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Abstract

In this paper, we propose an instrumental variable approach to constructing con�-

dence sets (CS�s) for the true parameter in models de�ned by conditional moment in-

equalities/equalities. We show that by properly choosing instrument functions, one can

transform conditional moment inequalities/equalities into unconditional ones without

losing identi�cation power. Based on the unconditional moment inequalities/equalities,

we construct CS�s by inverting Cramér-von Mises-type or Kolmogorov-Smirnov-type

tests. Critical values are obtained using generalized moment selection (GMS) proce-

dures.

We show that the proposed CS�s have correct uniform asymptotic coverage probabili-

ties. New methods are required to establish these results because an in�nite-dimensional

nuisance parameter a¤ects the asymptotic distributions. We show that the tests con-

sidered are consistent against all �xed alternatives and have power against n�1=2-local

alternatives to some, but not all, sequences of distributions in the null hypothesis. Monte

Carlo simulations for four di¤erent models show that the methods perform well in �nite

samples.

Keywords: Asymptotic size, asymptotic power, conditional moment inequalities, con�-
dence set, Cramér-von Mises, generalized moment selection, Kolmogorov-Smirnov, mo-

ment inequalities.

JEL Classi�cation Numbers: C12, C15.



1 Introduction

This paper considers inference for parameters whose true values are restricted by con-

ditional moment inequalities and/or equalities. The parameters need not be identi�ed.

Much of the literature on partially-identi�ed parameters concerns unconditional moment

inequalities, see the references given below. However, in many moment inequality mod-

els, the inequalities that arise are conditional moments given a vector of covariates Xi:

In this case, the construction of a �xed number of unconditional moments requires an

arbitrary selection of a �nite number functions of Xi: In addition, the selection of such

functions leads to information loss that can be substantial. Speci�cally, the �identi�ed

set�based on a chosen set of unconditional moments can be noticeably larger than the

identi�ed set based on the conditional moments.1 ;2

This paper provides methods to construct CS�s for the true value of the parameter �

by converting conditional moment inequalities into an in�nite number of unconditional

moment inequalities. This is done using weighting functions g(Xi): We show how to

construct a class G of such functions such that there is no loss in information. We
construct Cramér-von Mises-type (CvM) and Kolmogorov-Smirnov-type (KS) test sta-

tistics using a function S of the weighted sample moments, which depend on g 2 G:
For example, the function S can be of the Sum, quasi-likelihood ratio (QLR), or Max

form. The KS statistic is given by a supremum over g 2 G: The CvM statistic is given

by an integral with respect to a probability measure Q on the space G of g functions.
Computation of the CvM test statistics can be carried out by truncation of an in�nite

sum or simulation of an integral. Asymptotic results are established for both exact and

truncated/simulated versions of the test statistic.

The choice of critical values is important for all moment inequality tests. Here we

consider critical values based on generalized moment selection (GMS), as in Andrews

and Soares (2010).3 The GMS critical values can be implemented using the asymptotic

1The �identi�ed set�is the set of parameter values that are consistent with the population moment
inequalities/equalities, either unconditional or conditional, given the true distribution of the data.

2There is a potential �rst-order loss in information when moving from conditional to unconditional
moments with moment inequalities because of partial identi�cation. In contrast, if point-identi�cation
holds, as with most moment equality models, there is only a second-order loss in information when
moving from conditional to unconditional moments� one increases the variance of an estimator and
decreases the noncentrality parameter of a test.

3For comparative purposes, we also provide results for subsampling critical values and �plug-in
asymptotic�(PA) critical values. However, for reasons of accuracy of size and magnitude of power, we
recommend GMS critical values over both subsampling and PA critical values.
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Gaussian distribution or the bootstrap.

Our results apply to multiple moment inequalities and/or equalities and vector-

valued parameters � with minimal regularity conditions on the conditional moment

functions and the distribution of Xi: For example, no smoothness conditions or even

continuity conditions are made on the conditional moment functions as functions of Xi

and no conditions are imposed on the distribution ofXi (beyond the boundedness of 2+�

moments of the moment functions). In consequence, the range of moment inequality

models for which the methods are applicable is very broad.

The main technical contribution of this paper is to introduce a new method of prov-

ing uniformity results that applies to cases in which an in�nite-dimensional nuisance

parameter appears in the problem. The method is to establish an approximation to the

sample size n distribution of the test statistic by a function of a Gaussian distribution

where the function depends on the true slackness functions for the given sample size

n and the approximation is uniform over all possible true slackness functions.4 Then,

one shows that the data-dependent critical value (the GMS critical value in the present

case) is less than or equal to the 1 � � quantile of the given function of the Gaussian

process with probability that goes to one uniformly over all potential true distributions

(with equality for some true distributions). See Section 5.1 for reasons why uniform

asymptotic results are crucial for conditional moment inequality models.

Compared to Andrews and Soares (2010), the present paper treats an in�nite number

of unconditional moments, rather than a �nite number. In consequence, the form of the

test statistics considered here is somewhat di¤erent and the method of establishing

uniform asymptotic results is quite di¤erent.

The results of the paper are summarized as follows. The paper (i) develops critical

values that take account of the issue of moment inequality slackness that arises in �nite

samples and uniform asymptotics, (ii) proves that the con�dence sizes of the CS�s are

correct asymptotically in a uniform sense, (iii) proves that the proposed CS�s yield no

information loss (i.e., that the coverage probability for any point outside the identi�ed set

converges to zero as n!1); (iv) establishes asymptotic local power results for a certain
class of n�1=2-local alternatives, (v) extends the results to allow for the preliminary

4Uniformity is obtained without any regularity conditions in terms of smoothness, uniform continuity,
or even continuity of the conditional moment functions as functions of Xi: This is important because the
slackness functions are normalized by an increasing function of n which typically would cause violation
of uniform continuity or uniform bounds on the derivatives of smooth functions even if the underlying
conditional moment inequality functions were smooth in Xi:
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estimation of parameters that are identi�ed given knowledge of the parameter of interest

�; as occurs in some game theory examples, and (vi) extends the results to allow for

time series observations.

The paper and Supplement provide Monte Carlo simulation results for a quantile

selection model, a binary entry-game model with multiple equilibria, a mean selection

model, and an interval-outcome linear regression model. In the entry game model, an

important feature of our approach is that nuisance parameters that are identi�ed given

the null value of the parameter of interest are concentrated out, which reduces the

dimensionality of the problem. No other approach in the literature does this.

Across the four models, the simulation results show that the CvM-based CS�s out-

perform the KS-based CS�s in terms of false coverage probabilities (FCP�s). The Sum,

QLR, and Max versions of the test statistics perform equally well in terms of FCP�s in

three of the models, while the Max version performs best in the entry game model. The

GMS critical values outperform the plug-in asymptotic and subsampling critical values

in terms of FCP�s in all cases considered. The asymptotic and bootstrap versions of the

GMS critical values perform similarly in all cases considered.5 Variations on the base

case show a relatively low degree of sensitivity of the coverage probabilities and FCP�s

in most cases.

In sum, in the four models considered, the CvM/Max statistic coupled with the

GMS/Asy critical value perform quite well in an absolute sense and best among the

CS�s considered. Computation of a test based on this statistic/critical value takes :20

seconds in the base case con�guration of the quantile selection model using GAUSS9.0

on a PC with 3:12 Ghz processor. For the entry game model it takes :55 seconds.

In the quantile selection model, we compare the �nite-sample performance of the CI

based on CvM/Max statistic and GMS/Asy critical value with the series and local linear-

based CI�s proposed in Chernozhukov, Lee, and Rosen (2008) (CLR) and the integrated

nonparametric kernel-based CI proposed in Lee, Song, and Whang (2011) (LSW). We

consider three di¤erent parameter bound functions: �at, kinked, and peaked and three

sample sizes n = 100; 250; and 500: The CI proposed in this paper exhibits the best

overall performance in the cases considered. For the quantile selection model, it has

good CP performance in all cases (i.e., � :95 for a nominal 95% CI) and the best FCP

performance in seven of nine cases. The CLR CI�s perform well in terms of CP�s only

5The bootstrap critical values are not computed in the entry game model because they are compu-
tationally expensive in this model.
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for n = 500: Their FCP performance is best in two of nine cases, both being peaked

cases. The LSW CI performs well in terms of CP�s in all cases, but its FCP�s are worse

than those of the CI proposed here in all nine cases considered. Analogous comparisons

are made for the mean selection model and the results are roughly similar.6

We expect the tests considered here to exhibit a curse of dimensionality (with respect

to the dimension, dX ; of the conditioning variable Xi) in terms of their power for local

alternatives for which the test does not have n�1=2-local power. In addition, computation

becomes more burdensome when the number of functions g considered increases. In such

cases, one needs to be less ambitious when specifying the functions g: We provide some

practical recommendations for doing so in Section 9.

In addition to reporting a CS or test, it often is useful to report an estimated set. A

CS accompanied by an estimated set reveals how much of the volume of the CS is due to

randomness and how much is due to a large identi�ed set. It is well-known that typical

set estimators su¤er from an inward-bias problem, e.g., see Haile and Tamer (2003) and

CLR. The reason is that an estimated boundary often behaves like the minimum or

maximum of multiple random variables.

A simple solution to the inward-bias problem is to exploit the method of constructing

median-unbiased estimators from con�dence bounds with con�dence level 1=2; e.g., see

Lehmann (1959, Sec. 3.5). The CS�s in this paper applied with con�dence level 1=2 are

half-median-unbiased estimated sets. That is, the probability of including a point or any

sequence of points in the identi�ed set is greater than or equal to 1=2 with probability

that converges to one. This property follows immediately from the uniform coverage

probability results for the CS�s. The level 1=2 CS, however, is not necessarily median-

unbiased in two directions.7 Nevertheless, this set is guaranteed not to be inward-median

biased. CLR also provide bias-reduction methods for set estimators.

The literature related to this paper includes numerous papers dealing with uncon-

ditional moment inequality models, such as Andrews, Berry, and Jia (2004), Imbens

6The tests proposed here take roughly the same time to compute as the LSW tests (:20 and :23
seconds, respectively, for n = 250; and :21 and :36 seconds for n = 500; with 5000 critical value
repetitions in the quantile selection model using a computer with a 3:12 Ghz processor). They are
substantially faster to compute than the CLR-series and CLR-local linear tests which rely on cross-
validation (16 and 69 seconds, respectively, for n = 250; and 39 seconds and 30:4 minutes for n = 500
with 5000 critical value repetitions in the same model), at least in models that are not separable between
the parameters and the observations.

7That is, the probability of including points outside the identi�ed set is not necessarily less than or
equal to 1=2 with probability that goes to one. This is because lower and upper con�dence bounds on
the boundary of an identi�ed set do not necessarily coincide.
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and Manski (2004), Moon and Schorfheide (2006, 2009), Otsu (2006), Pakes, Porter,

Ho, and Ishii (2006), Woutersen (2006), Bontemps, Magnac, and Maurin (2007), Canay

(2010), Chernozhukov, Hong, and Tamer (2007), Andrews and Jia (2008), Beresteanu

and Molinari (2008), Chiburis (2008), Guggenberger, Hahn, and Kim (2008), Romano

and Shaikh (2008, 2010), Rosen (2008), Andrews and Guggenberger (2009), Andrews

and Han (2009), Stoye (2009), Andrews and Soares (2010), Bugni (2010), and Canay

(2010).

The literature on conditional moment inequalities is smaller and more recent. The

present paper and the following papers have been written over more or less the same

time period: CLR, Fan (2008), Kim (2008), and Menzel (2008). An earlier paper by

Khan and Tamer (2009) considers moment inequalities in a point-identi�ed model. An

earlier paper by Galichon and Henry (2009a) considers a related testing problem with

an in�nite number unconditional moment inequalities of a particular type. The test

statistic considered by Kim (2008) is the closest to that considered here. He considers

subsampling critical values. The test statistics considered by CLR are akin to Härdle and

Mammen (1993)-type model speci�cation statistics, which are based on nonparametric

regression estimators. In contrast, the test statistics considered here are akin to Bierens

(1982)-type statistics used for consistent model speci�cation tests. These approaches

have di¤erent strengths and weaknesses. Menzel (2008) investigates tests based on a

�nite number of moment inequalities in which the number of inequalities increases with

the sample size. None of the papers above that treat conditional moment inequalities

provide contributions (ii)-(vi) listed above.

More recent contributions to the literature on conditional moment inequalities in-

clude Beresteanu, Molchanov, and Molinari (2010), who provide sharp identi�cation

regions for a class of game theory models and corresponding CS�s using their support

function approach combined with the methods introduced in this paper; Aradillas-López,

Gandhi, and Quint (2010), who provide CI�s for parameters in an auction model; LSW,

who construct CS�s based on Lp integrated nonparametric kernel estimators; Pono-

mareva (2010), who uses nonparametric kernel estimators; Armstrong (2011), who pro-

vides rate of convergence results for estimators based on weighted KS-based tests; and

Hsu (2011), who provides tests for conditional treatment e¤ects using the methods in-

troduced in this paper.

For point-identi�ed models, papers that convert conditional moments into an in�nite

number of unconditional moments include Bierens (1982), Bierens and Ploberger (1997),
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Chen and Fan (1999), Dominguez and Lobato (2004), and Khan and Tamer (2009),

among others.

The CS�s constructed in the paper provide model speci�cation tests of the conditional

moment inequality model. One rejects the model if a nominal 1� � CS is empty. The

results of the paper for CS�s imply that this test has asymptotic size less than or equal

to � (with the inequality possibly being strict), e.g., see Andrews and Guggenberger

(2009) for details of the argument.

A companion paper, Andrews and Shi (2010a), generalizes the CS�s and extends

the asymptotic results to allow for an in�nite number of conditional or unconditional

moment inequalities, which makes the results applicable to tests of stochastic domi-

nance, conditional stochastic dominance, and conditional treatment e¤ects, see Lee and

Whang (2009). Andrews and Shi (2010b) extends the results to allow for nonparametric

parameters of interest, such as the value of a function at a point.

The remainder of the paper is organized as follows. Section 2 introduces the mo-

ment inequality/equality model. Section 3 speci�es the class of test statistics that is

considered. Section 4 de�nes GMS CS�s. Section 5 establishes the uniform asymptotic

coverage properties of GMS and PA CS�s. Section 6 establishes the consistency of GMS

and PA tests against all �xed alternatives. Section 7 shows that GMS and PA tests

have power against some n�1=2-local alternatives. Section 8 considers models in which

preliminary consistent estimators of identi�ed parameters are plugged into the moment

inequalities/equalities. It also considers time series observations. Section 9 gives a step-

by-step description of how to calculate the tests. Section 10 provides the Monte Carlo

simulation results.

Supplemental Appendix A provides proofs of the uniform asymptotic coverage prob-

ability results for GMS and PA CS�s. Supplemental Appendix B provides (i) results for

KS tests and CS�s, (ii) the extension of the results of the paper to truncated/simulated

CvM tests and CS�s, (iii) an illustration of the veri�cation of the assumptions used for

the local alternative results, (iv) an illustration of uniformity problems that arise with

the Kolmogorov-Smirnov test unless the critical value is chosen carefully, (v) an illustra-

tion of problems with pointwise asymptotics, and (vi) asymptotic coverage probability

results for subsampling CS�s under drifting sequences of distributions. Supplemental

Appendix C gives proofs of the results stated in the paper, but not given in Supple-

mental Appendix A. Supplemental Appendix D provides proofs of the results stated in

Supplemental Appendix B. Supplemental Appendix E provides a proof of some empirical
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process results that are used in Supplemental Appendices A, C, and D. Supplemental

Appendix F provides the simulation results for the mean selection and interval-outcome

regression models and some additional material concerning the Monte Carlo simulation

results of Section 10.

