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ABSTRACT

Using the power kernels of Phillips, Sun and Jin (2006, 2007), we examine the large
sample asymptotic properties of the t-test for di¤erent choices of power parameter (�).
We show that the nonstandard �xed-� limit distributions of the t-statistic provide
more accurate approximations to the �nite sample distributions than the conventional
large-� limit distribution. We prove that the second-order corrected critical value
based on an asymptotic expansion of the nonstandard limit distribution is also second-
order correct under the large-� asymptotics. As a further contribution, we propose a
new practical procedure for selecting the test-optimal power parameter that addresses
the central concern of hypothesis testing: the selected power parameter is test-optimal
in the sense that it minimizes the type II error while controlling for the type I error.
A plug-in procedure for implementing the test-optimal power parameter is suggested.
Simulations indicate that the new test is as accurate in size as the nonstandard test
of Kiefer and Vogelsang (2002a, 2002b; KV), and yet it does not incur the power loss
that often hurts the performance of the latter test. The new test therefore combines
the advantages of the KV test and the standard (MSE optimal) HAC test while
avoiding their main disadvantages (power loss and size distortion, respectively). The
results complement recent work by Sun, Phillips and Jin (2008) on conventional and
bT HAC testing.

JEL Classi�cation: C13; C14; C22; C51

Keywords: Asymptotic expansion, HAC estimation, Long run variance, Loss function,
Optimal smoothing parameter, Power kernel, Power maximization, Size control, Type
I error, Type II error.



1 Introduction

Seeking to robustify inference, many practical methods in econometrics now make
use of heteroskedasticity and autocorrelation consistent (HAC) covariance matrix
estimates. Most commonly used HAC estimates are formulated using conventional
kernel smoothing techniques (for an overview, see den Haan and Levin (1997)), al-
though quite di¤erent approaches like wavelets (Hong and Lee (2001)) and direct
regression methods (Phillips (2005)) have recently been explored. While appealing in
terms of their asymptotic properties, consistent HAC estimates provide only asymp-
totic robustness in econometric testing and �nite sample performance is known to
be unsatisfactory in many cases, but especially when there is strong autocorrelation
in the data. HAC estimates are then biased downwards and the associated tests are
liberal-biased. These size distortions in testing are often substantial and have been
discussed extensively in recent work (e.g., Kiefer and Vogelsang (2005, hereafter KV
(2005)) and Sul, Phillips and Choi (2005)).

To address the size distortion problem, Kiefer, Vogelsang and Bunzel (2000, here-
after KVB), Kiefer and Vogelsang (2002a, 2002b, hereafter KV) and Vogelsang (2003)
suggested setting the bandwidth equal to the sample size (i.e. M = T ) in the con-
struction of the long run variance (LRV) estimation. While the resulting LRV esti-
mate is inconsistent, the associated test statistic is asymptotically nuisance parameter
free and critical values can be simulated from its nonstandard asymptotic distribution.
KV show by simulation that the nonstandard test has better size properties than the
conventional asymptotic normal or chi-squared test. However the size improvement
comes at the cost of a clear power reduction. In order to reduce the power loss while
maintaining the good size properties of the KVB test, KV (2005) set the bandwidth
to be proportional to the sample size (T ), i.e. M = bT for some b 2 (0; 1]: Their
approach is equivalent to contracting traditional kernels k(�) to get kb(x) = k(x=b)
and using the contracted kernels kb(�) in the LRV estimation without truncation. In
other work, Phillips, Sun and Jin (2006, 2007; PSJ) obtain a new class of kernels
by exponentiating the conventional kernels using k�(�) = (k(�))�; where � is a power
exponent parameter. For �nite b and �; both contracted and exponentiated kernels
are designed to reduce, but not totally eliminate, the randomness of the denominator
in the t-ratio and in doing so help to improve the power of the t-test.

The parameter b in the KV approach and � in the PSJ approach are smoothing
parameters that play an important role in balancing size distortion and potential
power gain. In other words, the smoothing parameters entail some inherent tradeo¤
between type I and type II errors. Both KV and PSJ suggest plug-in procedures that
rely on conventional asymptotic theories to select b or �:More speci�cally, the plug-in
selection of b or � suggested in these papers minimizes the asymptotic mean squared
errors (AMSE) of the underlying LRV estimator. In theory, such formulations ensure
that the selected values b ! 0 and � ! 1 as T ! 1; and thus the �xed b or �xed
� asymptotic theory is not applicable. However, to maintain good size properties or
smaller type I errors in practical testing, KV and PSJ propose using critical values
from the �xed b or �xed � asymptotic distributions, which are nonstandard, and
treating the estimated b or � as �xed even though they are delivered by asymptotic
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formulae. PSJ justify this hybrid procedure on the basis of simulations that show
the resulting tests have better size properties than tests that use standard normal
asymptotic critical values. However, there are two remaining problems with this
procedure. First, the rationale for good test size based on such plug-in values of � is
not rigorously established. Second, the AMSE-optimal choice of � is not necessarily
optimal in the context of hypothesis testing.

A primary contribution of the present paper is to provide analytic solutions to
both of these problems by means of asymptotic expansions that provide higher order
information about the type I and type II errors. This approach provides a rigorous
justi�cation for the recommended procedure. We consider both �rst order and second
order power kernels from PSJ (2006, 2007)), which have been found to work very well
in simulations and empirical applications (see Ray and Savin (2008), Ray, Savin, and
Tiwari (2009)).

To investigate the size properties of the PSJ test, we consider the Gaussian lo-
cation model, which is used also in Jansson (2004) and SPJ (2008). Asymptotic
expansions developed here reveal that the PSJ statistic is closer to its limit distrib-
ution when � is �xed than when � increases with T: More speci�cally, the error in
rejection probability (ERP) of the t-test based on the nonstandard limiting distrib-
ution is of order O(1=T ) while that based on the standard normal is O(1=T q=q+1):
This result relates to similar results in Jansson and SPJ who showed that the ERP of
the KVB test is of order O(log T=T ) and O (1=T ), respectively, while the ERP of the
conventional test using the Bartlett kernel is at most O(1=

p
T ); as shown in Velasco

and Robinson (2001). These �ndings therefore provide theoretical support for the
simulation results reported in PSJ (2006, 2007), Ray and Savin (2008), Ray, Savin,
and Tiwari (2009).

The PSJ test, which is based on the nonstandard limiting distribution, is not very
convenient to use in practice as the critical values have to be simulated. To design an
easy-to-implement test, we develop an expansion of the nonstandard limiting distri-
bution about its limiting chi-squared distribution. A Cornish-Fisher type expansion
then leads to second-order corrected critical values. We �nd that the corrected critical
values provide good approximations to the actual critical values of the nonstandard
distribution. The PSJ test based on the corrected critical values has the advantage
of being easily implemented and does not require the use of tables of nonstandard
distributions.

To show that the hybrid PSJ test using a plug-in exponent and nonstandard
critical value is generally less size-distorted than the conventional test, we develop a
higher order asymptotic expansion of the �nite sample distribution of the t-statistic
as T and � go to in�nity simultaneously. It is shown that the corrected critical values
obtained from the asymptotic expansion of the nonstandard distribution are also
second order correct under the conventional limiting theory. This �nding provides a
theoretical explanation for the size improvement of the hybrid PSJ test compared to
the conventional test.

