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Abstract

Different markets are cleared by different types of prices—a uni-
versal price for all buyers and sellers in some markets, seller-specific
prices that are uniform across buyers in others, and personalized prices
tailored to both the buyer and the seller in yet others. We intro-
duce the notion of premuneration values—the values in the absence of
any muneration (payments)—created by the buyer-seller match. We
characterize the premuneration values under which uniform-price and
personalized-price equilibria agree. In this case, we have efficient al-
locations, including pre-match investment decisions, without the costs
of personalized pricing. We then examine the inefficiencies that arise
when the premuneration values preclude the agreement of uniform-
price and personalized-price equilibria. We view premuneration values
as an important consideration in market design.
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Pricing in Matching Markets

1 Introduction

Prices. Consider three people and the prices that clear their labor mar-
kets:

• Alice works in a daily spot market for casual, unskilled labor. A
prototypical job pays her a fixed sum to drive a truck to pick up
materials. This market is characterized by a single price, governing
the transactions in each buyer/seller pair.

• Carol is a senior executive with an Ivy League degree. She receives
job offers at quite different wages from various firms, each of which
has made offers to others at wages different than those offered Carol.

• Bob works as a tax preparer, bolstered by a degree from his local junior
college. He quotes the same hourly price to all of his clients, though
some other tax preparers and accountants charge different prices.

We refer to the prices faced by Alice as universal prices. These are the
prices typically shown in supply-and-demand diagrams in introductory texts.
Carol faces personalized prices that depend on both her characteristics and
those of her trading partner. Bob faces uniform prices that depend on the
characteristics of the agent posting the price but not those of the agent on
the other side of the transaction. Carol also faced personalized prices when
purchasing her education—elite universities offer scholarships to some, while
rejecting others who would pay full tuition. Bob faced uniform prices—
junior colleges and technical schools typically accept all applicants at their
posted prices.

Why do we see universal prices in some markets, uniform prices in oth-
ers, and personalized prices in yet others? What implications does the type
of pricing have for market outcomes? How are these prices linked to mar-
ket characteristics? This paper addresses these questions, concentrating on
uniform and personalized prices.

Premuneration values. An interaction between a buyer and seller en-
tails a cost or benefit to each side, generating a surplus if the sum of the
costs and benefits is positive. The surplus can be reallocated via a trans-
fer from one side to the other. The premuneration values (from the Latin
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munerare, to give or to pay) are the values to the parties prior to any trans-
fer. Understanding the nature of the surplus and the premuneration values
is key to understanding differences in pricing across markets.

The surplus in Alice’s market is reasonably modeled as the sum of two
terms, a negative premuneration value for Alice, reflecting her value of fore-
gone leisure, and a premuneration value for her employer reflecting the ben-
efits of having the materials delivered. Because Alice’s cost is independent
of the employer for whom she works, while the benefit to the employer is
independent of the individual who delivers the materials, there is no issue of
efficient matching in these markets. It matters that the right people trans-
act, but does not matter who transacts with whom. It is then no surprise
that a universal price clears the market.

The surpluses in Carol’s markets depend in a complementary fashion on
the agents on both sides of the market. Talented executives are likely to
be more productive when paired with productive firms than with mediocre
firms, and vice versa. Similarly, a good student fares especially well when
paired with a good school while the latter is especially effective when work-
ing with good students. Clearing such markets requires not only getting the
right people to transact, but also making sure that they transact with the
right partners. We might then expect to need the adaptability of personal-
ized prices.

Bob’s markets also exhibit complementarity. Even below the Fortune
500 and the Ivy League, there are gains from matching skilled professionals
with the right firms and good students with good schools. Then why do we
see uniform prices in Bob’s markets and personalized prices in Carol’s?

The prices required to clear the market depend upon the status quo given
by the premuneration values. Both Carol and her alma mater own some of
the surplus created in the match that gave Carol her education. Carol owns
her enhanced earning power, but the university owns the increment to its
ranking based on her superb SAT score, the increment to its prestige should
she become a Supreme Court Justice, and the increment to its endowment
should she become a wealthy donor. In her employment match, Carol’s
employer owns the revenue her services will generate, but she owns the
value of the contacts that she makes and the increase in the value of her
human capital stemming from working at this firm before starting her own
company. In contrast, Bob’s junior college anticipates no benefit from Bob
beyond his tuition, while Bob is indifferent over whose taxes he prepares, so
long as the client pays.
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Investments. To examine the connection between premuneration values
and prices, we consider a model in which buyers and sellers invest in at-
tributes prior to entering the market. Alice requires a commercial driver’s
license, Bob an associate’s degree in accounting, and Carol an MBA. On
the other side of the market, Carol’s employer makes complementary invest-
ments in capital and a client base, Bob’s clients develop their financial po-
sitions, and Alice’s employer undertakes the construction project for which
her delivered materials are to be used.

Once the agents are in the market, they are matched in pairs to create
surpluses that depend supermodularly on the attributes chosen by both
agents. In the absence of any transfers, the division of this surplus would
be determined by the agents’ premuneration values. Prices reallocate this
division to generate a final allocation.

Because the agents’ attributes are complements in the creation of sur-
plus, the efficient outcome once the agents have entered the market is
straightforward—agents should be matched positively assortatively—and
the frictionless matching process we examine will produce such an outcome.
It is less clear that the investment incentives created by this market will
lead to efficient attribute choices. We find that efficiency now hinges on
whether prices are personalized or uniform, and on how the individuals’
premuneration values depend on the party with whom they match.

When prices can be personalized, there exists an equilibrium in which
the resulting outcome is efficient, both in matching and ex ante investments.
Moreover, the equilibrium division of the surplus in this market is indepen-
dent of the agents’ premuneration values. It makes no difference to Carol,
both in terms of her match and her payoff, whether she owns all or none of
the surplus from the match. When prices are restricted to being uniform,
in contrast, efficient equilibria exist if and only if the premuneration values
on the side of the market setting prices are independent of the attributes of
the agents on the other side of the market (as is the case in Bob’s but not
Carol’s markets). Equivalently, if (and only if) this constant premuneration
value condition fails, the attributes of the agents with whom Bob matches,
as well as his payoff, depend critically on premuneration values, and there
are efficiency gains to be had from personalizing prices.

Our result is not simply that uniform prices suffice when the surplus
exhibits no complementarities (and hence the efficient outcome exhibits no
matching problem). Instead, it is that an efficient outcome, including both
investments and matching, can be supported by uniform prices even when
the surplus depends supermodularly on attribute choices and hence match-
ing is an issue, as long as the price-setter’s premuneration value does not
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depend on the price-setter’s match.

Why are prices important? In a world devoid of pricing frictions, per-
sonalized prices would be the norm and there would accordingly be little
reason to be concerned with premuneration values.1 But the world is not
frictionless. A seller posting personalized prices must ascertain potential
buyers’ attributes, a process that can be quite costly. For example, esti-
mates from 11 highly selective liberal arts colleges indicate that they spent
about $3, 000 on admissions per matriculating student in 2004.2 The cost
for identifying whether a high school diploma comes from a legitimate high
school is $100.3 There may thus be substantial savings from posting uni-
form prices and letting buyers sort themselves (as Bob’s clients do), if the
premuneration values are such that uniform prices can do this sorting. Al-
ternatively, if the premuneration values are such that uniform prices cannot
duplicate the allocation of personalized prices, and if transactions costs or
institutional considerations preclude personalized prices, then market out-
comes will be inefficient.4

1Our emphasis on premuneration values thus reflects no disagreement with Coase’s
(1960) observation that property rights would be irrelevant in a world without transactions
costs.

2Expenditures for the 11 colleges, all but one of which continually appear in the U. S.
News and World Report top 25 liberal arts colleges, were $370 per applicant for the 1995-
1996 admissions season. Publicly available data on subsequent expenditure growth rates
projects an expenditure of $625 per applicant in the 2004-2005 academic year. The 2002
admission rate for these schools was 34%. Coupling this with an estimated enrollment
rate of 60% yields a cost of $3000 per matriculating student. (Memorandum, Office of
Institutional Research and Analysis, University of Pennsylvania, July 2004. We thank
Barnie Lentz for his help with these data.)

3“Vetting Those Foreign College Applications,” New York Times, September 29, 2004,
page A21.

4For example, Bulow and Levin (2006) note that the National Residency Matching
Program matching medical residents and hospitals constrains hospitals to make the same
offers to all residents. They argue that the primary effect is not inefficient matching but a
transfer of surplus to the hospitals. However, Nicholson (2003) argues that the result is an
inefficient allocation of residents to specialties. Medical students who do their residency
acquire training that dramatically increases their future earnings. Nicholson argues that
this part of the surplus from the match (which is owned by the student) is so large in some
specialties (such as dermatology, general surgery, orthopedic surgery and radiology) that
if personalized prices were employed, medical students would pay hospitals handsomely
for the opportunity to do their residency in these specialities. This is as compared to their
stipend, which was $44,700 in 2007/8 (Association of American Medical College Survey
of Household Stipends, Benefits and Funding, Autumn 2007 Report).
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Designing markets. The premuneration values in a market can be de-
signed as part of the institutional and legal environment of the market. For
example, the match of researchers and universities generates a surplus that
includes the value of marketable patents from faculty research. Historically,
universities have owned these patents, but in principle another institutional
arrangement could grant them to the faculty. Indeed, the feasibility of such
ownership is reflected in the decisions of many universities to unilaterally
grant professors shares in the revenues from patents stemming from their
research. In a similar vein, one could arrange the premuneration values in
a university/student interaction so that the university owns all of the sur-
plus. This would require a somewhat unconventional arrangement in which
the university owns the future income of students to whom it gives degrees,
but income-contingent loans in a number of countries (including Australia,
Sweden and New Zealand) that effectively give the lender a share of stu-
dents’ future income (Johnstone, 2001) attest to the possibility of such an
arrangement.5

Our results suggest that appropriately designed premuneration values
can be valuable, allowing efficient equilibria to be supported by uniform
prices and hence avoiding the costs of personalized pricing or the costs of
inefficient uniform pricing. Unfortunately, there are often constraints on the
design of premuneration values. If universities owned students’ enhanced
future income streams, why would the students exert the effort required to
realized this future income? How are we to measure and collect the incre-
ment to income attributable to the university education?6 Such an arrange-
ment might also require changes in labor laws that preclude involuntary

5Basketball star Yao Ming (Houston Rockets) has a contract with the China Basketball
Association calling for 30% of his NBA earnings to be paid to the Chinese Basketball
Association (in which he played prior to joining the Rockets), while another 20% will go
to the Chinese government. Similar arrangements hold for Wang Zhizhi (Dallas Mavericks)
and Menk Bateer (Denver Nuggets and San Antonio Spurs). (See the Detroit News, April
26, 2002, http://www.detnews.com/2002/pistons/0204/27/sports-475199.htm/.) We can
view the initial match between Yao Ming and his Chinese team as producing a surplus
that includes the enhanced value of his earnings as a result of developing his basketball
skills. These contracts suggest that the premuneration values could be designed to assign
some future earnings to the team.

6Measurement and collection both pose difficulties. The University of New Mexico
sued a former researcher for rights to patents that he applied for four years after he had
left the university, arguing that the patents stemmed from research that he had done
before leaving. (“Universities Try to Keep Inventions From Going ‘Out the Back Door,’ ”
Chronicle of Higher Education, May 17, 2002.) In principle, the owner of the rights to a
song is entitled to a payment each time the song is played on the radio in a bar or health
club, but collection is impractical.
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servitude. More generally, laws concerning workplace safety, the (in)ability
to surrender legal rights, the division of marital assets and the custody and
sale of children may constrain the allocation of premuneration values. Our
analysis points to the cost of such constraints or institutional arrangements,
in the form of personalization costs or inefficient uniform pricing.

2 Premuneration Values

Our model is adapted from Cole, Mailath, and Postlewaite (2001). There
is a unit measure of buyers whose types are indexed by β and distributed
uniformly on [0, 1], and a unit measure of sellers whose types are indexed
by σ and distributed uniformly on [0, 1]. For ease of reference, the buyer is
female and seller male.

Buyers and sellers have an outside option (with payoff zero) that pre-
cludes participation in the matching process. If they do not take this option,
they make choices in two stages. First, buyers and sellers simultaneously
choose attributes. We denote the cost of attribute b ∈ R+ to buyer β by
cB(b, β) and the cost of attribute s ∈ R+ to seller σ by cS(s, σ).

Buyers and sellers match in the second stage. Matching and the resulting
division of the surplus is mediated through prices. A match between a buyer
and seller with attribute choices (b, s) at a price p yields a gross buyer payoff
of

hB(b, s)− p,

where hB(b, s) is the buyer premuneration value, and a gross seller payoff of

hS(b, s) + p,

where hS(b, s) is the seller premuneration value. The total surplus from the
match is given by

v(b, s) ≡ hB(b, s) + hS(b, s).

In the simplest buyer-seller problem with exogenous attributes, the seller’s
premuneration value is his cost and the buyer’s is her value.

Intuitively, one can think of sellers as posting prices in the second stage,
after which each buyer chooses a seller, with market clearing requiring that
each seller is matched with one buyer. Prices may be positive or negative.
The examples in Section 1 include cases in which prices were posted by those
relinquishing a good (educational services) as well as by those receiving a
good (labor services), each of whom would be designated the seller in our
model.
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Explicitly modeling the price formation process gives rise to a range
of technical issues that obfuscate the underlying economics. We make our
argument more transparent by adopting a Walrasian perspective. We ac-
cordingly directly define profitable deviations for buyers and sellers, with an
equilibrium being an outcome and pricing function admitting no profitable
deviations. The resulting definitions of equilibrium are Walrasian in spirit.

We are interested in two types of pricing. We say that pricing is uniform
if each seller posts a price at which any buyer is free to purchase, regardless
of that buyer’s attribute choice (though different sellers may set different
prices). Prices are personalized if sellers can charge different prices to buyers
with different attribute choices. Sellers may be forced to charge uniform
prices if they cannot observe buyers’ attribute choices, or if legal restrictions
preclude personalization, or if personalization is prohibitively expensive.7

We use the information-based motivation for uniform prices when developing
the model, while remembering that other factors may also lead to uniform
pricing.

Remark 1 (Productive Types) The surplus generated by a match in our
model depends only on the attendant attribute choices. In other cases, the
surplus might depend on the agents’ types as well as attribute choices. Har-
vard may care not only about an applicant’s accomplishments (attribute
choice), but also about the applicant’s “cost of acquiring” such accomplish-
ments (type). If a buyer’s attribute choice and type can be summarized
by a one-dimensional augmented attribute that enters the premuneration
values (replacing attribute choice), then we need only treat this augmented
attribute as the new “attribute choice” in order for our analysis to apply.
Personalized pricing is possible if this summary variable can be observed,
while our model of uniform pricing applies if it cannot. If sellers can observe
attribute choices but not types, but care about both (or only about types),
then attribute choices take on a dual role, directly enhancing the value of a
match while also providing signals of types. Cole, Mailath, and Postlewaite
(1995), Hopkins (forthcoming), and Hoppe, Moldovanu, and Sela (2009)
examine such models. �

Remark 2 (Directed Search) Our paper is related to the literature on
7For example, employers may be prohibited from discriminating against potential em-

ployees whose weight makes them a potentially expensive health risk. Alternatively, it
may be costless to use generic contract forms to offer a standard deal to every buyer who
appears, while tailoring offers to buyers’ characteristics may require a costly legal process.
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directed search, but incorporates prematch investments on both sides of the
market and heterogeneity of both firms and workers.8

Our personalized-price equilibrium, in which workers’ investments (at-
tributes) are observable, can be thought of as each firm posting a wage for
each possible worker attribute and each worker directing her search to the
firm for which matching is most profitable, resulting in a one-to-one match.
Our uniform-price equilibrium treats the case of unobservable (to firms) het-
erogeneity in workers’ attributes. In a uniform-price equilibrium, each firm
sets a single price and each worker applies to the (unique) firm for which
matching is most profitable, again resulting in a one-to-one match. �

3 An Example

Before introducing the formalities, we illustrate the economic forces at play
under personalized and uniform pricing in a simple, informal example.

The premuneration values are such that a fixed share θ ∈ (0, 1] of the
surplus goes to the buyer, so that

hB(b, s) = θbs and hS(b, s) = (1− θ)bs,

where the surplus function is given by

v(b, s) = bs,

and the cost functions by

cB(b, β) =
b3

3β
and cS(s, σ) =

s3

3σ
.

3.1 Efficient Outcome

Efficiency requires that for each matched pair β and σ, attribute choices b
and s solve

max
b,s

bs− b3

3β
− s3

3σ
,

giving first-order conditions

s− b2

β
= 0 and b− s2

σ
= 0.

