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Abstract

An asymptotic theory is developed for a weakly identified cointegrating regression
model in which the regressor is a nonlinear transformation of an integrated process.
Weak identification arises from the presence of a loading coefficient for the nonlinear
function that may be close to zero. In that case, standard nonlinear cointegrating
limit theory does not provide good approximations to the finite sample distributions
of nonlinear least squares estimators, resulting in potentially misleading inference. A
new local limit theory is developed that approximates the finite sample distributions
of the estimators uniformly well irrespective of the strength of the identification. An
important technical component of this theory involves new results showing the uniform
weak convergence of sample covariances involving nonlinear functions to mixed normal
and stochastic integral limits. Based on these asymptotics, we construct confidence
intervals for the loading coefficient and the nonlinear transformation parameter and
show that these confidence intervals have correct asymptotic size. As in other cases
of nonlinear estimation with integrated processes and unlike stationary process as-
ymptotics, the properties of the nonlinear transformations affect the asymptotics and,
in particular, give rise to parameter dependent rates of convergence and differences

between the limit results for integrable and asymptotically homogeneous functions.
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1 Introduction

Nonlinear models provide an important means of extending the conventional linear coin-
tegrating structures that are now commonly used in applied work. Nonlinearities provide
a mechanism for controlling and modifying the random wandering characteristics of unit
root time series, leading to a much wider range of possible response functions in regres-
sions with such time series. For instance, integrable transformations of integrated time
series attenuate outliers rather than proportionately transmit their effects as in linear coin-
tegrating systems. Transformations of this type are valuable in modeling uneven output
responses to economic fundamentals such as those that can occur in the presence of market
interventions or regulatory regimes like exchange rate target zones.

Another useful property of nonlinear transformations is that they can modify the char-
acteristics of nonstationary series, including their memory attributes. Modifications of this
type are helpful in modeling time series like asset returns, which have near martingale
difference characteristics, in terms of economic fundamentals that may behave much more
like integrated time series. In such cases, the effects of the stochastic trend in the funda-
mentals is sufficiently attenuated to be negligible, except perhaps over long time periods
where the drift in asset returns becomes perceptible. A useful mechanism for capturing
such effects is to utilize loading coefficients on the nonlinear response functions that are al-
lowed to be local to zero. The cointegrating effects then become “small” and they are only
weakly identified. This approach gives flexibility in modeling the effects of fundamentals
on returns and offers the potential for improvements over linear models in predicting asset
returns using near integrated predictor processes, whose role has recently been emphasized
in the work of |Campbell and Yogo| (2006)) and others.

The goal of the present paper is to deal with such formulations and develop an asymp-
totic theory that retains its validity for small cointegrating effects. In particular, we study

nonlinear cointegration models of the following form
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where X; is an I(1) process, Y; is a dependent variable, not necessarily (1), u; is an
error term (to be specified more precisely later), g(x, ) is a nonlinear transformation of x
whose form is known up to a parameter 7, and f is a loading coefficient that measures the
importance of the nonlinear regression effect.

Models like have the attractive feature that they can relate processes of different
integration orders. As intimated above, this feature may be especially appealing in mod-
eling and predicting stock market returns. Stock returns commonly behave as martingale
differences, while the variables that are used in prediction are often I(1), as discussed in
Marmer| (2008), leading to a potential imbalance in a regression formulation. Accordingly,
any relationship between stock return levels and stochastic trend predictors is inevitably
weak because of the efficiency of modern stock markets. In terms of the model , this
consideration may be captured for a wide class of possible regression functions simply by
permitting the true value of the loading coefficient to be close to zero. To develop an or-
derly asymptotic theory that accommodates this possibility, the model may be formulated
to allow the true parameter, 3,,, to drift to zero as the sample size n — oco. Then, if Y;
denotes stock returns and X; denotes an I(1) regressor embodying economic fundamentals,
the behavior of Y; will closely follow u;. If u; is a martingale difference, then Y; may be
regarded as local to a martingale difference sequence, where the locality is affected by the
form of the function g, the nonstationary nature of z;, and the magnitude of the localizing
loading coeflicient (3,,. Such a relationship may be considered to be weakly identifying.

When a relationship such as is weak, the nonlinear least squares (NLS) estimators
(Bn, frn) of the true parameters (3,,, 7,,) do not behave as standard asymptotic theory for
nonstationary time series (Park and Phillips| (2001)) predicts even in large samples. In
the extreme case, when 3, = By = 0, 7o is not identified and the estimator 7, cannot
reasonably be expected to be anywhere near g, although standard asymptotic theory,
which proceeds under the assumption that 3, > 0, would imply that 7, is consistent and
asymptotically normal. Similar discrepancies between standard asymptotic theory and the
finite sample distributions of NLS estimators exist when [ is close to zero.

The present paper explores these issues associated with potentially weak identification.
The main contribution of the paper is to provide a local asymptotic theory that can approx-
imate the finite sample distributions uniformly well even when f3 is close to zero. The new
asymptotic theory is used to construct robust confidence intervals for the NLS estimators
(Bn, frn) and may be further developed to use in the construction of forecasting intervals

that take account of potentially small cointegrating effects. The critical values used to



construct confidence intervals are nonstandard, as sometimes occurs in nonstationary re-
gression, but these can be simulated. The robust confidence intervals are shown to have
correct asymptotic size, indicating that they have good finite sample coverage probabilities
irrespective of identification strength.

This paper is the most closely related to |Chengl (2008]) - see also |Cheng (2010). |Cheng
(2008) studies a weakly identified nonlinear regression model of the form but in the
cross section context where both the regressor and the error are independent and identically
distributed. The present paper extends the limit theory to a nonstationary time series
environment, in which the stochastic trend effect on Y; is effectively small. As in [Cheng
(2008), we derive asymptotics of the NLS estimators under a drifting sequence of true values
of 8 to characterize the behavior of NLS estimators when [, is close to zero. The limit
theory reveals some important differences with the cross section case. Unlike cross section
and stationary cases, it is shown that the effect of the drift rate in the loading coefficient
B,, on the asymptotic theory depends on the shape characteristics of the function g and
the parameter mg. Correspondingly, there is interaction between the loading coefficient and
nonlinear function effects when z; is nonstationary. These dependencies reflect the nuances
that arise in the impact of stochastic trends on outputs when the cointegrating association
may be weak and nonlinear. These dependencies also affect inference and their role will
become clear in what follows.

The techniques used to derive the asymptotic distributions of nonlinear functions of
integrated processes are mainly based on [Park and Phillips| (1999)) and Park and Phillips
(2001) - hereafter PP. PP provided building blocks for nonlinear cointegration asymptotics
by establishing a limit theory for suitably standardized sample functions of quantities such
as g(Xy, m) and its derivatives, as well as sample covariances of these quantities and w.
For their results, PP require and prove only pointwise (in m) weak convergence of such
sample covariances. In the present context, pointwise convergence is not enough because
the covariance term contributes to the limit theory of the estimators when g, drifts to
zero. An important technical contribution of the present paper is to show that weak
convergence of such sample covariances to certain mixed normal and stochastic integral
limits holds uniformly over a compact space of m values. The new results are established
by demonstrating stochastic equicontinuity of the sample covariance process. The uniform
convergence results are of independent interest and useful in other extremum estimation
problems involving nonlinear cointegration.

The paper is organized as follows. Section [2]lays out the model, basic assumptions and



some embedding arguments used in the proofs. Section [3] introduces the NLS estimators
of the loading coefficient and the nonlinear transformation coefficient. Section [4] develops
the limit theory for the NLS estimators (Bn,frn) for integrable functions g(-,7) under
various decay rates of the loading coefficient 3,,. Section [5|develops analogous limit results
for asymptotically homogeneous functions g(-, 7). These results encompass the case where
identification is strong enough to ensure that 7, is consistent but may still affect rates of
convergence and the more extreme case where weak identification results in inconsistent
estimation of 7, leading to a random limit for 7, that reflects the weak identification.
The latter outcome corresponds to results given in the partial identification literature (cf.
Phillips (1989)); [Stock and Wright| (2000)). This section also proves a uniform weak con-
vergence result to stochastic integrals. Section [6] discusses confidence interval construction.
Section [7] concludes. The Appendix provides proofs of the main results in the paper and

some useful auxiliary lemmas.

2 The Model and Basic Assumptions

The model we consider is the following nonlinear regression model for a time series Y;:
Y = Bog(Xe, mo) + u, (2.1)

where g : R X II — R is a known function, X; and u; are the regressors and regression
errors, respectively, and 6y = (8, mp)’ is the true parameter vector that lies in a parameter
set © = R x II ¢ R?. We consider the case where X; is an integrated process and
u; is a martingale difference sequence, specified more precisely later. Model is a
nonlinear cointegrating regression, but it differs from the nonlinear cointegrating regression
considered in PP in an important way: the parameter mq is not identified in it Bp =0
and only weakly identified if 3 is close to zero.

The partial identification feature of Model invalidates standard nonlinear least
squares (NLS) inference not only when 5, = 0, but also when f is close to zero. This
point is discussed in |Cheng| (2008)) in the context of cross section nonlinear regression. We
extend the limit theory to a nonstationary time series environment and construct suitable
methods of inference. As in |Cheng (2008]), we derive asymptotics of the NLS estimators
under a drifting sequence of true values (5,,, 7, ) in an effort to characterize the behavior of

NLS estimators when 3, is close to zero. Unlike cross section and stationary cases, however,



the effect of the drift rate in 3,, on the asymptotics depends on the shape characteristics
of the function g and the parameter 7. These dependencies affect inference and their role
will become clear in what follows.

We now complete the specification of Model . We assume the generating mecha-

nism of X; is the unit root process
Xt:Xt_1+Ut, t= 1,2,...,TL (22)

and set Xy = 0 for convenience, although X¢ = 0,5 (1/n) will be sufficient for the results
that follow. Other possibilities for initialization might be considered (e.g. as in [Phillips
and Magdalinos| (2009)) but, for brevity, are not pursued here. Similarly, the generating
mechanism for X; may be replaced with a local to unity process without materially
affecting results, which will be important in empirical applications such as those in Camp-
bell and Yogo (2006). For the component time series u; and v;, we define the stochastic

processes Uy, and V,, on [0, 1] by the standardized partial sums

[nr] [nr]
Un(r) = n~1/2 Z ug and V,(r) = n~1/2 Z Vt+1, (2.3)
t=1 t=0

where [r] denotes the largest integer not exceeding r.
The following high level assumption is convenient and is closely related to similar as-

sumptions in the literature, for example Assumption 2.1 in PP.

