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Abstract
This paper introduces a new estimation method for dynamic panel models with �xed ef-

fects and AR(p) idiosyncratic errors. The proposed estimator uses a novel form of systematic
differencing, called X-differencing, that eliminates �xed effects and retains information and
signal strength in cases where there is a root at or near unity. The resulting �panel fully aggre-
gated� estimator (PFAE) is obtained by pooled least squares on the system of X-differenced
equations. The method is simple to implement, free from bias for all parameter values, includ-
ing unit root cases, and has strong asymptotic and �nite sample performance characteristics
that dominate other procedures, such as bias corrected least squares, GMM and system GMM
methods. The asymptotic theory holds as long as the cross section (n) or time series (T ) sam-
ple size is large, regardless of the n=T ratio, which makes the approach appealing for practical
work. In the time series AR(1) case (n = 1), the FAE estimator has a limit distribution with
smaller bias and variance than the maximum likelihood estimator (MLE) when the autoregres-
sive coef�cient is at or near unity and the same limit distribution as the MLE in the stationary
case, so the advantages of the approach continue to hold for �xed and even small n. For panel
data modeling purposes, a general-to-speci�c selection rule is suggested for choosing the lag
parameter p and the procedure works in a standard manner, aiding practical implementation.
The PFAE estimation method is also applicable to dynamic panel models with exogenous re-
gressors. Some simulation results are reported giving comparisons with other dynamic panel
estimation methods.
Keywords: GMM, Panel full aggregation, Stacked and pooled least squares, Panel unit root,
X-Differencing.
JEL classi�cation: C22, C23
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1 Introduction

There is now a vast empirical literature on dynamic panel regressions covering a wide arena of data
sets and applications that extend beyond economics across the social sciences. Much of the appeal
of panel data stems from its potential to address general socio-economic issues involving decision
making over time, so that dynamics play an important role in model formulation and estimation.
To the extent that there is commonality in dynamic behavior across individuals, it is natural to
expect that pooling cross section data will be advantageous in regression. However, since Nickell
(1981) pointed to the incidental-parameter-induced bias effects in pooled least squares regression,
there has been an ongoing search for improved statistical procedures.
Prominent among these alternative methods is GMM estimation, which is now the most com-

mon approach in practical empirical work with dynamic panel regression. The popularity of GMM
is manifest in the extensive citation of articles such as Arellano and Bond (1991) which developed
a general GMM approach to dynamic panel estimation. GMM is convenient to implement in em-
pirical research and its widespread availability in packaged software enhances the useability of
this methodology. On the other hand, it is now well understood that the original �rst difference
IV (Anderson and Hsiao, 1982) and more general GMM approaches to the estimation of autore-
gressive parameters in dynamic panels often suffer from problems of inef�ciency and substantial
bias, especially when there is weak instrumentation as in the commonly occuring case of persis-
tent or near unit root dynamics. Solutions to the weak instrument problem have followed several
directions. One approach focuses on the levels equation, where there is no loss of signal in the unit
root case, combined with the use of differenced lagged variables as instruments under the assump-
tion that the �xed effects are uncorrelated with the idiosyncratic errors, as developed by Arellano
and Bover (1995) and Blundell and Bond (1998). Another approach corrects for the bias of least
squares estimators based on parametric assumptions, leading to improved estimation procedures.
For example, Kiviet (1995) proposed a bias correction that is based on Nickell's (1981) bias cal-
culations for the panel AR(1); and Hahn and Kuersteiner (2002) modi�ed the pooled least squares
(LSDV) method to remove bias up to order O(T�1), where T is the time dimension. Other recent
work suggests alternative methods of bias-free parametric estimation. For instance, Hsiao, Pesaran
and Tahmiscioglu (2002) and Kruiniger (2008) propose the use of quasi-maximum likelihood on
differenced data under some parametric assumptions on the distribution of the idiosyncratic er-
rors, which appears to reduce bias without making an explicit bias correction. Han and Phillips
(2009) suggest a simple least squares procedure applied to a difference-transformed panel model
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that effectively reduces bias in the panel AR(1) case and leads to an asymptotic theory that is
continuous as the autoregressive coef�cient passes through unity. While the �rst approach makes
moment assumptions on the unobservable individual effects, the other approaches effectively make
parametric assumptions on the idiosyncratic error process.
The methods developed in the present paper belong to the second category above but they intro-

duce a novel technique of systematic differencing, which we call �X-differencing�, that eliminates
�xed effects while retaining information and signal strength in cases of practical importance where
there is an autoregressive root at or near unity. The resulting �panel fully aggregated� estimator
(PFAE) is obtained by applying least squares regression to the full system of X-differenced equa-
tions. The method is simple to implement, is free from bias for all parameter values and has higher
asymptotic ef�ciency than bias-corrected LSDV estimation, thereby retaining signal strength in
the unit root case and resolving many of the dif�culties associated with weak instrumentation and
dynamic panel regression bias. The general model considered here is a linear dynamic panel model
with AR(p) idiosyncratic errors and exogenous variables, so the framework is well suited to a wide
range of models used in applied work.
Unlike the Hahn and Kuersteiner (2002) bias corrected LSDV estimator, the PFAEmethod does

not require large T for consistency. The PFAE procedure also supercedes the Han and Phillips
(2009) least squares method by generalizing it to AR(p) models and by considerably improving
its ef�ciency both in stationary and unit root cases. Since the PFAE is a least squares estimator,
there is no dependence on distributional assumptions and none of the computational burden and
potential singularities that exist in numerical procedures such �rst difference MLE (Hsiao et al,
2002; Kruiniger, 2008). Moreover, since X-differencing eliminates �xed effects, the asymptotic
distribution of the PFAE estimator does not depend on the distribution of the individual effects,
whereas GMM in levels (Arellano and Bover, 1995) and system GMM (Blundell and Bond, 1998)
are both known to suffer from this problem (Hayakawa, 2008). Finally, because the autoregressive
coef�cients are consistently estimated, it is straightforward to implement parametric panel GLS
estimation in a second stage regression (e.g., Bhargava et al, 1982, for the panel AR(1) model).
The current paper relates to a companion work by the authors (Han, Phillips and Sul, 2009; HPS

hereafter), which introduced the `time-reversal' technology used here to design the X-differencing
transformations that eliminate �xed effects and correct for autoregressive estimation bias. Us-
ing this methodology, the companion paper developed a new �fully aggregated� estimator (FAE)
speci�cally for the time series AR(1) model. That paper focused on the process of information
aggregation in X-differenced equation systems to enhance ef�ciency in time series regression and
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to retain asymptotic normality for inference purposes, while the current paper emphasizes bias re-
moval and ef�ciency improvement in the panel context. The present paper also extends the HPS
technology to AR(p) panel regressions and to models with exogenous variables.
The remainder of the paper is organized as follows. Section 2 provides the key motivating

ideas and some heuristics that explain the X-differencing process and how the new estimation
method works in the simple panel AR(1) model. Section 3 extends the methodology to the panel
AR(p) model, develops the X-differenced equation system, veri�es orthogonality, and discusses
implementation of the PFAE procedure. Section 4 presents the limit theory of the PFAE and pro-
vides comparisions with other methods such as bias corrected LSDV and �rst difference MLE
(FDMLE). This section also discusses issues of lag length selection in the context of dynamic pan-
els with unknown lag length. Section 5 reports some simulation results which compare the �nite
sample performance of the new procedure with existing estimators. Section 6 concludes. Some
more general limit theory, proofs, and supporting technical material are given in the Appendices.

2 Key Ideas and X-Differencing

We start by developing some key ideas and provide intuition for the new procedure using the simple
panel AR(1) model with �xed effects

(1) yit = ai + uit; with uit = �uit�1 + "it; t = 1; :::; T ; i = 1; :::; n;

where the innovations "it are iid (0; �2) over i and t: The model can be written in alternative form
as

(2) yit = �i + �yit�1 + "it; �i = ai(1� �);

which corresponds to the conventional dynamic panel AR(1) model yit = �i + �yit�1 + "it when
j�j < 1: When � = 1, the individual effects are eliminated by differencing and both (1) and (2)
reduce to�yit = "it: The AR(1) speci�cation is used only for expository purposes and is replaced
by AR(p) dynamics in the rest of the paper, where we also relax the conditions on the innovations
"it. Initial conditions are conventionally set in the in�nite past in the stable case j�j < 1 and at
t = 0 with some Op (1) initialization when � = 1, although various other settings, while not our
concern here, are possible and can be treated as in Phillips and Magdalinos (2009). Observe that
there is no restriction on � in (1), whereas in (2) � is effectively restricted to the region�1 < � � 1
because for � > 1; �i = ai(1 � �) 6= 0 in which case the system has a deterministic explosive
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component in contrast to (1). This implicit restriction in (2) is not commonly recognised in the
literature but, as mentioned later in the paper, it is important in comparing different estimation
procedures where some may be restricted in terms of their support but not others.
No distributional assumptions are placed on the individual effects �i: So the model corre-

sponds to a �xed effects environment where the incidental parameters need to be estimated or
eliminated. Various approaches have been developed in the literature, including the within-group
(regression) transformation, �rst differencing, recursive mean adjustment, forward �ltering, and
long-differencing. However, all of these methods lead to �nal estimating equations for � in which
the transformed (dynamic) regressor is correlated with the transformed error. In the simple time
series case, where the intercept is �tted in least squares regression leading to a demeaning trans-
formation, the effects of bias in the estimation of � have long been known to be exacerbated by the
demeaning (e.g., Orcutt and Winokur, 1969) and in the panel case these bias effects persist asymp-
totically as n ! 1 for T �xed (Nickell, 1981). Accordingly, various estimation methods have
been proposed to address the dif�culty such as instrumental variable and GMM methods, direct
bias correction methods, and the various transformation and quasi-likelihood methods discussed
in the Introduction.
The essence of the technique introduced in the present paper is a novel differencing procedure

that successfully eliminates the individual effects (like conventional differencing) while at the same
time making the regressor and the error uncorrelated after the transformation (which other methods
fail to do). A key advantage is that the new approach does not suffer from the weak identi�cation
and instrumentation problems that bedevil IV/GMMmethods based on �rst differenced (or forward
�ltered) equations when the dynamics are persistent. This failure of GMM in unit root and near unit
root cases produces some undesirable performance characteristics in the GMM estimator and poor
approximation by the usual asymptotic theory1. At the same time, because the �i are eliminated,
the new method is unaffected by the relative variance ratio between the individual effects �i and
the idiosyncratic errors "it, which, if large, makes the system GMM estimator (Blundell and Bond,
1998) perform poorly (see Hayakawa, 2008). Hence, we expect that the new procedure should offer
substantial gains over both GMM and system GMM methods, while still having the advantage of
easy computation.
The new procedure begins by combining (2) with the implied forward looking regression equa-
1For instance, the �nite sample variance of the �rst difference GMM estimator in the stationary case increases

rather than decreases as � increases (see, Alvarez and Arellano, 2003; Hayakawa, 2008) in contrast to the prediction
of asymptotic theory.
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tion

(3) yis = �i + �yis+1 + "�is; with "
�
is = "is � �(yis+1 � yis�1);

and where the `future' variable is on the right hand side, as opposed to the original `backward
looking' equation (2). Importantly in both the backward and the forward looking equations, the
regressors are uncorrelated with the corresponding regression errors. That is, Eyit�1"it = 0 in (2)
and

(4) Eyis+1"
�
is = Eyis+1"is � �E [yis+1 (yis+1 � yis�1)] = ��2" � ��2" = 0;

in (3), under the following conditions: (i) E�i"it = 0 for all t (a condition that is not actually
required in our subsequent development because the �i are eliminated - see equation (6) below);
(ii) "it is white noise over t; and (iii) j�j < 1. The proof of (4) is given in Appendix A. If � = 1,
then the last equality of (4) is not true, but this restriction is removed in the �nal transformation (see
(7) below). The orthogonality (4) is a critical element in the development of the new estimation
procedure involving systematic differencing.
Importantly, the orthogonality (4) still holds if we replace s+1with any t > s, i.e., Eyit"�is = 0

for any t > s. The implication is that the original backward looking regressor yit�1 is uncorrelated
with the forward looking regression errors "�is as long as t � 1 > s. That is, under the conditions
that E�i"it = 0, "it is white-noise over t, and j�j < 1, we have

(5) Eyit�1"
�
is = ��E [yit�1 (yis+1 � yis�1)] + Eyit�1"is = 0 for any t > s+ 1:

Again the condition that j�j < 1 is not required in the �nal transformation step shown below in (7).
Results (4) and (5) can be used to eliminate the �xed effects. By simply subtracting (3) from

(2), we get the new regression equation

(6) yit � yis = � (yit�1 � yis+1) + ("it � "�is) ;

where the regressor yit�1� yis+1 is uncorrelated with the error "it� "�is as long as s < t� 1 for all
�1 < � � 1. Note that we now allow for the unit root case � = 1 and this relaxation is justi�ed
in Lemma 1 below. Thus, for model (2), if "it is white-noise over t, then the key orthogonality
condition

(7) E (yit�1 � yis+1) ("it � "�is) = 0 for all s < t� 1 and � 1 < � � 1;

holds for model (6), thereby validating the use of pooled least squares regression techniques.
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We call the data transformation involved in setting up the regression equation (6) �X-differencing�.
Observe that the dependent variable yit � yis is X = t � s differenced whereas the regressor
yit�1 � yis+1 is X = t� s� 2 differenced. So, the regression equation is structured with variable
differencing: the differencing varies in a systematic and critical way between the dependent vari-
able and the regressor. Further, we want to allow for the differencing rate X itself to change, soX
is a variable. Hence, the terminology X-differencing.
The simple X-differencing transformation that leads to (6) eliminates the nuisance parameters

�i; just like ordinary differencing, but it has the additional advantage that the regression equation
satisi�es a fundamental orthogonality condition: there is no correlation between the regressor and
the error in (6). As a result, X-differencing is very different from existing differencing methods
that have been used in the literature. In one way it is fundamentally simpler � because of the
appealing orthogonality property satis�ed by (6). In another way it is more complete � because the
differencing rate X is variable, so that it is possible to think of (6) as a system of equations over
s < t � 1; each equation of which carries useful information about the autoregressive coef�cient
�:

It is interesting to compare (6) with other differencing transformations that have been used in
the literature. First, it is different from long differencing (Hahn, Hausman and Kuersteiner, 2007),
which transforms equation (2) to yit � yi2 = �(yit�1 � yi1) + ("it � "i2), whereas our method
(when s = 1) yields yit � yi1 = �(yit�1 � yi2) + ("it � "�i1); so the positions of yi1 and yi2 are
switched, the equation error is different and our approach allows s to vary. Second, X-differencing
(when s = t � 3) is also distinguished from simple �rst differencing, which gives the equation
yit � yit�1 = �(yit�1 � yit�2) + ("it � "it�1). In our model, we replace yit�1 on the left hand side
with yit�3; the equation error is different, and again we allow for higher order differences.
Third, when s = t� 3, the transformed equation (6) in our model can be written as

(8) �yit +�yit�1 +�yit�2 = ��yit�1 + ("it � "�it�3);

where �yit = yit � yit�1. This equation can usefully be compared with the AR(1) bias-correction
transformation model

(9) 2�yit +�yit�1 = ��yit�1 + errorit

that was used in Phillips and Han (2008) and Han and Phillips (2009). In the new X-differencing
approach, the present method replaces the term 2�yit in model (9) with�yit+�yit�2. This �tem-
poral balancing� around the lagged difference �yit�1 is a subtle but important breakthrough that
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leads to the variable X-differencing generalization of (9) and, as we shall see, leads to considerable
ef�ciency gains and further allows for convenient generalization from AR(1) to AR(p) models.
Importantly, any s values such that s < t� 1 satisfy (7) under the stated regularity, so that the

new regression equation (6) is valid across all these values. To make full use of all this information,
we propose to stack the regression equations (6) for all possible s values. But we exclude s = t�2
because in this case the corresponding regressor in (6) is zeroed out. Thus, we propose to use
equation (6) for s = 1; 2; : : : ; t � 3. The resulting stacked and pooled least squares estimator has
the following simple form

�̂ =

Pn
i=1

PT
t=4

Pt�3
s=1(yit�1 � yis+1)(yit � yis)Pn

i=1

PT
t=4

Pt�3
s=1(yit�1 � yis+1)2

and is the panel fully aggregated estimator (PFAE) of � in the panel AR(1) model (2). In the time
series case where n = 1; �̂ reduces to the FAE estimator introduced in HPS (2009).
The estimator �̂ has virtually no bias for all � values, as might be expected in view of the

prevailing orthogonality (7), the simple no intercept form of (6) and the differenced form of the re-
gressor. In the limit, consistency holds provided the total number of observations tends to in�nity�
irrespective of the n=T ratio�indicating that the estimator will be useful in short and long panels,
as well as narrow and wide panels, making it appealing in both microeconometric and macro-
econometric data sets. This result, together with the asymptotic distribution theory and associated
tools for inference, will be developed in the following sections in the context of the general AR(p)
panel model.

