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Abstract
We present new identi�cation results for nonparametric models of di¤erentiated
products markets, using only market level observables. We specify a nonpara-
metric random utility discrete choice model of demand allowing rich preference
heterogeneity, product/market unobservables, and endogenous prices. Our supply
model posits nonparametric cost functions, allows latent costs shocks, and nests a
range of standard oligopoly models. We consider identi�cation of demand, identi-
�cation of changes in aggregate consumer welfare, identi�cation of marginal costs,
identi�cation of �rms�marginal cost functions, and discrimination between alter-
native models of �rm conduct. We explore two complementary approaches. The
�rst demonstrates identi�cation under the same nonparametric instrumental vari-
ables conditions required for identi�cation of regression models. The second treats
demand and supply in a system of nonparametric simultaneous equations, leading
to constructive proofs exploiting exogenous variation in demand shifters and cost
shifters. We also derive testable restrictions that provide the �rst general formal-
ization of Bresnahan�s (1981, 1982) intuition for empirically distinguishing between
alternative models of oligopoly competition. From a practical perspective, our re-
sults clarify the types of instrumental variables needed with market level data,
including tradeo¤s between functional form and exclusion restrictions.

�We had helpful early conversations on this topic with Rosa Matzkin and Yuichi Kitamura, as well
as valuable feedback from Liran Einav, Jon Levin, Tim Bresnahan, and participants in several seminars
and conferences. Financial support from the National Science Foundation is gratefully acknowledged.



1 Introduction

Models of discrete choice between di¤erentiated products play a central role in the modern
industrial organization (IO) literature and are used in a wide range of other applied �elds
of economics.1 Often the discrete choice demand model is combined with an oligopoly
model of supply in order to estimate markups, predict equilibrium responses to policy,
or test hypotheses about �rm behavior. Typically these models are estimated using
econometric speci�cations incorporating functional form restrictions and parametric dis-
tributional assumptions. Such restrictions may be desirable in practice: estimation in
�nite samples always requires approximations and, since the early work of McFadden
(1974), an extensive literature has developed providing �exible discrete-choice models
well suited to estimation and inference. Furthermore, parametric structure is necessary
for the extrapolation involved in many out-of-sample predictions. However, an impor-
tant question is whether parametric functional form and distributional assumptions play
a more fundamental role in determining what is learned from the data. In particular, are
such assumptions essential for identi�cation?
Here we examine the nonparametric identi�ability of models in the spirit of Berry,

Levinsohn, and Pakes (1995) (henceforth, �BLP�) and a large applied literature that has
followed. We focus on the common situation in which only market level data are available,
as in BLP. In such a setting one observes market shares, market characteristics, product
prices and characteristics, and product/market level cost shifters, but not individual
choices or �rm costs. We consider identi�cation of demand, identi�cation of changes
in aggregate consumer welfare, identi�cation of marginal costs, identi�cation of �rms�
marginal cost functions, and discrimination between alternative models of �rm conduct.
We also provide guidance for applied work by focusing attention on the essential role
of instrumental variables, clarifying the types of instruments needed in this setting, and
pointing out tradeo¤s between functional form and exclusion restrictions. Our primary
motivation is to develop a nonparametric foundation for a class of empirical models used
widely in practice. Nonetheless, our analysis may also suggest new estimation and/or
testing approaches (parametric, semiparametric, or nonparametric).
On the demand side, the models motivating our work incorporate two essential fea-

1Applications include studies of the sources of market power (e.g., Berry, Levinsohn, and Pakes
(1995), Nevo (2001)), mergers (e.g., Nevo (2000), Capps, Dranove, and Satterthwaite (2003)), welfare
gains from new goods/technologies (e.g., Petrin (2002), Eizenberg (2011)), network e¤ects (e.g., Rysman
(2004), Nair, Chintagunta, and Dube (2004)), product promotions (e.g., Chintagunta and Honoré (1996),
Allenby and Rossi (1999)), environmental policy (e.g., Goldberg (1998)), vertical contracting (e.g., Villas-
Boas (2007), Ho (2009)), equilibrium product quality (e.g., Fan (2011)), media bias (e.g., Gentzkow
and Shapiro (2009)), asymmetric information and insurance (e.g., Cardon and Hendel (2001), Bundorf,
Levin, and Mahoney (12), Lustig (2008)), trade policy (e.g., Goldberg (1995), Berry, Levinsohn, and
Pakes (1999), Goldberg and Verboven (2001)), residential sorting (e.g., Bayer, Ferreira, and McMillan
(2007)), voting (e.g., Gordon and Hartmann (2010)), and school choice (e.g., Hastings, Kane, and Staiger
(2007)).
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tures. One is rich heterogeneity in preferences, which allows �exibility in demand sub-
stitution patterns.2 The second is the presence of product/market-level unobservables.
Because these unobservables are known by �rms and consumers, they give rise to en-
dogeneity of prices. Only by explicitly modeling these unobservables can one account
simultaneously for endogeneity and heterogeneity in preferences for product character-
istics (see section 2). Both features are essential to reliable estimation of demand elas-
ticities in di¤erentiates products markets. Surprisingly, this combination of features has
not been treated in the prior literature on identi�cation. Indeed, although there is a
large literature on identi�cation of discrete choice models, there are no nonparametric
or semiparametric identi�cation results even for the linear random coe¢ cients random
utility model widely used in the applied literature that motivates us.
On the supply side, the empirical literature on di¤erentiated products employs equilib-