Assumption 1. (a) sup,cpo) || (Un(r), Vi(r)) — (U (), V(r)|| —a.s 0 as n — oo, where

(U,V) is a vector Brownian motion with

Va?“(( UU’)))_T( o pauav> for r € 0, 1],
Vi(r) poucy O

where p € (—-1,1).
For each n, there exists a filtration (Fy ), t =0,...,n, such that:
(b) (ut, Fnt) is a martingale difference sequence with E(uf\fm,l) = o2 a.s. for all
t=1,..,n, and sup; <<, E(|u|? |Fni-1) < 00 a.s. for some q > 2; and
(c) Xt is adapted to Fri—1,t=1,...,n.

Remarks. (i) The stochastic processes (Uy, V;,) are defined on D?[0, 1], where D [0,1] is



the space of cadlag functions. As in PP, it is convenient to endow the space D [0, 1] with
the uniform topology (see e.g. Billingsley| (1968))) and employ the Skorohod representation.

(ii) It is more common to have "—4" instead of "— " in Assumption [2}1(a). However,
if (Upn, V) —a (U, V), by the Skorohod representation theorem, there exists a common
probability space (€2, F, P) supporting (Ug, V;?) and (U 0 VO) such that

(U2, V) =4 (Up, Vi), (U V) =4 (U,V), and
(U2, V) — (U, V?) as. (2.4)

For the purpose of deriving the consistency and the asymptotic distribution of the NLS
estimator (f3,,,7,), there is no loss of generality in assuming (Uy,,V;) = (UQ, V) and
(U, V) = (U° V?) and letting Assumption 1(a) hold. This assumption allows us to avoid
repeated embedding arguments. When (U, V,,) —4 (U, V) holds instead of (U,, V,,) —q.s.
(U,V), the results still hold with "—, " and "—," replaced by "—4" by virtue of the
representation theory.

(iii) The condition (c) that X; is adapted to F,;—1 is a simplifying assumption and
it is restrictive in linear cointegrating regression. But it is common in fully specified
(cointegrating) regression models and allows for arguments based on martingale central
limit theory, as in PP, for nonlinear cointegration. In the case of structural systems,
where there is contemporaneous (and possibly serial cross) dependence between X; and
u¢, some modifications of the derivations and the results are required. The limit theory is
especially complex in the case of models with integrable nonlinear functions and it is not yet
completely worked out in the literature even for the strongly identified case. In fact, when
g(+, ) is an integrable function, substantially different proofs are needed, as shown by the
limit theory in Jeganathan (2008) and Chang and Park (2009), the latter also for martingale
difference w;. Further, the limit theory involves only a partial invariance principle in
the general case (Jeganathan, 2008). When ¢g(-,7) is asymptotically homogeneous, the
modifications that are required follow those in de Jong (2002) and Ibragimov and Phillips
(2008, theorem 3.1). Throughout the current paper, we will maintain Assumption 1(c),
which is likely to be most relevant in prediction and in applied work on stock return
regressions, in order to explore the effects of weak identification in nonlinear nonstationary

models and to keep this paper to manageable length.



3 Nonlinear Least Squares Estimation

Let = (8, 7)" and define the nonlinear least squares criterion function

n

Qu(0) =1 (Vi — Bg(Xp,m)? —n 1Y VA (3.1)
t=1

t=1

The NLS estimator 6,, minimizes Qn(0) over O, i.e.

= inQ, (6). 2
0 = argmin Qn (6) (3.2)

Because the regression function is linear in f3, it is convenient first to solve (3.2)) for each

fixed 7, giving S Yig(Xom)
B =1 Ytg (A, T

gt (X )

and then minimize the concentrated criterion function Q,(7) = Q,(8,,(x), ) for #,. The

B,() (3.3)

following condition is standard in extremum estimation.
Assumption [Bl1. The parameter space II of 7 is compact.

Following the framework of PP, in what follows we consider two possible families of ¢
functions. These are the [-regular and the H-regular classes and they will be discussed

separately. We use the same definitions of these function classes as those in PP.

4 NLS for Integrable Functions

This section considers integrable (more specially, I-regular as defined below) classes of
functions and examines the consistency, inconsistency, and asymptotic distributions of the
NLS estimators Bn and 7, under drifting sequences of true parameters. Drifting sequences
enable us to study cases where the parameters are weakly identified. We find that 7,, and
ﬁn are consistent and have an asymptotic distribution that is the same as in the strongly
identified case considered in PP provided the true value of § drifts to zero at a rate slower

than n~1/4,

When the true values [, drift to zero at a faster rate, 7, is inconsistent
and the asymptotic distributions of 7, and Bn are nonstandard in comparison with the
nonstationary limit theory of PP. Thus, weak identification is induced by a critical strip of

0] (nil/ 4) around the origin in the loading coefficient (.



The following conditions are useful in the development of the limit theory. Assumption
1 is the same as Assumption 2.2(b) in PP. The [-regularity conditions in Assumption
2 are adopted from Definition 3.3 of PP. Assumption 3 requires the function g(-, 7) to
be non-degenerate in the sense that g?(-,7) has positive energy [*_g?(s, m)ds > 0 for any
m e 1L

Assumption 1. In the generating mechanism of X, , v =@(L)er =Y poy Prt—ks
with (1) # 0 and > "7, |¢rlk < 00, and {e+} is a sequence of i.i.d. random variables with
mean zero and E|ei|P < oo for some p > 4, the distribution of which is absolutely contin-
uous with respect to the Lebesque measure and has characteristic function c(\) satisfying
limy_ o0 A"c(A) = 0 for some r > 0.

Assumption 2. The function g(-,m) is I-regular on I in the sense that:

(a) for each mo € 11, there exists a neighborhood Ny of mg and T : R — R4 a bounded,
integrable function such that |g(x,m) — g(x,mo)| < |m — mo|T' () for all ™ € No; and

(b) for some constants ¢ > 0 and k > 6/(p — 2) with p > 4 given in Assumption 1,
the function g satisfies |g(x,7) — g(y, )| < clz —y|* for all ™ € 11, piecewise on each piece
S; of the common support S =U",S; C R.

Assumption 3. ffooo g%(s,m)ds > 0 for all = € 1.

Lemma 411 below establishes the uniform convergence of the sample covariance be-
tween the regression function and the error term. The result is similar to the second part
of Theorem 3.2 in PP. But our result is stronger because the convergence in distribution
to a mixed normal limit holds uniformly over the parameter space II. The stronger re-
sult is needed in this paper because the asymptotic distribution of the covariance term
contributes to the asymptotic distribution of the NLS criterion function when we allow
the true value of S to drift to zero with the sample size. In the lemma, we use the local
time L(1,0) = lim._q 5- fol 1{|V(r)| < e}dr of the Brownian motion process V (r), and a

secondary Gaussian process Z (m) which is independent of L(1,0).

Lemma[dl1. Let Assumptions[21,Bl1 and[d1-2 hold. The sequence of stochastic processes

vp(m) : m € Il converges weakly to v(m) : m € II, where

vp(m) = n~ 4 Zg(Xt,w)ut
t=1

v(m) = L(1,0)"/2Z (m),



and Z (m) is a Gaussian process with covariance kernel

k(mq,mp) = ai/ 9(8,mq)g(s, mp)ds.

— 00

This uniform convergence result makes it possible to characterize the limiting form of
the NLS criterion @, (7) and hence find the asymptotic distribution of 7,. We start with
the following Lemma which establishes the asymptotic distribution of the centered NLS
criterion function D, (7, 7,) := Qn(7) — Qn(my,) (with appropriate scaling). In this lemma

and the rest of the paper, R[4, denotes the extended real line: R U {—oc, +o0}.

Lemma [4.2. Let Assumptions 2}1, Bl1 and [41-3 hold. Under drifting sequences of true
parameters {(B,,7n) € O} such that (n'/*B,,m,) — (c,m) € Ritoo) X II, the following
limats hold:

(a) if ¢ = to0, then

nl/Z,B;ZDn(W, Tn) —p Di(m,m0)
I (72, g5, m)g(s, mo)ds)

2
d _
I (mo)ds T (s, m)ds

L(0,1),

uniformly over m € 11, and
(b) if c € R, then {nDy(m,m,) : ™ € II} converges weakly to D(c,m, 7o) : w € I, where

2

* 2 Z (mo)
D(c,m, mo) := { cL(1,0)"/? P(s,mo)ds |+ 0
</oo > (f oogz(smo)ds)lﬂ
2
< g(s,m s, m)ds T
_ L(1,0)1/2 f,mg( 0)9( 3/2 Z( ) »

(ffooo g%s,w)ds)

Assumption [4}4 below rules out collinearity between g(s,m1) and g(s,m2) for 71 # 72

and ensures that D(c,-, 7o) has a unique minimum in IT with probability one.

10



Assumption [4.4. For every a # 0 and w1, ma € II with 71 # 72

/OO (g9(s,m1) — ag(s,ma))*ds > 0.

—0o0

Lemma 3. Suppose Assumptions 4.2-4 hold. For any ¢ € R and 7 € I, D(c,-,mo) is

continuous and has a unique minimizer in I1 with probability one.

We are now in a position to develop a limit distribution theory. Theorem 41 below
characterizes the limit behavior of 7,, under different sequences of drifting true parameters.
The outcomes depend critically on the limit behavior of 3,,. If n}/43, is bounded as n —
oo then the data are insufficiently informative to deliver a consistent estimator and 7,
converges weakly to a random quantity, reflecting that lack of information. If nl/ 48,
diverges, then there is sufficient information for consistent estimation. In that event, the
rate of convergence of 7, is n!/ 4, and depends on the sequence 3,,, as shown in Theorem
42 below.

Theorem 1. Suppose Assumptions 211, [8]1 and [@1-4 hold. Under drifting sequences of
true parameters {(B,,m) € O} such that m, — my and n'/4B, — c for ¢ € Rito, the
following limits hold:

(a) if ¢ = *o0, then 7, —my, — 0, and

(b) if ¢ € R, then T, —q Trx(c,m0), where T1r(c,mo) is a random wvariable that

minimizes D(c,m,mp).

