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Abstract
Two distinguished New Zealanders pioneered some of the founda-

tions of modern econometrics. Alec Aitken, one of the most famous
and well-documented mental arithmeticians of all time, contributed
the matrix formulation and projection geometry of linear regression,
generalized least squares (GLS) estimation, algorithms for Hodrick
Prescott (HP) style data smoothing (six decades before their use in
economics), and statistical estimation theory leading to the Cramér
Rao bound. Rex Bergstrom constructed and estimated by limited in-
formation maximum likelihood (LIML) the largest empirical structural
model in the early 1950s, opened up the field of exact distribution the-
ory, developed cyclical growth models in economic theory, and spent
nearly 40 years of his life developing the theory of continuous time
econometric modeling and its empirical application. We provide an
overview of their lives, discuss some of their accomplishments, and
develop some new econometric theory that connects with their foun-
dational work.
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Alexander Craig Aitken Albert Rex Bergstrom

Overview

This article tells the story of two New Zealanders who laid some of the founda-
tion stones of the modern discipline of econometrics: Alexander Craig Aitken
(1895-1967) and Albert Rex Bergstrom (1925-2005). Sadly, Alec Aitken is
little known in the modern economics fraternity, although he is a celebrated
figure in New Zealand mathematics circles. Those who studied econometrics
prior to 1980 will know of him by association through the once commonly
used eponyms “Aitken’s method” and “Aitken’s generalized least squares
(GLS)” applied to the estimation procedure that he developed in conjunc-
tion with the matrix treatment of linear regression (Aitken, 1936) that is now
universal in econometrics. Rex Bergstrom’s work is widely known in the in-
ternational econometrics theatre and he is well remembered in New Zealand
for pioneering serious empirical econometric research on the New Zealand
economy and for his longstanding contributions as an educator, training suc-
cessive waves of New Zealand economists over the 1950s and 1960s.
Both Aitken and Bergstromwere born in the South Island of New Zealand,

Aitken in Dunedin and Bergstrom in Christchurch. Both worked in New
Zealand but ended up spending much of their lives in the UK. Both were
athletes in their youth - Aitken winning the high jump and pole vault cham-
pionships in Otago county as a young man, and Bergstrom winning a ban-
tomweight boxing championship at high school. Both had a lifelong passion
for mathematics. Aitken’s passion was tempered by wideranging artistic in-
terests in music, classical scholarship, literature and poetry. Bergstrom’s love
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of mathematics was tempered by the challenges of economic theory, econo-
metric methodology and empirical modeling that came to occupy so much
of his life. Both wrote with elegant simplicity and precision, providing para-
digms of economical writing that might be used as examplars in a work such
as McCloskey (2000). Both carried themselves with humility and dignity,
emanating distinct academic gravitas: Bergstrom, with the steely look of de-
termination that one might expect in a problem solver, dressed in a charcoal
Saville row suit that became his uniform throughout life; Aitken with a look
of gentle compassion and faraway contemplation reflecting a devotee of the
arts and the abstract preoccupations of a mathematician extraordinaire.
Aitken was a first generation contributor to econometrics. The foundation

stones that he laid to the discipline were all completed prior to the method-
ological work of the Cowles Commission in the 1940s that appeared in the
famous Cowles Commission Monograph 10 that was edited by Koopmans
(1950). His work on the matrix algebra of regression was contemporaneous
with Koopman’s (1937) early study of regression statistics. Bergstrom was
a second generation econometrician, learning much of his econometrics from
Koopmans (1950) and his probability and statistics from Cramér’s (1946) fa-
mous treatise on the mathematical methods of statistics, which remained one
of his lifetime-favorite books. At the time Aitken died in 1967, Bergstrom’s
career was in full flight, a new generation of econometrician was emerging,
and the discipline had matured to the stage where it was about to give birth
to its own scholarly journals. When Bergstrom died in 2005, the subject
of econometrics had exploded into numerous sub-disciplines, its tentacles
reached into every corner of applied economics, and its methodologies were
being used in other social sciences and in the natural sciences as far afield as
environmental science and paleobiology.

Alec Aitken

Life and Career

Aitken was born in Dunedin to a Scottish father and English mother. His
extraordinary mental capabilities were apparent at an early age. There are
many fascinating anecdotes. Some of these have become amplified in the
retelling. An authoritative source is Kidson’s (1968) biographical notes,
which are based on personal discussions with Aitken and his family. One
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example describes his primary school entrance interview. When asked by the
headmistress to spell the word “cat”, he ignored the question and proceeded
to spell several polysyllabic words, concluding with “Invercargill”. At Otago
Boys High School, where he was dux, he memorized the entire 12 books of the
Aeneid. Later in life he became a living legend through astonishing feats of
memory andmental arithmetic. Much has already been written of his prowess
as an arithmetician (see, for example, the biographies by Kidson (1968) and
Garry Tee (1981), and the obituaries by Whittaker and Bartlett (1968) and
Silverstone (1968)). He is regarded by many as being one of the greatest
arithmeticians of the twentieth century for whom reliable records exist1. In
a remarkable BBC radio interview in 1954, he multiplied 9 digit numbers in
less than 30 seconds, gave the full repeating decimal representation of the
prime number fraction 23/47, and knowing π to a 1000 digits, was able to re-
cite the digits from an arbitrary starting point. As the transcript of the BBC
interview (available at www.mentalcalculation.com/misc/bbc1954.html) de-
scribes it

“Bowden gives Aitken 23/47. Aitken repeats the problem, then
reels off the digits “0.48936170212765959446808510638" at a rate of
3 per second. Bowden feels it necessary at this time to reassure the
audience that neither calculator has been told the numbers in advance.
Aitken continues “63829787234042553191 and that completes the 46
digit period.” Astounded by this, Burt asks Aitken how he knows
the digits repeat after 46 digits. Aitken reveals that he arrived at
“3191489” and “remembered 489 started off the expansion.”

In an article on the art of mental calculation, Aitken (1954) describes
some of the methods he used in developing these remarkable computing and
memory skills. When asked to multiply 987,654,321 by 123,456,789 he ex-
plains in a telling remark that is often quoted (e.g. Silverstone, 1968):

1The Guiness book of records and internet list some astonishing recently recorded feats
of memory and mental arithmetic of the same genre as those demonstrated by Aitken.
Daniel Tammet (an autistic savant) is said to have recited π to 22,514 digits in 5 hours
9 minutes; Shakuntala Devi, known as the human computer in India, multiplied two 13
random digit numbers (picked by the computer science department at Imperial College)
in 28 seconds in 1980 (a feat mentioned in the Guiness book of records, 1995, p. 26). One
of the famous Chinese Kaohsiung siblings, Wang Chia-lu, multiplied two 13 digit numbers
in 26.51 seconds in 2000. Alexis Lemaire (who, at the time of writing, is a Ph.D student
in artificial intelligence) found the 13’th root of a random 200 digit number in 70 seconds
at the London Science Museum.
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“I saw in a flash that 987,654,321 by 81 equals 80,000,000,001;
and so I multiplied 123,456,789 by this, a simple matter, and divided
the answer by 81. Answer: 121,932,631,112,635,269. The whole thing
could hardly have taken more than half a minute.”

