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Abstract

While differencing transformations can eliminate nonstationarity, they typically reduce sig-
nal strength and correspondingly reduce rates of convergence in unit root autoregressions. The
present paper shows that aggregating moment conditions that are formulated in differences
provides an orderly mechanism for preserving information and signal strength in autoregres-
sions with some very desirable properties. In �rst order autoregression, a partially aggregated
estimator based on moment conditions in differences is shown to have a limiting normal distri-
bution which holds uniformly in the autoregressive coef�cient � including stationary and unit
root cases. The rate of convergence is

p
nwhen j�j < 1 and the limit distribution is the same as

the Gaussian maximum likelihood estimator (MLE), but when � = 1 the rate of convergence
to the normal distribution is within a slowly varying factor of n: A fully aggregated estimator
is shown to have the same limit behavior in the stationary case and to have nonstandard limit
distributions in unit root and near integrated cases which reduce both the bias and the variance
of the MLE. This result shows that it is possible to improve on the asymptotic behavior of the
MLE without using an arti�cial shrinkage technique or otherwise accelerating convergence at
unity at the cost of performance in the neighborhood of unity.

Keywords: Aggregating information, Asymptotic normality, Bias Reduction, Differencing, Ef-
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1 Introduction
The model considered in this paper is the simple autoregression with intercept

(1) yt = �+ xt; xt = �xt�1 + "t; t = 1; 2; :::n;

where "t is iid (0; �2) ; and the autoregressive process xt is initialized at some random quantity
x0 with Ex20 < 1; allowing for stationarity by setting x0 =d N (0; �2= (1� �2)) when j�j < 1
and for random recent initializations of the form x0 =

P�
j=1 "�j for some �xed � when � = 1

(e.g., Phillips and Magdalinos, 2008). While the autoregression (1) is simple, it is the kernel
of most dynamic econometric models and its properties are fundamental to more complicated
models. The asymptotic properties of estimators of the scalar autoregressive coef�cient � have
been extensively studied and are re�ected in various ways in more complex models of higher order
and dimension. Moreover, dif�culties in the development of a general optimal theory of estimation
and testing in this simple model are well known and these too carry over to more complex settings.
In particular, the discontinuity in the asymptotic theory as � passes through unity has attracted
much attention since the work of White (1958) and Anderson (1959), and nonstandard limit theory
in the locality of � = 1 has been a continuing obstacle to a theory of ef�cient estimation and
testing. Bias correction in the estimation of � is also affected because the bias function of the least
squares estimator is nonlinear in � and asymptotic approximations to the bias formula are also
discontinuous.
In practice, these obstacles have intensi�ed interest in the unit root case and focused attention

on testing � = 1. Of course, unit root testing does not completely solve the issue because of the
low discriminatory power in unit root tests and because the true � may actually lie in a vicinity of
unity with a localizing coef�cient of the form kn(1 � �) for some unknown sequence kn ! 1;
which presents further dif�culties in con�dence interval construction. These issues also manifest
in cointegrating regressions when the integration properties of the system variables are imperfectly
known. One way of addressing these issues is to transform the system to stationarity by �rst
differencing. In the univariate setting (1) it is well known that �rst differencing can help to unify
limit theory in estimation (e.g. Phillips and Han, 2008) but this uni�cation comes at the cost of
in�nitely de�cient estimation when � is in the vicinity of unity.
This paper provides a new solution to this problem by using a novel form of variable differenc-

ing and aggregation that stacks information from differences at all lags in order to maximize the
information used in estimation. To the best of our knowledge, this method of variable differencing
has never been used before in statistics.
The present paper focuses on the simple AR(1) model though the approach we develop also

works in a general AR(p) environment. The reason for this focus is that the goal of the paper is
to present the key idea of the approach, to show the effects of partial as well as full aggregation
in unifying the limit theory, and to demonstrate the possibility of uniform improvement over least
squares and maximum likelihood estimation in autoregression. A companion paper (Han, Phillips,
and Sul, 2009) deals with the AR(p) case and shows that the approach explored here is useful in
panel data modeling as well as time series estimation.
Of course, the present work is not the �rst attempt to attack the discontinuity issue. Recently,

for instance, Phillips and Han (2008) showed that a simple differencing transformation of (1) leads
to the model

(2) 2�yt +�yt�1 = ��yt�1 + �t;
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and least squares estimation of � in (2) gives the estimator

(3) �̂n =

Pn
t=2�yt�1(2�yt +�yt�1)Pn

t=2(�yt�1)
2

;

which has a Gaussian limit distribution which is continuous as � passes through unity. In particular,
uniformly for � 2 (�1; 1],

p
n(�̂n � �)) N(0; 2(1 + �)): The symmetry of the limit distribution

carries over to very small samples and the estimator �̂n has very little bias. Moreover, differencing
removes the effects of both the intercept and initial conditions on the limit theory. These properties
are particularly useful in panel models (Han and Phillips, 2009). However, in the time series
context, the estimator �̂n is clearly inef�cient for j�j < 1 and in�nitely de�cient at � = 1: In
spite of these drawbacks, the results reveal that uniform asymptotic normality is possible and that
bias elimination in the estimation of dynamic models can be straightforward using differencing
transformations.
The limit theory for �̂n exempli�es the fact that differencing transformations eliminate nonsta-

tionarity but in doing so they typically reduce signal strength and attenuate rates of convergence in
unit root autoregressions. The present paper shows that it is possible to retain many of the useful
properties of differencing transformations without reducing signal strength and information loss in
estimation. In particular, it is possible to retain optimal rates of convergence for both stationary
and nonstationary cases, to retain asymptotic ef�ciency in estimation in the stationary case, and to
reduce both asymptotic bias and variance in unit root and near integrated cases, all with the same
estimation procedure.
The approach that is adopted in the current paper is to aggregate moment conditions that are

formulated in differences in an orderly fashion in order to preserve information and signal strength
in autoregressions. This aggregation has some very desirable effects in terms of both bias and
ef�ciency in regression. The basic idea is simply explained as follows. Underlying the estimator
(3) is the orthogonality condition

(4) E[2�yt�1�yt + (1� �)(�yt�1)2] = E�yt�1�t = 0;

which involves differences and lagged differences of yt: The orthogonality condition (4) makes use
of the variance and autocovariance of �yt; viz. E[(�yt�1)2] = 2�2=(1 + �) and E�yt�1�yt =
�(1� �)�2=(1 + �) and the dependence of these moments on �:
The central idea of the present paper is to make this notion systematic by exploiting the full

autocovariance sequence of the differences. In particular, it is shown that the following moment
conditions hold for differences and higher order differences

(5) E(yt�1 � ys+1)[(yt � ys)� �(yt�1 � ys+1)] = 0;

and that these conditions apply for all � (�1 < � � 1) and for all s � t � 3: Observe that, when
s = t� 3; condition (5) can be written as

(6) E[�yt�1 ff�yt +�yt�2g+ (1� �)�yt�1g] = 0;

which is a temporally balanced version of (4) in which 2�yt is replaced by the sum�yt+�yt�2 of
differences on either side of �yt�1: Interestingly, the moment conditions (5) may also be written
as simple orthogonality conditions for the differences

(7) E(yt�1 � ys+1)("t � "�s) = 0;
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using residuals "t of the regression equation (1) and the reverse regression residuals "�s = xs �
�xs+1: Our approach makes systematic use of all of these conditions in the estimation of �:
The moment conditions (5) hold simply because of the Yule-Walker equations for the autoco-

variance function of the differences when j�j < 1. So, prima facie, there would seem to be nothing
new in (5) and no reason for there to be any advantage in using these conditions. However, the
conditions also apply when � = 1 and in this case the process and its moments are nonstation-
ary. In particular, the sample moment functions are no longer stationary when the difference t� s
increases too fast. In this event, the moment conditions subtly carry information about the nonsta-
tionarity of the process while still operating in difference format. It is this facility to control the
amount of information carried in the conditions that opens up new possibilities in estimation.
We mention three possibilities here. The simplest scenario is to use the moment condition (5)

with s = t� 2� ` for some �xed ` � 1: The resulting method of moments estimator will then be
uniformly asymptotically normal, just as for the estimator �̂n which effectively corresponds with
the case ` = 1 as shown above.
The next possibility is to combine the moment conditions (5) for ` = 1; : : : ; L and allow L!