The following assumption imposes an [-regularity condition on the first and second
derivatives of g with respect to m. To simplify notation, let ¢(z,7) = 9g(z,7)/0n and
§(x,m) = 02g(x,m)/On?. Assumption 4.5 (b) implies that the matrix 3,4 defined below in

(4.1)) is positive definite.
Assumption [l5. (a) The functions §(-,m) and §(-,7) are I-regular on II, i.e. they
satisfy Assumption [4]2, and

(b) for any m € 11, there exists no a € R such that §(xz,7) = a - g(xz,7) a.e.

Theorem 2 below gives the asymptotic distribution of 7, when nl/ 4B, — ¢ = +oo.

Theorem [4,2. Suppose Assumptions 211, and [d1-5 hold. Under drifting sequences of
true parameters {(B,,7n) € O} such that m, — mo and n'/*B, — c, the following limit

behavior obtains:

11



(a) if ¢ € R, then n*/*B, —q715(c,m0) = fr(T1x(c,m0)), where

Ou (ffooo g% (s, W)ds) 2 Z(m)+ cL1/2(1, 0) ffooo g(s,m)g(s,mo)ds

fir(m) = L1/2(1,0) f_OOOOQQ(s,ﬂ’)dS

, and

(b) if ¢ = %00,

( n1/4(Bn_5n) > g ( T175<7TO> ) =g 2_1/2L_1/2(1 0)Z
: ugg ) )

”1/4Bn(ﬁn — Tp) Trx (m0)

where Z ~ N(0, I3) is independent of L(1,0), and

- ffooo g%(s,mo)ds ffooo (5, 70)g(s, m0)ds
o ( 22 4(s,mo)g(s,mo)ds [ G2 (s, mo)ds ) : (4.1)

5 NLS for Asymptotically Homogeneous Functions

This section considers asymptotically homogeneous (or H-regular) classes of functions and
examines the consistency, inconsistency, and asymptotic distributions of the NLS estima-
tors Bn and 7, under drifting sequences of true parameters. We find that 7,, and Bn are
consistent and have asymptotic distributions that are equivalent to those in PP when the

true values of 8 drift to zero at a rate slower than nl/2

times the asymptotic order of the
nonlinear function g. When the true values (3, drift to zero faster, 7, is inconsistent and
the asymptotic distributions of 7,, and Bn are again nonstandard in relation to PP. Weak
identification in the present case occurs when the loading coefficient 5 lies in a critical
strip around the origin whose order of magnitude depends on the asymptotic order of the
function g.

To simplify notation, define the standardized quantity X,,; = n~1/2X,. For a function

F(v,m), let [F(V,m)dU = [} F(V(r),7)dU(r) and [ F(V,7) = [} F(V(r),7)dr.

Assumption 1. (a) g(x,m) is H-regular on I as defined in PP, with asymptotic order
k(A ), limit homogeneous function h(x,n), and residual R(x, A, ), where A € Ry. Let

h(z,\, ) = 6 (N, m)g(\x, m) = h(z,7) + &L\, m)R(z, A, ), . (5.1)

where =1\, 7)R(x,\,7) = o(1) for all 7 € IT as A — oo.

12



(b) There exists a function b such that for all x € R and 7, n" € 11,

sup |h(z, A\, m) — h(z, A\, 7)| < b(z) |7 — 7'
A>1

)

(¢c) For all m €11 and 6 > 0, f\5|§5 h%(s,m)ds > 0.
(d) For m # 7" and § > 0, there is no a # 0 such that f\S|S5(h(S’7T) —ah(s,7"))%ds = 0.

(e) imy— 00 SUPrep £ H(A, ) = 0.

Remark. The H-regularity concept in Assumption 1(a) was introduced in Park and
Phillips (1999) and is illustrated below. The definition includes a wide class of homoge-
neous, asymptotically homogeneous and regularly varying functions, and is discussed in
PP. Assumption 1(b) is a Lipschitz continuity condition on h(z, A, 7). The “sup)s;”
operation does not make the assumption more restrictive because h(x,\, ) converges
to h(z,m) as A goes to infinity. For the same reason, Assumption [5}1(b) implies that
\h(z,m) — h(z,7)| < b(z)|r —7'| for all z € R and m,«’ € II. Assumptions [51(c)-(d)
guarantees the identification of 3, and that of myp when [, is not too close to zero. These

assumptions along with Assumption [5}4 below are the full-rank conditions.

The following example involves a typical asymptotically homogeneous function and

demonstrates that Assumption [5}1 is not restrictive.

Example. Let g (z,7) = (1 +22)" and Il = [r,, 7] with 0 < m, < 1, < co. Then,
gz, m) = AT ()\_2 + .f82)7T =k (\m)h(z,\ 7)), with k() )=\, (5.2)

Clearly, inf e r(\,7) = A2™ — o0 as A — oo, the family {g(-,7)} is equicontinuous
on II, and h(x,7) = 2?7, which is homogeneous of order A?™ with f‘s| <5 s¥ds > 0 and
f|s|§§(527r — 52™)2ds > 0 for all § > 0. The following equation implies that g(z, ) satisfies
Assumption [f] 1(a):

lim sup |[(A 242" —2*|=0and sup ‘:c%} < C?™ v 1 < oo. (5.3)
A=00 |4 <C el |z|<C,mell

13



Assumption [f|1(b) holds because
sup ()\72 + 3:2)7r — ()\72 + m2)7rl
A>1

= sup (>\_2 + :U2)7~r In ()\_2 + :172) (m — ')
A>1

[(142%)™ {In (14 2°) +log (1 +27%)}] |7 — '

IN

: (5:4)

where the equality holds for @ between 7 and 7’ by the mean value expansion and the
inequality holds because

sup (A2 + a:2)7~r < (1+2%)",
A>1

and

sup |In (A2 —|—x2)| < |m(1 +x2)‘ {|z| > 1} + ‘lan‘ 1{|z| <1}
A>1

IN

‘ln (1 —f—:L‘Q)‘ + ‘ln (1 +x72)|.

Assumptions 1(c)—(d) hold straightforwardly. Finally, we verify the validity of two addi-

tional conditions needed in later arguments. First, observe that

K (n1/2,7rn) I , 1
an —>1, fOI'Trn—ﬂ'n—O<lnn>,

confirming a condition needed in Theorem 5.2. Next, the derivative function §(z,7) =
(1 + :132)7r In (1 + :U2) , whose asymptotic order is k1 (), 7) = A" In A, so that

lim sup < F(A, ) ln)\> =1,

A—oo \ K1 ()‘7 7T)

confirming the validity of a condition used in Assumption 5.4(b).

Assumption [5}2 below places a uniform boundedness condition on the second moments

of the limit homogeneous function h and the Lipschitz function b of Assumption [51.

Assumption 2. (a) For all = € 11, limsup,,_,,o n 1 Y1 Eh?(Xp4, ) < 00,
(b) limsup,, .o n 1Y} | Eb?(X,4) < 0o, and
(¢) sup,efo1) E[b(V ()] < occ.
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Remark. Assumptions 2(a)—(b) are helpful in establishing the stochastic equicontinuity
of n V25~ (2 m) S0 g( Xy, 7wy AssumptionsZ(c) is used to guarantee the existence
of a random process Y () : 7 € II whose sample paths are continuous with probability one
and satisfies Y(7) = [h(V,7)dU a.s. for every m € II. Lemma 1 below formalizes the

existence argument.

Lemma [5l1. Let Assumptions [3|1(a)-(b) and [5|2(c) hold. Then, there exists a random
process Y (m) : m € II that (i) has continuous sample paths with probability one and (ii)
satisfies Y (w) = [ h(V,7)dU a.s. for every w € IL.

Remark. Random processes indexed by 7 that satisfy (ii) in the above lemma are not
necessarily unique (not even in an almost sure sense). That is, there may exist Y (7),
Y'(w) : m € II that both satisfy (ii), but Y(7) # Y'(7) V& € II almost surely. However,
under the given assumptions, the random process Y (7) that satisfies both (i) and (ii) is
unique in an almost sure sensem To keep the notation intuitive, we let [ h(V,7)dU : w € II
denote the unique continuous process Y (7) in the above lemma. This should cause no
confusion because previously the stochastic integral [ h(V,7)dU was defined only for each

7 € IT and not as a random process indexed by 7.

Lemmal[5] 2 below establishes the uniform convergence of the sample covariance between
the regression function and the error term. As in the case of integrable functions, the result
is similar to the second part of Theorem 3.3 in PP but is stronger because the convergence
holds uniformly over the parameter space. As before, the stronger result is needed here
because the probability limit of the covariance term contributes to the asymptotic form of
the NLS criterion function when we allow the true value of § to drift to zero as the sample
size n — 0o. The resulting uniform convergence to a parameterized stochastic integral is

new and seems likely to be useful in other asymptotics involving nonstationary time series.

Lemma [5l2. Let Assumptions [211,[Bl1 and Bl1{5l2 hold. Then, uniformly in = € II,
n 25 (02 x) Zg(Xt, T)Uur —p /h(V, m)dU.
t=1

As discussed above, we consider drifting sequences of true parameters {(3,,,7,) € O}

'See, e.g., Kallenberg (2001, p.56-57).
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such that k(n'/2, m,)n'/28, — ¢ for c € Rp4o)- The rate “k(n'/2, m,)n/? is set so that,
under the sequence {(8,,,m,) € ©}, the centered criterion function D, (7w, m,) := Qn(mw) —
Q(7y), when scaled properly, converges in probability to one function when ¢ = +00 and
to another function when ¢ € R. Lemma 5.3 below establishes the respective probability

limits.

Lemma [5]3. Let Assumptions 211, Bl1 and [Bl1{5}2 hold. Then under drifting sequences
of true parameters {(B,,m,) € O} such that m, — mo € Il and k(n'/?, m,)n'/?8, — c €
Ri1 o), the following limits hold:

(a) if ¢ = 400, K 2(n2,7,)B,2Dp(r, 7)) — Dg(m, mo) as. uniformly over m € 11

where
[ h(V, m)h(V, 7))
2V, m) ’

Dy (m,mo) := /h2(V, ) —
(b) if ¢ € R, then uniformly over m € II,

[c [ B3(V, m0) + [ h(V, m0)dU]*
J h3(V, 7o)
[c [ h(V,m)h(V, 7o) + [ h(V,7)dU]?
J RV, ) '

nDy(m,m,) —

Lemma 4 below shows that the probability limit of nD,, (7, 7,) has a unique minimum

with probability one, which guarantees that 7,, has a well-defined limiting distribution.

