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Abstract

We analyze optimality properties of maximum likelihood (ML) and
other estimators when the problem does not necessarily fall within the
locally asymptotically normal (LAN) class, therefore covering cases that
are excluded from conventional LAN theory such as unit root nonsta-
tionary time series. The classical Hájek-Le Cam optimality theory is
adapted to cover this situation. We show that the expectation of cer-
tain monotone �bowl-shaped� functions of the squared estimation error
are minimized by the ML estimator in locally asymptotically quadratic
situations, which often occur in nonstationary time series analysis when
the LAN property fails. Moreover, we demonstrate a direct connection
between the (Bayesian property of) asymptotic normality of the posterior
and the classical optimality properties of ML estimators

Keywords: Bayesian asymptotics, asymptotic normality, local asymp-
totic normality, locally asymptotic quadratic, optimality property of MLE,
weak convergence.

JEL Subject Classi�cation: C22

1 Introduction

In studying the statistical properties of econometric estimators, a common goal
is to develop a theory of optimal parametric estimation that pays attention to

�We thank the Editors and referees for helpful comments on the original version. Phillips
gratefully acknowledges support from a Kelly Fellowship and the NSF under Grant No. SES
06-47086.
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such criteria as central location and dispersion. In classical statistics much of the
theory of point estimation (e.g. Lehmann, 1983, Strasser, 1985) addresses these
concerns, taking into account both �nite sample and asymptotic characteristics
and bearing in mind the ultimate goal of minimizing the distance, in some sense,
between a true parameter � and an estimated value b� that depends on sample
data.
It would be tempting to try to construct estimators which minimize the

expectation of the Euclidean distance between the estimator and the �true�
parameter. This approach would, however, seriously hinder analysis. For many
popular estimators, such as the maximum likelihood estimator (MLE), we can
only be sure that the asymptotic distribution is well behaved. Also, we usually
have little information about the existence of moments of an estimator in �nite
samples and in many important cases some �good� estimators may have no
�nite integer moments (such as the limited information maximum likelihood
estimator in a structural equation).
The obvious primary candidate for an estimation procedure is maximum

likelihood, which is popular in practice and whose asymptotic properties are
well understood at least at some level of generality. The MLE is known to be
optimal in many important cases of interest and under certain regularity con-
ditions, although these are restrictive in a time series setting. In particular, the
conditions typically prescribe a �standard�framework of

p
n estimation, where

n is the sample size, and asymptotic normality, with further restrictions that ex-
clude certain pathological procedures that produce supere¢ cient (Hodges-like)
estimates on negligible sets of the parameter space (Le Cam, 1953). Outside
of this standard framework, there are important examples where the optimality
properties of the MLE are little understood, where MLE may be inconsistent,
and where it is possible to construct estimators that are asymptotically �bet-
ter� than the MLE. One case of great importance in econometrics is that of
autoregressive model estimation when there is a root in the vicinity of unity.
Such models involve a �nonstandard�estimation framework where the rate of
convergence typically exceeds

p
n; and where the limit distribution of the MLE

may be non normal (Phillips, 1987, 1988) or normal (Phillips and Magdali-
nos, 2007). It has also recently been discovered that the MLE is dominated
by other estimation procedures in a vicinity of unity (Han, Phillips and Sul,
2009). Notwithstanding these �ndings, the present paper establishes a certain
asymptotic optimality property of the MLE which does apply in nonstandard
conditions that include nonstationary time series problems.
A natural starting point in studying optimality is the familiar framework

of the Cramér-Rao information inequality. Despite its appeal of simplicity and
its continuing popularity in econometric textbook treatments, the Cramér-Rao
inequality is not a suitable vehicle for analysis in the context we consider here.
In many cases, of course, it is very restrictive to require the existence of sec-
ond moments of the estimation error in �nite samples and the MLE will only
asymptotically have a �nice�distribution like the normal.
A useful asymptotic theory of optimality was developed by Hájek (1972) and

Le Cam (1972). A comprehensive treatment can be found in van der Vaart(2000,

2



p.108¤). In this theory it is conventional to assume that the parametric model
likelihood has a property called �local asymptotic normality� or LAN, which
will be discussed later. This assumption implies that the properly normalized
(conventionally by

p
n, where n is the sample size) estimation error is asymp-

totically normal. Let us assume that the parameter to be estimated is � 2 Rk

and let �̂n be the MLE based on a sample of size n. We have

p
n
�
� � �̂n

�
!D G (0; J(�)) ; (1)

where !D denotes convergence in distribution and G (0; J) is the Gaussian
distribution with expectation 0 and covariance J (�) :
Under LAN and associated regularity conditions, the Hájek-Le Cam theory

shows that for every bounded, �bowl-shaped�loss function f and every other
sequence of estimators ~�n the following inequality holds. For almost all � (i.e.
all � with the exception of a set of Lesbesgue measure 0)

liminf
n!1

E�f
�p

n
�
� � ~�n

��
� lim

n!1
E�f

�p
n
�
� � �̂n

��
=

Z
f (h) dG (0; J(�)) ;