1 but at a slower rate than n so that L=n! 0: The number of moment conditions is then a small
in�nity relative to n: The resulting unweighted GMM estimator is a partially aggregated moment
condition estimator based on differences of the original series. This partially aggregated estimator
is consistent and uniformly asymptotically normal for all �1 < � � 1. Importantly, this estimator
uses information that includes the behavior of the differences yt � yt�2�` as ` increases and, by
doing so, achieves full ef�ciency in estimation for j�j < 1 and raises the rate of convergence top
nL while retaining asymptotic normality for � = 1: The rate

p
nL can be made arbitrarily close

to n by choosing L = n=L (n) for some suitable slowly varying function such as L (n) = log n:
To the authors' knowledge, this is the �rst demonstration that uniform asymptotic normality is
achievable in autoregressive estimation for �1 < � � 1 with a rate of convergence at � = 1
that is arbitrarily close to n: The result also suggests, although that it is not proved, that in order
to achieve an asymptotic normalizing transformation of the Gaussian MLE that holds uniformly
in � (including � = 1) it is necessary to give up at least a slowly varying factor in the rate of
convergence at � = 1:
A �nal possibility is to combine all possible moment conditions in (5) using the differences

yt � yt�2�` for all ` = 1; : : : ; t � 3:We call the unweighted GMM estimator in this case the fully
aggregated estimator. The fully aggregated estimator (FAE) is consistent and now uses informa-
tion in all the differences yt � yt�2�`: In this case, the number of moment conditions increases at
the rate O(n): Interestingly, as for the partially aggregated estimator, this unweighted GMM is

p
n

convergent, asymptotically normal, and attains full asymptotic ef�ciency for j�j < 1: This ef�-
ciency result, like that for the partially aggregated estimator in this case, is somewhat unexpected
because the moment functions are cross-correlated and no information about cross-correlation is
used in estimation. When � = 1; the FAE is n - convergent and has a nonstandard limit distri-
bution. Computations indicate that the limit distribution of this FAE has much less bias and has
smaller variance than that of the Gaussian MLE. These gains carry over to �nite samples and to
stationary values of �:
When the intercept is known in (1), the model is effectively a levels autoregression through the

origin. In that case, it is well known that higher lag moment conditions of the form Eyt�`"t = 0
are redundant for all ` > 1 once the primary moment condition Eyt�1"t = 0 that is implied by
the martingale structure is used (see Kim, Qian and Schmidt, 1999). However, in the case of an
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unknown intercept, the present results reveal that higher lag moment conditions for the differenced
series yt � yt�2�` are not redundant for ` > 1 and play a major role in achieving asymptotic
ef�ciency for j�j < 1 and in improving the convergence rate for � = 1: In this case, the martingale
structure is lost in the differences and there is information in moment conditions associated with
long differences. Use of this additional information is important in attaining ef�ciency for j�j < 1
and the optimal rate of convergence when � = 1:
The use of differences provides an automated mechanism for reducing bias in autoregression.

One of the main reasons for bias in the maximum likelihood estimation of autoregressive mod-
els like (1) is the non-orthogonality induced by removal of the sample mean. While the use of
differences complicates the form of the autocovariogram, orthogonality conditions such as (7) are
retained in estimation and this provides a natural mechanism for bias removal in the new regres-
sion. Importantly, in the unit root case, this effect of bias removal persists in the limit distribution
for both the partially aggregated and fully aggregated estimators. Accordingly, the use of addi-
tional information in the moment conditions for long differences serves to accelerate convergence
in the unit root case from

p
n to n while retaining the advantages of bias correction from the use

of differences and maintaining good performance in estimation for j�j < 1: These advantages
might be expected to have even greater impact in the case of panel regressions, where maximum
likelihood bias turns to inconsistency in the presence of incidental parameter problems induced by
�xed effects. A companion paper (Han, Phillips and Sul, 2009) shows this to be so and considers
extensions of the method presented here to higher order autoregressions and panel models.
The present paper is organized as follows. Section 2 develops the new moment conditions and

discusses their implications. Section 3 develops moment based estimation procedures in the case
of a single lag. Section 4 provides the limit theory for the fully aggregated estimator and studies the
relation of this limit distribution to that of the Gaussian MLE. The partially aggregated estimator
is studied in Section 5, uniform asymptotic normality is established, and continuity of the limit
theory through roots that are local to unity is shown. Section 6 concludes. Technical derivations
and proofs are given in the Appendix. Notation is standard.

2 New Moment Conditions and Information Aggregation
Observed data yt are assumed to be generated by (1) for some � satisfying �1 < � � 1 and
unknown �: De�ne "�s = xs � �xs+1, so that xs satis�es the reverse regression xs = �xs+1 + "�s.
Subtracting this reversed regression from the original autoregression for xt gives the differenced
equation xt � xs = �(xt�1 � xs+1) + ("t � "�s): Using the fact that xt � xs � yt � ys and letting
s = t� 2� ` yields

(8) yt � yt�2�` = �(yt�1 � yt�1�`) + ("t � "�t�2�`):

Somewhat unexpectedly, the regressor and the regression error are uncorrelated in (8), producing
the key orthogonality condition (5) discussed above.

Lemma 1 For any ` � 1, E(yt�1 � yt�1�`)("t � "�t�2�`) = 0.

To the best of our knowledge, the moment conditions given in Lemma 1 have not been noticed
before in the literature, although previous authors (e.g., Fuller, 1976; Park and Fuller, 1995) have
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noted properties of the reverse regression xs = �xs+1 + "
�
s. As shown in the proof, covariance

stationarity of xt is central to this moment condition when � < 1: But, interestingly, the condition
still holds in the unit root case. A few other points are worth making.
First, equation (8) involves no intercept. So estimators based on (8) will not suffer from the bias

that is typically induced by demeaning procedures to remove the constant term. This bias can be
signi�cant and it is well known to be of substantial importance in panel models with �xed effects,
especially when the cross section sample size is large in relation to the time series sample. Our
companion paper (Han, Phillips and Sul, 2009) systematically investigates the use of aggregated
differenced based estimators for bias elimination in dynamic panel models.
As discussed in the introduction, the special case where ` = 1 relates to the moment condition

(4) used in Phillips and Han (2008). When ` = 1, the moment condition in Lemma 1 can be
written as in (6) so that Phillips and Han's moment 2E�yt�1�yt is replaced by E�yt�1�yt +
E�yt�2�yt�1. So the moment condition in Lemma 1 for ` = 1 is a temporally balanced version
of Phillips and Han's (2008) moment condition, as indicated in the Introduction.
In the levels autoregression xt = �xt�1+ "t where xt is observable, higher order orthogonality

conditions such as Ext�k"t = 0 for k � 2 do not add ef�ciency once the �rst lag-order moment
condition Ext�1"t = 0 is used (see Kim, Qian and Schmidt, 1999, Theorem 2). However, higher `
values in the transformed equation (8) add information in both the stationary and unit root cases. As
indicated earlier, this information accumulation is due to the fact that the martingale condition does
not hold in the differenced model. So, the presence of an intercept makes an important difference
in terms of the relevance/redundancy of moment conditions. As shown below, the effects of the
information accumulation are particularly dramatic in the unit root case. We �rst investigate how
information from a single lagged difference can be used and then consider the full and partial usage
of all the lagged difference moment conditions.

3 Partial Information Using a Single-Lag Difference
Let yt be observed for t = 1; : : : ; n. From Lemma 1, simple least squares (OLS) regression applied
to (8) yields a consistent single-lag estimator

(9) ~�` =

Pn
t=3+`(yt�1 � yt�1�`)(yt � yt�2�`)Pn

t=3+`(yt�1 � yt�1�`)2
= �+

Pn
t=3+`(xt�1 � xt�1�`)("t � "�t�2�`)Pn

t=3+`(xt�1 � xt�1�`)2
;

for any �xed ` � 1. In particular, for any `, we have the following result.

Theorem 2 Let S`(�) =
P`�1

j=0 �
j . Let n` = n� 2� `. For all � 2 (�1; 1], we have

(10) n`1=2(~�` � �)) N(0;
`); 
` = 2(1 + �)S`(�)
�1;

as n!1.

The limit distribution (10) is uniformly valid for all stationary � values and for � = 1:
As shown in the proof of Theorem 2, the inverse of
`, which is proportional to S`(�)=(1+�), is

the probability limit of n�1 times the denominator in (9), and represents the amount of information
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contained in the moment condition in Lemma 1 for a given `. When � = 0, it is clear that S`(�)
is identical for all `, and so in this case asymptotic ef�ciency remains unaffected by the choice of
`; although some initial observations are obviously lost in �nite samples. On the other hand, if �
is close to unity, then the amount of information strictly increases with the lag difference `, and
the resulting estimator becomes correspondingly more ef�cient as ` increases. This reasoning is
con�rmed by the fact that 
` decreases as ` increases if � > 0. Clearly more observations are lost
by increasing ` so the �nite sample variance (and asymptotic variance 
`= (n� 2� `)) does not
always decrease as ` increases. But if n is large, then the ef�ciency loss from losing the �rst few
observations would be small relative to the fall in 
`, and the asymptotic variance of ~�` will fall as
` increases.

4 Full Information Aggregation using All Lag Differences
Information contained in the form of the moment conditions in Lemma 1 for a single ` is obviously
limited. We can make use of the conditions for all ` by stacking the equations as

(11) yt � yt�2�` = �(yt�1 � yt�1�`) + ("t � "�t�2�`); ` = 1; 2; : : : ; t� 3;

and using all of them in estimation. This procedure is equivalent to unweighted GMM estimation
based on Lemma 1 for all possible ` values. The resulting estimator �̂fa, which we call the full
aggregation estimator (FAE), is

(12) �̂fa =
Pn�3

`=1

Pn
t=3+`(yt�1 � yt�1�`)(yt � yt�2�`)Pn�3
`=1

Pn
t=3+`(yt�1 � yt�1�`)2

;

and simply involves pooling the information in the system (11). The following equivalence relating
�̂fa to the usual least squares regression estimator is useful.

Theorem 3 Let ~yt�1 = yt�1 � n�10
Pn

s=3 ys�1 and ~yt = yt � n�10
Pn

s=3 ys (at the risk of some
notational confusion). Let �̂ols = (

Pn
t=3 ~y

2
t�1)

�1Pn
t=3 ~yt�1~yt be the OLS coef�cient estimator

from the regression of yt on yt�1 and an intercept using the observations fy2; : : : ; yng. Then

(13) �̂fa � �̂ols +
n�10

Pn
t=3 x

2
t�1Pn

t=3 ~x
2
t�1

+
x1x2 � n�10 (x1 + x2)

Pn
t=3 xt�1Pn

t=3 ~x
2
t�1

;

where n0 = n� 2.