2 Conditional Moment Inequalities/Equalities

2.1 Model

The conditional moment inequality/equality model is de�ned as follows. We suppose

there exists a true parameter �0 2 � � Rd� that satis�es the moment conditions:

EF0(mj (Wi; �0) jXi) � 0 a.s. [FX;0] for j = 1; :::; p and

EF0(mj (Wi; �0) jXi) = 0 a.s. [FX;0] for j = p+ 1; :::; p+ v; (2.1)

where mj(�; �); j = 1; :::; p + v are (known) real-valued moment functions, fWi =

(Y 0
i ; X

0
i)
0 : i � ng are observed i.i.d. random vectors with distribution F0; FX;0 is

the marginal distribution of Xi; Xi 2 Rdx ; Yi 2 Rdy ; and Wi 2 Rdw (= Rdy+dx):

We are interested in constructing CS�s for the true parameter �0: However, we do not

assume that �0 is point identi�ed. Knowledge of EF0(mj (Wi; �) jXi) for all � 2 � does
not necessarily identify �0: Even knowledge of F0 does not necessarily point identify �0:8

The model, however, restricts the true parameter value to a set called the identi�ed set

(which could be a singleton). The identi�ed set is

�F0 = f� 2 � : (2.1) holds with � in place of �0g: (2.2)

Let (�; F ) denote generic values of the parameter and distribution. Let F denote the
8It makes sense to speak of a �true� parameter �0 in the present context because (i) there may

exist restrictions not included in the moment inequalities/equalities in (2.1) that point identify �0; but
for some reason are not available or are not utilized, and/or (ii) there may exist additional variables
not included in Wi which, if observed, would lead to point identi�cation of �0: Given such restrictions
and/or variables, the true parameter �0 is uniquely de�ned even if it is not point identi�ed by (2.1).
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parameter space for (�0; F0): By de�nition, F is a collection of (�; F ) such that

(i) � 2 �;
(ii) fWi : i � 1g are i.i.d. under F;
(iii) EF (mj (Wi; �) jXi) � 0 a.s. [FX ] for j = 1; :::; p;
(iv) EF (mj (Wi; �) jXi) = 0 a.s. [FX ] for j = p+ 1; :::; p+ v;

(v) 0 < V arF (mj(Wi; �)) <1 for j = 1; :::; p+ v; and

(vi) EF jmj(Wi; �)=�F;j(�)j2+� � B for j = 1; :::; p+ v; (2.3)

for some B < 1 and � > 0; where FX is the marginal distribution of Xi under F and

�2F;j(�) = V arF (mj(Wi; �)):
9 Let k = p+v: The k-vector of moment functions is denoted

m (Wi; �) = (m1(Wi; �); :::;mk(Wi; �))
0: (2.4)

2.2 Con�dence Sets

We are interested in CS�s that cover the true value �0 with probability greater than

or equal to 1�� for � 2 (0; 1): As is standard, we construct such CS�s by inverting tests
of the null hypothesis that � is the true value for each � 2 �: Let Tn(�) be a test statistic
and cn;1��(�) be a corresponding critical value for a test with nominal signi�cance level

�: Then, a nominal level 1� � CS for the true value �0 is

CSn = f� 2 � : Tn(�) � cn;1��(�)g: (2.5)

3 Test Statistics

3.1 General Form of the Test Statistic

Here we de�ne the test statistic Tn(�) that is used to construct a CS. We transform

the conditional moment inequalities/equalities into equivalent unconditional moment

inequalities/equalities by choosing appropriate weighting functions, i.e., instruments.

Then, we construct a test statistic based on the unconditional moment conditions.

9Additional restrictions can be placed on F and the results of the paper still hold. For example, one
could specify that the support of Xi is the same for all F for which (�; F ) 2 F :
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The unconditional moment conditions are of the form:

EF0mj (Wi; �0) gj (Xi) � 0 for j = 1; :::; p and

EF0mj (Wi; �0) gj (Xi) = 0 for j = p+ 1; :::; k; for all g = (g1; :::; gk)0 2 G; (3.1)

where g = (g1; :::; gk)0 are instruments that depend on the conditioning variables Xi and

G is a collection of instruments. Typically G contains an in�nite number of elements.
The identi�ed set �F0(G) of the model de�ned by (3.1) is

�F0(G) = f� 2 � : (3.1) holds with � in place of �0g: (3.2)

The collection G is chosen so that �F0(G) = �F0 ; de�ned in (2.2). Section 3.3 provides
conditions for this equality and gives examples of instrument sets G that satisfy the
conditions.

We construct test statistics based on (3.1). The sample moment functions are

mn(�; g) = n�1
nX
i=1

m(Wi; �; g) for g 2 G; where

m(Wi; �; g) =

0BBBB@
m1(Wi; �)g1(Xi)

m2(Wi; �)g2(Xi)
...

mk(Wi; �)gk(Xi)

1CCCCA for g 2 G: (3.3)

The sample variance-covariance matrix of n1=2mn(�; g) is

b�n(�; g) = n�1
nX
i=1

(m(Wi; �; g)�mn(�; g)) (m(Wi; �; g)�mn(�; g))
0 : (3.4)

The matrix b�n(�; g) may be singular or near singular with non-negligible probability for
some g 2 G. This is undesirable because the inverse of b�n(�; g) needs to be consistent
for its population counterpart uniformly over g 2 G for the test statistics considered
below. In consequence, we employ a modi�cation of b�n(�; g); denoted �n(�; g); such
that det(�n(�; g)) is bounded away from zero. Di¤erent choices of �n(�; g) are possible.

Here we use

�n(�; g) = b�n(�; g) + " �Diag(b�n(�; 1k)) for g 2 G (3.5)

9



for some �xed " > 0: See Section 9, for suitable choices of " and other tuning parameters

given below. By design, �n(�; g) is a linear combination of two scale equivariant functions

and thus is scale equivariant. (That is, multiplying the moment functions m(Wi; �) by

a diagonal matrix, D; changes �n(�; g) into D�n(�; g)D:) This yields a test statistic

that is invariant to rescaling of the moment functions m(Wi; �); which is an important

property.

The test statistic Tn(�) is either a Cramér-von Mises-type (CvM) or Kolmogorov-

Smirnov-type (KS) statistic. The CvM statistic is

Tn(�) =

Z
S(n1=2mn(�; g);�n(�; g))dQ(g); (3.6)

where S is a non-negative function, Q is a weight function (i.e., probability measure) on

G, and the integral is over G: The functions S and Q are discussed in Sections 3.2 and

3.4 below, respectively.

The Kolmogorov-Smirnov-type (KS) statistic is

Tn(�) = sup
g2G

S(n1=2mn(�; g);�n(�; g)): (3.7)

For brevity, in the text of the paper, the discussion focusses on CvM statistics and all

results stated concern CvM statistics. Supplemental Appendix B gives detailed results

for KS statistics.

3.2 Function S

To permit comparisons, we establish results in this paper for a broad family of func-

tions S that satisfy certain conditions stated below. We now introduce three functions

that satisfy these conditions. The �rst is the modi�ed method of moments (MMM) or

Sum function:

S1 (m;�) =

pX
j=1

[mj=�j]
2
� +

p+vX
j=p+1

[mj=�j]
2 ; (3.8)

wheremj is the jth element of the vectorm; �2j is the jth diagonal element of the matrix

�; and [x]� = �x if x < 0 and [x]� = 0 if x � 0:

10



The second function S is the quasi-likelihood ratio (QLR) function:

S2 (m;�) = inf
t=(t01;0

0
v)
0:t12[0;1]p

(m� t)0��1 (m� t) : (3.9)

The third function S is a �maximum�(Max) function. Used in conjunction with the

KS form of the test statistic, this S function yields a pure KS-type test statistic:

S3(m;�) = maxf[m1=�1]
2
�; :::; [mp=�p]

2
�; (mp+1=�p+1)

2; :::; (mp+v=�p+v)
2g: (3.10)

The function S2 is more costly to compute than S1 and S3:

Let mI = (m1; :::;mp)
0 and mII = (mp+1; :::;mk)

0: Let � be the set of k� k positive-
de�nite diagonal matrices. Let W be the set of k � k positive-de�nite matrices. Let

S = f(m;�) : m 2 (�1;1]p �Rv; � 2 Wg:
We consider functions S that satisfy the following conditions.

Assumption S1. 8 (m;�) 2 S;
(a) S (Dm;D�D) = S (m;�) 8D 2 �;
(b) S (mI ;mII ;�) is non-increasing in each element of mI ;

(c) S (m;�) � 0;
(d) S is continuous, and

(e) S (m;� + �1) � S (m;�) for all k � k positive semi-de�nite matrices �1:

It is worth pointing out that Assumption S1(d) requires S to be continuous in m at

all points m in the extended vector space Rp[+1] �Rv; not only for points in Rp+v:

Assumption S2. S(m;�) is uniformly continuous in the sense that, for allm0 2 Rk and
all �0 2 W ; sup�2[0;1)p�f0gv jS(m+ �;�)� S(m0 + �;�0)j ! 0 as (m;�)! (m0;�0):

10

The following two assumptions are used only to establish the power properties of

tests.

Assumption S3. S(m;�) > 0 if and only if mj < 0 for some j = 1; :::; p or mj 6= 0 for
some j = p+ 1; :::; k; where m = (m1; :::;mk)

0 and � 2 W :

Assumption S4. For some � > 0; S(am;�) = a�S(m;�) for all scalars a > 0; m 2 Rk;
and � 2 W :

10It is important that the supremum is only over � vectors with non-negative elements �j for j � p:
Without this restriction on the � vectors, Assumption S2 would not hold for typical S functions of
interest.
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Assumptions S1-S4 allow for natural choices like S1; S2; and S3:

Lemma 1. The functions S1; S2; and S3 satisfy Assumptions S1-S4.

3.3 Instruments

When considering consistent speci�cation tests based on conditional moment equal-

ities, see Bierens (1982) and Bierens and Ploberger (1997), a wide variety of di¤erent

types of functions g can be employed without loss of information, see Stinchcombe and

White (1998). With conditional moment inequalities, however, it is much more di¢ cult

to distill the information in the moments because of the one-sided feature of the inequal-

ities. Here we show how this can be done and provide proofs that it can be without

loss of information. Kim (2008) and Khan and Tamer (2009) also provide methods for

converting conditional moment inequalities into unconditional ones. However, they do

not provide proofs that this can be done without loss of information.11

The collection of instruments G needs to satisfy the following condition in order for
the unconditional moments fEFm(Wi; �; g) : g 2 Gg to incorporate the same information
as the conditional moments fEF (m(Wi; �)jXi = x) : x 2 Rdxg:
For any � 2 � and any distribution F with EF jjm(Wi; �)jj <1; let

XF (�) = fx 2 Rdx : EF (mj (Wi; �) jXi = x) < 0 for some j � p or

EF (mj (Wi; �) jXi = x) 6= 0 for some j = p+ 1; :::; kg: (3.11)

Assumption CI. For any � 2 � and distribution F for which EF jjm(Wi; �)jj <1 and

PF (Xi 2 XF (�)) > 0; there exists some g 2 G such that

EFmj(Wi; �)gj(Xi) < 0 for some j � p or

EFmj(Wi; �)gj(Xi) 6= 0 for some j = p+ 1; :::; k:

Note that CI abbreviates �conditionally identi�ed.�The following simple Lemma indi-

11Kim (2009) references a result of Billingsley (1995, Thm. 11.3). Khan and Tamer (2009) reference
Fatou�s Lemma and the dominated convergence theorem in Shiryaev (1984, p. 185). Neither of these
results is su¢ cient to establish that there is no loss in information. For example, Billingsley�s result
yields existence, but not uniqueness, of a certain measure. See Lemma C1 and the proofs of Lemmas 3
and C1 in Supplemental Appendix C for the issues that arise.

12



cates the importance of Assumption CI.

Lemma 2. Assumption CI implies that �F (G) = �F for all F with sup�2�EF jjm(Wi; �)jj
<1:

Collections G that satisfy Assumption CI contain non-negative functions whose sup-
ports are cubes, boxes, or bounded sets with other shapes whose supports are arbitrarily

small, see below.12

Next, we state a �manageability� condition that regulates the complexity of G: It
ensures that fn1=2(mn(�; g) � EFnmn(�; g)) : g 2 Gg satis�es a functional central limit
theorem under drifting sequences of distributions fFn : n � 1g: The latter is utilized in
the proof of the uniform coverage probability results for the CS�s. The manageability

condition is from Pollard (1990) and is de�ned and explained in Supplemental Appendix

E.

Assumption M. (a) 0 � gj(x) � G(x) 8x 2 Rdx ;8j � k;8g 2 G, for some envelope
function G(x);

(b) EFG�1(Xi) � C for all F such that (�; F ) 2 F for some � 2 �; for some C <1;

and for some �1 > 4=� + 2; where Wi = (Y
0
i ; X

0
i)
0 � F and � is as in the de�nition of F

in (2.3), and

(c) the processes fgj(Xn;i) : g 2 G; i � n; n � 1g are manageable with respect to the
envelope function G(Xn;i) for j = 1; :::; k; where fXn;i : i � n; n � 1g is a row-wise i.i.d.
triangular array with Xn;i � FX;n and FX;n is the distribution of Xn;i under Fn for some

(�n; Fn) 2 F for n � 1:13

Now we give two examples of collections of functions G that satisfy Assumptions CI
and M. Supplemental Appendix B gives three additional examples, one of which is based

on B-splines.

Example 1. (Countable Hypercubes). Suppose Xi is transformed via a one-to-one

mapping so that each of its elements lies in [0; 1]: There is no loss in information in doing

so. Section 9 and Supplemental Appendix B provide examples of how this can be done.

12Below we construct tests that use the unconditional moments based on G and that incorporate all
of the information in the conditional moments. To do so, we need to make sure that the tests do not
ignore some of the functions in G. Assumption Q, introduced below, plays this role.
13The asymptotic results given below hold with Assumption M replaced by any alternative assumption

that is su¢ cient to obtain the requisite empirical process results, see Assumption EP in Section 8.
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Consider the class of indicator functions of cubes with side lengths (2r)�1 for all

large positive integers r that partition [0; 1]dx for each r: This class is countable:

Gc-cube = fg(x) : g(x) = 1(x 2 C) � 1k for C 2 Cc-cubeg; where
Cc-cube =

�
Ca;r = �dxu=1((au � 1)=(2r); au=(2r)] 2 [0; 1]dx : a = (a1; :::; adx)0

au 2 f1; 2; :::; 2rg for u = 1; :::; dx and r = r0; r0 + 1; :::
o

(3.12)

for some positive integer r0:14 The terminology �c-cube�abbreviates countable cubes.

Note that Ca;r is a hypercube in [0; 1]dx with smallest vertex indexed by a and side

lengths equal to (2r)�1:

The class of countable cubes Gc-cube leads to a test statistic Tn(�) for which the
integral over G reduces to a sum.

Example 2 (Boxes). Let

Gbox = fg : g(x) = 1(x 2 C) � 1k for C 2 Cboxg; where (3.13)

Cbox =
�
Cx;r = �dxu=1(xu � ru; xu + ru] 2 Rdx : xu 2 R; ru 2 (0; �r) 8u � dx

	
;

x = (x1; :::; xdx)
0; r = (r1; :::; rdx)

0; �r 2 (0;1]; and 1k is a k-vector of ones. The set Cbox
contains boxes (i.e., hyper-rectangles or orthotopes) in Rdx with centers at x 2 Rdx and
side lengths less than 2�r:

When the support ofXi; denoted Supp(Xi); is a known subset of Rdx ; one can replace

xu 2 R 8u � dx in (3.13) by x 2 conv(Supp(Xi)); where conv(A) denotes the convex

hull of A: Sometimes, it is convenient to transform the elements of Xi into [0; 1] via

strictly increasing transformations as in Example 1 above. If the Xi�s are transformed

in this way, then R in (3.13) is replaced by [0; 1]:

Both of the sets G discussed above can be used with continuous and/or discrete
regressors.

The following result establishes Assumptions CI and M for Gc-cube and Gbox:

Lemma 3. For any moment function m(Wi; �); Assumptions CI and M hold with

G = Gc-cube and with G = Gbox:

The proof of Lemma 3 is given in Supplemental Appendix C.

14When au = 1; the left endpoint of the interval (0; 1=(2r)] is included in the interval.
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Moment Equalities. The sets G introduced above use the same functions for the
moment inequalities and equalities, i.e., g is of the form g� � 1k; where g� is a real-
valued function. It is possible to use di¤erent functions for the moment equalities than

for the inequalities. One can take g = (g(1)0; g(2)0)0 2 G(1) � G(2); where g(1) is an Rp-
valued function in some set G(1) and g(2) is an Rv-valued function in some set G(2): Any
�generically comprehensively revealing� class of functions G(2); see Stinchcombe and
White (1998), leads to a set G that satis�es Assumption CI provided one uses a suitable
class of functions G(1) (such as any of those de�ned above with 1k replaced by 1p): For
brevity, we do not provide further details.

3.4 Weight Function Q

The weight function Q can be any probability measure on G whose support is G: This
support condition is needed to ensure that no functions g 2 G; which might have set-
identifying power, are �ignored�by the test statistic Tn(�):Without such a condition, a

CS based on Tn(�) would not necessarily shrink to the identi�ed set as n!1: Section 6

below introduces the support condition formally and shows that the probability measures

Q considered here satisfy it.