(2)
where E� denotes the expectation with respect to the probability measure cor-
responding to the parameter �. In view of this inequality, we may conclude that
asymptotically and for all parameters with the possible exception of a Lebesgue
null set the MLE minimizes the (asymptotic) expected loss of the estimation
error.
The critical assumption underlying this result is (1). If it is violated, (2)

is not necessarily true. There are various ways to generalize (2). Properly
transformed ML estimators are used in Hirano and Porter (2003), and Phillips
(1989) and Jeganathan (1991, 1995) have investigated various extensions of (1)
that apply in a time series settings and where the limit distribution may be a
normal mixture.
In the present work we wish to cover a fairly general case where the like-

lihood may be locally approximated by a quadratic function in large samples.
Under such conditions, we are able to demonstrate an optimality property of the
MLE. One of the cases covered by our theory relates to parameter estimation
in integrated models when the innovations are GARCH processes (c.f. Ling, Li
and McAleer, 2003; Ling and McAleer, 2003). In Ling and McAleer (2003) an
optimality property was derived for the MLE within a speci�c class of estima-
tors and, in a semiparametric setting where the density of the data is unknown,
an (adaptive) estimator was shown to be �optimal� in an oracle e¢ cient sense
(so that the adaptive estimator has the same distribution as the estimator in
which the density is assumed known). In this event, the optimality of the MLE
is established relative to a restricted class of �competitors�.
We will derive another type of optimality property and allow for more general

statistical models. We postulate only the fairly weak condition that, near the
true value of the parameter, the logarithms of the densities can asymptotically be
approximated by quadratic functions. The most general model we will consider
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covers cases where the posterior distribution is approximately Gaussian in large
samples. This class is known to be very general and to include a diverse group
of models (Heyde and Johnstone, 1979; Chen, 1985; Le Cam and Yang, 1990)
that extends to nonstationary time series (Ploberger and Phillips, 1996; Phillips,
1996; Kim, 1998). One interesting feature of our method is that this property
of the model is used to derive optimality properties of estimators.
Following the formulation of (2) it is helpful to consider loss functions for

the estimation error beyond quadratics. Accordingly, a plausible candidate for
measuring the estimation error would be to consider expectations of quantities
of the form

f(Cn

�
� � b��); (3)

where the Cn are suitable normalization matrices, which are determined ac-
cording to the asymptotic properties of the estimator b�; and f is a bounded loss
function.
Statistical theories of optimality are often based on decision theory involving

the notions of expected loss and the admissability of Bayes rules. In e¤ect,
showing that a certain procedure minimizes expected loss implies that there
cannot exist a �better� one. Our approach follows this tradition but makes
certain departures in order to accommodate a wide class of estimation problems
where (1) may fail, the limit theory of the estimator may be nonstandard, and
there may be rates of convergence di¤erent from

p
n.

In general, the loss function f in (3) is a nonlinear function of the estimation
error. So to accomplish our goal, we have to derive two types of results.

(i) We have to �nd suitable conditions so that the expectation of (3) is min-
imized.

(ii) We have to show that the ML estimator satis�es the necessary require-
ments.

Section 2 of the paper addresses issue (i). We show that the mean of certain
posterior distributions minimizes the expectation of (3) under rather general
conditions. We think that this result is of independent interest because of its
generality, but also because it might be further generalized to in�nite dimen-
sional parameter spaces.
Subsequent sections establish the connection to the ML estimator. We show

that the ML estimator posesses the required properties for our general opti-
mality theorem to hold true. So we investigate a �di¤erent� estimator than
the posterior mean considered in section 2. However, we show that - although
conceptually di¤erent - the ML estimator and the estimator derived from the
posterior are, in a certain limiting sense, the same, and therefore share the same
optimality property. We therefore use the symbol b�n for this estimator also. Al-
though de�ned in di¤erent ways, the estimators are essentially the same at least
asymptotically. It turns out that this outcome is not that surprising in view of
theorem 4 in Section 2, which shows that the optimal estimator is essentially
unique in view of property (8).
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2 An Optimality Property

