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Abstract

An asymptotic theory is developed for a weakly identi�ed cointegrating regression

model in which the regressor is a nonlinear transformation of an integrated process.

Weak identi�cation arises from the presence of a loading coe¢ cient for the nonlinear

function that may be close to zero. In that case, standard nonlinear cointegrating

limit theory does not provide good approximations to the �nite sample distributions

of nonlinear least squares estimators, resulting in potentially misleading inference. A

new local limit theory is developed that approximates the �nite sample distributions

of the estimators uniformly well irrespective of the strength of the identi�cation. An

important technical component of this theory involves new results showing the uniform

weak convergence of sample covariances involving nonlinear functions to mixed normal

and stochastic integral limits. Based on these asymptotics, we construct con�dence

intervals for the loading coe¢ cient and the nonlinear transformation parameter and

show that these con�dence intervals have correct asymptotic size. As in other cases

of nonlinear estimation with integrated processes and unlike stationary process as-

ymptotics, the properties of the nonlinear transformations a¤ect the asymptotics and,

in particular, give rise to parameter dependent rates of convergence and di¤erences

between the limit results for integrable and asymptotically homogeneous functions.
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1 Introduction

Nonlinear models provide an important means of extending the conventional linear coin-

tegrating structures that are now commonly used in applied work. Nonlinearities provide

a mechanism for controlling and modifying the random wandering characteristics of unit

root time series, leading to a much wider range of possible response functions in regres-

sions with such time series. For instance, integrable transformations of integrated time

series attenuate outliers rather than proportionately transmit their e¤ects as in linear coin-

tegrating systems. Transformations of this type are valuable in modeling uneven output

responses to economic fundamentals such as those that can occur in the presence of market

interventions or regulatory regimes like exchange rate target zones.

Another useful property of nonlinear transformations is that they can modify the char-

acteristics of nonstationary series, including their memory attributes. Modi�cations of this

type are helpful in modeling time series like asset returns, which have near martingale

di¤erence characteristics, in terms of economic fundamentals that may behave much more

like integrated time series. In such cases, the e¤ects of the stochastic trend in the funda-

mentals is su¢ ciently attenuated to be negligible, except perhaps over long time periods

where the drift in asset returns becomes perceptible. A useful mechanism for capturing

such e¤ects is to utilize loading coe¢ cients on the nonlinear response functions that are al-

lowed to be local to zero. The cointegrating e¤ects then become �small�and they are only

weakly identi�ed. This approach gives �exibility in modeling the e¤ects of fundamentals

on returns and o¤ers the potential for improvements over linear models in predicting asset

returns using near integrated predictor processes, whose role has recently been emphasized

in the work of Campbell and Yogo (2006) and others.

The goal of the present paper is to deal with such formulations and develop an asymp-

totic theory that retains its validity for small cointegrating e¤ects. In particular, we study

nonlinear cointegration models of the following form

Yt = �g(Xt; �) + ut, (1.1)
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where Xt is an I(1) process, Yt is a dependent variable, not necessarily I(1), ut is an

error term (to be speci�ed more precisely later), g(x; �) is a nonlinear transformation of x

whose form is known up to a parameter �, and � is a loading coe¢ cient that measures the

importance of the nonlinear regression e¤ect.

Models like (1.1) have the attractive feature that they can relate processes of di¤erent

integration orders. As intimated above, this feature may be especially appealing in mod-

eling and predicting stock market returns. Stock returns commonly behave as martingale

di¤erences, while the variables that are used in prediction are often I(1), as discussed in

Marmer (2008), leading to a potential imbalance in a regression formulation. Accordingly,

any relationship between stock return levels and stochastic trend predictors is inevitably

weak because of the e¢ ciency of modern stock markets. In terms of the model (1.1), this

consideration may be captured for a wide class of possible regression functions simply by

permitting the true value of the loading coe¢ cient to be close to zero. To develop an or-

derly asymptotic theory that accommodates this possibility, the model may be formulated

to allow the true parameter, �n; to drift to zero as the sample size n ! 1: Then, if Yt
denotes stock returns and Xt denotes an I(1) regressor embodying economic fundamentals,

the behavior of Yt will closely follow ut: If ut is a martingale di¤erence, then Yt may be

regarded as local to a martingale di¤erence sequence, where the locality is a¤ected by the

form of the function g, the nonstationary nature of xt, and the magnitude of the localizing

loading coe¢ cient �n. Such a relationship may be considered to be weakly identifying.

When a relationship such as (1.1) is weak, the nonlinear least squares (NLS) estimators�
�̂n; �̂n

�
of the true parameters (�n; �n) do not behave as standard asymptotic theory for

nonstationary time series (Park and Phillips (2001)) predicts even in large samples. In

the extreme case, when �n = �0 = 0, �0 is not identi�ed and the estimator �̂n cannot

reasonably be expected to be anywhere near �0, although standard asymptotic theory,

which proceeds under the assumption that �0 > 0; would imply that �̂n is consistent and

asymptotically normal. Similar discrepancies between standard asymptotic theory and the

�nite sample distributions of NLS estimators exist when �0 is close to zero.

The present paper explores these issues associated with potentially weak identi�cation.

The main contribution of the paper is to provide a local asymptotic theory that can approx-

imate the �nite sample distributions uniformly well even when �0 is close to zero. The new

asymptotic theory is used to construct robust con�dence intervals for the NLS estimators�
�̂n; �̂n

�
and may be further developed to use in the construction of forecasting intervals

that take account of potentially small cointegrating e¤ects. The critical values used to
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construct con�dence intervals are nonstandard, as sometimes occurs in nonstationary re-

gression, but these can be simulated. The robust con�dence intervals are shown to have

correct asymptotic size, indicating that they have good �nite sample coverage probabilities

irrespective of identi�cation strength.

This paper is the most closely related to Cheng (2008) - see also Cheng (2010). Cheng

(2008) studies a weakly identi�ed nonlinear regression model of the form (1.1) but in the

cross section context where both the regressor and the error are independent and identically

distributed. The present paper extends the limit theory to a nonstationary time series

environment, in which the stochastic trend e¤ect on Yt is e¤ectively small. As in Cheng

(2008), we derive asymptotics of the NLS estimators under a drifting sequence of true values

of � to characterize the behavior of NLS estimators when �0 is close to zero. The limit

theory reveals some important di¤erences with the cross section case. Unlike cross section

and stationary cases, it is shown that the e¤ect of the drift rate in the loading coe¢ cient

�n on the asymptotic theory depends on the shape characteristics of the function g and

the parameter �0: Correspondingly, there is interaction between the loading coe¢ cient and

nonlinear function e¤ects when xt is nonstationary. These dependencies re�ect the nuances

that arise in the impact of stochastic trends on outputs when the cointegrating association

may be weak and nonlinear. These dependencies also a¤ect inference and their role will

become clear in what follows.

The techniques used to derive the asymptotic distributions of nonlinear functions of

integrated processes are mainly based on Park and Phillips (1999) and Park and Phillips

(2001) - hereafter PP. PP provided building blocks for nonlinear cointegration asymptotics

by establishing a limit theory for suitably standardized sample functions of quantities such

as g(Xt; �) and its derivatives, as well as sample covariances of these quantities and ut.

For their results, PP require and prove only pointwise (in �) weak convergence of such

sample covariances. In the present context, pointwise convergence is not enough because

the covariance term contributes to the limit theory of the estimators when �n drifts to

zero. An important technical contribution of the present paper is to show that weak

convergence of such sample covariances to certain mixed normal and stochastic integral

limits holds uniformly over a compact space of � values. The new results are established

by demonstrating stochastic equicontinuity of the sample covariance process. The uniform

convergence results are of independent interest and useful in other extremum estimation

problems involving nonlinear cointegration.

The paper is organized as follows. Section 2 lays out the model, basic assumptions and
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some embedding arguments used in the proofs. Section 3 introduces the NLS estimators

of the loading coe¢ cient and the nonlinear transformation coe¢ cient. Section 4 develops

the limit theory for the NLS estimators
�
�̂n; �̂n

�
for integrable functions g(�; �) under

various decay rates of the loading coe¢ cient �n. Section 5 develops analogous limit results

for asymptotically homogeneous functions g(�; �). These results encompass the case where
identi�cation is strong enough to ensure that �̂n is consistent but may still a¤ect rates of

convergence and the more extreme case where weak identi�cation results in inconsistent

estimation of �, leading to a random limit for �̂n that re�ects the weak identi�cation.

The latter outcome corresponds to results given in the partial identi�cation literature (cf.

Phillips (1989); Stock and Wright (2000)). This section also proves a uniform weak con-

vergence result to stochastic integrals. Section 6 discusses con�dence interval construction.

Section 7 concludes. The Appendix provides proofs of the main results in the paper and

some useful auxiliary lemmas.

2 The Model and Basic Assumptions

The model we consider is the following nonlinear regression model for a time series Yt:

Yt = �0g(Xt; �0) + ut, (2.1)

where g : R � � ! R is a known function, Xt and ut are the regressors and regression

errors, respectively, and �0 � (�0; �0)0 is the true parameter vector that lies in a parameter
set � � R � � � R2. We consider the case where Xt is an integrated process and

ut is a martingale di¤erence sequence, speci�ed more precisely later. Model (2.1) is a

nonlinear cointegrating regression, but it di¤ers from the nonlinear cointegrating regression

considered in PP in an important way: the parameter �0 is not identi�ed in (2.1) if �0 = 0

and only weakly identi�ed if �0 is close to zero.

The partial identi�cation feature of Model (2.1) invalidates standard nonlinear least

squares (NLS) inference not only when �0 = 0, but also when �0 is close to zero. This

point is discussed in Cheng (2008) in the context of cross section nonlinear regression. We

extend the limit theory to a nonstationary time series environment and construct suitable

methods of inference. As in Cheng (2008), we derive asymptotics of the NLS estimators

under a drifting sequence of true values (�n, �n) in an e¤ort to characterize the behavior of

NLS estimators when �0 is close to zero. Unlike cross section and stationary cases, however,
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the e¤ect of the drift rate in �n on the asymptotics depends on the shape characteristics

of the function g and the parameter �0: These dependencies a¤ect inference and their role

will become clear in what follows.

We now complete the speci�cation of Model (2.1). We assume the generating mecha-

nism of Xt is the unit root process

Xt = Xt�1 + vt; t = 1; 2; :::; n (2.2)

and set X0 = 0 for convenience, although X0 = oa:s: (
p
n) will be su¢ cient for the results

that follow. Other possibilities for initialization might be considered (e.g. as in Phillips

and Magdalinos (2009)) but, for brevity, are not pursued here. Similarly, the generating

mechanism (2.2) for Xt may be replaced with a local to unity process without materially

a¤ecting results, which will be important in empirical applications such as those in Camp-

bell and Yogo (2006). For the component time series ut and vt, we de�ne the stochastic

processes Un and Vn on [0; 1] by the standardized partial sums

Un(r) = n
�1=2

[nr]X
t=1

ut and Vn(r) = n�1=2
[nr]X
t=0

vt+1; (2.3)

where [r] denotes the largest integer not exceeding r.

The following high level assumption is convenient and is closely related to similar as-

sumptions in the literature, for example Assumption 2.1 in PP.

Assumption 2.1. (a) supr2[0;1] jj (Un(r); Vn(r))� (U(r); V (r))jj !a:s 0 as n!1, where
(U; V ) is a vector Brownian motion with

V ar

  
U(r)

V (r)

!!
= r

 
�2u ��u�v

��u�v �2v

!
for r 2 [0; 1],

where � 2 (�1; 1).
For each n, there exists a �ltration (Fn;t), t = 0; :::; n, such that:

(b) (ut;Fn;t) is a martingale di¤erence sequence with E
�
u2t jFn;t�1

�
= �2u a.s. for all

t = 1; :::; n; and sup1�t�nE(jutjq jFn;t�1) <1 a.s. for some q > 2; and

(c) Xt is adapted to Fn;t�1, t = 1; :::; n.