When j�j < 1, the second and third terms on the right hand side of (13) are Op(n�1), so
n1=2(�̂fa� �̂ols) = Op(n�1=2), implying that the full aggregation estimator and OLS estimator have
the same asymptotic distribution in the stationary case. Since �̂ols is asymptotically equivalent to
(and hence as ef�cient as) the Gaussian MLE using y2; : : : ; yn when j�j < 1, it follows that no
information is lost asymptotically by the differencing and information aggregation procedure in
this case. However, the �rst observation y1 is lost, which is not important asymptotically but does
affect performance in very small samples.
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By contrast, when � = 1, the second term of (13) is Op(n�1) and the third term is Op(n�2):
So the limit distribution of n(�̂fa � �) differs from the distribution of n(�̂ols � �) by virtue of the
second term. Note that the second term is positive, so that the term always provides an upward
adjustment to the MLE1, delivering a built-in bias reduction. Importantly, this bias reduction is
retained and plays a signi�cant role in the form of the asymptotic distribution. In fact, as we report
below, the full aggregation (FA) procedure substantially reduces the bias in ML estimation and
also produces a reduction in variance, with both improvements holding in the limit distribution.
The limit theory is straightforward and is detailed as follows.

Corollary 4 (i) If j�j < 1, then n1=2(�̂fa � �)) N(0; 1� �2). (ii) If � = 1, then

(14) n(�̂fa � 1))
R 1
0
~BrdBr +

R 1
0
B2rdrR 1

0
~B2rdr

where Br is standard Brownian motion and ~Br is the corresponding demeaned process, i.e., ~Br =
Br �

R 1
0
Bsds. (iii) If � = 1� c=n for some constant c; then

(15) n(�̂fa � �))
R 1
0
~JrdBr +

R 1
0
J2r drR 1

0
~J2r dr

;

where Jr =
R r
0
ec(r�s)dBs and ~Jr = Jr �

R 1
0
Jsds:

As shown in the Appendix, an alternative form of the limit distribution given in (14) is

(16) n(�̂fa � 1))
R 1
0

R r
0
(1 + p� r)dBpdBrR 1

0

R r
0
(Br �Bs)2dsdr

:

The denominator and the double summations in (16) more closely resemble the form of the corre-
sponding expressions in (12) for the estimator �̂fa: The FAE estimator pools moment conditions
involving long differences in the time series and these differences are re�ected in the limit formula
(16).
When � = 1, the MLE has the limit distribution (

R 1
0
~B2rdr)

�1 R 1
0
~BrdBr, and it follows that

n(�̂fa � �̂mle)) (
R 1
0
~B2rdr)

�1 R 1
0
B2rdr > 0. The FAE therefore provides an upward correction to

the MLE asymptotically, thereby adjusting the well-known downward bias of the MLE. In a similar
way, n(�̂fa� �̂mle)) (

R 1
0
~J2r dr)

�1 R 1
0
J2r dr > 0 when � = 1+c=n; so the same upward correction

applies in local neighborhoods of unity. Figure 1 illustrates the �nite sample effects of this upward
correction to the MLE when n = 500: As is apparent from the cross plots of

�
�̂fa; �̂mle

�
given in

these �gures in relation to the 45o line, the greatest correction occurs in the unit root case. But the
correction is active in all other cases. At � = 0 the correction is clearly small but is still effective
in reducing bias as con�rmed in simulations reported below.
Importantly, the numerator of �̂fa � � has no bias whatsoever for all n and for all �; unlike

the corresponding numerator of �̂mle � �: This property turns out to have a large impact on the
�nite sample peformance of the estimator �̂fa for all � and its limit behavior for � = 1: Also,

1This is a conditional MLE or OLS estimator.
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Figure 1: Cross plots of �̂MLE and �̂fa for � = 0; 0:5; 0:9; 1:0 with n = 400 against a 45o line.

the bias reduction in the estimator �̂fa is achieved automatically for any error distribution without
calculating a bias formula (e.g. Andrews, 1993) or using simulation based methods like indirect
inference (Gouriéroux, Phillips and Yu, 2006). The method is therefore very convenient to use in
practical work. It also has very useful applications in dynamic panel data models with �xed effects.
When j�j < 1, the FAE is asymptotically ef�cient and has less �nite sample bias than the MLE.

When � = 1, the asymptotic distribution of the FA estimator has less bias and turns out to have less
variance also. Table 1 reports detailed results from 100,000 simulations of (1) with standard normal
errors "t and for � = 0; 0:5; 0:9; 0:95; 0:99; 1:0. The table shows the bias, standard deviation, and
RMSE measures, and the ratio of the standard deviations of the FAE and MLE estimators for these
values of � and for n = 100; 500; 5000: Bias reduction is clear in all cases and for all parameter
values, even for � = 0 and very large sample sizes. For � = 1; the bias reduction is substantial�
greater than 50% for all sample sizes, including n = 5,000: Strikingly, the standard deviation is
also smaller for the FAE than the MLE when � � 0:9 in the table. Although not reported here, the
asymptotic simulation standard errors for the standard deviation ratio were found to be very small,
and the null hypothesis that the standard deviation ratio is unity is rejected for all n and � values.
The reduction for � = 1 is observed for all simulations conducted for n > 100 and is sustained in
very large samples up to n = 10,000. Corresponding to the reductions in both bias and variance,
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RMSE is smaller for the FAE than the MLE for all parameter settings except � = 0:
Figure 3 illustrates simulated densities for the MLE and FAE from 10,000 replications with

standard normal disturbances and n = 500. We observe that the distribution of the FAE is well
centered at the true parameter (though the bias is not completely removed, as is clear from the
table, and there is some asymmetry in the distribution) and that its density at the mode is slightly
higher than the highest density of the MLE, corresponding to the smaller simulated variances.
Remarkably, the calculations for large n indicate that the FAE has smaller asymptotic variance

than the MLE when � = 1 as well as smaller bias. Of course, standard optimality theory for
ML estimation does not apply in autoregressions which include nonstationary cases because of
the change in the convergence rate as � passes through unity and the presence of nonstandard
limiting distribution theory with skewness and bias in the asymptotic distribution at � = 1: We
may therefore expect that it is possible to �beat� the MLE at unity while retaining its good behavior
elsewhere and to do so without resorting to �superef�cient� estimators of the Hodges or Bayesian
type. For example, it is known (Phillips, 1993, 1995) that standard FM regression methods lead
to accelerated convergence in estimation with rates that exceed O (n) at � = 1; while retaining
the usual Gaussian limit theory of the MLE for j�j < 1:While FM methods of estimation are not
pathological (in the sense that they are not intentionally designed to provide faster convergence
rates at a single point in the parameter space), these methods do have the unsatisfactory property
that they have similar behavior to the unit root case in a nontrivial locality of unity. By contrast, as
shown in Corollary 4, the FAE has discriminatory asymptotic behavior (different from that at unity)
in a local neighborhood of unity, while showing improved performance at unity and at neighboring
points.
According to unreported simulations for various n (ranging from 50 to 10,000), for all values

of 1 � � � 0:70 and with the exception of a few small n values, the FAE reduces variance in
estimation relative to the MLE. The gains for � � 0:9 are clear and in the unit root case are
dramatic because they are sustained in the limit as n!1. For n = 10,000 the standard deviation
ratio of FAE to MLE is 0.98, indicating a 2% reduction in dispersion in the unit root case. Gains
in terms of variance reduction also occur when � is local to unity. Figure 2 plots the ratio of the
standard deviations of the FAE and MLE for � = 1� c=n for the same values of n and for various
values of the localizing coef�cient c: The reductions in dispersion are clear across all values of c
and follow a similar pattern to the gains in the unit root case. The values at n = 10,000 may be
interpreted as estimates of the reduction in the asymptotic variance. As in the unit root case, these
are signi�cant. Interestingly, it appears that the asymptotic variance reduction in the FAE over the
MLE is greater for small c 6= 0 than it is c = 0.2 The maximum gain seems to be around c = 3
where FAE achieves more than a 4% reduction in asymptotic standard deviation over the MLE.
Note that the bias correction delivered by full aggregation is not complete because of the cor-

relation between the numerator and the denominator. Thus, a mean or median unbiased estimator
(e.g., Andrews, 1993; Gouriéroux, Phillips and Yu, 2006) can be expected to have better bias cor-
rection performance because those methods use the bias function (computed by simulation) of the
ML estimator in constructing the bias corrected estimator. According to a simulation of 10,000
replications, the simulation-based indirect inference method (Gouriéroux, Phillips and Yu, 2006)
has smaller bias (approximately 1/2 of the bias of the FAE) when � = 1. Figure 3 gives the density

2Phillips and Lee (1996) found a similar result in terms of the maximum ef�ciency gains of generalized least
squares relative to ordinary leasts squares in trend removal in regression with near integrated errors.
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Table 1: Performance Characteristics of the MLE and FAE from 100,000 Simulations

Bias� 100
p
n� SD SD RMSE

� n MLE FAE MLE FAE ratio MLE FAE
0.00 100 �0:9957 0:0150 1:0008 1:0112 1:0104 0:1006 0:1011