We start by introducing the sample space 
 and parameter space � and to aid
our development we attach some useful properties to these spaces. These prop-
erties hold in all reasonable econometric applications with a �nite dimensional
parameter space. We assume that � is a subset of the �nite dimensional Euclid-
ean space Rk. Later on, we make use of some measure-theoretic properties of
�, so as to exclude certain �wild�subsets of Rk. We assume that there exist a
sequence of sets Kn � �, with Kn compact relative to �, so that the Borel sets
are the smallest �-algebra containing all of the Kn. This property is readily
seen to be satis�ed if the set � is open or closed. So this assumption is not
restrictive in practice.
For each � 2 �; there exists a probability measure P� de�ned on 
 with

an associated �ltration of �-algebras Fn representing information up to time n:
Frequently, we need to work with conditional probabilities. Hence we assume
that the space 
 is Polish, which is a standard requirement.
Our approach involves a synthesis of Bayesian and classical concepts. In

particular, we assume that we have given a sequence of probability measures �n
on �. These �n can be interpreted as �prior�distributions for the parameter
�. However, we also allow these distributions to depend on the sample size n:
We de�ne measures Pn on �� 
 by

Pn(A�B) =
Z
A

P�(B)d�n(�):

It is then easily seen that the �posterior�distributions are simply the conditional
distributions of Pn on � given Fn. We need to make full use of the connection
between sample and posterior so the role of the conditional probability distri-
butions is important but nevertheless quite standard (cf. Billingsley, 1995, p.
439).
Let us denote the corresponding conditional probability distribution by �n.

Then �n is a function of two variables: Its �rst argument is a measurable subset
of �; and its second argument is an element of !. Then �n is characterized by
the following two properties:

1. For a �xed subset A � �, �n(A; :) is a version of the conditional proba-
bility Pn(AjFn):

2. For �xed ! 2 
, �n(:; !) is a measure, which we also denote by �n.

There are examples of spaces � for which conditional probabilities do not exist.
But our assumptions above guarantee the existence of the conditional measure
�n.
Fundamental to our analysis is the �asymptotic normality�of the posterior

distribution, which, as indicated above, is known to hold in very general cases.
However, we have to be careful in applying traditional concepts of measure
theory here. The posterior distribution is a random measure (because it depends
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on the sample), so we cannot directly use the well developed theory of weak
convergence.

De�nition 1 (AGP) Assume there exist statistics (i.e. Fn-measurable map-
pings) b�n in Rk, b�n in the set of k � k matrices, and a sequence An of Fn-
measurable k � k matrices satisfying

AnA
0
n = b��1n : (4)

Assumption AGP is ful�lled if for all t uniformly on all compact setsZ
exp(it0An

�
� � b�n�)d�n � exp(�t0t=2)! 0; (5)

where we understand the convergence to be in probability (with respect to Pn).

Here �n is a random probability measure on �. Hence (5) means that

the distribution of An
�
� � b�n� ; which is a measurable function de�ned on the

product space ��
; converges stochastically to a standard normal. Hence we
have the following corollary:

Corollary 2 Suppose AGP is ful�lled. Then for any set C of bounded, equicon-
tinuous functions g de�ned on Rk we have

sup
g2C

����Z g
�
An

�
� � b�n�� d�n � Z gdG(0; I)

����! 0;

where G(0; I) denotes the k-dimensional standard normal distribution.

As mentioned earlier, we evaluate the estimation error, ��b�n; with the help
of a loss function f . The following de�nition places some restrictions on the
allowable class of loss functions.

De�nition 3 A loss function f is called a �good� loss function if
(i) f is �bowl-shaped�: it has convex level sets (i.e. for all c, the setsfx : f(x) � cg
are convex) and the function is symmetric in the sense that f(x) = f(�x).
(ii) f is continuous
(iii) f is bounded
(iv) f is level-compact: for every M < sup f(x) the set fx : f(x) �Mg is com-
pact.
(v) f is separating in the following sense: f(0) = 0 and 0 is an inner point of
fx : f(x) < Mg with M < sup f(x).

Typical examples of loss functions satifying de�nition 3 are bounded, contin-
uous functions of vector norms (i.e. f(x) = g(kxk), where g is bounded, contin-
uous and monotone increasing, and k:k is an arbitrary vector/matrix norm - not

6



necessarily the Euclidean norm.It may be possible that our results can be gen-
eralized to include a wider class of loss functions than those given in de�nition
3. But the stated class is likely to be su¢ cient for most practical purposes.
Under these conditions we have the following theorem. This result shows

the class of estimators which are asymptotically equivalent to b�n according to
an optimality property of the estimation error.

Theorem 4 Let assumption AGP be ful�lled, let ~�n be an arbitrary estimator
for �; and let Bn be a sequence of Fn-measurable matrices so that

BndL�̂
�1
n � Bn � BndU �̂

�1
n ; (6)

where BndL; BndU are �xed positive numbers. Assume further that we have a
sequence Cn for which

Bn = CnC
0
n: (7)

Then the following three propositions are equivalent:
1. For any sequence Bn satisfying (6)�b�n � ~�n�0Bn �b�n � ~�n�! 0 (8)

in probability with respect to Pn:
2. For any �good� loss function f

lim inf
n!1

�Z
f
�
Cn

�
� � ~�n

��
dPn �

Z
f
�
Cn

�
� � �̂n

��
dPn

�
� 0 (9)

3. For all �good� loss functions f

lim inf
n!1

�Z
f
�
Cn

�
� � ~�n

��
dPn �

Z
f
�
Cn

�
� � �̂n

��
dPn

�
� 0: (10)

The proof of the theorem is technical and is placed in the appendix. We
have two immediate corollaries, both of which follow directly.