Combining the standard t-statistic and the high order corrected critical values, we
obtain a new t�-test whose type I and type II errors can be approximately measured
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using the above asymptotic expansions. The type I and type II errors depend on the
power parameter used in the HAC estimation. Following Sun (2009), we propose to
choose the power parameter to minimize the type II error subject to the constraint
that the type I error is bounded. The bound is de�ned to be ��; where � is the
nominal type I error and � > 1 is a parameter that captures the user�s tolerance
on the discrepancy between the nominal and true type I errors. The parameter � is
allowed to be sample size dependent. For a smaller sample size, we may have a higher
tolerance while for larger sample sizes we may have lower tolerance. The new pro-
cedure addresses the central concern of classical hypothesis testing, viz. maximizing
power subject to controlling size. For convenience, we refer to the resulting � as the
test-optimal �:

The test-optimal � is fundamentally di¤erent from the MSE-optimal � that applies
when minimizing the asymptotic mean squared error of the corresponding HAC vari-
ance estimate (c.f., PSJ (2006, 2007)). When the tolerance factor � is small enough,
the test-optimal � is of smaller order than the MSE-optimal �. The test optimal � can
even be O (1) for certain choice of the tolerance factor �: The theory provides some
theoretic justi�cation for the use of �xed � rules in econometric testing. For typical
economic time series and with a high tolerance for the type I error, the test-optimal
� can be also considerably larger than the MSE-optimal �: Simulation results show
that the new plug-in procedure suggested in the present paper works remarkably well
in �nite samples.

In related work, SPJ (2008) considered conventional kernels and selected the
bandwidth to minimize a loss function formed from a weighted average of type I and
type II errors. The present paper di¤ers from SPJ in two aspects. First, while SPJ
used the contracted kernel method, an exponentiated kernel approach is used here.
An earlier version of the present paper followed SPJ and employed a loss function
methodology to select the power parameter, �nding that for both LRV estimation and
hypothesis testing, the �nite sample performance of the exponentiated kernel method
is similar to and sometimes better than that of the contracted kernel method. So,
exponentiated kernels appear to have some natural advantages. Second, the proce-
dure for selecting the smoothing parameter is di¤erent in the present paper. While
SPJ selected the smoothing parameter to minimize loss based on a weighted average
of type I and type II errors, we minimize the type II error after controlling for the
type I error. In e¤ect, the loss function here is implicitly de�ned with an endogenous
weight given by the Lagrange multiplier while the loss function in SPJ is explicitly
de�ned and thus requires a user-chosen weight. This requirement can be regarded
as a drawback of the explicit loss function approach, especially when it is hard to
evaluate the relative importance of type I and type II errors. Furthermore, the im-
plicit loss function approach used here is more in line with the standard econometrics
testing literature where size control is often a top priority.

The rest of the paper is organized as follows. Section 2 overviews the class of
power kernels that are used in the present paper and reviews some �rst order limit
theory for Wald type tests as T ! 1 with the power parameter � �xed and as
�!1. Section 3 derives an exact distribution theory using operational techniques.
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Section 4 develops an asymptotic expansion of the nonstandard limit distribution
under both the null and alternative hypotheses as the power parameter � ! 1:
Section 5 develops comparable �nite sample expansions of the statistic as T !1 for
a �xed � and as both T ! 1 and � ! 1. Section 6 proposes a selection rule for �
that is suitable for implementation in semiparametric testing. Section 7 reports some
simulation evidence on the performance of the new procedure. Section 8 concludes.
Proofs and additional technical results are in the Appendix.

2 HAR Inference for the Mean

Consider the location model:

yt = � + ut; t = 1; 2; :::; T; (1)

with ut autocorrelated and possibly heteroskedastic, and E(ut) = 0: To test a hy-
pothesis about �; we consider the OLS estimator �̂ = �Y = T�1

PT
t=1 yt: Recentering

and normalizing gives us p
T (�̂ � �) = T�1=2ST ; (2)

where St =
Pt
�=1 u� :

We impose the following convenient high level condition (e.g., KVB, PSJ (2006,
2007), and Jansson (2004)).

Assumption A1 The partial sum process S[Tr] satis�es the functional law T�1=2S[Tr] )
!W (r); r 2 [0; 1] ; where !2 is the long run variance of ut and W (r) is the standard
Brownian motion.

Thus,
p
T (�̂ � �)) !W (1) = N(0; !2). Let û� = y� � �̂ be the demeaned time

series and de�ne the corresponding partial sum process Ŝt =
Pt
�=1 û� . Under A1,

we have T�1=2Ŝ[Tr] ) !V (r); r 2 [0; 1] ; where V is a standard Brownian bridge
process. When ut is stationary, the long run variance of ut is !2 = 0 + 2

P1
j=1 (j);

where (j) = E(utut�j): Conventional approach to estimating !2 typically involves
smoothing and truncation lag covariances using kernel-based nonparametric HAC
estimators. HAC estimates of !2 typically have the form

!̂2(M) =

T�1X
j=�T+1

k(
j

M
)̂(j); ̂(j) =

(
1
T

PT�j
t=1 ût+j ût for j � 0

1
T

PT
t=�j+1 ût+j ût for j < 0

; (3)

where ̂(j) are sample covariances, k(�) is some kernel function, M is a bandwidth
parameter. Consistency of !̂2(M) requires M grows with the sample size T but
at a slower rate so that M = o(T ) (e.g. Andrews (1991), Andrews and Monahan
(1992), Hansen (1992), Newey and West (1987,1994), de Jong and Davidson (2000)).
Jansson (2002) provides a recent overview and weak conditions for consistency of
such estimates.

To test the null H0 : � = �0 against H1 : � 6= �0; the standard nonparametrically
studentized t-ratio statistic is of the form

t!̂(M) = T
1=2(�̂ � �0)=!̂(M); (4)
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which is asymptotically standard normal. Tests based on t!̂(M) and critical values
from the standard normal are subject to size distortion, especially when there is
strong autocorrelation in the time series.

In a series of papers, KVB and KV propose the use of kernel-based estimators of
!2 in whichM is set equal to the sample size T or proportional to T; taking the form
M = bT . These (so called �xed-b) estimates are inconsistent and tend to random
quantities instead of !2; so the limit distribution of (4) is no longer standard normal.
Nonetheless, use of these estimates results in valid asymptotically similar tests.

In related work, PSJ (2006, 2007) propose the use of estimates of !2 based on
power kernels without truncation. The power kernels were constructed by taking an
arbitrary integer power � � 1 of conventional kernels. In this paper, we consider the
power kernels k�(x) = (kBART (x))

� ; (kPR(x))
� ; or (kQS(x))

� where

kBART (x) =

�
(1� jxj); jxj � 1
0; jxj > 1

kPR(x) =

8<: 1� 6x2 + 6 jxj3 ; for 0 � jxj � 1=2;
2(1� jxj)3; for 1=2 � jxj � 1;
0; otherwise.

kQS(x) =
25

12�2x2

�
sin(6�x=5)
6�x=5 � cos (6�x=5)

�
are the Bartlett, Parzen and Quadratic Spectral (QS) kernels respectively. These
kernels have a linear or quadratic expansion at the origin:

k (x) = 1� gxq + o (xq) ; as x! 0+; (5)

where g = 1; q = 1 for the Bartlett kernel, g = 6; q = 2 for the Parzen kernel and
g = 18�2=125; q = 2 for the QS kernel. For convenience, we call the exponentiated
Bartlett kernels the �rst order power kernels and the exponentiated Parzen and QS
kernels the second order power kernels.

Using k� in (3) and letting M = T gives HAC estimates of the form

!̂2� =
T�1X

j=�T+1
k�

�
j

T

�
̂(j): (6)

The associated t statistic is given by

t� (!̂�) = T
1=2(�̂ � �0)=!̂�: (7)

When the power parameter � is �xed as T !1; PSJ (2006, 2007) show that under
A1, !̂2� ) !2��; where �� =

R 1
0

R 1
0 k�(r � s)dV (r)dV (s). The associated t

�-statistic
has the nonstandard limit distribution

t� (!̂�))W (1)��1=2� ; (8)

under the null and
t� (!̂�)) (� +W (1)) ��1=2� ; (9)
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under the local alternative H1 : � = �0 + cT�1=2; where � = c=!:
When � goes to 1 at a certain rate, PSJ (2006, 2007) further show that !̂� is

consistent. In this case, the t�-statistic has conventional normal limits: under the
null t� (!̂�))W (1) =d N(0; 1); and under the local alternative t� (!̂�)) � +W (1):

Thus, the t�-statistic has nonstandard limit distributions arising from the random
limit of the HAC estimate !̂� when � is �xed as T ! 1; just as the KVB and KV
tests do. However, as � increases, the e¤ect of this randomness diminishes, and
when �!1 the limit distributions approach those of standard regression tests with
consistent HAC estimates.