3 The Panel AR(p) Model with Fixed Effects

This section extends the above ideas on X-differencing and fully aggregated estimation to the
general case of a dynamic panel AR(p) model. Our primary concern is the estimation of the
common autoregressive parameters f�j : j = 1; : : : ; pg in the following panel model with �xed
effects and autoregressive errors

yit = ai + uit; � (L)uit = "it; t = 1; : : : ; T ; i = 1; : : : ; n;(10)

� (L) = 1� �1L� � � � � �pL
p;(11)

where "it is, for each i, a martingale difference sequence (mds) under the natural �ltration with
E"it = 0, and E"2it = �2i . As in the AR(1) case we have the equivalent speci�cation (at least in the
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stationary and unit root cases, c.f. the discussion following (2) above)

(12) yit = �i + �1yit�1 + � � �+ �pyit�p + "it; �i = ai(1� �1 � � � � � �p):

We maintain the assumption that uit has at most one unit root. When uit is I (1), the long run
AR coef�cient is �lr =

Pp
j=1 �j = 1; and we write � (L) = (1� L) �� (L) where the roots of

�� (L) = 0 are outside the unit circle. In this event, �i = 0 in (12) and there is no drift in the
process. Initial conditions for uit may be set in the in�nite past in the stationary case. In the unit
root case, we can write�uit = 1

��(L)"it := u�it and set the initial conditions for the stationary AR(p-
1) process u�it in the in�nite past. Since our estimation procedure relies only on X-differenced data,
it is not necessary to be explicit about initial conditions for uit: In fact, our results will hold for
distant and in�nitely distant initializations (where ui0 can be Op

�p
T�T

�
for some �T which may

tend to in�nity with T ) as well as Op (1) initializations (see Phillips and Magdalinos, 2009, for
discussion of these initial conditions).
Following the same motivation as in the AR(1) case, to construct the X-differenced equation

system we rewrite (12) in forward looking format as

yis = �i + �1yis+1 + � � �+ �pyis+p + "�is;

where "�is = "is �
Pp

j=1 �j(yis+j � yis�j). Then, by subtracting this equation from the original
backward looking equation (12), we construct the X-differenced equation system

(13) yit � yis = �1(yit�1 � yis+1) + � � �+ �p(yit�p � yis+p) + ("it � "�is);

just as in the AR(1) case. The system may also be written as

uit � uis = �1(uit�1 � uis+1) + � � �+ �p(uit�p � uis+p) + ("it � "�is);

and is free of �xed effects.
Observe that the variables appearing in (13) involveX = t�s�2k differences for k = 0; ::; p:

The regressors in (13) are all uncorrelated with the regression error in the equation, as shown in
Lemma 1 below. Importantly, this orthogonality condition holds for the full system of equations
given in (13)�that is for all t� s � p+ 2:

Lemma 1 E(yit�k � yis+k)("it � "�is) = 0 for all s � t� p� 2, for all k = 1; : : : ; p.

In stacking the system (13) for estimation purposes, we use all possible s values up to s =
t� 2p� 1: This setting avoids the collinearity (or zeroing out) of the regressors that occurs when
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the system includes s values within the range t � 2p � s < t � p � 1. To express the estimator
in a concise form, let eZit;s = (yit�1; yit�2; : : : ; yit�p)0 � (yis+1; yis+2; : : : ; yis+p)0, eyit;s = yit � yis,e"it;s = "it � "�is; and � = (�1; : : : ; �p)0: Then, (13) can be expressed as

(14) eyit;s = �0 eZit;s + e"it;s:
The PFAE for � is simply the least squares estimator based on the stacked (over s) and pooled
(over i and t) system (14), viz.,

(15) �̂ =

 
nX
i=1

TX
t=2p+2

t�2p�1X
s=1

eZit;s eZ 0it;s
!�1 nX

i=1

TX
t=2p+2

t�2p�1X
s=1

eZit;seyit;s:
Clearly, the degrees of freedom condition T � 2p+ 2 is required for the existence of �̂.
It is sometimes convenient to obtain the PFAE as follows. For a given lag `, let �̂(`) be the

X-differencing estimator based on the equation

yit � yit�2p�` =

pX
j=1

�j(yit�j � yit�2p�`+j) + ("it � "�it�2p�`):

Here, ` = 1 is the minimum lag allowed in PFA estimation (to avoid perfect collinearity), and
` = T � 2p� 1 is the maximum lag. Let eZ` be the regressor matrix for this lag (for all i and for all
possible t) and let ey` be the corresponding regressand vector. When we regress ey` on eZ`, we get
the lag-` estimator �̂(`) = (eZ0`eZ`)�1eZ0`ey`. Then the PFAE is
(16) �̂ =

 
T�2p�1X
`=1

eZ0`eZ`
!�1 T�2p�1X

`=1

eZ0`ey` =
 
T�2p�1X
`=1

eZ0`eZ`
!�1 T�2p�1X

`=1

eZ0`eZ`�̂(`);
which is a weighted average of all lag-` estimators, where the weights are assigned according to
the magnitude of the lag-` signal matrix eZ0`eZ`. Note that all single lag-` estimators are themselves
individually consistent as the sample size increases.
The weighted regression formulation (16) offers some computational advantages in practical

implementation and it is used in some of the simulations (undertaken in Stata and Gauss) that are
reported in Section 5.
The orthogonality condition in Lemma 1 holds if "it is white noise for each i. However, the

development of an asymptotic theory for �̂ requires stronger regularity conditions that validate laws
of large numbers (LLNs), central limit theorems (CLTs) and functional CLTs as n and T pass to
in�nity. Our theory includes both �xed T and �xed n cases. For these developments, we assume
the following.
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Condition A (i) "it = �i"
�
it with infi �i > 0 and supi �i < 1, where "�it is iid across i with

E[("�it)
4+�] � M for all t and some M < 1 and � > 0; (ii) "�it is a stationary and er-

godic martingale difference sequence (mds) over t for all i such that E("�itj"�it�1; "�it�2; : : :) = 0;

E("�itj"�it+1; "�it+2; : : :) = 0; and with unit conditional variances

E("�2it j"�it�1; "�it�2; : : :) = E("�2it j"�it+1; "�it+2; : : :) = 1 a:s: ;

(iii) n�1
Pn

i=1 �
2
i and n�1

Pn
i=1 �

4
i converge to �nite limits as n!1.

Remarks.

1. We allow cross-section heterogeneity in (i) by considering a scaled version "it = �i"
�
it of an

mds random sequence ("�it) for each t. This assumption is not crucial but it simpli�es the
analysis considerably. Generalization to non-identically distributed (across i) innovations is
possible but involves further technicalities, including some explicit conditions for third and
fourth moments and the Lindeberg condition.

2. Condition (ii) is a bidirectional mds condition and corresponds to a conventional white
noise assumption. This condition is weaker than requiring independence in "�it over t, but is
stronger than a unidirectionalmds condition.

3. Conditional heteroskedasticity or higher order serial dependence (over t) may be allowed as
long as Condition A(ii) is satis�ed. If T is �xed and n is large, no conditions on the serial
dependence of "it are required other than E"it = 0, E"2it = �2i and E"it"is = 0 for all t and
s 6= t.

4. Condition A(iii) seems quite weak, although it is not implied by Condition A(i). When A(iii)
holds, the average moments converge to �nite positive limits in view of Condition A(i).

When T is �xed and n ! 1, we require the following regularity for the standardized error se-
quence "it=�i so we may establish standard asymptotics for the PFAE.

Condition B For any given T , (i) E(��iT��0iT ) is nonsingular, where

��iT =
PT

t=2p+2

Pt�2p�1
s=1

eZit;se"it;s=�2i
and eZit;s and e"it;s are de�ned in (14); (ii) n�1Pn

i=1(�iT�
0
iT � E�iT�

0
iT )!p 0.
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Remark. In developing a CLT for the numerator of a centred form of (15), only Condition A is
required. Condition B (i) is relevant for establishing the standard normal limit given in Theorem 2
below. Condition B (ii) is useful for the estimation of the variance-covariance matrix of the limit
distribution. When "it is independent and possibly heterogeneous across i, a suf�cient condition
for B (ii) is given in Phillips and Solo (1992, Theorem 2.3).

When T !1, the temporal dependence structure matters and affects the limit theory and rates
of convergence. In the general AR(p) model with a unit root, there is an asymptotic singularity in
the sample moment matrix because of the stronger signal in the data in the unit root direction,
just as in the time series case (Park and Phillips, 1988). Singularities are treated by rotating the
regressor space and reparameterization as detailed in Appendix A.

4 Asymptotic Theory

This section develops an asymptotic theory for the PFAE �̂: Technical derivations and a general
theory are given in Appendix A. To make the results of the paper more accessible, only the main
�ndings that are useful for empirical research are reported here. We start with the following nota-
tion

(17) ViT =
1

T

PT
t=2p+2

Pt�2p�1
s=1

eZit;s eZ 0it;s and �iT =
1

T

PT
t=2p+2

Pt�2p�1
s=1

eZit;se"it;s;
so that �̂ = �+ (

Pn
i=1 ViT )

�1Pn
i=1 �iT .

Because E�iT = 0 for all T by Lemma 1, we can expect the panel estimator �̂ to be consistent
and asymptotically normal under regularity conditions that ensure suitable behavior for the sample
components (

Pn
i=1 ViT ;

Pn
i=1 �iT ) of �̂. In particular, if yit is stationary, then consistency and

asymptotic normality will hold, provided the total number of observations in the regression is
large, i.e. if N = n(T � 2p � 1) ! 1: So, no condition on the behavior of the ratio n=T
is required in the limit theory. If yit is persistent (so that the long run AR coef�cient �lr :=Pp

j=1 �j is unity) and T is �nite, then large-n asymptotics are again standard because any special
behavior in the components (e.g. nonstandard convergence rates and limit behavior associated with
nonstationarity) occurs only when T ! 1: Next, if yit is persistent and T ! 1, the estimator
�̂ is consistent and still asymptotically normal when n ! 1, again irrespective of the n=T ratio.
In this case, the corresponding estimate of the long run AR coef�cient �lr (which, because of
persistence, is �lr = 1) has a faster convergence rate Op(n1=2T ) stemming from the stronger signal
in the nonstationary component of the data, thereby producing a singularity in the joint asymptotic
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normal distribution of �̂ with one component (in the direction �̂lr =
Pp

j=1 �̂j) converging faster to
its normal distribution than the other components. When n is �xed and T ! 1 in the persistent
case, then the limit distribution of �̂ is again singular normal (when p > 1) but there is a faster rate
of convergence in the direction �̂lr and the limit distribution is nonstandard in that direction. The
latter result is related to the limit theory of the time series FAE estimator given in HPS (2009) for
the special case where n = 1:
Theorem 5 in Appendix A provides a complete statement for interested readers of this limit

theory, covering the general panel AR(p) case in a uniform way for large T and n; as well as both
�xed T and �xed n cases. The remainder of this section focuses on practical aspects of this limit
theory and the useability of the PFAE in applied work.

4.1 Limiting Distribution of the PFAE

For inference and practical implementation, Theorem 2 presents a feasible version of the main part
of Theorem 5 in Appendix A that holds uniformly for all � values including both stationary and
unit root cases. For convenience, we use the model (1) formulation in which yit = ai + uit, where
uit is an AR(p) process as de�ned in (10).

Theorem 2 Suppose uit is AR(p) as de�ned in (10). Under Condition A,

(18) BnT (
Pn

i=1ViT ) (�̂� �)) N(0; Ip);

for any BnT such that BnT (
Pn

i=1 �iT�
0
iT )B

0
nT = Ip, where ViT and �iT are de�ned in (17). The

convergence (18) holds as nT !1 if �lr :=
Pp

j=1 �j < 1, and as n!1 in all cases (that is, for
any T , either �nite or increasing to in�nity, no matter how fast). The limit distribution of �̂ when n
is �xed, T !1 and �lr = 1 is partly normal and partly nonstandard. It is given in Theorem 5(d)
in Appendix A.

Remarks.

1. Note that cross section heterogeneity is permitted in Theorem 2 under Condition A. The ma-
trices

Pn
i=1 ViT and

Pn
i=1 �iT�

0
iT in the theorem are designed to be heteroskedasticity robust

so that (18) provides a central limit theorem suitable for implementation upon estimation ofPn
i=1 �iT�

0
iT as discussed below. The asymptotic form of the standardization matrix BnT in

(18) is given in (53) in Appendix A and shows explicitly the convergence rates in terms of
n and T as well as the transformation matrix involved in arranging directions of faster and
slower convergence when there is a unit root in the system.
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2. For statistical testing, it is necessary to replace �iT by a feasible statistic. In view of (17) and
the consistency of �̂, we can use the residuals

(19) b�iT = TX
t=2p+2

t�2p�1X
s=1

eZit;s(eyit;s � eZ 0it;s�̂);
in place of �iT . The asymptotic covariance matrix estimate [

P
i ViT ]

�1P
i b�iT b�0iT [Pi ViT ]

�1

may then be used in inference. Simulations show that this choice works well when n is
large. If n is not so large, inferences based on this method still show reasonable performance
and may be improved by modi�cation of the limit distribution of the associated (scalar) test
statistics to a Student t distribution with n � 1 degrees of freedom as proposed in Hansen
(2007) if the random variables are iid across i.

3. For practical work, it may be useful to provide estimates of the remaining (non dynamic)
parameters in the model (10). Consistent estimation of the autoregressive coef�cients in (10)
enables estimation of the �xed effects, the variance of the �xed effects and that of the random
innovations in a standard way. For example, the transformed �xed effects �i := ai(1� �lr)

can be estimated by the individual sample mean, �̂i; of the residuals êit := yit�
Pp

j=1 �̂jyit�1,
and the random idiosyncratic innovations "it can be estimated by the quantity êit � �̂i. The
average variances of �i and "it can then be estimated by the sample variances of �̂i (across i)
and êit��̂i (across i and t after the degrees of freedom correction), respectively. Asymptotics
for these additional estimates follow in a standard way from the usual limit theory for sample
moments and the consistency of the �tted autoregressive coef�cients.

We now provide some further discussion of ef�ciency. At present there is no general theory of
asymptotic ef�ciency for panel data models that applies for multi-index asymptotics and possible
nonstationarity. The usual Hájek-Le Cam representation theory (Hájek, 1972; Le Cam, 1972) holds
for locally asymptotically normal (LAN) families and regular estimators in the context of single
index and

p
n asymptotics. Panel LAN asymptotics were developed for the stationary Gaussian

AR(1) case by Hahn and Kuersteiner (2002) allowing for �xed effects under certain rate conditions
on n and T passing to in�nity. But their result does not apply when there is a unit root in the system.
Any such further extension of existing optimality theory would require that n ! 1 because for
�xed n (and in particular n = 1) the likelihood does not belong to the LAN family but is of the
locally asymptotically Brownian functional family (Phillips, 1989; Jeganathan, 1995), for which
there is no present theory of optimal estimation or asymptotic ef�ciency. Moreover, it is now
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known from the results of HPS (2009) that improvements in both bias and variance over the MLE
and bias correctedMLE are possible in local neighborhoods of unity in the time series case (n = 1).
For the purposes of the present study, we undertake a more limited investigation of ef�ciency

and consider the simple panel AR(1) model (1) with Gaussian errors. Normality is not needed
for the limit theory but only for the discussion of optimality in the stationary case (c.f. Hahn
and Kuersteiner, 2002). For this model, the following result holds and sheds light on the relative
ef�ciency properties of the PFAE procedure, including both the stationary and unit root cases, in
relation to the MLE.

Theorem 3 Suppose that "it = uit � �uit�1 is iid N (0; �2) for some � 2 (�1; 1]. Then

(20) (nT )1=2 (�̂� �)) N(0; 1� �2); as T !1 if j�j < 1;

(21) n1=2T (�̂� 1)) N(0; 9); as n; T !1 if � = 1:

Remarks.

1. Asymptotics for the stationary case (20) hold as T ! 1 regardless of the cross sectional
dimension n. We further note that asymptotic normality does not require large T . However,
the form of the asymptotic variance given in (20) does require T ! 1. In this case, LAN
asymptotics apply as T ! 1 and the variance attains the Cramér Rao bound, which is the
same as in the stationary time series (n = 1) case. So, when j�j < 1, the PFAE is asymptot-
ically ef�cient as T ! 1. This result corresponds to the �nding in Hahn and Kuersteiner
(2002, theorem 3) that the bias corrected MLE attains the (semiparametric) ef�ciency bound
for the estimation of the common autoregressive coef�cient in the presence of �xed effects
under the rate condition 0 < limn;T!1

n
T
< 1: However, the ef�ciency bound is attained

for the PFAE without this rate condition and holds even for �xed n:

2. Hahn and Kuersteiner (2002, theorem 4) show that when � = 1 and n; T ! 1; the (bias
corrected) LSDV estimator b�lsdv is asymptotically distributed as
(22) n1=2T

�
�̂lsdv � 1 +

3

T + 1

�
) N

�
0;
51

5

�
:

Thus, the PFAE estimator has smaller asymptotic variance than the bias-corrected LSDV
estimator and the PFAE requires no bias correction. Observe that the LSDV estimator is
the Gaussian MLE corrected for its asymptotic bias. So, the improvement of the PFAE over
the bias corrected LSDV estimator at � = 1 is analogous to the improvement of the FAE
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estimator over the MLE in the time series unit root case shown in HPS (2009). In that case,
correcting for the bias by re-centering the MLE estimator about its mean does not reduce
variation, whereas HPS (2009) show that the FAE estimator reduces both the asymptotic
bias and the variance of the MLE not only at � = 1 but also in the vicinity of unity, while
having the same limit theory in the stationary case. The limit result (21) reveals that the
improvement of the FAE over the (levels) MLE at unity in the time series case carries over
to the panel case where n!1:

3. The improvement of the PFAE over the bias corrected LSDV estimator might be considered
counterintuitive because differencing is usually regarded as inferior in terms of ef�ciency to
levels estimation and the use of a within-group transformation to eliminate individual effects
(unless GLS or maximum likelihod is applied to the differenced data). However, the consid-
erable advantage of the PFAE technique is that it removes individual effects by systematic
X-differencing and, in addition, because long differences are included in the stacked system
estimation, any strong signal information in the data is retained by virtue of the full aggre-
gation that is built into the estimator. The result is improved estimation in terms of both bias
and ef�ciency over regression-based demeaning of the levels data and bias-correction in ML
estimation.