0.00 500 �0:2113 �0:0109 1:0012 1:0032 1:0020 0:0448 0:0449

0.00 5000 �0:0237 �0:0037 1:0033 1:0035 1:0002 0:0142 0:0142

0.50 100 �2:5221 �1:0006 0:8928 0:9002 1:0082 0:0928 0:0906

0.50 500 �0:5153 �0:2148 0:8732 0:8744 1:0013 0:0394 0:0392

0.50 5000 �0:0528 �0:0228 0:8686 0:8687 1:0002 0:0123 0:0123

0.90 100 �3:9992 �1:8850 0:5684 0:5640 0:9923 0:0695 0:0595

0.90 500 �0:7621 �0:3729 0:4668 0:4642 0:9944 0:0222 0:0211

0.90 5000 �0:0751 �0:0371 0:4385 0:4382 0:9994 0:0062 0:0062

0.95 100 �4:3771 �2:0286 0:4997 0:4941 0:9889 0:0664 0:0534

0.95 500 �0:8044 �0:3942 0:3583 0:3540 0:9881 0:0179 0:0163

0.95 5000 �0:0780 �0:0389 0:3166 0:3161 0:9984 0:0045 0:0045

0.99 100 �4:9770 �2:1986 0:4445 0:4430 0:9965 0:0667 0:0495

0.99 500 �0:9115 �0:4274 0:2339 0:2273 0:9720 0:0139 0:0110

0.99 5000 �0:0810 �0:0401 0:1522 0:1509 0:9913 0:0023 0:0022

1.00 100 �5:2544 �2:3045 0:4324 0:4355 1:0070 0:0681 0:0493

1.00 500 �1:0711 �0:4731 0:1997 0:1976 0:9895 0:0139 0:0100

1.00 5000 �0:1078 �0:0477 0:0641 0:0627 0:9785 0:0014 0:0010
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Figure 2: Ratios of standard deviations of FAE and MLE estimators for � = 1 � c=n; various c;
and n = 100; 500; 1000; 2000; :::; 10;000 computed from 100,000 simulations.

of the indirect inference estimator from this simulation. Though the FAE has larger bias, the mode
of the simulated distribution is a lot closer to the true value than the indirect inference estimator.
The performance of FAE may also be compared with bias correction estimators in the literature

such as the weighted symmetric estimator (WSE) of Park and Fuller (1995), the restricted MLE
(RML) of Cheang and Reinsel (2000), and bias correction by Roy and Fuller (2001). According
to simulations (see Table 2) conducted for n = 100 and 20,000 replications, the FAE has a smaller
bias and a slightly bigger variance than the WSE and the RML, and the mean squared error (MSE)
of the FAE is smaller for large � and larger for small � than the WSE and the RML. (Other n values
have also been examined, and the behavior is largely the same.) The Roy-Fuller bias correction
estimator (RF) looks better than the FAE around unity, which is partly explained by the fact that
RF approximately corrects for bias by a piecewise function that employs an approximate analytical
bias formula for the OLS estimator adjusted to do well at unity where it is median unbiased. The
RF adjustments change according to the value of n, while the FAE uses the same formula for all
values of � and n. It is also notable that RF uses the estimator when it exceeds unity (depending
on a choice parameter), which affects the MSE favorably. However, MSE comparisons favor the
FAE procedure for � � 0:90; bias reduction in FAE is achieved by a simple least squares method
without any special devices or adjustments, FAE has the same form in both stationary and unit
root cases, and FAE estimation does not require knowledge of a bias formula or simulations of the
bias. These properties are especially useful in application of the FAE procedure in panel models,
as explored in other work by the authors (Han, Phillips and Sul, 2009).
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Figure 3: Densities of MLE, FAE and Indirect Inference Estimators (n = 500, � = 1)

Table 2: Comparison of OLS, FAE, Park-Fuller, Roy-Fuller, and Cheang-Reinsel for n = 100

Mean n�MSE
� OLS FAE WSE RF RML OLS FAE WSE RF RML

0.00 -.010 -.000 -.010 -.000 -.000 1.015 1.025 1.015 1.066 1.024
0.20 .184 .196 .184 .200 .196 1.000 .996 1.000 1.035 .994
0.40 .378 .392 .378 .400 .391 .921 .895 .919 .927 .893
0.60 .572 .588 .572 .600 .587 .780 .724 .774 .747 .722
0.80 .765 .784 .766 .800 .781 .585 .487 .570 .505 .487
0.90 .860 .881 .862 .900 .876 .479 .351 .453 .371 .354
0.95 .906 .930 .910 .949 .922 .437 .283 .396 .289 .292
0.99 .940 .968 .948 .980 .956 .439 .239 .361 .213 .263
1.00 .947 .977 .957 .986 .963 .461 .243 .372 .206 .286
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5 Partial Aggregation and Uniform Asymptotic Normality
When j�j < 1, both the single-lag estimator ~�` (using a single `) and the FAE �̂fa have a

p
n

convergence rate and the limit distribution is normal. But if � = 1, then ~�` has a
p
n-rate of

convergence with a Gaussian limit, while �̂fa has the faster O(n) convergence rate and a non-
Gaussian limit distribution. The asymptotic distribution of the FAE therefore has a discontinuity
at � = 1 analogous to the MLE. Since there are many intermediate choices of moment conditions
underlying the estimators ~�` and �̂fa; it is natural to reason that that there may exist a partial
aggregation method that embodies some of the advantages of both ~�` and �̂fa: In particular, it
might be anticipated that such a procedure might yield a uniform Gaussian limit distribution and
at the same time a faster convergence rate at � = 1 than �̂`:
A natural approach to consider is to use only part of the information in the moment conditions

(5) by aggregating a small in�nity (say L!1 with L
n
! 0) of these conditions rather than all of

them. Accordingly, we de�ne the partial aggregation estimator (PAE) as

(17) �̂pa =
PL

`=1

Pn
t=3+`(yt�1 � yt�1�`)(yt � yt�2�`)PL
`=1

Pn
t=3+`(yt�1 � yt�1�`)2

:

When 1
L
+ L

n
! 0, uniform asymptotic normality is obtained and the rate of convergence at � = 1

depends on the expansion rate of L: A general form of the limit theory for the PAE is as follows.

Theorem 5 Let S`(�) =
P`

j=1 �
j�1, and �SL(�) = L�1

PL
`=1 S`(�). Let

VL(�) =
1

L
+
1

L

L�1X
`=1

�
1� `

L
+
SL�`(�)

L

�
S`(�)
�SL(�)

:

For all �, we have

(18)
�

n �SL(�)

2(1 + �)VL(�)

�1=2
(�̂pa � �)) N(0; 1)

as L=n! 0.

The CLT in (18) holds for all � and for any L as long as L=n! 0, and in that sense (18) presents
a uni�ed asymptotic result for the estimator �̂pa.

Remarks.

1. The expression simpli�es considerably when L ! 1. If � is �xed and j�j < 1, then
�SL(�)! 1=(1� �), SL�`=L! 0 and VL(�)! 1=2 by dominated convergence, leading to

n1=2(�̂pa � �)) N(0; 1� �2); j�j < 1; as
1

L
+
L

n
! 0:

If � = 1, then S` = `, L�1 �SL ! 1=2 and VL !
R 1
0
2(1� x) � 2x dx = 2=3. In this case

(19) (nL)1=2(�̂pa � 1)) N(0; 16=3); � = 1; as
1

L
+
L

n
! 0;

and the PAE estimator is
p
nL convergent to unity with an asymptotic normal distribution.
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2. By establishing local asymptotics, we can verify that the asymptotic distributions are contin-
uous at � = 1. To do so, let � % 1 in such a way that 1 � � = c=L with 0 � c < 1. This
formulation corresponds to the usual local to unity framework with localizing coef�cient c,
but here uses a region around unity measured in units of 1=L rather than 1=n: For the calcu-
lation, let ` = [Lx] ; the integer part of Lx for some x 2 [0; 1] ; and let L ! 1. Then, for
given x > 0; we have �` ! e�cx as L!1; and L�1S` ! c�1(1� e�cx). Furthermore,

L�1 �SL =
1

L

LX
`=1

L�1S` !
Z 1

0

c�1(1� e�cx)dx = c�2(c+ e�c � 1) =: h0(c);

and

VL !
c2

c+ e�c � 1

Z 1

0

�
1� x+ 1� e

�c(1�x)

c

��
1� e�cx

c

�
dx =: h1(c):

So the convergence rate of the PAE �̂pa is (nL)1=2 and its limit distribution in this local to
unity case is given by

(20) (nL)1=2(�̂pa � �)) N(0; 4h1(c)=h0(c)):

Note that 1+�! 2 in this case. The case where �% 1 faster than O(L) corresponds to c =
0, and can be analyzed directly from the limit (20) using L'Hôpital's rule. More speci�cally,
we have h0(0) = 1=2 and h1(0) = 2

R 1
0
2(1 � x)xdx = 2=3, so that (nL)1=2(�̂pa � �) )

N(0; 16=3); corresponding to (19) for the case where � = 1. If � reaches 1 at a slower rate
than O(L) so L(1 � �) ! 1, then �` ! 0 as L ! 1 along the sequence ` = [Lx] for
x > 0: Hence, (1 � �)S` ! 1 along all such paths for each x > 0 as is easily calculated.
Thus, (1� �) �SL ! 1 as well, and VL ! 1=2. In this event, we have the limit theory

n1=2(1� �2)�1=2(�̂pa � �)) N(0; 1);

which also includes the case of �xed �. It follows that local to unity asymptotics for the PAE
estimator are continuous in both directions, with normal limit theory towards unity as well
as towards �xed j�j < 1 and stationarity. In this sense, the results are quite different from
usual local to unity asymptotics (Phillips, 1987).