The mechanism we develop for making improvements in size without sacri�cing
much power, is to use a test statistic constructed with !̂� and to employ critical values
that are second-order corrected. The correction is �rst obtained using an accurate
but simple asymptotic expansion of the nonstandard distribution about its limiting
chi-squared distribution that applies as � ! 1. This expansion is developed in
Section 4. The correction is further justi�ed by an asymptotic expansion of the �nite
sample distribution in Section 5.

3 Probability Densities of the Nonstandard Limit Dis-
tribution and the Finite Sample Distribution

This section develops some useful formulae for the probability densities of the �xed
� limit theory and the exact distribution of the test statistic.

First note that in the limit theory of the t-ratio test, W (1) is independent of ��,

so the conditional distribution of W (1)��1=2� given �� is normal with zero mean and
variance ��1� :We can write �� = �� (V) where the process V has probability measure
P (V) : The pdf of t =W (1)��1=2� can then be written in the mixed normal form as

pt (z) =

Z
��(V)>0

N
�
0;��1�

�
dP (V) : (10)

For the �nite sample distribution of tT = t�(!̂�), we assume that ut is a Gaussian
process. Since ut is in general autocorrelated,

p
T (�̂ � �) and !̂ are statistically

dependent. To �nd the exact �nite sample distribution of the t-statistic, we de-
compose �̂ and !̂ into statistically independent components. Let u = (�1; :::uT )

0;
y = (y1; :::; yT ); lT = (1; :::; 1)T and 
T = var(u): Then the GLS estimator of � is
~� =

�
l0T


�1
T lT

��1
l0T


�1
T y and

�̂ � � = ~� � � +
�
l0T lT

��1
l0T ~u; (11)

where ~u = (I � lT
�
l0T


�1
T lT

��1
l0T


�1
T )u; which is statistically independent of

~� � �:
Therefore the t-statistic can be written as

tT =

p
T ( ~� � �)
!̂�(û)

+
l0T ~up
T !̂�(~u)

: (12)
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It is easy to see that û =
�
I � lT (l0T lT )�1l0T

�
u =

�
I � lT (l0T lT )�1l0T

�
~u: In consequence,

the conditional distribution of tT given ~u is

N

 
l0T ~up
T !̂�(~u)

;
T
�
l0T


�1
T lT

��1
(!̂�(~u))2

!
: (13)

Letting P (~u) be the probability measure of ~u; we deduce that the probability density
of tT is

ptT (z) =

Z
N

 
l0T ~up
T !̂�(~u)

;
T
�
l0T


�1
T lT

��1
(!̂�(~u))

2

!
dP (~u)

= E

(
N

 
l0T ~up
T !̂�(~u)

;
T
�
l0T


�1
T lT

��1
(!̂�(~u))

2

!)
; (14)

which is a mean and variance mixture of normal distributions.
Using ~u s N

�
0;
T � lT

�
l0T


�1
T lT

��1
l0T

�
and employing operational techniques

along the lines developed in Phillips (1993), we can write expression (14) in the form

ptT (z) =

"
N

 
l0T@qp
T !̂�(@q)

;
T
�
l0T


�1
T lT

��1
(!̂�(@q))

2

!Z
ez

0~udP (~u)

#
q=0

(15)

=

"
N

 
l0T@qp
T !̂�(@q)

;
T
�
l0T


�1
T lT

��1
(!̂�(@q))

2

!
e
q0
n

T�lT (l0T


�1
T lT )

�1
l0T

o
q

#
q=0

:

This provides a general expression for the �nite sample distribution of the test statistic
tT under Gaussianity.

4 Expansion of the Nonstandard Limit Theory

Asymptotic expansions of the limit distributions given in (8) and (9) can be obtained
as the power parameter � ! 1: Moreover, these expansions may be developed for
both the central and noncentral chi-squared limit distributions that apply when �!
1; corresponding to the null and alternative hypotheses. The approach adopted here
is to work with the expansion of the noncentral distribution and is therefore closely
related to the approach used in SPJ (2008) for studying standard and bT type tests.

Let G� = G(�;�2) be the cdf of a non-central �21(�2) variate with noncentral-
ity parameter �2, then P

n���(� +W (1)) ��1=2�

��� � zo = P
n
(� +W (1))2 � ��z2

o
=

E
�
G�(��z

2)
	
: An expansion of E

�
G�(��z

2)
	
can be developed in terms of the

moments of �� � �� where �� = E (��) and �2� = var (��) : In particular, we have

EG�(��z
2) = G�(��z

2) +
1

2
G00� (��z

2)E (�� � ��)2 z4

+
1

6
E
h
G000� (��z

2) (�� � ��)3 z6
i
+O

n
E (�� � ��)4

o
; (16)
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as �!1; where the O (�) term holds uniformly for any z 2 [Ml;Mu] � R+ and Ml

and Mu may be chosen arbitrarily small and large, respectively.
It is easy to see that �� =

R 1
0

R 1
0 k

�
�(r; s)dW (r)dW (s); where k

�
�(r; s) is de�ned by

k��(r; s) = k�(r � s)�
Z 1

0
k�(r � t)dt�

Z 1

0
k�(� � s)d� +

Z 1

0

Z 1

0
k�(t� �)dtd�:

Since k��(r; s) is a positive semi-de�nite kernel (see Sun (2004) for a proof), it can
be represented as k��(r; s) =

P1
i=1 �

�
nf

�
n(r)f

�
n(s); by Mercer�s theorem, where �

�
n > 0

are the eigenvalues of the kernel and f�n(r) are the corresponding eigenfunctions,
i.e. ��nf

�
n(s) =

R 1
0 k

�
�(r; s)f

�
n(r)dr: Using this representation, we can write �� as

�� =
P1
n=1 �

�
nZ

2
n; where Zn s iidN(0; 1). Therefore, the characteristic function of

�� � �� is given by � (t) = E
�
eit(�����)

	
= e�it���1n=1 f1� 2i��ntg

�1=2 :
Let �1; �2; �3, ... be the cumulants of �� � ��: Then

�1 = 0 , �m = 2m�1(m� 1)!
Z 1

0
:::

Z 1

0

0@ mY
j=1

k��(�j ; �j+1)

1A d�1 � � � d�m; (17)

where �1 = �m+1:
These calculations enable us to develop an asymptotic expansion of E

�
G�(��z

2)
	

as the power parameter �!1: A full series expansion is possible using this method,
but we only require the leading term in the expansion in what follows. Ignoring the
technical details, we have, up to smaller order terms

P
n���(� +W (1)) ��1=2�

��� � zo = G�(z2)� z2G0� �z2��Z 1

0

Z 1

0
k�(r � s)drds

�
+ z4G00� (z

2)

�Z 1

0

Z 1

0
k2�(r � s)drds

�
: (18)

Depending on the value of q; the integral
�R 1
0

R 1
0 k�(r � s)drds

�
has di¤erent expan-

sions as �!1: For �rst order power kernels, direct calculation yieldsZ 1

0

Z 1

0
k�(r � s)drds =

2

�
+O

�
1

�2

�
:

For second order power kernels, we use the Laplace approximation and obtainZ 1

0

Z 1

0
k�(r � s)drds =

�
�

�g

�1=2
+O

�
1

�

�
:

It is clear that the rate of decay of the integral depends on the local behavior of the
kernel function at the origin.

Plugging these expressions into (18), we obtain the following theorem.
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Theorem 1 Let F�(z) := P
n���(� +W (1)) ��1=2�

��� � zo be the nonstandard limiting
distribution. Then as �!1;

F�(z) = G�(z
2) + ��1=qcqLq(G�; z) +O

�
��2=q

�
where

Lq(G�; z) =
�
G00� (z

2)z4 � 2G0�(z2)z2
	
I(q = 1) +

n
G00� (z

2)z4 �
p
2G0�(z

2)z2
o
I(q = 2);

cq = gI(q = 1) +

�
�

2g

�1=2
I(q = 2);

and the remainder O (�) term holds uniformly for any z 2 [Ml;Mu] with 0 < Ml <
Mu <1:

When � = 0; we have

F0(z) = D(z
2) + cq�

�1=qLq(D; z) +O
�
��2=q

�
(19)

where D(�) = G0(�) is the CDF of �21 distribution. For any � 2 (0; 1); let z2�;� 2 R+,
z2� 2 R+; such that F0(z�;�) = 1 � �; D(z2�) = 1 � �: Then, using a Cornish-Fisher
type expansion, we obtain the following corollary.