Topping the national university entrance scholarship exams in 1912, ap-
parently by a wide margin, Aitken entered Otago University in 1913. He
gained senior scholarships in Latin, Mathematics, and Applied Mathematics,
and went on to take first class honors in Latin and French, and a second in
mathematics. The mathematics result was a surprise and a great disappoint-
ment. It appears to have been due to a demanding externally set examination
that departed egregiously from course content. There was no mathematics
professor at Otago and Aitken’s only guidance came from tutoring by the
mathematics master at his former high school, Otago Boys. To console him-
self, Aitken took a brief sojourn camping on beaches in Stewart Island and
resolved to forgo a career in mathematics. Accordingly, he assumed the post
of a classics master at his old high school over 1920-1923. But his extraordi-
nary mathematical abilities did not languish. He soon came to the attention
of R. J. T. Bell, the new professor of mathematics at Otago, who hired him
as a part-time assistant and encouraged him to go on to do doctoral research
with Edmund Whittaker, the famous British mathematician at the Univer-
sity of Edinburgh. This move opened up a brilliant mathematical career and
a new arena of personal life for Aitken.
Aitken’s period at the University of Otago was interrupted by war ser-

vice. He enlisted in 1915 in the expeditionary army force destined for service
in Gallipoli. He served in Gallipoli, Egypt and France, was injured in the
battle of the Somme in 1916, and hospitalized for 3 months in the UK before
returning to New Zealand.
Aitken was haunted by memories of the war for the rest of his life. Later

in life, he crafted his wartime diaries, first written in 1917 while recuperat-
ing from his war injuries, into an autobiographical account published in his
book (1963) From Gallipoli to the Somme: Recollections of a New Zealand
Infantryman, which was hailed as one of the most compelling and authentic
accounts of life in the trenches during the first world war. Integrity shines
from its pages in elegant and simple prose that describes the incompetence of
combat command, the futile missions, the daily ennui, the abominable living
conditions, and the tragic waste of life, capturing a stark reality that defies
the glorifications of war so common in fiction and political propoganda. Some
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accounts in the book have become classical. One episode describes what it
is like to line up an enemy soldier in the sights of a rifle, squeeze the trigger,
watch the soldier fall, and then contemplate the reality of what has been done
to another human being. The book was sufficient to earn Aitken immediate
election to a fellowship of the prestigious Royal Society of Literature in 1964.
Aitken began his career at Edinburgh as a doctoral student and remained

there for the rest of his life. His doctoral research was conducted under the
supervision of Edmund Whittaker, one of Britain’s most eminent mathe-
maticians, whose Course in Modern Analysis with (his former student) G.
N. Watson was legendary in its own time, is still reprinted as a mathematical
classic, and is used in diverse areas of applied mathematics where special
functions are employed, including econometrics. Aitken’s thesis dealt with
the statistical problem of “graduating” data that is subject to error, which
now falls under the general head of statistical smoothing techniques, but at
the time was most useful for actuarial calculations. Aitken addressed both
the theory and the practical aspects of implementing these smoothing algo-
rithms. His dissertation was considered so distinguished that he was awarded
the degree of D.Sc rather than Ph.D in 1926. Even before this, he was elected
to a fellowship of the Royal Society of Edinburgh at the age of 30 in 1925.
In 1925 Aitken was appointed to a lectureship in Actuarial Mathematics

at the University of Edinburgh and so began his academic careeer. Over suc-
ceeding years, he became lecturer in Statistics, in Mathematical Economics,
and in 1936 was appointed as Reader in Statistics. It would be interesting
to explore the archives at the University of Edinburgh to see if there is any
detail about the content of his early courses in mathematical economics.
Whittaker retired in 1948 and Aitken was elected to his chair in Pure

Mathematics, in which post he remained until his own retirement in 1965.
He died in 1967. Kidson (1968) movingly describes two visits in the 1950s to
Aitken’s home, the former residence of John Ballantyne, Sir Walter Scott’s
publisher. Aitken entertained Kidson and his wife with a demonstration of
his mental arithmetic, some of his own piano and violin compositions, as well
as a javelin throw, all underaken “with a complete and natural simplicity”.
Aitken received many accolades during his career, including election as a

Fellow of the Royal Society in 1936. In 1953 the Royal Society of Edinburgh
gave him their highest award, the Gunning Victoria Jubilee prize. He received
honorary degrees from the University of Glasgow and the University of New
Zealand. The New Zealand Mathematics Society awards the “Aitken Prize”
annually to a student in his honour. A conference in his honour was held at
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Otago University in 1995 to commemorate the centenary of his birth.

Research and Writings

Aitken’s main research contributions were in algebra, statistics, and numer-
ical mathematics. Those works that connect most closely with econometrics
are discussed in the next section. We briefly mention some other notable
contributions here.
As founding joint Editor (with D. E. Rutherford) of the famous Oliver

and Boyd series of mathemetical texts, Aitken (1939a and 1939b) personally
contributed the first two volumes to this series: Determinants and Matrices
and Statistical Mathematics. These books were still in common use as texts in
the 1960s. The volume on determinants and matrices was reprinted again in
1983. It is as remarkable for its brilliant exposition as it is for its astonishingly
broad coverage, taking readers from the novice level through to research
topics in a wonderful set of problems, all in the matter of 144 pages. Even
now there is no book on matrix albegra to match it. Another famous book
(The Theory of Canonical Matrices, 1932) by Aitken (co-authored with H.
W. Turnbull) dealt with canonical forms of matrices and is still a classic
reference on this subject.
Early in his career Aitken (1925) developed, as part of a more general

work that extended Bernoulli’s formula for the greatest root of a polynomial
equation, a powerful (nonlinear) method of accelerating the convergence of
a sequence. The method is still in common use and is known as Aitken ac-
celeration or Aitken’s δ2 method. Interestingly, it is now known that the
method was independently discovered much earlier by the Japanese mathe-
matician Seki Kōwa (1642-1708) who used it to calculate π correctly to the
10th decimal place.
In another of his many contributions to numerical mathematics, Aitken

(1931) developed a simple procedure for linear interpolation, based on the fa-
mous Newton-Lagrange formula, which became known as the Neville-Aitken
method. The advantage of this procedure is that it is recursive, enabling
users to update the calculation of the interpolating polynomial as successive
points are added to the interpolation.
The Royal Society biographical memoir by Whittaker and Bartlett (1968)

provides a full bibliography of Aitken’s published work and summarizes his
many contributions to mathematics and statistics. The archives of the Royal
Society record the following citation upon Aitken’s election to a Fellowship
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in 1936:

“Distinguished for his researches in mathematics. Author of 43
papers, chiefly in algebra and statistics. In particular, discovered (1)
a theory of duality which links determinantal theory with the com-
binatorial partition-theory and with group-character theory, (2) the
transformation of the rational canonical form of any matrix into classi-
cal canonical form, (3) the concept of minimal vectors associated with
a singular pencil of matrices, furnishing a method of great value, (4)
a theorem of which most of the fundamental expansions of function-
theory and interpolation theory are special cases, (5) a final solution,
theoretical and practical, of the statistical problem of polynomial rep-
resentations.”