Lemma [5l4. Let Assumptions 5.1-2 hold. For any my € Il and ¢ € R, the limit function

[c [ h(V,m)h(V, 7o) + [ h(V,7)dU]?
J RV, )

(5.5)

is continuous in w and achieves a unique maximum in I with probability one.

The theorem below establishes the consistency of 7, under drifting sequences of true
parameters {(8,,,7,) € O} with x(n'/2 m,)n'/28, — +oo, and gives the distributional
limit of 7, under drifting sequences with x(n'/2,7,)n'/23, — ¢ € R. In the latter case,
there is insufficient information in the limit to ensure consistency and 7, converges to a

random quantity reflecting that lack of information.

Theorem [5l1. Let Assumptions[2l1,[8l1 and[5l1{5]2 hold. Under drifting sequences of true
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parameters {(3,,7,) € O} such that m, — mo € II and k(n'/? m,)n'/?8, — c € Ritoo)s
the following limits hold:

(a) if ¢ = %00, then 7, — 7, —p 0, and

(b) if ¢ € R, then 71, —q THx(c,70), where TH (¢, 7o) is a random variable that

Marimizes .

Assumption [5]3 below requires both the derivative functions §(z,7) and §(z, ) to
satisfy H-regularity conditions. These assumptions are needed to obtain the asymptotic

distributions of the NLS estimators and their asymptotic forms affect convergence rates.

Assumption [5}3. (a) g(z,7), 7 € II is H-regular with asymptotic order ri(\, ), limit
homogeneous function hi(x,m) and residual Ry(x,\, ),

(b) g(x,m), 7 € II is H-regular with asymptotic order rkao(X\,m), limit homogeneous
function ho(x,m) and residual Ra(z, A\, ), and

(c) for hy(z, A\, 7) = kT (N, g, ) and ho(z, A\, 7) = Ky (A, m)§( Az, ), Assump-
tions l(b) and 2 hold with h replaced by hy or he and b replaced by by or bs.

Assumption [f]4(a) below is part of the full-rank condition. Assumption [5}4(b) requires
the asymptotic order of ¢ to be larger than that of g by a certain factor. Part (b) is satisfied

by most asymptotically homogeneous functions.

Assumption 4. (a) For any w € Il and 6 > 0, there is no a # 0 such that f\s|<6(h(‘97 T)—
ahy(s,m))?ds =0, and
(b) for any 7 € T, limsupy_, o, [k(\, 7)k; (O, )| log A < oo.

Theorem [5]2 below establishes the asymptotic distributions of the estimators under
drifting sequences of true parameters. As the theorem shows, the estimators have the
same asymptotic distributions as in Theorem 5.2 of PP when identification is strong —
that is, when x(n'/2 7,)n'/2|3,| — co. When identification is weak, the estimators have
asymptotic distributions different from those given in PP.

For notational simplicity, let K, . = H(n1/2,7r), Kipx = m(nl/Q,w) and Ko px =

ro(n/?, ).

Theorem [51.2 Suppose Assumptions 21, Bl1 and Bl1fl4 hold. Under drifting sequences
of true parameters {(83,,m,) € O} such that w, — mo € Il and n*/*ky, . B, — c € Rt
the following limits hold:
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(a) if ¢ € R, then nl/anfran —p THa(C,m0) := fu(THA(c,m0)), where

_ Jh(V,m)dU + ¢ [ h(V,7)h(V, 7o)

fu(m): Th2(V, ) ’

(5.6)

(b) if ¢ = oo, then n'/2B, k1 pxn(Fn — Tn) —p Tr.x(m0) where

[ R(V,mo)ha (V. mo) [ R(V,mo)dU — [ h3(V,mo) [ ha(V, mo)dU
J B3V, mo) [ h2(V, 7o) = [ BV, mo)ha (V, o))

THx =

(¢) if ¢ = =00 and in addition, ki x, [kn . — 1 whenever m, — ), = o(1/logn), then
10!k, (B = B) —p Th,p(mo), where

_ JMVimo)dU [ h(V, 70)ha (V7o)
J 12 (V,mo) J RV, mo)

T p(mo) : - Tt 2 (m0).

These results, like those for integrable functions, reveal that the limit theory is affected
by weak identification. In the present case, there is the additional complication that the
convergence rates depend on the unknown parameters. A robust approach to inference

needs to take account of these possibilities, which we now investigate.

6 Confidence Intervals

This section shows how to construct confidence intervals for the loading coefficient 5 and
the nonlinear transformation parameter m. These intervals are robust in the sense that
they allow for the possibility that identification may be weak. The approach is based on
Theorems [4]2 and [f]2. The [-regular and the H-regular classes are treated separately.
Special issues arise for the H-regular class because the drifting rate of the true values of 3
depends on the true values of the unknown parameter 7.

We proceed in a general way and let v be a generic notation for the relevant parameter
and j denote a generic type of nonlinear transformation. In our model, v may be either
or 7, and j may be either I, standing for integrable type, or H, standing for asymptotically
homogeneous type. Let CI;  ,(a) denote the 1—a percent confidence interval for parameter
~ when the nonlinear transformation is of type j. For 6 = (5, 7)’, let Pry be the probability

function when the true parameter value is 6. At sample size n, the coverage probability of
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the confidence interval C'I; (1 — a)) when the true parameter is 0 is
CPjyn(0,0) =Pro(y € ClLjyn(a)). (6.1)

This section constructs confidence intervals whose finite sample coverage probabilities
are uniformly controlled by the asymptotic size. The asymptotic size of C'I; ,, is defined
as

AsySZ;~(a) = liminf inf CP;, (6, a). (6.2)

n—oo 0eO
As discussed earlier in this paper, the true parameter 5 measures the strength of identifica-
tion. In the definition of AsySZ; ,, the infimum is taken over all § € © and, in particular,
over f € R. Thus, AsySZ;.(«) approximates the finite sample minimum coverage proba-

bility infgce C'Pj,n(0, o) irrespective of the strength of identification.

6.1 Confidence Intervals with Integrable Functions

The confidence intervals for both § and 7 are constructed in a two-step fashion. First, one
determines the strength of identification by comparing n'/ 4 Bn\ to a positive number b,,.
Second, one chooses critical values based on the asymptotic distribution of n!/ 4(Bn - B)
or n'/43, (#, — 7) at different levels of identification. Details are given below. We require

the sequence b,, to diverge to infinity but at a rate slower than n'/4:

Assumption @.1. b+ 0%, — 0.
Consider « € (0,1). For ¢ € R, let g7 g(c, g, 1 — ) be the 1 —a quantile of |77 5(c, 7)) —

c|. Let gr (00, m,1 — «) be the 1 — a quantile of |T7 g(mo)|. Let

SupCER[ioo] SqueH QLB(C, ™, 1- O{) if n1/4‘5n‘ S bn

R 6.3
QI,ﬁ(OOaﬁ'nal —Ot) if n1/4|ﬁ’n| > bn ( )

qrp(fn, 1 —a) = {

We use ¢rg(Tn, 1 — a) as the critical value to construct a confidence interval for 3. This
critical value is structured the same as that used in the robust confidence interval in [Cheng
(2008). The confidence interval for g is

Clrpn(a) = {5 /4B, — Bl < drp(Fn, 1 — a)} - (6.4)
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Similarly, let g7 (c, 7o, 1 — ) be the 1 —a quantile of |77 5(c, o) (T1,x(c, m0) — 7y)|. Let
q1,7(00,mg, 1 — ) be the 1 — o quantile of |T7 (mo)|. Let

m,1—a)ifn!/4B | <b
q[,ﬁ(ﬁ-’rh 1—a)= SuchR[iAoo] SUPremn qIJr(C ™ @) 1 n |?n| > Un (6.5)
1,7(00, Tn, 1 — @) if n'/4|B,| > by,
The confidence interval for 7 is
Clymnla) = {r € U 03B, (= 7)) < drm (s 1 — )}, (6.6)

Notice that the confidence interval of 7 is wide when Bn is small, reflecting circumstances
in which 7 is only weakly identified.
The following theorem shows that these confidence intervals have the correct asymptotic

size.

Theorem @.1. Suppose Assumptions 1 1, 1—5 and @1 hold. Then for all o € (0,1),
(a) AsySZ; g(a) = a, and (b) AsySZi (o) = a.

6.2 Confidence Intervals with Asymptotically Homogeneous Functions

The confidence interval for m is constructed in the same way as in the previous sec-

tion. The confidence interval for 5 has a different form because the test statistic for 3,

nt/ 2kin 2 (Bn — Bp), does not necessarily converge in distribution when nl/ 2Kpmn By — C €

1/2/€n,frn Bn

may diverge when 7, > m,, which happens with positive probability. We therefore con-

R. In fact, n!/ 2n i (Bn — f3,,) may diverge with positive probability because n

struct a confidence interval for 8 based on the confidence interval for 7, as discussed in
detail below.

The sequence b,, serves the same purpose as in the previous section, but the divergence
rate of b, is required to be different. The reason is that the drifting sequences of true
values of 8 may drift to zero at a different rate for asymptotically homogeneous functions
than for integrable functions and this rate may depend on w. The rate requirement on b,

is stated in the following assumption.
Assumption |§|.2. For all © €11, b, + n_l/Zm;}Tbn — 0.

Remark. For typical asymptotically homogeneous functions the order function satisfies
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infr kpx > € > 0. In the example considered earlier, the order function is K, » = n?™ and
infr kp = n®™e with m, > 0, so that liminf,_, inf, Kn,x = 00. In such cases, Assumption
@2 is satisfied as long as b, ' +n~'/2b, — 0.