Remarks. (i) The stochastic processes (Un; Vn) are de�ned on D2 [0; 1], where D [0; 1] is
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the space of cadlag functions. As in PP, it is convenient to endow the space D [0; 1] with

the uniform topology (see e.g. Billingsley (1968)) and employ the Skorohod representation.

(ii) It is more common to have "!d" instead of "!a:s:" in Assumption 2.1(a). However,

if (Un; Vn) !d (U; V ), by the Skorohod representation theorem, there exists a common

probability space (
;F ;P) supporting
�
U0n; V

0
n

�
and

�
U0; V 0

�
such that

�
U0n; V

0
n

�
=d (Un; Vn) ,

�
U0; V 0

�
=d (U; V ) , and�

U0n; V
0
n

�
!
�
U0; V 0

�
a.s. (2.4)

For the purpose of deriving the consistency and the asymptotic distribution of the NLS

estimator (�̂n; �̂n), there is no loss of generality in assuming (Un; Vn) =
�
U0n; V

0
n

�
and

(U; V ) =
�
U0; V 0

�
and letting Assumption 2.1(a) hold. This assumption allows us to avoid

repeated embedding arguments. When (Un; Vn)!d (U; V ) holds instead of (Un; Vn)!a:s:

(U; V ), the results still hold with "!a:s" and "!p" replaced by "!d" by virtue of the

representation theory.

(iii) The condition (c) that Xt is adapted to Fn;t�1 is a simplifying assumption and
it is restrictive in linear cointegrating regression. But it is common in fully speci�ed

(cointegrating) regression models and allows for arguments based on martingale central

limit theory, as in PP, for nonlinear cointegration. In the case of structural systems,

where there is contemporaneous (and possibly serial cross) dependence between Xt and

ut, some modi�cations of the derivations and the results are required. The limit theory is

especially complex in the case of models with integrable nonlinear functions and it is not yet

completely worked out in the literature even for the strongly identi�ed case. In fact, when

g(�; �) is an integrable function, substantially di¤erent proofs are needed, as shown by the
limit theory in Jeganathan (2008) and Chang and Park (2009), the latter also for martingale

di¤erence ut. Further, the limit theory involves only a partial invariance principle in

the general case (Jeganathan, 2008). When g(�; �) is asymptotically homogeneous, the
modi�cations that are required follow those in de Jong (2002) and Ibragimov and Phillips

(2008, theorem 3.1). Throughout the current paper, we will maintain Assumption 1(c),

which is likely to be most relevant in prediction and in applied work on stock return

regressions, in order to explore the e¤ects of weak identi�cation in nonlinear nonstationary

models and to keep this paper to manageable length.
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3 Nonlinear Least Squares Estimation

Let � = (�; �)0 and de�ne the nonlinear least squares criterion function

Qn(�) = n
�1

nX
t=1

(Yt � �g(Xt; �))2 � n�1
nX
t=1

Y 2t : (3.1)

The NLS estimator �̂n minimizes Qn(�) over �, i.e.

�̂n = argmin
�2�

Qn (�) . (3.2)

Because the regression function is linear in �, it is convenient �rst to solve (3.2) for each

�xed �, giving

�̂n(�) =

Pn
t=1 Ytg(Xt; �)Pn
t=1 g

2(Xt; �)
; (3.3)

and then minimize the concentrated criterion function Qn(�) = Qn(�̂n(�); �) for �̂n: The

following condition is standard in extremum estimation.

Assumption 3.1. The parameter space � of � is compact.

Following the framework of PP, in what follows we consider two possible families of g

functions. These are the I-regular and the H-regular classes and they will be discussed

separately. We use the same de�nitions of these function classes as those in PP.

4 NLS for Integrable Functions

This section considers integrable (more specially, I-regular as de�ned below) classes of

functions and examines the consistency, inconsistency, and asymptotic distributions of the

NLS estimators �̂n and �̂n under drifting sequences of true parameters. Drifting sequences

enable us to study cases where the parameters are weakly identi�ed. We �nd that �̂n and

�̂n are consistent and have an asymptotic distribution that is the same as in the strongly

identi�ed case considered in PP provided the true value of � drifts to zero at a rate slower

than n�1=4. When the true values �n drift to zero at a faster rate, �̂n is inconsistent

and the asymptotic distributions of �̂n and �̂n are nonstandard in comparison with the

nonstationary limit theory of PP. Thus, weak identi�cation is induced by a critical strip of

O
�
n�1=4

�
around the origin in the loading coe¢ cient �:
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The following conditions are useful in the development of the limit theory. Assumption

4.1 is the same as Assumption 2.2(b) in PP. The I-regularity conditions in Assumption

4.2 are adopted from De�nition 3.3 of PP. Assumption 4.3 requires the function g(�; �) to
be non-degenerate in the sense that g2(�; �) has positive energy

R1
�1 g

2(s; �)ds > 0 for any

� 2 �.

Assumption 4.1. In the generating mechanism of Xt, (2.2), vt = '(L)"t =
P1
k=1 'k"t�k,

with '(1) 6= 0 and
P1
k=1 j'kjk <1, and f"tg is a sequence of i.i.d. random variables with

mean zero and Ej"tjp < 1 for some p > 4, the distribution of which is absolutely contin-

uous with respect to the Lebesgue measure and has characteristic function c(�) satisfying

lim�!1 �
rc(�) = 0 for some r > 0.

Assumption 4.2. The function g(�; �) is I-regular on � in the sense that:
(a) for each �0 2 �, there exists a neighborhood N0 of �0 and T : R! R+ a bounded,

integrable function such that jg(x; �)� g(x; �0)j � j� � �0jT (x) for all � 2 N0; and
(b) for some constants c > 0 and k > 6=(p � 2) with p > 4 given in Assumption 4.1,

the function g satis�es jg(x; �)� g(y; �)j � cjx� yjk for all � 2 �, piecewise on each piece
Si of the common support S = [mi=1Si � R.

Assumption 4.3.
R1
�1 g

2(s; �)ds > 0 for all � 2 �.

Lemma 4.1 below establishes the uniform convergence of the sample covariance be-

tween the regression function and the error term. The result is similar to the second part

of Theorem 3.2 in PP. But our result is stronger because the convergence in distribution

to a mixed normal limit holds uniformly over the parameter space �. The stronger re-

sult is needed in this paper because the asymptotic distribution of the covariance term

contributes to the asymptotic distribution of the NLS criterion function when we allow

the true value of � to drift to zero with the sample size. In the lemma, we use the local

time L(1; 0) = lim"!0 1
2"

R 1
0 1fjV (r)j < "gdr of the Brownian motion process V (r), and a

secondary Gaussian process Z (�) which is independent of L(1; 0).

Lemma 4.1. Let Assumptions 2.1, 3.1 and 4.1-2 hold. The sequence of stochastic processes
�n(�) : � 2 � converges weakly to �(�) : � 2 �, where

�n(�) = n�1=4
nX
t=1

g(Xt; �)ut

�(�) = L(1; 0)1=2Z (�) ;
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and Z (�) is a Gaussian process with covariance kernel

k (�a; �b) = �
2
u

Z 1

�1
g(s; �a)g(s; �b)ds:

This uniform convergence result makes it possible to characterize the limiting form of

the NLS criterion Qn(�) and hence �nd the asymptotic distribution of �̂n. We start with

the following Lemma which establishes the asymptotic distribution of the centered NLS

criterion function Dn(�; �n) := Qn(�)�Qn(�n) (with appropriate scaling). In this lemma
and the rest of the paper, R[�1] denotes the extended real line: R [ f�1;+1g.

Lemma 4.2. Let Assumptions 2.1, 3.1 and 4.1-3 hold. Under drifting sequences of true
parameters f(�n; �n) 2 �g such that (n1=4�n; �n) ! (c; �0) 2 R[�1] � �, the following
limits hold:

(a) if c = �1, then

n1=2��2n Dn(�; �n) !p DI(�; �0)

:=

264Z 1

�1
g2(s; �0)ds�

�R1
�1 g(s; �)g(s; �0)ds

�2R1
�1 g

2(s; �)ds

375L(0; 1);
uniformly over � 2 �, and

(b) if c 2 R, then fnDn(�; �n) : � 2 �g converges weakly to D(c; �; �0) : � 2 �, where

D(c; �; �0) :=

8><>:cL (1; 0)1=2
�Z 1

�1
g2(s; �0)ds

�1=2
+

Z (�0)�R1
�1 g

2(s; �0)ds
�1=2

9>=>;
2

�

8><>:cL (1; 0)1=2
R1
�1 g(s; �0)g(s; �)ds�R1
�1 g

2(s; �)ds
�1=2 + Z (�)�R1

�1 g
2(s; �)ds

�1=2
9>=>;
2

:

Assumption 4.4 below rules out collinearity between g(s; �1) and g(s; �2) for �1 6= �2
and ensures that D(c; �; �0) has a unique minimum in � with probability one.
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Assumption 4.4. For every a 6= 0 and �1, �2 2 � with �1 6= �2Z 1

�1
(g(s; �1)� ag(s; �2))2 ds > 0:

Lemma 4.3. Suppose Assumptions 4.2-4 hold. For any c 2 R and �0 2 �, D(c; �; �0) is
continuous and has a unique minimizer in � with probability one.

We are now in a position to develop a limit distribution theory. Theorem 4.1 below

characterizes the limit behavior of �̂n under di¤erent sequences of drifting true parameters.

The outcomes depend critically on the limit behavior of �n: If n
1=4�n is bounded as n !

1 then the data are insu¢ ciently informative to deliver a consistent estimator and �̂n
converges weakly to a random quantity, re�ecting that lack of information. If n1=4�n
diverges, then there is su¢ cient information for consistent estimation. In that event, the

rate of convergence of �̂n is n1=4�n and depends on the sequence �n; as shown in Theorem

4.2 below.

Theorem 4.1. Suppose Assumptions 2.1, 3.1 and 4.1-4 hold. Under drifting sequences of
true parameters f(�n; �n) 2 �g such that �n ! �0 and n1=4�n ! c for c 2 R[�1], the
following limits hold:

(a) if c = �1, then �̂n � �n !p 0, and

(b) if c 2 R, then �̂n !d � I;�(c; �0), where � I;�(c; �0) is a random variable that

minimizes D(c; �; �0).

The following assumption imposes an I-regularity condition on the �rst and second

derivatives of g with respect to �. To simplify notation, let _g(x; �) = @g(x; �)=@� and

�g(x; �) = @2g(x; �)=@�2. Assumption 4.5 (b) implies that the matrix �g _g de�ned below in

(4.1) is positive de�nite.

Assumption 4.5. (a) The functions _g(�; �) and �g(�; �) are I-regular on �, i.e. they
satisfy Assumption 4.2, and

(b) for any � 2 �, there exists no a 2 R such that _g(x; �) = a � g(x; �) a.e.

Theorem 4.2 below gives the asymptotic distribution of �̂n when n1=4�n ! c = �1.