4. Similarly, for the AR(p) panel model, when uit is stationary, the PFAE is approximately
equivalent to the bias-corrected OLS estimator. In this case bias rapidly disappears as the
total sample size increases. When uit has a unit root, the PFAE has substantially smaller bias
and no ef�ciency loss compared with the OLS estimator.

5. When � = 1; there is a simple relationship between the PFAE and the bias corrected MLE or
LSDV estimator. In particular, as shown in Appendix D, when � = 1 and

p
n
T
! 0; we have

p
nT (�̂� 1) =

p
nT

�
�̂lsdv � 1 +

3

T

�
(23)

+
p
n
3
P

i T
�1
�PT

t=3 yit�1

�2
� 2

P
i

PT
t=3 y

2
it�1P

i

PT
t=3 �y

2
it�1

+ op(1);

where �yit�1 := yit�1 � T�12
PT

s=3 yis�1. According to (23), �̂ may be interpreted as a
modi�ed version of the bias corrected form of �̂lsdv: The modi�cation is important be-
cause the second term of (23) contributes to the limit distribution and leads to a reduc-
tion in the limiting variance of the LSDV estimator. In particular, it is the (negative) cor-
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relation of the second term with the �rst term of (23) that reduces the asymptotic vari-
ance of LSDV, Avar

�p
nT
�
�̂ls � 1 + 3

T

�	
= 51=5, to the asymptotic variance of PFAE,

Avarf
p
nT (�̂fa � 1)g = 9. In fact, this negative correlation makes it possible to lower the

asymptotic variance further, as shown in Appendix D at least for � = 1.

6. For the panel AR(1) model when � = 1, using sequential limits as n!1 followed by T !
1, Kruiniger (2008) showed that the �rst difference Gaussian quasi-MLE (called FDMLE;
see also Hsiao et al., 2002) has the asymptotic distribution n1=2T (�̂fdml � 1) ) N(0; 8):

The limit distribution of the FDMLE for j�j < 1 is (nT )1=2 (�̂fdml � �) ) N(0; 1 � �2);

comparable to (20). But when � = 1 the variance of the limit distribution of the FDMLE
is smaller than that of the PFAE: This reduction in variance is explained by the fact that the
FDMLE is a restricted maximum likelihood estimator. The FDMLE is computed using a
quasi-likelihod that is de�ned only for � < 1 + 2

T�1 (see Kruiniger, 2008). So � is restricted
by the upper bound of this region at which point the quasi-likelihood becomes unde�ned.
We use the term �quasi-likelihood� in describing the FDMLE because it is not the true like-
lihood. In fact, no data generating mechanism is given in Kruiniger (2008) for the case
� > 1 and the quasi likelihood is constructed over that region simply by taking an analytic
extension to the region � 2 [1; 1 + 2

T�1) of the Gaussian likelihood based on the density
of the differenced data over the stationary region j�j < 1: The consequential restriction in
domain, and hence in estimation, plays a key role in the variance reduction of the FDMLE.
This reduction is borne out in simulations. For example, simulations with n = 200, T = 50
and � = 1 show the variance of FDMLE to be approximately 87% of the variance of PFAE,
which corresponds well with the limit theory variance ratio of 8=9 ' 88:9%. Also, in view
of the singularity in the quasi likelihood at the upper limit of the domain of de�nition, nu-
merical maximization of the log-likelihood frequently encounters convergence dif�culties in
the computation of the FDMLE. Numerical optimization can fail if � ' 1 and n is not large.
For example, in simulations with n = 10, T = 50 and � = 1, we found that a total 32 out
of 1000 iterations failed to converge to a local optimizer. These restricted domain and con-
vergence issues associated with the FDMLE procedure are discussed more fully in separate
work (Han and Phillips, 2009b).

7. Asymptotics for the FDMLE procedure are developed in Kruiniger (2008) only for the panel
AR(1) model and computation is much more dif�cult in the case of the panel AR(p) model.
These limitations make it desirable to have a simple unrestricted estimator like PFAE with
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good �nite sample and asymptotic properties that can be easily implemented in general panel
AR(p) models.

8. In the unit root case with � = 1, the limit distribution (21) holds for both n; T !1, but no
condition is required on the n=T ratio. For n = 1; we know from the results in HPS (2009)
that the (time series) MLE based on levels is not ef�cient and that remains true even when
we bias correct the MLE. In fact, as shown in HPS (2009), the FAE is superior to the MLE
in the whole vicinity of unity when n = 1: So, we can at least conclude that the PFAE is
superior to the MLE for n = 1:We expect but do not prove that this conclusion holds for all
�xed n.

The limit theory for the (restricted domain) FDMLE estimator at � = 1 indicates that there
may be scope for improving estimation ef�ciency at � = 1 and possibly in the immediate neigh-
borhood of unity. This issue is complex and, as indicated earlier, there is currently no general
optimal estimation theory that can be applied to study this problem. In Appendix D we prove that
a small modi�cation to the PFAE procedure can indeed reduce variance for the case � = 1. The
modi�cation is of some independent interest because it makes use of the relationship (23) between
PFAE and the bias-corrected LSDV estimator of Hahn and Kuersteiner (2002). In particular, in the
simple panel AR(1) model (1), the modi�ed estimator is obtained by taking the following linear
combination for some scalar weight 

(24) �̂+ = �̂+ (1� )(�̂lsdv +
3
T
) = �̂� (1� )(�̂� �̂lsdv � 3

T
);

so that the centred and scaled estimator has the form

(25) n1=2T (�̂+ � 1) = n1=2T (�̂lsdv � 1 + 3
T
) + n1=2T(�̂� �̂lsdv � 3

T
):

The PFAE corresponds to  = 1. In this case, the (negative) correlation of the second term with
the �rst term of (25) reduces the asymptotic variance of n1=2T (�̂lsdv � 1 + 3=T ), which is 51=5,
down to the asymptotic variance of n1=2T (�̂� 1), which is 9. The variance can be lowered further
by choosing an optimal . According to the calculations shown in Appendix D,  = 5=8 gives
n1=2T (�̂+ � 1) ) N(0; 8:325), which is the minimal variance attainable by adjusting  in the
relationship (25).
The modi�ed estimator �̂+ can also be understood as a GMM estimator based on the two

moment conditions Eg1i(�) = 0 and Eg2i(�) ! 0 at � = 1, where g1i(�) identi�es b� and g2i(�)
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identi�es �̂lsdv + 3
T
, i.e.,

g1i(�) =
1

T 32

TX
t=4

t�3X
s=1

(yit�1 � ys+1)
h
(yit � yis)� �(yit�1 � yis+1)

i
;

g2i(�) =
1

T 22

TX
t=3

eyit�1 �eyit � ��� 3
T

� eyit�1� ;
with eyit�1 = yit�1 � T�12

PT
s=3 yis�1, eyit = yit � T�12

PT
s=3 yis, and T2 = T � 2. Note that the

�rst observations are ignored in g2i(�) for algebraic simplicity and their effect is asymptotically
negligible when T !1. In view of the identity (see HPS, 2009)

T�12

TX
t=4

t�3X
s=1

(yit�1 � yis+1)
2 =

TX
t=3

ey2it�1
any weighted GMM estimator can be expressed in the form �̂ + (1 � )(�̂ls +

3
T
) for some ,

thereby leading back to the original formulation (24).
The modi�ed PFAE �̂+ with  = 5=8 attains an ef�ciency level of 8=8:325 = 0:96096 (i.e.,

96% ef�ciency) relative to the restricted FDMLE. However, this argument cannot be used for
general � values because �̂lsdv + 3

T
does not correct the bias if j�j < 1 unless n=T ! 0. This is

evident from the fact that

p
nT (�̂lsdv +

3
T
� �) =

p
nT (�̂hk � �) +

p
nT

T + 1
(2 +

3

T
� �̂hk);

where �̂hk is the bias corrected estimator proposed by Hahn and Kuersteiner (2002, p. 1645) for
the stationary case, i.e., �̂hk = T+1

T
�̂lsdv +

1
T
such that (nT )1=2(�̂hk � �) ) N(0; 1 � �2) when

j�j < 1 and limn=T 2 (0;1). Of course, when n=T ! 0 we also have
p
nT (�̂lsdv +

3
T
� �) =

p
nT (�̂lsdv � �) + op (1) ; so in this event the bias is small because T !1 so fast.

4.2 Lag Length Selection

When T is large, lag length can be determined for each individual panel using conventional time
series model selection methods. While this method is inevitably inef�cient because it fails to take
advantage of the panel structure and the pooling of information, it is still a consistent selection
method when T ! 1. When T is small and n is large as in microeconometric panels, this indi-
vidual selection method is no longer available. In that case, the Sargan test combined with GMM
methods (e.g., Arellano and Bond's GMM method) is often used instead. But the effectiveness
of this method deteriorates when panel data manifests high persistence and there is substantial
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individual heterogeneity because in such cases the AR coef�cients are poorly (and possibly incon-
sistently) estimated. This section therefore proposes methods for consistent lag length selection
which take advantage of the good asymptotic properties of the PFAE procedure.

4.2.1 Panel BIC Order Selection

Consistent estimation of � by X-differencing and full aggregation allows us to construct informa-
tion criteria to estimate the lag order in a panel model such as (10). In what follows, we will
consider the panel BIC criterion and show some of its asymptotic properties.
For Gaussian autoregressive time series models, the BIC criterion takes the form

BIC (k) = log �̂2k + k(logm)=m;

where �̂2k is a error variance estimate calculated allowing for k lags and m is the sample size.
Our proposed version of panel BIC uses this same formula for some deliberately designed �̂2k and
particularly chosen m. To be more precise, let ~�k = (~�k1; : : : ; ~�

k
p)
0 denote the full aggregation

estimator based on the equation

(26) yit � yis =
kX
j=1

�j(yit�j � yis+j) + ("it � "�is)

for i = 1; : : : ; n, t = 2kmax + 2; : : : ; T , and s = 1; : : : ; t� 2kmax � 1. The exact formula of ~�k is
given in (64). It is important that (26) is aggregated as if we had kmax lags for all k values. We call
this operation `full-aggregation after kmax-truncation'. Thus, a total of T�(T� + 1)=2 equations are
aggregated (over t and s) for each i, where T� = T � 2kmax � 1, and �̂2k is de�ned as the residual
sum of squares from PFAE estimation of (26) after kmax-truncation, divided by nT�(T� + 1)=2.
The effective `sample size' is nT� when kmax lags are allowed for, so we setm = nT�: Hence, the
information criterion is de�ned as

(27) BIC(k) = log �̂2k + k(nT�)
�1 log(nT�);

where

(28) �̂2k =
1

nT�(T� + 1)=2

nX
i=1

TX
t=2kmax+2

t�2kmax�1X
s=1

 
~yit;s �

kX
j=1

~�kj ~yit�j;s+j

!2
;

using the notation ~yit;s = yit � yis de�ned earlier. The lag length (i.e., the maximal p such that
�p 6= 0) is then consistently estimated by minimizing BIC(k) over k = 0; 1; : : : ; kmax for some

20



�nite kmax, as shown in Appendix C. Note that this version of panel BIC loses the usual Gaussian
log-likelihood interpretation.
In the above formulation of (27) and (28), the kmax-truncation is important and is a key element

in the consistency of the BIC approach especially when T is small. This is true even for a simple
panel AR model without �xed effects, where pooled ordinary least squares (OLS) estimates the
autoregressive coef�cients consistently. The following example of a panel AR(1) explains why the
BIC method fails for small T if the kmax-truncation procedure is not implemented.

Example: Panel BIC Lag Selection without kmax- Truncation.

Let yit = �1yit�1 + "it where "it is iid N (0; �2) and �1 6= 0, so that the true AR
order is p = 1. Let (~�k;1; : : : ; ~�k;k)0 be the pooled OLS estimate of the coef�cients in
a �tted panel AR(k) without the kmax-truncation, i.e., ~�1;1 is based on the pooled OLS
regression of yit on yit�1, (~�2;1; ~�2;2)0 is the coef�cient in the pooled OLS regression
of yit on (yit�1; yit�2)0, and so on, using all available observations. Let the pooled
sample error variance be ~�2k = [n(T � k)]�1

Pn
i=1

PT
t=k+1 ~"

2
k;it, where ~"k;it = yit �Pk

j=1 ~�k;jyit�j , so that e�2k is consistent for �2 for all k � p = 1. Consider minimizing
the information criterion

IC(k) = log ~�2k + k[n(T � k)]�1 log[n(T � k)]:

Let T = 3 and kmax = 2 for the purpose of illustration. Direct calculation for k = 1; 2
gives

(29) IC(2)� IC(1) = log(~�22=~�
2
1) + (2n)

�1(3 log n� log 2);

where

log(~�22=~�
2
1) = log

�
1� ~�21 � ~�22

~�21

�
= � ~�

2
1 � ~�22
~�21

+ op

�
~�21 � ~�22
~�21

�
;

with

~�21 � ~�22
~�21

=
1

n~�21

nX
i=1

h
1
2
(~"21;i2 � ~"22;i3) + 1

2
(~"21;i3 � ~"22;i3)

i
:= An:

Now ~�21 !p �
2; ~"k;it = "it +

Pk
j=1 (�j � ~�k;j) yit�j for both k = 1; 2; and "2i2 � "2i3

is iid with zero mean E f"2i2 � "2i3g = 0 and �nite variance E f"2i2 � "2i3g
2
= 4�4. It
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follows that

n1=2An =
1

~�21

1p
n

nX
i=1

1
2
("2i2 � "2i3) + op (1)) N (0; 1) :

Collecting terms and scaling (29) yields

n1=2[IC(2)� IC(1)] = �n1=2An + op(1) + (3=2)n
�1=2 log n�O(n�1=2)

= �n1=2An + op(1);

which is asymptotically negative with a nontrivial probability of 1=2 as n!1: Thus,
minimizing IC(k) overestimates the lag order with a positive probability asymptoti-
cally as n!1.

The kmax-truncation resolves this problem and estimates p consistently by minimizing BIC.
(See Appendix C for a proof.) However this approach involves considerable data loss if T is small
and, in consequence, the �nite sample performance of the kmax-truncation BIC is not impressive.
For example, when kmax = 4 and T = 10, the effective time dimension after kmax-truncation is
T� = T � 2kmax � 1 = 1. In that case the BIC method reduces to a cross-sectional regression
and requires large n for reasonable performance. Table 3 provides some con�rmatory simulation
�ndings.
A possible solution to this data loss problem is to set a smaller kmax when T is small. For

example, reducing kmax by one increases the effective time dimension by two and thus the total
number of effective observations increases by 2n. So the performance of the kmax BIC selection
method can be substantially in�uenced by the choice of the maximal lag length unless T itself is
large. This sensitivity is unnatural and undesirable because kmax is usually given only a purely
nominal setting in applied work. As another solution, we might consider modifying the penalty
or extending the analysis to other information criteria such as the posterior odds criterion (PIC;
Phillips and Ploberger, 1994) for panel models. These possibilities are worth considering and can
be pursued in separate work. Another option is to use general-to-speci�c selection methods, as we
do in the following section.

