requirement. A type space is �-continuous with

some � > 0 if it satis�es a simplex restriction, or if the type space is �nite (Abreu and Matsushima

(1992b)). The second su¢ cient condition can generalize to compact and continuous type spaces as

follows. We say that a preference type space T = (Ti; �i)i2I is compact and continuous if, for each
i 2 I, Ti is a compact metric space, and �i : Ti ! P (T�i) is continuous.

Proposition 10 If a type space T = (Ti; �i)i2I with �i : Ti ! P0(T�i) is compact and continuous,

then it is �T -continuous with some �T > 0.

This follows immediately from the following lemma.

Lemma 7 Let X be a compact metric space. For any compact subset Q of P0(X), there exists

�Q > 0 such that any preference in Q is �Q-continuous.

Proof. Fix any % 2 Q � P0(X). Then there exist z; z0 2 Z such that z � z0. Let � 2
ca(X � Z) be a �nite signed measure that represents % and is normalized by �(X � fzg) = 1 and
�(E�fz0g) = 0 for any E � X. Let � = 1=(k�k+1) > 0. Then we have k�k = (1��)=�, and hence
� 2 caz;z0;�(X �Z), i.e., % 2 Pz;z0;�(X). Since a neighborhood of % is contained in Pz;z0;�=2(X), by
the usual compactness argument, we can take desired �Q > 0 uniformly over Q.

Let H�;0 = f�g, H�;n = H�;n�1 � P�(H jIj�1
�;n�1) for each n � 1, and H� =

Q1
n=0 P�(H

jIj�1
�;n ). By

Proposition 9, H�;n is compact and metrizable for any n � 0. We endow H� with the product

topology, and hence H� is also compact and metrizable. Since �-continuity is preserved for induced

preferences, the preference hierarchy of any �-continuous type is also �-continuous. That is, for

any �-continuous type space T = (Ti; �i)i2I and any type ti 2 Ti, we have �̂i(ti) 2 H�. (Recall
that �̂i(ti) denotes the preference hierarchy of ti.) Following Heifetz and Samet (1998), we de�ne

T �i;� as the set of all preference hierarchies h 2 H� such that h = �̂i(ti) for some �-continuous type
space T = (Ti; �i)i2I and some type ti 2 Ti. Then we have the universal �-continuous type space
T �� = (T �i;�; ��i;�)i2I with ��i;� = ��i jT �i;� .

33

33Following Mertens and Zamir (1985) and Brandenburger and Dekel (1993), but replacing Kolmogorov�s extension

theorem by a version generalized to signed measures with uniformly bounded total variations, we can identify T �i;�
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B.8 Rationalizability and Strategic Distinguishability

We de�ne the set of �-rationalizable actions, denoted by Ri;�(ti) or Ri;�(ti; T ;M), as follows:

R0i;�(ti) =Mi;

Rn+1i;� (ti) =

8>>>>>>><>>>>>>>:
mi 2Mi

�������������

there exists %i 2 P�(M�i � T�i) s.t.
(i) %i is certain of the graph of Rn�i;�;
(ii) mrg T�i %i = �i(ti);
(iii) %i weakly prefers O(� j mi; �) to O(� j m0

i; �)
for any m0

i 2Mi

9>>>>>>>=>>>>>>>;
;

Ri;�(ti) =

1\
n=0

Rni;�(ti):

Let d�i;� be a metric compatible with the product topology on T
�
i;�.

Proposition 11 Fix � > 0. For every " > 0, there exists a mechanism M = ((Mi)i2I ; O) such

that

d�i;�(�̂i(ti; T ); �̂i(t0i; T 0)) > ") Ri;�(ti; T ;M) \Ri;�(t0i; T 0;M) = ;

for any two �-continuous type spaces T = (Ti; �i)i2I and T 0 = (T 0i ; �0i)i2I , any agent i 2 I, and any
two types ti 2 Ti and t0i 2 T 0i .

Sketch of the Proof. The proof is analogous to that of Proposition 2. By Proposition

9, H jIj�1
�;n�1 is compact and metrizable, and hence we can let X = H

jIj�1
�;n�1 and apply Lemma 6

repeatedly.

Together with the fact that equilibrium is a re�nement of �-rationalizability, Proposition 11 im-

plies Proposition 6. Indeed, Propositions 4 and 11 imply the following characterization of strategic

distinguishability for �-rationalizability.

with the set of all coherent �-continuous preference hierarchies. Thus T �i;� is compact and metrizable, and �
�
i;� : T

�
i;� !

P�(T
�
�i;�) is a homeomorphism. We do not need these facts, though.
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Theorem 3 Fix � > 0. For any two �-continuous countable type spaces T = (Ti; �i)i2I and

T 0 = (T 0i ; �
0
i)i2I , any agent i 2 I, and any two types ti 2 Ti and t0i 2 T 0i , the following three

conditions are equivalent:

1. �̂i(ti; T ) = �̂i(t0i; T 0);

2. Ei(ti; T ;M) \ Ei(t0i; T 0;M) 6= ; for any mechanismM.

3. Ri;�(ti; T ;M) \Ri;�(t0i; T 0;M) 6= ; for any mechanismM.

Proof. 1 ) 2 follows from Proposition 4. 2 ) 3 follows from the fact that equilibrium is a

re�nement of �-rationalizability. 3) 1 follows from Proposition 11.
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