Theorem 4.2. Suppose Assumptions 2.1 3.1, and 4.1-5 hold. Under drifting sequences of
true parameters f(�n; �n) 2 �g such that �n ! �0 and n1=4�n ! c, the following limit

behavior obtains:
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(a) if c 2 R, then n1=4�̂n !d � I;�(c; �0) � fI(� I;�(c; �0)), where

fI(�) :=
�u

�R1
�1 g

2(s; �)ds
�1=2

Z (�) + cL1=2(1; 0)
R1
�1 g(s; �)g(s; �0)ds

L1=2(1; 0)
R1
�1 g

2(s; �)ds
, and

(b) if c = �1, 
n1=4(�̂n � �n)
n1=4�n(�̂n � �n)

!
!d

 
TI;�(�0)

TI;� (�0)

!
:= �u�

�1=2
g _g L�1=2(1; 0)Z,

where Z � N(0; I2) is independent of L(1; 0); and

�g _g :=

 R1
�1 g

2(s; �0)ds
R1
�1 _g(s; �0)g(s; �0)dsR1

�1 _g(s; �0)g(s; �0)ds
R1
�1 _g2(s; �0)ds

!
. (4.1)

5 NLS for Asymptotically Homogeneous Functions

This section considers asymptotically homogeneous (or H-regular) classes of functions and

examines the consistency, inconsistency, and asymptotic distributions of the NLS estima-

tors �̂n and �̂n under drifting sequences of true parameters. We �nd that �̂n and �̂n are

consistent and have asymptotic distributions that are equivalent to those in PP when the

true values of � drift to zero at a rate slower than n1=2 times the asymptotic order of the

nonlinear function g. When the true values �n drift to zero faster, �̂n is inconsistent and

the asymptotic distributions of �̂n and �̂n are again nonstandard in relation to PP. Weak

identi�cation in the present case occurs when the loading coe¢ cient � lies in a critical

strip around the origin whose order of magnitude depends on the asymptotic order of the

function g:

To simplify notation, de�ne the standardized quantity Xn;t = n�1=2Xt. For a function

F (v; �), let
R
F (V; �)dU =

R 1
0 F (V (r); �)dU(r) and

R
F (V; �) =

R 1
0 F (V (r); �)dr.

Assumption 5.1. (a) g(x; �) is H-regular on � as de�ned in PP, with asymptotic order
�(�; �), limit homogeneous function h(x; �), and residual R(x; �; �), where � 2 R+. Let

h(x; �; �) = ��1(�; �)g(�x; �) � h(x; �) + ��1(�; �)R(x; �; �); : (5.1)

where ��1(�; �)R(x; �; �) = o (1) for all � 2 � as �!1:
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(b) There exists a function b such that for all x 2 R and �; �0 2 �,

sup
��1

��h(x; �; �)� h(x; �; �0)�� � b(x) ��� � �0�� ,
(c) For all � 2 � and � > 0,

R
jsj�� h

2(s; �)ds > 0:

(d) For � 6= �0 and � > 0, there is no a 6= 0 such that
R
jsj��(h(s; �)�ah(s; �

0))2ds = 0:

(e) lim�!1 sup�2� �
�1(�; �) = 0:

Remark. The H-regularity concept in Assumption 5.1(a) was introduced in Park and
Phillips (1999) and is illustrated below. The de�nition includes a wide class of homoge-

neous, asymptotically homogeneous and regularly varying functions, and is discussed in

PP. Assumption 5.1(b) is a Lipschitz continuity condition on h(x; �; �). The �sup��1�

operation does not make the assumption more restrictive because h(x; �; �) converges

to h(x; �) as � goes to in�nity. For the same reason, Assumption 5.1(b) implies that

jh(x; �)� h(x; �0)j � b(x) j� � �0j for all x 2 R and �; �0 2 �. Assumptions 5.1(c)-(d)
guarantees the identi�cation of �0 and that of �0 when �0 is not too close to zero. These

assumptions along with Assumption 5.4 below are the full-rank conditions.

The following example involves a typical asymptotically homogeneous function and

demonstrates that Assumption 5.1 is not restrictive.

Example. Let g (x; �) =
�
1 + x2

�� and � = [�a; �b] with 0 < �a < �b <1: Then,
g (�x; �) = �2�

�
��2 + x2

��
:= � (�; �)h (x; �; �) ; with � (�; �) = �2�: (5.2)

Clearly, inf�2� �(�; �) = �2�a ! 1 as � ! 1; the family fg (�; �)g is equicontinuous
on �; and h (x; �) = x2�; which is homogeneous of order �2� with

R
jsj�� s

4�ds > 0 andR
jsj��(s

2� � s2�0)2ds > 0 for all � > 0. The following equation implies that g(x; �) satis�es
Assumption 5.1(a):

lim
�!1

sup
jxj<C;�2�

j
�
��2 + x2

�� � x2�j = 0 and sup
jxj<C;�2�

��x2��� < C2�b _ 1 <1. (5.3)
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Assumption 5.1(b) holds because

sup
��1

������2 + x2�� � ���2 + x2��0���
= sup

��1

������2 + x2�~� ln ���2 + x2� (� � �0)���
� [
�
1 + x2

��b �ln �1 + x2�+ log �1 + x�2�	] ��� � �0�� , (5.4)

where the equality holds for ~� between � and �0 by the mean value expansion and the

inequality holds because

sup
��1

�
��2 + x2

�~� � �1 + x2��b ;
and

sup
��1

��ln ���2 + x2��� �
��ln �1 + x2��� 1 fjxj � 1g+ ��lnx2�� 1 fjxj < 1g

�
��ln �1 + x2���+ ��ln �1 + x�2��� :

Assumptions 5.1(c)-(d) hold straightforwardly. Finally, we verify the validity of two addi-

tional conditions needed in later arguments. First, observe that

�
�
n1=2; �n

�
�
�
n1=2; �0n

� � n�n��0n ! 1; for �n � �0n = o
�
1

lnn

�
;

con�rming a condition needed in Theorem 5.2. Next, the derivative function _g (x; �) =�
1 + x2

��
ln
�
1 + x2

�
; whose asymptotic order is �1(�; �) = �2� ln�; so that

lim sup
�!1

�
�(�; �)

�1(�; �)
ln�

�
= 1;

con�rming the validity of a condition used in Assumption 5.4(b).

Assumption 5.2 below places a uniform boundedness condition on the second moments

of the limit homogeneous function h and the Lipschitz function b of Assumption 5.1.

Assumption 5.2. (a) For all � 2 �, lim supn!1 n�1
Pn
t=1Eh

2(Xn:t; �) <1,
(b) lim supn!1 n

�1Pn
t=1Eb

2(Xn;t) <1, and
(c) supr2[0;1]Ejb(V (r))j2 <1.
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Remark. Assumptions 5.2(a)-(b) are helpful in establishing the stochastic equicontinuity
of n�1=2��1(n1=2; �)

Pn
t=1 g(Xt; �)ut. Assumptions 5.2(c) is used to guarantee the existence

of a random process Y (�) : � 2 � whose sample paths are continuous with probability one
and satis�es Y (�) =

R
h(V; �)dU a:s: for every � 2 �. Lemma 5.1 below formalizes the

existence argument.

Lemma 5.1. Let Assumptions 3.1(a)-(b) and 5.2(c) hold. Then, there exists a random
process Y (�) : � 2 � that (i) has continuous sample paths with probability one and (ii)

satis�es Y (�) =
R
h(V; �)dU a:s: for every � 2 �.

Remark. Random processes indexed by � that satisfy (ii) in the above lemma are not

necessarily unique (not even in an almost sure sense). That is, there may exist Y (�),

Y 0(�) : � 2 � that both satisfy (ii), but Y (�) 6= Y 0(�) 8� 2 � almost surely. However,

under the given assumptions, the random process Y (�) that satis�es both (i) and (ii) is

unique in an almost sure sense.1 To keep the notation intuitive, we let
R
h(V; �)dU : � 2 �

denote the unique continuous process Y (�) in the above lemma. This should cause no

confusion because previously the stochastic integral
R
h(V; �)dU was de�ned only for each

� 2 � and not as a random process indexed by �.

Lemma 5.2 below establishes the uniform convergence of the sample covariance between
the regression function and the error term. As in the case of integrable functions, the result

is similar to the second part of Theorem 3.3 in PP but is stronger because the convergence

holds uniformly over the parameter space. As before, the stronger result is needed here

because the probability limit of the covariance term contributes to the asymptotic form of

the NLS criterion function when we allow the true value of � to drift to zero as the sample

size n ! 1. The resulting uniform convergence to a parameterized stochastic integral is

new and seems likely to be useful in other asymptotics involving nonstationary time series.

Lemma 5.2. Let Assumptions 2.1, 3.1 and 5.1-5.2 hold. Then, uniformly in � 2 �;

n�1=2��1(n1=2; �)
nX
t=1

g(Xt; �)ut !p

Z
h(V; �)dU .

As discussed above, we consider drifting sequences of true parameters f(�n; �n) 2 �g
1See, e.g., Kallenberg (2001, p.56-57).
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such that �(n1=2; �n)n1=2�n ! c for c 2 R[�1]. The rate ��(n1=2; �n)n1=2�is set so that,
under the sequence f(�n; �n) 2 �g, the centered criterion function Dn(�; �n) := Qn(�) �
Q(�n), when scaled properly, converges in probability to one function when c = �1 and

to another function when c 2 R. Lemma 5.3 below establishes the respective probability
limits.

Lemma 5.3. Let Assumptions 2.1, 3.1 and 5.1-5.2 hold. Then under drifting sequences
of true parameters f(�n; �n) 2 �g such that �n ! �0 2 � and �(n1=2; �n)n1=2�n ! c 2
R[�1], the following limits hold:

(a) if c = �1, ��2(n1=2; �n)��2n Dn(�; �n) ! DH(�; �0) a.s. uniformly over � 2 �
where

DH(�; �0) :=

Z
h2(V; �0)�

�R
h(V; �)h(V; �0)

�2R
h2(V; �)

;

(b) if c 2 R, then uniformly over � 2 �,

nDn(�; �n) ! p

�
c
R
h2(V; �0) +

R
h(V; �0)dU

�2R
h2(V; �0)

��
c
R
h(V; �)h(V; �0) +

R
h(V; �)dU

�2R
h2(V; �)

.

Lemma 5.4 below shows that the probability limit of nDn(�; �n) has a unique minimum
with probability one, which guarantees that �̂n has a well-de�ned limiting distribution.

Lemma 5.4. Let Assumptions 5.1-2 hold. For any �0 2 � and c 2 R, the limit function�
c
R
h(V; �)h(V; �0) +

R
h(V; �)dU

�2R
h2(V; �)

(5.5)

is continuous in � and achieves a unique maximum in � with probability one.

The theorem below establishes the consistency of �̂n under drifting sequences of true

parameters f(�n; �n) 2 �g with �(n1=2; �n)n1=2�n ! �1, and gives the distributional
limit of �̂n under drifting sequences with �(n1=2; �n)n1=2�n ! c 2 R. In the latter case,
there is insu¢ cient information in the limit to ensure consistency and �̂n converges to a

random quantity re�ecting that lack of information.

Theorem 5.1. Let Assumptions 2.1, 3.1 and 5.1-5.2 hold. Under drifting sequences of true
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parameters f(�n; �n) 2 �g such that �n ! �0 2 � and �(n1=2; �n)n1=2�n ! c 2 R[�1],
the following limits hold:

(a) if c = �1, then �̂n � �n !p 0, and

(b) if c 2 R, then �̂n !d �H;�(c; �0), where �H;�(c; �0) is a random variable that

maximizes (5.5).

Assumption 5.3 below requires both the derivative functions _g(x; �) and �g(x; �) to

satisfy H-regularity conditions. These assumptions are needed to obtain the asymptotic

distributions of the NLS estimators and their asymptotic forms a¤ect convergence rates.

Assumption 5.3. (a) _g(x; �); � 2 � is H-regular with asymptotic order �1(�; �), limit

homogeneous function h1(x; �) and residual R1(x; �; �),

(b) �g(x; �); � 2 � is H-regular with asymptotic order �2(�; �), limit homogeneous

function h2(x; �) and residual R2(x; �; �), and

(c) for h1(x; �; �) = ��11 (�; �) _g(�x; �) and h2(x; �; �) = ��12 (�; �)�g(�x; �), Assump-

tions 5.1(b) and 5.2 hold with h replaced by h1 or h2 and b replaced by b1 or b2.

Assumption 5.4(a) below is part of the full-rank condition. Assumption 5.4(b) requires

the asymptotic order of _g to be larger than that of g by a certain factor. Part (b) is satis�ed

by most asymptotically homogeneous functions.