4.2.2 General-to-Speci�c Signi�cance Testing

An obvious alternative approach that avoids data loss is a general-to-speci�c sequential modeling
procedure. This selection procedure can be implemented in the usual way. The sequence begins
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by estimating the largest model�the panel AR(kmax) model for some given kmax�and tests the
signi�cance of �̂kmax : If the null hypothesis that �kmax = 0 is accepted at the chosen level, then the
panel AR(kmax � 1) model is �tted and the null hypothesis �kmax�1 = 0 is tested. This sequential
process of estimating and testing is continued until the null hypothesis is rejected, and p̂ is de�ned
as the largest k value such that the regressor yit�k is signi�cant.
In this process, all available time series units are fully used. That is, for k = 4; 3; 2; 1, the

numbers of the time series sample used in the regression are T � 9; T � 7; T � 5; T � 3, respec-
tively. Hence, even when T = 10 and kmax = 4, the general-to-speci�c approach will use more
observations than the BIC procedure above for k < kmax, and the resulting lag length estimate will
generally be more accurate when T is small. In implementing the sequential asymptotic tests, the
asymptotic variances are estimated by the generalized heteroskedasticity-robust formula (Arellano,
1987; Kezdi, 2002) Q�1Z bQVQ�1Z , where QZ is de�ned in Theorem 2 and bQV is found in (19).
The general-to-speci�c methodology applies conventional statistical tests. So if the signi�-

cance level for the tests is �xed, then the order estimator inevitably allows for a nonzero probability
of overestimation. Furthermore, as is typical in sequential tests, this overestimation probability is
bigger than the signi�cance level when there are multiple steps between kmax and p because the
probability of false rejection accumulates as k step downs from kmax to p.
These problems can be mitigated (and overcome at least asymptotically) by letting the level

of the test be dependent on the sample size. More precisely, following Bauer, Pötscher and Hackl
(1988), we can set the critical value cnT in such a way that (i) cnT ! 1, and (ii) r�1nT cnT ! 0

as n; T ! 1, where rnT is again the convergence rate of the full aggregation estimator. (Here,
condition (i) prevents overestimation and condition (ii) prevents underestimation.) The critical
value corresponds to the standard normal critical value for the signi�cance level �nT = 1��(cnT ),
where �(�) is the standard normal c.d.f. Conditions (i) and (ii) are equivalent to the requirement
that the signi�cance level �nT ! 0 and �r�1nT log�nT ! 0 (proved in equation (22) of Pötscher,
1983).
If the signi�cance level is too high, then test size increases and the lag length is usually over-

estimated. On the other hand, too small a level causes the model to be under�tted. Since parameters
in a generous model are still consistently estimated while an underspeci�ed model leads to some
inconsistent coef�cient estimates, practitioners are recommended to use a signi�cance level that is
not too small. A 1% level seems a reasonable choice in cases where the sample sizes are moderate
to large. Simulations may be used to explore the performance of various signi�cance level choices
in relation to the cross section and time series sample sizes. Such experiments would need to be
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extensive and to cover many different models to be valuable beyond a simple procedure such as
the 1% rule. They would form a useful subsequent research project.

5 Simulations

This section reports simulations which shed light on the �nite sample properties of our procedures
in relation to existing methods of dynamic panel estimation. In particular, we compare the PFAE
procedure with existing estimators such as Arellano and Bond's (1991) difference GMM estimator
and Blundell and Bond's (1998) system GMM estimator for a panel AR(2) model. (The FDMLE
method is not included because of computational dif�culties with this procedure and the fact that it
is a restricted estimator, as discussed earlier.) We then compare the performance of two alternative
lag-length selection methods � the kmax-truncated BIC procedure and general-to-speci�c testing.

I. Comparison of bias and ef�ciency: AR(1). We �rst compare the properties of the PFAE
with the LSDV estimator (which is inconsistent), Hahn and Kuersteiner's bias-corrected LSDV
estimator (HK), the one-step �rst difference GMM (GMM1/DIF), and the two-step system GMM
(GMM2/SYS), for the panel AR(1) model. The model is yit = ai + uit, uit = �uit�1 + "it,
where "it is iid standard normal variables and ai is also normal with E(ai) arbitrarily set to 2.
When generating the data, the processes are initialized at t = �100 such that ui;�100 := 0, and
then observations for t � 0 are discarded. The normal variates are generated using the rnormal
function of Stata. The difference GMM and the system GMM are estimated by the `xtabond' and
the `xtdpdsys' commands of Stata respectively, and the PFAE is obtained by direct calculation
using formula (16).
Table 1 reports the simulated means of the estimators from 1,000 replications. The LSDV

estimator is obviously biased downward, as per Nickell (1981). The (small sample) biases of the
�rst difference and system GMM estimators depend on the distribution of �i. On the other hand,
PFAE shows very little bias for all parameter values and is considerably superior to HK.
Table 1 also presents simulated variances of the estimators. When T is small (T = 10), PFAE

is less ef�cient than the bias-corrected LSDV estimator (HK), but when T is larger (T = 20) and
� is large, PFAE is as ef�cient or more ef�cient than HK. With larger T values, PFAE attains
the asymptotic variance (nT )�1(1 � �2), as does the HK estimator. For T = 20, we notice that
PFAE appears less ef�cient than HK at � = 1, which looks contrary to the asymptotic �nding
that n1=2T (�̂hk � 1) ) N(0; 51=5) and n1=2T (�̂fa � 1) ) N(0; 9) with �̂hk and �̂fa respectively
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denoting the HK and PFAE estimators. This outcome occurs because T = 20 is not large enough
for the asymptotics to be accurate without a degrees of freedom adjustment. For � = 1, the
asymptotic variance of �̂fa is 9=n(T � 2)2, which is approximately 0:27_7 � 10�3 with n = 100

and T = 20. This theoretical value is close to the simulated variance 0:273� 10�3. As T increases
further, so that T 2=(T � 2)2 is close to 1, we expect the higher asymptotic ef�ciency of PFAE
relative to HK to become evident in simulations. Table 2 reveals that this expected improvement
occurs for T � 80 for all values of n.
The performance of the GMM estimators differs as sd(ai) changes. Comparing PFAE and

GMM, PFAE performs uniformly better than the GMM estimators in our simulations except for
� = 1 with T = 10. It is however worth noting that the GMM estimators are based on moment
conditions different from those used by PFAE and LSDV, and that the performance of the GMM
estimators also depends on the inital cross sectional variance of the idiosyncratic errors.

II. Comparison of bias and ef�ciency: AR(2). We next consider an AR(2) dynamic panel
model (i.e., yit = ai+uit, uit = �1uit�1+ �2uit�2+ "it). Except for uit being AR(2), all other set-
tings are the same as in the previous simulation. We set �2 = �0:2, and �1 = 0:2; 0:5; 0:7; 0:9; 1:1
and 1.2. The panels are stationary when �1 < 1:2, and are integrated when �1 = 1:2.
Table 3 reports the simulated means and varinaces of the estimates of �1. Note that Hahn and

Kuersteiner's (2002) estimator is not examined because the model is not AR(1), so one of their
assumptions is violated. The LSDV estimator is again biased downward, and the PFAE exhibits
very low �nite sample bias. The GMM estimator performance depends on the variance of ai.
Again, LSDV and PFAE are free from the effects of the ai, while the two GMM estimators are
not. The PFAE performs well in all considered cases. As remarked in the discussion of the AR(1)
simulations, it is noteworthy that the accuracy of the GMM estimators depends on the variance of
the initial idiosyncratic errors as well.

III. Inference. We next investigate the properties of the estimated variance Q�1Z bQVQ�1Z of the
PFAE, where

QZ =

nX
i=1

TX
t=2p+2

t�2p�1X
s=1

eZit;s eZ 0it;s and bQV = nX
i=1

bViT bV 0
iT ;

with eZit;s de�ned right after Lemma 1 and bViT found in (19).
Because all the statistics are free from individual effects, we can eliminate ai from the data

generation process. Model evaluation for AR(p) models with p > 1 will be considered later while
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simulating lag length selection. So here we focus on the panel AR(1) model yit = �yit�1 + "it,
where "it � N(0; �2) with �2 = 1. We test (i) H0 : � = 0 and (ii) H0 : � = 1. We present
test sizes for the null hypothesis that the � parameter is the same as the true parameter used in the
data generation. Gauss was used for the simulations. We use the tn�1 critical values in testing, as
recommended by Hansen's (2007).
Table 4 reports the empirical sizes from a simulation of 5,000 replications. Except for a slight

over-rejection in small samples with high �, size performance is reasonably good. The simulated
powers for the null hypotheses H0 : � = 0 (left) and H0 : � = 1 (right) are presented in Table 5.
This part of the simulation is intended to be illustrative as its main purpose is to exhibit general
performance characteristics of inference with the PFAE procedure. Thorough comparisons with
other estimators would require a more systematic simulation study.

IV. Lag length selection. Table 6 reports the �nite sample performance of the BIC and general-
to-speci�c (GS) approaches to model selection, based on the PFAE methodology, as explained
in Section 4. The BIC method is seen to be consistent as n; T ! 1, while the probability of
over-estimation by the GS method does not diminish to zero for a given signi�cance level (and this
probability is larger than the signi�cance level because of the accumulation of the type I errors).
But as the signi�cance level shrinks to zero as described in Section 4.2, the GS lag order estimator
is consistent. In small samples, the performance of the GS method is generally much better than
the BIC method.

6 Conclusion

The estimation method introduced in this paper for linear dynamic panel models uses a new differ-
encing procedure called X-differencing to eliminate �xed effects and a simple technique of stacked
and pooled least squares on the full system of X-differenced equations. The method is therefore
straightforward to implement in practical work. It is also free from bias for all parameter values
and avoids weak instrumentation problems in unit root and near unit root cases. The asymptotic
theory shows gains in ef�ciency in the unit root case over bias-corrected maximum likelihood and
equivalent ef�ciency in the stationary case but the new method has no need for bias correction. The
asymptotics also apply irrespective of the n=T ratio as n; T ! 1. These advantages make the
new estimation procedure attractive for empirical research, especially in cases of data persistence
and dispersed individual effects where other methods can perform poorly.
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The �ndings of the present paper point the way to further research. First, there is a need for
a theory of optimal estimation in panel models which allows for roots in the vicinity of unity
and dual index asymptotics. While there is, as yet, no optimal estimation theory in time series
autoregression that includes the unit root case, the process of cross section averaging in panel
estimation leads to important simpli�cations in the limit theory that make such an optimality theory
feasible. In particular, the limit theory belongs to an asymptotically normal (as distinct from a
nonstandard distribution) family when n ! 1: But the limit distribution can also be degenerate
with a singularity in the covariance structure and a change in the convergence rate when there is
an autoregressive unit root. These features of the limit theory and their impact on optimality in
estimation deserve detailed study. As indicated earlier, there is also scope for further work on
model selection in dynamic panels, including an extensive numerical study of sequential testing
rules and a further analysis of the asymptotic behavior of various information criteria.
Second, consistent estimation of panel autoregressions using X-differencing and PFAE meth-

ods is useful in the estimation of more general panel models with additional regressors. For exam-
ple, in parametric models with exogenous regressors and AR(p) errors such as yit = ai+�

0xit+uit,
with uit =

Pp
j=1 �juit�j + "it, we can consistently estimate � = (�1; : : : ; �p)0 using PFAE and

residuals based on a preliminary consistent estimate of �: Then, a parametric feasible GLS esti-
mate can be conducted as a natural extension of Bhargava, Franzini and Narendranathan's (1982)
treatment of the AR(1). Such stepwise estimation of � and � may be iterated until convergence,
combining moment conditions for � based on assumed exogeneity of xit and the moment condi-
tions implied by Lemma 1 using yit � �0xit for given �.
Finally, direct treatment of dynamic models with exogenous regressors of the form yit = �i +Pp
j=1 �jyit�j + �0xit + "it is also possible using the methods of this paper. Transforming xit 7!

x�it(�) where x�it(�) is de�ned by xit � x�it(�)�
Pp

j=1 �jx
�
it�j(�) enables the model to be rewritten

in latent form as yit = ai+ x
�
it(�)

0�+ uit, where uit =
Pp

j=1 �juit�j + "it. Then, the parameters �
and � are identi�ed by the exogeneity of x�it(�) and the moment conditions of Lemma 1 for yit �
x�it(�)

0�. The parameters may then be jointly estimated by an extended non-linear in parameters
version of the PFAE approach2. Full exploration of this extension is an important future research
topic.

2More speci�cally, the moment conditions Ef ~Uit�k;s+k(�; �) [ ~Uit;s(�; �) �
Pp

j=1
~Uit�j;s+j(�; �) ] g = 0for

s < t � 2p and for all k = 1; : : : ; p, where ~Uit;s(�; �) := [yit � x�it(�)0�] � [yis � x�is(�)0�], identify � for given
� (using the PFAE method), and an exogeneity condition such as Exis"it = 0 for s � t implies that E[xis(�yit �Pp

j=1 �j�yit�j � �0�xit)] = 0 for s < t, which identi�es � given � if xit�1 and �xit are correlated.
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Appendix A: Technical Results and Proofs

Proof of (4). Because "�is = yis � �i � �1yis+1, we have

Eyis+1"
�
is = Eyis+1yis � Eyis+1�i � �1Ey

2
is+1:

Replacing the �rst yis+1 on the right hand side with �i + �1yis + "is+1, we get

Eyis+1"
�
is = Eyis�i + �1Ey

2
is � Eyis+1�i � �1Ey

2
is+1

Because Eyit�i is the same for all t and Ey2is = Ey2is+1, we have Eyis+1"�is = 0.

Proof of (7). It is simpler to work with uit = yit � ai, where uit = �1uit�1 + "it. We shall show
that A := E(uit�1 � uis+1)("it � "�is) = 0. For s+ 1 < t, we have

A = E(uit�1 � uis+1)"it � E(uit�1 � uis+1)(uis � �1uis+1)

= �E(uit�1 � uis+1)(uis � �1uis+1)

= �Euit�1uis + �1Euit�1uis+1 + Euisuis+1 � �1Eu
2
is+1

= ��1Euit�2uis + �1Euit�1uis+1 + �1Eu
2
is � �1Eu

2
is+1;

where the last equality is derived by expanding uit�1 = �1uit�2 + "it�1 and uis+1 = �1uis + "is+1.
When j�1j < 1, uit is stationary, so A is obviously zero. If �1 = 1, then Euituis = Eu2is for s � t,
so when s � t� 2, we have

A = ��1Eu2is + �1Eu
2
is+1 + �1Eu

2
is � �1Eu

2
is+1 = 0

as claimed.

We prove Lemma 1 using uit = yit � ai. Note that uit =
Pp

j=1 �juit�j + "it where "it is white
noise (0; �2i ). We also have "�is = uis �

Pp
j=1 �juis+j . We �rst establish the following general

lemma.

Lemma 4 Let uit be a panel AR(p) process such that�muit is stationary AR(p�m) for some non-
negative integerm � p, where� := 1�L. Then for all t and s such that t > s,E"�is�m�muit = 0.

Proof. First consider the case where uit is covariance stationary AR(p), i.e., m = 0. Let j =
Euituit�j=�

2
i . Let �(L) = 1� �1L� � � � � �pL

p. We have

Euit"
�
is = Euit

�
uis �

Pp
j=1 �juis+j

�
= �2i

�
t�s �

Pp
j=1�jt�s�j

�
= 0
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by the Yule-Walker equations when t > s as claimed. Now for general m � p, we have �(L) =
(1�L)m��(L), where ��(L) = 1� ��1L� � � � � ��p�mLp�m and the roots of ��(L) = 0 are outside
the unit circle. First note that "�is = �(L�1)uis, so using (1 � L�1)muis�m = (�1)m(1 � L)muis

and � := 1� L, we have

"�is�m = ��(L�1)(1� L�1)muis�m = (�1)m��(L�1)�muis =: ~"
�
is:

That is, ��(L�1)~uis = (�1)m~"�is, where ~uis = �muis. Furthermore, ~uit is stationary AR(p �m)
by assumption, and by the result for the stationary case, we have E(�1)m~"�is~uit = 0 for all s < t.
The result follows by writing ~"�is = "�is�m and ~uit = �muit.

Lemma 1 is now straightforward.

Proof of Lemma 1. Because uit � uis = yit � yis for all s and t, we shall prove that E(uit�k �
uis+k)("it � "�is) = 0 for all s < t � p. Because E(uit�k � uis+k)"it = 0 for all s < t � p

and 1 � k � p, it suf�ces to show that E(uit�k � uis+k)"
�
is = 0 for such s and k. If uit is

stationary AR(p), then this holds because of Lemma 4 with m = 0. If uit is I(1) and �uit is
stationary AR(p � 1), then the result follows from Lemma 4 for m = 1 because yit�k � yis+k =

uit�k � uis+k = �uit�k + � � �+�uis+k+1.

Next we prove Theorem 2.
We �rst introduce some useful notation and transformations that facilitate analysis of the unit

root case.
Let ViT = 1

T

PT
t=2p+2

Pt�2p�1
s=1

eZit;s eZ 0it;s and �iT = 1
T

PT
t=2p+2

Pt�2p�1
s=1

eZit;se"it;s, where eZit;s
and e"it;s are de�ned in (14). De�ne the p � p transformation matrix F and its inverse F�1 as
follows

(30) F =

2666666664

1 �1 0 � � � 0

0 1 �1 � � � 0

0 0 1 � � � 0
...

...
...

...
0 0 0 � � � 1

3777777775
; F�1 =

2666666664

1 1 1 � � � 1

0 1 1 � � � 1

0 0 1 � � � 1
...
...
...