Corollary 2 Second order corrected critical values based on the expansion (19) are
as follows:
(i) For the �rst order power kernel

z�;� = z� +
1

4�
(5z� + z

3
�) +O

�
1

�2

�
; (20)

(ii) For the second order power kernel

z�;� = z� +
1

2

�
�

�g

�1=2( 
1 +

p
2

4

!
z� +

p
2

4
z3�

)
+O

�
1

�

�
(21)

where z� is the nominal critical value from the standard normal distribution.

Consider as an example the case where � = 0:05; z� = 1:96 and P (W 2(1) �
(1:96)2) = 0:95: Thus, for a two-sided t�(!̂�) test, the corrected critical values at the
5% level for the Bartlett, Parzen and QS kernels are

zBART�;� = 1:96 +
4:3325

�
; zPAR�;� = 1:96 +

1:9230
p
�
; zQS�;� = 1:96 +

3:951 1
p
�
; (22)

respectively. These are also the critical value for the one-sided test (>) at the 2.5%
level. Similarly, the corrected critical values for � = 0:10 are given by

zBART�;� = 1:645 +
12:676

�
; zPAR�;� = 1:645 +

1:3750
p
�
; zQS�;� = 1:645 +

2:8252
p
�
: (23)
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We can evaluate the accuracy of the approximate critical values by comparing
them with the exact ones obtained via simulations. In all three cases, the second
order corrected critical values are remarkably close to the exact ones. Details are
available upon request.

Since the limiting distributions (8) and (9) are valid for general regression models
under certain conditions on the regressors (see PSJ (2006, 2007)), the corrected crit-
ical value z�;� may be used for hypothesis testing in a general regression framework.

De�ne

K� (z) =
1X
j=0

�
�2=2

�j
j!

e��
2=2 zj�1=2e�z=2

�(j + 1=2)2j+1=2
j

z

which is positive for all z� and �: When � 6= 0 and the corrected critical values are
used, we can establish the local asymptotic power in the following corollary.

Corollary 3 The local asymptotic power satis�es

P
n���(� +W (1)) ��1=2�

��� > z�;�o = 1�G�(z2�)� cqz4�K� �z2�� ��1=q +O(��2=q) (24)

Corollary 3 shows that the asymptotic test power increases monotonically with
� when � is large. Fig. 1 graphs the function f(z�; �) = z4�K�

�
z2�
�
against di¤erent

values of z� and �: For any given local alternative hypothesis, it is apparent that the
function f(z�; �) is monotonically increasing in z�: Thus, the power increase due to
the choice of a large � increases with the con�dence level 1��: Further, the function
obtains its maximum around � = 2 for a given critical value, implying that the power
improvement from choosing a large � is greatest when the local alternative is in an
intermediate neighborhood of the null.

5 Expansions of the Finite Sample Distribution

Following SPJ (2008), we now proceed to develop an asymptotic expansion of the
�nite sample distribution of the t-statistic in a simple location model. We start with
the following weak dependence condition.

Assumption A2 ut is a mean zero stationary Gaussian process with
P1
h=�1 h

2 j (h)j <
1; where  (h) = Eutut�h:

In what follows, we develop an asymptotic expansion of Pf
���pT (�̂ � �0)=!̂��� � zg

for !̂ = !̂� and for local alternatives of the form � = �0 + c=
p
T : A complicating

factor in the development is that
p
T (�̂ � �) and !̂ are in general statistically de-

pendent due to the autocorrelation structure of ut. To overcome this di¢ culty, we
decompose �̂ and !̂ into statistically independent components as in Section 3. After
some manipulation, we obtain

FT;� (z) := P
n���pT ��̂ � �0� =!̂��� � zo = E �G�(z2&�T )	+O �T�1� ; (25)
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Figure 1: The graph of f(z�; �) = z4�K�
�
z2�
�
as a function of z� and �.

uniformly over z 2 R+, where &�T := (!̂=!T )
2 converges weakly to ��, and !2T :=

var
�p
T (�̂ � �)

�
.

Since !̂2 = T�1û0W�û = T�1u0ATW�ATu; where W� is T � T with (j; s)-th
element k�((j � s)=T ) and AT = IT � lT l0T =T , &�T is a quadratic form in a Gaussian
vector. To evaluate E

�
G�(z

2&�T )
	
; we proceed to compute the cumulants of &�T���T

for ��T := E&�T . It is easy to show that the characteristic function of &�T � ��T is
given by

��T (t) =

����I � 2it
TATW�AT
T!2T

�����1=2 exp f�it��T g ;
where 
T = E(uu0) and the cumulant generating function is

ln (��T (t)) = �
1

2
log det

�
I � 2it
TATW�AT

T!2T

�
� it��T :=

1X
m=1

�m;T
(it)m

m!
; (26)

where the �m;T are the cumulants of &�T � ��T : It follows from (26) that �1;T = 0
and

�m;T = 2
m�1(m� 1)!T�m

�
!2T
��m

Trace [(
TATW�AT )
m] for m � 2: (27)
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By proving that �m;T is close to �m in the precise sense given in Lemma 9 in the
appendix, we can establish the following theorem, which gives the order of magnitude
of the error in the nonstandard limit distribution of the t-statistic as T ! 1 with
�xed �:

Theorem 4 Let A2 hold. If
R 1
0 k�(v)dv < 1=

�
16z2

�
; then

FT;�(z) = F�(z) +O
�
T�1

�
; (28)

as T !1 with �xed �:

The requirement
R 1
0 k�(v)dv < 1=

�
16z2

�
on � is a technical condition in the proof.

It can be relaxed but at the cost of more tedious calculations. 1 � FT;�(z) gives the
power of the test under the alternative hypothesis H1 : � 6= �0. Theorem 4 indicates
that when � is �xed the power of the test can be approximated by 1 � F�(z) with
an error of order O(1=T ): Under the null hypothesis H0 : � = �0, � = 0; Theorem
4 shows that for �xed � the ERP for tests using critical values obtained from the
nonstandard limit distribution of W (1)��1=2� is O

�
T�1

�
: This rate is faster than the

rate for conventional tests based on consistent HAC estimates.
Combined with Theorem 1, Theorem 4 characterizes the size and power properties

of the test under the sequential limit in which T goes to in�nity �rst for a �xed �
and then as � goes to in�nity. Under this sequential limit theory, the size distortion
of the t-test based on the corrected critical values is

P
n���pT ��̂ � �0� =!̂��� � z�;�o� � = O ���2=q�+O �T�1�

and the corresponding local asymptotic power is

P
n���pT ��̂ � �0� =!̂��� > z�;�o = 1�G�(z2�)�cqz4�K� �z2�� ��1=q+O ���2=q�+O �T�1� :

To evaluate the order of size distortion, we have to compare the orders of magnitude
of ��2=q and 1=T: Such a comparison jeopardizes the sequential nature of the limiting
directions and calls for a higher order approximation that allows T !1 and �!1
simultaneously. A corollary to this observation is that �xed � asymptotics do not
provide an internally consistent framework for selecting the optimal power parameter.

The next theorem establishes the required higher order expansion.