Assumption 5.4. (a) For any � 2 � and � > 0, there is no a 6= 0 such that
R
jsj��(h(s; �)�

ah1(s; �))
2ds = 0, and

(b) for any � 2 �, lim sup�!1 j�(�; �)��11 (�; �)j log � <1:

Theorem 5.2 below establishes the asymptotic distributions of the estimators under

drifting sequences of true parameters. As the theorem shows, the estimators have the

same asymptotic distributions as in Theorem 5.2 of PP when identi�cation is strong �

that is, when �(n1=2; �n)n1=2j�nj ! 1. When identi�cation is weak, the estimators have
asymptotic distributions di¤erent from those given in PP.

For notational simplicity, let �n;� = �(n1=2; �), �1;n;� = �1(n
1=2; �) and �2;n;� =

�2(n
1=2; �).

Theorem 5.2 Suppose Assumptions 2.1, 3.1 and 5.1-5.4 hold. Under drifting sequences
of true parameters f(�n; �n) 2 �g such that �n ! �0 2 � and n1=2�n;�n�n ! c 2 R[�1],
the following limits hold:
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(a) if c 2 R, then n1=2�n;�̂n �̂n !p �H;�(c; �0) := fH(�H;�(c; �0)), where

fH(�) :=

R
h(V; �)dU + c

R
h(V; �)h(V; �0)R

h2(V; �)
, (5.6)

(b) if c = �1, then n1=2�n�1;n;�n(�̂n � �n)!p TH;�(�0) where

TH;� :=

R
h(V; �0)h1(V; �0)

R
h(V; �0)dU �

R
h2(V; �0)

R
h1(V; �0)dUR

h21(V; �0)
R
h2(V; �0)�

�R
h(V; �0)h1(V; �0)

�2 ,

(c) if c = �1 and in addition, �n;�n=�n;�0n ! 1 whenever �n � �0n = o(1= log n), then
n1=2�n;�n(�̂n � �n)!p TH;�(�0), where

TH;�(�0) :=

R
h(V; �0)dUR
h2(V; �0)

�
R
h(V; �0)h1(V; �0)R

h2(V; �0)
� TH;�(�0).

These results, like those for integrable functions, reveal that the limit theory is a¤ected

by weak identi�cation. In the present case, there is the additional complication that the

convergence rates depend on the unknown parameters. A robust approach to inference

needs to take account of these possibilities, which we now investigate.

6 Con�dence Intervals

This section shows how to construct con�dence intervals for the loading coe¢ cient � and

the nonlinear transformation parameter �: These intervals are robust in the sense that

they allow for the possibility that identi�cation may be weak. The approach is based on

Theorems 4.2 and 5.2. The I -regular and the H-regular classes are treated separately.

Special issues arise for the H-regular class because the drifting rate of the true values of �

depends on the true values of the unknown parameter �.

We proceed in a general way and let  be a generic notation for the relevant parameter

and j denote a generic type of nonlinear transformation. In our model,  may be either �

or �; and j may be either I, standing for integrable type, or H, standing for asymptotically

homogeneous type. Let CIj;;n(�) denote the 1�� percent con�dence interval for parameter
 when the nonlinear transformation is of type j. For � = (�; �)0; let Pr� be the probability

function when the true parameter value is �. At sample size n, the coverage probability of
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the con�dence interval CIj;;n(1� �) when the true parameter is � is

CPj;;n(�; �) = Pr�( 2 CIj;;n(�)): (6.1)

This section constructs con�dence intervals whose �nite sample coverage probabilities

are uniformly controlled by the asymptotic size. The asymptotic size of CIj;;n is de�ned

as

AsySZj;(�) = lim inf
n!1

inf
�2�

CPj;;n(�; �). (6.2)

As discussed earlier in this paper, the true parameter � measures the strength of identi�ca-

tion. In the de�nition of AsySZj; , the in�mum is taken over all � 2 � and, in particular,
over � 2 R. Thus, AsySZj;(�) approximates the �nite sample minimum coverage proba-

bility inf�2�CPj;;n(�; �) irrespective of the strength of identi�cation.

6.1 Con�dence Intervals with Integrable Functions

The con�dence intervals for both � and � are constructed in a two-step fashion. First, one

determines the strength of identi�cation by comparing n1=4j�̂nj to a positive number bn.
Second, one chooses critical values based on the asymptotic distribution of n1=4(�̂n � �)
or n1=4�̂n(�̂n � �) at di¤erent levels of identi�cation. Details are given below. We require
the sequence bn to diverge to in�nity but at a rate slower than n1=4:

Assumption 6.1. b�1n + n�1=4bn ! 0.

Consider � 2 (0; 1). For c 2 R, let qI;�(c; �0; 1��) be the 1�� quantile of j� I;�(c; �0)�
cj. Let qI;�(1; �0; 1� �) be the 1� � quantile of jTI;�(�0)j. Let

q̂I;�(�̂n; 1� �) =
(
supc2R[�1]

sup�2� qI;�(c; �; 1� �) if n1=4j�̂nj � bn
qI;�(1; �̂n; 1� �) if n1=4j�̂nj > bn

. (6.3)

We use q̂I;�(�̂n; 1 � �) as the critical value to construct a con�dence interval for �. This
critical value is structured the same as that used in the robust con�dence interval in Cheng

(2008). The con�dence interval for � is

CII;�;n(�) =
n
� : n1=4j�̂n � �j � q̂I;�(�̂n; 1� �)

o
: (6.4)
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Similarly, let qI;�(c; �0; 1��) be the 1�� quantile of j� I;�(c; �0)(� I;�(c; �0)� �0)j. Let
qI;�(1; �0; 1� �) be the 1� � quantile of jTI;�(�0)j. Let

q̂I;�(�̂n; 1� �) =
(
supc2R[�1]

sup�2� qI;�(c; �; 1� �) if n1=4j�̂nj � bn
qI;�(1; �̂n; 1� �) if n1=4j�̂nj > bn

: (6.5)

The con�dence interval for � is

CII;�;n(�) = f� 2 � : n1=4j�̂n(�̂n � �)j � q̂I;�(�̂n; 1� �)g. (6.6)

Notice that the con�dence interval of � is wide when �̂n is small, re�ecting circumstances

in which � is only weakly identi�ed.

The following theorem shows that these con�dence intervals have the correct asymptotic

size.

Theorem 6.1. Suppose Assumptions 2.1 3.1, 4.1-5 and 6.1 hold. Then for all � 2 (0; 1),
(a) AsySZI;�(�) = �, and (b) AsySZI;�(�) = �.

6.2 Con�dence Intervals with Asymptotically Homogeneous Functions

The con�dence interval for � is constructed in the same way as in the previous sec-

tion. The con�dence interval for � has a di¤erent form because the test statistic for �;

n1=2�n;�̂n(�̂n � �n); does not necessarily converge in distribution when n1=2�n;�n�n ! c 2
R. In fact, n1=2�n;�̂n(�̂n � �n) may diverge with positive probability because n1=2�n;�̂n�n
may diverge when �̂n > �n, which happens with positive probability. We therefore con-

struct a con�dence interval for � based on the con�dence interval for �, as discussed in

detail below.

The sequence bn serves the same purpose as in the previous section, but the divergence

rate of bn is required to be di¤erent. The reason is that the drifting sequences of true

values of � may drift to zero at a di¤erent rate for asymptotically homogeneous functions

than for integrable functions and this rate may depend on �. The rate requirement on bn
is stated in the following assumption.

Assumption 6.2. For all � 2 �, b�1n + n�1=2��1n;�bn ! 0.

Remark. For typical asymptotically homogeneous functions the order function satis�es
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inf� �n;� � " > 0. In the example considered earlier, the order function is �n;� = n2� and
inf� �n;� = n

2�a with �a > 0; so that lim infn!1 inf� �n;� =1: In such cases, Assumption
6.2 is satis�ed as long as b�1n + n�1=2bn ! 0.

For c 2 R, let qH;�(c; �0; 1� �) be the 1� � quantile of j�H;�(c; �0)(�H;�(c; �0)� �0)j.
Let qH;�(1; �0; 1� �) be the 1� � quantile of jTH;�(�0)j. Let

q̂H;�(�̂n; 1� �)

=

(
��1n;�̂n�1;n;�̂n supc2R[�1]

sup�2� qH;�(c; �0; 1� �) if n1=2j�n;�̂n �̂nj � bn
qH;�(1; �0; 1� �) if n1=2j�n;�̂n �̂nj > bn

(6.7)

The con�dence interval for � is

CIH;�;n(�) =
n
� : n1=2j�1;n;�̂n �̂n(�̂n � �)j � q̂H;�(�̂n; 1� �)

o
: (6.8)

Let qH;�(1; �0; 1� �) be the 1� � quantile of jTH;�(�0)j. De�ne the set

CIn(�) = f� : n1=2j�n;�̂n(�̂n � �n)j � qH;�(1; �̂n; 1� �)g:

Then, the con�dence interval for � is

CIH;�;n(�) =

(
CIn(�) [

n
� : inf�2CIH;�;n(�) b

�1
n n

1=2j�n;��j � 1
o
if n1=2j�n;�̂n �̂nj � bn

CIn(�) if n1=2j�n;�̂n �̂nj > bn
(6.9)

The following theorem shows that these con�dence intervals have the correct asymptotic

size.

Theorem 6.2. Suppose Assumptions 2.1 3.1, 5.1-4 and 6.2 hold. Then for all � 2 (0; 1),
(a) AsySZH;�(�) = �, and (b) AsySZH;�(�) = �.

7 Conclusion

This work develops a local limit theory for nonlinear least squares estimation under drifting

parameter sequences that allow for the possibility of weak identi�cation in a nonlinear

cointegrating regression relationship. Such models are important empirically in situations
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where outcomes may be mildly impacted by certain stochastically nonstationary variables.

One example is �nancial asset returns, which may be in�uenced in the long run by stochastic

trends in economic fundamentals while these trend e¤ects are nearly imperceptible in the

short term. Another example is microeconomic behavior which may be impacted in a

minor way by common macroeconomic e¤ects or aggregate economic fundamentals (e.g.,

Granger, 1987; Giacomini and Granger, 2004), while the dominant e¤ects involve individual

characteristics.

The model that is analyzed in this paper is a prototypical model of this type. The

model allows for the following two features: (a) a regressor that is a nonlinear transforma-

tion of an integrated time series, so that the model is cointegrating; and (b) potentially

weak cointegrating e¤ects (in terms of a loading coe¢ cient for these e¤ects), so that the

parameter in the nonlinear transformation is only weakly identi�ed. We use the local limit

theory derived here to construct con�dence intervals for both the loading coe¢ cient and the

transformation parameter. The con�dence intervals are shown to have correct asymptotic

size irrespective of the strength of identi�cation. The results of the paper can therefore be

used to carry out robust inference on weakly cointegrated systems and to construct robust

prediction intervals that allow for the presence of weak e¤ects from stochastic trends.
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A Auxiliary Lemmas

The following Auxiliary Lemmas are used in the proof of the main lemmas and theorems.

The proofs of these Lemmas are given in Appendix D. The �rst lemma is based on Lemma

A2 of PP and gives a convergence result to a stochastic integral.

Lemma A1 Let Assumption 2.1 hold. For all k � 1, if T : Rdx ! Rk is regular2, then

n�1=2
nX
t=1

T (n�1=2Xt)ut !p

Z
T (V (r))dU(r) as n!1.

Let h�(Xn;t; n; ut) = h(Xn;t; n1=2; �)ut, and let

�nh� = n
�1=2

nX
t=1

h�(Xn;t; n; ut). (A.1)

Let F = fh� : � 2 �g. Note that f�nh : h 2 Fg is an empirical process indexed by h� in
F . De�ne a semi-distance d on F as follows:

d(h�; h�0) =
��� � �0�� . (A.2)

Lemma A2 below is used in the proof of Lemma 5.2.