We now specify two examples of weight functions Q: Three others are speci�ed in

Supplemental Appendix B.

Weight Function Q for Gc-cube: There is a one-to-one mapping �c-cube : Gc-cube !
AR = f(a; r) : a 2 f1; :::; 2rgdx and r = r0; r0+1; :::g: Let QAR be a probability measure
on AR: One can take Q = ��1c-cubeQAR: A natural choice of measure QAR is uniform

on a 2 f1; :::; 2rgdx conditional on r combined with a distribution for r that has some
probability mass function fw(r) : r = r0; r0 + 1; :::g: This yields the test statistic to be

Tn(�) =

1X
r=r0

w(r)
X

a2f1;:::;2rgdx
(2r)�dxS(n1=2mn(�; ga;r);�n(�; ga;r)); (3.14)

where ga;r(x) = 1(x 2 Ca;r) � 1k for Ca;r 2 Cc-cube:

Weight Function Q for Gbox: There is a one-to-one mapping �box : Gbox ! XR =

f(x; r) 2 Rdx � (0; �r)dxg: Let QXR be a probability measure on XR: Then, ��1boxQXR is
a probability measure on Gbox: One can take Q = ��1boxQXR: Any probability measure on
Rdx � (0; �r)dx whose support contains Gbox is a valid candidate for QXR: If Supp(Xi) is
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known, Rdx can be replaced by the convex hull of Supp(Xi): One choice is to transform

each regressor to lie in [0; 1] and to take QXR to be the uniform distribution on [0; 1]dx�
(0; �r)dx ; i.e., Unif([0; 1]dx � (0; �r)dx): In this case, the test statistic becomes

Tn(�) =

Z
[0;1]dx

Z
(0;�r)dx

S(n1=2mn(�; gx;r);�n(�; gx;r))�r
�dxdrdx; (3.15)

where gx;r(y) = 1(y 2 Cx;r) � 1k and Cx;r denotes the box centered at x 2 [0; 1]dx with
side lengths 2r 2 (0; 2�r)dx :

3.5 Computation of Sums, Integrals, and Suprema

The test statistics Tn(�) given in (3.14) and (3.15) involve an in�nite sum and an in-

tegral with respect to Q: Analogous in�nite sums and integrals appear in the de�nitions

of the critical values given below. These in�nite sums and integrals can be approxi-

mated by truncation, simulation, or quasi-Monte Carlo methods. If G is countable, let
fg1; :::; gsng denote the �rst sn functions g that appear in the in�nite sum that de�nes

Tn(�): Alternatively, let fg1; :::; gsng be sn i.i.d. functions drawn from G according to
the distribution Q: Or, let fg1; :::; gsng be the �rst sn terms in a quasi-Monte Carlo
approximation of the integral wrt Q: Then, an approximate test statistic obtained by

truncation, simulation, or quasi-Monte Carlo methods is

T n;sn(�) =
snX
`=1

wQ;n(`)S(n
1=2mn(�; g`);�n(�; g`)); (3.16)

where wQ;n(`) = Q(fg`g) when an in�nite sum is truncated, wQ;n(`) = s�1n when

fg1; :::; gsng are i.i.d. draws from G according to Q; and wQ;n(`) is a suitable weight
when a quasi-Monte Carlo method is used. For example, in (3.14), the outer sum can be

truncated at r1;n; in which case, sn =
Pr1;n

r=r0
(2r)dX and wQ;n(`) = w(r)(2r)�dx for ` such

that g` corresponds to ga;r for some a: In (3.15), the integral over (x; r) can be replaced

by an average over ` = 1; :::; sn; the uniform density �r�dx deleted, and gx;r replaced by

gx`;r` ; where f(x`; r`) : ` = 1; :::; sng are i.i.d. with a Unif([0; 1]dx�(0; �r)dx) distribution.
In Supplemental Appendix B, we show that truncation at sn; simulation based on sn

simulation repetitions, or quasi-Monte Carlo approximation based on sn terms, where

sn ! 1 as n ! 1; is su¢ cient to maintain the asymptotic validity of the tests and

CS�s as well as the asymptotic power results under �xed alternatives and most of the
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results under n�1=2-local alternatives.

The KS form of the test statistic requires the computation of a supremum over g 2 G:
For computational ease, this can be replaced by a supremum over g 2 Gn; where Gn " G
as n!1; in the test statistic and in the de�nition of the critical value (de�ned below).

The asymptotic results for KS tests given in Supplemental Appendix B show that the

use of Gn in place of G does not a¤ect the asymptotic properties of the test.

4 GMS Con�dence Sets

4.1 GMS Critical Values

In this section, we de�ne GMS critical values and CS�s.

It is shown in Section 5 below that when � is in the identi�ed set the �uniform

asymptotic distribution� of Tn(�) is the distribution of T (hn); where hn = (h1;n; h2);

h1;n(�) is a function from G to [0;1]p � f0gv that depends on the slackness of the
moment inequalities and on n; and h2(�; �) is a k� k-matrix-valued covariance kernel on
G � G: For h = (h1; h2); de�ne

T (h) =

Z
S(�h2(g) + h1(g); h2(g; g) + "Ik)dQ(g); (4.1)

where

f�h2(g) : g 2 Gg (4.2)

is a mean zero Rk-valued Gaussian process with covariance kernel h2(�; �) on G � G; h1(�)
is a function from G to [0;1]p�f0gv; and " is as in the de�nition of �n(�; g) in (3.5).15

The de�nition of T (h) in (4.1) applies to CvM test statistics. For the KS test statistic,

one replaces
R
::: dQ(g) by supg2G ::: .

We are interested in tests of nominal level � and CS�s of nominal level 1� �: Let

c0(h; 1� �) (4.3)

denote the 1� � quantile of T (h): For notational simplicity, we often write c0(h; 1� �)

as c0(h1; h2; 1 � �) when h = (h1; h2): If hn = (h1;n; h2) was known, we would use

15The sample paths of �h2(�) are concentrated on the set Uk� (G) of bounded uniformly �-continuous
Rk-valued functions on G; where � is de�ned in Supplemental Appendix A.
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c0(hn; 1��) as the critical value for the test statistic Tn(�): However, hn is unknown and
h1;n cannot be consistently estimated. In consequence, we replace h2 in c0(h1;n; h2; 1��)
by a uniformly consistent estimator bh2;n(�) (= bh2;n(�; �; �)) of the covariance kernel h2
and we replace h1;n by a data-dependent GMS function 'n(�) (= 'n(�; �)) on G that is
constructed to be less than or equal to h1;n(g) for all g 2 G with probability that goes
to one as n!1: Because S(m;�) is non-increasing in mI by Assumption S1(b), where

m = (m0
I ;m

0
II)

0; the latter property yields a test whose asymptotic level is less than or

equal to the nominal level �: (It is arbitrarily close to � for certain (�; F ) 2 F :) The
quantities bh2;n(�) and 'n(�) are de�ned below.
The nominal 1� � GMS critical value is de�ned to be

c('n(�);
bh2;n(�); 1� �) = c0('n(�);

bh2;n(�); 1� �+ �) + �; (4.4)

where � > 0 is an arbitrarily small positive constant, e.g., .001. A nominal 1� � GMS

CS is given by (2.5) with the critical value cn;1��(�) equal to c('n(�);bh2;n(�); 1� �):

The constant � is an in�nitesimal uniformity factor that is employed to circumvent

problems that arise due to the presence of the in�nite-dimensional nuisance parameter

h1;n that a¤ects the distribution of the test statistic in both small and large samples. The

constant � obviates the need for complicated and di¢ cult-to-verify uniform continuity

and strictly-increasing conditions on the large sample distribution functions of the test

statistic.

The sample covariance kernel bh2;n(�) (= bh2;n(�; �; �)) is de�ned by:
bh2;n(�; g; g�) = bD�1=2

n (�)b�n(�; g; g�) bD�1=2
n (�); where

b�n(�; g; g�) = n�1
nX
i=1

(m(Wi; �; g)�mn(�; g)) (m(Wi; �; g
�)�mn(�; g

�))0 and

bDn(�) = Diag(b�n(�; 1k; 1k)): (4.5)

Note that b�n(�; g); de�ned in (3.4), equals b�n(�; g; g) and bDn(�) is the sample variance-

covariance matrix of n�1=2
Pn

i=1m(Wi; �):

The quantity 'n(�) is de�ned in Section 4.4 below.
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4.2 GMS Critical Values for Approximate Test Statistics

When the test statistic is approximated via a truncated sum, simulated integral, or

quasi-Monte Carlo quantity, as discussed in Section 3.5, the statistic T (h) in Section 4.1

is replaced by

T sn(h) =
snX
`=1

wQ;n(`)S(�h2(g`) + h1(g`); h2(g`; g`) + "Ik); (4.6)

where fg` : ` = 1; :::; sng are the same functions fg1; :::; gsng that appear in the approxi-
mate statistic T n;sn(�):We call the critical value obtained using T sn(h) an approximate

GMS (A-GMS) critical value.

Let c0;sn(h; 1 � �) denote the 1 � � quantile of T sn(h) for �xed fg1; :::; gsng: The
A-GMS critical value is de�ned to be

csn('n(�);
bh2;n(�); 1� �) = c0;sn('n(�);

bh2;n(�); 1� �+ �) + �: (4.7)

This critical value is a quantile that can be computed by simulation as follows. Let

fT sn;� (h) : � = 1; :::; � repsg be � reps i.i.d. random variables each with the same distri-

bution as T sn(h) and each with the same functions fg1; :::; gsng; where h = (h1; h2) is

evaluated at ('n(�);bh2;n(�)): Then, the A-GMS critical value, csn('n(�);bh2;n(�); 1� �);
is the 1��+� sample quantile of fT sn;� ('n(�);bh2;n(�)) : � = 1; :::; � repsg plus � for very
small � > 0 and large � reps:

When constructing a CS, one carries out multiple tests with a di¤erent � value

speci�ed in the null hypothesis for each test. When doing so, we recommend using the

same fg1; :::; gsng functions for each � value considered (although this is not necessary
for the asymptotic results to hold).

4.3 Bootstrap GMS Critical Values

Bootstrap versions of the GMS critical value in (4.4) and the A-GMS critical value

in (4.7) can be employed. The bootstrap GMS critical value is

c�('n(�);
bh�2;n(�); 1� �) = c�0('n(�);

bh�2;n(�); 1� �+ �) + �; (4.8)
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where c�0(h; 1 � �) is the 1 � � quantile of T �(h) and T �(h) is de�ned as in (4.1) but

with f�h2(g) : g 2 Gg and h2 replaced by the bootstrap empirical process f��n(g) :
g 2 Gg and the bootstrap covariance kernel bh�2;n(�); respectively. By de�nition, (i)
��n(g) =

bDn(�)
�1=2n�1=2

Pn
i=1(m(W

�
i ; �; g) � mn(�; g)); where fW �

i : i � ng is an
i.i.d. bootstrap sample drawn from the empirical distribution of fWi : i � ng; (ii)b��n(�; g; g�) are de�ned as in (4.5) with W �

i in place of Wi; and (iii) bh�2;n(�; g; g�) =bDn(�)
�1=2b��n(�; g; g�) bDn(�)

�1=2: Note that bh�2;n(�; g; g�) only enters c�('n(�);bh�2;n(�); 1�
�) via functions (g; g�) such that g = g�:

When the test statistic, T n;sn(�); is a truncated sum, simulated integral, or quasi-

Monte Carlo quantity, a bootstrap A-GMS critical value can be employed. It is de�ned

analogously to the bootstrap GMS critical value but with T �(h) replaced by T �sn(h);

where T �sn(h) has the same de�nition as T
�(h) except that a truncated sum, simulated

integral, or quasi-Monte Carlo quantity, appears in place of the integral with respect to

Q; as in Section 4.2. The same functions fg1; :::; gsng are used in all bootstrap critical
value calculations as in the test statistic T n;sn(�):

4.4 De�nition of 'n(�)

Next, we de�ne 'n(�): As discussed above, 'n(�) is constructed such that 'n(�; g) �
h1;n(g) 8g 2 G with probability that goes to one as n ! 1 uniformly over (�; F ) 2 F :
Let

�n(�; g) = ��1n n1=2D
�1=2
n (�; g)mn(�; g); where Dn(�; g) = Diag(�n(�; g)); (4.9)

�n(�; g) is de�ned in (3.5), and f�n : n � 1g is a sequence of constants that diverges to
in�nity as n!1: The jth element of �n(�; g); denoted �n;j(�; g); measures the slackness

of the moment inequality EFmj(Wi; �; g) � 0 for j = 1; :::; p:
De�ne 'n(�; g) = ('n;1(�; g); :::; 'n;p(�; g); 0; :::; 0)

0 2 Rk by

'n;j(�; g) = Bn1(�n;j(�; g) > 1) for j � p: (4.10)

Assumption GMS1. (a) 'n(�; g) satis�es (4.10) and fBn : n � 1g is a non-decreasing
sequence of positive constants, and

(b) �n !1 and Bn=�n ! 0 as n!1:

The constants fBn : n � 1g in Assumption GMS1 need not diverge to in�nity for
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the GMS CS to have asymptotic size greater than or equal to 1 � �: However, for the

GMS CS not to be asymptotically conservative, Bn must diverge to1; see Assumption

GMS2(b) below. See Section 9, for speci�c choices of �n and Bn that satisfy Assumption

GMS1.

4.5 �Plug-in Asymptotic�Con�dence Sets

Next, for comparative purposes, we de�ne plug-in asymptotic (PA) critical values.

Subsampling critical values are de�ned and analyzed in Supplemental Appendix B. We

strongly recommend GMS critical values over PA and subsampling critical values because

(i) GMS tests are shown to be more powerful than PA tests asymptotically, see Comment

2 to Theorem 4 below, (ii) it should be possible to show that GMS tests have higher power

than subsampling tests asymptotically and smaller errors in null rejection probabilities

asymptotically by using arguments similar to those in Andrews and Soares (2010) and

Bugni (2010), respectively, and (iii) the �nite-sample simulations in Section 10 show

better performance by GMS critical values than PA and subsampling critical values.

PA critical values are obtained from the asymptotic null distribution that arises when

all conditional moment inequalities hold as equalities a.s. The PA critical value is

c(0G;bh2;n(�); 1� �) = c0(0G;bh2;n(�); 1� �+ �) + �; (4.11)

where � is an arbitrarily small positive constant, 0G denotes the Rk-valued function on

G that is identically (0; :::; 0)0 2 Rk; and bh2;n(�) is de�ned in (4.5). The nominal 1 � �

PA CS is given by (2.5) with the critical value cn;1��(�) equal to c(0G;bh2;n (�) ; 1� �):

Bootstrap PA, A-PA, and bootstrap A-PA critical values are de�ned analogously to

their GMS counterparts in Sections 4.2 and 4.3.

5 Uniform Asymptotic Coverage Probabilities

In this section, we show that GMS and PA CS�s have correct uniform asymptotic

coverage probabilities. The results of this section and those in Sections 6-8 below are

for CvM statistics based on integrals with respect to Q: Extensions of these results to

approximate CvM statistics and critical values, de�ned in Section 3.5, are provided in

Supplemental Appendix B. Supplemental Appendix B also gives results for KS tests.
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5.1 Motivation for Uniform Asymptotics

The choice of critical values is important for moment inequality tests because the null

distribution of a test statistic depends greatly on the slackness, or lack thereof, of the

di¤erent moment inequalities. The slackness represents a nuisance parameter that ap-

pears under the null hypothesis, e.g., see Andrews and Soares (2010, Sections 1 and 4.1).

With conditional moment inequalities, slackness comes in the form of a function, which

is an in�nite-dimensional parameter, whereas with unconditional moment inequalities it

is a �nite-dimensional parameter.

Potential slackness in the moment inequalities causes a discontinuity in the pointwise

asymptotic distribution of typical test statistics. With conditional moment inequalities,

one obtains an extreme form of discontinuity of the pointwise asymptotic distribution

because two moment inequalities can be arbitrarily close to one another but pointwise

asymptotics say that one inequality is irrelevant� because it is in�nitessimally slack, but

the other is not� because it is binding. In �nite samples there is no discontinuity in

the distribution of the test statistic. Hence, pointwise asymptotics do not provide good

approximations to the �nite-sample properties of test statistics in moment inequality

models, especially conditional models.

Uniform asymptotics are required. Methods for establishing uniform asymptotics

given in Andrews and Guggenberger (2010) and Andrews, Cheng, and Guggenberger

(2009) only apply to �nite-dimensional nuisance parameters, and hence, are not ap-

plicable to conditional moment inequality models.16 Linton, Song, and Whang (2010)

establish uniform asymptotic results in a model where the nuisance parameter is in�-

nite dimensional. However, their results rely on a complicated condition that is hard

to verify. For issues concerning uniformity of asymptotics in other econometric models,

see Kabaila (1995), Leeb and Pötscher (2005), Mikusheva (2007), and Andrews and

Guggenberger (2010).