Corollary 5 If
Bn = OP (�̂

�1
n ) (11)

and
�̂�1n = OP (Bn) ; (12)

then the theorem continues to hold.

Corollary 6 Suppose H is a projection of Rk to a lower dimensional subspace,
and Bn is a sequence of matrices which satisfy (11) and (12). Then the conclu-
sions of the theorem hold true if we replace the matrices Bn and Cn by H 0BnH
and CnH, respectively. Since H is a projection,

CnH
�
� � �̂n

�
= (CnH)H

�
� � �̂n

�
7



and
CnH

�
� � ~�n

�
= (CnH)H

�
� � ~�n

�
;

we have an analogous optimality property when estimating only a part of the
parameter vector, namely H�.

The proof of corollary 5 is straightforward. Assume it to be wrong �so we
have an estimator violating the conclusions of the theorem. In that case, we
would be able to approximate the sequence Bn and the estimators with ones that
satisfy the assumptions of the theorem to an arbitrary degree of accuracy. Then
the approximations ful�ll the assumptions of the theorem, and it is quite easy,
but tedious, to show that our original estimators and Bn ful�ll the assumption
also. Hence we have a contradiction, which proves corollary 5. Corollary 6
follows immediately.

3 Applications: the Case of a Fixed Prior

In the previous section, we characterized estimators in terms of certain optimal-
ity properties. In particular, we showed that those estimators asymptotically
equivalent to a certain sequence of estimators actually minimize average loss,
where we take the average with respect to the prior distribution.
Typically, our estimator will be asymptotically equivalent to the maximum

likelihood estimator (MLE), as shown below. This may be expected because the
posterior density is generally proportional to the likelihood in large samples. Un-
der the condition that the posterior is approximately Gaussian, it is anticipated
that the mode of the posterior (which equals the MLE) will be approximately
the same as its mean.
We still have to discuss the choice of prior distribution. The �rst possibility

would be to �x the prior distribution to be a smooth function on �. Some form
of asymptotic normality of the posterior distribution has been established in
many situations, among them many of the typical �unit-root� cases (Ghosal,
Ghosh and Samanta, 1995; Phillips and Ploberger, 1996; Kleibergen and Paap,
2002; Kim, 1998).
Since none of the above references uses our conceptual framework, some dis-

cussion is warranted. We give an easy su¢ cient criterion for the AGP property
of the MLE, namely that the logarithm of the likelihood can asymptotically be
approximated by a quadratic function. This approximation is quite a standard
tool in asymptotic analysis (e.g., see van der Vaart, 2000; and Strasser, 1985), in-
cluding the asymptotic analysis of cointegrated systems (see Jeganathan, 1991,
1995) and some generalizations (Ling and McAleer, 2001; and Ling, Li and
McAleer, 2003). Depending on the type of approximation involved, the models
are usually classi�ed as locally asymptotically quadratic (LAQ), locally asymp-
totically mixed normal (LAMN), or LAN (c.f., van der Vaart, 2000). Our re-
quirements do not exactly �t into this classi�cation. Nevertheless, we think it
is only a small step to establish the validity of our assumptions A1-A4 below in
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most of the standard cases that arise in econometrics. Hence we will not discuss
examples here.
Let us assume that our family P� of probability measures is dominated - i.e.

for each Fn there exists a measure �n so that all the P� restricted to Fn have
a density with respect to �n, the likelihood. Denoting the logarithm of this
density by `n(�), we have `n(�) = log dP�d�n

:

Assumption A1: The parameter space � is a subset of the Rn so that the
topological boundary of � (the di¤erence between the closure and the interior
of �) has Lebesgue measure zero.

Assumption A2: The prior measures �n are a �xed measure �, which
is Lebesgue-continuous with some density �, which we assume to be continuous
and nonzero on �:

Assumption A3: Let b�n be the maximum likelihood estimator. Then we
assume that there exists a Fn-measurable statistic cJn with values in the set of
n� n matrices so that

`n(�)� `n(b�n) + 1
2

�
� � b�n�0cJn �� � b�n�

converges to zero, uniformly on all sets�
� :
�
� � b�n�0cJn �� � b�n� �M

�
;

for arbitrary M .