rium oligopoly models, building on early insights of Rosse (1970) and Bresnahan (1981).
By combining the model of oligopoly competition with estimates of demand, one can
infer marginal costs and examine a range of market counterfactuals. Following BLP,
recent work typically allows for latent cost shocks and unobserved heterogeneity in cost
functions, but employs a parametric speci�cation of costs.
Our results show that the primary requirement for identi�cation is the availability of

instrumental variables. It is not surprising that instruments are needed. Less obvious
is what types of exclusion restrictions su¢ ce in this setting. Focusing on the demand
side, it is intuitive that identi�cation requires instruments generating exogenous variation
in choice sets, including changes in prices. For example, BLP exploited a combination
of exogenous own-product characteristics, characteristics of alternative products, and
additional shifters of markups and/or costs. Following Bresnahan (1981), BLP make an
intuitive argument that changes in the exogenous characteristics of competing products
should help to identify substitution patterns. Ignoring the shifters of markups and costs,
characteristics of competing products are sometimes referred to as �BLP instruments.�
However, there has been no general formal statement about the role of BLP instruments�
why they would they aid identi�cation and whether they are su¢ cient alone to identify
demand. One di¢ cult question has been: how could product characteristics that are not
excluded from the demand system help to identify demand?
We show that these BLP instruments are in fact useful. For our results they are

necessary but not su¢ cient: we require additional instruments such as cost shifters or
proxies for costs (e.g., prices in other markets). The use of only the BLP instruments (or,
e.g., only cost shifters) would therefore require either a more parsimonious model or better
data. Below we discuss tradeo¤s between functional form and exclusion restrictions. In
Berry and Haile (2010) we consider identi�cation of demand when one has consumer-level
choice data. There we obtain results requiring fewer instruments, in some cases allowing
identi�cation when only exogenous product characteristics (the �BLP instruments�) are

2See, e.g., the discussions in Domencich and McFadden (1975), Hausman and Wise (1978) and Berry,
Levinsohn, and Pakes (1995). Early models of discrete choice with heterogeneous tastes for characteristics
include those in Quandt (1966) and Quandt (1968).
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available.
In the following, we begin with demand, positing a nonparametric random utility dis-

crete choice model. We require one important index restriction on how product/market-
speci�c unobservables enter preferences, but the model is otherwise very general. Our �rst
result shows that standard nonparametric instrumental variables conditions (e.g., Newey
and Powell (2003), Andrews (2011)) su¢ ce for identi�cation of demand. As usual, adding
a requirement of quasilinear preferences then allows identi�cation of changes in aggregate
consumer welfare.
We then move to the supply side of the model. Given identi�cation of demand,

specifying a model of oligopoly competition allows identi�cation of marginal costs through
�rms��rst-order conditions. Identi�cation of �rms�marginal cost functions then obtains
with the addition of standard nonparametric instrumental variables conditions.
Next we drop the nonparametric instrumental variables conditions and consider an

alternative approach, combining the demand model and supply model in a system of
nonparametric simultaneous equations. This approach requires some additional struc-
ture and stronger exclusion conditions, but enables us to o¤er constructive proofs using
more transparent variation in excluded demand shifters and cost shifters. These results
therefore complement those obtained using more abstract completeness conditions.
Finally, we consider discrimination between alternative models of �rm �conduct,�i.e.,

alternative models of oligopoly competition. The nature of oligopoly competition is itself
a fundamental question of modern industrial organization, and in practice the choice
of supply model can have important implications for estimates, counterfactual simula-
tions, and policy implications. We o¤er the �rst general formalization of Bresnahan�s
(1981, 1982) early intuition for empirically discriminating between alternative �oligopoly
solution concepts.�Unlike prior formal results (Lau (1982)), ours allow product di¤eren-
tiation, heterogeneous �rms, latent shocks to demand and costs, and oligopoly models
outside the problematic �conjectural variations�framework.
Together these results provide a positive message regarding the faith we may have

in a large and growing body of applied work on di¤erentiated products markets. This
message is not without quali�cation. In addition to the index restrictions, our results
require instruments with su¢ cient variation on both the demand and cost side. How-
ever, while �adequate exogenous variation�is a strong requirement for any nonparametric
model, the requirement here is no stronger than for regression models. Put di¤erently,
the functional form and distributional assumptions typically used in practice play their
usual roles: approximation in �nite samples and compensation for the gap between the
exogenous variation available in practice and that required to discriminate between all
nonparametric models.
To our knowledge, we provide the �rst and only results on the nonparametric iden-

ti�cation of market-level di¤erentiated products models of the sort found in BLP and
related applications in IO. However, our work is connected to several theoretical and
applied literatures. In the following section we brie�y place our work in the context of
the prior literature. We then set up the model in section 3. Our analysis based on non-
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parametric instrumental variable conditions is presented in section 4. Section 5 develops
our alternative simultaneous equations approach. We take up discrimination between
oligopoly models in section 6. Section 7 provides a discussion focused on tradeo¤s be-
tween functional form and exclusion restrictions. We conclude in section 8.