5.2 Notation

In order to establish uniform asymptotic coverage probability results, we now intro-

duce notation for the population analogues of the sample quantities that appear in (4.5).

16The same is true of the method in Mikusheva (2007), which is used for autoregressive models. Her
method also requires that the data generated by di¤erent values of the unknown parameter can be
constructed from a single function of the data that does not depend on parameters, which limits its
applicability to other models.
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De�ne

h2;F (�; g; g
�) = D

�1=2
F (�)�F (�; g; g

�)D
�1=2
F (�)

= CovF

�
D
�1=2
F (�)m(Wi; �; g); D

�1=2
F (�)m(Wi; �; g

�)
�
;

�F (�; g; g
�) = CovF (m(Wi; �; g);m(Wi; �; g

�)); and

DF (�) = Diag(�F (�; 1k; 1k)) (= Diag(V arF (m(Wi; �)))): (5.1)

To determine the asymptotic distribution of Tn(�); we write Tn(�) as a function of the

following quantities:

h1;n;F (�; g) = n1=2D
�1=2
F (�)EFm(Wi; �; g);

hn;F (�; g; g
�) = (h1;n;F (�; g); h2;F (�; g; g

�));bh2;n;F (�; g; g�) = D
�1=2
F (�)b�n(�; g; g�)D�1=2

F (�);

h2;n;F (�; g) = bh2;n;F (�; g; g) + "bh2;n;F (�; 1k; 1k) (= D
�1=2
F (�)�n(�; g)D

�1=2
F (�)); and

�n;F (�; g) = n�1=2
nX
i=1

D
�1=2
F (�)[m(Wi; �; g)� EFm(Wi; �; g)]: (5.2)

As de�ned, (i) h1;n;F (�; g) is a k-vector of normalized means of the moment functions

m(Wi; �; g) for g 2 G; which measure the slackness of the population moment conditions
under (�; F ); (ii) hn;F (�; g; g�) contains the normalized means ofD

�1=2
F (�)m(Wi; �; g) and

the covariances of D�1=2
F (�)m(Wi; �; g) and D

�1=2
F (�)m(Wi; �; g

�); (iii) bh2;n;F (�; g; g�) and
h2;n;F (�; g) are hybrid quantities� part population, part sample� based on b�n(�; g; g�)
and�n(�; g); respectively, and (iv) �n;F (�; g) is the sample average ofD

�1=2
F (�)m(Wi; �; g)

normalized to have mean zero and variance that does not depend on n:

Note that �n;F (�; �) is an empirical process indexed by g 2 G with covariance kernel
given by h2;F (�; g; g�):

The normalized sample moments n1=2mn(�; g) can be written as

n1=2mn(�; g) = D
1=2
F (�)(�n;F (�; g) + h1;n;F (�; g)): (5.3)

The test statistic Tn(�); de�ned in (3.6), can be written as

Tn(�) =

Z
S(�n;F (�; g) + h1;n;F (�; g); h2;n;F (�; g))dQ(g): (5.4)
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Note the close resemblance between Tn(�) and T (h) (de�ned in (4.1)).

Let H1 denote the set of all functions from G to [0;1]p � f0gv: Let

H2 = fh2;F (�; �; �) : (�; F ) 2 Fg and
H = H1 �H2: (5.5)

On the space of k� k-matrix-valued covariance kernels on G � G; which is a superset of
H2; we use the metric d de�ned by

d(h
(1)
2 ; h

(2)
2 ) = sup

g;g�2G
jjh(1)2 (g; g�)� h

(2)
2 (g; g

�)jj: (5.6)

For notational simplicity, for any function of the form bF (�; g) for g 2 G; let bF (�) de-
note the function bF (�; �) on G: Correspondingly, for any function of the form bF (�; g; g

�)

for g; g� 2 G; let bF (�) denote the function bF (�; �; �) on G2:

5.3 Uniform Asymptotic Distribution of the Test Statistic

The following Theorem provides a uniform asymptotic distributional result for the

test statistic Tn(�): It is used to establish uniform asymptotic coverage probability results

for GMS and PA CS�s.

Theorem 1. Suppose Assumptions M, S1, and S2 hold. Then, for every compact subset
H2;cpt of H2; all constants xhn;F (�) 2 R that may depend on (�; F ) and n through hn;F (�);
and all � > 0; we have

(a) lim sup
n!1

sup
(�;F )2F :

h2;F (�)2H2;cpt

�
PF (Tn(�) > xhn;F (�))� P (T (hn;F (�)) + � > xhn;F (�))

�
� 0;

(b) lim inf
n!1

inf
(�;F )2F :

h2;F (�)2H2;cpt

�
PF (Tn(�) > xhn;F (�))� P (T (hn;F (�))� � > xhn;F (�))

�
� 0;

where T (h) =
Z
S(�h2(g) + h1(g); h2(g) + "Ik)dQ(g) and �h2(�) is the Gaussian

process de�ned in (4.2).

Comments. 1. Theorem 1 gives a uniform asymptotic approximation to the distri-

bution function of Tn(�): Uniformity holds without any restrictions on the normalized
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mean (i.e., moment inequality slackness) functions fh1;n;Fn(�n) : n � 1g: In particular,
Theorem 1 does not require fh1;n;Fn(�n) : n � 1g to converge as n ! 1 or to belong

to a compact set. The Theorem does not require that Tn(�) has a unique asymptotic

distribution under any sequence f(�n; Fn) 2 F : n � 1g: These are novel features of
Theorem 1.

2. The supremum and in�mum in Theorem 1 are over compact sets of covariance

kernels H2;cpt; rather than the parameter space H2: This is not particularly problematic

because the potential asymptotic size problems that arise in moment inequality models

are due to the pointwise discontinuity of the asymptotic distribution of the test statistic

as a function of the means of the moment inequality functions, not as a function of the

covariances between di¤erent moment inequalities.

3. Theorem 1 is proved using an almost sure representation argument and the

bounded convergence theorem. The continuous mapping theorem does not apply because

(i) Tn(�) does not converge in distribution uniformly over (�; F ) 2 F and (ii) h1;n;F (�; g)
typically does not converge uniformly over g 2 G even in cases where it has a pointwise
limit for all g 2 G:

5.4 Uniform Asymptotic Coverage Probability Results

The Theorem below gives uniform asymptotic coverage probability results for GMS

and PA CS�s.

The following assumption is not needed for GMS CS�s to have uniform asymptotic

coverage probability greater than or equal to 1 � �: It is used, however, to show that

GMS CS�s are not asymptotically conservative. (Note that typically GMS and PA CS�s

are asymptotically non-similar.) For (�; F ) 2 F and j = 1; :::; k; de�ne h1;1;F (�) to

have jth element equal to 1 if EFmj(Wi; �; g) > 0 and j � p and 0 otherwise. Let

h1;F (�) = (h1;1;F (�); h2;F (�)):

Assumption GMS2. (a) For some (�c; Fc)2F ; the distribution function of T(h1;Fc(�c))
is continuous and strictly increasing at its 1 � � quantile plus �; viz., c0(h1;Fc(�c); 1 �
�) + �; for all � > 0 su¢ ciently small and � = 0;

(b) Bn !1 as n!1; and

(c) n1=2=�n !1 as n!1:

Assumption GMS2(a) is not restrictive. For example, it holds for typical choices of

S and Q for any (�c; Fc) for which Q(fg 2 G : h1;1;Fc(�c; g) = 0g) > 0: Assumption
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GMS2(c) is satis�ed by typical choices of �n; such as �n = (0:3 lnn)1=2:

Theorem 2. Suppose Assumptions M, S1, and S2 hold and Assumption GMS1 also
holds when considering GMS CS�s. Then, for every compact subset H2;cpt of H2; GMS

and PA con�dence sets CSn satisfy

(a) lim inf
n!1

inf
(�;F )2F :

h2;F (�)2H2;cpt

PF (� 2 CSn) � 1� � and

(b) if Assumption GMS2 also holds and h2;Fc(�c) 2 H2;cpt (for (�c; Fc) 2 F as in

Assumption GMS2), then the GMS con�dence set satis�es

lim
�!0

lim inf
n!1

inf
(�;F )2F :

h2;F (�)2H2;cpt

PF (� 2 CSn) = 1� �;

where � is as in the de�nition of c(h; 1� �):

Comments. 1. Theorem 2(a) shows that GMS and PA CS�s have correct uniform

asymptotic size over compact sets of covariance kernels. Theorem 2(b) shows that GMS

CS�s are at most in�nitesimally conservative asymptotically. The uniformity results hold

whether the moment conditions involve �weak�or �strong�instrumental variables.

2. An analogue of Theorem 2(b) holds for PA CS�s if Assumption GMS2(a) holds

and EFc(mj(Wi; �c)jXi) = 0 a.s. for j � p (i.e., if the conditional moment inequalities

hold as equalities a.s.) under some (�c; Fc) 2 F .17 However, the latter condition is

restrictive� it fails in many applications.

3. Theorem 2 applies to CvM tests based on integrals with respect to a probability

measure Q: Extensions to approximate CvM and KS tests are given in Supplemental

Appendix B.

4. Theorem 2 is stated for the case where the parameter of interest, �; is �nite-

dimensional. However, Theorem 2 and all of the results below except the local power

results also hold for in�nite-dimensional parameters �: However, computation of a CS is

noticeably more di¢ cult in the in�nite-dimensional case.

5. Comments 1 and 2 to Theorem 1 also apply to Theorem 2.

17The proof follows easily from results given in the proof of Theorem 2(b).
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6 Power Against Fixed Alternatives

We now show that the power of GMS and PA tests converges to one as n ! 1 for

all �xed alternatives (for which the moment functions have 2+ � moments �nite). Thus,

both tests are consistent tests. This implies that for any �xed distribution F0 and any

parameter value �� not in the identi�ed set �F0 ; the GMS and PA CS�s do not include

�� with probability approaching one. In this sense, GMS and PA CS�s based on Tn(�)

fully exploit the conditional moment inequalities and equalities. CS�s based on a �nite

number of unconditional moment inequalities and equalities do not have this property.

The null hypothesis is

H0 : EF0(mj(Wi; ��)jXi) � 0 a.s. [FX;0] for j = 1; :::; p and

EF0(mj(Wi; ��)jXi) = 0 a.s. [FX;0] for j = p+ 1; :::; k; (6.1)

where �� denotes the null parameter value and F0 denotes the �xed true distribution of

the data. The alternative is H1 : H0 does not hold. The following assumption speci�es

the properties of �xed alternatives (FA).

Assumption FA. The value �� 2 � and the true distribution F0 satisfy: (a) PF0(Xi 2
XF0(��)) > 0; where XF0(��) is de�ned in (3.11), (b) fWi : i � 1g are i.i.d. under F0; (c)
V arF0(mj (Wi; ��))> 0 for j = 1; :::; k; (d) EF0jjm(Wi; ��)jj2+� <1 for some � > 0; and

(e) Assumption M holds with F0 in place of F and Fn in Assumptions M(b) and M(c),

respectively.

Assumption FA(a) states that violations of the conditional moment inequalities or equal-

ities occur for the null parameter �� for Xi values in some set with positive probability

under F0: Thus, under Assumption FA(a), the moment conditions speci�ed in (6.1)

do not hold. Assumptions FA(b)-(d) are standard i.i.d. and moment assumptions. As-

sumption FA(e) holds for Gc-cube and Gbox because Cc-cube and Cbox are Vapnik-Cervonenkis
classes of sets.

For g 2 G; de�ne

m�
j(g) = EF0mj(Wi; ��)gj(Xi)=�F0;j(��) and

�(g) = maxf�m�
1(g); :::;�m�

p(g); jm�
p+1(g)j; :::; jm�

k(g)jg: (6.2)

Under Assumptions FA(a) and CI, �(g0) > 0 for some g0 2 G:
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For a test based on Tn(�) to have power against all �xed alternatives, the weight-

ing function Q cannot �ignore�any elements g 2 G; because such elements may have
identifying power for the identi�ed set. This requirement is captured in the following

assumption, which is shown in Lemma 4 to hold for the two probability measures Q

considered in Section 3.4.

Let FX;0 denote the distribution of Xi under F0: De�ne the pseudo-metric �X on G
by

�X(g; g
�) = (EFX;0jjg(Xi)� g�(Xi)jj2)1=2 for g; g� 2 G: (6.3)

Let B�X (g; �) denote an open �X-ball in G centered at g with radius �:

Assumption Q. The support of Q under the pseudo-metric �X is G: That is, for all
� > 0; Q(B�X (g; �)) > 0 for all g 2 G:

The next result establishes Assumption Q for the probability measures Q on Gc-cube
and Gbox discussed in Section 3.4 above. Supplemental Appendix B provides analogous
results for three other choices of Q and G:

Lemma 4. Assumption Q holds for the weight functions:
(a) Qa = ��1c-cubeQAR on Gc-cube; where QAR is uniform on a 2 f1; :::; 2rgdx conditional

on r and r has some probability mass function fw(r) : r = r0; r0 + 1; :::g with w(r) > 0
for all r and

(b) Qb = ��1boxUnif([0; 1]
dx� (0; �r)dx) on Gbox with the centers of the boxes in [0; 1]dx :

Comment. The uniform distribution that appears in both speci�cations of Q in the

Lemma could be replaced by another distribution and the results of the Lemma still

hold provided the other distribution has the same support.

The following Theorem shows that GMS and PA tests are consistent against all �xed

alternatives.

Theorem 3. Under Assumptions FA, CI, Q, S1, S3, and S4,
(a) limn!1 PF0(Tn(��) > c('n(��);bh2;n(��); 1� �)) = 1 and

(b) limn!1 PF0(Tn(��) > c(0G;bh2;n(��); 1� �)) = 1:

Comment. Theorem 3 implies the following for GMS and PA CS�s: Suppose (�0; F0) 2
F for some �0 2 �; �� (2 �) is not in the identi�ed set �F0 (de�ned in (2.2)), and
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Assumptions FA(c), FA(d), CI, M, S1, S3, and S4 hold, then for GMS and PA CS�s we

have18

lim
n!1

PF0(�� 2 CSn) = 0: (6.4)

7 Power Against Some n�1=2-Local Alternatives

In this section, we show that GMS and PA tests have power against certain, but

not all, n�1=2-local alternatives. This holds even though these tests fully exploit the

information in the conditional moment restrictions, which is of an in�nite-dimensional

nature. These testing results have immediate implications for the volume of CS�s, see

Pratt (1961).

We show that a GMS test has asymptotic power that is greater than or equal to

that of a PA test (based on the same test statistic) under all alternatives with strict

inequality in certain scenarios. Although we do not do so here, arguments analogous to

those in Andrews and Soares (2010) could be used to show that a GMS test�s power is

greater than or equal to that of a subsampling test with strictly greater power in certain

scenarios.

For given �n;� 2 � for n � 1; we consider tests of

H0 : EFnmj(Wi; �n;�) � 0 for j = 1; :::; p;

EFnmj(Wi; �n;�) = 0 for j = p+ 1; :::; k; (7.1)

and (�n;�; Fn) 2 F ; where Fn denotes the true distribution of the data. The null values
�n;� are allowed to drift with n or be �xed for all n: Drifting �n;� values are of interest

because they allow one to consider the case of a �xed identi�ed set, say �0; and to derive

the asymptotic probability that parameter values �n;� that are not in the identi�ed set,

but drift toward it at rate n�1=2; are excluded from a GMS or PA CS. In this scenario,

the sequence of true distributions are ones that yield �0 to be the identi�ed set, i.e.,

Fn 2 F0 = fF : �F = �0g:
The true parameters and distributions are denoted (�n; Fn):We consider the Kolmog-

orov-Smirnov metric on the space of distributions F:

The n�1=2-local alternatives are de�ned as follows.
18This holds because �� =2 �F0 implies Assumption FA(a) holds, (�0; F0) 2 F implies Assumption

FA(b) holds, and Assumption M with F = Fn = F0 implies Assumption FA(e) holds.
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Assumption LA1. The true parameters and distributions f(�n; Fn) 2 F : n � 1g and
the null parameters f�n;� : n � 1g satisfy:
(a) �n;� = �n + �n

�1=2(1 + o(1)) for some � 2 Rd� ; �n;� 2 �; �n;� ! �0; and Fn ! F0

for some (�0; F0) 2 F ,
(b) n1=2EFnmj(Wi; �n; g)=�Fn;j(�n)! h1;j(g) for some h1;j(g) 2 [0;1] for j = 1; :::; p

and all g 2 G;
(c) d(h2;Fn(�n); h2;F0(�0)) ! 0 and d(h2;Fn(�n;�); h2;F0(�0)) ! 0 as n ! 1 (where d

is de�ned in (5.6)),

(d) V arFn(mj(Wi; �n;�)) > 0 for j = 1; :::; k; for n � 1; and
(e) supn�1EFnjmj(Wi; �n;�)=�Fn;j(�n;�)j2+� <1 for j = 1; :::; k for some � > 0:

Assumption LA2. The k�d matrix �F (�; g) = (@=@�0)[D�1=2
F (�)EFm(Wi; �; g)] exists

and is continuous in (�; F ) for all (�; F ) in a neighborhood of (�0; F0) for all g 2 G:

For notational simplicity, we let h2 abbreviate h2;F0(�0) throughout this section.