With the help of our theorem, we can show that in all these situations the
mean of the conditional distribution (call it b�n) (which in most cases will be the
maximum likelihood estimator) is admissible in the following sense:

Theorem 7 Assume that � is to be estimated and that this estimation problem
has the AGP property (given in de�nition 1) when we �x all the prior measures
�n = �, where � has a continuous, nonzero density � with respect to Lebesgue
measure. Then the estimator b�n has the following optimality property: Let f
be a �good� loss function, and let Bn be a sequence of non negative de�nite
,Fn-measurable matrices satisfying (6). Then there does not exist another
estimator ~�n for which the following two properties hold:

1. For all " > 0 the Lebesgue measure of the setsn
� : E�f

�
Cn

�
� � ~�n

��
� E�f

�
Cn

�
� � b�n�� > "

o
(13)

converges to 0.

2. There exists a � > 0 so that the Lebesgue measure of the setsn
� : E�f

�
Cn

�
� � b�n��� E�f �Cn �� � ~�n�� > �

o
(14)

does not converge to zero.
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The theorem may be interpreted as follows. We can think of the properties
(13) and (14) as de�ning an estimator which is �almost uniformly better�thanb�n. Suppose there were an estimator ~�n which satis�ed both (13) and (14). Then
this estimator would be preferable to b�n. Condition (13) guarantees that - with
the possible exception of some parameters in a set whose Lebesgue measure
(and therefore its prior probability) converges to zero - the expected estimation
error of ~�n is - up to an arbitrarily small " - better or equal to the expected
estimation error of b�n: Hence, by using ~�n instead of b�n we cannot lose very
much (the loss is only on sets of Lebesgue measure zero).
The second property, (14), guarantees that we would gain at least � on a

set of parameters with positive Lebesgue measure (and hence positive prior
probability, given our assumptions).
Fortunately, the theorem states that such an estimator ~�n does not exist. If

an estimator satis�es our �rst condition, it cannot satisfy the second one.
Suppose such an estimator ~�n and a corresponding loss function f existed.

As f is continuous and bounded, it is easily seen (by choosing an " in (13) small
enough), that there exists an � > 0 so that for n large enoughZ

E�f
�
Cn

�
� � b�n��� (�) d� > Z E�f

�
Cn

�
� � ~�n

��
� (�) d� + �: (15)

According to our theorem 4, this would imply that�b�n � ~�n�0Bn �b�n � ~�n�! 0

in probability with respect to Pn =
R
P�d�(�) : So for all " > 0

Pn

���b�n � ~�n�0Bn �b�n � ~�n� > "

��
converges to zero, and soZ

P�

���b�n � ~�n�0Bn �b�n � ~�n� > "

��
d�(�)

converges to zero also. One can easily see, however, that (since f is bounded
and uniformly continuous) this would imply thatZ

E�f
�
Cn

�
� � ~�n

��
� (�) d� �

Z
E�f

�
Cn

�
� � b�n��� (�) d� ! 0;

which would contradict (15).
Accordingly, consider our estimator, �̂n , and a competing one, ~�n. If ~�n

is approximately equal to �̂n, then Theorem 7 guarantees us that the set of
parameters where ~�n is better has Lebesgue measure zero. We might want
to try to obtain a clearer characterization of the set of parameters on which
gains may be possible. Such a characterization can be obtained by suitable
local analysis where for every sample size we choose di¤erent priors, and let
them �shrink� to one point, thereby sharpening the focus of attention in the
comparison. The next section shows how this may be accomplished.
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4 Applications: Local Analysis

Assume that �0 2 � and is �xed. One reasonably general assumption on the
log likelihood is that it is locally asymptotically quadratic (LAQ). According to
this condition there is assumed to exist a sequence of (diagonal) scaling matrices
Dn " 1 so that restricted on Fn

log
dP�0+D�1

n h

dP�0
= h0Wn �

1

2
h0Jnh+ rn (h) ; (16)

where Wn; Jn are Fn-measurable statistics which converge in distribution to
some nontrivial (W;J): It is assumed that J is nonsingular almost surely and to
simplify the proof, we assume that the same holds true for Jn at least for large
enough n. To develop our theory we make the following additional assumptions.

Assumption B1: rn (h) converges to zero uniformly on all compact sets of
h 2 Rk:

Assumption B2: For all bounded sequences hn the probability measures
P�0+D�1

n hn
and P�0 remain contiguous.

Assumption B3:

Dn((�̂n � �0)� J�1n Wn)! 0: (17)

where the convergence is in distribution with respect to P�0 .