2 Related Literature

There is a large body of work on identi�cation of discrete choice models.3 Much of
that literature considers models allowing for heterogeneous preferences through a ran-
dom coe¢ cients random utility speci�cation, but ruling out endogeneity. Ichimura and
Thompson (1998) study a linear random coe¢ cients binary choice model. Briesch, Chin-
tagunta, and Matzkin (2005) consider multinomial choice, allowing some generalization
of a linear random coe¢ cients model. In contrast to this literature, our formulation of
the underlying random utility model speci�es only random utilities, not random para-
meters that interact with observables to generate random utilities. This allows us to
substantially relax functional form and distributional assumptions relied on in earlier
work.
Also essential to our demand model is the endogeneity of prices. Several papers ad-

dress the identi�cation of discrete choice models with endogeneity. Examples include
Lewbel (2000), Honoré and Lewbel (2002), Hong and Tamer (2004), Blundell and Powell
(2004), Lewbel (2005), and Magnac and Maurin (2007). These consider linear semipara-
metric models, allowing for a single additive scalar shock (analogous to the extreme value
or normal shock in logit and probit models) that may be correlated with some observables.
Among these, Lewbel (2000) and Lewbel (2005) consider multinomial choice. Extensions
to non-additive shocks are considered in Matzkin (2007a) and Matzkin (2007b). Com-
pared to these papers, we relax functional form restrictions and, more fundamentally, add
the important distinction between market/choice-speci�c unobservables and individual
heterogeneity in preferences. This distinction allows the model to de�ne comparative
statics that account for both heteroskedasticity (heterogeneity in tastes for characteris-
tics) and endogeneity.4 For example, to de�ne a demand elasticity one must quantify
the changes in market shares resulting from an exogenous change in price. Account-
ing for heterogeneity in consumers�marginal rates of substitution between income and
other characteristics requires allowing the price change to a¤ect the covariance matrix
(and other moments) of utilities. On the other hand, controlling for endogeneity requires
holding �xed the market/choice-speci�c unobservables. Meeting both requirements is
impossible in models with a single composite error for each product.

3Important early work includes Manski (1985), Manski (1988), Matzkin (1992), and Matzkin (1993),
which examine semiparametric models with exogenous regressors.

4Matzkin (2004) (section 5.1) makes a distinction between choice-speci�c unobservables and an ad-
ditive preference shock, but in a model without random coe¢ cients or other sources of heteroskedastic-
ity/heterogeneous tastes for product characteristics. See also Matzkin (2007a) and Matzkin (2007b).
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Blundell and Powell (2004), Matzkin (2004), and Hoderlein (2008) have considered bi-
nary choice with endogeneity in semiparametric triangular models, leading to the applica-
bility of control function methods or the related idea of �unobserved instruments�(see
also Petrin and Train (2009), Altonji and Matzkin (2005), Gautier and Kitamura (2007),
and Fox and Gandhi (2009)).5 However, standard models of oligopoly pricing in di¤er-
entiated products markets imply that each equilibrium price depends in general on the
entire vector of demand shocks (and typically the vector of cost shocks as well). This
rules out a triangular structure. Nonetheless, some of our results use a related strategy
of inverting a multiproduct supply and demand system to recover the entire vector of
shocks to costs and demand. This could be interpreted as a generalization of the control
function approach. It is also related to the small literature on nonparametric simultane-
ous equations. Indeed, we show that our demand and supply model can be transformed
into a system of simultaneous equations with a general form recently explored by Matzkin
(2008) and Matzkin (2010). Applying Matzkin�s results would require both a large sup-
port assumption and restrictions on the joint density of the structural errors. We show
that this is unnecessary: the density restriction can be dropped, or it can be modi�ed
in order to drop the large support condition. The former result is new to the literature
on nonparametric simultaneous equations while the latter was �rst shown in Berry and
Haile (2011).
In the literature on oligopoly supply, Rosse (1970) introduced the idea of using �rst-