Figure 4 presents simulated densities of the rescaled and centered partial aggregation estimates
from 10,000 replications for n = 400 and � = 0; 0:5; 0:9; 1 for various L values, where the rescal-
ing factors are determined by (18) of Theorem 5. The �gures show that the distributions are well
approximated by standard normal asymptotics for all L values for � < 1. When � = 1 (the lower
right �gure), the rescaled PAE is seen to be approximately normally distributed for L � 20 = n1=2
(the top three densities in this �gure), but as L increases, the distribution departs further from
normality and moves towards the distribution of the FAE. In all cases, the distributions are well
centred at the true parameter. Note that a more dispersed distribution does not mean a larger vari-
ance because the scaling factor increases with L. On the contrary, when � = 1, the distribution of
the PAE for larger L is a lot more condensed around the true parameter than it is for a smaller L.
(See the scales in the �gures.)
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Figure 4: Densities of Partial Aggregation estimators (10,000 replications, n = 400)
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6 Conclusion
This paper develops some new moment conditions involving short and long differences for autore-
gression. The moment conditions, which are asymptotically in�nite in number, lead to unweighted
GMM estimators which have some interesting and desirable properties. Partially aggregating L
moment conditions and allowing L to pass to in�nity at a slower rate than the sample size leads
to an estimator with a limiting normal distribution that holds uniformly in the autoregressive co-
ef�cient � including stationary and unit root cases. The rate of convergence of this estimator isp
n when j�j < 1 and the limit distribution is the same as the Gaussian MLE, but when � = 1 the

rate of convergence to the normal distribution is
p
nL and can be within a slowly varying factor of

n: This result shows that uniform asymptotic normality in autoregression is possible with a small
sacri�ce in the rate of convergence at � = 1:
The fully aggregated estimator, which uses all of the moment conditions, has the same limiting

normal distribution in the stationary case as the Gaussian MLE and nonstandard limit distributions
in the unit root and local to unity cases which differ from those of the MLE. This estimator has
less bias than the MLE and achieves a reduction in variance, showing that improvements on the
MLE are possible without using "superef�cient" methods and that these gains hold across a range
of � values in the vicinity of unity and persist in the limit distributions as n ! 1: So, there are
uniform asymptotic gains in ef�ciency in the neighborhood of unity.
The ideas and results presented here are primarily of theoretical interest because of the simplic-

ity of the dynamic model (1). The practical importance of the work lies in extensions of the ideas
and methods of the current paper to models that are of greater interest in applications but where
related problems arise. In particular, the problems involved in �tting an intercept in dynamic re-
gressions that are considered here are well known to be exacerbated in dynamic panel regressions
because of the presence of potentially large numbers of �xed effects. A companion paper (Han,
Phillips and Sul, 2009, explores those problems from the perspective of the moment conditions
given in the current paper and develops new procedures of estimation based on similar techniques
of aggregating moment conditions that allow for higher order dynamics and the presence of �xed
effects in panel models.

A Proofs

A.1 Subsidiary Lemmas
Throughout this section, we assume that 0 � � � 1 to simplify arguments, although the main
results continue to hold for �1 < � � 1 as discussed below. The following quantities will be used
frequently:

(21) Sk(�) =
kX
j=1

�j�1; �Sk(�) =
1

k

kX
j=1

Sj(�):

Note that Sk(�) appears in the case of estimation with a single lag and �Sk(�) is a recursive average
of Sj(�) over j = 1; : : : ; k. The quantities Sk(�) and �Sk(�) are useful for handling the stationary
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and unit root cases in a continuous way. If � < 0, we can let Sk(�) � 1 and �Sk(�) � 1, then all the
necessary analysis can be done with no signi�cant changes.
For all � � 1, we have the following facts.

Lemma A.1 (i) (1� �k)Sm = (1� �m)Sk; (ii) Sk(�2) � Sk(�); (iii) �Sk(�) � Sk(�) � 2 �Sk(�).

Proof. (i) Obvious. (ii) Obvious because �2 � � when � � 0. (iii) Because Sj(�) is increasing in
j, we have �Sk(�) = k�1

Pk
j=1 Sj(�) � Sk(�). Next, because Sj(�)+Sk�j+1(�) � Sk(�), we have

2 �Sk(�) =
1

k

kX
j=1

[Sj(�) + Sk�j+1(�)] �
1

k

kX
j=1

Sk(�) = Sk(�)

as claimed.
We also use the following fact.

Lemma A.2 Let j � k. Then

E(xt � xt�j)(xt � xt�k) =
�2(1 + �k�j)Sj(�)

1 + �
:

Proof. Straightforward for both j�j < 1 and � = 1.
We are now prove Lemma 1.

Proof of Lemma 1. By de�nition "�s = xs � �xs+1 and so the moment conditions

E(xt�1 � xs+1)[(xt � xs)� �(xt�1 � xs+1)] = 0

are equivalent to E(xt�1 � xs+1) ("t � "�s) = 0: These conditions hold trivially because E(xt�1 �
xs+1)"t = 0 and E(xt�1 � xs+1)"�s = 0 by direct calculation for both � = 1 and j�j < 1:

A.2 Fixed Lag Estimation
First note that

(22) xt�1 � xt�1�` =
`�1X
j=0

�j"t�1�j � (1� �`)xt�1�`:

We consider the numerator and denominator of the �xed lag estimator

~�` = �+

Pn
t=3+`(xt�1 � xt�1�`)("t � "�t�2�`)Pn

t=3+`(xt�1 � xt�1�`)2

given in (9).
Denominator: Let Cn =

Pn
t=3+`(xt�1�xt�1�`)2. We will establish a law of large numbers (LLN)

for n�1` Cn where n` = n� 2� `. Because xs =
Ps�1

j=0 �
j"s�j + �

sx0, (22) implies that

xt�1 � xt�1�` =
`�1X
j=0

�j"t�1�j � (1� �`)
t�2X
j=`

�j�`"t�1�j � (1� �`)�t�1�`x0:
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We can write the �rst two terms of this expression as
P1

j=0 cj"t�1�j . Then, whether � < 1 or
� = 1, the cj's satisfy conditions for a LLN for n�1`

Pn
t=3+`(xt�1 � xt�1�`)2 by means of the

Phillips and Solo (1992) device. For the limit, we have

(23) n�1` E(Cn) =
1

n`

nX
t=3+`

�
2�2

1 + �

�
S`(�) =

�
2�2

1 + �

�
S`(�);

by Lemma A.2. This is also the probability limit of n�1` Cn.
Numerator: Let Dn =

Pn
t=3+`(xt�1 � xt�1�`)("t � "�t�2�`). Because "�t�2�` = xt�2�` � �xt�1�`,

we have

Dn =
nX

t=3+`

(xt�1 � xt�1�`)"t �
n�1X
t=2+`

(xt � xt�`)xt�1�` + �
nX

t=3+`

(xt�1 � xt�1�`)xt�1�`

=
nX

t=3+`

(xt�1 � xt�1�`)"t �
nX

t=3+`

[(xt � xt�`)� �(xt�1 � xt�1�`)]xt�1�` + �n;

where �n = (xn � xn�`)xn�1�` � (x2+` � x2)x1. Because xt � �xt�1 = "t, we have

Dn =
nX

t=3+`

(xt�1 � xt�1�`)"t �
nX

t=3+`

xt�1�`("t � "t�`) + �n

= 2
nX

t=3+`

(xt�1 � xt�1�`)"t +Rn; Rn =
2+X̀
t=3

xt�1"t �
nX

t=n�`+1

xt�1"t + �n:

Upon suitable normalization, the �rst term ( ~Dn, say) should follow a martingale difference central
limit theorem (CLT) and Rn is negligible. Each summand of ~Dn has variance 8�4S`(�)=(1 + �),
so the Lindeberg condition (see Theorem 2.3 of McLeish, 1974) holds, and

n
�1=2
`

~Dn ) N

�
0;
8�4S`(�)

1 + �

�
:

Next, we have

Rn =

2+X̀
t=3

xt�1"t �
nX

t=n�`+1

xt�1"t � (x2+` � x2)x1 + (xn � xn�`)xn�1�`

=

"
(xn � xn�`)xn�1�` �

`�1X
j=0

xn�1�j"n�j

#
�
"
(x2+` � x2)x1 �

`�1X
j=0

x2+j"3+j

#
= 	n �	`+2:

Upon further manipulation of 	k for general k; we have

	k = (xk � xk�`)xk�1�` �
`�1X
j=0

xk�1�j"k�j

=

 
`�1X
j=0

�j"k�j + �
`xk�` � xk�`

!
xk�1�` �

`�1X
j=0

xk�1�j"k�j
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=

`�1X
j=0

"k�j(�
jxk�1�` � xk�1�j)� (1� �`)xk�`xk�1�`

=
`�1X
j=0

"k�j(�
jxk�1�` � xk�1�j)� (1� �`)"k�`xk�1�` � �(1� �`)x2k�1�`

= 	k;a �	k;b �	k;c:

First E	2k;a = �2
P`�1

j=0E(�
jxk�1�` � xk�1�j)2. We have the following fact.