Assumption LA1(a) states that the true values f�n : n � 1g are n�1=2-local to the
null values f�n;� : n � 1g: Assumption LA1(b) speci�es the asymptotic behavior of
the (normalized) moment inequality functions when evaluated at the true values f�n :
n � 1g: Under the true values, these (normalized) moment inequality functions are non-
negative. Assumption LA1(c) speci�es the asymptotic behavior of the covariance kernels

fh2;Fn(�n; �; �) : n � 1g and fh2;Fn(�n;�; �; �) : n � 1g: Assumptions LA1(d) and LA1(e)
are standard. Assumption LA2 is a smoothness condition on the normalized expected

moment functions. Given the smoothing properties of the expectation operator, this

condition is not restrictive.

Under Assumptions LA1 and LA2, we show that the moment inequality functions

evaluated at the null values f�n;� : n � 1g satisfy:

lim
n!1

n1=2D
�1=2
Fn

(�n;�)EFnm(Wi; �n;�; g) = h1(g) + �0(g)� 2 Rk; where

h1(g) = (h1;1(g); :::; h1;p(g); 0; :::; 0)
0 2 Rk and �0(g) = �F0(�0; g): (7.2)

If h1;j(g) = 1; then by de�nition h1;j(g) + y = 1 for any y 2 R: We have h1(g) +

�0(g)� 2 (�1;1]p � Rv: Let �0;j(g) denote the jth row of �0(g) written as a column

d�-vector for j = 1; :::; k:

The null hypothesis, de�ned in (7.1), does not hold (at least for n large) when the

following assumption holds.
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Assumption LA3. For some g 2 G; h1;j(g) + �0;j(g)0� < 0 for some j = 1; :::; p or

�0;j(g)
0� 6= 0 for some j = p+ 1; :::; k:

Under the following assumption, if � = ��0 for some � > 0 and some �0 2 Rd� ; then

the power of GMS and PA tests against the perturbation � is arbitrarily close to one

for � arbitrarily large:

Assumption LA3 0. Q(fg 2 G : h1;j(g) < 1 and �0;j(g)0�0 < 0 for some j = 1; :::; p

or �0;j(g)0�0 6= 0 for some j = p+ 1; :::; kg) > 0:

Assumption LA3 0 requires that either (i) the moment equalities detect violations of the

null hypothesis for g functions in a set with positive Q measure or (ii) the moment

inequalities are not too far from being binding, i.e., h1;j(g) < 1; and the perturbation

�0 occurs in a direction that yields moment inequality violations for g functions in a set

with positive Q measure.

Assumption LA3 is employed with the KS test. It is weaker than Assumption LA3 0:

It is shown in Supplemental Appendix B that if Assumption LA3 holds with � = ��0

(and some other assumptions), then the power of KS-GMS and KS-PA tests against the

perturbation � is arbitrarily close to one for � arbitrarily large.

In Supplemental Appendix B we illustrate the veri�cation of Assumptions LA1-LA3

and LA3 0 in a simple example. In this example, v = 0; h1;j(g) < 1 8g 2 G, and
�0;j(g) = �Eg(Xi) 8g 2 G, so �0;j(g)0�0 < 0 in Assumption LA3 0 8g 2 G with

Eg(Xi) > 0 for all �0 > 0:

Assumptions LA3 and LA3 0 can fail to hold even when the null hypothesis is violated.

This typically happens if the true parameter/true distribution is �xed, i.e., (�n; Fn) =

(�0; F0) 2 F for all n in Assumption LA1(a), the null hypothesis parameter �n;� drifts

with n as in Assumption LA1(a), and PF0(Xi 2 Xzero) = 0; where Xzero = fx 2 Rdx :

EF0(m(Wi; �0)jXi = x) = 0g: In such cases, typically h1;j(g) = 1 8g 2 G (because the
conditional moment inequalities are non-binding with probability one), Assumptions

LA3 and LA3 0 fail, and Theorem 4 below shows that GMS and PA tests have trivial

asymptotic power against such n�1=2-local alternatives. For example, this occurs in the

example of Section 13.5 in Supplemental Appendix B when PF0(Xi 2 Xzero) = 0:
As discussed in Section 13.5, asymptotic results based on a �xed true distribution

provide poor approximations when PF0(Xi 2 Xzero) = 0: Hence, one can argue that it
makes sense to consider local alternatives for sequences of true distributions fFn : n �
1g for which h1;j(g) < 1 for a non-negligible set of g 2 G; as in Assumption LA3 0;
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because such sequences are the ones for which the asymptotics provide good �nite-

sample approximations. For such sequences, GMS and PA tests have non-trivial power

against n�1=2-local alternatives, as shown in Theorem 4 below.

Nevertheless, local-alternative power results can be used for multiple purposes and

for some purposes, one may want to consider local-alternatives other than those that

satisfy Assumptions LA3 and LA3 0:

The asymptotic distribution of Tn(�n;�) under n�1=2-local alternatives is shown to be

Jh;�: By de�nition, Jh;� is the distribution of

T (h1 +�0�; h2) =

Z
S(�h2(g) + h1(g) + �0(g)�; h2(g) + "Ik)dQ(g); (7.3)

where h = (h1; h2); �0 denotes �0(�); and �h2(�) is a mean zero Gaussian process with
covariance kernel h2 = h2;F0(�0): For notational simplicity, the dependence of Jh;� on �0
is suppressed.

Next, we introduce two assumptions, viz., Assumptions LA4 and LA5, that are used

only for GMS tests in the context of local alternatives. The population analogues of

�n(�; g) and its diagonal matrix are

�F (�; g) = �F (�; g; g) + "�F (�; 1k; 1k) and DF (�; g) = Diag(�F (�; g)); (7.4)

where �F (�; g; g) is de�ned in (5.1). Let �F;j(�; g) denote the square-root of the (j; j)

element of �F (�; g):

Assumption LA4. ��1n n1=2EFnmj(Wi; �n; g)=�Fn;j(�n; g) ! �1;j(g) for some �1;j(g)

2 [0;1] for j = 1; :::; p and g 2 G:

In Assumption LA4 the functions are evaluated at the true value �n; not at the null

value �n;�; and (�n; Fn) 2 F : In consequence, the moment functions in Assumption LA4
satisfy the moment inequalities and �1;j(g) � 0 for all j = 1; :::; p and g 2 G: Note that
0 � �1;j(g) � h1;j(g) for all j = 1; :::; p and all g 2 G (by Assumption LA1(b) and
�n !1:)

Let �1(g) = (�1;1(g); :::; �1;p(g); 0; :::; 0)
0 2 [0;1]p � f0gv: Let c0('(�1); h2; 1 � �)
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denote the 1� � quantile of

T ('(�1); h2) =

Z
S(�h2(g) + '(�1(g)); h2(g) + "Ik)dQ(g); where

'(�1(g)) = ('(�1;1(g)); :::; '(�1;p(g)); 0; :::; 0)
0 2 Rk and

'(x) = 0 if x � 1 and '(x) =1 if x > 1: (7.5)

Let '(�1) denote '(�1(�)): The probability limit of the GMS critical value c('n(�);bh2;n(�);
1� �) is shown below to be c('(�1); h2; 1� �) = c0('(�1); h2; 1� �+ �) + �:

Assumption LA5. (a) Q(G') = 1; where G' = fg 2 G : �1;j(g) 6= 1 for j = 1; :::; pg;
and

(b) the distribution function of T ('(�1); h2) is continuous and strictly increasing at

x = c('(�1); h2; 1� �); where h2 = h2;F0(�0):

The value 1 that appears in G' in Assumption LA5(a) is the discontinuity point of
': Assumption LA5(a) implies that the n�1=2-local power formulae given below do not

apply to certain �discontinuity vectors��1(�); but this is not particularly restrictive.19

Assumption LA5(b) typically holds because of the absolute continuity of the Gaussian

random variables �h2(g) that enter T ('(�1); h2):
20

The following assumption is used only for PA tests.

Assumption LA6. The distribution function of T (0G; h2) is continuous and strictly
increasing at x = c(0G; h2; 1� �); where h2 = h2;F0(�0):

The probability limit of the PA critical value is shown to be c(0G; h2; 1 � �) =

c0(0G; h2; 1��+ �) + �; where c0(0G; h2; 1��) denotes the 1�� quantile of J(0G ;h2);0d� :

Theorem 4. Under Assumptions M, S1, S2, and LA1-LA2,
(a) limn!1 PFn(Tn(�n;�) > c('n(�n;�);

bh2;n(�n;�); 1��)) = 1�Jh;�(c('(�1); h2; 1��))
provided Assumptions GMS1, LA4, and LA5 also hold,

19Assumption LA5(a) is not particularly restrictive because in cases where it fails, one can obtain
lower and upper bounds on the local asymptotic power of GMS tests by replacing c('(�1); h2; 1��) by
c('(�1�); h2; 1� �) and c('(�1+); h2; 1� �); respectively, in Theorem 4(a). By de�nition, '(�1�) =
'(�1(�)�) and '(�1(g)�) is the limit from the left of '(x) at x = �1(g): Likewise '(�1+) = '(�1(�)+)
and '(�1(g)+) is the limit from the right of '(x) at x = �1(g):
20If Assumption LA5(b) fails, one can obtain lower and upper bounds on the local asymptotic power

of GMS tests by replacing Jh;�(c('(�1); h2; 1 � �)) by Jh;�(c('(�1); h2; 1 � �)+) and Jh;�(c('(�1);
h2; 1 � �)�); respectively, in Theorem 4(a), where the latter are the limits from the left and right,
respectively, of Jh;�(x) at x = c('(�1); h2; 1� �):
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(b) limn!1 PFn(Tn(�n;�) > c(0G;bh2;n(�n;�); 1��)) = 1�Jh;�(c(0G; h2; 1��)) provided
Assumption LA6 also holds, and

(c) lim�!1[1� Jh;��0(c('(�1); h2; 1� �))] = lim�!1[1� Jh;��0(c(0G; h2; 1� �))] = 1
provided Assumptions LA3 0, S3, and S4 hold.

Comments. 1. Theorem 4(a) and 4(b) provide the n�1=2-local alternative power

function of the GMS and PA tests, respectively. Theorem 4(c) shows that the asymptotic

power of GMS and PA tests is arbitrarily close to one if the n�1=2-local alternative

parameter � = ��0 is su¢ ciently large in the sense that its scale � is large.

2. We have c('(�1); h2; 1��) � c(0G; h2; 1��) (because '(�1(g)) � 0 for all g 2 G
and S(m;�) is non-increasing in mI by Assumption S1(b), where m = (m0

I ;m
0
II)

0):

Hence, the asymptotic local power of a GMS test is greater than or equal to that of a PA

test. Strict inequality holds whenever �1(�) is such that Q(fg 2 G : '(�1(g)) > 0g) > 0:
The latter typically occurs whenever the conditional moment inequalityEFn(mj(Wi; �n;�)

jXi) for some j = 1; :::; p is bounded away from zero as n ! 1 with positive Xi

probability.

3. The results of Theorem 4 hold under the null hypothesis as well as under the

alternative. The results under the null quantify the degree of asymptotic non-similarity

of the GMS and PA tests.

4. Suppose the assumptions of Theorem 4 hold and each distribution Fn generates

the same identi�ed set, call it �0 = �Fn 8n � 1: Then, Theorem 4(a) implies that the

asymptotic probability that a GMS CS includes, �n;�; which lies within O(n�1=2) of the

identi�ed set, is Jh;�(c('(�1); h2; 1 � �)): If � = ��0 and Assumptions LA3 0, S3, and

S4 also hold, then �n;� is not in �0 (at least for � large) and the asymptotic probability

that a GMS or PA CS includes �n;� is arbitrarily close to zero for � arbitrarily large by

Theorem 4(c). Analogous results hold for PA CS�s.

8 Preliminary Consistent Estimation of

Identi�ed Parameters and Time Series

In this section, we consider the case in which the moment functions in (2.4) depend

on a parameter � as well as � and a preliminary consistent estimator, b�n(�); of � is
available when � is the true value. (This requires that � is identi�ed given the true value

�:) For example, this situation often arises with game theory models, as in the third
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model considered in Section 10 below. The parameter � may be �nite dimensional or

in�nite dimensional. As pointed out to us by A. Aradillas-López, in�nite-dimensional

parameters arise as expectation functions in some game theory models. Later in the

section, we also consider the case where fWi : i � ng are time series observations.
Suppose the moment functions are of the form mj(Wi; �; �) and the model speci�es

that (2.1) holds with mj(Wi; �; �F (�)) in place of mj(Wi; �) for j � k for some �F (�)

that may depend on � and F:

The normalized sample moment functions are of the form

n1=2mn(�; g) = n�1=2
nX
i=1

m(Wi; �;b�n(�); g): (8.1)

In the in�nite-dimensional case, m(Wi; �;b�n(�); g) can be of the formm�(Wi; �;b�n(Wi; �)

; g); where b�n(Wi; �) : R
dw ��! Rd� for some d� <1:

Given (8.1), the quantity �F (�; g; g�) in (5.1) denotes the asymptotic covariance of

n1=2mn(�;b�n(�); g) and n1=2mn(�;b�n(�); g�) under (�; F ); rather than CovF (m(Wi; �; g);

m(Wi; �; g
�)): Correspondingly, b�n(�; g; g�) is not de�ned by (4.5) but is taken to be

an estimator of �F (�; g; g�) that is consistent under (�; F ): With these adjusted de�ni-

tions of mn(�; g) and b�n(�; g; g�); the test statistic Tn(�) and GMS or PA critical value
cn;1��(�) are de�ned in the same way as above.21

For example, when � is �nite dimensional, the preliminary estimator b�n(�) is chosen
to satisfy:

n1=2(b�n(�)� �F (�))!d ZF as n!1 under (�; F ) 2 F ; (8.2)

for some normally distributed random vector ZF with mean zero.

The normalized sample moments can be written as

n1=2mn(�; g) = D
1=2
F (�)(�n;F (�; g) + h1;n;F (�; g)); where

�n;F (�; g) = n�1=2
nX
i=1

D
�1=2
F (�)[m(Wi; �;b�n(�); g)� EFm(Wi; �; �F (�); g)];

h1;n;F (�; g) = n1=2D
�1=2
F (�)EFm(Wi; �; �F (�); g): (8.3)

In place of Assumption M, we use the following empirical process (EP) assumption.

21When computing bootstrap critical values, one needs to bootstrap the estimator b�n(�) as well as
the observations fWi : i � ng:
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Let ) denote weak convergence. Let fan : n � 1g denote a subsequence of fng:

Assumption EP. (a) For some speci�cation of the parameter space F that imposes the
conditional moment inequalities and equalities and all (�; F ) 2 F ; �n;F (�; �)) �h2;F (�)(�)
as n ! 1 under (�; F ); for some mean zero Gaussian process �h2;F (�)(�) on G with
covariance kernel h2;F (�) on G � G and bounded uniformly �-continuous sample paths
a.s. for some pseudo-metric � on G:
(b) For any subsequence f(�an ; Fan) 2 F : n � 1g for which limn!1 supg;g�2G

jjh2;Fan (�an ; g; g�) � h2(g; g
�)jj = 0 for some k � k matrix-valued covariance kernel

on G � G; we have (i) �an;Fan (�an ; �) ) �h2(�) and (ii) supg;g�2G jjbh2;an;Fan (�an ; g; g�) �
h2(g; g

�)jj !p 0 as n!1:

The quantity bh2;an;Fan (�an ; g; g�) is de�ned as in previous sections but with b�n(�; g; g�)
and �F (�; g; g�) de�ned as in this section.