8See Guerrieri, Shimer, and Wright (2009) and Peters (2009) for directed search models
with one-sided heterogeneity and asymmetric information.
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Efficiency also requires positive assortative matching in attribute (and
so index, since the cost functions guarantee that attribute choices will be
increasing in index). We can accordingly solve by setting σ = β, which in
turn implies s = b, giving the efficient attribute-choice functions

b(β) = β and s(σ) = σ.

3.2 Personalized Pricing

Suppose that sellers observe buyers’ attribute choices and so can personalize
their prices. We first show that if buyers and sellers optimize given the
personalized-price function

pP (b, s) =
s2

2
− (1− θ)bs, (1)

the result is a feasible and efficient outcome. Note that for any seller at-
tribute s, the price that a seller would receive in a match with a buyer with
attribute b is decreasing in b—higher values of b are more valuable, and
hence sellers are willing to charge less for them.

Given the pricing function (1), buyer β chooses a buyer attribute b and
a seller attribute s (i.e., chooses to match with a seller with that attribute)
to solve

max
b,s

θbs− s2

2
+ (1− θ)bs− b3

3β
= max

(b,s)
bs− s2

2
− b3

3β
.

Hence, buyer β chooses the attribute b = b(β) = β and chooses to match
with seller attribute s = b(β). The implied distribution of demanded seller
attributes is uniform on [0, 1].

When choosing an attribute s, the seller is selected by a buyer with
attribute b = b̃(s) = s. The seller σ thus solves

max
s

(1− θ)b̃(s)s+
s2

2
− (1− θ)b̃(s)s− s3

3σ
= max

s

s2

2
− s3

3σ
,

yielding the attribute choice s = s(σ) = σ. The implied distribution of
supplied seller attributes is uniform on [0, 1].

The resulting matching of buyers and sellers clears the seller attribute
market (in that the distributions of demanded and supplied seller attributes
agree) and the resulting outcome is efficient. It is straightforward to verify
that this is a personalized-price equilibrium as defined in Section 5.1 below.
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Equilibrium payoffs to the seller and buyer are

(s(σ))2

2
− (s(σ))3

3σ
=

σ2

2
− σ3

3σ
=

1
6
σ2

and
(b(β))2

2
− (b(β))3

3β
=

β2

2
− β3

3β
=

1
6
β2.

Note that the attribute-choice functions b and s, with the attendant
matching, are part of a personalized-price equilibrium irrespective of the
value of θ, with the personalized prices changing as θ varies. Moreover,
all such equilibria give the same payoffs. Hence, premuneration values are
irrelevant. It does not matter who “owns” the technology that combines
buyer and seller attribute choices to create the surplus when there is a
competitive market with personalized prices for the attributes.

3.3 Uniform Pricing Can Induce Efficient Outcomes

Suppose now that each seller cannot observe buyers’ chosen attributes, and
so must set a uniform price that depends only on his own attribute (which is
observable to buyers). Let pU (s) be the uniform-price function that attaches
to each seller attribute choice s the equilibrium price the seller receives in
the personalized-price equilibrium constructed above:

pU (s) = pP (b̃(s), s) =
s2

2
− (1− θ)b̃(s)s.

What would happen if buyers and sellers made optimal attribute choices,
given these prices? Suppose first that sellers own none of the surplus (i.e.,
θ = 1, and hence hS(b, s) = 0). In this case, facing prices pU (s) = s2/2,
buyers and sellers choose precisely the attributes they chose in the person-
alized price case above. The result is an efficient outcome, identical to the
personalized-price equilibrium outcome. Consequently, no seller would gain
by personalizing his price even if he could. In this case, the ability to per-
sonalize prices is irrelevant. Proposition 1 below shows that this is not a
coincidence, being an implication of the property dhS(b, s)/db = 0.

On the other hand, when θ > 1, as we show in the next subsection, pU
is not part of a uniform-price equilibrium.
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3.4 Uniform Pricing Need Not Induce Efficient Outcomes

For general θ, under uniform pricing, buyer β chooses a buyer attribute b
and a seller attribute s to solve

max
b,s

θbs− pU (s)− b3

3β
.

Assuming pU is differentiable, the first-order conditions are

θs− b2

β
= 0

and θb− p′U (s) = 0.

When choosing an attribute s, the seller is selected by a buyer with attribute
b = b̃(s). The seller σ thus solves

max
s

(1− θ)b̃(s)s+ pU (s)− s3

3σ
,

implying (assuming b̃ is differentiable) the first-order condition

(1− θ)[b̃′(s)s+ b̃(s)] + p′U (s)− s2

σ
= 0.

We can then solve for the equilibrium attribute-choice functions b(β) and
s(σ), the uniform price function pU (s), and the matching function b̃(s) iden-
tifying the buyer attribute b = b̃(s) matched with a seller who chooses
attribute s, finding9

9To solve, we conjecture that the equilibrium attribute-choice functions are given by
the linear functions

b(β) = Aβ (2)

and s(σ) = Bσ. (3)

Then, assuming that in equilibrium, a buyer of type β matches with seller of type σ = β,
we have b̃(s) = As/B. Using this, we rewrite the buyer’s second first-order condition as
θAs/B − p′U (s) = 0 and solve for the price function

pU (s) =
θA

2B
s2.

The requirement that low index traders be willing to participate in the market implies
that the constant of integration equals 0. Similarly, we rewrite the buyer’s first first-order
condition as θBb/A− b2/β = 0 and solve for b, yielding

b =
θB

A
β. (4)
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b(β) = θ
2
3 (2− θ)

1
3β,

s(σ) = θ
1
3 (2− θ)

2
3σ,

pU (s) =
θ

2

(
θ

2− θ

)1/3

s2,

and b̃(s) =
(

θ

2− θ

)1/3

s.

The result is a uniform-price equilibrium (defined in Section 5.2 below).
When θ = 1, this uniform-price equilibrium is efficient. In this case, as

we noted in Section 3.3, the uniform-price equilibrium choices are the same
as in the personalized-price equilibrium. There is then no need to personalize
prices. Notice that in this case the seller’s premuneration value is zero—the
seller owns none of the surplus—and consequently is obviously independent
of the attribute of buyer with whom the seller matches. Conversely, when
θ < 1, the uniform-price equilibrium is both inefficient and not the outcome
of a personalize-price equilibrium.10

Turning to the seller, we write the first-order condition as 2(1−θ)As/B+θAs/B−s2/σ = 0
and solve for s,

s =
(2− θ)A

B
σ. (5)

Combining (2) with (4) and (3) with (5), we solve for A = θ
2
3 (2−θ)

1
3 and B = θ

1
3 (2−θ)

2
3 ,

giving the result.
10Consider a buyer and seller with the same attribute choice x. Since this pair is not

matched (given θ < 1), if the sum of the buyer and seller equilibrium payoffs is less than
x2, then the buyer and seller in question could do better matching with each other, and so
the outcome is inconsistent with personalized pricing (by Lemma 7). The sum of payoffs
is

(1− θ)b̃(x)x+pU (x) + θs̃(x)x− pU (s̃(x))

= (1− θ)
(

θ

2− θ

) 1
3

x2 +
θ

2

(
θ

2− θ

) 1
3

x2

+ θ

(
2− θ
θ

)
x2 − θ

2

(
θ

2− θ

) 1
3
(

2− θ
θ

) 2
3

x2

=
1

2

[
(2− θ)

2
3 θ

1
3 + (2− θ)

1
3 θ

2
3

]
x2.

The coefficient of x2 can be bounded as follows:

1

2
[(2− θ)

2
3 θ

1
3 + (2− θ)

1
3 θ

2
3 ] = (2− θ)

1
3 θ

1
3

1

2
[(2− θ)

1
3 + θ

1
3 ] <

1

2
[(2− θ)

1
3 + θ

1
3 ] < 1,

where the first inequality follows from (2−θ)θ < 1 and the second from Hardy, Littlewood,
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3.5 Premuneration Values and Inefficiency

Recall that the personalized-price equilibrium outcome (which duplicates
the uniform-price equilibrium outcome for θ = 1) is independent of θ.

In the personalized-price equilibrium, the buyer’s equilibrium attribute
choice is b(β) = β. Buyer attributes in the uniform-price equilibria are again
a linear function of the buyer’s index, with slope θ2/3(2− θ)1/3. This slope
is below 1 for all θ < 1, that is, buyers’ investments are lower than in the
(efficient) personalized-price equilibrium. The inability to personalize prices
prevents sellers from offering buyers lower prices in return for higher buyer
attributes. As a result, buyers receive a lower return on their investment
under uniform pricing, and so choose lower attributes.

The magnitude of the inefficiency decreases as θ increases. The smaller
the buyers’ premuneration values, the larger the extent to which their at-
tribute choices fall short of efficient levels.

The sellers’ attribute choice in the uniform-price equilibrium is similarly
a linear function of index, with slope θ1/3(2 − θ)2/3. Since this exceeds the
buyer coefficient, buyers choose smaller attributes than sellers, with buyers
of attribute choice level b matching with values s > b.

Perhaps surprisingly, the sellers’ investment behavior is not monotonic
in θ, as illustrated in Figure 1. For low levels of θ—when the sellers’ share
of the surplus is near 1—sellers invest very little. This is to be expected
since the value of their investment depends on buyers’ investment, which is
low in this case. The slope of the seller attribute-choice function initially
increases in θ, a consequence of the increase in buyers’ attribute choices and
the increase in the price a seller attribute fetches. When θ ≈ .38, sellers make
precisely the attribute choices under uniform pricing that they would under
personalized pricing. The equilibrium is still inefficient, however, as buyers
invest too little. For larger values of θ, uniform pricing leads sellers to invest
more than they do in the (efficient) case that prices can be personalized.

To understand this seller behavior, notice that a seller would like to
screen the buyers to whom he sellers, but the inability to personalize prices
precludes doing so directly. The key to screening buyers is that high-
attribute buyers have a higher willingness to pay for high-attribute sellers
than do low-attribute buyers. Sellers then have an incentive to choose higher
attributes (than when they can personalize prices) and charge higher prices.
As θ increases, buyer attribute choices increase, making screening all the
more valuable to sellers. As a result, seller attribute choices continue to
increase above their efficient levels as θ increases above .38.

and Pólya (1952, §2.9, Theorem 16). Hence, the sum of payoffs is less than x2, as required.
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Figure 1: Uniform-price equilibrium attribute choices as a function of θ, the
buyers’ premuneration-value share of the surplus. The lower curved line is
the coefficient of the (linear) buyer attribute-choice function, while the upper
curved line is that of the seller attribute-choice function. Both coefficients
are 1 in the personalized-price equilibrium.

Once θ reaches 2/3, sellers’ attribute choices no longer increase (though
seller attribute choices remain above efficient levels). Buyers’ attribute
choices continue to increase as θ increases, but the decreasing share that
sellers receive makes screening less valuable, and hence investment less at-
tractive.

Sellers’ incentives to screen buyers lead not only to attribute choices
that exceed the efficient investments of personalized pricing, but also to
attribute choices that are inefficiently high given the buyers’ (inefficiently
low, compared to personalized pricing) attribute choices, for all θ < 1. In
equilibrium seller σ is matched with buyer β = σ, who makes attribute
choice θ2/3(2 − θ)1/3σ. The socially optimal attribute choice for seller σ
then solves

max
s
sθ2/3(2− θ)1/3 − s3

3σ
.

The solution to this problem is
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s(σ) = σθ1/3(2− θ)1/6,

smaller than the seller’s equilibrium attribute choice (σθ1/3(2− θ)1/3).
A natural conjecture is that sellers are necessarily disadvantaged by the

inability to personalize prices. The seller’s equilibrium payoff in the uniform-
price equilibrium is given by

(1− θ)b̃(s(σ))s(σ) + pU (s(σ))− (s(σ))3

3σ
=

1
6
θ(2− θ)2σ2.

When θ = 1, this duplicates the payoff from the personalized-price equilib-
rium. For θ for which sellers’ attributes exceed the personalized price level,
every seller actually earns a higher payoff under the uniform-price equi-
librium. This higher payoff results from the higher prices that buyers are
willing to pay for the higher attributes chosen by sellers when they cannot
personalize prices.

Why don’t we see such higher prices under personalized pricing? Sup-
pose that given a uniform-price equilibrium, a single seller had the ability to
personalize prices. Such a seller could profitably reduce his attribute choice
and the price at which he trades, using personalization to exclude the un-
desirable buyers that render such a deviation unprofitable under uniform
pricing.

Similarly, the buyer’s payoff is

θs̃(b(β))− pU (s̃(b(β)))− (b(β))3

3β
=

1
6
θ2(2− θ)β2.

This payoff is always smaller under the uniform than personalized-price equi-
librium.

Remark 3 (Who Should Set Prices?) When θ = 0, so the seller owns
all of the surplus, the equilibrium collapses into the trivial equilibrium in
which no surplus is generated. In this case, a buyer’s payoff is solely the price
pU , which will have to be negative in order to bring buyers into the market,
and buyers will choose the seller posting the smallest (“largest negative”)
price. Because sellers cannot condition prices on buyer attribute choice,
every buyer will choose b = 0 in equilibrium. Similarly, when θ is positive
but small, the equilibrium is markedly inefficient, featuring tiny attribute
choices. This is an indication that the wrong side of the market is set-
ting prices. Suppose personalization by a price setter is precluded for some
reason other than informational asymmetries (such as legal restrictions or
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transaction costs), but that an alternative market design would allow buyers
to post uniform prices (i.e., prices that only depend on buyer attributes).
While it is more efficient for sellers to be the price setters for large θ, it
would be more efficient to have buyers post prices when θ is small. �

4 The Matching Market

We now turn to the formal analysis of the general model, beginning with
the assumptions of the model.

Assumption 1 (Supermodularity) The premuneration values hB : R+×
R+ → R and hS : R+ × R+ → R are C2, increasing in b and s, and satisfy

∂2hB
∂b∂s

> 0 and
∂2hS
∂b∂s

≥ 0.

Suppose, for example, the premuneration values constitute fixed shares
of the surplus, or hB(b, s) = θv(b, s) and hS(b, s) = (1−θ)v(b, s) for some θ ∈
(0, 1]. Then if the surplus function v : R+×R+ → R is (twice continuously)
differentiable, increasing in b and s, and strictly supermodular (∂2v/∂b∂s >
0), these premuneration values satisfy Assumption 1.

Assumption 2 (Essentiality) For all s, hB(0, s) and hS(0, s) are con-
stant in s, with

hB(0, s) + hS(0, s) ≤ 0.

Assumption 2 requires that a positive buyer attribute is essential to the
match. The asymmetric treatments of buyers and sellers in Assumptions 1
and 2 anticipate asymmetries arising out of the fact that sellers post prices.
Assumption 2 simplifies the discussion of matching (in its absence, we can-
not rule out zero attribute buyers matching with positive attribute sellers,
precluding the simple formulation of matching that we use).

Assumption 3 (Single-crossing) The cost function cB : R+×[0, 1]→ R+

is C2, strictly increasing and convex in b, with cB(0, β) = 0 = ∂cB(0, β)/∂b
and

∂2cB
∂b∂β

< 0.

The cost function cS satisfies analogous conditions.
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Assumption 4 (Boundedness) There exists b̄ such that for all b > b̄,
s ∈ R+, β ∈ [0, 1] and σ ∈ [0, 1],

v(b, s)− cB(b, β)− cS(s, σ) < 0.

A similar statement, with an analogous s̄, applies to sellers.

Assumption 5 (Nontriviality) For every β = σ ≡ φ ∈ (0, 1], there exists
(b, s) ∈ [0, b̄]× [0, s̄] with v(b, s)− cB(b, φ)− cS(s, φ) > 0.

There is always an equilibrium in which every agent chooses the outside
option—it does not pay to be the only one in the market. We consider only
equilibria where everyone enters the market. While our notation ignores the
outside option, our optimality conditions guarantee that the outside option
is not strictly profitable. At the same time, we allow the possibility that
many or all types of agents pile up on the zero-cost zero attribute, and
present conditions ensuring the existence of equilibria in which this does not
happen.

We denote by b : [0, 1] → [0, b̄] and s : [0, 1] → [0, s̄] the Lebesgue-
measurable functions describing the attributes chosen by buyers and sellers.
We assume the matching between buyer and seller attribute choices depends
only on the distribution of such choices in the market.

Our first task is to define feasible matchings between buyers and sellers.
We denote by B and S the closures of the sets of attributes chosen by buyers
and sellers respectively, B ≡ cl(b([0, 1])) and S ≡ cl(s([0, 1])), and refer to B
and S as the sets of attributes in the market. Let λB and λS be the measures
induced on B and S by the agents’ attribute choices: for (Borel) sets B′ ⊂ B
and S ′ ⊂ S,

λB(B′) = λ{β ∈ [0, 1] : b(β) ∈ B′}
and λS(S ′) = λ{σ ∈ [0, 1] : s(σ) ∈ S ′},

where λ is Lebesgue measure.