Outside his academic work, Aitken was known to his friends and col-
leagues as a brilliant creative artist and musician. Following his retirement,
a special Minute of the University of Edinburgh was recorded for the Senate
Archives in 1966, lauding his many accomplishments and describing how ...

“Edinburgh has always had a great attraction for him and he has
resisted the many offers tempting him to go elsewhere. It has most of
what he wanted, a congenial job, hills to walk in, and above all, music,
concerts, and musical friends. He is a fine (largely self taught) violinist
and viola-player, and a very knowledgeable musician... Indeed, he is
reliably reported as having said that he spent three-quarters of his
time thinking about music. This remark reveals how efficiently he
must have used the other quarter! He is moreover a creative artist,
though only a few intimate friends have been privileged to know his
compositions, occasional poems, and the eloquent calligraphy of his
manuscript copies of Bach.”

Later in life, Aitken (1962) published an impassioned pamphlet against
decimalization, proposing in its place the duodecimal system. To a lay audi-
ence he described the merits of base 12 arithmetic, explained the duodecimal
system with great clarity, and drew analogies to the number systems built
around 12, 60, and 240 that have served humanity so well in measurements
that range from the time of day to months of the year, and building con-
struction through to currency systems. With characteristic lucidity, Aitken
put the position thus:
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“With all this, pounds and pence have an advantage which the
franc and centime, dollar and cent, metre and centimeter cannot pos-
sibly claim, namely the exceptional divisibility of the number 240.
This in fact is one of those integers which mathematicians, in that
special field called the ‘theory of numbers’, are accustomed to call
‘abundant’...Compared with 120 and 144, even with 60, the number
100 is relatively poverty-stricken in this respect — which indeed is why
the metric system is a notably inferior one; it cannot even express
exactly for example the division of the unit, of currency, metrical or
whatever, by so simple, ubiquitous and constantly useful a number as
three.”

Contributions to econometrics

That part of Aitken’s work that contributed directly to econometrics falls into
three categories: (i) data smoothing; (ii) matrix mechanics of least squares
regression and the associated projection geometry; and (iii) optimality in
statistical estimation. These contributions will be discussed briefly below.
In addition, according to David (1995), he is the original source for the fol-
lowing commonly used terminology in statistics and econometrics: minimum
variance unbiased estimator (Aitken and Silverstone, 1942) and probability
function (Aitken, 1939b).

(i) Data Smoothing
Aitken’s doctoral dissertation dealt with the graduation of data, follow-

ing earlier research by his advisor in Whittaker (1923)2 and Whittaker and
Robinson (1924) and work by Henderson (1924). The topic was of major im-
portance at the time, primarily for actuarial calculations, but has remained
important in applications ever since. The modern terminology for this field
is data smoothing, which interestingly is close to Aitken’s (1925) dissertation
title, as cited in the Mathematical Genealogy Project of the American Math-
ematical Society (http://www.genealogy.ams.org/). The term was also used
in Whittaker (1923).

2This paper is usually cited as Whittaker (1923), but in the journal records on Cam-
bridge Online Vol. 41 is listed as appearing in February 1922. At the head of the article
itself, it is recorded that it was “received in amended form” in August 1923.
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In economics, these methods have become heavily utilized in the empirical
analysis of business cycles. Here the smoother is a numerical trend extraction
device (the so-called “flexible ruler”) and the residual is studied for mani-
festations of cyclical behavior, leading to a trend plus cycle decomposition
of a time series. The method is often used to compute new series such as
potential GDP and the output gap for implementation in macroeconomic
modeling and monetary policy research.
Given data Xn = {Xt}nt=1, the Whittaker smoother is the solution to the

following numerical problem

f̂t = argmin
ft

(
nX
t=1

(Xt − ft)
2 + λ

nX
t=m

(∆mft)
2

)
, (1)

where the primary term Fn =
Pn

t=1 (Xt − ft)
2 controls the fidelity (or fit) to

the data and the secondary term Smn =
Pn

t=m (∆
mft)

2 imposes a smoothness
penalty measured in terms of the magnitude of the higher order differences
∆mft for some integerm ≥ 2 where∆ is the difference operator. The idea was
simply to get the best fit to the data while smoothing out the irregularities
manifest in the differences, so that ∆mft should be small. As Whittaker
(1923) described it,

“... the problem belongs essentially to the mathematical theory of
probability; we have the given observations and they would constitute
the “most probable” values .... were it not that we have à priori
grounds for believing that the true values ... form a smooth series,
the irregularities being due to accidental causes which it is desirable
to eliminate.”

In the work of Whittaker and Aitken, m = 3 was emphasized in formulat-
ing (1), but it was recognized that the choice of the integer m was arbitrary
and that other formulations such as m = 2 might well be used (cf. Aitken,
1958). The parameter λ controls the magnitude of the smoothing penalty.
The form of the criterion (1) was obtained by Whittaker (1923) using

Bayes rule (or inverse probability, as it was then called) using Gaussian as-
sumptions on Xn to construct the likelihood and a conjugate Gaussian prior
for Smn. The solution then simply maximizes the posterior probability of a
model for the data allowing for varying degrees of smoothness given λ.Whit-
taker’s approach was therefore modern in its formulation, corresponding to
Bayes and information theoretic model selection methods.
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Aitken was motivated to develop and justify an algorithm that facilitated
numerical calculation of the smoother. In the general case (1) for an arbitrary
integer m, the operator form of the solution is, as shown in the Appendix,

f̂t =
1

1 + λ∆2m (−L)−m
Xt =

Lm

Lm + λ (−1)m∆2m
Xt, (2)

where L is the lag operator and ∆ = 1− L. Aitken gave the solution when
m = 3, viz.,

f̂t =
1

1− λ∆6L−3
Xt =

L3

L3 − λ∆6
Xt, (3)

in equation (4.2) of his (1926) paper. One of the technical contributions
of this paper was to express the operator L3/ (L3 − λ∆6) in a convergent
Laurent series in powers of L and L−1, so that the resulting data smoother
f̂t could be written as a linear combination of past and future Xt. This
approach had a huge advantage over the Taylor series approximations used
in earlier work since those series representations were not convergent. To
simplify further and produce a numerical algorithm, Aitken solved the sixth
order polynomial equation to locate the zeros in the denominator of (3) and
used contour integration to evaluate the coefficients in the Laurent expansion.
Aitken’s calculations were a major breakthrough enabling computation for
much larger values of n than had previously been possible.
Nowadays, of course, computations to solve (1) for f̂t can be done directly

by matrix inversion and numerical methods. We detail the formulae and
some useful new expansions in the general case here since these appear not
to be in the literature. Define the following m− differencing matrix of order
(n−m)× n

D0 =

⎡⎢⎢⎢⎣
d0m 0 · · · 0
0 d0m · · · 0
...

...
. . .