Lemma A.3 Let !0 = (1� �)Ex20. Then, for all k, we have

E(xk�j � �jxk�`)2 � 4
�
!0 +

4�2

1 + �

�
S`(�):

Proof. Using xk�j � �jxk�` = (1� �j)x0 + (1� �j)(xk�j � x0) + �j(xk�j � xk�`), we have
1
4
E(xk�j � �jxk�`)2 � (1� �j)2Ex20 + (1� �j)2E(xk�j � x0)2 + �2jE(xk�j � xk�`)2

= (1� �j)2Ex20 + �2(1� �j)2(1 + �k�j)(1 + �)�1Sk�j(�)
+ �2�2j(1 + �`�j)(1 + �)�1S`�j(�)

� (1� �j)!0Sj + 2�2��1� (1� �j)Sj + 2�2�2j��1� S`

where �� = 1 + � and Sj = Sj(�) for notation brevity. In the above display, the equality holds by
Lemma A.2, and the �nal inequality holds due to Lemma A.1. The result follows because Sj � S`
for j � `.
Lemma A.3 implies that E	2k;a is unifomly bounded, so that 	`+2;a = Op(1) and 	n;a =

Op(1): Next, it is simple to show that E	2k;b is also uniformly bounded. To see this, note that

E	2k;b = (1� �`)2�2Ex2k�1�`:

Since xt =
Pt�1

j=0 �
j"t�j + �

tx0, we have Ex2t = �2St + �2tEx20, and so

E	2k;b = �
2(1� �`)2[�2Sk�1�` + �2(k�1�`)Ex20] � �2(�2 + !0)S`:

Finally, E	k;c = �(1� �`)[�2Sk�1�`(�2) + �2(k�1�`)Ex20], which is also bounded by (�2+!0)S`.
The fact that the �rst or second moments of 	k;a, 	k;b and 	k;c are uniformly bounded implies
that 	n = Op(1) and 	`+2 = Op(1), so that Rn = Op(1). Hence, n

�1=2
` Rn !p 0. Thus the limit

distribution of n�1=2` Dn is the same as that of n
�1=2
`

~Dn, and we have

(24) n�1=2` Dn ) N

�
0;
8�4S`(�)

1 + �

�
:

Proof of Theorem 2. Using (23) and (24), we get

n
1=2
` (~�` � �)) N

�
0;
2(1 + �)

S`(�)

�
;

where n` = n� 2� ` as before.
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A.3 Full Aggregation
Proof of Theorem 3. The proof proceeds by rearranging the terms in the double summations. Let
Cn =

Pn�3
`=1

Pn
t=3+`(xt�1 � xt�1�`)2 =

Pn
t=4

Pt�3
s=1(xt�1 � xs+1)2. Then

Cn =

n�1X
t=3

t�1X
s=2

(xt � xs)2 =
n�1X
t=3

t�1X
s=2

(x2t + x
2
s)� 2

n�1X
t=3

t�1X
s=2

xtxs

= (n0 � 1)
n�1X
t=2

x2t �

24 n�1X
t=2

xt

!2
�

n�1X
t=2

x2t

35 = n0 nX
t=3

x2t�1 �
 

nX
t=3

xt�1

!2

= n0

nX
t=3

~x2t�1; ~xt�1 = xt�1 �
1

n0

nX
s=3

xs�1:

Let Gn denote the numerator, i.e., Gn =
Pn�3

`=1

Pn
t=3+`(xt�1 � xt�1�`)(xt � xt�2�`). Then

Gn =
nX
n=4

t�3X
s=1

(xt�1 � xs+1)(xt � xs)

=
nX
t=4

t�3X
s=1

(xt�1xt + xsxs+1)�
nX
t=4

t�3X
s=1

(xsxt�1 + xs+1xt) = Gn1 �Gn2:

By rearranging the terms, we get

Gn1 = (n0 � 2)
nX
t=2

xt�1xt + x1x2 + xn�1xn:

For Gn2, we have

nX
t=4

t�3X
s=1

xsxt�1 =
1

2

 
n�1X
t=1

xt

!2
� 1
2

n�1X
t=1

x2t �
n�1X
t=2

xt�1xt;

nX
t=4

t�3X
s=1

xs+1xt =
1

2

 
nX
t=2

xt

!2
� 1
2

nX
t=2

x2t �
nX
t=3

xt�1xt;

so

Gn2 =

 
n�1X
t=2

xt

!2
+ (x1 + xn)

n�1X
t=2

xt �
n�1X
t=2

x2t � 2
nX
t=2

xt�1xt + xn�1xn + x1x2:

Thus

Gn = Gn1 �Gn2 = n0
nX
t=2

xt�1xt +

n�1X
t=2

x2t �
 
n�1X
t=2

xt

!2
� (x1 + xn)

n�1X
t=2

xt:

21



Because �̂fa = Gn=Cn = �+ (Gn � �Cn)=Cn, we now evaluate Dn := Gn � �Cn, which is

Dn = n0

nX
t=3

xt�1"t �
 

nX
t=3

xt�1

!
nX
t=3

"t +

nX
t=3

x2t�1 + n0x1x2 � (x1 + x2)
nX
t=3

xt�1

= n0

nX
t=3

~ut�1~"t +
nX
t=3

x2t�1 + n0x1x2 � (x1 + x2)
nX
t=3

xt�1:

The stated result now follows straightforwardly because

�̂fa = �+
n�10 Dn

n�10 Cn
= �+

Pn
t=3 ~xt�1~"tPn
t=3 ~x

2
t�1

+
n�10

Pn
t=3 x

2
t�1Pn

t=3 ~x
2
t�1

+ �n;

where �n = x1x2 � n�10 (x1 + x2)
Pn

t=3 xt�1=
Pn

t=3 ~x
2
t�1. Note that the sum of the �rst two terms

on the right hand side of the above displayed equation is �̂ols.

Proof of Corollary 4. Lemma 3 and standard weak convergence arguments give the stated results
in a straightforward manner.

Remark.When � = 1, the limit distribution of the full aggregation estimator can be expressed as
the following ratio

(25) n(�̂fa � 1))
R 1
0

R r
0
(1 + p� r)dBpdBrR 1

0

R r
0
(Br �Bs)2dsdr

:=
Y

X
:

We can show that this expression is equivalent to (14), i.e., X =
R 1
0
~B2rdr and Y =

R 1
0
~BrdBr +R 1

0
B2rdr. First, we have X =

R 1
0

R r
0
(Br �Bs)2ds dr =

R 1
0

R 1
r
(Br �Bs)2ds dr, implying that

X =
1

2

Z 1

0

Z 1

0

(Br �Bp)2dp dr =
1

2

Z 1

0

Z 1

0

(B2r � 2BrBs +B2s )dp dr

=

Z 1

0

B2rdr �
�Z 1

0

Brdr

�2
=

Z 1

0

~B2rdr:

For the numerator, we have Y =
R 1
0

�
(1� r)Br +

R r
0
pdBp

�
dBr. But

R r
0
pdBp = rBr �

R r
0
Bpdp

using integration by parts which is valid by smoothness of the integrand. Hence,

Y =

Z 1

0

BrdBr �
Z 1

0

�Z r

0

Bpdp

�
dBr =

Z 1

0

BrdBr �
Z 1

0

B�rdBr; B�r =

Z r

0

Bpdp:

Because B�r is differentiable, we again use integration by parts giving
R 1
0
B�rdBr = B�1B1 �R 1

0
B2rdr: Collecting terms gives

Y =

Z 1

0

BrdBr �B1
Z 1

0

Brdr +

Z 1

0

B2rdr =

Z 1

0

~BrdBr +

Z 1

0

B2rdr;

as in the numerator of (14).
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A.4 Partial Aggregation
Results from the full aggregation case are also useful, especially the following.

Lemma A.4 Let CLn =
PL

`=1

Pn
t=3+`(xt�1 � xt�1�`)2 and DL

n =
PL

`=1

Pn
t=3+`(xt�1 � xt�1�`)

("t � "�t�2�`). Then Cn�3n = Op(n
2 �Sn) and Dn�3

n = Op(n
p
n �Sn).

Proof. Straightforward from the proof of Theorem 3.

We �rst derive the probability limit of the denominator of the partially aggregated estimator
and then consider the limit behavior of the numerator.

(i) Denominator

Let CLn =
PL

`=1

Pn
t=3+`(xt�1 � xt�1�`)2, which is the denominator of the partial aggregation

estimator. We begin with the following simple fact.