...
0 0 0 � � � 1

3777777775
:

Note that F 0z = (z1; z2 � z1; : : : ; zp � zp�1)
0 for any z = (z1; : : : ; zp)

0, and F�1� = (
Pp

j=1 �j;Pp
j=2 �j; : : : ; �p)

0 for any � = (�1; : : : ; �p)0. These transformation matrices are needed for the unit
root case. Also let

(31) DT =

8<:T 1=2I if uit � I(0);

diag(T; T 1=2; : : : ; T 1=2) if uit � I(1) and �uit � I(0):
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For a uniform development of the asymptotic theory, we derive the limit distribution of the
standardized and centered quantity n1=2DTF

�1(�̂� �) in what follows. Note that

(32) n1=2DTF
�1(�̂� �) = A�1nT bnT ;

where

(33) AnT =
1

n

nX
i=1

D�1
T F 0ViTFD

�1
T and bnT =

1p
n

nX
i=1

D�1
T F 0�iT :

Let CnT = n�1
Pn

i=1D
�1
T F 0�iT�

0
iTFD

�1
T .

Theorem 5 If uit is stationary AR(p) or if uit � I(1) and �uit�1 is stationary AR(p � 1), then
under Conditions A and B(i), the following results hold:

(a) If n!1 and T is �xed,

n1=2DTF
�1(�̂� �)) N(0; A�1T CTA

�1
T );

where AT := limn!1EAnT = plimn!1AnT and CT := limn!1ECnT = plimn!1CnT .

(b) If n; T !1 jointly

n1=2DTF
�1(�̂� �)) N(0; A�1CA�1);

where A = limT!1AT = limn;T!1EAnT , and C = limT!1CT = limn;T!1ECnT .

(c) If T !1 and n � 1 is �xed, and if uit is stationary AR(p)

n1=2D�1
T F 0(�̂� �))N

�
0; �2n(F

0�F )�1
�
; � = ��2i E(Xit�1X

0
it�1);

where Xit�1 = (uit�1; : : : ; uit�p)
0, and �2n =

Pn
i=1 �

4
i =(
Pn

i=1 �
2
i )
2.

(d) If T !1 and n � 1 is �xed, and if uit � I(1) and �uit�1 is stationary AR(p� 1)

n1=2DTF
�1(�̂� �))

�p
n(�0�)

Pn
i=1 �

2
i YbiPn

i=1 �
2
i Yai

; Z 0n

�0
;

with

Yai =

Z 1

0

Wi(r)
2dr �

�Z 1

0

Wi(r)dr

�2
;

Ybi =

Z 1

0

Wi(r)dWi(r)�
Z 1

0

Wi(r)[1�Wi(r)]dr;

where Wi(�) are independent standard Brownian motions, Zn � N(0; �2n

�1); 
 is the

variance-covariance matrix of (�uit�1; : : : ;�uit�p+1)0, andWi(�) and Zn are independent.
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The proof of (a) is straightforward and is given �rst. Let E(�ki ) := limn!1 n
�1Pn

i=1 �
k
i .

Proof of Theorem 5 (a). We consider the numerator and denominator of (32) separately.

(i) Denominator: Note that EV �
iT := EViT=�

2
i is identical for all i. Also EV �

iT is �nite due to the
uniformly �nite fourth moment assumption for "it=�i. So

(34)
1

n

nX
i=1

EViT =

 
1

n

nX
i=1

�2i

!
EV �

1T ! E(�2i )EV
�
1T := AoT ;

where E(�2i ) := limn!1 n
�1Pn

i=1 �
2
i and D

�1
T F 0AoTFD

�1
T = AT . The uniform boundedness of

E"4it implies that E[ViT (j; k)2] is bounded uniformly over all i for all j and k, where ViT (j; k) is
the (j; k) element of ViT , so

var

"
1

n

nX
i=1

ViT (j; k)

#
� 1

n2

nX
i=1

E[ViT (j; k)
2] = O(n�1):

Thus the denominator converges to the right hand side of (34) in mean and therefore in probability.

The equivalence of AT and plimn!1AnT is also implied straightforwardly.
(ii) Numerator: We have E�iT = 0 by Lemma 1. Condition A implies the convergence of
n�1

Pn
i=1E�iT�

0
iT . The Lindeberg condition holds since �

�2
i �iT is iid and �2i is bounded un-

der the uniform �nite fourth moment condition. Thus n�1=2
Pn

i=1 �iT ) N(0; CoT ), where CoT :=
limn!1 n

�1Pn
i=1E�iT�

0
iT and CT = D�1

T F 0CoTFD
�1
T . The result for bnT follows immediately.

That CT = plimn!1CnT is implied by Condition B(ii).

The remaining parts of Theorem 5 involve T ! 1, and we proceed by approximating the
components of �̂ � � by simpler terms. Let Xit�1 = (uit�1; : : : ; uit�p)

0, Xi = (Xi0; : : : ; XiT�1)
0,

and "i = ("i1; : : : ; "iT )0. LetM1 = IT � T�11T1
0
T ; where 1T is a T -vector with unit elements. Let

F and DT be de�ned by (30) and (31), respectively. Let � = diag(1; 2; : : : ; p). Also let

 
(j;k)
iT =

1

T

TX
t=2p+2

t�2p�1X
s=1

(uit�j � uis+j)(uit�k � uis+k); j; k = 0; 1; : : : ; p;

so �̂ = (
Pn

i=1	
den
iT )

�1Pn
i=1	

num
iT , where

(35) 	deniT =

2664
 
(1;1)
iT � � �  

(1;p)
iT

...
...

 
(p;1)
iT � � �  

(p;p)
iT

3775 and 	numiT =

2664
 
(1;0)
iT
...

 
(p;0)
iT

3775 :
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(Thus we have ViT = 	deniT and �iT = 	numiT �	deniT �.) Let Tm = T �m for notational brevity. We
�rst approximate  (j;k)iT as shown in the following result:

 
(j;k)
iT =

Tj+k
T

TX
t=j+k+1

uit�juit�k �
1

T

TX
s=j+k+1

uis�j

TX
t=j+k+1

uit�k +R
(j;k)
1;iT ;(36)

=
Tj+k
T

TX
t=1

uit�juit�k �
1

T

TX
s=1

uis�j

TX
t=1

uit�k +R
(j;k)
1;iT +R

(j;k)
2;iT +R

(j;k)
3;iT ;

where

R
(j;k)
1;iT =

1

2T

TX
t=j+k+1

(uit�j � uit�k)
2 � 1

2T

"
TX

t=j+k+1

(uit�j � uit�k)

#2
(37)

� 1

T

2p�j�kX
`=1

TX
t=j+k+1+`

(uit�j � uit�k+`)(uit�k � uit�j+`);

R
(j;k)
2;iT = �

Tj+k
T

j+kX
t=1

uit�juit�k �
1

T

j+kX
s=1

uis�j

j+kX
t=1

uit�k;(38)

R
(j;k)
3;iT =

1

T

TX
t=1

uit�j

j+kX
s=1

uis�k +

j+kX
s=1

uis�j
1

T

TX
t=1

uit�k:(39)

Proof of (36). Let j � k. Let r = k � j. We derive the �rst line of (36) for given j and r. Let
f rts = (uit � uis)(uit�r � uis+r) omitting the i subscript. We have

T 
(j;j+r)
iT =

TX
t=2p+2

t�2p�1X
s=1

f rt�j;s+j =

T�jX
t=2p+2�j

t�2p+j�1X
s=1

f rt;s+j =

T�jX
t=2p+2�j

t�2p+2j+r�1X
s=j+r+1

f rt;s�r

=

T+j+r�2p�1X
s=j+r+1

T�jX
t=s+2p�2j�r+1

f rt;s�r =

T+j+r�2p�1X
t=j+r+1

T�jX
s=t+2p�2j�r+1

f rt;s�r:

The second and third identities above are obtained by letting t0 = t � j and s0 = s + j + r;

respectively, and then removing the dashes. The �rst identity of the second line is obtained by
rearranging terms, and the last identity is obtained by swapping t and s and then noting f rs;t�r =
f rt;s�r. The right hand side on the �rst line and the right hand side term on the second line together
yield

2T 
(j;j+r)
iT =

T�jX
t=2p+2�j

t�2p+2j+r�1X
s=j+r+1

f rt;s�r +

T+j+r�2p�1X
t=j+r+1

T�jX
s=t+2p�2j�r+1

f rt;s�r

=

T�jX
t=j+r+1

T�jX
s=j+r+1

f rt;s�r �
T�jX

t=j+r+1

f rt;t�r � 2
2p�2j�rX
`=1

T�jX
t=j+r+1+`

f rt;t�`�r:
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Note that f rt;t�`�r = f rt�`;t�r. Transforming by t0 = t+ j and s0 = s+ j; then removing the dashes
from t0 and s0, we get

2T 
(j;k)
iT =

TX
t=m+1

TX
s=m+1

f rt�j;s�k �
TX

t=m+1

f rt�j;t�k � 2
2p�mX
`=1

TX
t=m+1+`

f rt�j;t�k�`;

where k = j + r andm = 2j + r = j + k. We have

f rt�j;s�k = (uit�j � uis�k)(uit�k � uis�j)

= uit�juit�k + uis�juis�k � uit�juis�j � uit�kuis�k;

f rt�j;t�k = (uit�j � uit�k)(uit�k � uit�j) = �(uit�j � uit�k)
2;

f rt�j;t�k�` = (uit�j � uit�k�`)(uit�k � uit�j�`):

Thus

2T 
(j;k)
iT = 2Tm

TX
t=m+1

uit�juit�k �
 

TX
t=m+1

uit�j

!2
�
 

TX
t=m+1

uit�k

!2

+
TX

t=m+1

(uit�j � uit�k)
2 � 2

2p�mX
`=1

TX
t=m+1+`

(uit�j � uit�k�`)(uit�k � uit�j�`):

Result (36) is obtained by subtracting and adding 2(
PT

t=m+1 uit�j)(
PT

t=m+1 uit�k) and then divid-
ing through by 2T . The identity holds for j > k as well because  (j;k)iT =  

(k;j)
iT . Finally, the second

line of (36) is derived by means of the identity
PT

t=j+k+1 at =
PT

t=1 at �
Pj+k

t=1 at.

All the R(j;k)h;iT terms in (36) turn out to be negligible compared with the other terms when
considering either time series or panel asymptotics with large T . More precisely, the denominator
AnT and numerator bnT in (33) above may be approximated as shown in the following lemma,
where the approximation holds both for stationary and integrated uit.

Lemma 6 Under Condition A, we have

(40) AnT =
1

n

nX
i=1

D�1
T F 0X 0

iM1XiFD
�1
T + �AnT ;

and

(41) bnT =
1p
n

nX
i=1

D�1
T F 0(�i � E�i) + �bnT ;
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where �i = X 0
iM1"i + T�1X 0

iXi��, and AnT and bnT are de�ned in (33), for some �AnT and �bnT
such that

(42) lim
T!1

sup
n
Ek�AnTk = 0 and lim

T!1
sup
n
E
h
�bnT �

b0
nT

i
= 0;

as given in (45) and (46) below.

Proof. Let

(43) Rdenh;iT =

2664
R
(1;1)
h;iT � � � R

(1;p)
h;iT

...
...

R
(p;1)
h;iT � � � R

(p;p)
h;iT

3775 and Rnumh;iT =

2664
R
(1;0)
h;iT
...

R
(p;0)
h;iT

3775 ;
where R(j;k)h;iT are de�ned in (36).

(i) Denominator: For (40), the second line of (36) implies

(44) ViT = 	
den
iT = X 0

iM1Xi � T�1(�10p + 1p�
0)�X 0

iXi +
P3

h=1R
den
h;iT ;

where � = (1; : : : ; p)0 and � stands for the Hadamard (element-wise) product. Because �10p �
X 0
iXi = �X

0
iXi and 1p�0 �X 0

iXi = X 0
iXi� with � = diag(�), we have

(45) �AnT = �
1

nT

Pn
i=1D

�1
T F 0(�X 0

iXi +X 0
iXi�)FD

�1
T +

P3
h=1

1

n

Pn
i=1D

�1
T F 0Rdenh;iTFD

�1
T :

The expectation of the absolute value of the �rst term isO(T�1), which can be obtained by writing
D�1
T F 0�X 0

iXiFD
�1
T asD�1

T F 0�F 0�1DT �D�1
T F 0X 0

iXiFD
�1
T and noting that n�1

Pn
i=1D

�1
T F 0X 0

iXiFD
�1
T

has a uniformly bounded �rst moment. We can also show that Ek��2i D0
TF

0Rdenh;iTFD
�1
T k ! 0 as

T !1 for all h by Lemma 9 in Appendix B. Thus (40) and the �rst part of (42) follow.

(ii) Numerator: For (41) and the second part of (42), we use (35) and the second line of (36) again,
giving

	numiT = X 0
iM1ui � T�1� �X 0

iui +
3X
h=1

Rnumh;iT ;

where ui = (ui1; : : : ; uiT )0. This last expression and (44) imply that

�iT := 	
num
iT �	deniT � = X 0

iM1"i � T�1� �X 0
iui + T�1[(�10p + 1p�

0)�X 0
iXi]�

+

3X
h=1

(Rnumh;iT �Rdenh;iT�):
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Since 1p�0 �X 0
iXi = X 0

iXi�, we have �iT = X 0
iM1"i + T�1(1p�

0 �X 0
iXi)�. Using � �X 0

iui =

�X 0
iui and �10p �X 0

iXi = �X
0
iXi, it follows that

(46) �bnT = �
1

n1=2T

nX
i=1

D�1
T F 0�X 0

i"i +

3X
h=1

1p
n

nX
i=1

D�1
T F 0(R�h;iT � ER�h;iT );

where R�h;iT = Rnumh;iT � Rdenh;iT�. (Note that subtracting means is valid because E�iT = 0.) Lemma
10 shows that the variance-covariance matrix of the last term on the right hand side is o(1), and
the �rst term is �T�1 � D�1

T F 0�F�10DT � n�1=2
Pn

i=1D
�1
T F 0X 0

i"i, where the second moment of
��2i D�1

T F 0X 0
i"i is bounded. The result follows.

With these results in hand, the proof of Theorem 5(c) for the stationary case with large T and
small n is now straightforward.

Proof of Theorem 5 (c). In this case, note that n is �xed, T ! 1, uit is stationary (over t), and
DT = T 1=2Ip. Under Condition A, we have T�1X 0

iM1Xi = T�1X 0
iXi + op(1)!p �

2
i � for each i;

where � = ��2i E(Xit�1X
0
it�1) is independent of i in view of Condition A(i). From this result and

(40), we have

plim
T!1

AnT =

�
1

n

Pn
i=1�

2
i

�
F 0�F

(see Phillips and Solo, 1992, Theorem 3.16). Also T�1=2X 0
iM1"i = T�1=2X 0

i"i + op(1) )
N(0; �4i �), which together with (41) implies that

bnT ) N

�
0;

�
1

n

Pn
i=1�

4
i

�
F 0�F

�
:

The result follows immediately.

In the unit root case with large T , we use the standardization matrixDT = diag(T; T
1=2; : : : ; T 1=2)

and coordinate transformation

(47) F 0Xit�1 = (uit�1;��uit�1; : : : ;��uit�p+1)0:

The denominator can be handled using (40). For the numerator, we have

(48) bnT =
1p
n

nX
i=1

('iT � E'iT ) + �cnT ; where E[k�cnTk2] = o(1);
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and 'iT = ('1;iT ; '2;iT ; : : : ; 'p;iT )0 with

'1;iT =
��(1)�1

T

PT
t=1vit�1"it �

��(1)�1

T 2
PT

t=1vit�1
PT

t=1"it +
��(1)�1

T 2
PT

t=1v
2
it�1;(49)

'j;iT =
1p
T

PT
t=1�uit�j+1"it; j = 2; : : : ; p;(50)

due to Lemma 11. The large T asymptotics (for small n or large n) are obtained by evaluating
n�1=2

Pn
i=1 'iT because E'1;iT ! 0 as T !1.

Proof of Theorem 5 (d). Note that ui0 := 0 without loss of generality because the estimator is
expressed in terms of differences. Otherwise we could simply replace uit with uit � ui0:.

(i) Denominator: The �rst diagonal element of D�1
T F 0X 0

iM1XiFD
�1
T is

1

T 2

TX
t=1

�
uit�1 �

1

T

PT
s=1uis�1

�2
) �2i

��(1)2

Z 1

0

~Wi(r)
2dr; ~Wi(r) :=Wi(r)�

Z 1

0

Wi(r)dr;

where the Wi(r) are independent standard Brownian motions. (See Phillips, 1987, Theorem 3.1,
or use the BN decomposition in (55) below.) The other elements of the �rst row (and the �rst
column) are�T 3=2

PT
t=1 uit�1�uit�j for j = 1; : : : ; p�1, which areOp(T�1=2) and thus converge

to zero as T !1. The remaining elements of theD�1
T F 0X 0

iM1XiFD
�1
T matrix correspond to the

stationary series f��uit�jgj=1;:::;p�1 and this matrix converges in probability to �2i
, where 
 is
the variance-covariance matrix of ��1i (�uit�1; : : : ;�uit�p+1)0. We therefore have

(51) D�1
T F 0X 0

iM1XiFD
�1
T ) �2i diag

�
(�0�)�2Yai; 


	
; Yai =

Z 1

0

~Wi(r)
2dr;

for each i, where the coef�cient (�0�)�2 appears in the limit because of Lemma 7 below.