Theorem 5 Let A2 hold. If 1=�+ �=T q ! 0 as T !1; then

FT;�(z) = G�(z
2) + cq�

�1=qLq (G�; z)� gdTG0�(z2)z2
�
�T�q

�
+ o

�
�T�q

�
+O

�
T�1 + ��2=q

�
; (29)

where dT = !
�2
T

PT�1
h=�T+1 jhj

q (h).
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Under the local alternative hypothesis H1 : j� � �0j = c=
p
T ; the power of the

test based on the corrected critical values is 1 � FT;�(z�;�): Theorem 5 shows that
FT;�(z�;�) can be approximated by G�(z2)+cq��1=qLq (G�; z)�gdTG0�(z2)z2 (�T�q) ;
and the approximation error is of order o (�T�q) +O

�
T�1 + ��2=q

�
:

Under the null hypothesis, � = 0 and G�(�) = D(�); so

FT;0(z) = D(z
2) + cq�

�1=qLq (D; z)� gdTD0(z2)z2
�
�T�q

�
+ o

�
�T�q

�
+O

�
T�1 + ��2=q

�
: (30)

Importantly, the leading term D(z2)+ cq�
�1=qLq (D; z) in this expansion is the same

as the corresponding expansion of the limit distribution F0(z) given in (19). A direct
implication is that the corrected critical values from the nonstandard limiting distrib-
ution are also second order correct under the conventional large � asymptotics. More
speci�cally, up to smaller order terms, FT;0(z�;�) = 1 � � � gdTD0(z2�)z2� (�T�q) :
By adjusting the critical values, we eliminate the term cq�

�1=q
q L (D; z), which re-

�ects the randomness of the standard error estimator. So if the remaining term
�gdTD0(z2�)z2� (�T�q) is of smaller order than the eliminated term, the use of the
corrected critical values given in Corollary 2 should reduce the size distortion. When
� increases with T; the remaining term gdTD0(z2�)z

2
� (�T

�q) approximately measures
the size distortion in tests based on the corrected critical values, or equivalently those
based on the nonstandard limit theory, at least to order O(��1=q).

If critical values from the standard normal are used, then the ERP is given by
the O

�
��1=q

�
and O(�T�q) terms. To obtain the best rate of convergence of the

ERP to zero, we set � = O(T q
2=q+1) to balance these two terms and the resulting

rate of convergence is of order O(T�q=q+1): As we discussed before, this rate is larger
than that of the nonstandard test by an order of magnitude. One might argue that
this comparison is not meaningful as the respective orders of the ERP are obtained
under di¤erent asymptotic speci�cations of � : one for growing � and the other one
for �xed �: To sharpen the comparison, we can compare the ERP under the same
asymptotic speci�cation as in SPJ (2008). When � is �xed, the ERP of the standard
normal test contains an O(1) term, which makes the ERP larger by an order of
magnitude than the ERP of the nonstandard test. When � grows with T; the ERP
of the nonstandard test contains fewer terms than that of the standard normal test.
This is usually regarded as an advantage in the econometrics literature.

If we set � = O
�
T 2q

2=2q+1
�
which is the AMSE-optimal rate for the exponent,

then the ERP of the standard normal test is of order O (�T�q) = O(T�q=(2q+1)): In
this case, the ERP of the nonstandard test or test using the second order corrected
critical values is also of order O(T�q=(2q+1)): Therefore, compared with the standard
normal test, the hybrid procedure suggested in PSJ (2006, 2007) does not reduce
the ERP by an order of magnitude. However, the hybrid procedure eliminates the
O(��1=q) term from the ERP and thus reduces the over-rejection that is commonly
seen in economic applications. This explains the better �nite sample performances
found in the simulation studies of PSJ (2006, 2007), Ray and Savin (2008), and Ray,
Savin, and Tiwari (2009).
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For convenience, we refer to the test based the t�-statistic t�(!̂�) and the second
order corrected critical values as the t�-test. We formalize the results on the size
distortion and local power expansion of the t�-test in the following corollary.

Corollary 6 Let A2 hold. If 1=�+ �=T q ! 0! 0 as T !1, then
(a) the size distortion of the t�-test is

gdTD
0(z2�)z

2
��T

�q + o
�
�T�q

�
+O

�
T�1 + ��2=q

�
: (31)

(b) under the local alternative, the power of the t�-test is

1�G�(z2�)� cqz4�K�
�
z2�
�
��1=q + gdTG

0
�(z

2
�)z

2
��T

�q + o
�
�T�q

�
+O

�
T�1 + ��2=q

�
:

(32)

Just as standard limit theory, the nonstandard limit theory does not address
the bias problem due to nonparametric smoothing in LRV estimation. Comparing
(32) with (24), we get an additional term, re�ecting the asymptotic bias of the LRV
estimator. For economic time series, it is typical that dT > 0: So this additional term
also increases monotonically with �. Of course, size distortion tends to increase with
� as well. In the next section, we propose a procedure to choose � that maximizes
the local asymptotic power while controlling for the size.

6 Optimal Exponent Choice

When estimating the long run variance, PSJ (2006, 2007) show there is an optimal
choice of � which minimizes the asymptotic mean squared error of the estimator

and give an optimal expansion rate of O
�
T 2q

2=(2q+1)
�
for � in terms of the sample

size T: The present paper attempts to provide a new approach for optimal exponent
selection that addresses the central concern of classical hypothesis testing, which can
be expressed as maximizing power subject to controlling size.

Using (31) and ignoring the higher order terms, the type I error of the t�-test can
be measured by

eI = �+ gdTD
0(z2�)z

2
��T

�q:

Similarly, from (32), the type II error of the t�-test can be measured by

eII = G�(z
2
�) + cqz

4
�K�

�
z2�
�
��1=q � gdTG0�(z2�)z2��T�q:

We choose � to minimize the type II error while controlling for the type I error. More
speci�cally, we solve

min eII ; s:t: eI � ��

where � is a constant greater than 1. Ideally, the type I error is less than or equal
to the nominal type I error �: In �nite samples, there is always some approximation
error and we allow for some discrepancy by introducing the tolerance factor �: For
example, when � = 5% and � = 1:2; we aim to control the type I error such that it
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is not greater than 6%. Note that � may depend on the sample size T: For a larger
sample size, we may require � to take smaller values.

The solution to the minimization problem depends on the sign of dT : When
dT < 0; the constraint eI � �� is not binding and we have the unconstrained
minimization problem �opt = min eII ; whose solution for the optimal � is

�opt =

 
�
cqz

2
�K�

�
z2�
�

qgdTG0�(z
2
�)

! q
q+1

T
q2

q+1 : (33)

When dT > 0; the constraint eI � �� may be binding and we have to use the
Kuhn-Tucker theorem to search for the optimum. Let � be the Lagrange multiplier,
and de�ne

L(�; �) = G�(z
2
�) + cqz

4
�K�

�
z2�
�
��1=q � gdTG0�(z2�)z2��T�q (34)

+ �
��
�+ gdTD

0(z2�)z
2
��T

�q�� ��� :
It is easy to show that at the optimal �; the constraint eI � �� is indeed binding and
� > 0: Hence, the optimal � is

�opt =
(�� 1)�

gdTD0(z2�)z
2
�

T q; (35)

and the corresponding Lagrange multiplier is:

�opt =
G0�(z

2
�)

D0(z2�)
+
cqK�

�
z2�
� �
gdTD

0(z2�)
� 1
q

q [(�� 1)�]1+1=q T
�
z2�
�1=q+2

:

Formulae (33) and (35) can be written collectively in the form

�opt =

 
cqz

2
�K�

�
z2�
�

qgdT
�
�D0(z2�)�G0�(z2�)

�! q
q+1

T
q2

q+1 ;

where

�opt =

8<: 0; if dT < 0

G0�(z
2
�)

D0(z2�)
+

cqK�(z2�)[gdTD0(z2�)]
1
q

q[(��1)�]1+1=qT

�
z2�
�1=q+2

; if dT > 0
(36)

If we ignore the nonessential constant, then the function L(�; �) is a weighted
sum of the type I and type II errors with the weight given by the optimal Lagrange
multiplier. When dT < 0; the type I error is expected to be capped by the nominal
type I error. As a result, the optimal Lagrange multiplier is zero and we assign all
weight to the type II error. This weighting scheme might be justi�ed by the argument
that it is worthwhile to take advantage of the extra reduction in the type II error
without in�ating the type I error. When dT > 0; the type I error is expected to
larger than the nominal type I error. The constraint on the type I error is binding
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and the Lagrange multiplier is positive. In this case, the loss function is a genuine
weighted sum of type I and type II errors. As the tolerance parameter � decreases
toward 1, the weight attached to the type I error increases.