Assumption B2 implies that for every sequence of events An 2 Fn for which
P�0 (An) ! 0; it is also true that P�0+D�1

n hn
(An) ! 0. An equivalent de�ni-

tion would be that it is impossible to construct consistent tests of P�0 against
P�0+D�1

n hn
. This assumption is standard in asymptotic statistics (cf. van der

Vaart, 2000, p. 87) amd many textbooks discuss contiguity and give criteria
that are easy to verify.
Assumption B3 enables the use of (16) to approximate the maximum likeli-

hood estimator �̂n: This assumption is quite plausible because in most cases of
interest the likelihoods are di¤erentiable and then the quantities (Wn; Jn) are
just the properly normalized �rst and second order derivatives of the logarithm
of the likelihood. The standard asymptotic theory of the ML-estimator approx-
imates the estimator by the product of the inverse of the second derivative with
the score. In a similar way, B3 allows us to link the ML-estimator to the stan-
dardized quantities Wn and Jn: Assumption B2 (contiguity) further allows us
to conclude that the limiting relation (17) holds true under P�0+D�1

n h.
Next we de�ne the family of priors �n to be normal distributions with mean

�0 and covariance matrices

Cov(�) = C�1n = (DnDn)
�1
=�;

for some � > 0: This family of priors is informative for all � > 0 with a central
tendency that is relevant to the locality of �0 +D�1

n hn: These priors therefore
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give some advantage to the Bayes posterior mean estimator �̂n (�) in (18) below.
The formulation is useful in revealing the optimality of the MLE. As � ! 0;
the prior becomes �at and �uninformative�and �̂n (�) tends to the MLE, which
uses no prior location information but which shares the optimality property of
�̂n (�) shown below in theorem 9. If the MLE is the limit of estimators which
use an advantageous prior, then the optimality of the MLE is enhanced. In
e¤ect, the MLE draws a chess match with an opponent who started with an
extra pawn.
We have the following theorem:

Theorem 8 Assume B1-B3 hold. Then the posterior is asymptotically normal
with mean �̂n(�), de�ned by

�̂n (�) = (Jn + �I)
�1
Jn(�̂

ML

n ) + (Jn + �I)
�1
��0; (18)

and variance matrix
D�1
n (Jn + �I)

�1
D�1
n :

The proof is straightforward and the result is not very surprising given well
known earlier results on posterior asymptotic normality in a general stochastic
process context (Chen, 1985; Le Cam and Yang, 1989; Phillips and Ploberger,
1996; Phillips, 1996; Kim, 1998). Nevertheless, it gives us an idea how to
establish local optimality results for the ML-estimator. Heuristically, the ML-
estimator is the limit of the above sequence of estimators as � ! 0; that is
when the prior becomes �at rather than informative about �. In order to use
this fact as a characterization of the ML-estimator, we need to make a further
assumption.

Assumption B4: The distributions of (�̂n � �)0DnJnDn(�̂n � �) , where
� = �0 +D

�1
n h under P� remain uniformly tight for h in any compact set.

We have the following theorem:

Theorem 9 Suppose assumptions B1-B4 hold, f (.) is a �good� loss function,
and there exist (possibly stochastic) matrices Cn so that for some BndL; BndU >
0

BndLCnC
0
n � DnD

0
n � BndUCnC

0
n:

Let ~�n be an arbitrary estimator. Then we have for all � > 0

lim
n!1

�Z
E�0+D�1

n hf
�
Cn

�
� � ~�n

��
dG� (h)

�
Z
E�0+D�1

n hf
�
Cn

�
� � �̂n(�)

��
dG� (h)

�
� 0;

where G� (�) = G
�
0; ��1I

�
is the Gaussian measure with mean zero and vari-

ance matrix ��1I:
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Theorem 9 gives an optimality property for the estimators �̂n(�). For very
small �, however, these estimators will be similar to the maximum likelihood

estimator �̂
ML

n . So, there is a corresponding implied optimality for the MLE.
Our assumptions guarantee that for all " > 0 there exists a � (") > 0 such that
with probability exceeding 1 � "; �min (Jn) � � ("). Choosing � � � (") will
then yield an estimator very close to the ML-estimator. While plausible, this
line of argument is not without di¢ culty. Our assumptions apply under P�0
and contiguity of P�0 and P�0+D�1

n h for bounded h: But we may know little
about the distributions of Jn under the alternative. It may be the case, for
example, that the information Jn decreases dramatically for certain h. Choosing
a �small�� means that our priors give weight to local alternatives h with khk =
O(1=

p
�). So the typical alternative may be very far away from �0.: Assumption

B2 (contiguity) only guarantees that limP�0+D�1
n h ([�min (Jn) = 0]) = 0 for

each �xed h. So we may conclude that for each �xed h and " > 0; there exist
� ("; h) > 0 such that with P�0+D�1

n h exceeding 1�", �min (Jn) � � (") : However,
there is no guarantee that this relation holds uniformly in h. It is possible that

lim
h!1

� ("; h) = 0: (19)

As an example, consider the near-unit root model

yt = (1�
h

n
)yt�1 + ut;

where the ut are iid N
�
0; �2

�
for some �2 > 0. Then Dn = n and some

computations (see Phillips, 1987, Lemma 2 (a)) show that for h � 1 Jn is
e¤ectively proportional to 1=h. In this case, it is clear that (19) is a realistic
scenario, Obviously, we have to make sure that the convergence in (19) is slow
enough for our results to apply and to be relevant.