Definition 1 Suppose b and s are strictly increasing when positive, i.e.,
b(β) > 0 and β′ > β imply b(β′) > b(β) (and similarly for s). Suppose
also that σ ≡ sup{σ : s(σ) = 0} = sup{β : b(β) = 0} ≡ β. A feasible
matching is a pair of measure-preserving functions b̃ : (S, λS) → (B, λB)
and s̃ : (B, λB)→ (S, λS) satisfying

s̃(b̃(s)) = s for all s ∈ s((σ, 1]), (6)

and b̃(s̃(b)) = b for all b ∈ b((β, 1]). (7)
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Observe that equations (6) and (7) imply that s̃ is one-to-one on b((β, 1])
and b̃ is one-to-one on s((σ, 1]).

Remark 4 (Feasible Matchings) We simplify the analysis by restrict-
ing attention to attribute-choice functions that are strictly increasing when
positive and that assign equal masses of buyers and sellers to zero attribute
choices (β = σ). We show that equilibria exist having these properties, as do
our examples. We could define feasible matchings more generally, but at the
cost of considerable technical complication. In particular, our requirements
imply that the measure λB is atomless on ((β, 1]) and the measure λS is
atomless on ((σ, 1]) and that these sets have equal measure, allowing us to
restrict attention to matchings that are one-to-one on these sets.

We further simplify the analysis by defining the matching functions b̃
and s̃ on the closures S and B of the sets of chosen attributes. In many
cases of interest, efficient attribute-choice functions are discontinuous (see
Cole, Mailath, and Postlewaite (2001, Section 2) for an example). Since
the sets B and S are the closures of the sets of attribute choices, a seller σ
(with attribute choice s(σ)) may be matched with a buyer attribute choice
b that is not chosen by any buyer. We interpret such a seller as matching
with a buyer whose attribute choice is arbitrarily close to b, while saying
that s(σ) matches with b. Defining feasible matchings on either the agents
directly or on the sets of attributes (rather than their closures) avoids this
interpretation, at the cost of requiring the equivalent but more complicated
formulation used in Cole, Mailath, and Postlewaite (2001).

The measure-preserving requirement on b̃ ensures that the measure of
any set of sellers is equal to the measure of the set of buyers with whom they
are matched, i.e., λB(b̃(S ′)) = λS(S ′) for all Borel S ′ ⊂ S (and similarly for
s̃). �

Definition 2 A feasible outcome (b, s, b̃, s̃) is a pair of attribute-choice
functions b and s that are strictly increasing when positive and satisfy σ = β,
along with a feasible matching (b̃, s̃).

Given a feasible matching (b̃, s̃), b̃(s) specifies the buyer attribute matched
to a seller with attribute s, and s̃(b) specifies the seller attribute matched
to a buyer with attribute b.
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5 Equilibrium

5.1 Personalized Pricing

To capture investment incentives, we must model the rewards agents would
receive if they chose a “surprise” attribute, i.e., an attribute that is not
chosen in equilibrium. In the example in Section 3, we avoided this issue
by pricing all matches, in order to focus on the incentives for matching and
screening buyers.11 In general, invoking the existence of prices for nonex-
istent attribute choices precludes serious consideration of important issues
such as how markets coordinate behavior, and so we now confront this issue
directly.

A personalized-price function is a function pP : B×S → R; where pP (b, s)
is the (possibly negative) price that seller with attribute choice s ∈ S re-
ceives when selling to a buyer with attribute choice b ∈ B. We emphasize
that a personalized-price function prices only matches between chosen at-
tributes. Informally, a personalized-price equilibrium is a feasible outcome
and a personalized-price function such that no agent has an incentive to
deviate from the behavior specified by the feasible outcome.

Given a feasible outcome (b, s, b̃, s̃) and a personalized price pP , the
payoffs to a buyer β who chooses b ∈ B and to a seller σ who chooses s ∈ S
are given by

ΠB(b, β) ≡ hB(b, s̃(b))− pP (b, s̃(b))− cB(b, β)

and ΠS(s, σ) ≡ hS(b̃(s), s) + pP (b̃(s), s)− cS(s, σ).

We introduce a standard notion of price-taking behavior:

Definition 3 Given a feasible outcome (b, s, b̃, s̃), buyer β is a price taker
under pP if

(b(β), s̃(b(β))) ∈ arg max
(b,s)∈B×S

hB(b, s)− pP (b, s)− cB(b, β). (8)

Seller σ is a price taker under pP if

(b̃(s(σ)), s(σ)) ∈ arg max
(b,s)∈B×S

hS(b, s) + pP (b, s)− cS(s, σ). (9)

As a special case, seller σ always has the option of selecting the attribute
chosen by some seller σ̂, in the process replacing the buyer with whom σ is

11Such pricing is called complete in Definition 10 below.
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matched with σ̂’s buyer b̃(σ̂) and altering the price σ receives. Condition (9)
requires that this be unprofitable: ΠS(s(σ), σ) ≥ hS(b̃(s), s) + pP (b̃(s), s)−
cS(s, σ) for all s ∈ S. A similar comment applies, of course, to buyers. More
generally, condition (9) requires that no seller σ find it profitable to select
the attribute chosen by some seller σ̂ and then to sell to some buyer b other
than b̃(σ̂) at the appropriate equilibrium personalized price.

Since the personalized-price function pP prices only pairs of chosen at-
tributes, it remains to specify what price (if any) the seller will receive, or
indeed with whom the seller will be matched, should he choose an attribute
not chosen by any other seller. Our notion of equilibrium requires that there
exist no chosen buyer attribute for which the surplus the buyer and seller
would then generate could be divided between them so as to make both
better off:

Definition 4 Given (b, s, b̃, s̃, pP ), there is a profitable seller deviation if
there exists a seller σ such that either ΠS(s(σ), σ) < 0 or there exist a seller
attribute choice s ∈ [0, s̄], a (chosen) buyer attribute b ∈ B, and a price
p ∈ R such that

hB(b, s̃(b))− pP (b, s̃(b)) < hB(b, s)− p (10)
and ΠS(s(σ), σ) < hS(b, s) + p− cS(s, σ). (11)

If ΠS(s(σ), σ) < 0, the outside option is better for the seller. If ΠS(s(σ), σ)
≥ 0, a seller has a profitable deviation when he is able to attract a buyer
attribute b (condition (10)) that yields him a higher payoff than had he fol-
lowed the behavior prescribed by the given outcome (condition (11)). This
latter deviation involves targeting a particular buyer attribute. As such,
it should be distinguished from the seller deviation under uniform pricing
introduced in Definition 8 below (where no such targeting is possible).

The definition of a buyer’s profitable deviation is similar:

Definition 5 Given (b, s, b̃, s̃, pP ), there is a profitable buyer deviation if
there exists a buyer β such that either ΠB(b(β), β) < 0 or there exist a
buyer attribute choice b ∈ [0, b̄], a (chosen) seller attribute s ∈ S, and a
price p ∈ R such that

ΠB(b(β), β) < hB(b, s)− p− cB(b, β)

and hS(b̃(s), s) + pP (b̃(s), s) < hS(b, s) + p.

We then have the following definition of personalized-price equilibrium:
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Definition 6 A feasible outcome (b, s, b̃, s̃) and a personalized-price func-
tion pP constitute a personalized-price equilibrium if all buyers and sellers
are price takers under pP and no buyer or seller has a profitable deviation.

The notions of price taking (Definition 3) and profitable deviation (De-
finitions 4 and 5) are distinct but related. In particular, Definitions 4 and
5 imply price-taking behavior for the special case mentioned just after Def-
inition 3, in which a seller σ chooses a seller attribute s ∈ S, s 6= s(σ), that
is, an attribute that already exists in the market, and then trades with the
buyer matched to that attribute (b̃(s)) at price pP (b̃(s), s). If matching with
that buyer attribute at the market price yields a higher net payoff to seller
σ, then the seller has a profitable deviation: the same attribute choice s and
buyer b̃(s) at price pP (b̃(s), s)− ε, for sufficiently small ε > 0 satisfies (10),
while also satisfying (11). Hence, we immediately have the following result,
that the absence of profitable deviations ensures that no seller (or buyer)
would prefer to mimic that actions of another type of seller (or buyer):

Lemma 1 Given (b, s, b̃, s̃, pP ), if there exists σ ∈ [0, 1] and s ∈ S such that
ΠS(s(σ), σ) < hS(b̃(s), s)+pP (b̃(s), s)−cS(s, σ), then seller σ has a profitable
deviation. If there exists β ∈ [0, 1] and b ∈ B such that ΠB(b(β), β) <
hB(b, s̃(b)) + pP (b, s̃(b))− cB(b, β), then buyer β has a profitable deviation.

In the following lemma, we show that if there is a feasible outcome and
personalized-price function such that there do not exist profitable devia-
tions for any buyer or seller, the price function can be extended to unchosen
attributes so that the seller is indifferent over buyer attributes. This fa-
cilitates comparisons with uniform pricing (see Definition 7 below). Under
the extended price function, one can think of the seller as choosing only his
attribute s ∈ S to maximize hS(b̃(s), s) + p̂P (b̃(s), s) − cS(s, σ), while the
buyer acts as a price taker in her choice of attribute and seller attribute
with which to match (see (8)). The result is symmetric: a price function
that makes the buyer indifferent over all seller attributes is consistent with
an equilibrium in which the buyer chooses her attribute (with the matching
function determining her matched attribute) and the seller chooses pairs of
attributes.

Lemma 2 Suppose (b, s, b̃, s̃, ) is feasible and (b, s, b̃, s̃, pP ) admits no seller
or buyer profitable deviations. Then (b, s, b̃, s̃, p̂P ) is a personalized-price
equilibrium, where p̂P is the personalized-price function given by

p̂P (b, s) = pP (b̃(s), s) + hS(b̃(s), s)− hS(b, s), ∀(b, s) ∈ B × S. (12)
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Moreover, under p̂P , the seller is indifferent over all buyer attributes.

Proof. Seller indifference is immediate. Lemma 1 then implies that the
seller is a price taker under p̂P .

We then need show only that the buyer is a price taker. Suppose (8) fails
at some β. Then, for some (b, s) ∈ B × S and for sufficiently small ε > 0,

hB(b, s)− (p̂P (b, s) + ε)− cB(s, β) > ΠB(b(β), β).

Since no buyer has a profitable deviation,

hS(b̃(s), s) + p̂P (b̃(s), s) ≥ hS(b, s) + p̂P (b, s) + ε.

But this, with (12), yields a contradiction.

Remark 5 (Premuneration Values) Since personalized prices can com-
pensate for any alterations of the division of v(b, s), the decomposition of the
surplus v(b, s) between the buyer’s and seller’s premuneration values plays
no role in the characterization of a personalized-price equilibrium outcome.
The following is a straightforward calculation.

Lemma 3 Let (b, s, b̃, s̃, pP ) be a personalized-price equilibrium, with pre-
muneration values hB(b, s) and hS(b, s). Then (b, s, b̃, s̃, p′P ) is a personalized-
price equilibrium, with premuneration values h′B(b, s) and h′S(b, s), where

p′P (b, s) = pP (b, s) + h′B(b, s)− hB(b, s) = pP (b, s) + hS(b, s)− h′S(b, s).

�

Remark 6 (Ex Post Contracting Equilibrium) Cole, Mailath, and
Postlewaite (2001) study a continuum of buyers and sellers who first simul-
taneously choose attributes (as here), and then match and bargain to divide
the resulting surplus v(b, s), with the matching/bargaining stage being mod-
eled as a cooperative game (more specifically, an assignment game). An ex
post contracting equilibrium in Cole, Mailath, and Postlewaite (2001) is a
Nash equilibrium of the noncooperative attribute-choice game, where the
payoffs from the attribute choices are determined by stable (equivalently,
core) allocations in the induced assignment game.12 Technical differences

12Consequently, matching is over buyers and sellers, not attributes as here. This differ-
ence results in some technical complications.
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between Cole, Mailath, and Postlewaite (2001) and the model here prevent
a simple formal statement of the precise relationship between ex post con-
tracting equilibrium and personalized-price equilibrium. However, the set of
outcomes and implied payoffs are essentially the same under the two notions.
In particular, if all buyers and sellers are price takers under (b, s, b̃, s̃, pP ),
then no buyer-seller pair with attributes (b, s) ∈ B × S can block the equi-
librium. Moreover, a seller σ has a profitable deviation if and only if there
is a blocking pair consisting of that seller (with some attribute s) and some
buyer with an attribute b ∈ B. An analogous comment applies to buyers.

�

5.2 Uniform Pricing

We now consider the case in which sellers cannot set personalized prices. If
unable to observe buyers’ attributes, for example, a seller posts a price that
can depend on his own attribute choice, but not on the buyer’s attribute
choice. Such a price function is a uniform-price function pU : S → R.

Given a feasible outcome (b, s, b̃, s̃) and a uniform price pU the payoffs
to a buyer β who chooses b ∈ B and a seller σ who chooses s ∈ S are as
before:

ΠB(b, β) ≡ hB(b, s̃(b))− pU (s̃(b))− cB(b, β)

and ΠS(s, σ) ≡ hS(b̃(s), s) + pU (s)− cS(s, σ).

Under uniform pricing sellers cannot condition on buyer attributes. Con-
sequently, sellers choose only their own attributes, while buyers can choose
any seller attribute regardless of their own attribute choice.

Definition 7 Given a feasible outcome (b, s, b̃, s̃), buyer β is a price taker
under pU if

ΠB(b(β), β) = max
(b,s)∈R+×S

hB(b, s)− pU (s)− cB(b, β). (13)

Seller σ is a price taker under pU if

ΠS(s(σ), σ) = max
s∈S

ΠS(s, σ). (14)

As with personalized-price equilibria, we need to address seller devia-
tions to attributes not in S (but need not separately consider corresponding
buyer deviations, since sellers cannot condition on buyers’ attribute choices).
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Because sellers cannot observe buyers’ attributes, however, a seller cannot
choose an attribute s and a price p targeted at a particular buyer attribute b.
Instead, the attribute s and price p may attract a range of buyer attributes.
The following definition requires that the seller’s deviation to (s, p) be prof-
itable independently of the buyer attracted. Alternatives to this definition
are discussed in Remark 7 below.

Definition 8 Given (b, s, b̃, s̃, pU ), there is a profitable seller deviation if
there exists σ and either ΠS(s(σ), σ) < 0 or there exists s′ and a price p ∈ R
such that there exists b′ ∈ B with

hB(b′, s̃(b′))− pU (s̃(b′)) < hB(b′, s′)− p,

and for all b′′ ∈ B,

if hB(b′′, s̃(b′′))− pU (s̃(b′′)) < hB(b′′, s′)− p
then ΠS(s(σ), σ) < hS(b′′, s′) + p− cS(s′, σ).

If a seller has no profitable deviations (and if buyers are price takers
under pU ), then that seller is also a price taker under pU . This result is
stronger than Lemma 1, but the proof is more involved. Under personalized
pricing, any seller who envied another seller’s transaction could simply offer
a slightly lower price to the target buyer, making both the given seller and
the target buyer better off, with the ability to personalize prices ensuring
that the seller need not be concerned with other buyers. This immediately
ensures that a seller without profitable deviations cannot envy the actions of
another seller. Under uniform pricing, a seller cannot target a given buyer
in this way under. Instead, a seller who mimicked the attribute selection
of another seller while undercutting his price attracts not only the buyer
matched with the target seller but also buyers with lower attributes, making
the mimicking behavior less profitable. Appendix A proves:

Lemma 4 Suppose the feasible outcome (b, s, b̃, s̃) and uniform price pU
satisfy (13). If seller σ has no profitable deviations, then he is a price taker
under pU .

Definition 9 A feasible outcome (b, s, b̃, s̃) and a uniform-price function pU
constitute a uniform-price equilibrium if all buyers are price takers under
pU and no seller has a profitable deviation.
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Remark 7 (Profitable Deviations) A seller is defined to have a prof-
itable deviation under uniform pricing only if he is better off when matched
with any buyer who is attracted to the deviation. Why make sellers so pes-
simistic? One could alternatively think of requiring only that the seller be
better off given a random draw from the set of attracted buyers, or given
the seller’s most-preferred buyer from this set. Allowing the seller to select
his most preferred buyer essentially restores the ability to personalize prices
(Lemma 6 below makes this connection precise) so that some pessimism is
essential if uniform and personalized pricing are to give different outcomes.
A more pessimistic formulation makes seller deviations less attractive and
hence enlarges the set of uniform-price equilibria. Our key results (Propo-
sitions 1 and 2), establishing conditions under which personalized-price and
uniform-price equilibria coincide, and under which uniform-price equilibria
must be inefficient, are rendered more powerful by such a permissive defini-
tion of the latter. �

5.3 Allocating Buyers and Sellers

The single-crossing assumptions on the premuneration values naturally lead
to positive assortative matching in equilibrium.