For ¢ € R, let qu (¢, 70,1 — @) be the 1 — « quantile of |7 (¢, 70)(TH,x(c, m0) — 70)|-
Let g x (00, mg, 1 — c) be the 1 — o quantile of [T »(mp)|. Let

(jH,T((ﬁ-na 1- Oé)

Ky &, Kl SUPce Ry, SUDrer G, (60, 1 — @) i 02|k 7, B, < by
— Fn [+00] i i (6.7)
qH,ﬂ'(OOa 70, 1- a) if n / |Hn,frnﬁn| > bn
The confidence interval for 7 is
Clin(@) = {70210, (on = 7 < e (Fns 1 — )} (6.8)

Let gr5(00,mo,1 — a) be the 1 — o quantile of [T g(mp)|. Define the set

Cln(a) ={8: n1/2”1n,frn (Bn —Bu)| < qu (00, fin, 1 — a)}.

Then, the confidence interval for 5 is

Cl,(a)U {6 vinfreory () by nt2 |k, 28] < 1} if n1/2|/£n7ﬁn3n| <b,

Cl,(a) if n1/2’/§,n’7}n,@n| > by,
(6.9)

The following theorem shows that these confidence intervals have the correct asymptotic

CIH757n(Q) = {

size.

Theorem @.2. Suppose Assumptions 1 1, 1—4 and @2 hold. Then for all a € (0,1),
(a) AsySZp (o) = o, and (b) AsySZy p(a) = .
7 Conclusion

This work develops a local limit theory for nonlinear least squares estimation under drifting
parameter sequences that allow for the possibility of weak identification in a nonlinear

cointegrating regression relationship. Such models are important empirically in situations
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where outcomes may be mildly impacted by certain stochastically nonstationary variables.
One example is financial asset returns, which may be influenced in the long run by stochastic
trends in economic fundamentals while these trend effects are nearly imperceptible in the
short term. Another example is microeconomic behavior which may be impacted in a
minor way by common macroeconomic effects or aggregate economic fundamentals (e.g.,
Granger, 1987; Giacomini and Granger, 2004), while the dominant effects involve individual
characteristics.

The model that is analyzed in this paper is a prototypical model of this type. The
model allows for the following two features: (a) a regressor that is a nonlinear transforma-
tion of an integrated time series, so that the model is cointegrating; and (b) potentially
weak cointegrating effects (in terms of a loading coefficient for these effects), so that the
parameter in the nonlinear transformation is only weakly identified. We use the local limit
theory derived here to construct confidence intervals for both the loading coefficient and the
transformation parameter. The confidence intervals are shown to have correct asymptotic
size irrespective of the strength of identification. The results of the paper can therefore be
used to carry out robust inference on weakly cointegrated systems and to construct robust

prediction intervals that allow for the presence of weak effects from stochastic trends.
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A Auxiliary Lemmas

The following Auxiliary Lemmas are used in the proof of the main lemmas and theorems.
The proofs of these Lemmas are given in Appendix [D] The first lemma is based on Lemma
A2 of PP and gives a convergence result to a stochastic integral.

Lemma A1 Let Assumption 211 hold. For all k > 1, if T : R% — R* is requlaif], then

n~1/?2 ZT(n*1/2Xt)ut —p /T(V(r))dU(r) as n — oo.
t=1
Let hr(Xp e, n,ue) = h(Xn,t,nl/Q,ﬂ)ut, and let
Vnh7r = n71/2 Z hW(Xn,tv n, ut)' (Al)
t=1

Let 7 = {hy : m € II}. Note that {v,h : h € F} is an empirical process indexed by h. in

F. Define a semi-distance d on F as follows:
d(hr, h) = |7 — 7| . (A.2)

Lemma A2 below is used in the proof of Lemma [5] 2.

Lemma A2 Suppose Assumptions 2|1, 8|1 and [5}1-2 hold. Then the empirical process

{vnhx : hx € F} is stochastically equicontinuous with respect to d.

B Proof of the Theorems

Proof of Theorem [4}1. (a) Part (a) is implied by #,, —, m because 7, —, mo. Indeed,
since 7, is the minimizer of n='/23,2D,, (7, 7,), #tn — o is implied by Lemma 2(a) and
the argmax continuous mapping theorem (CMT) as long as the following two conditions
hold: (i) Dj(,mo) is continuous, and (ii) Dy(-,m) has a unique minimum g a.s.
Condition (i) holds by Assumptions [42(a) and [43. Condition (ii) holds because

% As defined in Definition 3.1 of PP, for which it is sufficient that the elements of 7' be piecewise continuous.
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D(mg,m9) = 0 and for any m # o,

2
ijOOQZ(Svﬂ- )dS ffooogz(s,ﬂ‘)ds— ffooo 9(3771-)9(3’77 )ds
Dy(m,m) = - ™ 50 7r)(ds ’ ) x L(0,1)

> 0, (B.1)

by virtue of the Cauchy-Schwartz inequality and Assumption []4.
(b) Part(b) is implied by Lemmas [/2(b) and [i3 and the argmax CMT. =

Proof of Theorem [4,2. (a) We first derive the asymptotic distribution of the stochastic
process n'/4j3, (r) : € II. We have

n VST wg(Xe, ) + 0B, (n ST (X, )g(X, 7))
n=1/2 >t 92 (X, )
oo L (1,0)2 Z (-) + L (1,0) [*_g(s,m0)g(s, -)ds
L(0,1) [%_g%(s,-)ds ’

n1/48n() -

—a fr() = (B.2)
where the convergence holds by the same arguments as those for LemmaQ(b). The conver-
gence n'/43, (-) holds jointly with the convergence of n.Dy,(-,m,) in Lemma 2(b) because
n/43, (-) and nD,(-,m,) are both composed of the same elements. Because n'/43, (7,) is
a continuous functional of (nl/ 43, (), n.Dy (-, Wn)) with respect to the sup norm, the CMT

applies and we have

n48,,(7tn) —a f1(T1.x (c,m0)),

giving the desired result.

(b) First we show that Bn is consistent. We have

- . n 12 E?:l 9(Xy, m)g(Xe, 7n) ffooo 9(s, m)g(s, mo)ds
o =) T S ) T [ emds

(B.3)

uniformly over w € II, where the equality holds by Lemma 1 and n~Y/ 4 L' 0 and

the convergence holds by the same arguments as those for Lemma 2(a). Thus, Theorem

l(a) and Assumption 2(a) imply that 3,,/8,, = B,,(7n)/Bn —p 1.
The NLS estimators satisfy dQ,(6,)/90 = o,(n~/*), and a mean value expansion of
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0Qn(0,)/00 gives

_ aQn(en) aan(én) h

1/4

op(n ) 00 06000’ (9" 0”)’ (B.4)
where 0, = (3,,, m)" and 0, lies on the line-segment joining 6,, and 0, Let A, =

2 diag (n1/4,n1/4ﬁ;1). Next we show
02N [0Qu(6,)/90] =4 0uL' (1,005,172, (B.5)
where Z ~ N (0, I2), and

9*Qn(0n
Ana%(g,)An —p SggL(1,0). (B.6)

Under Assumptions i3 and [il5(b), X, is invertible. Therefore, Theorem [42(b) is implied

by (B-9)-(B5).
Result (B.5)) is implied by Lemma 4.1 and the Cramér-Wold device applied to

n 2N, [0Qn (0,)/00] = n Y230 ( igz:"; ) . (B.7)

Equation is implied by:

oo

2 012820, (B) /05 = 025 2(Xp 7o) —p L(1,0) / P, 7)ds,

—0o0

2 0l 2B 102 Qu ) /080T = VRS 9K Fa) (267 Bug(Xis ) = 9(Xesmn) ) —
2B S (X, R

o0

—p L(l,O)/ g(s,m0)g(s,mo)ds,

—0o0

— — A — n . ~ _9>2 ~
2 1n1/25n282Qn(9n)/87r2 = n 12 Etzl (X, Tn) (5n2ﬁng(Xt,7rn) - g(Xt»Wn)) +
n1/2 Z?:1 92(Xt, Tn)

—p L(1,0) /OO 3 (s, m)ds, (B.8)

—0o0

where the convergence holds by Theorem 3.2 in PP, Assumptions [42, 45 and Lemma[4 1.
]
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Proof of Theorem [5l1. We show part (a) first. We have: (i) Dy (m, mo) is continuous

in 7 because h(v,-) is continuous a.s. by Definition 3.5(b) and Lemma A8 in PP, and

/h2(V,7T) = /OO h%(s, m)L(1,s)ds > 0 a.s., (B.9)

—0o0

by Assumption [51(c): and (ii) D (m, 7o) is uniquely minimized at m = m a.s. because

/hZ(V, m)/fﬂ(v, ) > [/ h(V,7)h(V, 71'0)]2 a.s., (B.10)

by the Cauchy-Schwarz inequality, where the equality holds if and only if [(h(V,7) —
ah(V,m9))? = 0 a.s. for some a # 0, which holds if and only if 7 = 7y by Assumption
Bl1(d).

With Lemma[5]2(a) and Conditions (i) and (ii) above, we can apply the argmax CMT
(see e.g. Theorem 3.2.2 of van der Vaart and Wellner (1996, p.286)) and get 7, —4 7o,
which implies part (a) because g is a constant.

Lemmas [5|2(b) and [5|3 along with the argmax CMT yield part (b). m

Proof of Theorem [5/2. (a) We first derive the asymptotic distribution of the stochastic

process n1/2f<;n,m5’n(7r) :m € II. We have

n 2 VS wg (X, )
”_1’€5,? > i1 93X, )
026 B (R R ek ST 9( Xy, ) g( X, )
nenl Yy g2 ( X, )
B Jh(V,m)dU + ¢ [ h(V,7)h(V, 7o)

—p fu() = TRV, ) : (B.11)

02k B,(-) =

where the convergence holds by the same arguments as those used for Lemma 2(b). The
convergence n'/?f,, .3, () holds jointly with the convergence of n.D,,(-, 7,) in Lemma 2(b)
because n'/ 2k, Bn() and nD, (-, m,) are both composed of the same elements. Because

1/2

n ’{'n,frnﬁn(ﬁ-n) is a continuous functional of <n1/2Hn7.Bn(~), nDn(-,ﬂn)> with respect to

the sup norm, the CMT applies and gives the desired result.