With Assumption EP in place of Assumption M, the results of Theorem 2 hold when

the GMS or PA CS depends on a preliminary estimator b�n(�):22 (The proof is the same
as that given for Theorem 2 in Supplemental Appendices A and C with Assumption EP

replacing the results of Lemma A1.)

Next, we consider time series observations fWi : i � ng: Let the moment conditions
and sample moments be de�ned as in (2.3) and (3.3), but do not impose the de�nitions

of F and b�n(�; g) in (2.3) and (3.4). Instead, de�ne b�n(�; g) in a way that is suitable
for the temporal dependence properties of fm(Wi; �; g) : i � ng: For example, b�n(�; g)
might need to be de�ned to be a heteroskedasticity and autocorrelation consistent (HAC)

variance estimator. Or, if fm(Wi; �) : i � ng have zero autocorrelations under (�; F );
de�ne b�n(�; g) as in (3.4). Given these de�nitions of mn(�; g) and b�n(�; g); de�ne the
test statistic Tn(�) and GMS or PA critical value cn;1��(�) as in previous sections.23

De�ne �n;F (�; g) as in (5.2). Now, with Assumption EP in place of Assumption M,

the results of Theorem 2 hold with time series observations.

Note that Assumption EP also can be used when the observations are independent

but not identically distributed.

22Equation (8.2) is only needed for this result in order to verify Assumption EP(a) in the �nite-
dimensional � case.
23With bootstrap critical values, the bootstrap employed needs to take account of the time series

structure of the observations. For example, a block bootstrap does so.
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9 Computation

In this section, we describe how the tests introduced in this paper are computed. For

speci�city, we focus on tests based on countable cubes and approximate GMS critical

values in an i.i.d. context. We describe both the asymptotic distribution and bootstrap

implementations of the critical values.

Step 1. Compute the test statistic:
(a) Transform each regressor to lie in [0; 1]: Let Xy

i 2 RdX denote the untransformed
regressor vector. In the simulations reported below, we transform Xy

i via a shift and ro-

tation and then an application of the standard normal distribution function. Speci�cally,

�rst compute b�X;n = n�1�ni=1(X
y
i �X

y
n)(X

y
i �X

y
n)
0; where X

y
n = n�1�ni=1X

y
i : Then, let

Xi = �(b��1=2X;n (X
y
i �X

y
n)); where �(x) = (�(x1); :::;�(xdX ))

0 for x = (x1; :::; xdX )
0 2 RdX

and �(xj) is the standard normal distribution function at xj for xj 2 R:
(b) Specify the functions g: For countable cubes, the functions are ga;r(x) = 1(x 2

Ca;r)1k for Ca;r 2 Cc-cube; where Ca;r and Cc-cube are de�ned in (3.12).
(c) Specify the weight function QAR: In the simulations, we take it to be uniform

on a 2 f1; :::; 2rgdx given r; combined with w(r) = (r2 + 100)�1 for r = 1; :::; r1;n: (See
below regarding the choice of r1;n:)

(d) Compute the CvM test statistic, which is de�ned by

T n;r1;n(�) =

r1;nX
r=1

(r2 + 100)�1
X

a2f1;:::;2rgdX

(2r)�dxS(n1=2mn(�; ga;r);�n(�; ga;r)); (9.4)

where S = S1; S2; or S3; as de�ned in (3.8)-(3.10), and mn(�; ga;r) and �n(�; ga;r) are

de�ned in (3.3)-(3.5) with " = :05: Alternatively, compute the KS statistic, which is

supga;r2Gc-cube S(n
1=2mn(�; ga;r);�n(�; ga;r)):

Step 2. Compute the GMS critical value based on the asymptotic distribution:
(a) Compute 'n(�; ga;r); as de�ned in (4.10), for (a; r) 2 AR:We recommend taking

�n = (0:3 ln(n))
1=2 and Bn = (0:4 ln(n)= ln ln(n))1=2:

(b) Simulate a (kNg)� � reps matrix Z of standard normal random variables, where

k is the dimension of m(Wi; �); Ng =
Pr1;n

r=1(2r)
dX is the number of g functions employed

in Step 1(d), and � reps is the number of simulation repetitions used to simulate the

asymptotic Gaussian process.

(c) Compute the (kNg)�(kNg) covariance matrix bh2;n;mat(�) whose elements are the
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covariances bh2;n(�; ga;r; g�a;r) de�ned in (4.5) for functions ga;r; g�a;r as in Step 1(b), where
a 2 f1; :::; 2rgdX and r = 1; :::; r1;n:
(d) Compute the (kNg)� � reps matrix b�n(�) = bh1=22;n;mat(�)Z: Let b�n;j(�; ga;r) denote

the element of b�n that corresponds to the row indexed by ga;r and column j for j =
1; :::; � reps:

(e) For j = 1; :::; � reps; compute the test statistic T n;r1;n;j(�) just as T n;r1;n(�) is

computed in Step 1(d) but with n1=2mn(�; ga;r) replaced by b�n;j(�; ga;r) + 'n(�; ga;r):

(f) Take the critical value to be the 1� �+ � sample quantile of the simulated test

statistics fT n;r1;n;j(�) : j = 1; :::; � repsg plus �; where � is a very small positive constant,
such as 10�6: In the simulations, we obtain the same results with � = 0 as with 10�6:

For the bootstrap version of the critical value, Steps 2(b)-2(e) are replaced by the

following steps:

Step 2boot: (b) Generate B bootstrap samples fW �
i;b : i = 1; :::; ng for b = 1; :::; B using

the standard nonparametric i.i.d. bootstrap. That is, draw W �
i;b from the empirical

distribution of fW` : ` = 1; :::; ng independently across i and b:
(c) For each bootstrap sample, transform the regressors as in Step 1(a) and compute

m�
n;b(�; ga;r) and �

�
n;b(�; ga;r) just as mn(�; ga;r) and �n(�; ga;r) are computed, but with

the bootstrap sample in place of the original sample.

(d) For each bootstrap sample, compute the bootstrap test statistic T
�
n;r1;n;b

(�)

as T n;r1;n(�) is computed in Step 1(d) but with n
1=2mn(�; ga;r) replaced by bDn(�)

�1=2

n1=2(m�
n;b(�; ga;r) �mn(�; ga;r)) + 'n(�; ga;r) and with �n(�; ga;r) replaced by bDn(�)

�1=2

�
�
n;b(�; ga;r) bDn(�)

�1=2; where bDn(�) = Diag(b�n(�; 1k; 1k)):
(e) Take the critical value to be the 1� �+ � sample quantile of the bootstrap test

statistics fT �n;r1;n;b(�) : b = 1; :::; Bg plus �; where � is a very small positive constant,
such as 10�6: In the simulations, we obtain the same results with � = 0 as with 10�6:

The choices of "; �n; and Bn above are based on some experimentation.24 Smaller

values of "; such as " = :01; do not perform as well if the expected number of observations

per cube (for some cubes) is small, say 15 or less.

For the quantile selection and interval-outcome models, in which Xi is a scalar, we

take r1;n = 7 when n = 250 and obtain quite similar results for r1;n = 5; 9; and 11: For

the entry game model, in which bivariate regressor indices appear, we take r1;n = 3 when

n = 500 and obtain similar results for r1;n = 2 and 4: Based on the simulation results,

24These values are the base case values used in the simulations reported below.
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we recommend taking r1;n so that the expected number of observations in the smallest

cubes is between 10 and 20 (when " = :05): For example, with (n; dX ; r1;n) = (250; 1; 7);

(500; 2; 3); and (1000; 3; 2); the expected number of observations in the smallest cells are

17:9; 13:9; and 15:6; respectively.

Note that the number of cubes with side-edge length indexed by r is (2r)dX ; where

dX denotes the dimension of the covariate Xi: The computation time is approximately

linear in the number of cubes. Hence, it is linear in
Pr1;n

r=1(2r)
dX :

In Step 1(a), when there are discrete variables in Xi; the sets Ca;r can be formed

by taking interactions of each value of the discrete variable(s) with cubes based on the

other variable(s).25

When the dimension, dX ; of Xi is greater than three (or equal to three with n

small, say less than 750); the number of cubes is too large to be practical and the

expected number of observations per cube is too small, even if r1;n is small. In such

cases, we suggest replacing the sets Ca;r above with sets that are rectangles with sub-

intervals of [0; 1] in 2 dimensions (equal to the two-dimensional cubes in Cc-cubewhen
dX = 2) and [0; 1] in the other dimensions, and constructing such sets using all possible

combinations of 2 dimensions out of dX dimensions. For example, if dX = 6; then there

are 6!=(4!2!) = 15 combinations of 2 dimensions out of 6: For each choice of 2 dimensions

there are 20 cubes if (r0; r1;n) = (1; 2) and 56 cubes if (r0; r1;n) = (1; 3); which yields

totals of 300 and 840 cubes, respectively, when dX = 6:26 If the dimension 2 above is

increased to 3; 4; ::: as n!1; then there is no loss in information asymptotically.

10 Monte Carlo Simulations

This section provides simulation evidence concerning the �nite-sample properties

of the CI�s introduced in the paper. We consider four models: a quantile selection

model, an entry game model with multiple equilibria, a mean selection model, and an

interval-outcome linear regression model. For brevity, the results for the third and fourth

models are reported in Supplemental Appendix F. The results for the fourth model are

remarkably similar to those for the ��at bound�version of the quantile selection model,

25See Example 5 in the second subsection of Supplemental Appendix B for details.
26For example, with n = 500 and r1;n = 2; the expected number of observations per cube is 125

or 31:3 depending on the cube. With n = 1000 and r1;n = 3; the expected number of observations
per cube is 250; 62:5; or 15:6: These expected numbers hold for any value of dX : Computation time is
proportional to (dX !=(dX !2!)) �

Pr1;n
r=1(2r)

dX :
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in spite of the substantial di¤erences between the models. The results for the third

model are similar to those for the quantile selection model.

In all models, we compare di¤erent versions of the CI�s introduced in the paper. In

the quantile selection and mean selection models, we compare one of the CI�s introduced

in the paper with CI�s introduced in CLR and LSW.

10.1 Tests Considered in the Simulations

In the simulation results reported below, we compare di¤erent test statistics and

critical values in terms of their coverage probabilities (CP�s) for points in the identi�ed

set and their false coverage probabilities (FCP�s) for points outside the identi�ed set.

Obviously, one wants FCP�s to be as small as possible. FCP�s are directly related to the

power of the tests used to constructed the CS and are related to the volume of the CS,

see Pratt (1961).

The following test statistics are considered: (i) CvM/Sum, (ii) CvM/QLR, (iii)

CvM/Max, (iv) KS/Sum, (v) KS/QLR, and (vi) KS/Max, as de�ned in Section 9.

Both asymptotic normal and bootstrap versions of these tests are computed.

In all models we consider the PA/Asy and GMS/Asy critical values. We also consider

the PA/Bt, GMS/Bt, and Sub critical values in the quantile selection model and interval-

outcome regression model. The critical values are simulated using 5001 repetitions (for

each original sample repetition).27 The �base case�values of �n; Bn; and " for the GMS

critical values are speci�ed in Section 9 and are used in all four models. Additional

results are reported for variations of these values. The subsample size is 20 when the

sample size is 250: Results are reported for nominal 95% CS�s. The number of simulation

repetitions used to compute CP�s and FCP�s is 5000 for all cases. This yields a simulation

standard error of :0031:

We also report results for the CLR-series, CLR-local linear, and LSW CI�s. These

CI�s are computed, for the most part, as described in CLR and LSW. Supplemental

Appendix F provides details. The CLR CI�s use cross-validation to determine the tun-

27The Sum, QLR, and Max statistics use the functions S1; S2; and S3; respectively. The PA/Asy and
PA/Bt critical values are based on the asymptotic distribution and bootstrap, respectively, and likewise
for the GMS/Asy and GMS/Bt critical values. The quantity � is set to 0 because its value, provided it
is su¢ ciently small, has no e¤ect in these models. Sub denotes a (non-recentered) subsampling critical
value. It is the :95 sample quantile of the subsample statistics, each of which is de�ned exactly as the
full sample statistic is de�ned but using the subsample in place of the full sample. The number of
subsamples considered is 5001. They are drawn randomly without replacement.
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ing parameters. The L1 version of the LSW CI is employed. The critical values and

CP/FCP�s are simulated using 5001 and 5000 repetitions, respectively, except when

stated otherwise.28

The reported FCP�s are �CP-corrected�by employing a critical value that yields a

CP equal to :95 at the closest point of the identi�ed set if the CP at the closest point is

less than :95: If the CP at the closest point is greater than :95; then no CP correction

is carried out. The reason for this �asymmetric�CP correction is that CS�s may have

CP�s greater than :95 for points in the identi�ed set, even asymptotically, in the present

context and one does not want to reward over-coverage of points in the identi�ed set by

CP correcting the critical values when making comparisons of FCP�s.

10.2 Quantile Selection Model

10.2.1 Description of the Model

In this model we are interested in the conditional � -quantile of a treatment response

given the value of a covariate Xi: The results also apply to conditional quantiles of

arbitrary responses that are subject to selection. Selection yields the conditional quantile

to be unidenti�ed. We use a quantile monotone instrumental variable (QMIV) condition

that is a variant of Manski and Pepper�s (2000) Monotone Instrumental Variable (MIV)

condition to obtain bounds on the conditional quantile. (The MIV condition applies

when the parameter of interest is a conditional mean of a treatment response.) A

nice feature of the QMIV condition is that non-trivial bounds are obtained without

assuming that the support of the response variable is bounded, which is restrictive in

some applications. The nontrivial bounds result from the fact that the distribution

functions that de�ne the quantiles are naturally bounded between 0 and 1:

Other papers that bound quantiles using the natural bounds of distribution func-

tions include Manski (1994), Lee and Melenberg (1998), Blundell, Gosling, Ichimura,

and Meghir (2007), and Giustinelli (2010). The QMIV condition di¤ers from the condi-

tions in these papers, except Giustinelli (2010), although it is closely related to them.29

28The LSW critical value is not simulated. It uses a standard normal critical value.
29Manski (1994, pp. 149-153) establishes the worst case quantile bounds, which do not impose any

restrictions. Lee and Melenberg (1998, p. 30) and Blundell, Gosling, Ichimura, and Meghir (2007, pp.
330-331) provide quantile bounds based on the assumption of monotonicity in the selection variable
Ti (which is binary in their contexts), which is a quantile analogue of Manski and Pepper�s (2000)
monotone treatment selection condition, as well as bounds based on exclusion restrictions. In addition,
Blundell, Gosling, Ichimura, and Meghir (2007, pp. 332-333) employ a monotonicity assumption that is
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Giustinelli (2010) derives bounds on unconditional quantiles with a �nite-support IV,

whereas we consider bounds on conditional quantiles with a continuous (or discrete) IV.

The model set-up is quite similar to that in Manski and Pepper (2000). The obser-

vations are i.i.d. for i = 1; :::; n: Let yi(t) 2 Y be individual i�s �conjectured�response
variable given treatment t 2 T . Let Ti be the realization of the treatment for individual
i: The observed outcome variable is Yi = yi(Ti): Let Xi be a covariate whose support

contains an ordered set X . We observe Wi = (Yi; Xi; Ti): The parameter of interest, �;

is the conditional � -quantile of yi(t) given Xi = x0 for some t 2 T and some x0 2 X ;
which is denoted Qyi(t)jXi(� jx0): We assume the conditional distribution of yi(t) given
Xi = x is absolutely continuous at its � -quantile for all x 2 X :
For examples, one could have: (i) yi(t) is conjectured wages of individual i for t years

of schooling, Ti is realized years of schooling, and Xi is measured ability or wealth, (ii)

yi(t) is conjectured wages when individual i is employed, say t = 1; Xi is measured

ability or wealth, and selection occurs due to elastic labor supply, (iii) yi(t) is consumer

durable expenditures when a durable purchase is conjectured, Xi is income or non-

durable expenditures, and selection occurs because an individual may decide not to

purchase a durable, and (iv) yi(t) is some health response of individual i given treatment

t; Ti is the realized treatment, which may be non-randomized or randomized but subject

to imperfect compliance, and Xi is some characteristic of individual i; such as weight,

blood pressure, etc.