Lemma 5
5.1 In any personalized-price equilibrium (b, s, b̃, s̃, pP ), b̃ and s̃ are strictly

increasing for strictly positive attributes.
5.2 In any uniform-price equilibrium (b, s, b̃, s̃, pU ), b̃ and s̃ are strictly

increasing for strictly positive attributes.

Proof. (1) We consider only b̃ (since s̃ is almost identical). Suppose b̃ is not
strictly increasing. Since b̃ is one-to-one on s((σ, 1]) (see Definition 1 and its
following comment), there exists 0 < s1 < s2 with b1 ≡ b̃(s1) > b̃(s2) ≡ b2.
From (8) for the buyer choosing b1 and from (9) for the seller choosing s2,
we have

hB(b1, s1)− pP (b1, s1) ≥ hB(b1, s2)− pP (b1, s2)
and hS(b2, s2) + pP (b2, s2) ≥ hS(b1, s2) + pP (b1, s2),

and so

hB(b1, s1) + hS(b2, s2)− pP (b1, s1) + pP (b2, s2) ≥ v(b1, s2).
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Adding this to the analogous inequality obtained from (8) for the buyer
choosing b2 and from (9) for the seller choosing s1, we obtain

v(b1, s1) + v(b2, s2) ≥ v(b1, s2) + v(b2, s1).

But Assumption 1 requires the reverse (strict) inequality, a contradiction.
(2) The argument is similar, though simpler since under uniform pricing

it follows from the supermodularity of hB alone and (13). Using the same
notation, adding

hB(b1, s1)− pU (s1) ≥ hB(b1, s2)− pU (s2)

and
hB(b2, s2)− pU (s2) ≥ hB(b2, s1)− pU (s1)

gives
hB(b1, s1) + hB(b2, s2) ≥ hB(b1, s2) + hB(b2, s1),

a contradiction.

Remark 8 (Exclusion) Personalized prices allow a seller to accept some
buyers while excluding others who would be willing to pay the same price.
What is important to the seller is the ability to exclude buyers with lower
attribute choices than the seller’s equilibrium match. This exclusion can be
implemented via appropriate pricing. In particular, by charging a sufficiently
high price to specific buyer attribute choices, a seller can ensure that buyers
with those attributes will chose not to buy. We denote this sufficiently high
price by P . A personalized-price function pP is a uniform-rationing price if
it has the form

pP (b, s) =

{
pUR(s), ∀b ≥ b†(s),
P, otherwise,

for some pUR : S → R+ and b† : S → B. Under uniform-rationing pricing, a
seller with attribute choice s sets a uniform price p(s) = pUR(s), but then
excludes any buyers with b < b†(s). Given a personalized-price specification
(b, s, b̃, s̃, pP ), its associated uniform-rationing price is given by pUR(s) =
pP (b̃(s), s) and b†(s) = b̃(s) for all s ∈ S. A personalized-price equilibrium
outcome that can be supported by a uniform-rationing price is a uniform-
rationing equilibrium outcome.

Lemma 6 Any personalized-price equilibrium outcome is a uniform-rationing
equilibrium outcome.
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Proof. Let (b, s, b̃, s̃) be a personalized-price equilibrium outcome and con-
sider its associated uniform-rationing price. The conditions for the latter
to be a personalized-price equilibrium are implied by the former, with the
exception that there may now be profitable deviations by a buyer β with
attribute choice b(β) to match with a seller with s < s̃(b(β)) (and hence
b̃(s) < b(β)). But since hS(b, s) is increasing in b, the seller in question
would welcome such a match. Hence, if this match is a profitable devia-
tion in the uniform-rationing equilibrium, it is a profitable deviation in the
personalized-price equilibrium, a contradiction.

�

If a uniform-price equilibrium outcome is not also a personalized-price
equilibrium outcome, then it must be that some seller would like to change
his price in order to attract better buyers, but is deterred from doing so by
the specter of less desirable buyers. This seller would then welcome the abil-
ity to exclude some buyers by personalizing prices. Section 3.3 provides an
example in which personalized-price equilibrium outcomes and uniform-price
equilibrium outcomes coincide. In this case, the personalized-price power to
exclude buyers is unnecessary—buyers sort themselves among sellers just as
sellers would have them do.

6 Efficiency

From Lemma 5, in both personalized-price and uniform-price equilibria,
matching is positively assortative in attributes. Since the attribute-choice
functions are strictly increasing in index when positive, we can accordingly
define the ex ante surplus for buyer and seller types β = σ = φ ∈ [0, 1] as

W (b, s, φ) ≡ hB(b, s) + hS(b, s)− cB(b, φ)− cS(s, φ)
= v(b, s)− cB(b, φ)− cS(s, φ).

An efficient choice of attributes maximizes W (b, s, φ) for (almost) all φ.
Personalized-price equilibrium outcomes are constrained efficient in the

sense that no matched or unmatched pair of agents can increase its net
surplus without both agents deviating to attribute choices outside the sets
B and S:13

13This is essentially Cole, Mailath, and Postlewaite (2001, Proposition 4), which de-
scribes a constrained efficiency property of ex post contracting equilibria (see Remark 6).
The current formulation allows a more transparent statement and proof.
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Lemma 7 Suppose (b, s, b̃, s̃, pP ) is a personalized-price equilibrium. Then,
for all φ ∈ [0, 1], b ∈ B, s ∈ S and all b′ and s′,

W (b, s′, φ) ≤W (b(φ), s(φ), φ)
and W (b′, s, φ) ≤W (b(φ), s(φ), φ).

Proof. En route to a contradiction, suppose there exists φ ∈ [0, 1], b ∈ B
and s′ ∈ [0, s̄] such that W (b, s′, φ) > W (b(φ), s(φ), φ). The other possibility
is handled analogously.

Let ε = [W (b, s′, φ) −W (b(φ), s(φ), φ)]/3 > 0 and set p = hB(b, s′) −
hB(b, s̃(b)) + pP (b, s̃(b)) − ε. The seller of type σ = φ can induce a buyer
with attribute choice b to buy from him by choosing s′ and offering a price
p. Moreover, this deviation is strictly preferred by the seller φ:

hS(b, s′) + p− cS(s′, φ)
= hS(b, s′) + hB(b, s′)− hB(b, s̃(b)) + pP (b, s̃(b))− ε− cS(s′, φ)
> ΠS(s(φ), φ) + [hB(b(φ), s(φ))− pP (b(φ), s(φ))− cB(b(φ), φ)]

− [hB(b, s̃(b))− pP (b, s̃(b))− cB(b, φ)] + ε

≥ ΠS(s(φ), φ) + ε,

where the equality uses the definition of p, the strict inequality follows from
W (b, s′, φ) > W (b(φ), s(φ), φ) + 2ε, and the last inequality is an implication
of (8).

In contrast, uniform-price equilibria in general do not satisfy constrained
efficiency.

Lemma 7 does not ensure that a personalized-price equilibrium outcome
is efficient. The possibility remains that W (b, s, φ) may be maximized by
a pair of values b 6∈ B and s 6∈ S. In this sense, the inefficiency is the
result of a coordination failure. For example, for the premuneration values
hB(b, s) = θbs and hS(b, s) = (1 − θ)bs, it is an equilibrium for all agents
to choose attribute 0, giving a constrained-efficient outcome that is in fact
quite inefficient. The possible inefficiency of a uniform-price equilibrium can
be viewed as reflecting incomplete markets.

Definition 10 The feasible outcome (b, s, b̃, s̃) and personalized price pP is
a complete personalized-price equilibrium if there is an extension of pP to
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[0, b̄]× [0, s̄] (also denoted by pP ) such that for all β and all σ,

0 ≤ ΠB(b(β), β) = sup
(b,s)∈[0,b̄]×[0,s̄]

hB(b, s)− pP (b, s)− cB(b, β)

and 0 ≤ ΠS(s(σ), σ) = sup
(b,s)∈[0,b̄]×[0,s̄]

hS(b, s) + pP (b, s)− cS(s, σ).

As the names suggest, every complete personalized-price equilibrium out-
come is indeed a personalized-price equilibrium outcome.

Lemma 8
(8.1) Every complete personalized-price equilibrium outcome is a personalized-

price equilibrium outcome.
(8.2) A complete personalized-price equilibrium outcome is efficient.

Proof. The efficiency of complete personalized-price equilibria is a straight-
forward calculation.

Fix a complete personalized-price equilibrium (b, s, b̃, s̃, pP ). We discuss
seller deviations; the buyer case is analogous. We need only verify that
there are no profitable deviations (in the sense of Definition 4) involving an
attribute choice s′ 6∈ S. Suppose the seller has a profitable deviation, so
there exists a type σ and an attribute choice s′ /∈ S, a price p ∈ R, and
b′ ∈ B with

ΠS(s(σ), σ) < hS(b′, s′) + p− cS(s′, σ) (15)

and
hB(b′, s̃(b′))− pP (b′, s̃(b′)) < hB(b′, s′)− p. (16)

Since (b, s, b̃, s̃, pP ) is a complete personalized-price equilibrium, (15) implies
p > pP (b′, s′).

There exists some β ∈ [0, 1] for which b′ = b(β), and so subtract-
ing cB(b′, β) from both sides of (16) and again using the assumption that
(b, s, b̃, s̃, pP ) is a complete personalized-price equilibrium gives p < pP (b′, s′),
a contradiction.

Remark 9 We could similarly define a complete uniform-price equilibrium
by requiring a price for all seller attributes in [0, s̄], while expanding to
[0, s̄] the set of seller attribute choices over which the buyer optimizes. It is
immediate from the definition that a complete uniform-price equilibrium is
a uniform-price equilibrium, and apparent from Section 3.4 that a complete
uniform-price equilibrium need not be efficient. �
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7 When is Personalization Redundant?

When can a personalized-price equilibrium outcome be supported by uni-
form prices? Or, alternatively, under what conditions can matching when
sellers set prices without knowing buyers’ attributes achieve outcomes at-
tainable as equilibrium outcomes when they are informed? In the example
of Section 3, attribute choices were efficient when sellers own none of the
surplus. Our sufficient condition generalizes this property.

We begin with some intuition, appropriate when equilibrium is charac-
terized by first-order conditions. Fix a uniform-price equilibrium, including
the uniform-price function pU . We first note that, by standard incentive
compatibility arguments, the uniform-price function is differentiable. The
first-order conditions implied for the buyer’s choice of attribute b and match-
ing attribute choice s in a uniform-price equilibrium are

0 =
dhB(b, s)

db
− dcB(b, β)

db
(17)

and 0 =
dhB(b, s)

ds
− dpU (s)

ds
, (18)

while the seller’s first-order condition for choosing s is (assuming b̃ is differ-
entiable)

0 =
dhS(b̃(s), s)

db

db̃(s)
ds

+
dhS(b̃(s), s)

ds
+
dpU (s)
ds

− dcS(s, σ)
ds

. (19)

Using (18) to eliminate dpU (s)/ds in (19) and then using the identity v(b, s) =
hB(b, s) +hS(b, s) in (17) and (19), these three first-order conditions can be
reduced to

0 =
dv(b, s)
db

− dhS(b, s)
db

− dcB(b, β)
db

and 0 =
dhS(b, s)

db

db̃U (s)
ds

+
dv(b, s)
ds

− dcS(s, σ)
ds

.

From Lemma 7, establishing the constrained efficiency of a personalized-
price equilibrium outcomes, we know that a personalized-price equilibrium
must be characterized by the first-order conditions:

0 =
dv(b, s)
db

− dcB(b, β)
db

(20)

0 =
dv(b, s)
ds

− dcS(s, σ)
ds

.



Pricing in Matching Markets 31

Comparing these, it is immediate that the solution to the first-order condi-
tions for the personalized-price equilibrium will be a solution for the first-
order conditions for the uniform-price equilibrium if dhS(b,s)

db = 0, that is, if
each seller’s premuneration value is independent of the attribute choice of
the buyer with whom the seller is matched. This argument is summarized in
the following proposition (which requires no differentiability assumptions).

Proposition 1 A personalized-price equilibrium outcome can be achieved
in a uniform-price equilibrium if the sellers’ premuneration values do not
depend on the buyer’s attribute.

Proof. Let (b, s, b̃, s̃, pP ) be a personalized-price equilibrium. Applying
Lemma 2, (b, s, b̃, s̃, p̂P ) is also a personalized-price equilibrium, where

p̂P (b, s) = pP (b̃(s), s) + hS(b̃(s), s)− hS(b, s)

for all (b, s) ∈ B × S.
If hS(b, s) does not depend on b, then neither does p̂P , implying that

(b, s, b̃, s̃, pU ) for pU (s) = p̂P (·, s) is a uniform-price equilibrium.

The constancy of hS(b, s) in b is also essentially necessary for personalized-
price equilibria to be achieved via uniform pricing. The “essentially” here
is that this constancy need not hold for pairs (b, s) that are not matched in
equilibrium.14

Proposition 2 Suppose the outcome (b, s, b̃, s̃) of a personalized-price equi-
librium (b, s, b̃, s̃, pP ) can be supported as a uniform-price equilibrium out-
come with price pU (s) = pP (b̃(s), s). Then for all s ∈ S,

dhS(b̃(s), s)
db

= 0.

Proof. It follows from (17) and (20) (again, without any differentiability
assumptions beyond those placed on the primitives of the model in Assump-
tions 1 and 3), that if (b, s, b̃, s̃, pP ) is a personalized-price equilibrium that
can be supported by uniform prices, then

dhB(b̃(s), s)
db

=
dv(b̃(s), s)

db
,

implying dhS(b̃(s),s)
db = 0.

14Analogously, the single-crossing condition is essentially necessary for a separating
equilibrium in a signaling model (Mailath, 1987, Theorem 3).
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8 Existence of Equilibrium

8.1 Uniform-Price Equilibrium

A fixed-point argument (in Appendix B) allows us to establish existence of
uniform-price equilibria, by showing the existence of complete uniform-price
equilibria (cf. Remark 9).

Proposition 3 If there exists (b, s) ∈ (0, b̄]× (0, s̄] with

hB(b, s) + hS(0, s)− cB(b, 1)− cS(s, 1) > 0, (21)

then there exists a complete uniform-price equilibrium in which some buyers
and some sellers make strictly positive attribute choices.

Moreover, if for all φ ∈ (0, 1], there exists (b, s) ∈ (0, b̄]× (0, s̄]

hB(b, s) + hS(0, s)− cB(b, φ)− cS(s, φ) > 0, (22)

then there exists a complete uniform-price equilibrium with b(β), s(σ) > 0
for β, σ ∈ (0, 1].

Assumption 5 implies inequality (22) if hS(b, s) is independent of b (in
which case personalized and uniform pricing correspond). Condition (21)
and (22) can fail, even in the presence of Assumption 5, if dhS(b, s)/ds
is large (e.g., when θ is small in Section 3.4). In such cases, buyers are
the appropriate side of the market to be setting prices (cf. Remark 3).
Uniform-pricing equilibria are inefficient when hS(b, s) depends on b. If this
dependence is too extreme, (21) may fail and there may be no investment
on either side.

Two significant complications must to be confronted in the proof of ex-
istence of uniform-price equilibria: Equilibrium attribute-choice functions
may be discontinuous, and we must preclude profitable deviations to at-
tributes not in the market. These complications preclude the direct ap-
plication of a fixed point theorem. We proceed indirectly, constructing a
simultaneous-move three-player game whose equilibria capture the relevant
behavior of uniform-price equilibria. The players include a buyer, whose
payoff corresponds to the total buyer payoff in our model, a seller whose
payoff is analogous but who does not set prices, and a price-setter who is
penalized for market imbalance. In constructing this game, we define seller
payoffs in a manner incorporating the pessimism inherent in our definition
of uniform-price equilibrium. Glicksberg’s fixed point theorem establishes
the existence of Nash equilibria in the three-player game when strategies are
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constrained to be Lipschitz continuous. We then examine the limit as this
constraint is removed, showing that the result corresponds to a uniform-price
equilibrium of the underlying economy.

8.2 Personalized-Price Equilibrium

One route to existence is to note that a personalized-price equilibrium is
essentially equivalent to Cole, Mailath, and Postlewaite (2001) ex post con-
tracting equilibrium, and then to refer to that paper for conditions for the
existence of an ex post contracting equilibria. We take an alternative route
here, building on the relationship between personalized-price and uniform-
price equilibria.

Proposition 4 There exists an efficient personalized-price equilibrium.