Lemma A2 Suppose Assumptions 2.1, 3.1 and 5.1-2 hold. Then the empirical process
f�nh� : h� 2 Fg is stochastically equicontinuous with respect to d.

B Proof of the Theorems

Proof of Theorem 4.1. (a) Part (a) is implied by �̂n !p �0 because �n !p �0. Indeed,

since �̂n is the minimizer of n�1=2��2n Dn(�; �n), �̂n !p �0 is implied by Lemma 4.2(a) and

the argmax continuous mapping theorem (CMT) as long as the following two conditions

hold: (i) DI(�; �0) is continuous, and (ii) DI(�; �0) has a unique minimum �0 a.s.

Condition (i) holds by Assumptions 4.2(a) and 4.3. Condition (ii) holds because

2As de�ned in De�nition 3.1 of PP, for which it is su¢ cient that the elements of T be piecewise continuous.
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D(�0; �0) = 0 and for any � 6= �0,

DI(�; �0) =

R1
�1 g

2(s; �0)ds
R1
�1 g

2(s; �)ds�
�R1
�1 g(s; �)g(s; �0)ds

�2R1
�1 g

2(s; �)ds
� L(0; 1)

> 0, (B.1)

by virtue of the Cauchy-Schwartz inequality and Assumption 4.4.

(b) Part(b) is implied by Lemmas 4.2(b) and 4.3 and the argmax CMT.

Proof of Theorem 4.2. (a) We �rst derive the asymptotic distribution of the stochastic

process n1=4�̂n(�) : � 2 �. We have

n1=4�̂n(�) =
n�1=4

Pn
t=1 utg(Xt; �) + n1=4�n

�
n�1=2

Pn
t=1 g(Xt; �)g(Xt; �n)

�
n�1=2

Pn
t=1 g

2(Xt; �)

!d fI(�) :=
�uL (1; 0)

1=2 Z (�) + cL (1; 0)
R1
�1 g(s; �0)g(s; �)ds

L(0; 1)
R1
�1 g

2(s; �)ds
, (B.2)

where the convergence holds by the same arguments as those for Lemma 4.2(b). The conver-

gence n1=4�̂n(�) holds jointly with the convergence of nDn(�; �n) in Lemma 4.2(b) because
n1=4�̂n(�) and nDn(�; �n) are both composed of the same elements. Because n1=4�̂n(�̂n) is
a continuous functional of

�
n1=4�̂n(�), nDn(�; �n)

�
with respect to the sup norm, the CMT

applies and we have

n1=4�̂n(�̂n)!d fI(� I;� (c; �0));

giving the desired result.

(b) First we show that �̂n is consistent. We have

�̂n(�)=�n = op(1) +
n�1=2

Pn
t=1 g(Xt; �)g(Xt; �n)

n�1=2
Pn
t=1 g

2(Xt; �)
!p

R1
�1 g(s; �)g(s; �0)dsR1

�1 g
2(s; �)ds

, (B.3)

uniformly over � 2 �, where the equality holds by Lemma 4.1 and n�1=4��1n ! 0 and

the convergence holds by the same arguments as those for Lemma 4.2(a). Thus, Theorem

4.1(a) and Assumption 4.2(a) imply that �̂n=�n := �̂n(�̂n)=�n !p 1.

The NLS estimators satisfy @Qn(�̂n)=@� = op(n
�1=4); and a mean value expansion of
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@Qn(�̂n)=@� gives

op(n
�1=4) =

@Qn(�n)

@�
+
@2Qn(~�n)

@�@�0

�
�̂n � �n

�
; (B.4)

where �n = (�n, �n)
0 and ~�n lies on the line-segment joining �n and �̂n. Let �n =

2�1diag
�
n1=4; n1=4��1n

�
. Next we show

n1=2�n[@Qn(�n)=@�]!d �uL
1=2(1; 0)�

1=2
g _g Z; (B.5)

where Z � N (0; I2) ; and

�n
@2Qn(~�n)

@�@�0
�n !p �g _gL(1; 0): (B.6)

Under Assumptions 4.3 and 4.5(b), �g _g is invertible. Therefore, Theorem 4.2(b) is implied

by (B.4)-(B.6).

Result (B.5) is implied by Lemma 4.1 and the Cramér-Wold device applied to

n1=2�n[@Qn(�n)=@�] = n
�1=2Pn

t=1

 
g(Xt; �n)

_g(Xt; �n)

!
ut. (B.7)

Equation (B.6) is implied by:

2�1n1=2@2Qn(~�n)=@�
2 = n�1=2

Pn
t=1 g

2(Xt; ~�n)!p L(1; 0)

Z 1

�1
g2(s; �)ds,

2�1n1=2��1n @
2Qn(~�n)=@�@� = n�1=2

Pn
t=1 _g(Xt; ~�n)

�
2��1n ~�ng(Xt; ~�n)� g(Xt; �n)

�
�

n�1=2��1n
Pn
t=1 _g(Xt; ~�n)ut

!p L(1; 0)

Z 1

�1
_g(s; �0)g(s; �0)ds;

2�1n1=2��2n @
2Qn(~�n)=@�

2 = n�1=2
Pn
t=1 �g(Xt; ~�n)

�
��2n ~�

2
ng(Xt; ~�n)� g(Xt; �n)

�
+

n�1=2
Pn
t=1 _g

2(Xt; ~�n)

!p L(1; 0)

Z 1

�1
_g2(s; �)ds, (B.8)

where the convergence holds by Theorem 3.2 in PP, Assumptions 4.2, 4.5 and Lemma 4.1.
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Proof of Theorem 5.1. We show part (a) �rst. We have: (i) DH(�; �0) is continuous

in � because h(v; �) is continuous a.s. by De�nition 3.5(b) and Lemma A8 in PP, andZ
h2(V; �) =

Z 1

�1
h2(s; �)L(1; s)ds > 0 a.s., (B.9)

by Assumption 5.1(c): and (ii) DH(�; �0) is uniquely minimized at � = �0 a.s. becauseZ
h2(V; �0)

Z
h2(V; �) �

�Z
h(V; �)h(V; �0)

�2
a.s., (B.10)

by the Cauchy-Schwarz inequality, where the equality holds if and only if
R
(h(V; �) �

ah(V; �0))
2 = 0 a.s. for some a 6= 0, which holds if and only if � = �0 by Assumption

5.1(d).

With Lemma 5.2(a) and Conditions (i) and (ii) above, we can apply the argmax CMT

(see e.g. Theorem 3.2.2 of van der Vaart and Wellner (1996, p.286)) and get �̂n !d �0,

which implies part (a) because �0 is a constant.

Lemmas 5.2(b) and 5.3 along with the argmax CMT yield part (b).

Proof of Theorem 5.2. (a) We �rst derive the asymptotic distribution of the stochastic

process n1=2�n;��̂n(�) : � 2 �. We have

n1=2�n;��̂n(�) =
n�1=2��1n;�

Pn
t=1 utg(Xt; �)

n�1��2n;�
Pn
t=1 g

2(Xt; �)
+

n1=2�n;�n�n
�
n�1��1n;��

�1
n;�n

Pn
t=1 g(Xt; �)g(Xt; �n)

�
n�1��2n;�

Pn
t=1 g

2(Xt; �)

!p fH(�) :=
R
h(V; �)dU + c

R
h(V; �)h(V; �0)R

h2(V; �)
, (B.11)

where the convergence holds by the same arguments as those used for Lemma 5.2(b). The

convergence n1=2�n;��̂n(�) holds jointly with the convergence of nDn(�; �n) in Lemma 5.2(b)
because n1=2�n;��̂n(�) and nDn(�; �n) are both composed of the same elements. Because
n1=2�n;�̂n �̂n(�̂n) is a continuous functional of

�
n1=2�n;��̂n(�), nDn(�; �n)

�
with respect to

the sup norm, the CMT applies and gives the desired result.

(b) The NLS estimator �̂n satis�es:

_Qn(�̂n) = op(1), (B.12)
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where _Q denotes the �rst derivative of Q. Expand _Qn(�̂n) around �0, and we have

op(1) = _Qn(�n) + �Qn(~�n)(�̂n � �n), (B.13)

where �Q denotes the second derivative of Q and ~�n lies between �̂n and �0.

In order to �nd the asymptotic distribution of �̂n � �n, we need to �nd the asymp-
totic distribution of _Qn(�0) and �Qn(�n). Let g�, _g� and �g� denote g(Xt; �); _g(Xt; �) and

�g(Xt; �); respectively. Then

_Qn(�n) =
2n�1

Pn
t=1 utg�n

�Pn
t=1 ut _g�n

Pn
t=1 g

2
�n �

Pn
t=1 utg�n

Pn
t=1 g� _g�

��Pn
t=1 g

2
�n

�2
+
2n�1�n

�Pn
t=1 g

2
�n

Pn
t=1 ut _g�n �

Pn
t=1 g�n _g�n

Pn
t=1 utg�n

�Pn
t=1 g

2
�n

,

�Qn(�) = �2n�1
Pn
t=1 Ytg�

Pn
t=1 Yt�g� + (

Pn
t=1 Yt _g�)

2 + nQn(�)
Pn
t=1[ _g

2
� + g��g�]Pn

t=1 g
2
�

�8n�1
Pn
t=1 g� _g� [

Pn
t=1 Ytg�

Pn
t=1 Yt _g� + nQn(�)

Pn
t=1 g� _g�]

(
Pn
t=1 g

2
�)
2 . (B.14)

We have

n�1��1n �
�1
n;�n�

�1
1;n;�

nX
t=1

Yt _g�

= n�1��1n �
�1
n;�n�

�1
1;n;�

nX
t=1

ut _g� + n
�1��1n;�n�

�1
1;n;�

nX
t=1

g�n _g� (B.15)

The �rst term on the right of (B.15) is op(1) uniformly over � 2 � as n�1=2��1n ��1n;�n ! 0

and

n�1=2��11;n;�

nX
t=1

ut _g� !p

Z
h1(V; �)dU , (B.16)

uniformly over � 2 � by Assumption 5.3 and the same procedure used in the proof of

Lemma 5.1. The second term in (B.15) converges almost surely to
R
h(V; �0)h1(V; �)

uniformly over � 2 � by Lemma A6 and Theorem 3.3 in PP, �n ! �0 and the continuity
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of h(v; �). Thus,

(n�n�n;�n�1;n;�)
�1

nX
t=1

Yt _g� !p

Z
h(V; �0)h1(V; �), (B.17)

uniformly over � 2 �. Similarly, we �nd

n�1��1n;��
�1
1;n;�

nX
t=1

g� _g� !p
Z
h(V; �)h1(V; �),

(n�n�n;�n�2;n;�)
�1

nX
t=1

Yt�g� !p
Z
h(V; �0)h2(V; �);

n�1��21;n;�

nX
t=1

_g2� !p
Z
h21(V; �);

n�1��1n;��
�1
2;n;�

nX
t=1

g��g� !p
Z
h(V; �)h2(V; �), (B.18)

uniformly over � 2 �.
A by-product of the proof of Lemma 5.2(a) is that

��2n n
�1��2n;�nQn(�)! Q(�) a.s., (B.19)

uniformly over � 2 �, where Q(�) = �
�R
h�(r)h�0(r)dr

�2 �R
h2�(r)dr .