When the nonparametric bias, as measured by �dT ; is positive, the optimal �
grows with T at the rate of T q

2=(q+1); which is slower than T 2q
2=(2q+1), the MSE-

optimal expansion rate. When the nonparametric bias is negative, which is typical
for economic time series, the expansion rate of the optimal � depends on the rate at
which � approaches 1. When �! 1 at a rate faster than T�q, the Lagrange multiplier
�opt increases with the sample size at a rate faster than T q: In this case, the optimal
� is bounded. Fixed � rules may then be interpreted as assigning increasingly larger
weight to the type I error. This gives us a practical interpretation of �xed � rules in
terms of the permitted tolerance of the type I error. When � ! 1 at a rate slower
than T�

q
q+1 ; the Lagrange multiplier �opt is bounded and the optimal � expands with

T at a rate faster than T q
2=(q+1): In particular, when � ! 1 at the rate of T�

q
2q+1 ;

the optimal � expands with T at the MSE-optimal rate T 2q
2=(2q+1): So when � ! 1

at a rate faster than T�
q

2q+1 ; the optimal � has a smaller order of magnitude than
the MSE-optimal � regardless of the direction of the nonparametric bias.

When �opt = O((T= q
p
�opt)

q2=(q+1)); the size distortion of the t�-test is of order
O((T�opt)

�q=(q+1)): It is apparent that the size distortion becomes smaller if a larger
weight is implicitly assigned to the type I error. In particular, when �opt is �nite,
the size distortion is of order O(T�q=(q+1)); which is larger than O (T�q), the size
distortion for the case �opt s T q: It is obvious that the use of �opt involves some
tradeo¤ between two elements in the loss function (34). Note that even when �opt is
�nite, the size distortion is smaller than O(T�q=(2q+1)); which is the size distortion
for the conventional t-test using the AMSE optimal �; that is when � is set to be
O(T 2q

2=(2q+1)):
The formula for �opt involves the unknown parameter dT ; which could be es-

timated nonparametrically or by a standard plug-in procedure based on a simple
model like an AR(1). See Andrews (1991) and Newey and West (1994). Both meth-
ods achieve a valid order of magnitude and the procedure is obviously analogous to
conventional data-driven methods for HAC estimation.

To sum up, the test-optimal � that maximizes the local asymptotic power while
preserving size in large samples is fundamentally di¤erent from the MSE-optimal �:
The test-optimal � depends on the sign of the nonparametric bias and the permitted
tolerance for the type I error while the MSE-optimal � does not. When the permitted
tolerance becomes su¢ ciently small, the test-optimal � is of smaller order than the
MSE-optimal �:

7 Simulation Evidence

This section presents some simulation evidence on the performance of the t�-test based
on the plug-in implementation of the test-optimal power parameter. We consider the
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simple location model with Gaussian ARMA(1,1) errors:

yt = � + c=
p
T + ut;

where
ut = �ut�1 + "t + �"t�1; "t s iidN(0; 1): (37)

Note that the long run variance of ut is (1 + �)
2 = (1� �)2 : On the basis of the long

run variance, we consider the following c values: c = �0 (1 + �) = (1� �) for �0 2 [0; 5]:
We consider three sets of parameter con�gurations for � and � :

AR(1) : (�; �) = (0:9; 0); (0:6; 0); (0:3; 0); (�0:3; 0); (�0:6; 0); (�0:9; 0)
MA(1) : (�; �) = (0; 0:9); (0; 0:6); (0; 0:3); (0;�0:3); (0;�0:6); (0;�0:9)

ARMA(1; 1) : (�; �) = (�0:6; 0:3); (0:3;�0:6); (0:3; 0:3); (0; 0):(0:6;�0:3); (�0:3; 0:6)

and write ut s ARMA[�; �]:
We consider three sample sizes T = 100, 200 and 500: For each data generating

process, we obtain an estimate �̂ of the AR coe¢ cient by �tting an AR(1) model
to the demeaned time series. Given the estimate �̂; dT can be estimated by d̂ =
2�̂=(1� �̂)2 when q = 2 and d̂ = 2�̂=(1� �̂2) when q = 1: We consider the following
tolerance factors � = 1:1 and 1:2: We set the signi�cance level to be � = 10%
and the corresponding nominal critical value for the two sided test is z� = 1:645:
To compute the test-optimal power parameter, we need to choose � for the local
alternative hypothesis. In principle, we can estimate �0 by OLS but the OLS estimator
is not consistent. Accordingly, we follow standard practice in the optimal testing
literature and propose to select � such that the �rst order power is 75%, that is, �
solves 1�G�(1:645) = 75%: The solution is � = 2:3192; which lies in the intermediate
range of alternative hypotheses presented in the �gures below. Although this choice
of � may not match the true �0 under the local alternative, Monte Carlo experiments
show that it delivers a test with good size and power properties.

For each choice of �; we obtain �̂opt and use it to construct the LRV estimate
and corresponding t�-statistic. We reject the null hypothesis if jt�j is larger than
the corrected critical values given in (23). Using 10,000 replications, we compute the
empirical type I error (when �0 = 0 and c = 0). For comparative purposes, we
also compute the empirical type I error when the power parameter is the �optimal�
one that minimizes the asymptotic mean squared error of the LRV estimate. The
formulae for this power parameter are given in PSJ (2006, 2007) and plug-in versions
are

�̂MSE =
1

g

0B@p2�
16

�
1� �̂

�4
�̂2

1CA
2=5

T 8=5

for the second order power kernels and

�̂MSE =

24 (1� �̂2)2
4�̂2

!1=3
T 2=3

35 :
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for the �rst order power kernels. In addition, we include the nonstandard test pro-
posed by KV(2002a) which sets � to be one and uses nonstandard critical values. We
refer to the three testing procedures as �OPT�,�MSE�and �KV�respectively.

Tables 1-3 report the empirical type I error for the ARMA(1,1) error with sample
size T = 100, tolerance parameter � = 1:1 and signi�cance level � = 10%: Several
patterns emerge. First, when the empirical type I error is around or greater than the
nominal type I error, the new plug-in procedure incurs a signi�cantly smaller type I
error than the conventional plug-in procedure. In other cases, the type I errors are
more or less the same for the two plug-in procedures. Second, compared with the KV
procedure, the new t�-test has similar size distortion except when the error process is
highly persistent and second order kernels are used. Since the bandwidth is set equal
to the sample size, the KV procedure is designed to achieve the smallest possible size
distortion. Given this observation, we can conclude that the new t�-test succeeds in
controlling for the type I error. Third, the new t�-test based on the exponentiated
Bartlett kernel has the smallest size distortion in an overall sense. This is true even
when the error autocorrelation is very high.

The above qualitative observations remain valid for other con�gurations such as
di¤erent sample sizes and di¤erent values of �. All else being equal, the size distortion
of the new t�-test for � = 1:2 is slightly larger than that for � = 1:1: This is expected
as we have a higher tolerance for the type I error when the value of � is larger.

Figures 2-4 present �nite sample power under AR(1) errors for the three kernels
considered. We compute power using the 10% empirical �nite sample critical values
obtained from the null distribution. So the �nite sample power is size-adjusted and
power comparisons are meaningful. The parameter con�guration is the same as those
for Tables 1-3 except the DGP is generated under local alternatives. Two observations
can be drawn from these �gures. First, the power of the new t�-test is consistently
higher than the KV test. The power di¤erence is larger for the second order kernels
than for �rst order kernels. Second, the new t�-test with test-optimal exponent is as
powerful as the conventional MSE-based test. For a given power parameter �; using
nonstandard critical values or second order corrected critical values improves the size
accuracy of the test but at the cost of clear power reduction. Figures 2-4 show that
we can employ the test-optimal � to compensate for the power loss. To sum up, the
new t�-test achieves the same degree of size accuracy as the nonstandard KV test
and yet maintains the power of the conventional t-test.