Proof. Suppose first that hS(b, s) = 0 and hence hB(b, s) = v(b, s) for all
pairs (b, s). Proposition 3 ensures that there exists a complete uniform-price
equilibrium. Proposition 1 ensures that there is a corresponding complete
personalized-price equilibrium (b, s, b̃, s̃, pP ), which Lemma 8 ensures is ef-
ficient. Then setting

p′P (b, s) = pP (b, s)− hS(b, s) = pP (b, s) + hB(b, s)− v(b, s)

gives a complete (and hence efficient) personalized-price equilibrium for the
market in question.

9 Discussion

9.1 Premuneration Values

Our main result is that a necessary and sufficient condition to avoid either
the costs of personalization or the inefficiencies of uniform pricing is that
sellers’ premuneration values should be independent of the buyer to whom
they are matched. Why aren’t markets and institutions arranged so that
premuneration values have this property?

Moral hazard is a key obstacle to such an arrangement. In Section 1, we
touched on the moral hazard problems associated with assigning all of the
surplus, including the student’s future earnings, to a university. For a second
example, consider a collection of heterogeneous and risk averse agents who
are to be matched with risk neutral principals. One could ensure that the
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principal’s premuneration values are independent of agent characteristics by
assigning ownership of the technology to the agents. Uniform pricing per
se would then impose no costs, but the agents would inefficiently bear all
of the risk associated with the match, leading to inefficient actions and less
valuable matches. We could instead let the principal own some or all of the
technology, but now the principal’s premuneration value will no longer be
independent of the characteristics of the agent with whom he is matched.
An inefficiency then arises either from uniform pricing or from the costs of
personalization.

We thus regard moral hazard as imposing fundamental constraints on the
design of premuneration values. This in turn can make new monitoring and
contracting technologies valuable, not only because they can create better
incentives within a match, but also because they can create more leeway for
designing premuneration values and hence better matching.

9.2 Endogenous Information Acquisition

Suppose that lack of information about buyers’ attribute choices poses the
primary obstacle to personalizing prices. Can sellers take actions to amelio-
rate this informational asymmetry?

9.2.1 Information Acquisition

Suppose that before attributes are chosen, each seller σ can pay a cost K(σ),
in which case the seller can observe buyers’ attribute choices. It may be that
K(σ) is constant in σ, but there are many other plausible configurations.
For example, the same characteristics that make attributes less costly for
larger values of σ may also make informativeness less costly.

We refer to the resulting model as the “endogenously-informed-seller”
model. Natural specifications of such a model would lead to the following
types of results:

• Let hS(b, s) be independent of b. Then it is an equilibrium of the
endogenously-informed-seller model for each seller to choose not to
obtain the monitoring technology, coupled with a uniform-price equi-
librium.

• Moreover, this equilibrium is robust: If the seller premuneration value
function is almost independent of b and K is bounded away from 0,
then it is still an equilibrium for each seller to choose not to obtain
the monitoring technology.
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The first statement reiterates our basic conclusion—that markets can be (ef-
ficiently) cleared by uniform prices when sellers’ premuneration values are
independent of match. The next statement notes that this is not a “razor-
edge” result. The benefit to a seller of becoming informed is to be able to
discriminate among the potential buyers with whom he might transact. But
if the differences in the size of hS(b, s) across potential buyers is sufficiently
small, the benefits from acquiring the technology will be less than paying
the cost to obtain the technology, and consequently it will be an equilib-
rium in the endogenously-informed-seller model for no seller to purchase the
monitoring technology and for each seller to set a uniform price.

The reverse of this is also true. If the monitoring cost is sufficiently small
and hS(b, s) is not independent of b, then we will not have completely uni-
form pricing. In particular, suppose the outcome of a uniform-price equilib-
rium (b, s, b̃, s̃, pU ) cannot be supported in a personalized-price equilibrium.
Then there must exist a seller who can use personalized prices to construct
a profitable deviation, and who would do so were the cost of personalization
sufficiently small.

One might conjecture that if hS(b, s) is not independent of b, then we will
have a personalized-price equilibrium if the cost of personalization is suffi-
ciently small, without further assumptions on how it is small. However, this
is not the case. Let K(σ) = K > 0. Then the endogenously-informed-seller
model does not have an equilibrium in which all sellers acquire the monitor-
ing technology. The lowest type of seller attribute choice necessarily matches
with the lowest buyer investment, and hence has no buyers to exclude. It
then cannot be in this seller’s best interests to acquire the monitoring tech-
nology. For values K > 0, this applies to an interval of lowest-type sellers,
which precludes the existence of a personalized-price equilibrium.

9.2.2 An Example

We expand the example of Section 3 to illustrate an equilibrium of the
endogenously-informed-seller model with a mixture of uniform and person-
alized prices. We assume that K is decreasing in σ, with K(1) = 0, and
consider the class of cost functions αK(σ) ≡ k(α, σ) for α > 0. We find
that if the cost of the monitoring technology decreases sufficiently quickly
in seller index (i.e., α is sufficiently large), then there is an equilibrium in
which low-index sellers set uniform prices, while high-index sellers person-
alize. However, we also find that, even though high-index sellers seemingly
should benefit more than low-index sellers from the monitoring technology,
if the cost of the technology is independent of seller index, then there is no
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such equilibrium. We interpret this nonexistence as an indication that a
richer model of endogenous information acquisition is necessary, an impor-
tant area for further research.

Let the sum of the payoffs to a buyer and seller of types β = σ = φ in
the personalized-price and uniform-price equilibria be denoted vP (φ, φ) and
vU (φ, φ). Then in our example,

vP (φ, φ) =
1
3
φ2,

and vU (φ, φ) =
1
6

[θ(2− θ)2 + θ2(2− θ)]φ2 =
1
3
θ(2− θ)φ2.

Let ψ satisfy
vP (ψ,ψ)− vU (ψ,ψ) = k(α,ψ).

A match between two agents of type ψ is then the switch-point at which the
efficiency of the uniform-price equilibrium just suffices to warrant paying the
cost k of the technology. Agents with types below ψ will not purchase the
monitoring technology and will behave as in the uniform-price equilibrium.
Agents above ψ will purchase the monitoring technology, and will behave as
in the uniform-price equilibrium, with the exception that the price will now
be given by

pP (b, s) =
s2

2
− (1− θ)bs+ ∆.

The constant ∆ affects none of the incentives in the uniform-price equilib-
rium. It is chosen to equalize the payoffs of the marginal seller σ = ψ in the
two equilibria. This is the required condition for this seller to be indifferent
between buying and not buying the monitoring technology. We have

∆ =
1
3
ψ2 − 1

3
θ(2− θ)ψ2

=
1
3

(1− θ)2ψ2 > 0.

Hence, the division of the surplus is pushed in the seller’s favor, compared to
the uniform-price equilibrium, in response to seller σ = ψ’s outside option of
saving the cost of the monitoring technology by entering the uniform-pricing
segment of the market.

The seller’s attribute choice drops as σ increases past ψ while the buyer’s
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jumps up. The price jumps down:

pP (b(ψ, s(ψ)) = (θ − 1
2

)ψ2 + ∆

<
θ

2

(
θ

2− θ

) 1
3

θ
2
3 (2− θ)

4
3ψ2

= pU (b(ψ), s(ψ)).

The inequality is equivalent to

(θ − 1
2

) +
1
3

(1− θ)2 <
θ2

2
(2− θ),

which is satisfied for θ ∈ [0, 1]. At the switch point ψ, the marginal buyer
thus trades off a high-attribute seller and a high price (just below ψ) against
a relatively low-attribute low-price seller (above ψ). Sellers above ψ are
able to pay less for higher-attribute buyers, but pay for the monitoring
technology. Notice that some buyers below ψ would like to buy from sellers
above ψ, at the observed prices, without increasing their investments, but
the personalized prices of the latter preclude the buyers doing so.

The only optimality condition that is not obvious in this formulation
concerns the information-acquisition behavior of sellers near the critical type
ψ. Seller ψ is indifferent between acquiring and not acquiring the monitoring
technology, which may initially appear to suffice for optimality. However, we
have noted that the seller attribute choice falls at type ψ. IfK is independent
of σ, then sellers’ types enter their payoffs only through the cost function
cS . Given the single-crossing property satisfied by cS , the equilibrium seller
attribute choice must be increasing in type, ensuring that the proposed
strategies are not an equilibrium. Seller ψ can be indifferent between a
large attribute choice coupled with uniform pricing and a small attribute
choice coupled with personalized pricing, without seller ψ − ε for small ε
strictly preferring the latter (disrupting the equilibrium) only if seller ψ has
a cost advantage in purchasing the monitoring technology, i.e., only if k(α, σ)
declines sufficiently rapidly in σ, i.e., if α is sufficiently large. This will be
the case, and we will have an equilibrium, for all α sufficiently large.15

15Let c = limσ↑ψ cS(s(σ), σ) and c = limσ↓ψ cS(s(σ), σ). Then we need

d(c− c)
dψ

>
dk(α,ψ)

dψ
= α

dK(ψ)

dψ
.
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9.3 Endogenous Information Revelation

The information required to personalize prices may come to light not through
the information-acquisition efforts of sellers but because buyers reveal it.
Applicants to universities typically take SAT or ACT exams, often beyond
the minimum required, that at least partially reveal the attribute of interest.
Students of high ability in particular find it in their interest to take them
in an attempt to certify their attribute. Thus a more general model would
include a richer set of technologies by which either buyers or sellers could
make attributes known to all participants.

One might suspect that if the cost to buyers of certifying their attribute is
not too high, the uncertainty might “unravel”: high-attribute buyers would
reveal themselves, making it optimal for the highest-attribute buyers in the
remaining pool to reveal themselves, and so on until all buyers’ attributes
are known.16 In addition, it seems that this cascading information revelation
must make at least lower-ranked buyers worse off, if not all buyers. Indeed,
to avoid such unraveling, Harvard Business School students have successfully
lobbied for policies that prohibit students’ divulging their grades to potential
employers, while the Wharton student government adopted a policy banning
the release of grades.17 In contrast, in the example of Section 3, all buyers
may be worse off when information about their attributes is suppressed
than when it is known. This result holds no matter what (nonzero) share
the buyers own of the surplus, and holds for all buyers. It is the distorted
incentives to invest that ensure even the lowest attribute buyers would be
made worse off if buyer-attribute information were suppressed.

16See Grossman (1981), Milgrom (1981), or Okuno-Fujiwara, Postlewaite, and Suzu-
mura (1990) for analyses of this.

17Ostrovsky and Schwarz (forthcoming) investigate the optimal amount of information
to disclose from the students’ perspective.
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A Proof of Lemma 4

Suppose there exists a seller σ and attribute choice s′ ∈ S such that

ΠS(s(σ), σ) < ΠS(s′, σ) = hS(b̃(s′), s′) + pU (s′)− cS(s′, σ).

Let ε = [ΠS(s′, σ) − ΠS(s(σ), σ)]/4 > 0. Then, there exists δ > 0 such
that for all b ≥ b̃(s′)− δ,

hS(b, s′) + pU (s′)− cS(s′, σ) > ΠS(s(σ), σ) + 3ε. (A.1)

Denote by p′′ the price for an attribute s′′ that makes the buyer with
attribute b̃(s′) indifferent between s′ (her equilibrium match) and s′′, i.e.,

hB(b̃(s′), s′′)− p′′ = hB(b̃(s′), s′)− pU (s′).

Choose s′′ > s′ sufficiently close to s′ so that∣∣hS(b, s′′)− cS(s′′, σ)− hS(b, s′) + cS(s′, σ)
∣∣ < ε, ∀b ∈ B, (A.2)

holds and |p′′ − pU (s′)| < ε/2.
From single crossing,

hB(b̃(s′)− δ, s′′)− p′′ < hB(b̃(s′)− δ, s′)− pU (s′).

For p̂ < p′′ sufficiently close to p′′, we have p′′ − p̂ > ε/2 and

hB(b̃(s′)− δ, s′′)− p̂ < hB(b̃(s′)− δ, s′)− pU (s′).

Moreover the buyer with attribute b̃(s′) receives strictly higher payoff from
(s′′, p̂) than from (s′, pU (s′))).

Another application of single crossing shows that for all b ≤ b̃(s′)− δ,

hB(b, s′′)− p̂ < hB(b, s′)− pU (s′).

From (13), for all b ∈ B,

hB(b, s′)− pU (s′) ≤ hB(b, s̃(b))− pU (s̃(b)),

and so no buyer with attribute b ≤ b̃(s′)− δ finds (s′′, p̂) attractive.
Thus, the pair (s′′, p̂) is a profitable deviation for seller σ, since

hS(b̃(s′)− δ, s′′) + p̂− cS(s′′, σ) >hS(b̃(s′)− δ, s′) + p̂− cS(s′, σ)− ε
≥ΠS(s(σ), σ) + 3ε+ (p̂− p′′) + (p′′ − pU (s′))− ε
=ΠS(s(σ), σ) + ε,

where the first inequality follows from (A.2) and the second from (A.1).
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B Proof of Proposition 3: Existence of Equilib-
rium.

The existence proof is involved and indirect. We would like to construct
a game Γ whose equilibria induce uniform-price equilibria. However, the
obvious such game Γ is itself difficult to handle, so we work with an approx-
imating sequence of games Γn. We verify that each Γn has an equilibrium,
take limits, and show that the limiting strategy profile induces a uniform-
price equilibrium. Loosely, the n index allows us to accommodate (in the
limit) the possibility of jumps in the attribute-choice functions (precluded
in game Γn).

B.1 Preliminaries

Let P = max{hB(b̄, s̄), hS(b̄, s̄)}. Then P is sufficiently large that no buyer
would be willing to purchase any seller attribute choice s ∈ [0, s̄] at a price
exceeding P , nor would any seller be willing to sell to a buyer b ∈ [0, b̄] at
price less than −P . We can thus limit prices to the interval [−P, P ].

Since buyer premuneration values are C2, there is a Lipschitz constant
∆ such that for all ε > 0, s ∈ [0, s̄− ε], and b ∈ [0, b̄], we have hB(b, s+ ε)−
hB(b, s) < ∆ε. As a result, given a choice between seller s and seller s+ε at
a price higher by ∆ε, buyers would always choose the former. Equilibrium
prices will thus never need to increase at a rate faster than ∆.

B.2 The game Γn

Each game Γn has three players, consisting of a buyer, a seller, and a price-
setter.

B.2.1 Strategy spaces

We begin by defining the strategy spaces for Γn.
The buyer chooses a pair of functions, (b, sB), where b : [0, 1] → [0, b̄]

specifies a buyer attribute choice and sB : [0, 1] → [0, s̄] a seller attribute
with which to match, each as a function of the buyer’s type. We denote
the set of pairs of increasing functions (b, sB) normed by the sum of the L1

norms on the component functions by ΥB. In Γn, the buyer is restricted to
the subset of ΥB, denoted by Υn

B, of functions satisfying (B.3) and (B.4):

(β′ − β)/n ≤ b(β′)− b(β) ≤ n(β′ − β), ∀β < β′ ∈ [0, 1], (B.3)
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and

(β′ − β)/n ≤ sB(β′)− sB(β) ≤ n(β′ − β), ∀β < β′ ∈ [0, 1]. (B.4)

The seller chooses an increasing function s, where s : [0, 1] → [0, s̄]
specifies a seller attribute choice as a function of seller’s type. We denote
the set of increasing functions s endowed with the L1 norm by ΥS . In Γn,
the seller is restricted to the subset of ΥS , denoted by Υn

S , of functions
satisfying (B.5),

(σ′ − σ)/n ≤ s(σ′)− s(σ) ≤ n(σ′ − σ), ∀σ < σ′ ∈ [0, 1]. (B.5)

The price-setter chooses an increasing function pU : [0, s̄] → [−P, P ]
satisfying

pU (s′)− pU (s) < 2∆(s′ − s) (B.6)

for all s < s′ ∈ [0, s̄]. Denote the set of increasing functions pU satisfying
(B.6), endowed with the sup norm, by ΥP (note that ΥP is not indexed
by n). Every function in ΥP is continuous; indeed the collection ΥP is
equicontinuous.

The set Υ ≡ ΥB × ΥS × ΥP , when normed by the sum of the three
constituent norms, is a compact metric space.18 It is immediate that Υn ≡
Υn
B ×Υn

S ×ΥP is a closed subset of Υ, and so also compact.