Assumption B5: There exists a monotone function  > 0 with  (x) =
o
�
x2
�
for x!1 such that for all C

inf
�=�0+D

�1
n h; khk�K

P� ([�min (Jn) (khk) > C])! 1.

Assumption B5 guarantees that the distribution of Jn under the local alterna-
tive does not become too small. The matrices Jn are the analogues of classical
information matrices. In cases such as models with unit roots, the �information
matrix� is itself a random variable. Moreover, the distribution of this random
variable may depend on the local alternative, producing locally varying random
information, as shown in Phillips (1989). In the case of an AR(1) model near
the unit root this e¤ect is rather dramatic. For stationary alternatives, the dis-
tribution of the Jn decreases proportional to the (normed) di¤erence of the AR
coe¢ cient and unity. We have to make sure that this behavior does not �get out
of hand�: Otherwise, we would not be able to use (18). This restriction seems
quite reasonable. To explain, take the simple case where the parameter � is uni-
dimensional, so that Jn is a scalar. Suppose our condition is not ful�lled, and
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for khk � 1 the distribution (with respect to P�0+D�1
n h) of Jn is concentrated

for n ! 1 in [0; o(1= jhj)] : This means that the larger is h, the smaller is the
information contained in the data about the parameter. Eventually, the prior
will contain more information on the parameter than the data, and then the
trivial estimator - namely the mean of the prior distribution - will be the better
estimator. So the ML estimator is �inadmissible� in this case. Hence, some
kind of restriction on the decay rate of the information is necessary. Otherwise
it is not possible to get useful local optimality results. ]

Theorem 10 Let us assume that assumptions B1-B5 are ful�lled, f (.) is a
�good�loss function, Cn (possibly stochastic) matrices so that with BndL; BndU >
0

BndLCnC
0
n � DnD

0
n � BndUCnC

0
n

and let ~�n be an arbitrary estimator. Then we have

lim
�!0

lim
n!1

�Z
E�0+D�1

n hf
�
Cn

�
� � ~�n

��
dG� (h)

�
Z
E�0+D�1

n hf
�
Cn

�
� � �̂n

��
dG� (h)

�
� 0:

The proof of the theorem is relatively easy. With the help of assumptions B4
and B5, we can approximate the optimal estimators with respect to Gaussian
priors with the ML-estimator.
Heuristically, the theorem shows that we cannot �nd an estimator with better

�average�power, where we take the average with respect to normal distributions
with �large� variances. So this seems to be a nice optimality property of the
ML-estimator. Moreover, we can immediately see from theorem 10 that, under
the assumptions of the theorem, for all " > 0

lim
�!0

lim
n!1

G�

n
h : E�0+D�1

n hfn

�
~�n

�
< E�0+D�1

n hfn

�b�n�� "o = 0 (20)

where
fn

�
~�n

�
= f(Cn(� � ~�n)); fn

�b�n� = f(Cn(� � b�n)):
Hence, the set of all �local alternatives�h for which the di¤erences between the
expected losses of the estimators are bigger than some " > 0, is asymptotically
neglible for Gaussian distributions G� = G (0; I=�) with large enough variances.
It is an easy task to derive from (20) an analogous property for the Lebesgue

measure. Denote Lebesgue measure by �(�). Then a statement analogous to (20)
is as follows. For all " > 0

lim
M!1

lim
n!1

�
�n
h : E�0+D�1

n hfn

�
~�n

�
< E�0+D�1

n hfn

�b�n�� "; and khk �M
o�

� (fh : khk �Mg) = 0:

So the proportion of �local alternatives�, for which the competing estimator
�beats�the maximum likelihood estimator by at least ", is - for balls with large
enough radius - only a small subset of the ball.
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However, this proposition does not guarantee that the ML estimator is the
only one with this property. The issue of possible non uniqueness is an important
point for future research.

5 An Example

Essentially, our theorem states that the maximum likelihood estimator is (in
situations where the likelihood function is locally asymptotically quadratic) op-
timal in a certain sense involving �minimal loss�. This may not seem a big
surprise to many econometricians. Statistics based on the likelihood principle
are used routinely in econometric practice. Nevertheless, even in the LAQ case
there is presently no optimal theory of estimation and there are very serious
competitors to the MLE. One is the fully aggregated estimator (FAE) for dy-
namic models recently introduced by Han, Phillips and Sul (2009, HPS). These
authors consider the simple autoregression with intercept:

yt = �+ xt

xt = �xt�1 + "t;

where the "t are iid Gaussian for 0 � t � n. As an alternative to the usual
ML-estimator for � they propose the FAE-estimator de�ned by

�FA =

Pn�3
`=1

Pn
t=3(yt�1 � yt�`�1)(yt � yt�`=2)Pn�3
`=1

Pn
t=3(yt�1 � yt�`�1)2

: (21)

In the case j�j < 1 the FAE-estimator is asymptotically equivalent to the usual
ML estimator, as shown in HPS, so over this domain the asymptotic theory is
equivalent.
In the case of the � being near to unity, however, the situation changes.