Rather than reporting all of the remaining �gures for other con�gurations, we
present two representative �gures. Figure 5 presents the power curves under the
MA(1) error and with the exponentiated Bartlett kernel while Figure 6 presents the
power curves under the ARMA(1,1) error and with the exponentiated Parzen kernel.
The basic qualitative observations remain the same: the new t�-test is as powerful as
the standard t-test and much more powerful than the nonstandard KV test.

It is important to point out the KV test considered here does not use any smooth-
ing parameter. The power of the KV test may be improved if the bandwidth is set
proportional to the sample size (KV 2005). We may use the idea presented here and
asymptotic expansions in SPJ (2008) to develop a test optimal procedure to select
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the proportional factor. This extension is straightforward and we do not pursue it
here.

8 Conclusion

Pursuing the same the line of research taken in SPJ (2008) to improve econometric
testing where there is nonparametric studentization, the present paper employs the
power kernel approach of Phillips, Sun and Jin (2006, 2007) and proposes a power
parameter choice that maximizes the local asymptotic power while controlling for the
asymptotic size of the test. This new selection criterion is fundamentally di¤erent
from the MSE criterion for the point estimation of the long run variance. Depending
on the permitted tolerance on the type I error, the expansion rate of the test-optimal
power parameter may be larger or smaller than the MSE-optimal power parameter.
The �xed power parameter rule can be interpreted as exerting increasingly tight
control on the type I error.

Monte Carlo experiments show that the size of the new t�-test is as accurate as
the nonstandard KV test with the bandwidth equal to the sample size. On the other
hand, unlike the KV test, which is generally less powerful than the standard t-test,
the t�-test based on the test-optimal power parameter is as powerful as the standard
t-test. We have therefore introduced a new test that combines the good elements of
the two existing tests but without inheriting their main drawbacks.
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Table 1: Finite Sample Sizes of Di¤erent Testing Procedures
Under AR(1) errors (T = 100; � = 1:1; � = 0:10)

[�; �] [0.9,0] [0.6,0] [0.3,0] [-0.3,0] [-0.6,0] [-0.9,0]
Bartlett

OPT 0.1399 0.1059 0.1044 0.0752 0.0583 0.0220
MSE 0.3675 0.1981 0.1538 0.0866 0.0847 0.0805
KV 0.1961 0.1159 0.1038 0.0893 0.0794 0.0426

Parzen
OPT 0.2085 0.1171 0.1069 0.0891 0.0891 0.0881
MSE 0.3296 0.1707 0.1360 0.0866 0.0846 0.0815
KV 0.1326 0.0985 0.0955 0.0944 0.0928 0.0858

QS
OPT 0.2051 0.1152 0.1067 0.0890 0.0890 0.0882
MSE 0.3277 0.1704 0.1356 0.0867 0.0847 0.0841
KV 0.1228 0.1019 0.0991 0.0991 0.0955 0.0862

Note: OPT: t�-test with test-optimal rho; MSE: t-test with mse optimal �; KV:
t-test with � = 1 and nonstandard critical values from KV (2002).

Table 2: Finite Sample Sizes of Di¤erent Testing Procedures
Under MA(1) errors (T = 100; � = 1:1; � = 0:10)

[�; �] [0,0.9] [0,0.6] [0,0.3] [0,-0.3] [0,-0.6] [0,-0.9]
Bartlett

OPT 0.0917 0.0934 0.0979 0.0638 0.0166 0.0000
MSE 0.1472 0.1444 0.1346 0.0671 0.0175 0.0000
KV 0.1015 0.1021 0.0995 0.0852 0.0477 0.0001

Parzen
OPT 0.1004 0.0996 0.0982 0.0762 0.0345 0.0000
MSE 0.1324 0.1273 0.1209 0.0630 0.0117 0.0000
KV 0.0954 0.0964 0.0952 0.0932 0.0804 0.0192

QS
OPT 0.0989 0.0986 0.0977 0.0756 0.0343 0.0000
MSE 0.1315 0.1263 0.1205 0.0629 0.0117 0.0000
KV 0.0995 0.0989 0.1002 0.0960 0.0806 0.0207

Note: OPT: t�-test with test-optimal rho; MSE: t-test with mse optimal �; KV:
t-test with � = 1 and nonstandard critical values from KV (2002).
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Table 3: Finite Sample Sizes of Di¤erent Testing Procedures
Under ARMA(1) errors (T = 100; � = 1:1; � = 0:10)

[�; �] [-0.6,0.3] [0.3,-0.6] [0.3,0.3] [0,0] [0.6,-0.3] [-0.3,0.6]
Bartlett

OPT 0.0804 0.0364 0.0954 0.0976 0.1245 0.0953
MSE 0.0978 0.0342 0.1620 0.1060 0.1933 0.1253
KV 0.0907 0.0673 0.1055 0.0955 0.1112 0.0986

Parzen
OPT 0.0933 0.0448 0.1054 0.0972 0.1317 0.0929
MSE 0.0987 0.0276 0.1425 0.1040 0.1803 0.1125
KV 0.0944 0.0850 0.0973 0.0952 0.0961 0.0947

QS
OPT 0.0933 0.0440 0.1039 0.0971 0.1314 0.0925
MSE 0.0988 0.0271 0.1418 0.1041 0.1804 0.1121
KV 0.0983 0.0856 0.1017 0.0989 0.1012 0.0994

Note: OPT: t�-test with test-optimal rho; MSE: t-test with mse optimal �; KV:
t-test with � = 1 and nonstandard critical values from KV (2002).
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Figure 2: Size-adjusted power for di¤erent testing procedures under AR(1) errors
with exponentiated Bartlett kernel
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Figure 3: Size-adjusted power for di¤erent testing procedures under AR(1) errors
with exponentiated Parzen kernel 23
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Figure 4: Size-adjusted power for di¤erent testing procedures under AR(1) errors
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Figure 5: Size-adjusted power for di¤erent testing procedures under MA(1) errors
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9 Appendix

9.1 Technical Lemmas and Supplements

Lemma 7 For quadratic power kernels, as �!1; we have
(a)

R 1
0 k� (x) dx = O

�
1p
�

�
;

(b)
R 1
0 (1� x)k� (x) dx =

1
2

�
�
�g

�1=2
+O

�
1
�

�
:

Proof of Lemma 7. We prove part (b) only as part (a) follows from similar but
easier arguments. For both the Parzen and QS kernels, we have for any � > 0; there
exists � := �(�) > 0 such that log k(x) � �� (�) for � � x � 1: Therefore, the
contribution of the interval � � x � 1 satis�esZ 1

�
(1� x)k� (x) dx =

Z 1

�
exp f� log k (x) + log(1� x)g dx

� exp [� (�� 1) � (�)]
Z 1

0
k (x) dx � exp [� (�� 1) � (�)] : (38)

We now deal with the integral from �� to �: Both the Parzen and QS kernels
exhibit quadratic behavior around the origin in the sense that

k (x) = 1� gx2 + o
�
x2
�
; as x! 0 for some g > 0;

which implies log k(x) = �gx2 + o(x2): So, for any given " > 0, we can determine
� > 0 such that ��log k(x) + gx2�� � "x2; for 0 � x � �:
In consequence,Z �

0
(1�x) exp

�
��(g + ")x2

�
dx �

Z �

0
(1�x)k� (x) dx � (1�x)
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0
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we have Z �

0
(1� x) exp

�
��(g + ")x2

�
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Therefore Z �
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Combining (38) and (39) yieldsZ 1

0
(1� x)k� (x) dx =
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Lemma 8 The cumulants of �� � �� satisfy

j�mj � 23m�3(m� 1)!
�Z 1

0
k�(v)dv

�m�1
(41)

and the moments �m = E (�� � ��)m satisfy
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Proof of Lemma 8. Note that������
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Let � = �(r) > 0 be such that k�(�) =
R 1
0 k�(r� p)dp: Then, in view of the de�nition
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and
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Note that the moments f�jg and cumulants f�jg satisfy the following recursive re-
lationship:
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that
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Lemma 9 Let A2 hold. When T !1 for a �xed �; we have
(a)

��T = �� +O

�
1

T

�
: (49)

(b)

�m;T = �m +O

(
m!2m�1

T 2

�
4

Z 1

0
k�(v)dv

�m�2)
; (50)

uniformly over m � 1:
(c)

�m;T = E (&�T � ��T )m = �m +O
(
22m�1m!