0 0 · · · d0m

⎤⎥⎥⎥⎦ ,
where

d0m =

∙µ
m

0

¶
, (−1)

µ
m

1

¶
, ..., (−1)m−1

µ
m

m− 1

¶
, (−1)m

µ
m

m

¶¸
,

and let f̂ =
³
f̂1, f̂2, ..., f̂n

´0
and X = (X1, X2, ...Xn)

0 . Then the criterion (1)
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has the following matrix form

f̂ = argmin
f

©
(X − f)0 (X − f) + λf 0DD0f

ª
, (4)

whose solution is simply f̂ = (I + λDD0)−1X. As λ → 0, we clearly have
f̂ → X, so that the solution tracks the data exactly as is to be expected
when the penalty becomes negligible.
From Lemma A in the Appendix, the solution of (4) may be written in

alternate form as

f̂ =
n
I −D

©
λ−1I +D0D

ª−1
D0
o
X,

and, as λ→∞, Lemma A gives the following asymptotic expansion in λ−1

f̂ =
n
I −D (D0D)

−1
D0 + λ−1D (D0D)

−2
D0 +O

¡
λ−2

¢o
X

=
³
I −D (D0D)

−1
D0
´
X +O

¡
λ−1

¢
.

Then f̂ →
¡
I −D (D0D)−1D0¢X, as λ→∞. As shown in Lemma B in the

Appendix, we may write I −D (D0D)−1D0 = R (R0R)−1R0, where

R =

⎡⎢⎢⎢⎢⎢⎣
1 1 · · · 1
1 2 · · · 2m−1

1 3 · · · 3m−1

. . .
1 n · · · nm−1

⎤⎥⎥⎥⎥⎥⎦ (5)

is an n×m orthogonal complement of the differencing matrix D. It follows
that

f̂ → R (R0R)
−1

R0X = Ra, as λ→∞. (6)

Thus, the solution f̂ tends asymptotically to a trend polynomial of degree
m− 1 as λ→∞.
When m = 2, the solution of (1) has the form

f̂t =
1

1 + λ (1− L)4 L−2
Xt =

L2

L2 + λ∆4
Xt.

12



For business cycle calculations, the cyclical component is estimated as the
residual bct = Xt − f̂t, leading to

bct = λ (1− L)4 L−2

1 + λ (1− L)4 L−2
Xt =

λ (1− L)4

L2 + λ (1− L)4
Xt.

Observe that if Xt has a stochastic trend with a unit root, then (1− L)Xt =
ut, for some I (0) or stationary ut. We deduce that

bct = λ (1− L)3

L2 + λ (1− L)4
ut, (7)

which can be expanded as a (two sided) linear process in ut and is stationary,
confirming the trend extraction process (elimination of the unit root).
As the sample size n increases and typically as the sampling frequency

increases, it is common to choose larger values of the smoothing parameter
λ. For instance, the package computer program EVIEWS has automated set-
tings of λ = 100 for annual, 1, 600 for quarterly, and 14, 400 for monthly data
(the quarterly 1600 setting became customary following the experimentation
in Hodrick and Prescott, 1997). Under such conditions, it is possible to in-
vestigate asymptotic behavior of the smoother in more detail than the result
(6) given above. Note that when (1− L)Xt = ut and λ is large we have the
crude approximation

bct = (1− L)3

L2/λ+ (1− L)4
ut =

©
(1− L)−1 +O

¡
λ−1

¢ª
ut ∼ (1− L)−1 ut,

so that the residuals from the smoothed series retain the unit root property.
Hence, the properties of the smoother and induced “trend” and “cycle” are
seen to be heavily influenced by the value of the smoothing parameter λ,
and the smoother is not necessarily consistent for the trend component when
n, λ → ∞. Moreover, contrary to common belief based on (7), the business
cycle estimate that is produced by HP filtering may still retain a stochastic
trend asymptotically when the data follow a unit root process.

(ii) Least Squares Projection Geometry
Aitken’s (1935) article is deservedly cited for the development of gener-

alized least squares (GLS). Little known (and hardly ever referenced) is its
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other major contribution: the development of the matrix algebra and pro-
jection geometry of least squares regression. Aitken initiated the matrix
formulation of the regression model, the least squares criterion and its solu-
tion

β̂ = argmin
β
(y −Xβ)0 (y −Xβ) = (X 0X)

−1
X 0y,

gave the fitted value ŷ = Py and residual û = (I − P ) y in terms of the
projection matrix P = X (X 0X)−1X 0, and discussed the properties of this
projector. In doing so, Aitken provided the matrix algebra for regression
that is at the heart of all modern textbook treatments and the foundation
stone for the subsequent algebraic development of instrumental variable and
generalized method of moment estimation.
For correlated data, where V is the variance matrix of the data, Aitken

provided the corresponding GLS criterion and solution

β̂ = argmin
β
(y −Xβ)0 V −1 (y −Xβ) =

¡
X 0V −1X

¢−1
X 0V −1y,

with fitted values ŷ = Py expressed in terms of the (non orthogonal) pro-
jector P = X (X 0V −1X)

−1
X 0V −1. Using matrix methods to minimize the

trace and sums of the other principal minors of the positive definite matrix
form C 0V C, Aitken went on to prove that the GLS estimator is the best lin-
ear unbiased estimator. This elegantly written paper therefore contains the
essential foodstuff of an econometrics course on linear regression. It is but
seven pages long.

(iii) Minimum Variance Unbiased Estimation
A subsequent paper by Aitken and Silverstone (1942) reports more gen-

eral results on unbiased estimation with minimum sampling variance. The
results were apparently obtained in Harold Silverstone’s (1939) doctoral dis-
sertation under Aitken’s direction. Silverstone was the second New Zealand
Ph.D student supervised by Aitken at Edinburgh and later wrote one of the
obituaries of Aitken.
With characteristic openness, the joint paper announces that

“The starting-point, the adoption of the postulates of unbiased
estimate and minimum sampling variance, and the analogies which
would emerge with the theories of maximum likelihood and of linear
estimation by least squares, were suggested by the senior author.”
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Adopting these postulates, the paper shows that

“...simple conditions emerge under which maximum likelihood pro-
vides an estimate accurately possessing minimum variance, even though
the sample is finite and the distribution of the estimating function is
not normal. At the same time, the actual value of the minimum vari-
ance is obtained with special ease.”

A general model is put forward in which the likelihood depends on an
unknown parameter θ and the question addressed is to find conditions under
which a minimum variance unbiased estimator (MVUE) exists. The method
of approach is to formulate the task of optimal estimation as an extremum
problem in the calculus of variations under the unbiasedness constraint. From
the Euler equation for the solution of this problem, it is discovered that such
an estimating function t = t (Xn) exists, where Xn is the data, provided the
log likelihood cn (θ) satisfies an equation of the form

∂cn (θ)

∂θ
= (t− θ) /λ (θ) , (8)

for the score function c0n (θ) , where λ (θ) is a Lagrange multiplier function.
The authors give several examples, showing how this process works to pro-
duce an optimal estimate in some examples but in others, such as the cen-
tral location of a Cauchy distribution, is intractable and cannot be resolved
into the form (8). In still other cases, it is shown that an optimal estimate
of a certain function of θ can be obtained, in which case (8) is written as
c0n (θ) = (t− τ (θ)) /λ (θ) , where τ (θ) is the estimating function for which t
is the estimator.
The authors relate their procedure to the maximum likelihood (ML) pro-

cedure, which solves the equation c0n

³
θ̂ml

´
= 0 and therefore consists essen-

tially of equating t to τ (θ) , while ignoring λ (θ) . They remark that

“From our standpoint, on the other hand, the existence of λ (θ) is
fundamental; for when λ (θ) exists, the estimate by maximum likeli-
hood (of τ (θ) , that is, or the trivial linear function aτ (θ) + b, but
not of non-linear functions of τ (θ)) has also minimum variance, even
in the case of a finite sample.”
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The authors go on to find (the now well known) expression for the variance
of the optimal estimate of τ (θ) , which they show to be given by∙