(b) The NLS estimator 7, satisfies:

Qn(Fn) = 0p(1), (B.12)



where @ denotes the first derivative of Q. Expand Q,(7,) around 7o, and we have
017(1) = Qn(ﬂn) + Qn(frn)(ﬁ'n - 7Tn)7 (B13)

where Q denotes the second derivative of @) and 7, lies between 7,, and 7.

In order to find the asymptotic distribution of #,, — m,, we need to find the asymp-
totic distribution of Qn(wo) and Qn(wn) Let gr, = and §, denote g(X;, ), g(X¢, m) and
(X, ), respectively. Then

20 YN WG [Pt Wt Dot Gy — Dott WtGrmn Doty ]
(Z?:l 9721'n)2
207 B [ 9 St Wi, — iy GG St e
> i1 92, ’
) = —on1 2ot Yi8n Ty Yejn + (Tis Yig)” + nQu(m) T, 67 + 9]
Zt:1 972r
gyt it Gxdn [y Yige 3oy Yidr + nQn(m) 1y 9rdr]
(31 92)?

Qn (7rn) =

(B.14)

We have

n

“1p-1,.-1 1 Z .

n 5n H’n,ﬂ'nﬂl,n,ﬂ Yth
t=1
n n

“1p-1,.-1 -1 . “1,-1 -1 .

=n 511 Bn,mnF1n,m E :utgﬂ' +n KnmnB1n,m § 9rn 9w (B15)

t=1 t=1

The first term on the right of |D is 0,(1) uniformly over 7 € Il as n= /28, kL — 0

n,Tn
and

n e g —y /hl(V, m)dU, (B.16)
t=1

uniformly over m € II by Assumption |3 and the same procedure used in the proof of
Lemma 1. The second term in (B.15) converges almost surely to [ h(V,mo)hi(V, )

uniformly over m € II by Lemma A6 and Theorem 3.3 in PP, 7w, — 7y and the continuity
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of h(v,-). Thus,
(nﬂnfﬂnﬂrnﬁl,nﬂr)_l Z ngw —p /h(‘/: WO)hl(V7 7T)a (B17)
t=1
uniformly over 7 € II. Similarly, we find
n_ll{,g’;lﬁ‘,i}lngﬂ-gﬂ- —p /h(V,W)hl(V,W),
t=1
(nﬁnﬂn,ﬂn’ilnﬂr)il Z Yigx —p /h(v’ WO)hQ(Va 77)7
t=1
S YR NG
t=1
n ek ko Y griin / h(V,m)ho(V, ), (B.18)
t=1

uniformly over 7 € II.
A by-product of the proof of Lemma [5]2(a) is that

22 L2 Qn(m) — Q(r) aus., (B.19)

uniformly over 7 € II, where Q(7) = — [ [ hx( (r)dr]Z /[ BZ(r)dr

Equations (C.22)), (B.14)), 1B.17), 1B.18h, B.19 , ™y — 7o and T, —, mo together
imply that

71/2"51_711 n,bﬂ 1Qn(7rn)

9 / hl (Vv, 7T0)dU _ 2 f h(V7 WO)}}I}EE/{JO;O{ h’(‘/a 71-O)dU (B.QO)
and
s T 2
(o) 2071 5,002, Onta) 2 [ (Vi) - LEEEROIIE

uniformly over w € II.
The asymptotic distribution of 7,, follows easily from (B.13]), (B.20) and (B.21).
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(c) First we show that 3,, is consistent. We have

(B n 2kt I 2R LS wg (X, )
*1%;% Sy 2 (Xe, )
n_l"{r_L%r 'rL7rﬂ Zt 1g(Xta ) (Xtaﬂ'n)
1"5n,ﬂ Yot 92 (X, )
Jh(V,m)h(V,m0)
N
"o [R2(Von)

Rn,ﬁﬁn(”)/(ﬁnmnﬂn) =

uniformly over 7 € II, (B.22)

where the convergence holds by the same arguments as those for Lemma 2(a). Thus,
Theorem 1(a) and the continuity of [h(V,m)h(V,m0)/ [h*(V,7) (Lemma 3) imply
that

Fin,ien B () / (i Br) —p 1. (B.23)

By part (b), 71p — w0, = Op(n_l/Qﬁnllif; ) = Op(“n,ﬂn“irlz,nn) = op(1/logn). Then we
have

K/n,frn/ﬁn,ﬂn —p 1. (B24)

Thus 3,,/8, —p 1
Now we derive the asymptotic distribution of Bn We have

1/2 no _ n1/2/<5n7rn Z? 19(Xt77}n) U
e e ) = TS X )
5 1/2"’7‘”7% Zt 1g(Xt7 )(Xt77~rn)
" Zt 19 2(Xt, )
fh Vﬂ'o)dU fh Vﬂ'o hl(V’ﬂ'o)
P [ h2(V, 7o) J h2(V, 7o)

X (7, — mn) (B.25)

X TH (7o),

where the equality holds by a mean-value expansion of g(Xy,7,) around 7, and the con-
vergence holds by part (b), (B.24) and the same arguments as those for Lemma [5|2(a)
Thus, part (b) is proved. =

Proof of Theorem [6l1. The proof is similar to that of Theorem 1 in [Andrews and
Soares| (2010). The proofs of parts (a) and (b) are analogous and therefore only the proof
of part (a) is presented here.
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By the definition of AsySZ; g, there exists a sequence 6, such that

AsySZr g(a) = liminfPy (5, € Cl1pgn(a))
= liminf Py, (n*4|B,, — B, < dr.5(Fn,1 — a)). (B.26)

Let {u,} be a subsequence of {n} such that AsySZrg(a) = lim, .. Py, (u 1/4|B
Bu,| < d41,8(7u,,1—a)). Such a subsequence always exists. Because the Euclidean space is
complete, there exists a subsequence {a, } of {u,} such that (a,ln/ 45(1”»77%) — (e, m) where
¢ € Rt and o € II. Then

AsySZrg(e) = lim Py, (a}/*B,, = Bay| < 1,8(Fay, 1 — ). (B.27)

If ¢ € R, then by Theorem 2(a) and Assumption @1, (1711/4‘5%‘ = Op(1) < b, with
probability approaching one. Thus, {7 g(7a,,1 — &) = supucp._ Suprenar,8(¢, 71 — @)
with probability approaching one. By Theorem 2( a}/ 4(5% —Ba,) —a T1,8(c, m0) — c
The distribution of 77 g(c, mg) — ¢ is continuous and strictly increasing because Z ~ N(0, 1)
and the local time L(1,0) > 0 with probability one. Thus, with probability approaching

one

AsySZip(a) = lim Py, (a;/*|B,, = Ba,| < d1,6(fa,, 1 — @)

lim Pgan (G}L/4’Ban - 5an| S qI,ﬁ(Cu7T7 1- O[))
il (B.28)

Y

If ¢ = 00, by Theorem I2 1/4(6% — B4,) —a T13(m0). Then

AsySZrp(a)
> 1im Py, (013, = Ba,| < 41,5(00, 70, 1 = @) Po,, (a3 *Ba, > ba,) +
Jim Py, (/*1Ba, = Ba,| < spars(c0, 7, 1 = @) P, a3/ Ba, < bi,)
> lim Py, (0/"1Ba, = Ba,| < 41,500, 7n, 1 = @) P, (0B, > bas) +
(1—a) lim Py, (a;/*B,, > ba,) (B.29)

3Theorem 2 is in terms of {n}, but all the proofs go through with {n} replaced with a subsequence

{an} of {n}.
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where the second inequality holds because sup,crqr (oo, 7,1 — ) > gy g(00,m,1 — )
and 17 (7o) has a continuous distribution for the same reason that 77 g(c, 7o) — ¢ does.
By (B.28)) and (B.29)), we can conclude that

AsySZ; g(a) > 1 —a, (B.30)

if
lim Py, (a8, — Ba,| < a15(00,tn, 1 —a)) > 1 —a. (B.31)
Equation holds if ¢r g(00, 7tn, 1 — ) —p qr,8(00, 79,1 — ), which holds because
(i) T7,3(7n) —p T1,(me) by Theorem [il1(a) and Assumption [l]2(a), (ii) T7,5(mo) has a
continuous and strictly increasing c.d.f.
It is left to show that
AsySZg(a) <1 —a. (B.32)

Consider 0 = (8, 7) € (R/{0}) x II. Then by definition,
AsySZy g(a) < liminfPy(B8 € Clj g pn(a)). (B.33)

Because 8 # 0, n'/*b 13 diverges to co or —oo by Assumption @2. Without loss of gen-
erality, suppose n'/4b, '3 — oo. Then by Theorem 2(b), nt/ 4][3”\ > b, with probability

approaching one. Thus,

liminfPy (5 € Cl;gn(a))

= liminfPy (nl/ﬂ@n — Bl < qr (oo, 7y, 1 — oz))
n—oo
=1-a, (B.34)

where the second equality holds by Theorem 2(b), q1,8(00,7p, 1 —ar) —p qr (00, 0, 1 — )
(shown above), and the continuity of the c.d.f. of T7 g(mo).
Combining (B.30), (B.33) and (B.34)), we obtain part (a). m

Proof of Theorem @.2. (a) The proof is essentially the same as that of Theorem @1(a)
and is omitted for brevity.
(b) Similar to the proof of Theorem [6]1(a), we show

AsySZp (o) > 1 — avand AsySZygla) <1 —a. (B.35)
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The proof of AsySZy () < 1— « is essentially the same as that of (B.32]) in the proof of
Theorem [6]1(a) and thus is omitted for brevity. Next we show AsySZp g(a) > 1 — o
As in (B.27), we find a subsequence {a,} of {n} and a sequence {6,} such that

(@n” Km0 B o) = (€,7m0) and
AsySZy g(a) = nh—>I%o Prg, (B4, € Clupn(c)). (B.36)

If ¢ = +00, the same arguments as those for (B.29)) and (B.31)) can be used to show that
AsySZpp(a) > 1 —a. If ¢ € R, then a}/Q/famfranBan = Op(1) < by, with probability
approaching one by Theorem 2(a). Thus,

AsySZyg(a) > lim Prg, ( inf b;}a;ﬂmanﬂrﬁaJ < 1)

n—oo WECIHﬂ-an(a)

> lim Prg, ( inf b nlai/2|f£am7rﬁan| <1&m,, € Clgra, (a)>

n—o0 TE IHwan

> lim Pry, (b7l 1/2|f<an,ﬂ%ﬁan| <1 & 7o, € Clira,(a))

n—oo

= lim Prg (ﬂ'an S CIHnan( ))

n—oo

>1-aq, (B.37)

where the first inequality holds by the definition of C'Iy g, (), the equality holds because
bgnl — 0 and ai/ Qmanman B4, — ¢ € R and the last inequality holds by part (a). Therefore,
AsySZp (o) > 1 — a and part (b) is proved. m

C Proof of the Main Lemmas

Proof of Lemma 1. The proof applies Theorem 10.2 in Pollard (1990). Lemma 4 is
proved once we verify the three conditions of this theorem: (i) (IL, |- |) is totally bounded,
where | - | is the Euclidean norm on R, (ii) for any {m1,...,ms} C II, finite dimensional
convergence holds: (v, (m1),...,vn(7y)) —a (V(71),...,v(7g)), and (iii) {v,(7) : 7 € II} is
stochastically equicontinuous with respect to | - |.