T

�
4

Z 1

0
k�(v)dv

�m�2)
; (51)

uniformly over m � 1:
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where C(h1) is a function of h1 satisfying jC(h1)j � h1: Similarly,
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�
+C(h1): (55)

Therefore, Trace(
TATW�AT ) equals
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T�1X
h1=�T+1

(h1)

�
k�

�
h1
T

�
� k� (0)
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=
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(56)

where we have used the second order Taylor expansion
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�
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T

�
� k� (0) = ��g jhq1j =T q + o (�=T q) : (57)

Using
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2
T (1 +O(

1

T
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and
1

T
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�
=
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1
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31



we now have
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T q
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�
: (60)

By de�nition, �� = E�� =
R 1
0 k

�
�(r; r)dr and thus ��T = �� +O

�
T�1

�
as desired.

We next approximate Trace[(
TATW�AT )
m] for m > 1: The approach is similar

to the case m = 1 but notationally more complicated. Let r2m+1 = r1; r2m+2 = r2;
and hm+1 = h1: Then
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where
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and
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Here we have used����~k��r2jT ; r2j+2 + hj+1T

�
� ~k�
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T
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T

����� = O��jhj+1jT
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32



A similar result is given and proved in (77) below.
The �rst term (I) can be written as
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T
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where
P
hj ;r2j

is one of the three choices
PT�1
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; �
PT�1
hj=1

PT
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�
P0
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P�hj
r2j=1

and
P
� is the summation over all possible combinations of�P

h1;r2
� � �
P
hm;r2m

�
: The 3m summands in (65) can be divided into two groups

with the �rst group consisting of the summands all of whose r indices run from 1 to
T and the second group consisting of the rest. It is obvious that the �rst group can
be written as 0@X

h

mY
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1AX
r

n
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�r2j
T
;
r2j+2
T

�o
:

The dominating terms in the second group are of the forms
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both of which are bounded by
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� � �

T�1X
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�hmX
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mY
j=1

j(hj)j jhkj
Y
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T
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T
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�
�
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X
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T
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T

��m�20@X
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j(hj)j

1Am�10@X
hk

j(hk)j jhkj

1A ;
using the same approach as in (43). Approximating the sum by integral and noting
that the second group contains (m� 1) terms which are of the same orders of mag-
nitude as the above typical dominating terms, we conclude that the second group is

33



of order O
�
mTm�2

�
4
R 1
0 k�(v)dv

�m�2�
uniformly over m: As a consequence,
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(66)
uniformly over m:

The second term (II) is easily shown to be of smaller order than the �rst term
(I). Therefore
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and
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�
!2T
��m
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uniformly over m:
Finally, we consider �m;T : Note that �1;T = E(&�T � ��T ) = 0 and

�m;T =
m�1X
j=0

�
m� 1
j

�
�j;T�m�j;T : (69)

It follows that

�m;T =
X
�

m!

(j1!)
m1 (j2!)

m2 � � � (jk!)mk

1

m1!m2! � � �mk!

Y
j2�
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where the sum is taken over the elements

� = [j1; � � � j1| {z }
m1 times

; j2; � � � j2| {z }
m2 times

; � � � jk; � � � jk| {z }
mk times

] (71)

for some integer k, sequence fjkg such that j1 > j2 > � � � > jk and m =
Pk
i=1miji:
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Combining the preceding formula with part (b) gives

�m;T = �m +O
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uniformly over m; where the last line follows because
P
�

1
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< 2m:
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(c) for m = 3 and 4;
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Proof of Lemma 10. We have proved (73) in the proof of Lemma 9 as equation
(60) holds for both �xed � and increasing �: It remains to consider �m;T for m = 2; 3,

and 4: We �rst consider �2;T = 2T�2
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It follows from (77) and (78) that
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So for the �rst order power kernels,
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and for the second order power kernels,

�2;T = 2

�
�

2�g

�1=2
+O

�
1

�
+
1

T

�
;

where the last line uses equation (83) below.
The proof for �m;T for m = 3; 4 is essentially the same except that we use

Lemma 7(a) or
R 1
0 (1� x)

� dx = O (1=�) and Lemma 8 to obtain the �rst term

O
��
��1=q

�m�1�
: Details are omitted.

9.2 Proofs of the Main Results

Proof of Theorem 1. First we consider the second order power kernels. Combining
Lemma 7(a) with Lemma 8, we have
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As a consequence,

F�(z) = P
n���(W (1) + �)��1=2�

��� < zo
= G�(��z

2) +
1

2
G00� (��z

2)z4�2 +O(�
�2=q); (81)

where

�� = E�� =

Z 1

0
k��(r; r)dr = 1�

Z 1

0

Z 1

0
k�(r � s)drds;

and

�2 = 2

�Z 1

0

Z 1

0
k�(r � s)drds

�2
� 4

Z
k�(r � s)k�(r � q) + 2

Z 1

0

Z 1

0
k2�(r � s)drds:

We proceed to approximate �� and �2 as �!1: First, we haveZ 1

0

Z 1

0
k�(r � s)drds

= 2

Z 1

0

�Z r

0
k�(r � s)ds

�
dr = 2

Z 1

0

�Z r

0
k�(�)d�

�
dr

= 2

Z 1

0

�Z 1

�
k�(�)dr

�
d� = 2

Z 1

0
(1� �)k�(�)d�

=

�
�

�g

�1=2
+O (1=�) ;

38



by Lemma 7(b). Second, it follows from Lemma 7(a) thatZ 1
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Then
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where the O (�) term holds uniformly for any z 2 [Ml;Mu] where 0 < Ml < Mu <1:
For the case with the �rst order power kernels, we have, after some brute force

calculations,

�� = 1�
Z 1

0

Z 1

0
k�(r � s)drds =

�

�+ 2

�2 =
2

�+ 1
+O

�
1

�2

�
:

So

F (z) = G�(��z
2) +G00� (��z

2)z4
1

�+ 1
+O

�
1=�2

�
= G�(z

2)�G00� (z2)z2
2

�+ 2
+G00� (z

2)z4
1

�+ 1
+O

�
1=�2

�
= G�(z

2) +
�
G00� (z

2)z4 � 2G0�(z2)z2
� 1
�
+O

�
1=�2

�
= G�(z

2) + cq�
�1=qLq(G�; z) +O

�
��2=q

�
(86)

as desired.
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Proof of Corollary 2. We focus on the case with the second order power kernels as
the proof for the �rst order power kernels is similar. Using a Taylor series expansion,
we have
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that is,

0 =

�
�

�g

�1=2 � 1p
2
D00(z2�)z

4
� �D0(z2�)z2�

�
+D0(z2�)

�
z2�;� � z2�

�
+O

�
1

�

�
: (88)
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and thus
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from which we get
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as stated.

Proof of Corollary 3. Again, we focus on the case with the second order power
kernels as the proof for the �rst order power kernels is similar. For notational conve-
nience, let
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and then
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We have
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Note that
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and
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and
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completing the proof of the corollary.

Proof of Theorem 4. First, since G�(�) is a bounded function, we can rewrite (16)
as
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where the last line follows because the in�nite sum
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provided that
R 1
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where the second equality holds because G
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follows from (105). This completes the proof of Theorem 4.

Proof of Theorem 5. It follows from Lemma 10 that when �!1,
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using (108) to (111). But
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as desired.

Proof of Corollary 6. Part (a) Using Theorem 5, we have, as 1=�+1=T+�=T q ! 0
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Re-arranging the above equation gives
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Part (b) Plugging z2�;� into (29) yields
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where the last equality follows from the same proof as Corollary 3.
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