Equations (C.22), (B.14), (B.17), (B.18), (B.19), �n ! �0 and ~�n !p �0 together

imply that

n�1=2��11;n;�n�
�1
n
_Qn(�n)

!p 2
Z
h1(V; �0)dU �

2
R
h(V; �0)h1(V; �0)

R
h(V; �0)dUR

h2(V; �0)
(B.20)

and

(log n)�2n�1��2n �
�2
n;�n

�Qn(~�n)!p 2

Z
h21(V; �0)�

2[
R
h(V; �0)h1(V; �0)]

2R
h2(V; �0)

(B.21)

uniformly over � 2 �.
The asymptotic distribution of �̂n follows easily from (B.13), (B.20) and (B.21).
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(c) First we show that �̂n is consistent. We have

�n;��̂n(�)=(�n;�n�n) =
(��1n n

�1=2��1n;�n)n
�1=2��1n;�

Pn
t=1 utg(Xt; �)

n�1��2n;�
Pn
t=1 g

2(Xt; �)
+

n�1��1n;��
�1
n;�n

Pn
t=1 g(Xt; �)g(Xt; �n)

n�1��2n;�
Pn
t=1 g

2(Xt; �)

!p

R
h(V; �)h(V; �0)R

h2(V; �)
uniformly over � 2 �, (B.22)

where the convergence holds by the same arguments as those for Lemma 5.2(a). Thus,

Theorem 5.1(a) and the continuity of
R
h(V; �)h(V; �0)

� R
h2(V; �) (Lemma 5.3) imply

that

�n;�̂n �̂n(�̂n)=(�n;�n�n)!p 1. (B.23)

By part (b), �̂n � �n = Op(n
�1=2��1n �

�1
1;n;�n

) = op(�n;�n�
�1
1;n;�n

) = op(1= log n). Then we

have

�n;�̂n=�n;�n !p 1: (B.24)

Thus �̂n=�n !p 1.

Now we derive the asymptotic distribution of �̂n. We have

n1=2�n;�n(�̂n � �n) =
n1=2�n;�n

Pn
t=1 g(Xt; �̂n)utPn

t=1 g
2(Xt; �̂n)

�

�n
n1=2�n;�n

Pn
t=1 g(Xt; �̂n) _g(Xt; ~�n)Pn
t=1 g

2(Xt; �̂n)
� (�̂n � �n) (B.25)

!p

R
h(V; �0)dUR
h2(V; �0)

�
R
h(V; �0)h1(V; �0)R

h2(V; �0)
� TH;�(�0),

where the equality holds by a mean-value expansion of g(Xt; �̂n) around �n and the con-

vergence holds by part (b), (B.24) and the same arguments as those for Lemma 5.2(a).

Thus, part (b) is proved.

Proof of Theorem 6.1. The proof is similar to that of Theorem 1 in Andrews and

Soares (2010). The proofs of parts (a) and (b) are analogous and therefore only the proof

of part (a) is presented here.
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By the de�nition of AsySZI;�, there exists a sequence �n such that

AsySZI;�(�) = lim inf
n!1

P�n(�n 2 CII;�;n(�))

= lim inf
n!1

P�n(n
1=4j�̂n � �nj � q̂I;�(�̂n; 1� �)). (B.26)

Let fung be a subsequence of fng such that AsySZI;�(�) = limn!1 P�un (u
1=4
n j�̂un �

�un j � q̂I;�(�̂un ; 1��)). Such a subsequence always exists. Because the Euclidean space is
complete, there exists a subsequence fang of fung such that (a1=4n �an ; �an)! (c; �0) where

c 2 R[�1] and �0 2 �. Then

AsySZI;�(�) = lim
n!1

P�an (a
1=4
n j�̂an � �an j � q̂I;�(�̂an ; 1� �)). (B.27)

If c 2 R, then by Theorem 4.2(a) and Assumption 6.1, a1=4n j�̂an j = Op(1) < bn with

probability approaching one. Thus, q̂I;�(�̂an ; 1 � �) = supc02R1 sup�2� qI;�(c
0; �; 1 � �)

with probability approaching one. By Theorem 4.2(a), a1=4n (�̂an ��an)!d � I;�(c; �0)� c.3

The distribution of � I;�(c; �0)�c is continuous and strictly increasing because Z � N(0; 1)
and the local time L(1; 0) > 0 with probability one. Thus, with probability approaching

one

AsySZI;�(�) = lim
n!1

P�an (a
1=4
n j�̂an � �an j � q̂I;�(�̂an ; 1� �))

� lim
n!1

P�an (a
1=4
n j�̂an � �an j � qI;�(c; �; 1� �))

= 1� �. (B.28)

If c = �1, by Theorem 4.2(b), a1=4n (�̂an � �an)!d TI;�(�0). Then

AsySZI;�(�)

� lim
n!1

P�an (a
1=4
n j�̂an � �an j � qI;�(1; �̂n; 1� �))P�an (a

1=4
n �̂an > ban) +

lim
n!1

P�an (a
1=4
n j�̂an � �an j � sup

�2�
qI;�(1; �; 1� �))P�an (a

1=4
n �̂an � ban)

� lim
n!1

P�an (a
1=4
n j�̂an � �an j � qI;�(1; �̂n; 1� �))P�an (a

1=4
n �̂an > ban) +

(1� �) lim
n!1

P�an (a
1=4
n �̂an > ban) , (B.29)

3Theorem 4.2 is in terms of fng, but all the proofs go through with fng replaced with a subsequence
fang of fng.
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where the second inequality holds because sup�2� qI;�(1; �; 1 � �) > qI;�(1; �0; 1 � �)
and TI;�(�0) has a continuous distribution for the same reason that � I;�(c; �0)� c does.

By (B.28) and (B.29), we can conclude that

AsySZI;�(�) � 1� �; (B.30)

if

lim
n!1

P�an (a
1=4
n j�̂an � �an j � qI;�(1; �̂n; 1� �)) � 1� �. (B.31)

Equation (B.31) holds if qI;�(1; �̂n; 1 � �) !p qI;�(1; �0; 1 � �), which holds because
(i) TI;�(�̂n) !p TI;�(�0) by Theorem 4.1(a) and Assumption 4.2(a), (ii) TI;�(�0) has a

continuous and strictly increasing c.d.f.

It is left to show that

AsySZI;�(�) � 1� �: (B.32)

Consider � = (�; �) 2 (R=f0g)��. Then by de�nition,

AsySZI;�(�) � lim inf
n!1

P�(� 2 CII;�;n(�)): (B.33)

Because � 6= 0, n1=4b�1n � diverges to 1 or �1 by Assumption 6.2. Without loss of gen-

erality, suppose n1=4b�1n � ! 1. Then by Theorem 4.2(b), n1=4j�̂nj > bn with probability
approaching one. Thus,

lim inf
n!1

P� (� 2 CII;�;n(�))

= lim inf
n!1

P�

�
n1=4j�̂n � �nj � qI;�(1; �̂n; 1� �)

�
= 1� �, (B.34)

where the second equality holds by Theorem 4.2(b), qI;�(1; �̂n; 1��)!p qI;�(1; �0; 1��)
(shown above), and the continuity of the c.d.f. of TI;�(�0).

Combining (B.30), (B.33) and (B.34), we obtain part (a).

Proof of Theorem 6.2. (a) The proof is essentially the same as that of Theorem 6.1(a)

and is omitted for brevity.

(b) Similar to the proof of Theorem 6.1(a), we show

AsySZH;�(�) � 1� � and AsySZH;�(�) � 1� �. (B.35)
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The proof of AsySZH;�(�) � 1�� is essentially the same as that of (B.32) in the proof of
Theorem 6.1(a) and thus is omitted for brevity. Next we show AsySZH;�(�) � 1� �.

As in (B.27), we �nd a subsequence fang of fng and a sequence f�ng such that
(a
1=2
n �an;�an�an ; �an)! (c; �0) and

AsySZH;�(�) = lim
n!1

Pr�an
�
�an 2 CIH;�;n(�)

�
. (B.36)

If c = �1, the same arguments as those for (B.29) and (B.31) can be used to show that
AsySZH;�(�) � 1 � �. If c 2 R, then a1=2n �an;�̂an �̂an = Op(1) < ban with probability

approaching one by Theorem 5.2(a). Thus,

AsySZH;�(�) � lim
n!1

Pr�an

�
inf

�2CIH;�;an (�)
b�1an a

1=2
n j�an;��an j � 1

�
� lim

n!1
Pr�an

�
inf

�2CIH;�;an (�)
b�1an a

1=2
n j�an;��an j � 1 & �an 2 CIH;�;an(�)

�
� lim

n!1
Pr�an

�
b�1an a

1=2
n j�an;�an�an j � 1 & �an 2 CIH;�;an(�)

�
= lim

n!1
Pr�an (�an 2 CIH;�;an(�))

� 1� �, (B.37)

where the �rst inequality holds by the de�nition of CIH;�;n(�), the equality holds because

b�1an ! 0 and a1=2n �an;�an�an ! c 2 R and the last inequality holds by part (a). Therefore,
AsySZH;�(�) � 1� � and part (b) is proved.

C Proof of the Main Lemmas

Proof of Lemma 4.1. The proof applies Theorem 10.2 in Pollard (1990). Lemma 4 is

proved once we verify the three conditions of this theorem: (i) (�; j � j) is totally bounded,
where j � j is the Euclidean norm on R, (ii) for any f�1; :::; �Jg � �, �nite dimensional

convergence holds: (�n(�1),...,�n(�J)) !d (�(�1),...,�(�J)), and (iii) f�n(�) : � 2 �g is
stochastically equicontinuous with respect to j � j.

Condition (i) holds because � is a compact subset of R. Condition (ii) holds by Theorem
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3.2 in PP applied to the linear combination

JX
j=1

�j�n(�j) = n
�1=4

nX
t=1

8<:
JX
j=1

�jg(Xt; �j)

9=;ut;
for arbitrary scalars f�j : j = 1; :::; Jg, yielding

JX
j=1

�j�n(�j) !d
�
�2uL (1; 0)

	1=2 �N
0@0;Z 1

�1

0@ JX
j=1

�jg (s; �j)

1A2 ds
1A

:=
�
�2uL (1; 0)

	1=2 JX
j=1

�jZ(�j) :=

JX
j=1

�j�(�j);

where �0 = (�1; :::; �J) ; and �(�j) := �uL (1; 0)
1=2 Z (�j) ; where Z (�) is a Gaussian

process with covariance kernel

E (Z (�a)Z (�b)) = kZ (�a; �b) =

Z 1

�1
g (s; �a) g (s; �b) ds:

Now we show condition (iii). Let f�1;n; �2;n 2 �g1n=1 be an arbitrary random sequence.
Then, as in (43)-(45) in PP, we �nd that the quadratic variation of the stochastic process

�n(�1;n)� �n(�2;n) is

[�n(�1;n)� �n(�2;n)]r

= �2un
1=2

Z r

0

h�
g(n1=2Vn(s); �1;n

�
� g(n1=2Vn(s); �2;n)

i2
ds(1 + oa:s:(1)): (C.1)

Then

[�n(�1;n)� �n(�2;n)]r

� j�1;n � �2;nj2 � �2un1=2
Z r

0
T 2(n1=2Vn(s)ds(1 + oa:s:(1))

= op(1)�
�
�2u

Z 1

�1
T 2(s)ds

�
L(r; 0) = op(1), (C.2)

where the inequality holds by Assumption 4.2(a) and since T 2 is integrable over [�1;1]
(also by Assumption 4.2(a)). Therefore, Condition (iii) above holds.
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Proof of Lemma 4.2. Observe �rst that

Dn(�; �n) = n�1
nX
t=1

[�̂
2

n (�) g
2(Xt; �)� �̂

2

n (�0) g
2(Xt; �n)]�

2n�1
nX
t=1

[�̂n (�) g(Xt; �)Yt � �̂n (�n) g(Xt; �n)Yt]

=
n�1 (

Pn
t=1 Ytg(Xt; �n))

2Pn
t=1 g

2(Xt; �n)
� n

�1 (
Pn
t=1 Ytg(Xt; �))

2Pn
t=1 g

2(Xt; �)
: (C.3)

(a) By Assumption 4.2 in this paper and Lemma A6 in PP, g2(Xt; �) and g(Xt; �)g(Xt; �0):

(�; �0) 2 �2 are I-regular. By Theorem 3.2 in PP we have,

n�1=2
nX
t=1

g2(Xt; �) !p L(1; 0)
Z 1

�1
g2(s; �)ds,

n�1=2
nX
t=1

g(Xt; �)g(Xt; �
0) !p L(1; 0)

Z 1

�1
g(s; �)g(s; �0)ds; (C.4)

uniformly over (�; �0) 2 �2. Also, by Lemma 4.1,

n�1=2��1n

nX
t=1

g(Xt; �)ut !p 0, uniformly over � 2 �. (C.5)

Equations (C.4) and (C.5) combined give us the probability limit of the second term in

(C.3):

n1=2��2n
n�1 (

Pn
t=1 Ytg(Xt; �))

2Pn
t=1 g

2(Xt; �)

=

�
n�1=2��1n

Pn
t=1 utg(Xt; �) + n

�1=2Pn
t=1 g(Xt; �)g(Xt; �n)

�2
n�1=2

Pn
t=1 g

2(Xt; �)

!p

hR1
�1 g(s; �)g(s; �0)ds

i2R1
�1 g

2(s; �)ds
� L(1; 0), uniformly over � 2 �. (C.6)

The probability limit of the �rst term in (C.3) is a special case of the second term. There-

fore, part (a) is proved.