order conditions for imperfectly competitive �rms to infer their marginal costs from
prices and demand parameters, with important further developments in, e.g., Bresnahan
(1981) and BLP. We follow a similar strategy but show that parametric restrictions are
not required for identi�cation. Our insights regarding discrimination between alternative
oligopoly models are related to ideas from the early empirical IO literature on inferring
�rm conduct frommarket outcomes. Bresnahan (1982), in particular, provided in�uential
intuition for how �rotations of demand�could distinguish between alternative oligopoly
models. While Bresnahan�s intuition was very general, formal results (Lau (1982)) have
been limited to deterministic homogeneous goods conjectural variations models (with
linear �conjectures�), and have required shifters of aggregate demand. Our results avoid
these restrictions and point to the more general role of rotations of a product-speci�c
marginal revenue function.
Turning to recent unpublished papers, Berry and Haile (2009) explores related ideas

in the context of a �generalized regression model�(Han (1987)). Berry and Haile (2010)
considers identi�cation of discrete choice models in the case of �micro data,�where one
observes the choices of individual consumers as well as characteristics speci�c to each
consumer and product. The distinction between �market data�and �micro data�has
been emphasized in the recent industrial organization literature (e.g., Berry, Levinsohn,
and Pakes (2004)), but not the econometrics literature. A key insight in Berry and Haile
(2010) is that within a market the market/choice-speci�c unobservables are held �xed.

5See also Chesher (2003) and Imbens and Newey (2009).
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One can therefore learn key features of a random utility model by exploiting within-
market variation� variation that is not confounded by variation in the market/choice-
speci�c unobservables. That strategy is exploited throughout Berry and Haile (2010), but
cannot be applied to market level data. Berry and Haile (2010) show that this additional
variation can reduce the need for exclusion restrictions, can make additional instruments
available, and can allow one to drop the index structure relied on throughout the present
paper.
Concurrent work by Fox and Gandhi (2009) explores the identi�ability of a discrete

choice model in which consumer types are multinomial and conditional indirect utility
functions are analytic.6 More recently, Fox and Gandhi (2011) have explored an extension
in which the dimension of the product/market level unobservables exceeds that of the
choice set, showing that ex ante average features of demand can still be identi�ed. A
recent working paper by Chiappori and Komunjer (2009) considers identi�cation using
�micro data�(cf. Berry and Haile (2010)) in a random utility discrete choice model with
an additive structure.

3 Demand Model

3.1 Random Utility Discrete Choice

Each consumer i in market t chooses a good from a set Jt = f0; 1; : : : ; Jtg. We use
the terms �good�and �product�interchangeably. A �market�consists of a continuum
of consumers in the same choice environment. In practice markets are often de�ned
geographically and/or temporally; however, other notions are permitted. For example,
residents of the same city with di¤erent incomes, races, or family sizes might be split into
distinct markets. Formally, a market t is de�ned by (Jt; �t), where

�t = (xt; pt; �t)

represents the characteristics of products and/or markets. Observed exogenous charac-
teristics of product j and/or market t are represented by xt = (x1t; : : : ; xJt), where each
xjt 2 RK . The vector �t =

�
�1t; : : : ; �Jtt

�
represents unobservables at the level of the

product and/or market. These may re�ect unobserved product characteristics and/or
unobserved variation in tastes across markets. Finally, pt = (p1t; : : : ; pJtt) represents
endogenous observable characteristics, i.e., those correlated with the structural errors
�t. The restriction to one scalar endogenous observable for each good/market re�ects
standard practice but is not essential.7 We refer to pjt as �price,�re�ecting the leading

6Bajari, Fox, Kim, and Ryan (2009) considers identi�cation in a linear random coe¢ cients model
without endogeneity, assuming that the distribution of an additive i.i.d. preference shock is known.
Gandhi, Kim, and Petrin (2011) consider identi�cation and estimation of a particular parametric varia-
tion on the standard BLP model.

7The modi�cations required to allow higher dimensional pjt are straightforward, although the usual
challenge of �nding adequate instruments for more than one endogenous product characteristic would
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case. Without loss, we henceforth condition on Jt = J = f0; 1; : : : ; Jg. Let X denote
the support of �t.
Consumer preferences are represented with a random utility model.8 Consumer i in

market t has conditional indirect utilities

vi0t; vi1t; : : : ; viJt

for the goods. For simplicity we will refer to these as �utilities.�Without loss we normalize
utilities relative to that of good 0 for each consumer, implying

vi0t = 0 8i; t:

Any observed characteristics of good 0 in market t are then treated as market-speci�c
characteristics common to all products j > 0 in that market. In applications it is common
for good 0 to represent the composite �outside good,�i.e., the decision to purchase none of
the goods explicitly studied, and this outside good may have no observable characteristics.
Our formulation allows this as well.
Conditional on �t, the utilities (vi1t; : : : ; viJt) are i.i.d. across consumers and markets,

with joint distribution
Fv (vi1t; : : : ; viJtj�t) :

We assume argmaxj2J vijt is unique with probability one. Choice probabilities (market
shares) are then given by

sjt = �j (�t) = Pr

�
argmax

k2J
vikt = j j�t

�
j = 0; : : : ; J: (1)

Of course, s0t = �0 (�t) = 1 �
PJ

j=1 �j (�t). We assume that for all �t 2 X , �j (�t) > 0
for all j 2 J .9 Let st = (s1t; : : : ; sJt) and � (�t) = (�1 (�t) ; : : : ; �J (�t)).