B.2.2 Buyer and Price-Setter Payoffs

The buyer. The buyer’s payoff from (b, sB) ∈ Υn
B, when the price-setter

has chosen pU ∈ ΥP is∫
(hB(b(β), sB(β))− pU (sB(β))− cB(b(β), β)) dβ. (B.7)

Note that the buyer’s payoff is independent of seller behavior.
18It suffices for this conclusion to show that Υ is sequentially compact, since sequential

compactness is equivalent to compactness for metric spaces (Dunford and Schwartz, 1988,
p. 20). An argument analogous to that of Helly’s theorem (Billingsley, 1995, Theorem
25.9) shows Υ is sequentially compact. In particular, given a sequence {(bm, smB , sm, pmU )},
we can choose a subsequence along which each function converges at every rational value
in its domain to a limit {(b∞, s∞B , s∞, p∞U )}. Because each function in the sequence
{(bm, smB , sm, pmU )} is increasing, so must be each limiting function {(b∞, s∞B , s∞, p∞U )}.
This ensures convergence at every continuity point of the limit functions, and hence almost
everywhere for the functions bm, smB and sm and everywhere for the functions pmU )}, suffic-
ing (for bounded functions) for L1 convergence in the former three cases and convergence
in the sup norm in the latter.
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For any sB and s, define

FB(s) ≡ λ{β : sB(β) ≤ s}
and FS(s) ≡ λ{σ : s(σ) ≤ s}.

The price-setter. The price-setter’s payoff from pU ∈ ΥP , when the
buyer and seller have chosen (b, sB, s) ∈ Υn

B ×Υn
S is given by∫ s̄

0
pU (s) (FB(s)− FS(s)) ds. (B.8)

Hence, the price-setter has an incentive to raise the price of seller attribute
choices in excess demand and lower the price of seller attribute choices in
excess supply.

B.2.3 Seller Payoffs

The specification of the seller’s payoff is complicated by the need to incor-
porate incentives arising from the possibility of profitable seller deviations.
Given an attribute choice s, price p, and price function pU , set

B(s, p, pU ) ≡
{
b ∈ [0, b̄] : hB(b, s)− p ≥ max

s′∈[0,s̄]
{hB(b, s′)− pU (s′)}

}
.

Hence, B(s, p, pU ) is the set of buyer attributes that find attribute s at price
p (weakly) more attractive than any attribute s′ ∈ [0, s̄] at price pU (s′). Note
that since the buyer is constrained in Γn to choose seller attributes so that
(B.4) is satisfied, a maximizing buyer’s payoff from an attribute b (ignoring
costs) need not be given by maxs′∈[0,s̄]{hB(b, s′) − pU (s′)}. Note also that
for all s and pU ∈ ΥP , since there is no a priori restriction on p, B(s, p, pU )
is nonempty for low p (possibly requiring p < −P , e.g., if pU ≡ −P ), and it
is empty if p > pU (s). Indeed, for sufficiently low p, B(s, p, pU ) = [0, b̄].

Lemma A (1) If B(s, p, pU ) 6= ∅, then B(s, p, pU ) = [b1, b2] with b1 ≤ b2.
(2) For fixed s and pU , let p̄(s, pU ) ≡ sup{p : B(s, p, pU ) 6= ∅} and write

[b1(p), b2(p)] for B(s, p, pU ) when p ≤ p̄(s, pU ). Denote the set of discontinu-
ity points in the domain of bj(p) by Dj(s, pU ). The set {s : Dj(s, pU ) 6= ∅}
has zero Lebesgue measure.

(3) Suppose {(s`, p`, p`U )}` is a sequence converging to (s, p, pU ) with ∅ 6=
B(s`, p`, p`U ) ≡ [b`1, b

`
2]. Then B(s, p, pU ) 6= ∅, and so B(s, p, pU ) = [b1, b2],

where
b1 ≤ lim inf` b`1 ≤ lim sup` b`2 ≤ b2.

(4) Moreover,if p 6∈ Dj(s, pU ) ∪ {p̄(s, pU )}, then bj = lim` b
`
j.
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Proof. (1) Suppose b1, b2 ∈ B(s, p, pU ) with b1 < b2, and b̂ 6∈ B(s, p, pU )
for some b̂ ∈ (b1, b2). Then there exists ŝ ∈ [0, s̄] such that

hB(b̂, s)− p < hB(b̂, ŝ)− pU (ŝ).

If ŝ > s, then Assumption 1 implies

hB(b2, ŝ)− hB(b2, s) ≥ hB(b̂, ŝ)− hB(b̂, s)
> pU (ŝ)− p,

contradicting b2 ∈ B(s, p, pU ). Similarly, ŝ < s contradicts b1 ∈ B(s, p, pU ),
and so ŝ = s. But b2 ∈ B(s, p, pU ) then implies pU (s) ≥ p while b̂ 6∈
B(s, p, pU ) implies pU (s) < p, the final contradiction, and so b̂ ∈ B(s, p, pU ).
It is immediate that B(s, p, pU ) is closed.

(2) Since B(s, p′, pU ) ⊃ B(s, p, pU ) for p′ < p, b1(p) and b2(p) are
monotonic functions of p, and so are continuous except at a countable num-
ber of points. Moreover, from the maximum theorem, both b1 and b2 are
left-continuous.

Suppose p ∈ D1(s, pU ), and let b+1 ≡ limp′↘p b1(p′). Since b1 is left-
continuous, b1(p) < b+1 . Then for all b ∈ [b1(p), b+1 ],

hB(b, s)− p = max
s′∈[0,s̄]

hB(b, s′)− pU (s′). (B.9)

From the envelope theorem (Milgrom and Segal, 2002, Theorem 2), this
implies for all b ∈ (b1(p), b+1 ),

∂hB(b, s)
∂b

=
∂hB(b, s′(b))

∂b
,

where s′(b) ∈ arg maxs′∈[0,s̄] hB(b, s′) − pU (s′). Assumption 1 then implies
s = s′(b) for all b ∈ (b1(p), b+1 ), and so p = pU (s).

Since b+1 ∈ B(s, pU (s), pU ), for all s′′ > s,

hB(b+1 , s
′′)− hB(b+1 , s) ≤ pU (s′′)− pU (s)

so that
∂hB(b+1 , s)

∂s
≤ lim inf

s′′>s

pU (s′′)− pU (s)
s′′ − s

.

On the other hand, for all s′ < s,

pU (s)− pU (s′) ≤ hB(b1(p), s)− hB(b1(p), s′),
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so that

lim sup
s′<s

pU (s)− pU (s′)
s− s′

≤ ∂hB(b1(p), s)
∂s

.

Consequently, since

∂hB(b1(p), s)
∂s

<
∂hB(b+1 , s)

∂s
,

the price function pU cannot be differentiable at s. Finally, since pU is a
monotonic function, it is differentiable almost everywhere (Billingsley, 1995,
Theorem 31.2), and hence {s : D1(s, pU ) 6= ∅} has zero Lebesgue measure.
A similar argument shows that {s : D2(s, pU ) 6= ∅} has zero Lebesgue
measure.

(3) Suppose {(s`, p`, p`U )}` is a sequence converging to (s, p, pU ), and let
{b`} be a sequence of attributes with b` ∈ B(s`, p`, p`U ) for all `. Without loss
of generality, we assume {b`} is a convergent sequence with limit b. Since

hB(b`, s`)− p` ≥ max
s′∈[0,s̄]

{hB(b`, s′)− p`U (s′)}, ∀`,

taking limits gives

hB(b, s)− p ≥ max
s′∈[0,s̄]

{hB(b, s′)− pU (s′)},

and so b ∈ B(s, p, pU ). Hence p ≤ p̄(s, pU ).
(4) Consider b2 and suppose p 6∈ D2(s, pU ) ∪ {p̄(s, pU )} (and so p <

p̄(s, pU )). Hence, b2 = b+2 ≡ limp′↘p b2(p′). Consider b ∈ (b+1 , b2). For p′ > p
sufficiently close to p, we have b ∈ B(s, p′, pU ), and so

hB(b, s)− p > max
s′∈[0,s̄]

{hB(b, s′)− pU (s′)}.

Consequently, for ` sufficiently large,

hB(b, s`)− p` > max
s′∈[0,s̄]

{hB(b, s′)− pU (s′)},

i.e., b ∈ B(s`, p`, p`U ). This implies that b`2(p`) ≥ b, and hence lim inf b`2(p`) ≥
b. Since this holds for all b ∈ (b+1 , b2) and lim sup` b`2 ≤ b2, we have lim` b

`
2 =

b2. The argument for b1 is an obvious modification of this argument.

Fix (s, p, pU ) and suppose λ({β : b(β) ∈ B(s, p, pU )}) > 0. Since b
is strictly increasing and continuous, it then follows from Lemma A that
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b([0, 1]) ∩ B(s, p, pU ) = [b′1, b
′
2] for some 0 ≤ b′1 < b′2 ≤ b̄. The payoff to the

seller from (s, p,b, pU ) is given by

H(s, p,b, pU ) ≡ hS(b′1, s) + p. (B.10)

This function depends upon pU and b through the dependence of b′1 on
B(s, p, pU ) and b. For later reference, note that for fixed s, b, and pU , the
function H(s, p,b, pU ) is continuous from the left in p (since b satisfies (B.3)
and both b1(p) and b2(p), defined just before Lemma A, are left-continuous).

We set

P̃ (s,b, pU ) ≡ {p : λ ({β : b(β) ∈ B(s, p, pU )}) > 0} ,

and noting that this set is nonempty, define

H̄(s,b, pU ) ≡ max
{

supp∈P̃ (s,b,pU )H(s, p,b, pU ), hS(0, s) + pU (s)
}
.

(B.11)
Notice that if p ∈ P̃ (s,b, pU ) for all p < pU (s), then the first term in (B.11)
will be the maximum.19

The seller’s payoff from s ∈ Υn
S when the buyer and price-setter have

chosen (b, sB, pU ) ∈ Υn
B ×ΥP is then∫ (
H̄(s(σ),b, pU )− cS(s(σ), σ)

)
dσ. (B.12)

Taking the maximum over supp∈P̃ (s,b,pU )H(s, p,b, pU ) and hS(0, s) + pU (s)
effectively assumes that the seller can always sell attribute choice s at the
posted price pU (s), though perhaps only attracting buyer attribute choice
0.

Note that the seller, when considering the payoff implications of alter-
ing the attribute-choice function over an interval of seller types, can ignore
the seller types outside the interval, since feasibility of buyer responses is
irrelevant (the comparison in B for buyer attributes is always to her payoffs,
which is independent of seller behavior).

B.3 Equilibrium in game Γn

Our next task is to show that each game Γn has a Nash equilibrium, and that
the price-setter plays a pure strategy in any such equilibrium. To do this,

19It need not be true that for s ∈ sB([0, 1]), p ∈ P̃ (s,b, pU ) for all p < pU (s). Moreover,
we may have H̄(s,b, pU ) 6= hS(b(s−1

B (s)), s)+pU (s) (see the discussion just before Lemma
A).
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we first note that the price-setter’s payoff is concave in pU (note that the
buyer’s and sellers’s payoffs need not be even quasiconcave). If the payoff
functions in game Γn are continuous, then Glicksberg’s fixed point theorem,
applied to the game where we allow the buyer and seller to randomize, yields
a Nash equilibrium in which the buyer and seller may randomize, but the
price-setter does not.

Lemma B The buyer, price-setter and seller payoff functions given by (B.7),(B.8)
and (B.12), are continuous functions of (b, sB, s, pU ) on Υn.

Proof. We first note that for increasing, bounded functions on a compact
set, L1 convergence implies convergence almost everywhere.20

Consider first the buyer. The functions b, sB, and pU are bounded
functions on compact sets, and hence the absolute value of each of these
functions is dominated by an integrable function. The continuity of the
buyer’s payoff then follows immediately from Lebesgue’s dominated conver-
gence theorem, if we can show that the convergence of b, pU , and sB in
the L1 norm (and hence almost everywhere) implies the convergence almost
everywhere of hB(b, sB), pU (sB), and cB(b(·), ·) (note that we are talking
about sequences of functions within a given game Γn). The first and the
third of these follows from the continuity of hB and cB (from Assumptions
1 and 3), while for the remaining case it suffices to note that the collection
ΥP is equicontinuous.

Consider now the price-setter. Suppose s` converges in L1, and so almost
everywhere, to s. Then F `S converges weakly to FS (and so a.e.).21 Similarly,
if s`B converges in L1 to sB, then F `B converges a.e. to FB. Continuity for the
price-setter’s payoff then follows from arguments analogous to those applied
to the buyer, since we have convergence almost everywhere of pU [FB − FS ].

20Suppose {fn}n, with each fn increasing, converges in L1 norm to an increasing func-
tion f without converging almost everywhere. Then since f is discontinuous on a set of
measure zero, there exists (for example) a continuity point x of f with lim sup fn(x) > f(x)
(with the case lim inf fn(x) < f(x) analogous). The continuity of f at x then ensures
that for some point y > x, some ε > 0, all z ∈ [x, y] and for infinitely many n, we have
fn(z) ≥ fn(x) ≥ f(y)+ε ≥ f(z)+ε. This in turn ensures that

∫
|fn(z)−f(z)|dz > (y−x)ε

infinitely often, precluding the L1 convergence of {fn}∞n=1 to f .
21Fix ε > 0. By Egoroff’s theorem (Royden, 1988, p.73), s` converges uniformly to s

on a set E of measure at least 1 − ε. Suppose s is a continuity point of FS . There then
exists δ > 0 such that |FS(s) − FS(s′)| < ε for all |s − s′| ≤ δ. There exists `′ such that,
for all σ ∈ E, for all ` > `′, |s`(σ)− s(σ)| < δ. Consequently, F `S(s) = λ{σ : s`(σ) ≤ s} ≤
λ{σ : s(σ)−δ ≤ s}+ε = FS(s+δ)+ε and FS(s−δ)−ε ≤ F `S(s), and so |F `S(s)−FS(s)| < 2ε.
Hence, F `S converges weakly to FS .
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Finally, we turn to the seller, where the proof of continuity is more
involved. It suffices to argue that H̄(s,b, pU ) is continuous in (s,b, pU )
for almost all s (since sB is irrelevant in the determination of the seller’s
payoff and the continuity with respect to s is then obvious, at which point
another appeal to Lebesgue’s dominated convergence theorem completes the
argument).

Fix a sequence (s`,b`, p`U ) converging to some point (ŝ, b̂, p̂U ). Since we
need continuity for only almost all s ∈ [0, s̄], we can assume D1(ŝ, p̂U ) ∪
D2(ŝ, p̂U ) = ∅ (or, equivalently, that p̂U is differentiable at ŝ, see the proof
of Lemma A.2). We thus need only prove the following claim.

Claim 1 lim`→∞ H̄(s`,b`, p`U ) = H̄(ŝ, b̂, p̂U ).

Proof. Since H̄k(s,b, pU ) is the maximum of two terms, it suffices to show
that

lim
`→∞

supp∈P̃ (s`,b`,p`U )H(s`, p,b`, p`U ) = sup
p∈P̃ (ŝ,b̂,p̂U )

H(ŝ, p, b̂, p̂U )

and lim
`→∞

hS(0, s`) + p`U (s`) = hS(0, ŝ) + p̂U (ŝ).

The second is immediate from the continuity of hS and p̂U at ŝ.
We accordingly turn to the first. To conserve on notation, we define

supp∈P̃ (s,b,pU )H(s, p,b, pU ) ≡ ¯̄H(s,b, pU ).
We first show that

lim inf
`→∞

¯̄H(s`,b`, p`U ) ≥ ¯̄H(ŝ, b̂, p̂U ). (B.13)

For all ε > 0 there exists p̂ ∈ P̃ (ŝ, b̂, p̂U ) such that

H(ŝ, p̂, b̂, p̂U ) + ε/2 ≥ ¯̄H(ŝ, b̂, p̂U ).

SinceH(ŝ, p, b̂, p̂U ) is continuous from the left in p, there exists p̂′ 6∈ D1(ŝ, p̂U )∪
D2(ŝ, p̂U ) ∪ {p̄(ŝ, p̂U )} with p̂′ ≤ p̂ satisfying

|H(ŝ, p̂, b̂, p̂U )−H(ŝ, p̂′, b̂, p̂U )| < ε/2,

and so
H(ŝ, p̂′, b̂, p̂U ) + ε ≥ ¯̄H(ŝ, b̂, p̂U ).