E

½
−∂

2cn (θ)

∂θ2

¾¸−1
= i (θ)−1 ,

the inverse of Fisher information. What is original to the author’s treat-
ment is that the result holds in finite samples on the condition that λ (θ)
exists and that the score function satisfies c0n (θ) = (t− τ (θ)) /λ (θ) . This
result was given later in Cramér’s (1946) famous treatise and pre-dates the
development of the so-called Cramér-Rao bound. While inequalities are not
used in the Aitken-Silverstone (1942) paper, it is evident that the authors
found conditions for the existence of a minimum variance unbiased estimator
and found the form of its lower bound. Those conditions are shown to place
the family of distributions for which a minimum variance unbiased estimator
exists in the exponential family. They further show that the conditions also
ensure the existence of a sufficient statistic for τ (θ) . Aitken extended this
joint work to the multivariate case in a later paper (1947).
The originality of the Aitken-Silverstone paper is evident in the calculus of

variations approach taken in the paper, an approach which has subsequently
been used in many other contexts in statistical theory and econometrics. Its
originality is also manifest in the absence of any earlier work of its type — the
paper cites only two references, Fisher’s (1921) paper on maximum likelihood
and Koopman’s (1936) paper on exponential families. As Vere-Jones et al
(2001) put it in their biographical study of Harold Silverstone, the paper

“...was important in its own right as a major step in the elucidation
of the properties of minimum variance estimates and as a precursor
to the discovery of the Cramér-Rao lower bound.”

Progeny

Silverstone was one of several New Zealand students that Aitken supervised
at Edinburgh. The Mathematics Genealogy Project lists his progeny as 26
doctoral students and 499 grandstudents. One of his most notable students
was Henry Daniels, who originated the use of saddlepoint approximations in
statistics and who was a colleague of the present author at the University
of Birmingham during the 1970s. Daniels’ most famous student was David
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Cox, one of the foremost statisticians of the second half of the twentieth
century. The work of both Daniels and Cox has impacted econometrics in
important ways and in different fields, from structural modeling and finite
sample theory to nonparametrics and frommicroeconometrics and time series
through to financial econometrics. Through their work, Aitken’s influence on
econometrics has become even wider.

Rex Bergstrom

Life and Career

Rex Bergstrom was born in Christchurch in 1925 and died in London in
2005. Obituaries were published in New Zealand Economic Papers, Asym-
metric Information, and the New Zealand Herald. Memorial conferences were
held at the University of Westminster (2005) and at the University of Essex
(2006), where Bergstrom was Professor of Economics since 1970 and Emer-
itus Professor of Economics following his retirement in 1992. A memorial
issue of Econometric Theory was published in 2009. The following account
of Bergstrom’s life and work draws from several obituaries by the present au-
thor (Phillips, 2005a,b & c) to which readers are referred for further detail.
Bergstrom’s grandfather and grandmother, Sten and Sofia Bergström,

had migrated to New Zealand from Sweden in 1875 and established a hotel in
the town of Kumara on the West Coast of the South Island of New Zealand.
Some memorabilia of this Bergstrom hotel are on exhibit at the Hokitika
museum.
Bergstrom studied at Christchurch University College (1942-1947), held

part-time accountancy posts and served with the RNZAF (1945-1946). His
first intellectual love was mathematics and he became attracted to economic
theory and the challenges of econometrics at a time when these subjects
were becoming increasingly mathematical. He gained an M.Com (Univer-
sity of New Zealand) with first class honours in 1948 and won a Travelling
Scholarship in Commerce in 1950, which he took up two years later to do his
doctoral work at the University of Cambridge in 1952. His primary advisor
at Cambridge was Richard Stone, whose approach to empirical research and
econometric modeling was a lifelong influence.
Bergstrom had wide-ranging interests in economics, which was always

apparent in conversation with him and is amply revealed in his comprehensive
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and lucid text (1967) on the construction of economic models. During the
1950s at the University of Auckland he taught most of the courses offered by
the department of economics and, throughout his career, he regularly taught
intermediate microeconomics, which was one of his favorite courses outside
of econometrics. While maintaining catholic general interests in economics,
Bergstrom was highly focused as a researcher. He may fairly be regarded as
New Zealand’s first econometrician in the modern sense of the term: someone
who forges the tools that enable and empower empirical economic research.
In this respect, Bergstrom was a second generation econometrician, following
in the footsteps of Tinbergen, Haavelmo and Koopmans. From the remote
shores of New Zealand, he joined an elite rank of researchers in the UK and
the USA who were in the process of giving econometrics its own identity as
a discipline by the defining nature of their work.
Bergstrom was the second New Zealander (his colleague, Bill Phillips, at

the LSE in the 1960s was the first) to be elected a Fellow of the Econometric
Society. Later in life, Bergstromwould joke that New Zealand had the highest
number of Fellows of the Econometric Society per capita in the world. In the
latter part of Bergstrom’s life, the ratio of New Zealand Fellows to Members
of the Econometric Society was around 50%, another remarkable statistic.
Bergstrom hiimself published five articles in the Econometric Society’s

journal Econometrica, the leading quantitative journal in economics. Four
of these articles became landmarks that made his name in the international
community and earned him professional distinction as New Zealand’s leading
quantitative economist.
Bergstrom’s academic career began with an assistant Lectureship in eco-

nomics at Massey College (1948-1949). He moved to Auckland University
College in 1950 as a Junior Lecturer in a small department of four headed
by Colin Simkin. Simkin had a great respect for quantitative economics and
had acquired all the back issues of Econometrica for the departmental library
as well as the University’s entire collection of statistics journals. Statistics
teaching at Auckland originated in the School of Commerce in 1906 with a
course taught by Joseph Grossman, the founding director of the School. The
ensuing tradition of statistics teaching within the economics department was
substantially enhanced by Bergstrom in the 1950s and 1960s. Simkin and
Bergstrom formed a powerful academic duet, making a lasting impression
on the direction of economics at Auckland, becoming a strong force within
the University of Auckland, and having an impact wider afield on academic
economics in Australasia. In his history of the department of economics at
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Auckland, Robin Court (1995), remarks of Simkin that

“He early introduced the econometric ideas of Tinbergen and Haavelmo
to this part of the world, causing A W H Phillips to remark in the late
1950’s that Auckland was then well ahead of most places outside the
USA (and including LSE) in the range and quality of econometrics
material offered.”

The changes in the Auckland department were evident in its course require-
ments. Blyth (2007) reports that

“By 1962, the problem of mathematical background had reached
the point where students were advised that before attempting stage
III econometrics they should include stage I papers in pure mathe-
matics in their degree, and before attempting Masters econometrics
they should include Stage II pure mathematics.”