(ii) Numerator: Due to (49) and Lemma 7, we have

'1;iT )
�2i
��(1)

�Z 1

0

Wi(r)dWi(r)�Wi(1)

Z 1

0

Wi(r)dr +

Z 1

0

Wi(r)
2dr

�
:=

�2i Ybi
��(1)

;

which is also the weak limit of the �rst element of D�1
T F 0�iT . From (48) and (50), the vector

of the second to last elements ofD�1
T F 0�iT , denoted by d2;iT (a notation used only in this proof), is

d2;iT = T�1=2� �X 0
i"i +Op(T

�1=2)) �2iZ2i; Z2i � N(0;
);

where � �Xi denotes the �rst p � 1 columns of �Xi, 
 = E� �Xit�1� �X
0
it�1, and � �Xit�1 denotes

the �rst p� 1 elements of �Xit�1. Thus, D�1
T F 0�iT ) [�2i (�

0�)�1Ybi; �
2
iZ

0
2i]
0.

Finally, to see the relationship between the limits of '1;iT and d2;iT , we note that the sam-
ple random function corresponding to Wi(r) is T�1=2

P[Tr]
t=1 "it and the jth element of d2;iT is
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�T�1=2
PT

t=1�uit�j"it. The joint Gaussianity of ('1;iT ; d02;iT )0 is straightforward, and the covari-
ance between '1;iT and d2;iT is zero under the bi-directional martingale difference assumption. So
Ybi and Z2i are independent.
Combining these results with (51) and (41), and noting that EYbi = 0, EZ2i = 0, we get the

stated result.

Next we prove the panel limit theory where n ! 1. Here the LLN and CLT are established
using variation across i.

Proof of Theorem 5 (b). LetE(�2i ) := limn!1 n
�1Pn

i=1 �
2
i as before andE(�4i ) := limn!1 n

�1Pn
i=1 �

4
i .

(i) Stationary case: We haveDT = T 1=2I . For the denominator, we have E�u2i = �2iO(T
�1), where

�ui = T�1
PT

t=1 uit, thus

1

nT

nX
i=1

X 0
iM1Xi =

1

nT

nX
i=1

X 0
iXi +Op(T

�1)!p E(�
2
i )�:

For the numerator, by the martingale CLT we have

1p
nT

nX
i=1

(�iT � E�it) =
1p
nT

nX
i=1

X 0
i"i + op(1)) N

�
0; E(�4i )�

�
:

The result follows straightforwardly as n; T !1.

(ii) Integrated case: We work with the rotated variables. For the denominator, let A�nT (j; k) be the
(j; k) element of A�nT := n�1

Pn
i=1D

�1
T F 0X 0

iM1XiFD
�1
T , which is the leading term of AnT in

(40). Then

A�nT (1; 1) =
1

nT 2
Pn

i=1

PT
t=1u

2
it�1 �

1

nT 3
Pn

i=1

hPT
t=1uit�1

i2
!p

E(�2i )

6��(1)2
;

because limn;T!1E[A
�
nT (1; 1)] = ��(1)�2E(�2i )=6 and its variance isO(n�1) by Lemma 8 below.

So A�nT (1; 1) !p �
�(1)�2=6. This is also the probability limit of the (1; 1) element of AnT by

Lemma 6.
The remaining elements in the �rst row (and the �rst column) of the denominator matrix are

AnT (1; j) =
1

nT 3=2

nX
i=1

TX
t=1

uit�1�uit�j+1; j = 2; : : : ; p;

whose �rst moment is O(T�1=2) by Lemma 8(iii) and second moment is O(n�1T�1) by Lemma
8(vii). So AnT (1; j) !p 0 for all j = 2; : : : ; p, which is limn;T!1E [AnT (1; j)]. Finally, for
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j � 2, k � 2,

AnT (j; k) =
1

nT

nX
i=1

TX
t=1

�uit�j+1�uit�k+1 !p E(�
2
i )!jj�kj;

which is limn;T!1EAnT (j; k), by evaluating the mean and the variance again. So AnT !p

limn;T!1EAnT , where the limit is taken as n; T !1.
For the numerator, we use (48), (49) and (50). Lemma 12 shows that the variance of the �rst el-
ement of bnT converges, and its limit is the same as the variance of the corresponding weak limit
obtained in Theorem 5(d). The variance of the remaining terms of bnT and the covariances are
also straightforwardly shown to converge to the limit variance and covariance of the corresponding
weak limits in Theorem 5(d). Convergence of the variance and the boundedness of �2i imply the
Lindeberg condition

(52)
1

n

Pn
i=1E

h
(�0diT )

21f(�0diT )2 > Tcg
i
! 0 8 c > 0; diT = D�1

T F 0�iT ;

for all p� 1 vectors �, which ensures the CLT for bnT .
These arguments justify joint limits as n; T ! 1; as discussed in Phillips and Moon

(1999) general treatment of panel asymptotics.

Proof of Theorem 2. Theorem 5(a)�(c) imply that

n1=2DTF
�1(�̂� �)) N

�
0; plimA�1nTCnTA

�1
nT

�
;

where

AnT =
1

n

Pn
i=1D

�1
T F 0ViTFD

�1
T ; CnT =

1

n

Pn
i=1D

�1
T F 0�iT�

0
iTFD

�1
T ;

and the probability limits are taken as n(T � 2p � 1) ! 1 when uit � I(0), or as n ! 1 (and
for any T sequence) when uit � I(1). Thus,

n1=2AnTDTF
�1(�̂� �) = n�1=2D�1

T F 0QZ(�̂� �)) N(0; plimCnT );

where QZ :=
Pn

i=1 ViT . For any GnT such that GnTCnTG0nT = I , i.e., such that

n�1GnTD
�1
T F 0Q�FD

�1
T G0nT = I; where Q� =

Pn
i=1�iT�

0
iT ;

we have

n�1=2GnTD
�1
T F 0QZ(�̂� �)) N(0; I):
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(Here we used the Lyapunov condition A(i) and the high level condition B(ii). See Phillips and
Solo, 1992, for the convergence of CnT .) The result follows by letting

(53) BnT := n�1=2GnTD
�1
T F 0:

Proof of Theorem 3. The �rst result is immediate from Corollary 4(i) of HPS (2009). The second
result follows from the direct evaluation of the mean of the denominator and the variance of the
expression in the numerator of Corollary 4(ii) of HPS (2009).

Appendix B: Supplementary Lemmas

This section gathers together some technical lemmas. Since ��1i "it is iid, the �i are uniformly
bounded, and the quantities n�1

Pn
1 �

2
i and n�1

Pn
1 �

4
i are convergent,the heteroskedasticity may

be ignored in the calculations given here. Hence, instead of introducing new notation for the
standardized quantities ��1i uit, ��1i Xi, ��2i ViT , we simply let

(54) �2i := 1 8i;

so that the component random variables are iid across i. We also maintain Conditions A and B
throughout, and assume that ui0 := 0 without loss of generality if uit � I(1); otherwise we could
simply replace all the uit in the proofs with uit � ui0. This translation is justi�ed by that fact that
the PFAE is expressed in terms of differences.
We frequently use the following BN decomposition (Phillips and Solo, 1992, Lemma 2.1;

Phillips and Moon, 1999, Lemma 2): Let G(L) =
P1

0 gjL
j . Then

G(L) = G(1)� (1� L) �G(L);

where �G(L) =
P1

0 �gjL
j , �gj =

P1
j+1 gk. In the AR(p) case, G(L) = �(L)�1, where �(L) :=

1� �1L� � � � � �pL
p, so

P1
1 j

kjgjjk <1 for any k � 1, thus
P1

0 j�gjjk <1 for any k � 1 and
jG(1)j <1 (Phillips and Solo, 1992). Therefore,

(55) uit =

8<:�(1)�1"it + �"it�1 � �"it if uit � I(0);

��(1)�1
Pt

s=1 "is + �"i0 � �"it if uit � I(1);

where ��(L) = �(L)=(1� L), and

(56)
PT

t=1uit�1 = ��(1)�1
PT�1

t=1 (T � t)"it + T �"i0 �
PT

t=1�"it�1 if uit � I(1):
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Note that �"it for the stationary case has a different meaning than the same notation for the I(1)
case. This duplicated usage of one notation will not cause any confusion because these terms do
not appear together.
For ��(1), the following is true.

Lemma 7 If 10p� = 1, ��(1) = �0�, where ��(L) = �(L)=(1� L) and � = (1; : : : ; p)0.

Proof. When 10p� = 1, we have �(L) = (1 � L)��(L). So �0(L) = ���(L) + (1 � L)��0(L),
implying that ��(1) = ��0(1) =

Pp
j=1 j�j = �0� because �(L) = 1�

Pp
j=1 �jL

j .

Some results for the unit root case are provided next. These are useful in analyzing terms when
uit � I(1).

Lemma 8 Under (54), if ui0 = 0 and uit � I(1), then

(i) T�2
PT

t=1Eu
2
it�1 ! (1=2)��(1)�2;

(ii) T�3E[(
PT

t=1 uit�1)
2]! (1=3)��(1)�2;

(iii) E(
PT

t=1 uit�1�uit�j) = O(T ) for all j;

(iv) T�1Eu2iT ! ��(1)�2;

(v) Eu4iT = O(T 2);

(vi) E[(
PT

t=1 u
2
t�1)

2] = O(T 4);

(vii) E[(
PT

t=1 ut�1�ut�j)
2] = O(T 2) for all j.

Proof. (i) From (55), we have

1

T 2
PT

t=1Eu
2
it�1 =

��(1)�2

T 2
PT

t=1(t� 1)2 +O(T�1)! 1

2
��(1)�2:

(ii) From (56), we have

1

T 3
E

��PT
t=1uit�1

�2�
=
��(1)�2

T 3
PT�1

t=1 (T � t)2 +O(T�1)! 1

3
��(1)�2:

(iii) We have uit�1 =
Pt�1

s=1�uis, so

E(uit�1�uit�j) =
t�1X
s=1

E(�uis�uit�j) =
t�1X
s=1

!jt�j�sj �
1X
k=0

j!kj <1;
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where !k = E�uit�uit�k. So T�1
PT

t=1Euit�1�uit�j � T�1
PT

t=1

P1
0 j!kj =

P1
0 j!kj < 1

for all T .

(iv) and (v): By (56), uiT = ��(1)�1
PT

1 "it + �"i0 � �"iT . So

T�1Eu2iT =
��(1)�2

T
E

��PT
t=1"it

�2�
+ o(1) = ��(1)�2 + o(1)! ��(1)�2;

and

u4iT � 8��(1)�4
�PT

t=1"it

�4
+ 8(�"i0 � �"iT )4;

implying that T�2E(u4it) = O(1).

(vi) We have�PT
t=1u

2
it�1

�2
=

TX
t=1

u4it�1 + 2
TX
t=2

t�1X
s=1

u2is�1u
2
it�1:

And Eu4it�1 � Mt2 for some uniformly �nite constant M . Thus the expectation of the above
displayed equation is O(T 3)+O(T 4). (For the second term, use the Cauchy-Schwarz inequality.)

(vii) We have�PT
t=1uit�1�uit�j

�2
=
PT

t=1u
2
it�1(�uit�j)

2 + 2
X
s<t

uit�1uis�1�uit�j�uis�j:

But E[u2it�1(�uit�j)2] � Mt for some �niteM and the result follows. (For the second term, use
the Cauchy-Schwarz inequality.)

Now we show that the remainder terms Rdenh;iT in the denominator are negligible under large T
asymptotics (whether n is large or small).

Lemma 9 Under (54), limT!1EkD�1
T F 0Rdenh;iTFD

�1
T k = 0 for h = 1; 2; 3, where F and DT are

de�ned in (30) and (31) and Rdenh;iT are de�ned in (43).

Proof. We will show that EjR(j;k)h;iT j = O(1) for h = 1; 2 and EjR(j;k)3;iT j = O(T 1=2) at most for all
j; k = 1; : : : ; p, where R(j;k)h;iT are de�ned in (37)�(39).

(i) h = 1: Let the three components of R(j;k)1;iT be denoted by R
(j;k)
1a;iT , R

(j;k)
1b;iT and R

(j;k)
1c;iT , so R

(j;k)
1;iT =

R
(j;k)
1a;iT +R

(j;k)
1b;iT +R

(j;k)
1c;iT as written in (37). For R

(j;k)
1a;iT , j � k, we have

TX
t=j+k+1

(uit�j � uit�k) =
TX

t=j+k+1

k�j�1X
r=0

�uit�j�r =

k�j�1X
r=0

(uiT�j�r � uik�r);
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so

0 � R
(j;k)
1a;iT =

1

2T

"
k�j�1X
r=0

(uiT�j�r � uik�r)

#2
� k � j

2T

k�j�1X
r=0

(uiT�j�r � uik�r)
2:

Taking expectations and averaging across i yields

0 � ER
(j;k)
1a;iT �

k � j

2

k�j�1X
r=0

E
h
T�1(uiT�j�r � uik�r)

2
i
= O(1)

at most by Lemma 8(iv). For R(j;k)1b;iT and R
(j;k)
1c;iT , consider

(57) diT;` :=
1

T

TX
t=j+k+1

�
(j;k)
it;` ; �

(j;k)
it;` := (uit�j � uit�k+`)(uit�k � uit�j+`):

(The diT;` notation is used only in this part of the proof.) Because of the inequality

1

T

PT
t=1EjXtYtj �

1

T

PT
t=1(EX

2
t EY

2
t )
1=2 �

�
1

T

PT
t=1EX

2
t �
1

T

PT
t=1EY

2
t

�1=2
;

we have�
EjdiT;`j

�2
� 1

T

PT
t=1E

h
(uit�j � uit�k�`)

2
i
� 1
T

PT
t=1E

h
(uit�j � uit�k�`)

2
i
= O(1):

Because this bound holds for any `, we have EjR(j;k)1b;iT j = O(1) and EjR(j;k)1c;iT j = O(1).

(ii) h = 2: This case is clear because t runs from 1 to j + k.

(iii) h = 3: We �rst show that EjT�1
PT

t=1 uit�juikj = O(T 1=2) for given j and k, which is true
because

E

���� 1TPT
t=1uit�juik

���� � 1

T

PT
t=1(Eu

2
it�j)

1=2(Eu2ik)
1=2 �

�
1

T

PT
t=1Eu

2
it�j

�1=2
(Eu2ik)

1=2 = O(T 1=2);

where we used the fact that T�1
PT

t=1Eu
2
it�j is O(1) if uit � I(0) and O(T ) if uit � I(1) by

Lemma 8(i). The result follows because n�1
Pn

i=1D
�1
T F 0E[Rden3;iT ]FD

�1
T = D�1

T F 0O(T 1=2)FD�1
T =

O(T�1=2), where D�1
T = O(T�1=2).

We derive similar results for the numerator. Here, the remainder terms disappear in L2.

Lemma 10 limT!1E[kD�1
T F 0(Rnumh;iT �Rdenh;iT�)k2] = 0 8h.
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Proof. For h = 1; 2, we will get E[(R(j;k)h;iT � ER
(j;k)
h;iT )

2] � ER
(j;k)
h;iT

2 = O(1) because then
E[D�1

T F 0(Rnumh;iT � Rdenh;iT�)(R
num
h;iT � Rdenh;iT�)

0FD�1
T ] = O(D�2

T ) = O(T�1). For h = 3, we will
establish a sharper boundary for the rotated and rescaled remainder D�1

T F [Rnum3;iT �Rden3;iT�].
(i) h = 1: Again note that R(j;k)1;iT = R

(j;k)
1a;iT + R

(j;k)
1b;iT + R

(j;k)
1c;iT as in the proof of Lemma 9. For

R
(j;k)
1a;iT , we have

(58) ER
(j;k)
1a;iT

2 � (k � j)3

4

k�j�1X
r=0

E
h
T�2(uiT�j�r � uik�r)

4
i
= O(1);

by Lemma 8(v). For R(j;k)1b;iT , we have

ER
(j;k)
1b;iT

2 =
1

4T 2

TP
t=1

E
�
(uit�j � uit�k)

2
�
+

1

4T 2

TP
s<t

E
�
(uit�j � uit�k)

2(uis�j � uis�k)
2
�
;

which is O(1) for given j and k (small) because uit�j � uit�k is a �nite sum of stationary terms
for given j and k irrespective of the existence of the unit root, so its fourth moments are uniformly
(over t) bounded. R(j;k)1c;iT is similarly handled.
(ii) h = 2: This case is straightforward because j + k is �xed and small.
(iii) h = 3: We have

Rden3;iT =
�Xi1

0
p �Gi + ( �Xi1

0
p �Gi)

0 and Rnum3;iT =
�Xi � _vi + �vi�ui;

where Gi is the p� p matrix whose (j; k) element is
Pj+k

s=1 uis�k, _vi is the p� 1 vector whose jth
element is

Pj
t=1 uit, �vi is the p�1 vector whose jth element is

Pj
t=1 uit�j , and� is the Hadamard

product. Because _vi(j) + �vi(k) = ui1�k + ui2�k + � � �+ uij =
Pj+k

t=1 uit�k = Gi(j; k), where _vi(j)
is the jth element of _vi, �vi(k) is the kth element of �vi and Gi(j; k) is the (j; k) element of Gi, we
have Gi = _vi1

0 + 1�v0i. So

Rnum3;iT �Rden3;iT� =
�Xi � _vi � ( �Xi1

0
p �Gi)�+ �vi�ui � (1p �X 0

i �G0i)�

= �Xi � _vi � ( �Xi1
0
p � _vi1

0
p)�� ( �Xi1

0
p � 1p�v0i)�+ �vi�ui

� (1p �X 0
i � 1p _v0i)�� (1p �X 0

i � �vi10p)�

= ( �Xi � _vi)(1� 10�)� �Xi�v
0
i�+ �vi(�ui � �X 0

i�)� 1p( �Xi � _vi)
0�;

where we use the relation ab0 � cd0 = (a � c)(b � d)0 for column vectors a, b, c and d. Because
�ui � �X 0

i� = �"i, �vi = F�10Xi0 and F 01 = e1, where e1 is the �rst column of Ip, we have

D�1
T F 0(Rnum3;iT �Rden3;iT�) = D�1

T F 0( �Xi � _vi)(1� 10�)�D�1
T F 0 �Xi�v

0
i�(59)

+D�1
T Xi0�"i �D�1

T e1( �Xi � _vi)
0�:

43



If uit � I(0), then all the terms in (59) are easy to handle: the variances disappear as T ! 1
because the variance of �Xi and �"i disappear at an O(T�1) rate. Now let uit � I(1). The �rst term
of (59) is null because 10� = 1. For the second term of (59), we have

D�1
T F 0 �Xi�v

0
i� = D�1

T F 0 �XiX
0
i0F

�1�;

where D�1
T F 0 �Xi = (T�1

P
t uit�1;�T�1=2

P
t�uit�1; : : : ;�T�1=2

P
t�uit�p+1)

0. So the (1; k)
element of D�1

T F 0 �XiX
0
i0 is T�2

P
t uit�1ui1�k and satis�es

(60) E

�
1

T 2
PT

t=1(uit�1ui1�k � Euit�1ui1�k)

�2
� 1

T 4
E

��PT
t=1uit�1ui1�k

�2�
= O(T�1);

where the last order can be obtained using (56). The (j; k) elements of D�1
T F 0 �XiX

0
i0 for j > 1

are easily handled because they involve only differences (which are stationary) and initial values.
The variance of the third term on the right hand side of (59) is O(T�2). The last term of (59)
contains only one nonzero element, which is the �rst element equal to T�1( �Xi� _vi)0�. Its variance
is O(T�1); as shown in (60).