The quantile monotone IV assumption is as follows:

Assumption QMIV. The covariate Xi satis�es: for some t 2 T and all (x1; x2) 2 X 2

such that x1 � x2; Qyi(t)jXi(� jx1) � Qyi(t)jXi(� jx2); where � 2 (0; 1) ; X is some ordered

subset of the support of Xi; and Qyi(t)jXi(� jx) is the quantile function of yi(t) conditional
on Xi = x:30

This assumption may be suitable in the applications mentioned above.

close to the QMIV assumption, but their assumption is imposed on the whole conditional distribution of
yi(t) given Xi; rather than on a single conditional quantile, and they do not explicitly bound quantiles.
30The �� -quantile monotone IV� terminology follows that of Manski and Pepper (2000). Alterna-

tively, it could be called a �� -quantile monotone covariate.�
Assumption QMIV can be extended to the case where additional (non-monotone) covariates arise, say

Zi: In this case, the QMIV condition becomes Qyi(t)jZi;Xi
(� jz; x1) � Qyi(t)jZi;Xi

(� jz; x2) when x1 � x2
for all z in some subset Z of the support of Zi: Also, as in Manski and Pepper (2000), the assumption
QMIV is applicable if X is only a partially-ordered set.
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Given Assumption QMIV, we have: for (x; x0) 2 X 2 with x � x0;

� = P
�
yi(t) � Qyi(t)jXi(� jx)jXi = x

�
� P (yi(t) � �jXi = x)

= P (yi(t) � � & Ti = tjXi = x) + P (yi(t) � � & Ti 6= tjXi = x)

� P (Yi � � & Ti = tjXi = x) + P (Ti 6= tjXi = x) ; (10.1)

where �rst equality holds by the de�nition of the � -quantile Qyi(t)jXi(� jx); the �rst
inequality holds by Assumption QMIV, and the second inequality holds because Yi =

yi(Ti) and P (A \B) � P (B):

Analogously, for (x; x0) 2 X 2 with x � x0;

� = P
�
yi(t) � Qyi(t)jXi(� jx)jXi = x

�
� P (yi(t) � �jXi = x)

= P (yi(t) � � & Ti = tjXi = x) + P (yi(t) � � & Ti 6= tjXi = x)

� P (Yi � � & Ti = tjXi = x) ; (10.2)

where the �rst and second inequalities hold by Assumption QMIV and P (A) � 0:
The inequalities in (10.1) and (10.2) impose sharp bounds on �: They can be rewritten

as conditional moment inequalities:

E (1(Xi � x0)[1(Yi � �; Ti = t) + 1(Ti 6= t)� � ]jXi) � 0 a.s. and

E (1(Xi � x0)[� � 1(Yi � �; Ti = t)]jXi) � 0 a.s. (10.3)

For the simulations, we consider the following data generating process (DGP):

yi(1) = �(Xi) + � (Xi)ui; where @� (x) =@x � 0 and � (x) � 0;
Ti = 1fL (Xi) + "i � 0g; where @L (x) =@x � 0;
Xi � Unif [0; 2]; ("i; ui) � N(0; I2); Xi ? ("i; ui);
Yi = yi(Ti); and t = 1: (10.4)

The variable yi(0) is irrelevant (because Yi enters the moment inequalities in (10.3) only

through 1(Yi � �; Ti = t)) and, hence, is left unde�ned. With this DGP, Xi satis�es the

QMIV assumption for any � 2 (0; 1) : We consider the median: � = 0:5: We focus on
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the conditional median of yi(1) given Xi = 1:5; i.e., � = Qyi(1)jXi(0:5j1:5) and x0 = 1:5:
Some algebra shows that the conditional moment inequalities in (10.3) imply:

� � �(x) := �(x) + � (x) ��1
�
1� [2� (L (x))]�1

�
for x � 1:5 and

� � �� (x) := �(x) + � (x) ��1
�
[2� (L (x))]�1

�
for x � 1:5: (10.5)

We call �(x) and �� (x) the lower and upper bound functions on �; respectively. The

identi�ed set for the quantile selection model is
�
supx�x0 �(x); infx�x0

�� (x)
�
: The shape

of the lower and upper bound functions depends on the �; �; and L functions. We

consider three speci�cations, one that yields �at bound functions, another that yields

kinked bound functions, and a third that yields peaked bound functions.31

The CP or FCP performance of a CI at a particular value � depends on the shape

of the conditional moment functions, as functions of x; evaluated at �: In the present

model, the conditional moment functions are

�(x; �) =

(
E (1(Yi � �; Ti = 1) + 1(Ti 6= 1)� 0:5jXi = x) if x < 1:5

E (� � 1(Yi � �; Ti = 1)jXi = x) if x � 1:5:
(10.6)

Figure 1 shows the bound functions and conditional moment functions for the �at,

kinked, and peaked cases. The bound functions are given in the upper row. Note that

�(x) is de�ned only for x 2 [0; 1:5] and �� (x) only for x 2 [1:5; 1]: The conditional moment
functions are given in the lower row. The latter are evaluated at the value of � that

yields the lower endpoint of the identi�ed interval.32

We consider a base case sample size of n = 250: We also report a few results for

n = 100; 500; and 1000:

31For the �at bound DGP, �(x) = 2; � (x) = 1; and L (x) = 1 for x 2 [0; 2] : In this case, �(x) = 2 +
��1

�
1� [2� (1)]�1

�
for x � 1:5 and �� (x) = 2 + ��1

�
[2� (1)]

�1
�
for x > 1:5: For the kinked bound

DGP, �(x) = 2(x ^ 1); � (x) = x; L (x) = x ^ 1; �(x) = 2(x ^ 1) + x � ��1
�
1� [2� (x ^ 1)]�1

�
for

x � 1:5; and �� (x) = 2 (x ^ 1) + x ���1
�
[2� (x ^ 1)]�1

�
for x > 1:5: The kinked � and L functions are

the same as in the simulation example in Chernozhukov, Lee, and Rosen (2008). For the peaked bound
function, �(x) = 2(x ^ 1); � (x) = x5; L (x) = x ^ 1; �(x) = 2 (x ^ 1) + x5��1

�
1� [2� (x ^ 1)]�1

�
for

x � 1:5; and �� (x) = 2 (x ^ 1) + x5��1
�
[2� (x ^ 1)]�1

�
for x > 1:5:

32See Supplemental Appendix F for conditional-moment-function �gures with � evaluated at the point
at which the FCP�s are computed.
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Figure 1. Three Bound Functions on � and Three Corresponding Conditional Moment

Functions for the Quantile Selection Model

10.2.2 g Functions

The g functions employed by the test statistics are indicator functions of hypercubes

in [0; 1]; i.e., intervals. It is not assumed that the researcher knows that Xi � U [0; 2]:

The regressor Xi is transformed via the method described in Section 9 to lie in (0; 1):33

The hypercubes have side-edge lengths (2r)�1 for r = r0; :::; r1; where r0 = 1 and the

base case value of r1 is 7:34 The base case number of hypercubes is 56: We also report

results for r1 = 5; 9; and 11; which yield 30; 90; and 132 hypercubes, respectively. With

n = 250 and r1 = 7; the expected number of observations per cube is 125; 62:5; :::; 20:8;

or 17:9 depending on the cube. With n = 250 and r1 = 11; the expected number also

can equal 12:5 or 11:4: With n = 100 and r1 = 7; the expected number is 50; 25; :::; 8:3;

33This method takes the transformed regressor to be �((Xi � Xn)=�X;n); where Xn and �X;n are
the sample mean and standard deviations of Xi and �(�) is the standard normal distribution function.
34For simplicity, we let r1 denote r1;n here and below.
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or 7:3:

10.2.3 Simulation Results: Con�dence Intervals Proposed in This Paper

Tables I-III report CP�s and CP-corrected FCP�s for a variety of test statistics and

critical values proposed in this paper for a range of cases. The CP�s are for the lower

endpoint of the identi�ed interval in Tables I-III and for the �at and kinked bound

functions.35 FCP�s are for points below the lower endpoint.36

Table I provides comparisons of di¤erent test statistics when each statistic is cou-

pled with PA/Asy and GMS/Asy critical values. Table II provides comparisons of the

PA/Asy, PA/Bt, GMS/Asy, GMS/Bt, and Sub critical values for the CvM/Max and

KS/Max test statistics. Table III provides robustness results for the CvM/Max and

KS/Max statistics coupled with GMS/Asy critical values. The results in Table III show

the degree of sensitivity of the results to (i) the sample size, n; (ii) the number of cubes

employed, as indexed by r1; (iii) the choice of (�n; Bn) for the GMS/Asy critical values,

and (iv) the value of "; upon which the variance estimator �n(�; g) depends. Table III

also reports results for con�dence intervals with nominal level :5; which yield asymptot-

ically half-median unbiased estimates of the lower endpoint.

Table I shows that all CI�s have CP�s greater than or equal to :95 with �at and kinked

bound DGP�s. The PA/Asy critical values lead to noticeably larger over-coverage than

the GMS/Asy critical values. The GMS/Asy critical values lead to CP�s that are close

to :95 with the �at bound DGP and larger than :95 with the kinked bound DGP. The

CP results are not sensitive to the choice of test statistic function: Sum, QLR, or Max.

They are only marginally sensitive to the choice of test statistic form: CvM or KS.

The FCP results of Table I show (i) a clear advantage of CvM-based CI�s over

KS-based CI�s, (ii) a clear advantage of GMS/Asy critical values over PA/Asy critical

values, and (iii) little di¤erence between the test statistic functions: Sum, QLR, and

Max. These results hold for both the �at and kinked bound DGP�s.

35Supplemental Appendix F provides additional results for the upper endpoints and for the lower
endpoints with the peaked bound function. The results are similar in many respects.
36Note that the DGP is the same for FCP�s as for CP�s, just the value � that is to be covered is

di¤erent. For the lower endpoint of the identi�ed set, FCP�s are computed for � equal to �(1) � c �
sqrt(250=n); where c = :25; :58; and :61 in the �at, kinked, and peaked bound cases, respectively. These
points are chosen to yield similar values for the FCP�s across the di¤erent cases considered.
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Table I. Quantile Selection Model: Base Case Test Statistic Comparisons

(a) Coverage Probabilities

Statistic: CvM/Sum CvM/QLR CvM/Max KS/Sum KS/QLR KS/Max

DGP Crit Val

Flat Bound PA/Asy .979 .979 .976 .972 .972 .970

GMS/Asy .953 .953 .951 .963 .963 .960

Kinked Bound PA/Asy .999 .999 .999 .994 .994 .994

GMS/Asy .983 .983 .983 .985 .985 .984

(b) False Coverage Probabilities (coverage probability corrected)

Flat Bound PA/Asy .51 .50 .48 .68 .67 .66

GMS/Asy .37 .37 .37 .60 .60 .59

Kinked Bound PA/Asy .65 .65 .62 .68 .68 .67

GMS/Asy .35 .35 .34 .53 .53 .52
� These results are for the lower endpoint of the identi�ed interval.

Table II compares the critical values PA/Asy, PA/Bt, GMS/Asy, GMS/Asy, and

Sub. The results show little di¤erence in terms of CP�s and FCP�s between the Asy and

Bt versions of the PA and GMS critical values in most cases. The GMS critical values

noticeably out-perform the PA critical values in terms of FCP�s. For the CvM/Max

statistic, which is the better statistic of the two considered, the GMS critical values also

noticeably out-perform the Sub critical values in terms of FCP�s.

Table III provides results for the CvM/Max and KS/Max statistics coupled with the

GMS/Asy critical values for several variations of the base case. The table shows that

these CS�s perform quite similarly for di¤erent sample sizes, di¤erent numbers of cubes,

and a smaller constant ":37 There is some sensitivity to the magnitude of the GMS

tuning parameters, (�n; Bn)� doubling their values increases CP�s, but halving their

values does not decrease their CP�s below .95. Across the range of cases considered the

CvM-based CS�s out perform the KS-based CS�s in terms of FCP�s and are comparable

37The � value at which the FCP�s are computed di¤ers from the lower endpoint of the identi�ed set
by a distance that depends on n�1=2: Hence, Table III suggests that the �local alternatives�that give
equal FCP�s decline with n at a rate that is slightly faster than n�1=2 over the range n = 100 to 1000:
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Table II. Quantile Selection Model: Base Case Critical Value Comparisons�

(a) Coverage Probabilities

Critical Value: PA/Asy PA/Bt GMS/Asy GMS/Bt Sub

DGP Statistic

Flat Bound CvM/Max .976 .977 .951 .950 .983

KS/Max .970 .973 .960 .959 .942

Kinked Bound CvM/Max .999 .999 .983 .982 .993

KS/Max .994 1.00 .984 .982 .950

(b) False Coverage Probabilities (coverage probability corrected)

Flat Bound CvM/Max .48 .49 .37 .36 .57

KS/Max .66 .69 .59 .57 .69

Kinked Bound CvM/Max .62 .64 .34 .33 .47

KS/Max .67 .72 .52 .50 .47
� These results are for the lower endpoint of the identi�ed interval.

in terms of CP�s.

The last two rows of Table III show that a CS based on � = :5 provides a good

choice for an estimator of the identi�ed set. For example, the lower endpoint estimator

based on the CvM/Max-GMS/Asy CS with � = :5 is close to being median-unbiased. It

is less than the lower bound with probability :518 and exceeds it with probability :482

when n = 250:

In conclusion, we �nd that the CS based on the CvM/Max statistic with the GMS/Asy

critical value performs best in the quantile selection models considered. Equally good

are the CS�s that use the Sum or QLR statistic in place of the Max statistic and the

GMS/Bt critical value in place of the GMS/Asy critical value. The CP�s and FCP�s of

the CvM/Max-GMS/Asy CS are quite good over a range of sample sizes.

10.2.4 Simulation Results: Comparisons with CLR and LSW
Con�dence Intervals

Table IV provides comparisons of the CvM/Max/GMS/Asy CI (denoted in this
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Table III. Quantile Selection Model with Flat Bound: Variations on the Base Case�

(a) Coverage Probabilities (b) False Cov Probs (CPcor)

Statistic: CvM/Max KS/Max CvM/Max KS/Max

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case (n = 250; r1 = 7;" = 5=100) .951 .960 .37 .59

n = 100 .957 .968 .40 .64

n = 500 .954 .955 .36 .58

n = 1000 .948 .948 .34 .57

r1 = 5 .949 .954 .36 .56

r1 = 9 .951 .963 .37 .61

r1 = 11 .951 .966 .37 .63

(�n; Bn) = 1=2(�n;bc; Bn;bc) .948 .954 .38 .58

(�n; Bn) = 2(�n;bc; Bn;bc) .967 .968 .38 .63

" = 1=100 .949 .957 .37 .64

� = :5 .518 .539 .03 .08

� = :5 & n = 500 .513 .531 .03 .07
� These results are for the lower endpoint of the identi�ed interval.

section by AS) with the CLR-series, CLR-local linear, and LSW CI�s.38 Results are

reported for the �at, kinked, and peaked bound functions, the base case sample size

250; and sample sizes 100 and 500:

Table IV shows that the CP performances of the nominal 95% AS and LSW CI�s

are good (i.e., greater than or equal to :95) for all bound functions and all sample sizes.

The CLR CI�s have good CP performance for n = 500; but not for n = 100 or 250: For

n = 250; the CLR CI�s under-cover in the �at bound case (:903 and :853). For n = 100;

the CLR-series CI under-covers substantially for all three bound functions (:820; :885;

:858).39

The AS CI has the best (lowest) FCP performance by a substantial margin in the

38We only report results for the CLR-local linear CI for n = 250: For n = 500; this CI is very time
consuming to compute for 5000 CP and FCP repetitions due to the use of cross validation.
39Under-coverage by the CLR CI�s when n = 100 and 250 is not necessarily due to the choice of too

small an estimated contact set. For example, for n = 250; the CLR-series and CLR-local linear CI�s
based on the support set have CP�s equal to :903 and :854; respectively, in the �at bound case.
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Table IV. Quantile Selection Model: Comparisons of Con�dence Intervals with Those

Proposed in Chernozhukov, Lee, and Rozen (2008) and Lee, Song, and Whang (2011)�

CP (95%) FCP (corrected) CP (50%)

CS �at kink peak �at kink peak �at kink peak

n = 250

CvM/Max/GMS/Asy .951 .983 .997 .37 .34 .41 .52 .72 .82

CLR-series .903 .962 .944 .79 .45 .29 .56 .83 .80

CLR-local linear .853y .952y .945y .86y .46y .26y .46y .77y .76y

LeeSongWhang .957 .999 .999 .54 .86 .76 .73 .98 .99

n = 100

CvM/Max/GMS/Asy .957 .981 .989 .40 .34 .47 .52 .69 .73

CLR-series .820 .885 .858 .89 .88 .83 .50 .71 .70

LeeSongWhang .962 .999 1.000 .53 .72 .58 .69 .97 .98

n = 500

CvM/Max/GMS/Asy .954 .984 .998 .36 .39 .72 .51 .74 .88

CLR-series .934 .986 .979 .68 .52 .53yy .59 .88 .88

LeeSongWhang .962 1.000 1.000 .55 .92 .95 .74 .99 1.00

� These results are for the lower endpoint of the identi�ed interval.
y This indicates the number of repetitions used is (3000, 3001). Other cases use (5000, 5001)

repetitions.