Condition (i) holds because II is a compact subset of R. Condition (ii) holds by Theorem
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3.2 in PP applied to the linear combination

J n J
Zajyn(wj) =p /4 Z Z a;g( Xy, m5) ¢ ug,
j=1 t=1 | j=1

for arbitrary scalars {a; : j = 1,..., J}, yielding

2
J o [ 7
Zajun(ﬂj) —d {O’ZL(l,O)}l/Q x N 0,/ Zajg(s,ﬂj) ds
i=1 —o0 \ j=1
J J
= {UiL(LO)}mZ%Z(Wj) =) au(m),
j=1 j=1
where o/ = (a1,...,ay), and v(mj) = auL(1,0)1/2Z(7rj), where Z (7) is a Gaussian
process with covariance kernel
B(Z (ra) Z (m)) = kz (na,m)Z/ 9 (5,70) g (5,m0) ds.

Now we show condition (iii). Let {71, 72, € II}22, be an arbitrary random sequence.

Then, as in (43)-(45) in PP, we find that the quadratic variation of the stochastic process

Un(T1n) — Vn(Tay) is

[Vn(ﬂ'l,n) - Vn(ﬂ'Q,n)}r

= o2n!/? /0 T (90" 2Va(s), 710 ) = 9012V (5), m20) Tds(1+ 004 (1)), (C1)

Then

[Vn(ﬂ'l,n) - Vn(7r2,n)]7"

< |mim — man|? X agnlﬂ/ T2(n'?V,(s)ds(1 + 04.5.(1))
0

— 0,(1) x (03 /oo T2(s)ds> L(r,0) = o,(1), (C.2)

—00

where the inequality holds by Assumption 2(&) and since T? is integrable over [—o0, ]
(also by Assumption [42(a)). Therefore, Condition (iii) above holds. m
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Proof of Lemma [.2. Observe first that

Da(m,ma) = 0 S (B0 (7) (X m) — B (0) 6°(Xoy 7)) —
t=1

n

2071 Y (B, (1) 9(Xe, m)Ys = By, (1) 9( X m0) Y]
t=1

T O Y m)) el (S Ve

Z?:l gz(Xt77rn) Z?:l 92(Xt777)

(a) By Assumption 2 in this paper and Lemma A6 in PP, g?( Xy, 7) and g( Xy, m)g( Xy, 7):
(m,7') € 12 are I-regular. By Theorem 3.2 in PP we have,

n~1/2 zn:gQ(Xt,ﬂ) —p L(1,0) /00 g*(s,m)ds,
t=1 -
W23 (X m)g(Xenr) —p L(L0) / ~ g(s,m)g(s, 7 )ds, (C.4)
t=1 -
uniformly over (7, 7’) € I12. Also, by Lemma 1,
n~2p-1 zn:g(Xt,w)ut —p 0, uniformly over 7 € IL. (C.5)
t=1

Equations ((C.4]) and ((C.5) combined give us the probability limit of the second term in
(C.3):

nl/2g-2 n~t (T, Yig(Xi,m))?
_ _ 2
(=128, Yo wig (X, m) + 2300 (X, m)g(Xi, )
n=1/2 Z?:l QQ(Xh 71')
2
/%2, 9(s.m)g(s, mo)ds|
P 25 g% (s, m)ds
The probability limit of the first term in (C.3)) is a special case of the second term. There-

fore, part (a) is proved.

(b) In part (b), because n~ /43,1 — ¢~1, the covariance term n =28, 1 3" | g( Xy, m)uy

x L(1,0), uniformly over 7 € II. (C.6)
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does not vanish in the limit. Thus, we need the joint asymptotic distribution of the stochas-
tic processes n /23" | g?(Xy,m), n V230 g( Xy, m)g(Xy, 7)) and vy (7) ¢ (7w, 7') € T2,
Equation (C.4) implies that the sequence of stochastic processes {vf(w, ') : (m,7') € 11?}

converges weakly to v9(m, ') : (m,7') € 112, where

g (m, ') = g
vi(m ') = n*1/2zt:19(Xt’ mg(Xe,mr) )’

ety — [ LL0) [ g (s m)ds )
() ( L(1,0) [%_g(s,m)g(s,7")ds | (1)

It follows from equation 46 and surrounding arguments in PP that joint convergence
g(.. . g(.. .

Vn(v ) g v (7 ) ) (08)
n(") V(")

{eL.(1,0) 2, g3 (s m0)ds + L.(1,0) Z (x o)}2
L(1,0) f_OOgQ(s,Wo)ds

[eL (1,0) %, a(s.7o)g(s m)ds + L (1,0)"2 2 ()}
L(1,0) ffooo 92 (s,m)ds

applies and we have

Then, by the CMT,

nDn(T(', 7Tn) —d

2
* 2 Z (o)
= {cL(1,0)? P(s,mo)ds |+ 0
</—oo ) (f_oooo gQ(s,wo)ds>1/2
2
—{deL(l, 1/2 f (s,m0)g(s, m)ds Z ()
1/2

(fi"; fomis) " ([

and part (b) holds. m

Proof of Lemma 3. Assumptions 2(a) and 3 imply that every sample path of
D(c,m,mp) is continuous in m. Because II is compact, every sample path of D(c,m,mg)
achieves its minimum on II.

We now show that the minimizer of D(c, w, o) is unique with probability one using the

technique in the proof of Lemma 3.2 in (Cheng] (2008]), which is based on Kim and Pollard
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(1990). First, observe that minimizing D(c, -, 7o) is equivalent to maximizing A%(7) where

cLY2(1, O)f g(s,m0)g(s,m)ds N Z ()
1/2 1/2°
/72, 92 (s, m)ds] (72, 925, m)ds)

Because L'/2(1,0) and Z are independent, conditional on L'/2(1,0), A(r) is a Gaussian
process. By the proof of Lemma 3.2 in |Cheng (2008), we only need to show that for all

1 7& T2,

A(r) = (C.9)

Var(A(m1) — A(mg)|LY2(1,0)) > 0 and Var(A(m1) 4+ A(me)|LY2(1,0)) > 0, a.s..  (C.10)
Now
A(m1) = A(ma) = cL'/?(1,0) /_Oo 9(s,m0) [a (s, m1) — q(s,m2)]ds + [W (w1) = W (m2)] ,

where P
g(s,m) o — ()

(5.7) = ,
T et mad (4=, 625, mds)

The first inequality in (C.10]) holds because L(1,0) is independent of Z (7) and so

/2"

Var(A(my) — A(mg)|LY2(1,0)) = Var [W (71) — W (m2)] > 0. (C.11)

where the inequality holds by Assumption [44 and the fact that

ffooo g(S, 771)9(57 7r2)da

Var [W (71) — W (m3)] = 202 1 —
2% 925, m)ds [, g3 (s, ma)ds

>0

1/2

for m1 # ma. The second inequality in ((C.10]) holds because

Var(A(m1) + A(m2)|LY?(1,0))
= Var [W (m1) + W (m2)]

> 9(s,m)g(s, ma)da

75 ¢ >0,

(s 7'['1)de - 9% (s,m2)ds
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again by Assumption [44. m

Proof of Lemma 5l1. Lemmal51 is a direct application of Theorem 3.23 of Kallenberg
(2001, p. 57). The moment condition in that theorem holds because ([ Eb?(V)) < oo by
Assumption [f|2(c) and

E </ (h(V, ) —h(V,w’))dU>2 = /E(h(VﬂT) — h(V,7")”

</ Eb2(V)> (r —7)?, (C.12)

where the equality holds by the fundamental property of the stochastic integral and the

IN

inequality holds by Assumption [5}1(a)-(b) (also see the remark below Assumption[5}1). =

Proof of Lemma [5/2. Because g(z, ) is H-regular on 7 (Assumption [f|1(a)), we have

for each w € 1I,

Vnhy = n71/2ffl(n1/2,7r) Zg(Xt,ﬁ)ut
t=1

= _1/22h ntﬂ)ut+n 1/2 ZR nt,W’nl/Q)ut
— t=1

= n—1/22h(xn,t,7r)ut +0,(1), (C.13)
t=1

where the last equality holds by Lemma A5(b) in PP.
Let the random process (vhy : € IT) := ([ h(V,7)dU : = € II). Then Lemma Al and

[CT3) give
(Unhrys ey Unha,) —p (Whayy oy Vhe, ) (C.14)

For all § > 0, by Assumption 1, there exists 71,72, ..., Ty, k(§) < oo such that

sup Inf |7 —m;| < 4. C.15
SUp sy I~ il (C-15)

37



Then we have,

sup |vphy — vhy|

mell
= max sup [Vnhe — Vnhy + Vihe, — Vg, + Vhe, — Vhy|
J<k(6) mell:|r—m;| <6
< sup [Vnhr — Vphy| + max [vphye, — vhy | + sup |vhye — vh,|
well:|r—n'|<6 J<k(3) ‘ ‘ well:|r—n'|<6
= A, () + Bn(d) + CL(9). (C.16)

Fix an € > 0. By Lemma A2, for all { > 0, there exists a 64 > 0 small enough such
that
limsup Pr(A,(54) >¢/3) < (. (C.17)

n—oo
By Lemma [5}1 and the remark there, vh, is continuous with probability one. Because II
is compact, vh, is uniformly continuous with probability one. Thus, lims_,o Cy,(0) = 0 a.s.