Lemma A.5 Let S` = S`(�). Then

(n0 �SLL)
�1ECLn =

2�2

1 + �

"
1�

�
L

n0

�
1

L

LX
`=1

`S`
LSL

#
; n0 = n� 2:

Proof. Use (23).
Because `S` � LSL, we have (n �SLL)�1ECLn ! 2�2=(1 + �) when L=n ! 0. When L is

�xed, therefore, we may proceed as in the �xed lag case to obtain

(26) (n �SLL)�1CLn !p 2�
2=(1 + �); � 2 (�1; 1];

as n!1.
To handle the case with L!1, write

(27) CLn = C
L�1
L+2 +

~CLn ;
~CLn =

LX
`=1

nX
t=L+3

(xt�1 � xt�1�`)2:

By Lemma A.4, we have (L2 �SL)�1CL�1L+2 = Op(1) and , so (n �SLL)�1C
L�1
L+2 = Op(L=n) = op (1)

for all �. Also, (n2 �Sn)�1E
�
CL�1L+2

�
= o (1) :Hence, the term involvingCL�1L+2 is negligible provided

L=n! 0. We therefore focus on ~CLn .
Using xt =

Pt�1
j=0 �

j"t�j + �
tx0, we get

xt�1 � xt�1�` =
t�2X
j=0

�j"t�1�j + �
t�1x0 �

t�2�`X
j=0

�j"t�1�`�j � �t�1�`x0(28)

=

`�1X
j=0

�j"t�1�j � (1� �`)
t�2X
j=`

�j�`"t�1�j � �t�1�`(1� �`)x0

=

t�2X
j=0

c`j"t�1�j � �t�1�`(1� �`)x0;

23



where c`j = �jfj<`g � (1� �`)�j�`fj�`g. So

~CLn =
X
`�t

 
t�2X
j=0

c`j"t�1�j

!2
� 2

X
`�t

 
t�2X
j=0

c`j"t�1�j

!
�t�1�`(1� �`)x0

+
X
`�t

�2(t�1�`)(1� �`)2x20 = ~CLn;a � 2 ~CLn;b + ~CLn;c;(29)

where
P

`�t denotes
PL

`=1

Pn
t=L+3. As indicated above and in Lemma A.5, the standardization we

will be using for ~CLn is given by n �SLL; so terms in (29) are assessed against this standardization.
The ~CLn;c term can be handled by the following lemma.

Lemma A.6
PL

`=1

Pn
t=L+3 �

2(t�1�`)(1� �`)2 � �(1� �L)S2L.

Proof. It is obvious if � = 1. If � < 1, then
LX
`=1

nX
t=L+3

�2(t�1�`)(1� �`)2 �
LX
`=1

nX
t=L+3

�2(t�L�4)+2(L�`)+6(1� �L)2

� �6Sn(�2)SL(�2)(1� �L)2 � �6(1� �L)S2L
due to Lemma A.1, where SL = SL(�).
Lemma A.6 implies that ~CLn;c � (1��L)S2Lx20 = (1��)x20S3L. Thus, when (1��)x20 = Op(1),

which holds by the assumptions on x0, we have (n �SLL)�1 ~CLn;c = (SL=n)(SL=L)Op(1), which
converges in probability to zero when L=n! 0 because SL � L. (Note SL and �SL have the same
order by Lemma A.1.) And ~CLn;b, divided by n �SLL, can also be ignored by Hölder's inequality.
So it remains to establish a LLN for (n �SLL)�1 ~CLn;a. The algebra for this is mechanical and a little
tedious.
We have (

Pt�2
j=0 c

`
j"t�1�j)

2 =
Pt�2

j=0(c
`
j)
2"2t�1�j + 2

Pt�2
j=1

Pj�1
k=0 c

`
jc
`
k"t�1�j"t�1�k, thus

~CLn;a =
nX

t=L+3

t�2X
j=0

"
LX
`=1

(c`j)
2

#
"2t�1�j + 2

nX
t=L+3

t�3X
j=0

t�2X
k=j+1

"
LX
`=1

c`jc
`
k

#
"t�1�j"t�1�k

:= ~CLn;a1 + 2
~CLn;a2:(30)

We will show that, upon standardization, ~CLn;a2 is negligible and ~CLn;a1 satis�es an LLN. From the
functional form of c`j , we have

(c`j)
2 = �2jfj<`g + (1� �`)2�2(j�`)fj�`g;

c`jc
`
k = �

j+k
fk<`g � (1� �`)�j+k�`fj<`�kg + (1� �`)2�j+k�2`fj�`g;

for j < k. So

�cjj :=

LX
`=1

(c`j)
2 =

j^LX
`=1

(1� �`)2�2(j�`) +
LX

`=j+1

�2j;(31)

�cjk :=

LX
`=1

c`jc
`
k =

j^LX
`=1

(1� �`)2�j+k�2` �
k^LX
`=j+1

(1� �`)�j+k�` +
LX

`=k+1

�j+k:(32)
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Now we can rearrange the terms for ~CLn;a1 to get

~CLn;a1 =
nX

t=L+3

t�2X
j=0

�cjj"
2
t�1�j =

n�1X
t=L+3

0@ n�1�tX
j=maxfL+2�t;0g

�cjj

1A "2t = n�1X
t=L+3

c�tj"
2
t ;

where c�tj �
Pn�1

t=0 �cjj . To set a boundary for c�tj , note that

�cjj � (1� �L)2
min(j;L)X
`=1

�2(j�`) +max(L� j; 0)�2j

= max(L� j; 0)�2j + (1� �L)2Smin(j;L)(�2)�2max(j�L;0);

so by Lemma A.1,

n�1X
t=0

�cjj � LSL(�2) + (1� �L)2SL(�2)Sn(�2) � LSL(�) + (1� �L)SL(�)2(1� �n);

which is bounded by 4L �SL because 1��L � 1, 1��n � 1, SL � L and SL � 2 �SL. Thus, we have
(n �SLL)

�1 ~CLn;a1 = n
�1Pn�1

t=L+3[(L
�SL)

�1c�tj]"
2
t , where 0 < (L �SL)�1c�tj � 4. Since [(L �SL)�1c�tj]"2t

is uniformly integrable and E
�
[(L �SL)

�1c�tj] ("
2
t � �2)

	
= 0;

�
[(L �SL)

�1c�tj] ("
2
t � �2)

	
is a mar-

tingale difference array and sati�es an LLN for L1 mixingales (e.g. Andrews, 1988) so that
n�1

Pn�1
t=L+3[(L

�SL)
�1c�tj] ("

2
t � �2)!p 0:

The ~CLn;a2 term is more complicated. Since

~CLn;a2 =
nX

t=L+3

t�3X
j=0

"t�1�j~"t�2�j; ~"t�2�j =
t�2X

k=j+1

�cjk"t�1�k;

where �cjk is de�ned in (32), we have var( ~CLn;a2) = �2
Pn

t=L+3

Pt�3
j=0E~"

2
t�2�j . Now E~"2t�2�j =

�2
Pt�2

k=j+1 �c
2
jk, so

(33) var( ~CLn;a2) = �
4

nX
t=L+3

t�3X
j=0

t�2X
k=j+1

�c2jk � �4
nX

t=L+3

n�2X
j=0

n�1X
k=j+1

�c2jk = n�
4

n�2X
j=0

n�1X
k=j+1

�c2jk:

By (32), we have, for j < k,

j�cjkj �

8><>:
L�j+k if k < L;
L(1� �L)�j+k�L if j < L � k;
(1� �L)2�j+k�2L if L � j;

so
n�1X
k=j+1

�c2jk �
(PL�1

k=j+1 L
2�2(j+k) +

Pn�1
k=L(1� �L)2�2(j+k�L) if j < L;Pn�1

k=j+1(1� �L)4�2(j+k�2L) if j � L:
:
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Thus,
Pn�1

k=j+1 �c
2
jk � L2SL(�

2)�4jfj<Lg + (1 � �L)4Sn(�2)�2(j�L)fj�Lg, which is again bounded
by L2SL(�)�4jfj<Lg + (1� �L)4Sn(�)�2(j�L)fj�Lg. According to Lemma A.1, this last expression
equals L2SL(�)�4jfj<Lg + (1� �L)3SL(�)�2(j�L)fj�Lg. So

n�2X
j=0

 
n�1X
k=j+1

�c2jk

!
� L2SL(�)SL(�4) + (1� �L)3SL(�)Sn(�2) � L2SL(�)2 + SL(�)2;

by Lemma A.1 again. This last result, Lemma A.1 and (33) imply that var( �Cn2) is O(nL2 �S2L), so
~CLn;a2 is Op(n1=2L �SL) because E ~CLn;a2 = 0. Thus (n �SLL)�1 ~CLn;a2 = Op(n

�1=2). Taken together,
these results now imply the following result.

Theorem A.7 (n �SLL)�1CLn !p 2�
2=(1 + �) as L=n! 0.

Proof.Because of LemmaA.5, we have (n �SLL)�1CL�1L+2 = op(1) for all � and (n2 �Sn)�1E
�
CL�1L+2

�
=

o (1) :Regarding (27), we have shown that (n �SLL)�1CLn = (n �SLL)�1 ~CLn+op(1) and (n �SLL)�1E
�
CLn
�
=

(n �SLL)
�1E

�
~CLn

�
+o(1): For (29), we have shown that (n �SLL)�1 ~CLn = (n �SLL)�1 ~CLn;a+op(1) and

we have (n �SLL)�1E
�
~CLn

�
= (n �SLL)

�1E
�
~CLn;a

�
+o(1):We have also shown that (n �SLL)�1 ~CLn;a =

(n �SLL)
�1 ~CLn;a1+op(1)where ~CLn;a1 is de�ned in (30), and we have (n �SLL)�1E

�
~CLn;a

�
= (n �SLL)

�1E
�
~CLn;a1

�
+

o(1): It has also been shown that n�1
Pn�1

t=L+3[(L
�SL)

�1c�tj] ("
2
t � �2) !p 0; so that (n �SLL)�1CLn

converges in probability to the limit of its expectation. According to LemmaA.5, (n �SLL)�1ECLn !
2�2=(1 + �) as L=n! 0 and n!1; giving the stated probability limit.
The following results show that Theorem A.7 is consistent with our previous �ndings based on

direct calculation.

Corollary A.8 As L!1 and L=n! 0, we have (i) (nL)�1CLn !p 2�
2=(1� �2) if j�j < 1, and

(ii) (nL2)�1CLn !p �
2=2 if � = 1.