�at and kinked bound cases for all three sample sizes. In the peaked bound case, the

CLR-local linear and CLR-series CI�s have the best FCP�s for n = 250; 500; while the

AS CI has the best FCP�s in the n = 100 case. 40 The LSW CI has worse (higher)

FCP�s than those of the AS CI in all nine cases considered.

All of the CI�s are half-median-unbiased in all of the scenarios considered. In the

�at bound case, the AS and CLR CI�s are close to being median-unbiased (except for

40The CP correction used in the FCP results in Table IV and elsewhere does not provide (complete)
size correction because it corrects the CP only based on the data generating process (DGP) considered
for the particular FCP calculation. Complete �nite-sample size correction can be obtained by reducing
the nominal � used to compute a CI, to say �0; such that the �nite-sample minimum coverage probability
is greater than or equal to the desired size 1�� for all DGP�s considered with equality for some DGP.
For example, for the CLR-series CI with n = 250; (complete) �nite-sample size correction for the

three DGP�s considered (�at, kinked, peaked) requires 1 � �0 = :991 to achieve size :950 and yields
size-corrected FCP�s for the kinked and peaked cases of :65 and :41; respectively (and no change from
the Table IV value of :79 for the �at case). Hence, with size-correction, the AS CI dominates the
CLR-series CI in terms of FCP�s for n = 250: This is not true for n = 500:
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the CLR CI when n = 100): But, for the kinked and peaked bound cases, all of the CI�s

have CP�s that exceed :50 by a substantial margin. In all cases, the LSW CI�s are the

farthest from being median unbiased.

In sum, the AS CI exhibits the best overall performance in the cases considered here.

It has good 95% CP performance in all cases and the best FCP performance in seven of

nine cases.41

10.3 Entry Game Model

10.3.1 Description of the Model

This model is a complete information simultaneous game (entry model) with two

players and n i.i.d. plays of the game. We consider Nash equilibria in pure strate-

gies. Due to the possibility of multiple equilibria, the model is incomplete, see Tamer

(2003). In consequence, two conditional moment inequalities and two conditional mo-

ment equalities arise. Andrews, Berry, and Jia (2004), Beresteanu, Molchanov, and

Molinari (2010), Galichon and Henry (2009b), and Ciliberto and Tamer (2009) also

consider moment inequalities and equalities in models of this sort.

Following the approach in Section 8, eight non-competitive e¤ects parameters are

estimated via a preliminary maximum likelihood estimator based on the number of

entrants, similar to Bresnahan and Reiss (1991) and Berry (1992). These estimators are

plugged into a set of moment conditions that includes two moment inequalities and two

moment equalities.

We consider the case where the two players�utility/pro�ts depend linearly on vectors

of covariates, Xi;1 andXi;2; with corresponding parameters � 1 and � 2: A scalar parameter

�1 indexes the competitive e¤ect on player 1 of entry by player 2. Correspondingly, �2
indexes the competitive e¤ect on player 2 of entry by player 1.

Speci�cally, for player b = 1; 2; player b�s utility/pro�ts are given by

X 0
i;b� b + Ui;b if the other player does not enter and

X 0
i;b� b � �b + Ui;b if the other player enters, (10.7)

41The comparisons of the AS, CLR, and LSW CI�s in the mean selection model are similar to the
comparisons in the quantile selection model, see Supplemental Appendix F. The main di¤erence is that
in the kinked bound case the CLR CI�s perform noticeably worse than in the quantile selection model
in terms of CP�s and better in terms of FCP�s when n = 250 (which is sample considered for the mean
selection model). The peaked bound case is not considered in the mean selection model.
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where Ui;b is an idiosyncratic error known to both players, but unobserved by the

econometrician. The random variables observed by the econometrician are the co-

variates Xi;1 2 R4 and Xi;2 2 R4 and the outcome variables Yi;1 and Yi;2; where Yi;b
equals 1 if player b enters and 0 otherwise for b = 1; 2: The unknown parameters are

� = (�1; �2)
0 2 [0;1)2; and � = (� 01; � 02)0 2 R8: Let Yi = (Yi;1; Yi;2) and Xi = (X

0
i;1; X

0
i;2)

0:

The covariate vector Xi;b equals (1; Xi;b;2; Xi;b;3; X
�
i )
0 2 R4; where Xi;b;2 has a Bern(p)

distribution with p = 1=2; Xi;b;3 has a N(0; 1) distribution, X�
i has a N(0; 1) distribution

and is the same for b = 1; 2: The idiosyncratic error Ui;b has a N(0; 1) distribution. All

random variables are independent of each other. Except when speci�ed otherwise, the

equilibrium selection rule (ESR) used to generate the data is a maximum pro�t ESR

(which is unknown to the econometrician and not used by the CS�s). That is, if Yi could

be either (1; 0) or (0; 1) in equilibrium, then it is (1; 0) if player 1�s monopoly pro�t

exceeds that of player 2 and is (0; 1) otherwise. We also provide some results when the

data is generated by a �player 1 �rst�ESR in which Yi = (1; 0) whenever Yi could be

either (1; 0) or (0; 1) in equilibrium.

The moment inequality functions are

m1(Wi; �; �) = P (X 0
i;1� 1 + Ui;1 � 0; X 0

i;2� 2 � �2 + Ui;2 � 0jXi)� 1(Yi = (1; 0))
= �(X 0

i;1� 1)�(�X 0
i;2� 2 + �2)� 1(Yi = (1; 0)) and

m2(Wi; �; �) = P (X 0
i;1� 1 � �1 + Ui;1 � 0; X 0

i;2� 2 + Ui;2 � 0jXi)� 1(Yi = (0; 1));
= �(�X 0

i;1� 1 + �1)�(X
0
i;2� 2)� 1(Yi = (0; 1)): (10.8)

We have E(m1(Wi; �0; � 0)jXi) � 0 a.s., where �0 and � 0 denote the true values, because
given Xi a necessary condition for Yi = (1; 0) is X 0

i;1� 1 + Ui;1 � 0 and X 0
i;2� 2 � �2 +

Ui;2 � 0: However, this condition is not su¢ cient for Yi = (1; 0) because some sample

realizations with Yi = (0; 1) also may satisfy this condition. An analogous argument

leads to E(m2(Wi; �0; � 0)jXi) � 0 a.s.
The two moment equality functions are

m3(Wi; �; �) = 1(Yi = (1; 1))� P (X 0
i;1� 1 � �1 + Ui;1 � 0; X 0

i;2� 2 � �2 + Ui;2 � 0jXi);

= 1(Yi = (1; 1))� �(X 0
i;1� 1 � �1)�(X

0
i;2� 2 � �2); and

m4(Wi; �; �) = 1(Yi = (0; 0))� P (X 0
i;1� 1 + Ui;1 � 0; X 0

i;2� 2 + Ui;2 � 0jXi)

= 1(Yi = (0; 0))� �(�X 0
i;1� 1)�(�X 0

i;2� 2): (10.9)
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We employ a preliminary estimator of � given �; as in Section 8. In particular, we

use the probit ML estimator b�n(�) = (b�n;1(�)0;b�n;2(�)0)0 of � = (� 01; � 02)0 given � based on
the observations f(1(Yi = (0; 0)); 1(Yi = (1; 1)); Xi;1; Xi;2) : i � ng:42

The model described above is point identi�ed under suitable conditions because �

is identi�ed by the second conditional moment equality m4(Wi; �; �) and � is identi�ed

by the �rst moment equality m3(Wi; �; �) given that � is identi�ed. See Tamer (2003)

for some su¢ cient conditions for point identi�cation.43 Although the model is point

identi�ed, considerable additional information about � and � is provided by the moment

inequalities in (10.8), as pointed out by Tamer (2003). We exploit this information using

the methods employed here.

We show that the gains from exploiting the moment inequalities are substantial by

comparing the �nite-sample FCP�s of the tests introduced in this paper with those of

Wald, Lagrange multiplier, and likelihood ratio CS�s based on the ML estimator which

groups the outcomes (0; 1) and (1; 0); as in Bresnahan and Reiss (1991) and Berry (1992).

We consider a base case sample size of n = 500; as well as n = 250 and 1000:

10.3.2 g Functions

We take the functions g to be hypercubes in R2: They are functions of the 2-vector

Xy
i = (X

y0
i;1; X

y0
i;2)

0 = (X 0
i;1b�n;1(�); X 0

i;2b�n;2(�))0: The vector Xy
i is transformed �rst to have

sample mean equal to zero and sample variance matrix equal to I2 (by multiplication

by the inverse of the upper-triangular Cholesky decomposition of the sample covariance

matrix of Xy
i ). Then, it is transformed to lie in [0; 1]

2 by applying the standard normal

distribution function �(�) element by element.
The hypercubes have side-edge lengths (2r)�1 for r = r0; :::; r1; where r0 = 1 and

the base case value of r1 is 3: The base case number of hypercubes is 56:We also report

results for r1 = 2 and 4; which yield 20 and 120 hypercubes, respectively. With n = 500

and r1 = 3; the expected number of observations per cube is 125; 31:3; or 13:9 depending

on the cube. With n = 500 and r1 = 4; the expected number also can equal 7:8: With

n = 250 and r1 = 3; the expected number is 25; 15:6; or 6:9:

42See Supplemental Appendix F for the speci�cation of the log likelihood function and its gradient.
43Tamer (2003) uses a large support condition on one regressor in each index X 0

i;1�1 and X
0
i;2�2 to

obtain point identi�cation. However, this is just a su¢ cient condition. It seems that identi�cation is
likely to hold in many cases under much less stringent conditions on the distribution of the regressors.
See Supplemental Appendix F for further discussion.
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10.3.3 Entry Game Simulation Results I

Tables V and VI provide results for the entry game model. Results are provided for

GMS/Asy critical values only because (i) PA/Asy critical values are found to provide

similar results and (ii) bootstrap and subsampling critical values are computationally

quite costly because they require computation of the bootstrap or subsample ML esti-

mator for each repetition of the critical value calculations.

Table V provides CP�s and FCP�s for competitive e¤ect � values ranging from (0; 0)

to (3; 1):44 Table V shows that the CP�s for all CS�s vary as � varies with values ranging

from :913 to :987: The QLR-based CS�s tend to have higher CP�s than the Sum- andMax-

based CS�s. The CvM/Max statistic dominates all other statistics except the CvM/QLR

statistic in terms of FCP�s. In addition, CvM/Max dominates CvM/QLR� in most cases

by a substantial margin� except for � = (2; 2) or (3; 1): Hence, CvM/Max is clearly the

best statistic in terms of FCP�s. The CP�s of the CvM/Max CS are good for many �

values, but they are low for relatively large � values. For � = (3; 0); (2; 2); and (3; 1); its

CP�s are :915; :913; and :918; respectively. This is a �small�sample e¤ect� for n = 1000;

this CS has CP�s for these three cases equal to :934; :951; and :952; respectively.

Table VI provides results for variations on the base case � value of (1; 1) for the

CvM/Max and KS/Max statistics combined with GMS/Asy critical values. The CP�s

and FCP�s of the CvM/Max CS increase with n: They are not sensitive to the number of

hypercubes. There is some sensitivity to the magnitude of (�n; Bn); but it is relatively

small. There is noticeable sensitivity of the CP of the KS/Max CS to "; but less so for

the CvM/Max CS. There is relatively little sensitivity of CP�s to changes in the DGP

via changes in the regressor variances (of Xi;b;2 and Xi;b;3 for b = 1; 2) or a change in the

equilibrium selection rule to player 1 �rst.

The last two rows of Table VI provide results for estimators of the identi�ed set based

on CS�s with � = :5: The two CS�s considered are half-median unbiased. For example,

the CvM/Max-GMS/Asy CS with � = :5 covers the true value with probability :610;

which exceeds :5; when n = 500:

In conclusion, in the entry game model we prefer the CvM/Max-GMS/Asy CS over

other CS�s considered because of its the clear superiority in terms of FCP�s even though

it under-covers somewhat for large values of the competitive e¤ects vector �:

44The � values for which FCP�s are computed are given by �1 � :1 � sqrt(500=n) and �2 � :1 �
sqrt(500=n); where (�1; �2) is the true parameter vector.
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Table V. Entry Game Model: Test Statistic Comparisons for Di¤erent Competitive

E¤ects Parameters (�1; �2)

(a) Coverage Probabilities

Case Statistic: CvM/Sum CvM/QLR CvM/Max KS/Sum KS/QLR KS/Max

(�1; �2) = (0; 0) .979 .972 .980 .977 .975 .985

(�1; �2) = (1; 0) .961 .980 .965 .959 .983 .972

(�1; �2) = (1; 1) .961 .985 .961 .955 .985 .962

(�1; �2) = (2; 0) .935 .982 .935 .944 .984 .952

(�1; �2) = (2; 1) .943 .974 .940 .953 .987 .947

(�1; �2) = (3; 0) .921 .975 .915 .938 .935 .984

(�1; �2) = (2; 2) .928 .942 .913 .943 .972 .922

(�1; �2) = (3; 1) .928 .950 .918 .949 .973 .932

(b) False Coverage Probabilities (coverage probability corrected)

(�1; �2) = (0; 0) .76 .99 .59 .91 .99 .83

(�1; �2) = (1; 0) .60 .99 .42 .83 .66 .99

(�1; �2) = (1; 1) .62 .96 .41 .82 .99 .58

(�1; �2) = (2; 0) .51 .83 .35 .66 .96 .47

(�1; �2) = (2; 1) .57 .57 .38 .69 .82 .44

(�1; �2) = (3; 0) .49 .41 .36 .61 .43 .64

(�1; �2) = (2; 2) .59 .34 .39 .65 .42 .49

(�1; �2) = (3; 1) .57 .27 .39 .65 .47 .44

10.3.4 Entry Game Simulation Results II

Next, we compare the �nite-sample (CP-corrected) FCP�s of two CS�s introduced in

this paper with the FCP�s of three CS�s that do not exploit the moment inequalities.

Figure 2 graphs the FCP�s of the CvM/Max and KS/Max CS�s using the GMS/Asy

critical values (with the base case values of the tuning parameters). It also graphs

the FCP�s of the Wald, Lagrange multiplier, and likelihood ratio CS�s based on the

ML estimator that groups the outcomes (1; 0) and (0; 1) (which ignore the moment

inequalities). The sample size is n = 500 and the true values of (�1; �2) are (1; 1): The

horizontal axis in Figure 2 gives the distance between the true value of �1; i.e., �1;0 = 1;
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Table VI. Entry Game Model: Variations on the Base Case (�1; �2) = (1; 1)

(a) Coverage Probabilities (b) False Cov Probs (CPcor)

Statistic: CvM/Max KS/Max CvM/Max KS/Max

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case (n = 500; r1 = 3;" = 5=100) .961 .962 .41 .58
n = 250 .948 .963 .39 .56

n = 1000 .979 .968 .52 .65

r1 = 2 (20 cubes) .962 .956 .41 .55

r1 = 4 (120 cubes) .962 .964 .42 .59

(�n; Bn) = 1=2(�n;bc; Bn;bc) .954 .959 .39 .57

(�n; Bn) = 2(�n;bc; Bn;bc) .967 .962 .42 .58

" = 1=100 .926 .873 .32 .66

Reg�r Variances = 2 .964 .968 .54 .71

Reg�r Variances = 1/2 .963 .966 .29 .43

Player 1 First Eq Sel Rule .955 .957 .39 .57

� = :5 .610 .620 .05 .13

� = :5 & n = 1000 .695 .650 .06 .16

and the null value of �1; i.e., �1;null: The distance for the corresponding values of �2 is

taken to be the same.45

As �1;0 � �1;null increases, the FCP�s decrease for all CS�s, as expected. Figure 2

shows that the CS�s that exploit the moment inequalities have far better (lower) FCP�s.

Speci�cally, to obtain a FCP equal to p for any p in [0:75; 0:0]; the distance of a parameter

from the identi�ed set needs to be three times as far or farther when using the Wald,

LM, or LR CS as compared to the CvM/Max or KS/Max CS. Thus, we conclude that

the CS�s introduced here, which exploit the moment inequalities and equalities, are

noticeably superior to those that just employ the moment equalities.

45Hence, the Euclidean distance between points outside the identi�ed set and points on the boundary
of the identi�ed set are proportional to the distances on the horizontal axis in Figure 2.
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