By the end of the 1960s, Bergstrom had raised Auckland’s graduate econo-
metrics teaching to the level of the most advanced courses in leading schools
in the USA and the UK, as the experiences of several of Bergstrom’s students
of that era who subsequently went overseas, including the present author, at-
test. Court’s (1995) history of the Auckland department goes on to note that
historically this department had

... pioneered teaching in and introduced the original courses at
Auckland in a number of academic areas, including (early on) statis-
tics, economic geography, actuarial mathematics, political economy,
finance and (later) operations research ... The statistics papers in
economics, first taught by Grossman from 1906, then by Neale and
later by Bergstrom and Fisher, constituted the only statistics of any
kind regularly taught at Auckland University College (now the Uni-
versity of Auckland) until 1951.

Bergstrom left Auckland on leave to do his Ph.D at Cambridge (1952-
1954) and a decade later to take up a Readership at the London School of
Economics (1962-1964) at a time when the LSE was blossoming into the
leading centre of econometrics in the UK. He returned to the University of
Auckland as Professor of Econometrics (1964-1971) and left New Zealand
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again in 1970 to become Keynes Visiting Professor at the University of Es-
sex. He remained at Essex as Professor of Economics until his retirement
in 1992, becoming the University’s first Professor Emeritus of Economics.
He continued academic research working from his apartment in London with
undiminished vigour through to the time of his death in 2005.
Bergstrom had a profound impact on all those with whom he had con-

tact. Small in stature and sartorial in dress in his black Saville Row suit, he
brought gravitas to any academic gathering with his sharply focused intel-
lect that uplifted the level of discussion, providing a role model for the young
econometricians around him. Beyond the legacy of his writings and research,
he is remembered through the Bergstrom Prize that is awarded every 2-3
years to outstanding young New Zealand econometricians, his ET Interview
with the present author (1988), and a memorial issue of Econometric Theory,
in which the editors described him thus:

As a colleague he was deeply respected for upholding the highest
standards of scholarship; as a teacher and supervisor he was generous,
caring and inspirational; and as a person he held a quiet moral au-
thority that guided his life and career. (Chambers, Phillips, Taylor,
2009).

Research and Influence

Bergstrom’s best known and most influential research contributions were to
continuous time modeling, a field that he helped to establish and nurture.
His other pioneering work was in exact finite sample theory, a research area
that he initiated independently and at the same time as the US econome-
trician Robert Basmann (1961). Bergstrom also had a major influence on
the development of empirical econometric research on the New Zealand econ-
omy. Each of these contributions has been reviewed in the recent obituaries
of Bergstrom, so the following account simply overviews the main features of
this work and explores some of its intellectual origins and its connections to
ongoing research.

(i) Empirical Research on the New Zealand Economy
As mentioned above, when Bergstrom joined the Auckland Department

of Economics in 1950, Simkin was already a strong proponent of empirical
econometric research. Malcolm Fisher had completed his MA thesis, entitled
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“Problems of Demand Measurement”, in 1947 under Simkin’s supervision
and was acknowledged to be the department’s expert in econometrics at the
time that Bergstrom joined. Fisher’s thesis overviewed demand analysis,
the theory of identification, and regression methods, and then proceeded to
conduct an empirical application to the demand for cheese in New Zealand.
Blyth (2004) remarks that

“This thesis was completed inside a year, and was supervised by
Simkin. It probably would have deserved a PhD at many respectable
universities. It is clear that both Fisher and Simkin were well-read in
the latest theoretical and statistical literature, and while there is no
suggestion that the thesis made an original contribution to economic
or statistical theory, in applications Fisher and his mentor were in the
forefront of econometrics.”

Fisher’s empirical results were disappointing, reflecting the small sample of
observations and the need for a complete model rather than single equation
analysis. These were themes that Bergstrom was to take up in the early part
of his own career, first with his doctoral research at Cambridge and later
with his work on finite sample theory.
When Bergstrom arrived at Cambridge, he had already fully laid out his

research topic on “An Econometric Study of Supply and Demand for New
Zealand’s Exports”, he had collected the data needed for empirical estima-
tion, and he had gone a long way towards formulating the econometric model
that he planned to use in the empirical study. The major remaining work in-
volved the econometric methodology (estimation procedures, the treatment
of residual serial correlation, methods of prediction) and implementation,
which in the early 1950s presented a major obstacle. As summarized in
Chambers et al (2009), Bergstrom’s Ph.D thesis

... was an extensive and original undertaking that broke new ground
in empirical econometrics. The model had 27 equations and 55 pa-
rameters. It was the first large-scale macroeconometric model to be
estimated by the new method of limited information maximum likeli-
hood (LIML). Impressive in scale, design and econometric methodol-
ogy, the undertaking was equally impressive in its execution, much of
the calculation being done by Bergstrom’s hand on an electronic desk
calculator.
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The thesis was supervised by J. R. R. Stone and A. D. Roy and, although
Stone’s own research in applied econometrics provided an important para-
digm, it seems that advisor input on Bergstrom’s thesis was minor. Bergstrom’s
study was published in Econometrica in 1955. It brought him international
recognition, confirmed him as New Zealand’s leading empirical economist
and econometrician, and

... its skilful mix of economic theory, econometric methodology,
and painstaking empirical implementation became the hallmark of
Bergstrom scholarship. (Phillips, 2005a)

With this foundational empirical research as a beginning, it was natural
to expect Bergstrom to develop into a leading applied econometrician. But
Bergstrom’s fascination with econometrics ran much deeper than empirical
implementation. During the 1950s and 1960s he became absorbed by inter-
ests in econometric methodology and the economic theory underpinnings of
empirical models. These interests led Bergstrom in two new directions.

(ii) Exact Distribution Theory
The first of these was an ambitious and original contribution to exact

finite sample theory in econometrics published in Econometrica in 1962.
Bergstrom’s favourite book in statistics was Cramér’s (1946) treatise Mathe-
matical Methods of Statistics, which gave a particularly thorough and rigor-
ous exposition of methods for finding the exact finite sample distribution of
statistical estimators and tests. Using the methods learnt from his reading
of this work, particularly the simplifying process of well designed orthogo-
nal transformations, Bergstrom (1962) derived the exact distributions of the
maximum likelihood estimator (MLE) and the (single equation) ordinary
least squares (OLS) estimator of the propensity to consume in the following
simple stochastic income determination model

yt = α+ βxt + ut (9)

xt = yt + γzt (10)

where the (spending propensity) parameter is β, and equation (9) has two ob-
served endogenous variables yt (consumption), xt (income) and a stochastic
disturbance ut that is assumed to be iid N (0, σ2) . Equation (10) is a struc-
tural (national income) identity involving an observed instrumental variable
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zt that is assumed to be strictly exogenous and fixed, so that the distri-
butional analysis is effectively conditioned on the sample {zt : t = 1, ..., n}.
The coefficient of zt in Bergstrom (1962) was γ = 1, but it is useful to allow
flexibility in γ to control the relevance of the instrument zt in the system
(Phillips, 2006). When γ → 0, the instrument zt becomes irrelevant to the
determination of yt and xt, and we end up with the identity xt = yt in place
of (10). On the other hand, when γ → ∞, the system is dominated by the
signal from zt. In view of the identity (10) and the exogeneity of zt, the de-
gree of endogeneity as measured by the correlation coefficient of xt and ut is
unity, so that there is strong endogeneity in the system.
Bergstrom’s expression for the exact density of the maximum likelihood

estimator (in this case, indirect least squares or limited information maximum
likelihood (LIML)) was easily found by transformation from the (normal)
distribution of the reduced form coefficients and has the explicit form
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2
t is a noncentrality parameter, which Bergstrom nor-

malized to the sample size so that λn = n.
The exact density of the OLS estimator required substantial effort and

was obtained by Bergstrom in a complicated series form but only for even
values of n ≥ 4. In recent work, the present author (2009) showed that this
density is a specialization of a more general result (from Phillips, 1980) and
has the explicit form
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involving the confluent hypergeometric function 1F1 (a, b; z) =
P∞

j−0
(a)j
(b)jj!