3.2 An Index Restriction

So far the only restriction placed on the random utility model is the restriction to a scalar
unobservable �jt for each t and j = 1; : : : ; J . Although this is standard in the literature,
it is an important restriction.10 We now add an important index restriction. Partition

remain. For an empirical analysis with multiple endogenous characteristics, see Fan (2011).
8See, e.g., Block and Marschak (1960), Marschak (1960), McFadden (1974), and Manski (1977) for

pioneering work.
9This amounts to treating goods with choice probability zero in market t as unavailable in that

market. It should be clear that at most a bound could be obtained on the distribution of utility for a
good with zero market share.
10A need to have no more than one structural error per observed choice probability may not be

surprising.
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xjt as
�
x
(1)
jt ; x

(2)
jt

�
, with x(1)jt 2 R. Let x

(1)
t =

�
x
(1)
1t ; : : : ; x

(1)
Jt

�
and x(2)t =

�
x
(2)
1t ; : : : ; x

(2)
Jt

�
.

De�ne the linear indices

�jt = x
(1)
jt �j + �jt j = 1; : : : ; J (2)

and let �t = (�1t; : : : ; �Jt) :

Assumption 1. Fv (�j�t) = Fv

�
�j�t; x(2)t ; pt

�
:

Assumption 1 requires that �t and x
(1)
t a¤ect the distribution of utilities only through

the indices �t. With this assumption, variation in pjt and x
(2)
jt can have arbitrary ef-

fects on the way variation in �jt changes the distribution of vijt, but x
(1)
jt and �jt are

perfect substitutes. Put di¤erently, the marginal rate of substitution between a unit of
the characteristic measured by xjt and that measured by �jt must be constant. This
linear structure is actually stronger than necessary, and we show in Appendix B that
identi�cation with a nonparametric IV approach can also be obtained with nonseparable
indices �jt = �j

�
x
(1)
jt ; �jt

�
. The essential requirement is that x(1)jt and �jt enter through

an index that is strictly monotonic in �jt.

Example 1. In applied work it is common to generate the conditional joint distributions
Fv (�j�t) from an analytical form for random utility functions

vijt = vj (xt; �t; pt; �it)

where �it is a �nite-dimensional parameter. The most common form is a linear random
coe¢ cients model, e.g.,

vijt = xjt�it � �itpjt + �jt + �ijt (3)

with �it = (�it; �it; �i1t; : : : ; �iJt) independent of �t and i.i.d. across consumers and mar-
kets. Endogeneity of price is re�ected by correlation between pjt and �jt conditional on xjt.
The speci�cation (3) generalizes the BLP model by dropping its parametric distributional
assumptions and allowing correlation among the components of �it.11 In this model, a
su¢ cient condition for Assumption 1 is that one component of xjt have a degenerate coef-
�cient, an assumption made in most applications. Compared to this example, our model
relaxes several restrictions. We do not require the linearity of (3), �nite-dimensional �it,
�it independent of �t, or even the exclusion of (xkt; �kt; pkt) from vj (�) for j 6= k. Fur-
ther, while our assumptions below will imply that demand for good j be increasing in �jt
at the market level, we do not require that x(1)jt and �jt be �vertical��characteristics. For

example, x(1)jt and �jt could be observed and unobserved factors contributing to a �horizon-
tal�characteristic (say, the acceleration capacity of a car) which consumers as a whole
like, but which some consumers dislike.

11In the BLP model, price enters through a nonlinear interaction with random coe¢ cients. Since the
distinction has no substantive implication for our purposes, we ignore this and refer to the model with
linear interactions as the BLP model.
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Because the unobservables �jt, j = 1; : : : ; J have no natural location or scale, we must
normalize them in order to have a unique representation of preferences.12 We normalize
the scale by setting �j = 1 8j, yielding

�jt = x
(1)
jt + �jt:

This leaves a location normalization on each �jt to be made later.

Henceforth we condition on an arbitrary value of x(2)t and suppress it in the notation.
For simplicity we then let xjt represent x

(1)
jt : Given Assumption 1, we can then rewrite

(1) as
sjt = �j (�t; pt) j = 0; : : : ; J: (4)

3.3 Connected Substitutes

Discrete choice models inherently involve choice among weak gross substitutes.13 For
example, if vijt is strictly decreasing in pjt, a fall in pjt will (all else equal) raise the
market share of good j and (weakly) lower market shares of all other goods. With the
following �connected substitutes�assumption (Berry, Gandhi, and Haile (2012)), we will
strengthen this notion of choice among substitute goods in two ways. First, we will
require that the index �jt also �act like (minus) price�in the sense that a rise in �jt will
(all else equal) weakly lower the market shares of all goods k 6= j. Second, we will require
a minimal degree of strict substitution among the goods.