Next we approximateD�1
T F 0�i when uit � I(1). The �rst element ofD�1

T F 0�i is T�1
PT

t=1 uit�1"it�
T�2(

PT
1 uit�1)(

PT
1 "it) +

Pp
j=1 T

�2PT
t=1 uit�1uit�jj�j . Of these terms, the uit�j terms in the

last term can be replaced by uit�1 in the sense thatPp
j=1

1

T 2
PT

t=1uit�1uit�jj�j =
1

T 2
PT

t=1u
2
it�1
Pp

j=1j�j + op(1);

where the last op(1) term is negligible in the L2 sense, and all the uit�1 terms can be replaced with
the leading term of (55), i.e., with ��(1)�1

Pt�1
s=1 "is. Also, the vector of the second to last elements

of D�1
T F 0�i is approximated by �T�1=2[�uit�1; : : : ;�uit�p+1]0 because the remaining terms are

negligible in the L2 sense as shown later. Thus, we have the following result:

Lemma 11 Let uit � I(1). Then D�1
T F 0�i = 'iT + �iT with 'iT = ('1;iT ; '02;iT )0, where

'1;iT =
1

��(1)

�
1

T

PT
t=1vit�1"it �

1

T 2

�PT
t=1vit�1

��PT
t=1"it

�
+
1

T 2
PT

t=1v
2
it�1

�
;

'2;iT = �
1p
T

PT
t=1

h
�uit�1; : : : ;�uit�p+1

i0
"it;

vit =
Pt

1 "is, and limT!1E�iT �
0
iT = 0.

Proof. Let

~'1;iT =
1

T

PT
t=1uit�1"it �

1

T 2

�PT
t=1uit�1

��PT
t=1"it

�
+
Pp

j=1

1

T 2
PT

t=1u
2
it�1j�j;
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and ~'iT = (~'1;iT ; '
0
2;iT )

0. We �rst show that D�1
T F 0�i = ~'iT + ~�iT , where E~�iT ~�0iT = o(1). Let

~�1;iT be the �rst element of ~�iT and �2;iT the remaining elements, so that ~�iT = (~�1;iT ; �02;iT )0. Then

~�1;iT =
Pp

j=1

1

T 2
PT

t=1uit�1(uit�j � uit�1)j�j:

Because uit�j � uit�1 = �
Pj�1

k=1�uit�k, we have

~�1;iT =
Pp

j=1

Pj�1
k=1

�
1

T 2
PT

t=1uit�1�uit�k

�
j�j :=

Pp
j=1

Pj�1
k=1diT (k)j�j:

(This diT (k) notation is used only in this proof.) But

E
�
diT (k)

2
�
=
1

T 4
PT

t=1E
h
u2it�1(�uit�k)

2
i
+
2

T 4
PT

t=2

Pt�1
s=1E

h
uit�1uis�1�uit�k�uis�k

i
:

Using the BN decomposition (55), we can approximate uit�1 by ��(1)�1
Pt�1

s=1 "is and �uit by
��(1)"it. Then the �rst term on the right hand side of the last expression is O(T�2) and the second
term is also O(T�2). Because ~�1;iT is a �nite sum of diT (k), we have shown that E~�21;iT = o(1).
Next, we have

�2;iT = �
1

T 3=2

hPT
t=1�

�Xit�1

iPT
t=1"it +

1

T 3=2
PT

t=1�
�Xit�1X

0
it�1��;

where � �Xit�1 is the �rst p � 1 elements of �Xit�1. Because �Xit�1 is stationary, the variance
of the �rst term of �2;iT is O(T�1) and the second term also has an O(T�1) variance-covariance
matrix, which can be shown using (55). The covariance also disappears due to Hölder's inequality.
So far, we have approximated D�1

T F 0�iT with ~'iT (in the L2 sense). Now we show that 'iT �
~'iT ! 0 in L2. This part can be done using (55) and Lemma 7. More precisely, because

Pp
1 j�j =

��(1) by Lemma 7, we have

d1;iT := ~'1;iT � '1;iT =
1

T

PT
t=1(�"it�2 � �"it�1)"it �

1

T 2
PT

t=1(�"i0 � �"it�1) �
PT

t=1"it

+
1

T 2
PT

t=1

�
��(1)uit�1 +

Pt�1
s=1"is

�
(�"i0 � �"it�1):

The second moments of the �rst and second terms are O(T�1), and for the last term, we again
apply (55) and show that its second moment is O(T�1).

Lemma 12 If uit � I(1), under (54), E'1;iT ! 0 and E'21;iT ! (1=4)��(1)�2.

Proof. Let vit =
Ps

1 "is, �vi = T�1
PT

1 vit�1, and �"i = T�1
PT

1 "it. Then

'1;iT =
1

��(1)

�
1

T

PT
t=1vit�1"it � �vi�"i +

1

T 2
PT

t=1v
2
it�1

�
45



(a notation used only in this proof). Using
PT

t=1 vit�1 =
PT�1

t=1 (T � t)"it, we have

E'1;iT !
1

��(1)

�
0� 1

2
+
1

2

�
= 0:

For the second moment, we have

E
h
��(1)2'21;iT

i
=
1

T 2
PT

t=1Ev
2
it�1"

2
it + E�v2i �"

2
i +

1

T 4
E

��PT
t=1v

2
it�1

�2�
� 2

T
E
h
�vi�"i
PT

t=1vit�1"it

i
+
2

T 3
E
hPT

t=1vit�1"it
PT

t=1v
2
it�1

i
� 2

T 2
E
h
�vi�"i
PT

t=1v
2
it�1

i
= H1 + H2 + H3 + H4 + H5 + H6:

First, H1 ! 1=2 because Ev2it�1 = t� 1. For H2, we have �vi = T�1
PT�1

t=1 (T � t)"it, so�PT
t=1vit�1

�2
=
PT

t=1(T � t)2"2it + 2
PT

t=2

Pt�1
s=1(T � t)(T � s)"it"is;�PT

t=1"it

�2
=
PT

t=1"
2
it + 2

PT
t=2

Pt�1
s=1"it"is:

Thus,

H2 !
Z 1

0

Z r

0

h
(1� r)2 + (1� s)2

i
ds dr + 4

Z 1

0

Z r

0

(1� r)(1� s)ds dr =
5

6
:

For the rest, note thatPT
t=1vit�1"it =

PT
t=2

Pt�1
s=1"is"it;(61) PT

t=1vit�1 �
PT

t=1"it =
PT

t=1(T � t)"2it +
PT

t=2

Pt�1
s=1(2T � t� s)"is"it;(62) PT

t=1v
2
it�1 =

PT
t=1(T � t)"2it + 2

PT
t=2

Pt�1
s=1(T � t)"is"it;(63)

where (61) is obvious, (62) uses
PT

t=1 vit�1 =
PT

t=1(T � t)"it, and (63) is obtained by rearranging
the terms after expanding v2it�1 to

Pt�1
s=1 "

2
is + 2

Pt�1
s=2

Ps�1
r=1 "ir"is. Now, for H3, from (63), we

have

H3 ! 2

Z 1

0

Z r

0

(1� r)(1� s)ds dr + 4

Z 1

0

Z r

0

(1� r)2ds dr =
1

4
+
1

3
=
7

12
:

Using (61) and (62), we have

H4 = �
2

T 3
PT

t=2

Pt�1
s=1(2T � t� s)! �2

Z 1

0

Z r

0

(2� r � s)ds dr = �1:

From (61) and (63), we have

H5 =
4

T 3
PT

t=2

Pt�1
s=1(T � t) =

4

T 3
PT

t=2(t� 1)(T � t)! 4

Z 1

0

r(1� r)dr =
2

3
:

Finally, from (62) and (63), we have

H6 ! �4
Z 1

0

Z r

0

(1� r)(1� s)ds dr � 4
Z 1

0

Z r

0

(2� r � s)(1� r)ds dr = �4
3
:

So E[��(1)2'21;iT ] = 1
2
+ 5

6
+ 7

12
� 1 + 2

3
� 4

3
= 1

4
, which implies the result.
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Appendix C: Panel BIC

This Appendix proves consistency of lag length selection by minimizing the kmax BIC criterion
proposed in Section 4.2 above. The analysis is based on the simple panel AR(p) model yit =
�i + uit and uit =

Pp
j=1 �juit�j + "it, where "it is iid with zero mean and �nite variance. Let p

denote the true lag length, i.e., the maximal p such that �p 6= 0. We calculate the sum of squared
residuals (SSR).

SSR from kmax-Truncated Data Let kmax be given and exceed p. Let e�k be a (modi�ed) full
aggregation estimator obtained allowing for k lags after kmax-truncation, i.e.,

(64) e�k =  NX
i=1

TX
t=2kmax+2

t�2kmax�1X
s=1

~zkit;s~z
k0
it;s

!�1 NX
i=1

TX
t=2kmax+2

t�2kmax�1X
s=1

~zkit;s~yit;s;

where zkit;s = (yit�1 � yis+1; : : : ; yit�k � yis+k)
0. For k < kmax, this estimator is not exactly

the full-aggregation estimator because terms are summed over t = 2kmax + 2; : : : ; T and s =
1; : : : ; t� 2kmax � 1 instead of t = 2k + 2; : : : ; T and s = 1; : : : ; t� 2k � 1. Let

SSR(k) =
NX
i=1

TX
t=2kmax+2

t�2kmax�1X
s=1

(~yit;s � ~zk0it;se�k)2:
Let T� = T � 2kmax � 1. Let

�̂2k = q�1NTSSR(k); qnT = nT�(T� + 1)=2:

We want to determine the behavior of �̂2k=�̂2p as nT� !1.

Matrix Notation It is simpler to use matrix algebra and we introduce the following notation. Let
Y be the row vector of ~yit;s for s = 1; : : : ; t� 2kmax � 1, t = 2kmax + 2; : : : ; T and i = 1; : : : ; n;
let Zk be the matrix of ~zkit;s with qnT rows and k columns arranged in the same order; and similarly
let ~" denote the long row vector of ~"it;s. Then

SSR(k) = Y 0MZkY;

where MA = I � PA = I � A(A0A)�1A0 for any matrix A such that A0A is nonsingular. Let
Z = Zp. Let V (k) = SSR(k)� SSR(p).
Let CnT and RnT be such that C�1nTZ 0kZk converges to a nonsingular (almost surely) matrix and

R�1nTZ
0
k~" converges weakly to a nondegenerate distribution. Then CnT and RnT are the stochastic
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orders of the denominator and the numerator, respectively, of the centered full-aggregation estima-
tor e�k��. Let rnT = CnT=RnT , so that rnT is the convergence rate of the full aggregation estimator.
If the panel is stationary, then we have CnT = nT 2� , RnT = n1=2T

3=2
� and rnT = n1=2T

1=2
� ; if the

panel is integrated over t, then CnT = nT 3� , RnT = n1=2T 2� , and rnT = n1=2T�.

Case 1: k < p Let Z = (Zk
...Wk). Then MZk = MZ + PMZk

Wk
, so SSR(k) = SSR(p) +

Y 0PMZk
Wk
Y , where PMZk

Wk
= MZkWk(W

0
kMZkWk)

�1W 0
kMZk = MZkWk � Q�1k �MZkWk with

Qk = W 0
kMZkWk. (Note that C�1nTQk converges to a nonsingular matrix.) Also

MZkY =MZk(Z�+ ~") =MZkWk�� +MZk ~"; �� = (�k+1; : : : ; �p)
0;

and thusW 0
kMZkY = Qk�� +W 0

kMZk ~". So

V (k) = Y 0PMZk
Wk
Y = Y 0MZkWk �Q�1k �W 0

kMZkY

= �0�Qk�� + 2�
0
�W

0
kMZk ~"+ ~"

0MZkWkQ
�1
k W 0

kMZk ~"

= CnT

h
�0�(C

�1
nTQk)�� +Op(r

�1
nT ) +Op(r

�2
nT )
i

= CnT [hnT + op(1)]; hnT = �0�(C
�1
nTQk)�� !p h > 0:

(To show that h > 0, remember that �p 6= 0 and the limit of C�1nTQk is strictly positive de�nite.)
Now C�1nT V (k) = �̂2k � �̂2p , so �̂2k = �̂2p + hnT + op(1), i.e.,

(65) �̂2k=�̂
2
p = 1 + hnT=�̂

2
p + op(1) = 1 + h=�2 + op(1); k < p:

where �2 := plim �̂2p � 0 and h=�2 > 0.

Case 2: k > p Now let k > p. This time, let Zk = (Z
...Wk) where Wk has k � p columns.

Because MZkY = MZk ~" for k � p, we have SSR(k) = ~"0MZk ~", SSR(p) = ~"0MZ ~" and MZk =

MZ � PMZWk
, so

V (k) = SSR(k)� SSR(p) = �~"0PMZWk
~" = �~"0MZWk(W

0
kMZWk)

�1W 0
kMZ ~":

We note that (C�1nTW 0
kMZWk)

�1 is the second diagonal block of the inverse of C�1nTZ 0kZk, which is
asymptotically nonsingular. Noting thatWk is the matrix (with nT�(T�+1)=2 rows) of (yit�p�1�
yis+p+1; : : : ; yit�k � yis+k), we observe that R�1nTW 0

kMZ ~" converges to a nondegenerate random
vector. So CnTR�2nTV (k) converges to a nondegenerate distribution. For notational brevity, let

48



�nT = �CnTR�2nTV (k). Then �nT = Op(1) if k > p, where � is an almost surely positive nondegen-
erate random variable. BecauseCnTR�2nTV (k) = r2nT (�̂

2
k��̂2p) = ��nT , we have �̂2k = �̂2p�r�2nT �nT ,

where rnT = CnT=RnT (the convergence rate of the full aggregation estimator) as before. That is,

(66) �̂2k=�̂
2
p = 1� r�2nT �nT=�̂

2
p; where �nT = Op(1); k > p:

Note that rnT !1.

Consistency of BIC Let N = nT�, the number of available observations after truncation. Let

BIC(k) = log �̂2k + k�n; �n = N�1 log(N):

Then

BIC(k)�BIC(p) = log(�̂2k=�̂
2
p) + (k � p)�n:

If k < p, then by (65),

BIC(k)�BIC(p) = log
�
1 + h=�2 + op(1)

�
� (p� k)�n !p log(1 + h=�2) > 0;

because �n ! 0 and h > 0. So if k < p, then when N is large enough (so �n is small enough), we
have BIC(k) > BIC(p). Next, if k > p, then by (66),

BIC(k)�BIC(p) = log
�
1� r�2nT �nT

�
+ (k � p)�n

= �r�2nT �nT + op(r
�2
nT ) + (k � p)�n;

implying that

r2nT

h
BIC(k)�BIC(p)

i
= ��nT + op(1) + (k � p) logN �

�
r2nT
n

�
;

where �nT = Op(1). Thus, BIC(k) > BIC(p) asymptotically for k > p under the suf�cient
condition that lim inf r2nT=n > 0. This condition holds whether the panel is stationary or integrated
because r2nT is at least O(nT�).