The FAE estimator is asymptotically non normal, and its limiting distribution
is a function of di¤usion processes. Nevertheless, it can be shown that the
estimator has smaller bias, and more importantly a smaller variance than the
ML-estimator. Numerical computation shows that the variance asymptotically
decreases by 2% for � = 1;and even more for local alternatives. This is a
remarkable achievement, since �FA is obviously not a Hodges-type supere¢ cient
estimator.
Nonetheless, our present theory guarantees that there exist some local alter-

matives for which the classical ML-estimator is better. The estimator �FA may
be better than ML for a rather large set of parameters � describing local alter-
natives. But our theorem guarantees the existence of other alternatives where
the ML is not worse. So one can justify the use of the MLE in this kind of
situation, even when an alternative estimator, as in this example, can be better
for large classes of parameters. If the researcher thinks - in a Bayesian context -
that these parameters are more likely, then it is perfectly reasonable to use the
other estimator.
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6 Conclusion

Heuristically, our new result makes the ML-estimator an important yardstick.
This yardstick we have shown to be generally applicable even in nonstandard
models such as nonstationary time series. Any other estimator can be compared
to ML according to our criterion. Sometimes another estimator, like the FAE,
given in (21) above, might be better, but there are still situations (including
broader regions of the parameter space) where the ML is dominant.
Accordingly, our methodology and results contribute to the �eld of optimal

statistical estimation in two ways:
1. We give a relatively easy proof of the �optimality�of estimators, which

is simpler than the usual approach of the Hájek-LeCam theory. Admittedly, we
do not cover many of the �ner points of this theory, including the important
convolution theorem. But our results have the advantage of generality and they
justify the use of the MLE in many of the models that econometricians use,
including important cases in time series econometrics that are not covered by
the Hájek-LeCam approach such as unit root models.
2. We do not preclude research on other estimators and our theory allows for

the possibility of an estimator providing some improvement over the MLE. As
we know from the unit root case, an estimator like the FAE estimator is better
than the MLE for some parameter regions - but it may also be worse for others.
When investigating the asymptotic properties of these estimators, it might be
important to identify which points or regions belong to which category. In this
way, the theory of optimality can be made more precise and useful in time
series econometrics where nonstandard situations commonly arise. Our theory
emphasizes this interesting feature of optimality in the wider LAQ context which
includes such nonstandard situations.
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8 Proof of Theorem 4

Proof. It is easily seen that (10) of the theorem implies (9). Next we will show
that (9) implies (8). We start by choosing a loss function f .
By virtue of condition (6)

M = sup


CnA�1n 

 <1;

where An and Cn are de�ned by (4) and (7). Let us de�ne the set of functions
G = fgH;d(:) : kHk < M; d 2 Rng where

gH;d(x) = f(Hx+ d):

Our assumptions on f imply that G is bounded and equicontinuous.
Since Cn; bvn;fvn are Fn - measurable, we can write the conditional expecta-

tion of f as

E ff (Cn (v(�)� bvn + bvn �fvn)) jFng = Z f (Cn (v(�)� bvn + bvn �fvn)))d�n (�) :
Then we have

Z
f (Cn (v(�)�fvn)) dPn =

Z
f (Cn (v(�)� bvn + bvn �fvn)) dPn

=

Z �Z
f (Cn (v(�)� bvn + bvn �fvn)))d�n (�)� dPn:

Moreover,
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f (Cn (v(�)� bvn + bvn �fvn)) = gHn;dn(An (v(�)� bvn)); (22)

where
Hn = CnA

�1
n

and
dn = Cn (bvn �fvn) :

According to our assumptions, Hn and dn are Fn-measurable. Then we have����Z gHn;dn(An (v(�)� bvn))d�n (�)� Z gHn;dn(:)dG(0; I)

����
� sup

g2G

����Z g (An (v(�)� bvn))� Z gdG(0; I)

����! 0:

Hence, with the help of (22) we can conclude that����Z �Z
f (Cn (v(�)� bvn + bvn �fvn)))d�n (�)� dPn

�
Z �Z

gHn;dn (:) dG(0; I)

�����! 0:

Anderson�s lemma (cf. Strasser(1985), lemma 38.21 (p. 194) and the discus-
sion in Strasser (1985) (discussion 38.24 (p. 196) ) immediately yield our re-
sult. For each Hn,

�R
gHn;dn (:) dG(0; I)

�
�
�R
gHn;0 (:) dG(0; I)

�
. From the

above mentioned discussion in Strasser (1986) we can easily conclude that�R
gHn;dn (:) dG(0; I)

�
�
�R
gHn;0 (:) dG(0; I)

�
! 0 if and only if dn ! 0
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