(b) In part (b), because n�1=4��1n ! c�1, the covariance term n�1=2��1n
Pn
t=1 g(Xt; �)ut
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does not vanish in the limit. Thus, we need the joint asymptotic distribution of the stochas-

tic processes n�1=2
Pn
t=1 g

2(Xt; �), n�1=2
Pn
t=1 g(Xt; �)g(Xt; �0) and �n(�) : (�; �0) 2 �2.

Equation (C.4) implies that the sequence of stochastic processes f�gn(�; �0) : (�; �0) 2 �2g
converges weakly to �g(�; �0) : (�; �0) 2 �2, where

�gn(�; �
0) =

 
n�1=2

Pn
t=1 g

2(Xt; �)

n�1=2
Pn
t=1 g(Xt; �)g(Xt; �0)

!
;

�g(�; �0) =

 
L(1; 0)

R1
�1 g

2(s; �)ds

L(1; 0)
R1
�1 g(s; �)g(s; �

0)ds

!
. (C.7)

It follows from equation 46 and surrounding arguments in PP that joint convergence

applies and we have  
�gn(�; �)
�n(�)

!
!d

 
�g(�; �)
�(�)

!
. (C.8)

Then, by the CMT,

nDn(�; �n) !d

n
cL (1; 0)

R1
�1 g

2(s; �0)ds+ L (1; 0)
1=2 Z (�0)

o2
L (1; 0)

R1
�1 g

2(s; �0)ds

�

n
cL (1; 0)

R1
�1 g(s; �0)g(s; �)ds+ L (1; 0)

1=2 Z (�)
o2

L (1; 0)
R1
�1 g

2(s; �)ds

=

8><>:cL (1; 0)1=2
�Z 1

�1
g2(s; �0)ds

�1=2
+

Z (�0)�R1
�1 g

2(s; �0)ds
�1=2

9>=>;
2

�

8><>:cL (1; 0)1=2
R1
�1 g(s; �0)g(s; �)ds�R1
�1 g

2(s; �)ds
�1=2 + Z (�)�R1

�1 g
2(s; �)ds

�1=2
9>=>;
2

and part (b) holds.

Proof of Lemma 4.3. Assumptions 4.2(a) and 4.3 imply that every sample path of

D(c; �; �0) is continuous in �. Because � is compact, every sample path of D(c; �; �0)

achieves its minimum on �.

We now show that the minimizer of D(c; �; �0) is unique with probability one using the

technique in the proof of Lemma 3.2 in Cheng (2008), which is based on Kim and Pollard
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(1990). First, observe that minimizing D(c; �; �0) is equivalent to maximizing A2(�) where

A(�) �
cL1=2(1; 0)

R1
�1 g(s; �0)g(s; �)dshR1

�1 g
2(s; �)ds

i1=2 +
Z (�)�R1

�1 g
2(s; �)ds

�1=2 : (C.9)

Because L1=2(1; 0) and Z are independent, conditional on L1=2(1; 0), A(�) is a Gaussian

process. By the proof of Lemma 3.2 in Cheng (2008), we only need to show that for all

�1 6= �2,

Var(A(�1)�A(�2)jL1=2(1; 0)) > 0 and Var(A(�1) +A(�2)jL1=2(1; 0)) > 0, a.s.. (C.10)

Now

A(�1)�A(�2) = cL1=2(1; 0)
Z 1

�1
g(s; �0) [q (s; �1)� q (s; �2)] ds+ [W (�1)�W (�2)] ;

where

q (s; �) =
g(s; �)hR1

�1 g
2(a; �)da

i1=2 ; W (�) =
Z (�)�R1

�1 g
2(s; �)ds

�1=2 :
The �rst inequality in (C.10) holds because L(1; 0) is independent of Z (�) and so

Var(A(�1)�A(�2)jL1=2(1; 0)) = Var [W (�1)�W (�2)] > 0: (C.11)

where the inequality holds by Assumption 4.4 and the fact that

Var [W (�1)�W (�2)] = 2�
2
u

8><>:1�
R1
�1 g(s; �1)g(s; �2)dahR1

�1 g
2(s; �1)ds

R1
�1 g

2(s; �2)ds
i1=2

9>=>; > 0

for �1 6= �2. The second inequality in (C.10) holds because

Var(A(�1) +A(�2)jL1=2(1; 0))

= Var [W (�1) +W (�2)]

= 2�2u

8><>:1 +
R1
�1 g(s; �1)g(s; �2)dahR1

�1 g
2(s; �1)ds

R1
�1 g

2(s; �2)ds
i1=2

9>=>; > 0,
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again by Assumption 4.4.

Proof of Lemma 5.1. Lemma 5.1 is a direct application of Theorem 3.23 of Kallenberg

(2001, p. 57). The moment condition in that theorem holds because
�R
Eb2(V )

�
< 1 by

Assumption 5.2(c) and

E

�Z �
h(V; �)� h(V; �0)

�
dU

�2
=

Z
E
�
h(V; �)� h(V; �0)

�2
�
�Z

Eb2(V )

��
� � �0

�2 , (C.12)

where the equality holds by the fundamental property of the stochastic integral and the

inequality holds by Assumption 5.1(a)-(b) (also see the remark below Assumption 5.1).

Proof of Lemma 5.2. Because g(x; �) is H-regular on � (Assumption 5.1(a)), we have

for each � 2 �,

�nh� � n�1=2��1(n1=2; �)
nX
t=1

g(Xt; �)ut

= n�1=2
nX
t=1

h(Xn;t; �)ut + n
�1=2��1(n1=2; �)

nX
t=1

R(Xn;t; �; n
1=2)ut

= n�1=2
nX
t=1

h(Xn;t; �)ut + op(1); (C.13)

where the last equality holds by Lemma A5(b) in PP.

Let the random process (�h� : � 2 �) := (
R
h(V; �)dU : � 2 �). Then Lemma A1 and

(C.13) give

(�nh�1 ; :::; �nh�k)
0 !p (�h�1 ; :::; �h�k)

0. (C.14)

For all � > 0, by Assumption 3.1, there exists �1; �2; :::; �k(�), k(�) <1 such that

sup
�2�

inf
j�k(�)

j� � �j j < �: (C.15)
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Then we have,

sup
�2�

j�nh� � �h�j

= max
j�k(�)

sup
�2�:j���j j��

j�nh� � �nh�j + �nh�j � �h�j + �h�j � �h�j

� sup
�2�:j���0j��

j�nh� � �nh�0 j+ max
j�k(�)

j�nh�j � �h�j j+ sup
�2�:j���0j��

j�h� � �h�0 j

� An(�) +Bn(�) + Cn(�): (C.16)

Fix an " > 0. By Lemma A2, for all � > 0, there exists a �A > 0 small enough such

that

lim sup
n!1

Pr(An(�A) > "=3) � �. (C.17)

By Lemma 5.1 and the remark there, �h� is continuous with probability one. Because �

is compact, �h� is uniformly continuous with probability one. Thus, lim�!0Cn(�) = 0 a.s.

This implies the existence of a �C > 0 small enough such that

Pr(Cn(�C) > "=3) � �. (C.18)

Let �min = minf�A; �Cg. By (C.14),

lim sup
n!1

Pr(Bn(�min) > "=3) = 0. (C.19)

Combining (C.17), (C.19) and (C.18), we get,

lim sup
n!1

Pr(sup
�2�

j�nh� � �h�j > ")

� lim sup
�!0

�
lim sup
n!1

Pr(An(�min) > "=3) + lim sup
n!1

Pr(Bn(�min) > "=3)+

lim sup
n!1

Pr (Cn(�min) > "=3)

�
� lim sup

�!0
2� = 0. (C.20)

Therefore, sup�2� j�nh� � �h�j !p 0 and Lemma 5.1 is proved.
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Proof of Lemma 5.3. As in the proof of Lemma 5.2, we have

Dn(�; �n) =
n�1 (

Pn
t=1 Ytg(Xt; �n))

2Pn
t=1 g

2(Xt; �n)
� n

�1 (
Pn
t=1 Ytg(Xt; �))

2Pn
t=1 g

2(Xt; �)
: (C.21)

The denominator of the second term on the right side of (C.21) converges almost surely

when properly scaled:

n�1��2(n1=2; �)
nX
t=1

g2(Xt; �)!
Z
h2(V; �) a.s., (C.22)

uniformly over �, by Theorem 3.3 in PP. We prove part (a) and part (b) below using the

equations above.

(a) We have

��1n n
�1��1(n1=2; �)��1(n1=2; �n)

nX
t=1

Ytg(Xt; �)

= n�1��1(n1=2; �)��1(n1=2; �n)
nX
t=1

g(Xt; �)g(Xt; �n)

+��1n n
�1��1(n1=2; �)��1(n1=2; �n)

nX
t=1

utg(Xt; �)

!
Z
h(V; �)h(V; �0) a.s., uniformly over � 2 �; (C.23)

where the convergence holds by Theorem 3.3 in PP, Lemma 5.1 and Assumption 5.1(a).

Part (a) is implied (C.21)-(C.23).
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(b) We have

n�1=2��1(n1=2; �)
nX
t=1

Ytg(Xt; �)

= (�nn
1=2�(n1=2; �n))n

�1��1(n1=2; �)��1(n1=2; �n)
nX
t=1

g(Xt; �)g(Xt; �n) +

n�1=2��1(n1=2; �)
nX
t=1

utg(Xt; �)

!p c
Z
h(V; �)h(V; �0) +

Z
h(V; �)dU; (C.24)

uniformly over � 2 �, where the convergence holds by Theorem 3.3 in PP, Lemma 5.1 and

Assumption 5.1(a). Part (b) is implied by (C.21), (C.22) and (C.24).

Proof of Lemma 5.4. Let

A(c; �) =
c
R
h(V; �)h(V; �0) +

R
h(V; �)dU�R

h2(V; �)
�1=2 (C.25)

First we show that A2(c; �) has a continuous sample path with probability one. This is

done by showing (i) the denominator and the numerator are continuous with probability

one, and (ii) the denominator is strictly positive with probability one. Condition (i) holds

by De�nition 3.5(b), Lemma A8 in PP and Lemma 5.1. Condition (ii) holds becauseZ
h2(V; �) =

Z 1

�1
h2(s; �)L(1; s)ds > 0 a.s. (C.26)

where the equality holds by the occupation time formula (e.g. PP) and the inequality holds

by Assumption 5.1(c).

In order to show that A2(c; �) has a unique maximum, it su¢ ces to show that with

probability one, no sample path ofA(c; �) achieves its maximum or minimum at two distinct

points in �, and no sample path has maximum and minimum with the same absolute value.