Assumption 2 (connected substitutes). For �t = �pt and for �t = �t,
(i) �k (�t; pt) is nonincreasing in �jt for all j > 0, k 6= j, and any (�t; pt) 2 R2J ;
(ii) for each (�t; pt) 2supp(�t; pt) and any K � f1; : : : ; Jg ; there exist k 2 K and j =2 K
such that �k (�t; pt) is strictly decreasing in �jt.

Part (i) requires the goods to be weak gross substitutes in pt and in �t.14 Part (ii)
requires some strict substitution as well� loosely speaking, enough to justify treating
J as the relevant choice set. In particular, if part (ii) fails there would be some strict
subset of goods K that substitute only to other goods in K. A su¢ cient condition for
Assumption 2 is that each vijt be strictly increasing in �jt and �pjt, but una¤ected
by (�kt; pkt) for k 6= j. Conditional on the index restriction, this would be standard.
However, this is stronger than necessary; for example, while Assumption 2 implies that

12For example, let ~�t = � + �t� and ~Fv

�
�jxt; pt; ~�t

�
= Fv (�jxt; pt; �t) 8 (xt; pt; �t). Then for every

(�; �) 2 RJ � RJ+ we have a di¤erent representation of the same preferences.
13Complements can be accommodated by de�ning the �products�as bundles of the individual goods

(e.g., Gentzkow (2004)).
14Our use of weak gross substitutes rather than the slightly stronger notion of weak substitution in

Berry, Gandhi, and Haile (2012) exploits their Proposition 1 and the assumption that � (�t; pt) is de�ned
on R2J regardless of �. The latter seems uncontroversial here and plays no other role.
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the aggregate choice probability �j (�t; pt) is strictly increasing in �jt (see Berry, Gandhi,
and Haile (2012)), Assumption 2 allows an increase in �jt to lower vijt for a positive
measure of consumers. Thus, xit and �jt need not be vertical characteristics.
Berry, Gandhi, and Haile (2012) provide additional discussion of this assumption and

demonstrate that it captures a feature common among standard models of di¤erentiated
products demand. This will be a key condition allowing us to �invert�our supply and
demand models.

3.4 Observables

Let Mt denote the measure of consumers in market t and let zt denote a vector of
instruments excluded from the demand model (we discuss exclusion restrictions below).
In the market data environment, the observables include (Mt; xt; pt; st; zt). When we add
a model of supply we will sometimes add to this list a vector of exogenous cost shifters
wt and instruments yt excluded from �rms�marginal cost functions. Allowable overlap
between elements of (Mt;wt; xt; yt; zt) will be characterized below.

4 Identi�cation under Nonparametric IV Conditions

4.1 Identi�cation of Demand

We �rst consider identi�cation of the demand system, i.e., of the mapping

� (�) = (�1 (�) ; : : : ; �J (�)) : X ! 4J

where4J is the unit J-simplex. A key step in our identi�cation argument is the inversion
of the system of share functions in (4). The following result, shown in Berry, Gandhi,
and Haile (2012), generalizes a well-known invertibility result for linear discrete choice
models in Berry (1994).

Lemma 1. Consider any price vector p and any market share vector s = (s1; : : : ; sJ)
0 on

the interior of 4J . Under Assumptions 1 and 2 there is at most one vector � such that
�j (�; p) = sj 8 j.

With this result we can write

�jt = ��1j (st; pt) j = 1; : : : ; J (5)

or
xjt + �jt = ��1j (st; pt) j = 1; : : : ; J: (6)

This equation provides a reminder of the need to normalize the location of each �jt. In
this section we choose the normalization

E
�
�jt
�
= 0 j = 1; : : : ; J:
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Equation (6) has a form similar to, but di¤erent from, a standard nonparametric
regression model with endogenous regressors and a linear structural error. The standard
model takes the form y

(1)
t � �

�
y
(2)
t

�
= �t, where (y

(1)
t ; y

(2)
t ) are endogenous and �(�) is

unknown. Newey and Powell (2003) showed identi�cation of �(�) using excluded instru-
mental variables with dimension at least equal to that of y(2)t . In similar notation, our

inverted demand model (6) takes the form �j

�
y
(1)
jt ; y

(2)
jt

�
� xjt = �jt for each j. Here

all endogenous variables appear inside the unknown transformation �j, and an essential
instrument, xjt, is not excluded. This precludes direct application of the Newey-Powell
result. However, we will see that following their identi�cation proof will demonstrate
identi�cation in our setting, using as instruments the exogenous xt 2 RJ in combination
with excluded instruments of dimension at least equal to that of y(2)t .
Before stating the instrumental variables conditions, recall that in addition to the

exogenous product characteristics xt, the vector zt represents instruments for pt ex-
cluded from the determinants of (vi1t; : : : viJt). Standard excluded instruments include
cost shifters (e.g., input prices) or proxies for cost shifters such as prices of the same good
in other markets (e.g., Hausman (1996), Nevo (2001)). In some applications, character-
istics of consumers in �nearby�markets will be appropriate instruments (e.g., Gentzkow
and Shapiro (2009), Fan (2011)). We make the following exclusion and completeness
assumptions.