Proof. (i) j�j < 1: We have �SL ! (1 � �)�1 as L ! 1. The result follows from Theorem A.7.
(ii) � = 1: We have S` = `, so �SL ! 1=2 as L!1. See Theorem A.7 for the rest.

(ii) Numerator

Let DL
n =

PL
`=1

Pn
t=3+`(xt�1 � xt�1�`)("t � "�t�2�`). Then DL

n = DL�1
L+2 +

~DL
n , where ~DL

n =PL
`=1

Pn
t=L+3(xt�1 � xt�1�`)("t � "�t�2�`). By Lemma A.4, we have DL�1

L+2 = Op(L
p
L �SL), thus

(n �S)�1=2L�1DL�1
L+2 = Op(

p
L=n), which can be ignored when L=n! 0. Thus, we focus on ~DL

n .
Let zt` = (xt�1 � xt�1�`)("t � "�t�2�`). We have

zt` = (xt�1 � xt�1�`)("t � xt�2�` + �xt�1�`)
= (xt�1 � xt�1�`)"t � xt�1(xt�2�` � �xt�1�`) + xt�1�`(xt�2�` � �xt�1�`)
:= zt`;1 � zt`;2 + zt`;3:
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The zt`;1 term is a martingale difference and straightforward. For zt`;2, we have

nX
t=L+3

LX
`=1

zt`;2 =
n�1X
t=L+2

LX
`=1

xtxt�1�` � �
nX

t=L+3

LX
`=1

xt�1xt�1�`

=

nX
t=L+3

LX
`=1

"txt�1�` + xL+2

LX
`=1

xL+1�` � xn
LX
`=1

xn�1�`:

Similarly for zt`;3, we have

nX
t=L+3

LX
`=1

zt`;3 =
n�1X
t=L+2

LX
`=1

xt�`xt�1�` � �
nX

t=L+3

LX
`=1

x2t�1�`

=
nX

t=L+3

LX
`=1

"t�`xt�1�` +
LX
`=1

xL+2�`xL+1�` �
LX
`=1

xn�`xn�1�`

=

 
L

nX
t=L+3

"txt�1 +
LX
`=1

`�1X
j=0

"L+2�jxL+1�j �
LX
`=1

`�1X
j=0

"n�jxn�1�j

!

+
LX
`=1

xL+2�`xL+1�` �
LX
`=1

xn�`xn�1�`:

So

L�1 ~DL
n =

nX
t=L+3

"t

 
xt�1 �

1

L

LX
`=1

xt�1�`

!
�

nX
t=L+3

"t

 
1

L

LX
`=1

xt�1�`

!

+
nX

t=L+3

"txt�1 + (Rn1 �Rn2) = 2
nX

t=L+3

"t�ut�1 + (Rn1 �Rn2);

where �ut�1 = xt�1 � L�1
PL

`=1 xt�1�`, Rn1 = 	n and Rn2 = 	L+2, with

	k =
1

L

LX
`=1

 
xkxk�1�` � xk�`xk�1�` �

`�1X
j=0

"k�jxk�1�j

!

=
1

L

LX
`=1

"
`�1X
j=0

"k�j(�
jxk�1�` � xk�1�j)� (1� �`)"k�`xk�1�` � �(1� �`)x2k�1�`

#
= 	k;a �	k;b �	k;c:

We have the following results (Lemmas A.9 and A.10). They generalize the analysis for the �single
lag� case. (Readers can reference that part to help in the following derivations). Recall that (1 �
�)Ex20 is uniformly bounded.

Lemma A.9 supk E	2k;a = O(S2L).
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Proof.We have

E	2k;a =
�2

L2

LX
`=1

`�1X
j=0

E(�jxk�1�` � xk�1�j)2:

Using xt =
Pt�1

j=0 �
j"t�j + �

tx0, we get

(34) Ex2t = �
2St(�

2) + �2tEx20; and Extxs = �
t�sEx2s = �

2�t�sSs(�
2) + �t+sEx20;

for s � t. Thus

!k;`;j :=E(�
jxk�1�` � xk�1�j)2 = �2j[�2Sk�1�`(�2) + �2(k�1�`)Ex20]

+ [�2Sk�1�j(�
2) + �2(k�1�j)Ex20]� 2�j[�2�`�jSk�1�`(�2) + �2(k�1)�(`+j)Ex20]:

We have

!k;`;j = �
2
�
�2jSk�1�`(�

2) + Sk�1�j(�
2)� 2�`Sk�1�`(�2)

�
+ [�2(k�1�`+j) + �2(k�1�j) � 2�2(k�1)�`]Ex20:

Using St(�2) = Ss(�2) + �2(t�s)St�s(�2), we get

!k;`;j = �
2(1� �`)2Sk�1�`(�2) + �2�2j[1� �2(`�j)]Sk�1�`(�2) + �2�2(`�j)S`�j(�2)

+ �2(k�1)+3`�2j[�` � �2(`�j)]Ex20 + �2(k�1)�`�2j(�` � �2j)Ex20:

We now determine the orders of these �ve terms. First,

1

L2

LX
`=1

`�1X
j=0

(1� �`)2Sk�1�`(�2) �
1

L

LX
`=1

(1� �`)2Sk�1�`(�2) � (1� �L)2Sk(�2) � S2L:

(Here we used Lemma A.1.) Second,

1

L2

LX
`=1

`�1X
j=0

�2j[1� �2(`�j)]Sk�1�`(�2) �
1� �2L
L2

LX
`=1

S`(�
2)Sk�1�`(�

2)

� L�2(1 + �L)Sk(�2)(1� �L)L �SL(�2) � 2L�1S3L:

Third,

1

L2

LX
`=1

`�1X
j=0

�2(`�j)S`�j(�
2) � L�2S2L � 1:

Next, ����� 1L2
LX
`=1

`�1X
j=0

�2(k�1)�3`+2j[�` � �2(`�j)]Ex20

����� � (1� �L)Ex20 = (1� �)Ex20SL;
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and �nally,����� 1L2
LX
`=1

`�1X
j=0

�2(k�1)�`�2j[�` � �2j]Ex20

����� � (1� �L)Ex20 = (1� �)Ex20SL:
Under the assumption that (1 � �)Ex20 is �nite, we have shown that E	2k;a = O(S2L), where the
order is uniform in k. (The boundaries do not depend on k.)

Lemma A.10 supk E	2k;b = O(1) and supk Ej	k;cj = O(SL).

Proof.We have

E	2k;b =
�2

L2

LX
`=1

(1� �`)2Ex2k�1�` �
�2(1� �L)2

L2

LX
`=1

Ex2k�1�`

� L�1�2(1� �L)2Ex2k � L�1�2(1� �L)SL(�)(1� �)Ex2k
� �2(1� �)[�2Sk(�2) + �2kEx20] � �4 + �2(1� �)Ex20

by (34) and Lemma A.1, where the bound is uniform in k. Next,

Ej	k;cj =
1

L

LX
`=1

�(1� �`)Ex2k�1�` � (1� �L)Ex2k = SL(�)(1� �)Ex2k

� SL[�2 + (1� �)Ex20];

where the bound is again uniform.

Lemmas A.9 and A.10 show that

(35) (n �SL)�1=2L�1 ~DL
n =

2

(n �SL)1=2

nX
t=L+3

"t�ut�1 +Op(
p
SL=n);

where SL=n � L=n ! 0. So the limit distribution of (n �SL)�1=2L�1DL
n is the same as the limit

distribution of Zn := 2(n �SL)�1=2
Pn

t=L+3 "t�ut�1. To �nd the limit distribution of Zn, we can apply
the martingale CLT (Theorem 2.3 of McLeish, 1975). For that, we evaluate E�u2t , which can be
straightforwardly obtained using Lemma A.2. Because �ut = L�1

PL
`=1(xt � xt�`), we have

E�u2t =

�
2�2

1 + �

�"
1

L2

LX
`=1

S` +
1

L2

L�1X
`=1

L�X̀
r=1

(1 + �r)S`

#
:

Because
PL�`

r=1 (1 + �
r) = L� `+ �SL�`, we get

(36) �S�1L E�u
2
t =

�
2�2

1 + �

�"
1

L
+
1

L

L�1X
`=1

�
1� `

L
+
SL�`
L

�
S`
�SL

#
=

�
2�2

1 + �

�
VL(�);

which is uniformly bounded by 4�2=(1 + �). So

E
�
(n �SL)

�1=2"t�ut�1
�2 � 4�4

n(1 + �)
! 0;
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implying the Lindeberg condition. It is also required that VL(�) is bounded away from zero to
apply the martingale difference CLT. This part follows because

VL �
1

L

L�1X
`=1

�
1� `

L

�
S`
�SL
=

1

L �SL

L�1X
`=1

�S` �
PL�1

j=1 Sj

2
PL

j=1 Sj
=

1

2(1 + �L=
PL�1

j=1 Sj)
� 1

4
:

So asymptotic normality is obtained. The limit distribution of (n �SL)�1=2L�1DL
n now follows from

the above arguments and (36).

Theorem A.11 (n �SL=VL)�1=2L�1DL
n ) N(0; 8�4=(1 + �)) as L=n! 0.

Proof. The limit distribution of DL
n after normalization is the same as that of ~DL

n using the same
normalization. The limit distribution of the latter is normal, and its variance is 4�2 (see (35) for
the constant 4) times the expression calculated in (36) scaled by 1=VL (�).

Proof of Theorem 5. The result follows from Theorems A.7 and A.11.
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