Since b̂ satisfies (B.3), for sufficiently large `, p̂′ ∈ P̃ (s`,b`, p`U ), and so
(applying Lemma A.3)

lim
`→∞

H(s`, p̂′,b`, p`U ) = H(ŝ, p̂′, b̂, p̂U ).
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Hence,
lim inf
`→∞

¯̄H(s`,b`, p`U ) + ε ≥ ¯̄H(ŝ, b̂, p̂U ), ∀ε > 0,

yielding (B.13).
We now argue that

¯̄H(ŝ, b̂, p̂U ) ≥ lim sup
`→∞

¯̄H(s`,b`, p`U ), (B.14)

which with (B.13) gives continuity.
Fix ε > 0. For each `, there exists p` ∈ P̃ (s`,b`, p`U ) such that

H(s`, p`,b`, p`U ) + ε ≥ ¯̄H(s`,b`, p`U ). (B.15)

Without loss of generality, we can assume {p`}` is a convergent sequence,
with limit p̂. Suppose first that p̂ ∈ P̃ (ŝ, b̂, p̂U ). If p̂ 6= {p̄(ŝ, p̂U )}, it is
immediate that

H(ŝ, p̂, b̂, p̂U ) + ε ≥ lim sup
`→∞

¯̄H(s`,b`, p`U ), (B.16)

which (since it holds for all ε) implies (B.14).
Suppose now that p̂ 6∈ P̃ (ŝ, b̂, p̂U ) or p = p̄(ŝ, p̂U ). Since p̂U is differ-

entiable at ŝ, there cannot be a nondegenerate interval of buyer attributes
indifferent between (ŝ, p̂) and the unconstrained optimal seller attribute un-
der p̂U . This implies b̂([0, 1]) ∩B(ŝ, p̂, p̂U ) = {b̂} for some b̂, and so

¯̄H(ŝ, b̂, p̂U ) ≥ hS(b̂, ŝ) + p̂.

From Lemma A.3,

lim
`→∞

H(s`, p`,b`, p`U ) + ε = hS(b̂, ŝ) + p̂+ ε,

and so (taking the lim sup of both sides of (B.15))
¯̄H(ŝ, b̂, p̂U ) + ε ≥ lim sup

`→∞

¯̄H(s`,b`, p`U ),

which (since it holds for all ε > 0) implies (B.14).

Allowing the buyer and seller to choose mixed strategies then gives us
a game whose best responses consist of closed, convex sets. As a result, we
can apply Glicksberg (1952) to conclude that we have a Nash equilibrium in
which the price-setter plays a pure strategy, while the buyer and seller may
mix:

Lemma C The game Γn has a Nash Equilibrium, (ξnB, ξ
n
S , p

n
U ) ∈ ∆(ΥB)×

∆(ΥS)×ΥP .
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B.4 The limit n→∞

We now examine the limit as n → ∞. In particular, let {(ξnB, ξnS , pnU )}n ⊂
∆(ΥB) × ∆(ΥS) × ΥP be a sequence of Nash equilibria of the games Γn.
Without loss of generality (since the relevant spaces are sequentially com-
pact), we may assume that both the sequence of equilibria converges to some
limit (ξ∗B, ξ

∗
S , p
∗
U ), and that players’ payoffs also converge.

We now examine the limit (ξ∗B, ξ
∗
S , p
∗
U ). Intuitively, we would like to

think of this profile as the equilibrium of a “limit game.” However, the
definition of this limit game is not straightforward, since the definition of
the seller’s payoffs in the game Γn relies on the strategies b, sB, and s
having properties (such as strict monotonicity and continuity) that need
not carry over to their limits. In establishing properties of (ξ∗B, ξ

∗
S , p
∗
U ), we

accordingly typically begin our argument in the limit, and then pass back to
the approximating equilibrium profile (ξnB, ξ

n
S , p

n
U ) to obtain a contradiction.

The latter step of the argument is notationally cumbersome, and we do not
always make the approximation explicit.

Note that while the seller is best responding to ξnB in choosing s, the
choice of p implicit in (B.11) is made after (b, sB) is realized.

While the L1 topology does not distinguish between functions that agree
almost everywhere, it will be important for some of the later developments
that we make the selection indicated in the next lemma from the equivalence
classes of functions that agree almost everywhere.

Lemma D The limit profile (ξ∗B, ξ
∗
S , p
∗
U ) is pure, which we denote by (b∗, s∗B, s

∗, p∗U ).
The limit functions can be (and subsequently are) taken to be increasing, and
the functions b∗, s∗B, and s∗ can be (and subsequently are) taken to be con-
tinuous from the left.

Proof. Consider the buyer (the case of the seller is analogous). Let ξ∗B,b and
ξ∗B,s denote the marginal distributions induced on buyer and seller attributes
chosen by the buyer.

Suppose the buyer’s strategy is not pure. Then define a pair of increasing
functions b′ : [0, 1]→ [0, b̄] and s′B : [0, 1]→ [0, s̄] by

b′(β) = inf{b : ξ∗B,b(b) ≥ β}
and s′B(β) = inf{s : ξ∗B,s(s) ≥ β}.

These functions give the same distribution of buyer and seller attributes
chosen by the buyer, but feature positive assortativity between the buyer’s
types and attribute choice, and between the buyer’s and the seller’s attribute
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with which the buyer matches, both of which strictly increase the buyer’s
payoff. Hence, this pure strategy strictly increases the buyer’s payoff. It then
follows from straightforward continuity arguments that for sufficiently large
n, i.e., for a game in which the slope requirements on the buyer’s strategy
are sufficiently weak and the equilibrium profile (ξnB, ξ

n
S , p

n
U ) is sufficiently

close to (ξ∗B, ξ
∗
S , p
∗
U ), there is a pure strategy sufficiently close to b′ and s′B

giving the buyer a payoff higher than his supposed equilibrium payoff in Γn

a contradiction. Hence, the buyer cannot mix.
The conclusion that each function is increasing is an implication of the

observation that if a sequence of increasing functions {fn} converges in L1

to a function f , then that function is increasing.

It is helpful to keep in mind the nature of convergence in ∆(ΥB) ×
∆(ΥS) × ΥP . Recalling that ΥB, ΥS , are each endowed with the L1 norm
and ΥP with the sup norm, and the definition of the Prohorov metric
(which metrizes weak convergence), (ξnB, ξ

n
S , p

n
U ) converges to the pure pro-

file (b∗, s∗B, s
∗, p∗U ) if, and only if, the following holds: For all ε > 0 there

exists n′ such that for all n ≥ n′,

ξnB
({

(b, sB) ∈ Υn
B :
∫
|b(β)− b∗(β)|dβ < ε,

∫
|sB(β)− s∗B(β)|dβ < ε

})
≥ 1− ε,

ξnS
({

s ∈ Υn
S :
∫
|s(σ)− s∗(σ)|dσ < ε

})
≥ 1− ε,

and
sup |pnU (s)− p∗U (s)| < ε.

We next restate the nature of convergence in a more useful form:

Lemma E For all ε > 0, there exists a set Eε ⊂ [0, 1] with λ(Eε) ≥ 1 − ε
and nε such that for all n ≥ nε,

ξnB ({(b, sB) ∈ Υn
B : |b(β)− b∗(β)| < ε, |sB(β)− s∗B(β)| < ε, ∀β ∈ Eε})

≥ 1− ε,

ξnS ({s ∈ Υn
S : |s(σ)− s∗(σ)| < ε, ∀σ ∈ Eε}) ≥ 1− ε,

and
|pnU (s)− p∗U (s)| < ε, ∀s.

Moreover, the sets Eε are nested: Eε
′ ⊂ Eε if ε < ε′.
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Proof. Fix ε > 0. We prove that there is a set EεS with λ(EεS) > 1 − ε/3
and an integer n′S such that

ξnS ({s ∈ Υn
S : |s(σ)− s∗(σ)| < ε, ∀σ ∈ EεS}) ≥ 1− ε (B.17)

for all n > n′S . The same argument implies a set EεB and integer n′B for
the function b∗, and a ÊεB and n′′B for the function s∗B.22 The desired set is
Eε = EεS ∩ EεB ∩ ÊεB and integer is nε = max{n′S , n′B, n′′B}.

Let {σk} be an enumeration of the discontinuities of s∗. Since s∗ is
bounded, there exists K such that the total size of the discontinuities over
{σk}k>K is less than ε/6.

Fix L > 2 such that {(σk−2−kL, σk + 2−kL)}Kk=1 is pairwise disjoint and
21−L < ε/6. Defining

EεS = [0, 1] \
⋃
k

(σk − 2−kL, σk + 2−kL)

yields a set of measure at least 1− ε/3.
Let EKS be the set given by [0, 1] \ ∪Kk=1(σk − 2−kL, σk + 2−kL); clearly

EεS ⊂ EKS . The set EKS can be written as the disjoint union of closed intervals
Ik, k = 0, 1, . . . ,K. There exists an η > 0 such that for all k and for all
σ, σ′ ∈ Ik, if |σ − σ′| < η then |s∗(σ)− s∗(σ′)| < ε/3.

Let {x`} ⊂ Ik be an η-grid of Ik, i.e., x`+1 − η < x` < x`+1 for all `.
Consider an increasing function s satisfying

∫
|s− s∗| < εη/3. We claim

that for all σ ∈ EKS (and so for all σ ∈ EεS), |s−s∗| < ε. Observe that (B.17)
then follows, since n′S can be chosen so that ξnS

({
s ∈ Υn

S :
∫
|s− s∗| < εη/3

})
≥

1− ε holds for all n > n′S .
The claim follows from two observations:

1. |s(x`) − s∗(x`)| < 2ε/3: Suppose s(x`) ≥ s∗(x`) + 2ε/3 (the other
possibility is handled mutatis mutandis). Then, for all σ ∈ (x`, x`+1),

s(σ) ≥ s(x`) ≥ s∗(x`) + 2ε/3 > s∗(σ) + ε/3.
22More precisely, the sets can be chosen so that, for n > n′B ,

ξnB({(b, sB) ∈ Υn
B : |b(β)− b∗(β)| < ε, ∀β ∈ EεB}) ≥ 1− ε/2,

and, for n > n′′B ,

ξnB({(b, sB) ∈ Υn
B : |sB(β)− s∗B(β)| < ε, ∀β ∈ ÊεB}) ≥ 1− ε/2,

so that, for n > max{n′B , n′′B},

ξnB({(b, sB) ∈ Υn
B : |b(β)− b∗(β)| < ε, |sB(β)− s∗B(β)| < ε, ∀β ∈ EεB ∩ ÊεB}) ≥ 1− ε.
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But this is impossible, since it would imply
∫
|s− s∗| > εη/3.

2. For all ` and all σ ∈ (x`, x`+1), |s(σ) − s∗(σ)| < ε: Suppose s(σ) ≥
s∗(σ) + ε (the other possibility is handled mutatis mutandis). Then,

s(x`+1) ≥ s(σ) ≥ s∗(σ) + ε ≥ s∗(x`+1) + 2ε/3,

contradicting the previous observation.

The last assertion of Lemma E is immediate from the definition of EεS .

Lemma F The profile (b∗, s∗B, s
∗, p∗U ) balances the market, i.e., F ∗B(s) =

F ∗S(s) for all s. Hence, s∗B(x) = s∗(x) for almost all x ∈ [0, 1].

Proof. Since F ∗B and F ∗S are continuous from the right, it suffices to show
that they agree almost everywhere. We first argue that F ∗B(s) − F ∗S(s) ≤ 0
almost everywhere. Suppose this is not the case, so there exists ŝ < s̄ with
F ∗B(ŝ) − F ∗S(ŝ) = ε > 0 and with ŝ a continuity point of F ∗B − F ∗S . Then
there exists s1 and s2 with ŝ ∈ (s1, s2), F ∗B(s) − F ∗S(s) ≥ ε/2 on [s1, s2],
and either s1 = 0 or, for every η > 0, there is a value sη ∈ [s1 − η, s1) with
F ∗B(sη) − F ∗S(sη) < ε/2 (note that F ∗B(sη) − F ∗S(sη) may be negative, and
so is bounded below by −1). We consider the case in which s1 > 0 and
p∗U (s1) < p∗U (s2), with the remaining cases a straightforward simplification.

Since F ∗B(s) − F ∗S(s) > 0 on [s1, s2], for fixed p∗U (s1) and p∗U (s2), the
price-setter must be setting prices as large as possible on this interval. If
not, there is a price function p̂U ∈ ΥP with p̂U (s) ≥ p∗U (s) for all s and
p̂U (s) > p∗U (s) for some s yielding strictly higher payoffs to the price-setter
than p∗U in Γn for sufficiently large n, when the buyer and seller choose
(ξnB, ξ

n
S). But this contradicts the equilibrium property of (ξnB, ξ

n
S , p

n
U ).

Hence, there exists s′ ∈ [s1, s2] such that dp∗U (s)/ds = 2∆ on (s1, s
′) and

p∗U (s) = p∗U (s2) for s ∈ [s′, s2]. That is, prices increase at the maximum
rate possible until hitting p∗U (s2) (with s′ = s2 possible, but since p∗U (s1) <
p∗U (s2), we have s1 < s′). Consequently, sB([0, 1]) ∩ [s1, s2] ⊂ {s1, s2}, i.e.,
buyers demand only seller attribute choices s1 and s2 from this interval.
(Since all seller attribute choices in [s′, s2] command the same price, buyers
demand only attribute choice s2 from this set, while the price of a seller
attribute choice increases sufficiently quickly on [s1, s

′] that from this set
buyers demand only s1.)

Since for every η > 0, there exists sη ∈ [s1−η, s1) with F ∗B(sη)−F ∗S(sη) <
ε/2 and yet F ∗B(s1)−F ∗S(s1) ≥ ε, the buyer must choose attributes arbitrarily
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close to s1 for some buyer types. This implies that there is a range of seller
attributes just below s1 with prices that are not too low, that is, there exists
η′ > 0 such that

p∗U (s) > p∗U (s1)−∆(s1 − s)

for all s ∈ [s1 − η′, s1). Consider now the price function pηU ∈ ΥP given by

pηU (s) ≡


p∗U (s), if s ≥ s′,
min{p∗U (s1 − η) + 2∆(s− s1 + η), p∗U (s′)}, if s ∈ (s1 − η, s′),
p∗U (s), if s ≤ s1 − η,

and note that p0
U = p∗U . Since pηU ≥ p∗U , the price-setter’s payoff from

choosing pηU ∈ ΥP less the payoff from p∗U is bounded below by

−
∫ s1

s1−η

(
pηU (s)− p∗U (s)

)
ds+

∫ s′

s1

(
pηU (s)− p∗U (s)

)
ε/2 ds. (B.18)

For η < η′ and s ∈ (s1 − η, s1),

pηU (s)− p∗U (s) ≤ p∗U (s1 − η) + 2∆(s− s1 + η)− p∗U (s1) + ∆(s1 − s)
= p∗U (s1 − η)− p∗U (s1)−∆(s1 − s) + 2∆η
≤ 2∆η.

Moreover, for s ∈ (s1, s1 + (s′−s1)/2), if η is sufficiently close to 0, we have
pηU (s) < p∗U (s′) and so

pηU (s)− p∗U (s) = p∗U (s1 − η) + 2∆(s− s1 + η)− p∗U (s)
≥ p∗U (s1)−∆η + 2∆(s− s1 + η)− p∗U (s)
= p∗U (s1)−∆η + 2∆(s− s1 + η)− p∗U (s1)− 2∆(s− s1)
= ∆η.

Since pηU (s) ≥ p∗U (s) for all s, the expression in (B.18) is bounded below by

−
∫ s1

s1−η
2∆η ds+

∫ s1+(s′−s1)/2

s1

∆ηε/2 ds,

which is clearly positive for sufficiently small η. Since the lower bound is
strictly positive, the price-setter has a profitable deviation (in Γn for large
n), a contradiction.

We conclude that F ∗B(s) − F ∗S(s) ≤ 0 for almost all s. It remains to
argue that it is not negative on a set of positive measure. Suppose it is.
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Then there must exist a seller characteristic ŝ > 0 such that pU (s) = −P
for s < ŝ, F ∗B(s) − F ∗S(s) < 0 for a positive-measure subset of [0, ŝ], and
F ∗B(s) − F ∗S(s) = 0 for almost all s > ŝ. But then no seller would choose
attributes in [0, ŝ), a contradiction.

We now seek a characterization of the seller’s payoffs. Intuitively, we
would like to use Lemma F and the monotonicity of b∗ and s∗B to conclude
that there is positive assortative matching, and indeed that a seller of type
σ matches with a buyer of type β = σ. However, these properties may not
hold if b∗ and s∗B are not strictly increasing. Moreover, even if we had such
a matching, the specification of the seller’s payoffs given by (B.12) leaves
open the possibility that the (gross) payoff to a seller of type σ choosing
attribute s may not be given by hS(b̃(s), s) + pU (s). Hence, the buyers that
sellers are implicitly choosing in their payoff calculations may not duplicate
those whose seller choices balance the market.

Our first step in addressing these issues is to show that the buyer’s
limiting attribute-choice function is indeed strictly increasing. Intuitively, if
a positive measure of buyer types choose the same attribute, by having some
higher types in the pool choose a slightly higher attribute, and some lower
types choose a slightly lower attribute, we can keep the average attribute
unchanged, while saving costs (from Assumption 3).

Lemma G The function b∗ is strictly increasing when nonzero.

Proof. By construction, b∗ is weakly increasing. We show that β′′ > β′

and b∗(β′) > 0 imply b∗(β′′) > b∗(β′). Suppose to the contrary that b =
b∗(β) > 0 for two distinct values of β.