Assumption 3. For all j = 1; : : : ; J , E[�jtjzt; xt] = 0 almost surely.

Assumption 4. For all functions B (st; pt) with �nite expectation, if E [B (st; pt) jzt; xt] =
0 almost surely then B (st; pt) = 0 almost surely.

Assumption 3 is a standard exclusion restriction, requiring mean independence be-
tween the instruments and the structural error �jt.

15 Assumption 4 requires completeness
of the joint distribution of (zt; xt; st; pt) with respect to (st; pt).16 This is a nonparametric
analog of the standard rank condition for linear models. In particular, it requires that the
instruments move the endogenous variables (st; pt) su¢ ciently to ensure that any func-
tion of these variables can be distinguished from others through the exogenous variation
in the instruments. See Newey and Powell (2003), Severini and Tripathi (2006), Andrews

15Observe that we do not require any restriction on the joint distribution of x(2)t and �t. Thus

our description of
�
x
(1)
t ; x

(2)
t

�
as �observed exogenous characteristics,�while consistent with standard

practice, suggests less �exibility than what is actually permitted. For example, if if �jt and x
(2)
jt are

jointly determined, this presents no problem for the identi�cation of price elasticities as long as x(1)jt is

independent of �jt conditional on x
(2)
jt . We provide an example in Appendix C.

16Identi�cation with weaker forms of completeness follow from the same argument used below. L2-
completeness (Andrews (2011)) would su¢ ce under the mild restriction that the sum xjt+ �jt has �nite
variance 8j. If �jt and xjt were assumed to have bounded support 8j, bounded completeness would
su¢ ce.
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(2011) and references therein for helpful discussion and examples. We emphasize that
we require both the excluded instruments zt and the exogenous demand shifters xt. The
�BLP instruments�xt alone cannot satisfy Assumption 4.
Newey and Powell (2003) used analogs of Assumptions 3 and 4 to show the identi�-

ability of a separable nonparametric regression model. The following result shows that
the same argument can be applied to show identi�cation of demand in our setting.

Theorem 1. Under Assumptions 1�4, for all j = 1; : : : ; J (i) �jt is identi�ed with
probability one for all t, and (ii) the function �j (�t) is identi�ed on X .

Proof. For any j, rewriting (6) and taking expectations conditional on wt; xt, we obtain

E
�
�jtjzt; xt

�
= E

�
��1j (st; pt)

�� zt; xt�� xjt

so that by Assumption 3,

E
�
��1j (st; pt)

�� zt; xt�� xjt = 0 a:s:

Suppose there is another function ~��1j satisfying

E
�
~��1j (st; pt)

�� zt; xt�� xjt = 0 a:s:

Letting B (st; pt) = ��1j (st; pt)� ~��1j (st; pt), this implies

E [B (st; pt) jzt; xt] = 0 a:s:

But by Assumption 4 this requires ~��1j = ��1j almost surely, implying that ��1j is iden-
ti�ed. Repeating for all j, each �jt is then uniquely determined with probability one by
(6), proving part (i). Because choice probabilities are observed and all arguments of the
demand functions �j (�t) are now known, part (ii) follows immediately. �

In Appendix B we show that if we strengthen the two instrumental variables assump-
tions as in Chernozhukov and Hansen (2005), we can generalize the model to allow

�jt = �j
�
xjt; �jt

�
where each �j is an unknown function that is strictly increasing in its second argument.
This avoids the linearity of the index, the requirement that xjt and �jt be perfect sub-
stitutes, and the monotonicity of �j (�t) in xjt. Thus, the essential requirement is strict
monotonicity of the index �jt in the latent demand shock �jt.

4.2 Welfare and the Random Utility Model

The demand system � (�t; st) is the only primitive from the consumer model required for
most purposes motivating estimation in di¤erentiated products markets. The important

12



exception is evaluation of changes in consumer welfare.17 As usual, a valid measure of
aggregate consumer welfare changes can be obtained directly from demand under an
additional assumption of quasilinear preferences.