The procedure used in Lemma 3.2 in Cheng(2008) applies here if we can write A(c; �)

in terms of continuous Gaussian processes. We can achieve this goal by splitting U(r)

into V (r) and a standard Brownian Motion, Z(r), independent of V (r); following Phillips

(1989):

U(r) = a1�uV (r) + a2Z(r), (C.27)
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where a1 = ��u=�v and a2 = �u
p
1� �2. Such a Z(r) exists by Assumption 2.1(a). Using

(C.27) in A(c; �) we get

A(c; �) =
c
R
h(V; �)h(V; �0) + a1

R
h(V; �)dV + a2

R
h(V; �)dZ�R

h2(V; �)
�1=2 . (C.28)

Because Z is a standard Brownian motion independent of V , conditioning on a sample

path of V , A(c; �) is a continuous Gaussian process indexed by � 2 �, with covariance
kernel:

H(c; �; �0) =
a22
R
h(V; �)h(V; �0)�R

h2(V; �)
�1=2 �R

h2(V; �0)
�1=2 . (C.29)

Below we show that A2(c; �)jV = v has a unique maximum with probability one for all

sample paths v of V . This implies that with probability one, A2(c; �) has unique maximum,

i.e. Lemma 5.3.

We proceed to show that A2(c; �)jV = v has a unique maximum. We apply the proce-
dure in the proof of Lemma 3.2 in Cheng (2008). By Cheng�s argument, it su¢ ces to show

that for � 6= �0;

Var

 
a2
R
h(V; �)dZ�R

h2(V; �)
�1=2 � a2

R
h(V; �0)dZ�R

h2(V; �0)
�1=2

�����V = v
!
> 0 and

Var

 
a2
R
h(V; �)dZ�R

h2(V; �)
�1=2 + a2

R
h(V; �0)dZ�R

h2(V; �0)
�1=2

�����V = v
!
> 0. (C.30)

The above inequalities are equivalent to

H(c; �; �) +H(c; �0; �0)� 2H(c; �; �0) > 0. (C.31)

or equivalently,

2�
R
h(V; �)h(V; �0)�R

h2(V; �)
�1=2 �R

h2(V; �0)
�1=2 > 0, (C.32)

which holds by the Cauchy-Schwarz inequality and Assumption 5.1(d).

D Proof of the Auxiliary Lemmas

Proof of Lemma A1. Lemma A1 is the same as the second result in Lemma A2 of PP
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except the convergence here is in probability instead of in distribution. The proof of the

former is thus the same as the latter with only one modi�cation. We only need to change

the convergence �!d�in equation (25) in the proof of the latter into �!p�. The change is

valid by Theorem (2.2) in Kurtz and Protter (1991).

Proof of Lemma A2. We proceed to show that f(�nh�)�2�gn�1 is stochastically
equicontinuous with respect to the pseudo distance:

dh(h�; h�0) = lim sup
n!1

"
n�1

nX
t=1

E[h�(Xn;t; n; ut)� h�0(Xn;t; n; ut)]2
#1=2

. (D.1)

The pseudo distance dh is well de�ned because

dh(h�; h�0) = �ulim sup
n!1

"
n�1

nX
t=1

E[h(Xn;t; n
1=2; �0)� h(Xn;t; n1=2; �0)]2

#1=2

� �uj� � �0jlim sup
n!1

"
n�1

nX
t=1

Eb2(Xn;t)

#1=2
= �Cb

��� � �0�� = �Cbd(h�; h�0); (D.2)

where the �rst equality holds by the de�nition of h� and Assumption 2.1(b)-(c), the in-

equality holds by Assumption 5.1(b), and �Cb is a �nite constant by Assumption 5.2(b).

Equation (D.2) also shows that d is a stronger pseudo distance than dh and hence

stochastic equicontinuity with respect to dh implies stochastic equicontinuity with respect

to d.

We use Theorem 2 in Hansen (1996) to show that f�nh� : � 2 �gn�1 is stochastically
equicontinuous with respect to dh. To invoke this theorem, we verify the following four

conditions: (i) for all � 2 �; fh�(Xn;t; n; ut);Fn;tg is a martingale di¤erence sequence; (ii)
there exists b� : Rdx+1 ! R+ such that for all �; �0 2 �, jh�(Xn;t; n; ut)� h�0(Xn;t; n; ut)j <
b�(Xn;t; ut)j� � �0j; (iii) lim supn!1 n�1

Pn
t=1Eh

2
�(Xn;t; n; ut) <1; and

(iv) lim sup
n!1

n�1
nX
t=1

E[b�(Xt; ut)]
2 <1: (D.3)

42



Condition (i) holds because

E(h�(Xt; n; ut)jFn;t�1) = E(h(Xn;t; n
1=2; �)utjFn;t�1)

= h(Xn;t; n
1=2; �)E(utjFn;t�1) = 0; (D.4)

where the second equality holds by Assumption 2.1(c) and the third equality holds by

Assumption 2.1(b).

Condition (ii) holds with b�(Xn;t; ut) = b(Xn;t) jutj because

jh�(Xn;t; n; ut)� h�0(Xt; n; ut)j = jh(Xn;t; n1=2; �)� h(Xn;t; n1=2; �0)j jutj

� b(Xn;t) jutj . (D.5)

We now show that condition (iii) holds for large enough n. First we have

n�1
nX
t=1

Eh2�(Xn;t; n; ut)

= �2un
�1

nX
t=1

Eh2(Xn;t; n
1=2; �)

= �2un
�1

nX
t=1

Eh2(Xn;t; �) + �
2
un
�1��2(n1=2; �)

nX
t=1

ER2(Xn;t; n
1=2; �): (D.6)

In (D.6), the lim sup of the �rst term is �nite by Assumption 5.2(a). To prove that the

lim sup of the second term is �nite, let smax = maxr2[0;1] V (r) and smin = minr2[0;1] V (r).

Let K = [smin � 1; smax + 1].
By De�nition 3.5 in PP, R(Xn;t; n1=2; �) is of smaller order than �(n1=2; �) in the sense of

De�nition 3.4 in PP. There are two cases. In case one, R(Xn;t; n1=2; �) = a(n1=2; �)A(Xn;t; �)

with a(n1=2; �) = o(�(n1=2; �)) and sup�2�A(�; �) 2 T 0LB, where T 0LB is the set of exponen-
tially locally bounded functions de�ned in PP. In this case, we have

n�1��2(n1=2; �)
nX
t=1

ER2(Xn;t; n
1=2; �) = o(1)n�1

nX
t=1

EA2(Xn;t; �)

� o(1)E sup
x2K

jjA2(x; �)jj = o(1), (D.7)

where the inequality holds for large enough n by Assumption 2.1(a) and the second equality
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holds because sup�2�A(�; �) 2 T 0LB.
In case two, R(Xn;t; n1=2; �) = b(n1=2; �)A(Xn;t; �)B(n

1=2Xn;t; �), with b(n1=2; �) =

O(�(n1=2; �)) and sup�2�B(�; �) 2 T 0B , where T 0B is the set of transformations that are

bounded and vanish at in�nity. We then have

n�1��2(n1=2; �)
nX
t=1

ER2(Xn;t; n
1=2; �) = O(1)n�1

nX
t=1

E[A2(Xn;t; �)B
2(n1=2Xn;t; �)]

� O(1)[E sup
x2K

jjA4(x; �)jj]1=2[E sup
x2R

B4(x; �)]1=2

= O(1), (D.8)

where the inequality holds for large enough n by Assumption 2.1(a) and the Cauchy-

Schwartz inequality and the second equality holds because sup�2�A(�; �) 2 T 0LB and

sup�2�B(�; �) 2 T 0B .
Equations (D.7) and (D.8) imply that the lim sup of the second term in (D.6) is �nite.

Thus, condition (iii) holds.

Condition (iv) holds by E[b�(Xn;t; ut)]2 = �2Eb2(Xn;t) and Assumption 5.2(b).

Therefore, Theorem 2 in Hansen (1996) applies and Lemma A2 is proved.

References

Andrews, D. W. K., and G. Soares (2010): �Inference for Parameters De�ned by

Moment Inequalities Using Generalized Moment Selection,�Econometrica, forthcoming.

Billingsley, P. (1968): Convergence of Probability Measures. Wiley.

Campbell, J. Y., and M. Yogo (2006): �E¢ cient tests of stock return predictability,�

Journal of Financial Economics, 8, 27�60.

Chang, Y., and J. Y. Park (2009): �Endogeneity in nonlinear regressions with integrated

time series,�Econometric Reviews, forthcoming.

Cheng, X. (2008): �Robust Con�dence Intervals in Nonlinear Regression under Weak

Identi�cation,�unpublished manuscript, Department of Economics, Yale University.

Cheng, X. (2010): �Essays on Weak Identi�cation and Cointegrating Rank Selection,�

Unpublished Dissertation, Yale University.

44



de Jong, R. (2002): �Nonlinear Estimators with Integrated Regressors But Without

Exogeneity,�Working Paper, Michigan State University.

Giacomini, and C. W. J. Granger (2004): �Aggregation of space-time processes,�

Journal of Econometrics, 118, 7�26.

Granger, C. W. J. (1987): �Implications of aggregation withc common factors,�Econo-

metric Theory, 3, 208�222.

Hansen, B. E. (1996): �Stochastic Equicontinuity for Unbounded Dependent Heteroge-

neous Arrays,�Econometric Theory, 12, 347�359.

Ibragimov, R., and P. C. B. Phillips (2008): �Regression Asymptotics using Martin-

gale Convergence Methods,�Econometric Theory, 24, 888�947.

Jeganathan, P. (2008): �Limit Theorems for Functionals of Sums That Converge to

Fractional Brownian and Stable Motions,� Cowles Foundation Discussion Paper No.

1649, Yale University.

Kallenberg, O. (2001): Foundations of Modern Probability. Springer-Verlag New York,

Incorporated, 2 edn.

Kim, J., and D. Pollard (1990): �Cube root asymptotics,�Annals of Statistics, 18.

Kurtz, T. G., and P. Protter (1991): �Weak Limit Theorems for Stochastic Integrals

and Stochastic Di¤erential Equations,�The Annals of Probability, 19, 1035�1070.

Marmer, V. (2008): �Nonlinearity, Nonstationarity, and Spurious Forecasts,�Journal of

Econometrics, 142, 1�27.

Park, J. Y., and P. C. B. Phillips (1999): �Asymptotics for Nonlinear Transformations

of Integrated Time Series,�Econometric Theory, 15, 269�98.

(2001): �Nonlinear Regressions with Integrated Time Series,�Econometrica, 69,

117�61.

Phillips, P. C. B. (1989): �Partially Identi�ed Econometric Models,�Econometric The-

ory, 5, 181�240.

45



Phillips, P. C. B., and T. Magdalinos (2009): �Unit Root and Cointegrating Limit

Theory when Initialization is in the In�nite Past,�Econometric Theory, 25, 1682�1715.

Pollard, D. (1990): Empirical Process Theory and Applications. Institute of Mathemat-

ical Statistics.

Stock, J. H., and J. Wright (2000): �GMM with Weak Identi�cation,�Econometrica,

68, 1055�1096.

van der Vaart, A., and J. Wellner (1996): Weak Convergence and Empirical

Processes: with Applications to Statistics. Springer.

46


	nonlinear29.pdf
	Introduction
	The Model and Basic Assumptions
	Nonlinear Least Squares Estimation 
	NLS for Integrable Functions
	NLS for Asymptotically Homogeneous Functions
	Confidence Intervals 
	Confidence Intervals with Integrable Functions
	Confidence Intervals with Asymptotically Homogeneous Functions

	Conclusion
	Auxiliary Lemmas
	Proof of the Theorems
	Proof of the Main Lemmas
	Proof of the Auxiliary Lemmas 