Appendix D: Unit Root Asymptotics for a Modi�ed PFAE

Proof of (23). Theorem 3 of HPS (2009) gives a representation of the FAE estimator in terms of
the pooled OLS estimator. This relationship in the panel context gives the following relationship
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between the PFAE estimator �̂ and the LSDV estimator �̂lsdv:

�̂ = �̂lsdv +

P
i T

�1
2

PT
t=3 y

2
it�1P

i

PT
t=3 �y

2
it�1

+

P
i

n
yi1yi2 � T�12 (yi1 + yi2)

PT
t=3 yit�1

o
P

i

PT
t=3 �y

2
it�1

;

where �yit�1 = yit�1 � T�12
PT

s=3 yis�1, T2 = T � 2, and where

�̂lsdv � � =

P
i

PT
t=3 �yt�1�uitP

i

PT
t=3 �y

2
it�1

;

with �uit := uit � T�12
PT

s=3 uis. It follows that when � = 1 and
p
n
T
! 0

p
nT (�̂� 1)

=
p
nT (�̂lsdv � 1) +

p
nT

T2

P
i

PT
t=3 y

2
it�1P

i

PT
t=3 �y

2
it�1

+

p
nT
P

i

n
yi1yi2 � T�12 (yi1 + yi2)

PT
t=3 yit�1

o
P

i

PT
t=3 �y

2
it�1

=
p
nT

 
�̂lsdv � 1 +

1

T

P
i

PT
t=3 y

2
it�1P

i

PT
t=3 �y

2
it�1

!
+Op

�p
n

T

�

=
p
nT

0@�̂lsdv � 1 + 1

T

3
P

i

PT
t=3 �y

2
it�1 +

�P
i

PT
t=3 y

2
it�1 � 3

P
i

PT
t=3 �y

2
it�1

�
P

i

PT
t=3 �y

2
it�1

1A+ op (1)

=
p
nT

�
�̂lsdv � 1 +

3

T

�
+
p
n

P
i

PT
t=3 y

2
it�1 � 3

P
i

PT
t=3 �y

2
it�1P

i

PT
t=3 �y

2
it�1

+ op (1)

=
p
nT

�
�̂lsdv � 1 +

3

T

�
+
p
n
3
P

i T
�1
2

�PT
t=3 yit�1

�2
� 2

P
i

PT
t=3 y

2
it�1P

i

PT
t=3 �y

2
it�1

+ op (1)

giving the stated relationship between the two estimators �̂ and �̂lsdv:

We now proceed to derive asymptotics for the modi�ed PFAE given by (24) as n; T ! 1
when � = 1. Note that we can set ui0 := 0 without loss of generality when � = 1. Let bQ =

n�1T�2
Pn

i=1

PT
t=3 �u

2
it�1 where �uit�1 := uit�1�T�12

PT
t=3 uis�1. The �rst identity of (25) implies

that

(67) n1=2T (�̂+ � 1) = n1=2T (�̂lsdv � 1 + 3
T
) + n1=2T(�̂� �̂lsdv � 3

T
) = bG+  bH;

where

bG = bQ�1 � 1

n1=2T

nX
i=1

TX
t=3

�uit�1

�
�"it +

3

T
�uit�1

�
;
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�"it := "it � T�22
PT

s=3 "is, and

bH = bQ�1 � 1

n1=2T

nX
i=1

"
1

T2

TX
t=3

u2it�1 + ui1ui2 �
ui1 + ui2

T2

TX
t=3

uit�1 �
3

T

TX
t=3

�u2it�1

#
:

(For the expression for bH , see HPS, 2009, Theorem 3.)
It is straightforward to show that bQ !p �

2=6. Next, Hahn and Kuersteiner (2002) show that
E bG = 0 and the asymptotic variance of bQ bG is 51�4=180: So the asymptotic variance of bG is 51=5.
For the variance of bH , we note that
bQ bH =

1

n1=2T

nX
i=1

"
1

T2

TX
t=3

u2it�1 �
3

T

TX
t=3

�u2it�1

#
+Op(T

�1=2)

=
�2

n1=2

nX
i=1

(�i � E�i) + op(1); �i = �2
Z 1

0

Wi(r)
2dr + 3

�Z 1

0

Wi(r)dr

�2
;

where Wi(r) are iid standard Wiener processes. Note that E�i = 0 and we need to calculate the
variance of �i, E�2i : First,

E�2i = 4E

�Z 1

0

Wi(r)
2dr

�2
� 12E

"Z 1

0

Wi(r)
2dr

�Z 1

0

Wi(s)ds

�2#
(68)

+ 9E

�Z 1

0

EWi(r)dr

�4
:

For the �rst term of (68), we have

E

�Z 1

0

Wi(r)
2dr

�2
= 2

Z 1

0

Z r

0

EWi(r)
2Wi(s)

2dsdr; Wi(r) =Wi(s) + [Wi(r)�Wi(s)];

= 2

Z 1

0

Z r

0

�
EWi(s)

4 + E[Wi(r)�Wi(s)]
2Wi(s)

2
�
dsdr

= 2

Z 1

0

Z r

0

h
3s2 + (r � s)s

i
dsdr =

7

12
;

by direct calculation, where the second identity holds because E[Wi(r)�Wi(s)]Wi(r)
3 = 0. For

the second term of (68), after long and tedious algebra, we have

E

"Z 1

0

Wi(r)
2dr

�Z 1

0

Wi(s)ds

�2#
=
13

30
:

For the third term of (68) we note that
R 1
0
Wi(r)dr � N(0; 1=3), so that

E

�Z 1

0

Wi(r)dr

�4
=
1

9
E
h
N(0; 1)4

i
=
1

9
� 3 = 1

3
:
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Thus, the asymptotic variance of bQ bH is �4 times

4� 7

12
� 12� 13

30
+ 9� 1

3
=
24

180
;

implying that the asymptotic variance of bH is 24/5.
To recapitulate, what we have obtained so far is Avar( bG) = 51=5, and Avar( bH) = 24=5. We

also have Avar
�
n1=2T (�̂fa � 1)

�
= 9 by Theorem 3, and

n1=2T (�̂fa � 1) = bG+ bH:
Thus,

Avar
�
n1=2T (�̂fa � 1)

�
= Avar( bG) + Avar( bH) + 2Acov( bG; bH);

or 9 = 51=5 + 24=5 + 2Acov( bG; bH), implying that Acov( bG; bH) = �3.
It therefore follows from (67) that

Avar
�
n1=2T (�̂+ � 1)

�
= Avar( bG)� 2 Acov( bG; bH) + 2Avar( bH)
=
51

5
� 6 + 24

5
2:

This asymptotic variance is minimized at  = 5=8, where the minimum variance attained is 51=5�
6� 5=8 + (24=5)� (5=8)2 = 333=40 = 8:325.
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Table 1: Mean of �̂ from AR(1), 1000 replications, n = 100
yit = ai(1� �) + �yit�1 + "it, ai � N(2; �2a), "it � iid N(0; 1)

Mean
�a = 1 �a = 3

� T LSDV HK GMM1 GMM2 GMM1 GMM2 PFAE
DIF SYS DIF SYS

0.0 10 -0.1105 -0.0215 -0.0128 0.0022 -0.0152 0.0487 0.0008
0.0 20 -0.0533 -0.0060 -0.0121 0.0012 -0.0127 0.0577 -0.0007
0.3 10 0.1496 0.2646 0.2790 0.2994 0.2727 0.3407 0.2996
0.3 20 0.2291 0.2906 0.2821 0.2936 0.2805 0.3402 0.2989
0.5 10 0.3182 0.4501 0.4721 0.4963 0.4588 0.5309 0.4988
0.5 20 0.4160 0.4868 0.4770 0.4878 0.4733 0.5230 0.4987
0.7 10 0.4794 0.6273 0.6626 0.6901 0.6323 0.7145 0.6981
0.7 20 0.5997 0.6797 0.6704 0.6798 0.6601 0.7007 0.6988
0.9 10 0.6285 0.7914 0.8309 0.8785 0.7735 0.8830 0.8974
0.9 20 0.7729 0.8615 0.8556 0.8677 0.8293 0.8679 0.8991
1.0 10 0.6973 0.8859 0.5717 0.9877 0.5727 0.9878 0.9972
1.0 20 0.8493 0.9467 0.7801 0.9673 0.7798 0.9682 0.9986

Variance� 103

�a = 1 �a = 3
� T LSDV HK GMM1 GMM2 GMM1 GMM2 PFAE

DIF SYS DIF SYS
0.0 10 1.159 1.403 2.278 2.103 2.500 3.430 1.503
0.0 20 0.497 0.548 0.722 0.827 0.768 1.494 0.557
0.3 10 1.213 1.468 2.825 2.364 3.401 3.267 1.593
0.3 20 0.492 0.542 0.769 0.867 0.857 1.242 0.551
0.5 10 1.174 1.421 3.124 2.485 4.300 3.250 1.545
0.5 20 0.460 0.507 0.752 0.885 0.900 1.123 0.512
0.7 10 1.084 1.311 3.410 2.414 5.934 3.270 1.442
0.7 20 0.401 0.442 0.705 0.763 0.977 0.984 0.439
0.9 10 0.973 1.177 4.940 2.261 10.11 2.712 1.367
0.9 20 0.315 0.348 0.797 0.691 1.345 0.882 0.345
1.0 10 0.921 1.138 30.54 0.769 30.37 0.760 1.369
1.0 20 0.252 0.279 4.177 0.681 4.214 0.682 0.273

* HK = LSDV� T=(T � 1) + 1=(T � 1)
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Table 2: 104�Variance of LSDV and PFAE for AR(1) with � = 1, 10,000 replications
yit = yit�1 + "it, "it � iid N(0; 1)

n = 50 n = 100 n = 200

T LSDV PFAE LSDV PFAE LSDV PFAE
20 4.9100 5.5262 2.4475 2.7687 1.2312 1.3915
40 1.2455 1.2515 0.6375 0.6432 0.3096 0.3185
80 0.3275 0.3053 0.1591 0.1533 0.0784 0.0733
160 0.0802 0.0741 0.0402 0.0359 0.0196 0.0175

Note: The LSDV estimator is unbiased for 1� 3=(T � 1).
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Table 3: Mean of �̂1 from AR(2), 1000 replications, n = 100
yit = ai(1� �1 � �2) + �1yit�1 + �2yit�2 + "it, �2 = �0:2

ai � N(2; �2a), "it � iid N(0; 1), �2 = �0:2
Mean

�a = 1 �a = 3
�1 T LSDV GMM1 GMM2 GMM1 GMM2 PFAE

DIF SYS DIF SYS
0.2 10 0.0865 0.1801 0.2033 0.1759 0.2976 0.2006
0.2 20 0.1524 0.1874 0.1998 0.1867 0.2825 0.1993
0.5 10 0.3748 0.4762 0.4980 0.4684 0.5601 0.4996
0.5 20 0.4500 0.4853 0.4919 0.4839 0.5428 0.4991
0.7 10 0.5596 0.6725 0.6943 0.6587 0.7380 0.6990
0.7 20 0.6469 0.6829 0.6875 0.6801 0.7193 0.6990
0.9 10 0.7296 0.8652 0.8895 0.8374 0.9136 0.8986
0.9 20 0.8401 0.8789 0.8828 0.8720 0.8980 0.8990
1.1 10 0.8638 1.0324 1.0812 0.9834 1.0838 1.0978
1.1 20 1.0147 1.0645 1.0750 1.0467 1.0729 1.0989
1.2 10 0.9010 0.7500 1.1925 0.7506 1.1925 1.1972
1.2 20 1.0659 0.9785 1.1767 0.9783 1.1774 1.1984

Variance� 103

�a = 1 �a = 3
�1 T LSDV GMM1 GMM2 GMM1 GMM2 PFAE

DIF SYS DIF SYS
0.2 10 1.481 2.537 2.095 2.897 4.858 1.711
0.2 20 0.546 0.707 0.751 0.738 1.504 0.530
0.5 10 1.576 2.675 2.149 3.314 3.319 1.694
0.5 20 0.562 0.712 0.758 0.762 1.024 0.531
0.7 10 1.648 2.854 2.195 3.980 2.909 1.685
0.7 20 0.576 0.716 0.712 0.793 0.863 0.535
0.9 10 1.729 3.223 2.208 5.551 2.751 1.712
0.9 20 0.600 0.735 0.711 0.879 0.818 0.544
1.1 10 1.777 5.189 2.260 9.172 2.583 1.824
1.1 20 0.650 0.922 0.779 1.256 0.880 0.570
1.2 10 1.713 32.59 1.818 32.43 1.827 1.837
1.2 20 0.672 4.488 0.914 4.530 0.906 0.589
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Table 4: Simulated sizes for AR(1), 5000 replications

�, H0 : � = truth vs H1 : � 6= truth
n T 0.0 0.3 0.5 0.7 0.9 1.0
25 10 0.0658 0.0652 0.0656 0.0672 0.0754 0.0770
25 20 0.0592 0.0628 0.0640 0.0650 0.0666 0.0726
25 40 0.0534 0.0534 0.0552 0.0572 0.0606 0.0710
50 10 0.0582 0.0590 0.0642 0.0638 0.0652 0.0630
50 20 0.0454 0.0468 0.0496 0.0530 0.0566 0.0628
50 40 0.0530 0.0504 0.0522 0.0540 0.0576 0.0618
100 10 0.0538 0.0520 0.0534 0.0512 0.0540 0.0522
100 20 0.0506 0.0532 0.0546 0.0534 0.0514 0.0614
100 40 0.0486 0.0510 0.0502 0.0558 0.0562 0.0610
200 10 0.0480 0.0498 0.0550 0.0558 0.0530 0.0556
200 20 0.0482 0.0502 0.0464 0.0504 0.0518 0.0522
200 40 0.0470 0.0498 0.0508 0.0466 0.0512 0.0514

Table 5: Simulated power for H0 : � = 0; 1 for AR(1) model, 5000 replications

�, H0 : � = 0 vs H1 : � 6= 0 �, H0 : � = 1 vs H1 : � 6= 1
n T 0.000 0.025 0.050 0.075 0.925 0.950 0.975 1.000
25 10 0.0658 0.0742 0.1126 0.1768 0.2234 0.1440 0.0968 0.0770
25 20 0.0592 0.0874 0.1814 0.3380 0.6018 0.3340 0.1456 0.0726
25 40 0.0534 0.1214 0.3308 0.6156 0.9898 0.8466 0.3726 0.0710
50 10 0.0582 0.0790 0.1560 0.2748 0.3274 0.1794 0.0892 0.0630
50 20 0.0454 0.1134 0.3046 0.5822 0.8866 0.5760 0.2076 0.0628
50 40 0.0530 0.1796 0.5562 0.8888 1.0000 0.9916 0.5972 0.0618
100 10 0.0538 0.1006 0.2490 0.4826 0.5594 0.2964 0.1204 0.0522
100 20 0.0506 0.1838 0.5400 0.8734 0.9948 0.8598 0.3478 0.0614
100 40 0.0486 0.3320 0.8642 0.9932 1.0000 1.0000 0.8886 0.0610
200 10 0.0480 0.1478 0.4510 0.7910 0.8384 0.4952 0.1688 0.0556
200 20 0.0482 0.3108 0.8306 0.9916 1.0000 0.9936 0.5866 0.0522
200 40 0.0470 0.5724 0.9866 1.0000 1.0000 1.0000 0.9964 0.0514
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Table 6: Lag Length Selection
yit = �i + uit, uit = �1uit�1 + �2uit�2 + "it, "it � N(0; 1)

kmin = 0, kmax = 4, 1000 replications

�1 = �2 = 0:15
BIC General to Speci�c Method

level=5% level=2.5% level=1%
n T k<2 k=2 k>2 k<2 k=2 k>2 k<2 k=2 k>2 k<2 k=2 k>2
25 10 89 7 3 47 34 18 59 29 12 72 21 7
50 10 89 9 2 28 58 14 39 52 8 52 43 4
100 10 82 17 1 6 81 12 12 81 7 20 77 3
200 10 62 36 2 0 89 11 1 94 6 1 96 2
25 20 53 47 0 14 71 15 22 69 9 33 62 5
50 20 14 85 1 2 87 12 3 91 7 5 92 3
100 20 1 99 0 0 88 12 0 94 6 0 97 3
200 20 0 100 0 0 90 10 0 95 5 0 98 2

�1 = �2 = 0:5
n T k<2 k=2 k>2 k<2 k=2 k>2 k<2 k=2 k>2 k<2 k=2 k>2
25 10 27 62 10 0 81 19 0 87 12 1 92 7
50 10 10 84 7 0 85 15 0 91 9 0 96 4
100 10 1 95 5 0 87 13 0 92 8 0 96 4
200 10 0 98 2 0 89 11 0 94 6 0 98 2
25 20 0 99 1 0 85 15 0 91 9 0 96 5
50 20 0 100 0 0 88 12 0 93 7 0 97 3
100 20 0 100 0 0 89 11 0 94 6 0 98 2
200 20 0 100 0 0 89 11 0 95 5 0 98 2
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