zj,

where (a)j = Γ (a+ j) /Γ (a) and Γ (·) is the gamma function. Coincidentally,
this function was introduced byWhittaker, Aitken’s supervisor at Edinburgh,
in conjunction with several other special functions of applied mathematics,
including the parabolic cylinder and Whittaker functions.
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Graphs of these densities for n = 10 are shown in Fig. 1. These were
originally calculated and drawn by hand in Bergstrom (1962). The results
show that the ML estimator provides an unequivocal improvement over OLS
in terms of its concentration probability about the true value of β, thereby
strongly vindicating the use of systems methods of estimation which take
account of the structural nature of the consumption function (9).
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Fig. 1: Densities of the maximum likelihood (ML) and least squares (OLS)
estimates of the marginal propensity to consumer β = 0.6 when n = 10.

Bergstrom’s paper is remarkable not only in terms of the clarity of its
conclusions and the strong support that it gave to the use of simultaneous
equations methodology, but also because it was Bergstrom’s first piece of
technical research in econometrics. Later in life, Bergstrom told me the
story of how the great Norwegian econometrician Trygve Haavelmo (1989
Nobel laureate in economics) had run up to him at a European meeting of
the Econometric Society in great excitement about Bergstrom’s paper, telling
him how he had himself worked on the same problem (the exact distribution
of the OLS estimator) for ten years without success. Bergstrom told me that
the derivation took him three weeks of work over a New Zealand summer.
In recent years, there has been much research on the properties of the

LIML estimator in relation to least squares and instrumental variable meth-
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ods. All of this work has reinforced Bergstrom’s conclusions concerning the
superiority of LIML in small samples. This conclusion remains so even
though the distribution of LIML is known to have heavy tails (Phillips,
1984) and can be bimodal. The bimodality is not apparent in Fig. 1 or
in Bergstrom’s (1962) sketch, but it becomes apparent over a wider domain,
particularly when the equation is weakly identified (i.e., when γ and λn are
small), a topic that is now of substantial interest in econometrics. Fig. 2
(reproduced from Phillips, 2006) shows how the LIML distribution changes
for small λn and how even the asymptotic theory is affected.
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Fig. 2: Densities of the ML estimator of β = 0.6 for λn = 0.1, 0.01, and the
(very weak) instrument limit distribution of ML (circled).

As is apparent from Fig. 2, as λn decreases, the instrument zt becomes
weaker and the secondary mode in the distribution of the ML estimator
becomes stronger. As explained in Phillips (2006), the income determination
model (9) - (10)

is a case of strong endogeneity, where there is a structural be-
havioral equation and an identity. The identity is another structural
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relation and its role is important in the distribution theory because
it provides a magnet for an alternative centering, pulling consistent
estimators like IV and LIML away from the relevant parameter in the
behavioral relation and thereby naturally inducing a bimodality. In
fact, it is the identity that is the source of the bimodality.

The coefficient in the structural identity provides a point of compression in
the density that gives rise to the bimodality. Weak instrumentation is an
energy source that feeds the secondary mode in the distribution on the right
side of unity. The process works like a compressed balloon, which upon
inflation expands on either side of the point of compression. As λn → 0, the
limit distribution ends up being symmetric about unity (the coefficient in
the identity) with equal modes on either side.

(iii) Continuous Time Econometric Models
Bergstrom’s focus in his pursuit of continuous time econometric modeling

was macroeconomic activity. His interest was stimulated by the early research
of fellow New Zealander Bill Phillips, whose work he greatly admired. During
the 1950s, Phillips had worked at the LSE on continuous time formulations
of trade cycle models and policy adjustment mechanisms. In the early 1960s,
this work was extended to accommodate cyclical growth. Phillips (1959)
had also attempted to develop a methodology for estimating such continuous
systems with discrete data in a paper published in Biometrika. Earlier argu-
ments for the use of continuous time dependencies in econometric modeling
had been put forward by Koopmans (1950). By the mid 1960s, Bergstrom
had become convinced that such formulations were the most effective way
of introducing economic theory restrictions into econometric specifications
and to allow for the reality that aggregate economic activity depends on the
continuous passage of time. In effect, the economy does not cease to exist
between discrete measurements.
To Bergstrom, these arguments were compelling and he fell under the

grip of an intellectual fascination that would overtake the rest of his life. By
the early 1970s, no conversation with Bergstrom was complete without some
mention of continuous time modeling and the latest results and problems in
the field. As the years went by the topics of conversation evolved with the
development of the subject: the findings from the empirical models, the prob-
lems presented by various data types, the formulation of higher order models,
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algorithms for constructing the likelihood, and the implications of stochastic
trends. The field presented a vast arena for new research. As each problem
was solved, new problems arose in their place. The program of research took
on the aspect of an enterprise resembling that of the Cowles Commission re-
searches in the 1940s, but instead of a vast team of researchers, the endeavour
was led by single man armed only with his own vision and successive gen-
erations of students who worked under him, aided by the occasional assist
from an interested academic interloper. By the year 2000, a huge amount of
theoretical and algorithmic work had been accomplished, several generations
of empirical models of the UK had been constructed, estimated and tested,
and continuous time models had been estimated and were in use by central
banks for several OECD countries.
Bergstrom’s work in this field has been reviewed in detail in the obituaries

cited earlier, in two of his own overviews (1988, 1996) and, most recently, by
Bergstrom’s former student and co-author Nowman (2009). At the time of
Bergstrom’s death, he had just completed a monograph written jointly with
Nowman, A Continuous Time Econometric Model of the United Kingdom
with Stochastic Trends, which developed, estimated and implemented the
latest version of his continuous time econometric model of the UK economy.
In a Foreword to this volume, the present author (2006) wrote that the work

“carries the indelible signature of Bergstrom’s superb scholarship.
The theoretical model is developed with great attention to underlying
economic ideas, the econometric methodology is systematically built
on the extraction of an exact discrete model and an algorithm that
constructs the Gaussian likelihood, the empirical implementation is
painstakingly conducted, the size of the system and its complex tran-
scendental matrix nonlinearities push to the limits of present compu-
tational capacity, and the empirics involve specification testing and
prediction evaluation against a highly competitive VAR system with
exogenous inputs.