This implies the existence of a ¢ > 0 small enough such that
Pr(Cy(0¢) > ¢/3) < (. (C.18)
Let 0min = min{d4,dc}. By (C.14),

lim sup Pr(B;, (0min) > €/3) = 0. (C.19)

n—oo

Combining (C.17)), (C.19)) and (C.18]), we get,

lim sup Pr(sup |vphy — vhz| > €)

n—oo mell

< limsup [limsup Pr(A4;, (dmin) > €/3) + limsup Pr(B,,(dmin) > /3)+

¢—0 n—oo n—o0

lim sup Pr (C),(dmin) > £/3)
< limsup2¢ = 0. (C.20)
¢—0

Therefore, sup, ey |[Vnhr — vhz| —p 0 and Lemma[f]1 is proved. m
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Proof of Lemma [53. As in the proof of Lemma [5]2, we have

Do(momny — P Yig (X ma))? 07 (D1, Yig(X,m)°
o >te19°(Xe, ) S 2 (Xym)

The denominator of the second term on the right side of (C.21)) converges almost surely
when properly scaled:

(C.21)

n" k72 (n!/2, ) zn:g2(Xt,7r) — /hQ(V, ) a.s., (C.22)

t=1

uniformly over 7, by Theorem 3.3 in PP. We prove part (a) and part (b) below using the

equations above.

(a) We have
Bt e (2 e (02 ) Y Yig(Xy, )
)

= n_l’{_l(nl/27 7[-)"{’_1(”1/2’ 7TTL) Z g(Xta Tr)g(Xta 7Tn)

t=1
8, T (2 ) (02 ) Y (X, )
t=1
— /h(V, m)h(V, 7o) a.s., uniformly over m € II, (C.23)

where the convergence holds by Theorem 3.3 in PP, Lemma 1 and Assumption 1(a).

Part (a) is implied (C.21))-(C.23).
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(b) We have

n V2 (12 zng X

= (Bnn1/2'%(n1/27 Wn))n_l"{_l(nl/Qv 77)’4“_1(”1/27 7rn) g(Xt7 W)Q(Xh ﬂ-n) +
t=1

2 (12, zutg Xim

e / WV, T)h(V, 70) + / h(V, 7)dU, (C.24)
uniformly over = € II, where the convergence holds by Theorem 3.3 in PP, Lemma [f]1 and
Assumption [f|1(a). Part (b) is implied by (C.21), (C.22) and (C.24). =
Proof of Lemma [5l4. Let
th h(V,mo) + fh m)dU

W m]”

First we show that A%(c,7) has a continuous sample path with probability one. This is

Ale,m) = (C.25)

done by showing (i) the denominator and the numerator are continuous with probability
one, and (ii) the denominator is strictly positive with probability one. Condition (i) holds
by Definition 3.5(b), Lemma A8 in PP and Lemma [5]1. Condition (ii) holds because

/h2(v, ) = /oo h%(s,m)L(1, s)ds > 0 a.s. (C.26)
—o0
where the equality holds by the occupation time formula (e.g. PP) and the inequality holds
by Assumption [51(c)

In order to show that A?(c,7) has a unique maximum, it suffices to show that with
probability one, no sample path of A(c, 7) achieves its maximum or minimum at two distinct
points in II, and no sample path has maximum and minimum with the same absolute value.

The procedure used in Lemma 3.2 in Cheng(2008) applies here if we can write A(c, )
in terms of continuous Gaussian processes. We can achieve this goal by splitting U(r)
into V(r) and a standard Brownian Motion, Z(r), independent of V (), following Phillips
(1989):

U(r) = a0,V (r) + a2 Z(r), (C.27)
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where a1 = po, /o, and ag = o,1/1 — p?. Such a Z(r) exists by Assumption 1(a). Using
(C.27) in A(c,m) we get

¢ [ R(V,m)h(V,70) + a1 [ h(V,m)dV + az [ h(V, TI')dZ'

([ 2V, m)]"?

Because Z is a standard Brownian motion independent of V', conditioning on a sample

Ale,m) = (C.28)

path of V| A(e,7) is a continuous Gaussian process indexed by 7 € II, with covariance

kernel:
a3 [ h(V,m)h(V,7’)

(f r2(v,m) 2 ([ n2(v, 7))

Below we show that A%(c,7)|V = v has a unique maximum with probability one for all

H(e,m ') = (C.29)

sample paths v of V. This implies that with probability one, A2(c, 7) has unique maximum,
i.e. Lemma (3.

We proceed to show that A%(c,7)|V = v has a unique maximum. We apply the proce-
dure in the proof of Lemma 3.2 in |Cheng| (2008). By Cheng’s argument, it suffices to show
that for m # 7/,

"Ndz
Var az | (V. )1/2_a2fh W)?/Z V=v] >0and
[[ RV, m)] [[ R2(V,7")]
h(V,m)d h(V,x")dZ
Var az | )1/2 + azJ T )1/2 =v| > 0. (C.30)
[[ h2(V,m)] [[ h2(V, )]
The above inequalities are equivalent to
H(c,m,7)+ H(c,n',7") £ 2H (¢, 7, 7") > 0. (C.31)

or equivalently,
J RV, m)h(V,7')

* (f 2V, =) (f B2V, 7))/ g

which holds by the Cauchy-Schwarz inequality and Assumption [51(d). m

0, (C.32)

D Proof of the Auxiliary Lemmas

Proof of Lemma Al. Lemma Al is the same as the second result in Lemma A2 of PP
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except the convergence here is in probability instead of in distribution. The proof of the
former is thus the same as the latter with only one modification. We only need to change
A

the convergence “—4” in equation (25) in the proof of the latter into “—,”. The change is
valid by Theorem (2.2) in [Kurtz and Protter| (1991). m

Proof of Lemma A2. We proceed to show that {(vnhz)rem}n>1 is stochastically

equicontinuous with respect to the pseudo distance:

n—oo

n 1/2
d"(hy, har) = lim sup [nl > Elha(Xpgin ) = har (X gy, ut)]2] . (D.1)
t=1
The pseudo distance d" is well defined because

n 1/2
d"(hy, hy) = oylimsup [n_l > Eh(Xpg,n'? 1) = h(Xp 2, w')P]

n 1/2
< oy|m — '[lim sup [nl Z EbZ(th)]
t=1

n—oo

= ‘7T — 7T/‘ = de(hﬂ, R (D.2)

where the first equality holds by the definition of h; and Assumption [211(b)-(c), the in-
equality holds by Assumption [5|1(b), and Cj is a finite constant by Assumption [52(b).

Equation also shows that d is a stronger pseudo distance than d” and hence
stochastic equicontinuity with respect to d* implies stochastic equicontinuity with respect
to d.

We use Theorem 2 in Hansen| (1996)) to show that {v,h, : m € II},,>1 is stochastically
equicontinuous with respect to d". To invoke this theorem, we verify the following four
conditions: (i) for all 7 € II, {h,(Xn+,n,uz), Fpnt} is a martingale difference sequence; (ii)
there exists b* : R%*!1 — R such that for all 7,7/ € II, |ha (X ey, ut) — bt (Xog, m, )| <

b* (Xt ue) | — 7']; (iii) limsup,,_oo n 1 Y1y Bh2(Xp e, n,ur) < 00; and

(iv) lim sup n~* ZE[b*(Xt,ut)]Q < 0. (D.3)

42



Condition (i) holds because

E(hﬂ'(Xt? n, ut)|fn,t—1) = E(h<Xn,t, 77/1/27 ﬂ-)ut’fn,t—l)
= W( X, 02, 1) E(ug Frp1) = 0, (D.4)

where the second equality holds by Assumption 1(c) and the third equality holds by
Assumption [21(b)
Condition (ii) holds with b* (X, ¢, u) = b(Xp ¢) |ut| because

(Xt 1y ) — Pt (X, myug)| = yh< ity 2 ) = B( X, 02, 1) |l

We now show that condition (iii) holds for large enough n. First we have

n! ZEhi(Xn,t,n,ut)

t=1

= on! Z Eh*(Xp 4,2, )
= 1ZEh2 it M) 4+ 020 T2 (012 ZER2 nt,n/2 ). (D.6)

In (D.6), the limsup of the first term is finite by Assumption [5}2(a). To prove that the
limsup of the second term is finite, let smax = max,¢jo 1) V(r) and smin = min,¢j 1) V(7).
Let K = [Smin — 1, Smax + 1]

By Definition 3.5 in PP, R(X,, 4, n'/2, ) is of smaller order than x(n'/2, ) in the sense of
Definition 3.4 in PP. There are two cases. In case one, R(X,, +,n'/2, 1) = a(n'/?, 1) A(X, 4, 7)
with a(n'/2,7) = o(rk(n/?, 7)) and sup,cp A(-, 7) € TP, where TPy is the set of exponen-

tially locally bounded functions defined in PP. In this case, we have

n kT2 (n'/2, ZER Xng,m'/7,m) = 0(1)”_1ZEA2(X"’t’7T)
=1

< O(I)EEEEHAQ(%W)H =o(1), (D.7)

where the inequality holds for large enough n by Assumption 1(a) and the second equality
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holds because sup,cp A(-, ) € 705.

In case two, R(X,4,n'/2 1) = b(n'/2 1) A(Xp s, m) B2 X, 4, 7), with b(n'/? 1) =
O(k(n'/?,7)) and sup,er B(-,7) € T3, where 73 is the set of transformations that are
bounded and vanish at infinity. We then have

n- 1/2 ZER nta _1 ZE nta BQ( 1/2X7L t7 )]
<O()[E sup ||A4(l‘ 7T)|H1/2[E51€1234($ ™)'/
— o(1), (D.8)

where the inequality holds for large enough n by Assumption 1(a) and the Cauchy-
Schwartz inequality and the second equality holds because sup,cq A(-,m) € 705 and
sup,cn B(-, m) € T3.

Equations and imply that the lim sup of the second term in is finite.
Thus, condition (iii) holds.

Condition (iv) holds by E[b*(X,+,ut)]* = 0?2 Eb*(X,,+) and Assumption 2(b)

Therefore, Theorem 2 in [Hansen| (1996) applies and Lemma A2 is proved. m
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