Define β1 ≡ inf{β : b∗(β) = b}, β2 ≡ sup{β : b∗(β) = b}, and β̄ =
(β1 + β2)/2. We assume 0 < β1 and β2 < 1 (if equality holds in either case,
then the argument is modified in the obvious manner). We now define a
new attribute-choice function (as a function of a parameter η > 0) that is
strictly increasing on a neighborhood of [β1, β2] and agrees with b∗ outside
that neighborhood. First, define

βη1 = inf{β ≤ β1 : b∗(β) ≥ b+ η(β − β̄)}
and βη2 = sup{β ≥ β2 : b∗(β) ≤ b+ η(β − β̄)}.

Note that as η → 0, βηj → βj for j = 1, 2. Finally, define

bη(β) ≡


b∗(β), if β > βη2,

b+ η(β − β̄), if β ∈ [βη1, β
η
2],

b∗(β), if β < βη1.
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The difference in payoffs to the buyer under bη and under b∗ is given by∫ βη2

βη1

hB(bη(β), s∗B(β))−hB(b∗(β), s∗B(β))− [cB(bη(β), β)−cB(b∗(β), β)] dβ.

(B.19)
Now,∫ β2

β1

[cB(bη(β),β)− cB(b∗(β), β)] dβ

=
∫ β2

β1

[
∂cB(b, β)

∂b
η(β − β̄) + o(η)

]
dβ

=η
∫ (β2−β1)/2

0

[
∂cB(b, β̄ + x)

∂b
− ∂cB(b, β̄ − x)

∂b

]
x dx+ o(η).

From Assumption 3, the integrand is strictly negative, and so the integral
is strictly negative and independent of η. Since s∗B is increasing, a similar
argument applied to the difference in the premuneration values shows that∫ β2

β1

hB(bη(β), s∗B(β))−hB(b∗(β), s∗B(β))−[cB(bη(β), β)−cB(b∗(β), β)] dβ

≥ η
∫ (β2−β1)/2

0

[
∂cB(b, β̄ − x)

∂b
− ∂cB(b, β̄ + x)

∂b

]
x dβ + o(η).

It remains to argue that the contribution to (B.19) from the intervals [βη1, β1)
and (β2, β

η
2] is of order o(η). But this is immediate, since |bη(β)−b∗(β)| ≤ η

and βηj → βj as η → 0 (for j = 1, 2). Hence, for η > 0 sufficiently small,
bη gives the buyer a strictly higher payoff under (B.7) than b∗. But, then
by a now familiar argument, the buyer has a profitable deviation in Γn

for sufficiently large n, a contradiction. So b∗ is strictly increasing when
nonzero.

We next show that the seller’s payoffs converge to the payoff one would
expect the seller to receive by matching with his corresponding buyer type.

Lemma H For almost all σ satisfying b∗(σ) > 0,

lim
n

∫
H̄(s(σ),b, pnU )− cS(s(σ), σ)dξn

= hS(b∗(σ)), s∗(σ)) + p∗U (s∗(σ))− cS(s∗(σ), σ).
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The functions s and b on the left side of this expression are strategies in the
game Γn, and are the objects over which the equilibrium ξn mixes.

Proof. Suppose the claim is false. Then, since the limit exists, there exists
n′′ and η > 0 such that for all σ in a set G of sellers of measure at least η
whose “matched” buyers choose positive attributes (i.e., b∗(σ) > 0), for all
n > n′′, ∫

H̄(s(σ),b, pnU )− cS(s(σ), σ)dξn

is at least η distant from

hS(b∗(σ), s∗(σ)) + p∗U (s∗(σ))− cS(s∗(σ), σ).

Since G has positive measure, we may assume that every index in G is
a continuity point of the limit functions (b∗, s∗B, s

∗).
For any ε > 0, let Eε ⊂ [0, 1] be the set from Lemma E satisfying

λ(Eε) ≥ 1− ε.
Fix an index σ′ ∈ G ∩ Eε′ for some ε′ > 0 (since Eε is monotonic in ε,

σ′ ∈ G ∩ Eε for all smaller ε). Since b∗ is strictly increasing, without loss
of generality, we may assume that, for all ζ > 0, there is a positive measure
set of buyers with b∗(β) ∈ (b∗(σ′) − ζ,b∗(σ′)). Indeed, a positive measure
set of buyers in Eε does so for all ε sufficiently small. Formally,

∀ζ > 0 ∃ε′′ ∀ε < ε′′, λ{β ∈ Eε : b∗(β) ∈ (b∗(σ′)− ζ,b∗(σ′))} > 0. (B.20)

Consider some ε < ε′ and suppose n > max{nε, n′′}, where nε is from
Lemma E. Let (b, sB, s) ∈ Υn

B × Υn
S be a triple of functions with the

property that |b(β)−b∗(β)| < ε and |sB(β)−s∗B(β)| < ε for all β ∈ Eε, and
|s(σ) − s∗(σ)| < ε for all σ ∈ Eε. (Recall that, from Lemma E, ξn assigns
high probability to such functions for large n.)

By Lemma F, s∗ and s∗B are equal almost surely, so without loss of
generality, we may assume that s∗(x) = s∗B(x) for all x ∈ E.

Observe first that if the max in (B.11) is achieved by hS(0, s(σ)) +
pnU (s(σ)), then

H̄(s(σ),b, pnU )− cS(s(σ), σ) = hS(0, s(σ)) + pnU (s(σ))− cS(s(σ), σ)
≤ hS(b(σ), s(σ)) + pnU (s(σ))− cS(s(σ), σ).

We claim that, for sufficiently small ε > 0, the set P̃ (s(σ),b, pnU ) contains
all p < pnU (s(σ)). This follows from (B.20) and the observation that buyers
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in Eε receive a payoff (ignoring costs) arbitrarily close to hB(b∗(β), s∗(β))−
p∗U (s∗(β)).

Consequently, for p sufficiently close to pnU (s(σ)), single crossing (As-
sumption 1) implies that a buyer β with attribute satisfying b∗(β) < b∗(σ)
will not be attracted (for sufficiently large n). This implies that

sup
p∈P̃ (s(σ),b,pnU )

H(s(σ), p,b, pnU ) = hS(b(σ), s(σ)) + pnU (s(σ)).

By choosing ε small (or, equivalently, n large), the right side can be made
arbitrarily close to

hS(b1(s′), s′) + p∗U (s′) = hS(b1(s∗(σ)), s∗(σ)) + p∗U (s∗(σ)).

Hence, the max in (B.11) is achieved by the first term, and we have a
contradiction.

With this payoff characterization in hand, we can show that seller at-
tribute choices are strictly increasing in types (when positive), as are the
types of sellers with whom buyers attempt to match.

Lemma I The functions s∗B and s∗ are strictly increasing on {β : b∗(β) >
0}.

Proof. From Lemma F, s∗B(x) = s∗(x) for almost all x ∈ [0, 1], and so it
suffices to prove the result for s∗. Suppose to the contrary there is a strictly
positive constant ŝ and associated maximal nondegenerate interval (σ1, σ2)
with s∗(σ) = ŝ and b∗(σ) > 0 for all σ ∈ (σ1, σ2). From Lemma F, we also
have s∗B(β) = ŝ for all β ∈ (σ1, σ2).

Define b1 ≡ limβ↓σ1 b∗(β) and b2 ≡ limβ↑σ2 b∗(β).
Define σ(η) ≡ inf{σ : s∗(σ) ≥ ŝ+ η}, and notice that limη→0 σ(η) = σ2.

The seller attribute-choice function s′ given by

s′(s) =

 s∗(σ), if σ 6∈ (σ1, σ(η)),

ŝ+ η, if σ ∈ (σ1, σ(η)),

is weakly increasing. Consider the price p̂ > p∗U (ŝ) for attribute ŝ + η
satisfying

p̂ = sup{p : B(ŝ+ η, p, p∗U ) 6= ∅}.

(This is p̄(ŝ + η, p, p∗U ) from Lemma A(1).) The price p̂ is at least as high
as the value p′ satisfying hB(b2, ŝ)− pU (ŝ) = hB(b2, ŝ+ η)− p′. At the price
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p̂ for attribute choice ŝ + η, the seller ensures that attribute choice ŝ + η
is chosen by a buyer at least as high as b2 (the single-crossing condition
on buyer premuneration values ensures that no lower attribute buyers will
choose ŝ + η). From Lemma H, we have then have that the switch to
attribute-choice function s′ increases the seller’s payoff by at least∫ σ2

σ1

(hS(b2, ŝ+ η) + p̂) dσ −
∫ σ2

σ1

(hS(b1, ŝ) + p∗U (ŝ)) dσ

−
∫ σ(η)

σ1

(cs(ŝ+ η, σ)− cS(s∗(σ), σ)dσ

> (σ2 − σ1)[hS(b2, ŝ+ η)− hS(b1, ŝ]
− (σ(η)− σ1)[cS(ŝ+ η, σ1)− cS(ŝ, σ1)].

The first term after the inequality is bounded away from zero as η approaches
zero, while the second approaches zero as does η, ensuring that there is some
η > 0 for which the payoff difference is positive. Intuitively, each seller in
the interval (σ1, σ2) experiences a discontinuous increase in expected buyer
(at a higher price) when increasing her attribute choice, while sellers in the
interval (σ2, σ(η)) experience a continuous increase in cost. The attribute-
choice function s′ increases the seller’s payoff for sufficiently small η, yielding
the result.

The limiting mass of buyers and seller choosing zero attributes are equal:

Lemma J
λ({σ : s∗(σ) = 0}) = λ({β : b∗(β) = 0}).

Proof. First, suppose λ({β : b∗(β) = 0}) > λ({σ : s∗(σ) = 0}). Then
because s∗B = s∗ almost everywhere, there exists a positive mass of buyers for
whom b∗(β) = 0 and s∗B(β) > 0. By Assumption 2, hB(0, s) is independent
of s, and so, since p∗U is strictly increasing, buyers choosing b = 0 can increase
their payoff by choosing s = 0. The buyer’s equilibrium strategy must then
be suboptimal in the game Γn for sufficiently large n, a contradiction.

Now, suppose λ({β : b∗(β) = 0}) < λ({σ : s∗(σ) = 0}). Let [σ′, σ′′] be
the interval of indices for which s∗(σ) = 0 and b∗(σ) > 0. Since an interval
of low-index buyers are willing to match with the zero seller attribute, and
the least-desirable willing buyer enters the seller’s payoff calculation (from
(B.11)), sellers’ payoffs in Γn converge to hS(b∗(0), s∗(σ)) + p∗U (s∗(σ)) −
cS(s∗(σ), σ), for σ ∈ [σ′, σ′′]. But, by Lemma H, these sellers have payoffs
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converging to hS(b∗(σ), s∗(σ)) + p∗U (s∗(σ)) − cS(s∗(σ), σ), a contradiction.

We now turn to feasible matchings. For b ∈ [0,b∗(1)] and s ∈ [0, s∗(1)],
we define

b̃∗(s) ≡

{
b∗((s∗)−1(s)), s ∈ s∗([0, 1]), s > 0,
max {0, supb∈B{b < b∗(inf {σ : s∗ (σ) > s})}} , otherwise,

and

s̃∗(b) ≡

{
s∗((b∗)−1(b)), b ∈ b∗([0, 1]), b > 0,
max {0, sups∈S{s < s∗(inf{β : b∗(β) > b})}} , otherwise.

The maximum in the specification of b̃∗ (with s̃∗ similar) ensures that b̃∗ is
well defined when s∗ is continuous at inf{σ|s∗(σ) > 0} (in which case, the
supremum is taken over the empty set and so has value −∞).

Lemma K The pair (b̃∗, s̃∗) is a feasible matching. In addition, for all
values b > 0 and s > 0, we have

s̃∗(b) = s∗((b∗)−1(b))

where

(b∗)−1(b) =

{
inf{β : b∗(β) > b}, for b ≤ b∗(1),
1, for b > b∗(1),

and
b̃∗(s) = b∗((s∗)−1(s)),

where

(s∗)−1(s) =

{
inf{σ : s∗(σ) > s}, for s ≤ s∗(1),
1, for s > s∗(1).

Proof. From Lemma J, we can assume that b∗ and s∗ share a common set
[0, x] on which they are zero. It is then immediate that (b̃∗, s̃∗) is a feasible
matching.

The final two statements follow immediately from the left continuity of
the attribute-choice functions (see Lemma D) and the definitions of s̃∗ and
b̃∗.

Finally, we show that the seller’s payoff satisfies an optimality condition.
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Lemma L For almost all σ,

lim
n

∫
H̄(s(σ),b, pnU )− cS(s(σ), σ)dξn

= hS(b∗(σ), s∗(σ)) + p∗U (s∗(σ))− cS(s∗(σ), σ)

= max
s∈S

hS(b̃∗(s), s) + p∗U (s)− cS(s, σ).

Proof. The first inequality duplicates Lemma H.
Single-crossing (Assumption 3) implies that the attribute choices maxi-

mizing hS(b̃∗(s), s)+p∗U (s)−cS(s, σ) are increasing in σ, and so if the second
equality fails, in games Γn for sufficiently large n, the seller has a profitable
deviation.

B.5 Uniform-Price Equilibria

We finally argue that the profile (b∗, s∗, b̃∗, s̃∗, p∗U ) induces a uniform-price
equilibrium of the matching market with identical attribute choices and
matching function (but perhaps a vertical shift in the price function).

The first task is to show that equilibrium payoffs are nonnegative, so
that agents would not prefer to be out of the market. Suppose {ξnB, ξnS , pnU}n
is the sequence whose limit induces (b∗, s∗B, b̃

∗, s̃∗, p∗U ). We have

hB(0, 0)− p∗U (0) = hB(0, 0)− p∗U (0)− cB(0, β)
≤ hB(b(β), s̃∗(b∗(β)))− p∗U (s̃∗(b∗(β)))− cB(b(β), β) (B.21)

and

hS(0, 0) + p∗U (0) = hS(0, 0) + p∗U (0)− cS(0, σ)

≤ hS(b̃∗(s(σ)), s(σ)) + p∗U (s(σ))− cS(s(σ), σ). (B.22)

Let
κ∗ ≡ hB(0, 0)− p∗U (0) ≥ −hS(0, 0)− p∗U (0)

(where the inequality follows from Assumption 5) and replace the price
function p∗U with p∗U +κ∗. Both ξnB and ξnS remain best responses given price
pnU + κ∗ and markets still clear in the limit of n→∞. Moreover, replacing
p∗U with p∗U + κ∗ in (B.21)–(B.22) gives nonnegative payoffs.

It is immediate from the formulation of the buyer’s payoffs in the game
and from Lemma L that almost all buyers and sellers are price takers under
p∗U .
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It remains to consider deviations by a seller of type σ to a value s not
chosen by any seller under s∗. If there is a profitable such deviation for
seller σ, then there is a price p such that B(s, p, p∗U ) is nonempty and for all
b ∈ B(s, p, p∗U ),

ΠS(s∗(σ), σ) < hS(b, s) + p− cS(s, σ).

But then for all sufficiently large n, B(s, p′, pnU ) is again nonempty for p′

less than but close to p, contradicting the fact that ΠS(s∗(σ), σ) is close to∫
H̄(s(σ),b, pnU )− cS(s(σ), σ) dξn.

B.6 Nontriviality

Partial nontriviality. We now show that under (21), the profile (b∗, s∗, b̃∗, s̃∗, p∗U )
is nontrivial. If the equilibrium is trivial, b∗ and s∗ are identically zero, so
that there is no agent for whom it is profitable to trade at price pU , and
hence for all (b, s) ∈ (0, b̄]× (0, s̄],

hS(0, s) + pU (s)− cS(s, 1) ≤ 0
and hB(b, s)− pU (s)− cB(b, 1) ≤ 0,

where we focus on agents β = 1 = σ since they are the most likely to want
to trade. Notice that we are using here the maximum that appears in the
building block (B.11) for the specification of the seller’s payoff, and which
effectively allows the seller to sell any attribute choice s ∈ [0, s̄] at price
pU (s), assuming in the process that he can attract at least a zero-attribute
buyer. For these two inequalities to hold, it must be that

hB(b, s) + hS(0, s) ≤ cB(b, 1) + cS(s, 1),

contradicting (21).
Full nontriviality. We now assume (22) holds. Suppose that there is

an interval of seller types [0, σ′] with σ′ > 0 who choose zero attributes. By
Lemma I, we then have b∗(β) = 0 for all β ∈ [0, σ′]. If neither agent of type
φ ∈ (0, β′) chooses a strictly positive attribute, it must be that

hS(0, s) + pU (s)− cS(s, φ) ≤ 0
and hB(b, s)− pU (s)− cB(b, φ) ≤ 0,

where (b, s) are a pair of attributes satisfying (22). But summing these two
inequalities yields an inequality contradicting (22).
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