As Chambers, Phillips and Taylor (2009) put it in the memorial volume
to Bergstrom:

Perhaps uniquely in our profession Rex dedicated the last 40 years
of his working life to pursuing a single research goal — the method-
ological development of econometric models in continuous time and
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the empirical application of these models to macroeconomic activity.
This long term project evolved into the centrepiece of his life as a
researcher.

No one can doubt the enormous personal commitment that Bergstrom
made to his central research goal of developing continuous time econometrics.
But the impact of his work in macroeconomics has been less than he hoped.
In macroeconomic theory, his approach was perceived as being outside the
mainstream concerns of dynamic macro, where small scale intertemporal op-
timization models have held centre stage for three decades. In the world of
macroeconometric modeling, agnostic time series and multivariate analysis
methods have retained their popularity in empirical applications. No doubt,
convenience is a major factor. The Bergstrom approach requires mastery
of much theory and econometric methodology on the part of an empirical
research team, implementation can present formidable numerical challenges,
and simple changes in specification can involve major systemwide implica-
tions. To Bergstrom and those trained in the approach, these challenges
constitute the essence of good empirical modeling.
In financial econometrics, the methods of continuous time econometrics

have been truly vindicated. The last decade has seen ultra high frequency
datasets become standard with electronic monitoring of financial transac-
tions. Continuous time stochastic process methods are the central develop-
mental tool in financial theory. Parametric econometric modeling in contin-
uous time using maximum likelihood or approximate maximum likelihood
methods is a gold standard in empirical research. And nonparametric ap-
proaches to volatility measurement using empirical (discrete) versions of con-
tinuous quadratic variation processes has opened up many new research av-
enues and affected industry practice. All of these developments were wel-
comed by Bergstrom and fit comfortably within his mantra of continuous
time modeling and empirical practice.

Progeny

The Mathematics Genealogy Project lists Bergstrom’s progeny as 171 de-
scendants, which underestimates the actual total because most of his Ph.D
students and their students are not presently listed in the mathematics ge-
nealogy record. At the University of Auckland, Bergstrom supervised the
department’s first two methodological masters theses (MacCormick, 1969;
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Phillips, 1970) and the department’s first Ph.D in economics (Hall, 1971).
At the University of Essex, Bergstrom supervised 9 Ph.D students over the
period 1971-1993, among whom were his co-authors Marcus Chambers and
Ben Nowman. A complete list of the students whose theses were supervised
by Bergstrom is given in Phillips (2005a). Chambers, Nowman and several
of their students have actively pursued Bergstrom’s research on continuous
time modeling. Some have continued his work on exact distribution theory.
Many have become macroeconomists and empirical researchers. Others have
moved into the world of business and the finance industry.
Bergstrom had a profound impact on his students. His scholarship, com-

mitment to research, and personal integrity were an attractive force and
enduring example to all around him. His lectures opened up new worlds of
technical understanding and insight to successive generations of economics
students at Auckland and Essex. They were

“models of clarity. He came to lectures extremely well-prepared,
carrying a folder of notes that he usually left unopened on the front
desk, presumably for reference should he need it. He then proceeded
to develop all the material on the blackboard with great precision
and economy of presentation without consulting his notes and usually
with little class interaction, students simply watching in wonderment
at what transpired at the board. (Phillips, 2005a).

Conclusion

Alec Aitken began his research before the official birth of econometrics, which
can conveniently be dated to the foundation of the Econometric Society in
1930 and the establishment of the journal Econometrica which published its
first issue in 1933. By the time he retired in 1965, a second generation of
econometrician was in full flight. Within that generation, Rex Bergstrom
was a significant figure.
Prior to the formation of the Econometric Society, earlier generations

of economists had made considerable contributions to statistical method,
Francis Ysidro Edgeworth and Irving Fisher being two prominent examples.
Aitken’s work was distinguished because it helped to build the mechanics
of modern econometrics with smoothing algorithms, the matrix mechanics of
linear regression, and the statistical properties of estimation. Bergstrom took
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up the mantle of building the methodology of econometrics in the generation
that followed. He promoted an agenda of research that was also notable for
its mathematical rigor, but emphasized its connection with economic theory,
and its practical relevance to empirical econometric modeling. Together,
the work of Aitken and Bergstrom laid some early foundations for which
subsequent generations of econometrician are indebted and from which a
substantial edifice of theory and applications continues to grow.
New Zealand economists have established a notable tradition in econo-

metrics. Bergstrom is justly known and honored as a significant pioneer in
establishing that tradition. Aitken, on the other hand, is virtually unknown
in the world of economics and little known among econometricians. While
seldom cited, his contributions to linear regression, minimum variance unbi-
ased estimation, and data smoothing algorithms are now part of the fabric of
modern econometric practice. These contributions earn Aitken a significant
place in the history of econometrics and make him one of New Zealand’s
pioneers in this field.

Appendix

Proof of (2) In the general case

f̂t = argmin
ft
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#2⎫⎬⎭ ,

for which the first order conditions are:
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It follows that

Xt =

(
1 + λ

mX
j=0

µ
m

j

¶
(−1)j L−j∆m

)
ft =

©
1 + λ

£
−L−1 + 1

¤m
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ª
ft

=
©
1 + λ [1− L]m

¡
−L−1

¢m
∆m
ª
ft =

©
1 + λ (1− L)m (−L)−m∆m

ª
ft.

Thus
f̂t =

1

1 + λ∆2m (−L)−m
Xt =

Lm

Lm + λ (−1)m∆2m
Xt.

Lemma A Writing f̂ =
³
f̂1, f̂2, ..., f̂n

´0
and X = (X1, X2, ...Xn)

0 , the

solution to (1) and (4) is

f̂ = (I + λDD0)
−1

X (13)

=
n
I −D

©
λ−1I +D0D

ª−1
D0
o
X (14)

=
n
I −D (D0D)

−1
D0 + λ−1D (D0D)

−1
D0 +O

¡
λ−2

¢o
X, (15)

so that f̂t = Xt+O (λ) as λ→ 0 and f̂ =
©
I −D (D0D)−1D0ªX+O

¡
λ−1

¢
as λ→∞.

Proof First order conditions for (4) yield (13) directly. To show (14) and
(15) we use the inversion formula (e.g. Abadir and Magnus, 2007, p. 107)¡

A−BE−1C
¢−1

= A−1 +A−1B
©
E − CA−1B

ª−1
CA−1,

and setting A = 1, E = −λ−1I, B = D, C = D0, we have

(I + λDD0)
−1

= I +D
©
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,

giving the stated results.
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Lemma B
I −D (D0D)

−1
D0 = R (R0R)

−1
R0 (16)

where R is given by (5).

Proof Let C = [D,R] and note that D0R = 0 because the (t, p + 1)’th
element of D0R for 1 ≤ t ≤ n−m and 0 ≤ p ≤ m− 1 is

mX
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since
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m
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¢
(−1)j jk = 0 for 0 ≤ k ≤ p < m, as can be shown by

recursion (see also Gradshteyn and Ryzhik, 2000, 0.154.3). Next observe

that H = C (C 0C)−1/2 =
h
D (D0D)−1/2 , R (R0R)−1/2

i
is orthogonal, and the

stated result (16) follows.
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