Assumption 5. vijt = �ijt � pjt, where the random variables (�i1t; : : : ; �iJt) are inde-
pendent of pt conditional on (xt; �t) :

We use this restriction only in this section of the paper. Note that the restriction
vijt = �ijt � pjtwould have no content alone: even with this restriction, any joint dis-
tribution Fv (�j�t) can be replicated by appropriate choice of the joint distribution of
(�i1t; : : : ; �iJt) j�t, since pt 2 �t: The conditional independence adds the requirement
that that, �xing (xt; �t) ; prices a¤ect the joint distribution of utilities only through the
linear terms. Thus, Assumption 5 is a natural notion of quasilinearity for a random
utility setting.18 If we speci�ed vijt = vj (xt; �t; �it)� pjt, where �it is a possibly in�nite-
dimensional random parameter (Example 1 is a special case), Assumption 5 holds when
�it j= pt conditional on (xt; �t).
Given Assumption 5, identi�cation of all changes in aggregate consumer surplus fol-

lows from standard arguments. Equivalently, welfare changes can be derived from knowl-
edge of the conditional joint distributions of the di¤erences in gross utilities

��
�ikt � �ijt

�	
k2Jnj

on the support of the corresponding price di¤erences. With the convention �i0t = p0t = 0;
let _�ijt denote the di¤erences

��
�ikt � �ijt

�	
k2Jnj and let _pjt denote the di¤erences

f(pkt � pjt)gk2Jnj. Let F _�j (�jxt; �t) denote the conditional distribution of _�ijt. We can
then state the following result.

Theorem 2. Suppose Assumptions 1�5 hold. Then for all (xt; �t), all j 2 J , and all
_� 2supp _pjtj (xt; �t), F _�j ( _�jxt; �t) is identi�ed.

Proof. Taking j = 1,

�1 (�t; pt) = Pr (�vi1t � 0; vi2t � vi1t � 0; : : : ; viJt � vi1t � 0j�t; pt)
= F _�1 (�p1t; p2t � p1t; : : : ; pJt � p1tjxt; �t)
= F _�1 ( _p1tjxt; �t)

where the second equality follows from Assumption 5. The demand function �1 (�t; pt)
and unobservables �t are identi�ed (Theorem 1), and pt is independent of (�i1t; : : : ; �iJt)

17Certain notions of welfare changes (e.g., Pareto improvements, compensating/equivalent variation)
require evaluation of changes in individual utilities. It should be clear that in general these are nonpara-
metrically unidenti�ed from market level data. A further obstacle is that, without additional structure,
changes in the distribution of utilities (e.g., Fv (�j�t) vs. Fv (�j�t0) in our model) generally do not de�ne
changes in any individual utilities. Many parametric models permit an assumption that each consumer
(or each set of identical consumers) is associated with a particular realization of random parameters
(see Example 1). This allows identi�cation of possible Pareto improvements or compensating/equivalent
variation, even with market-level data.
18Under the seemingly more general speci�cation vijt = �ijt � �itpjt, with the random coe¢ cient

�it > 0 a.s., one can normalize the scale of each consumer�s utilities without loss by setting �it = 1.
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conditional on (xt; �t). Identi�cation of F _�j (�jxt; �t) on supp _p1tj (xt; �t) then follows. An
identical argument applies for j 6= 1. �

This result also helps to shed light on the variation required to identify the joint
distribution function Fv (�j�t), i.e., to identify the random utility model itself. Iden-
ti�cation of Fv (�j�t) may be of interest when considering certain estimation strategies.
And given the focus of the prior literature on identi�cation/estimation of Fv (�j�t)� for
example using identi�cation of Fv (�j�t) to demonstrate identi�cation of demand� a brief
discussion may clarify some of the gains achieved by focusing directly on identi�cation
of demand instead.
Let F� (�jxt; �t) denote the conditional joint distribution of (�i1t; : : : ; �iJt). It is well

known that for any j the function F _�j (�jxt; �t) completely determines F _�k (�jxt; �t) for
all k (see Thompson (1989)). Furthermore, knowledge of F _�j (�jxt; �t) for one j implies
knowledge of Fv (�j�t) under Assumption 5. For example,

�0 (�t; pt) = F _�0 (ptjxt; �t) = Pr (�i1t � p1; : : : ; �iJt � pJ j�xt; �t) = F� (ptjxt; �t) (7)

and under Assumption 5 F� (�jxt; �t) completely determines Fv (�j�t). So if

supp ptj (xt; �t) � supp �tj (xt; �t)

Theorem 2 implies identi�cation of Fv (�j�t).
With more limited price variation, Theorem 2 delivers partial identi�cation of each

F _�j (�jxt; �t), i.e., point identi�cation on the support of _pjt j (xt; �t). This implies that
Fv (�j�t) will be partially identi�ed as well. This is easily seen from (7), although in this
case the demand for good zero no longer characterizes all that is learned about Fv (�j�t).
Following Thompson (1989), for all j

F _�j ( _pjtjxt; �t) = Pr
�
_�jt � _pjtjxt; �t

�
= Pr (�j _�0t � _pjtjxt; �t)

=

Z
1 f�jm � _pjtg dF _�0 (mjxt; �t)

=

Z
1 f�jm � _pjtg dF� (mjxt; �t) (8)

where � represents the usual component-wise partial order and �j is the matrix such that
�j _�0t = _�jt. When j = 0, (8) is equivalent to (7), so point identi�cation of F� (�jxt; �t)
is obtained at � 2supp ptjxt; �t. For j > 0; (8) provides additional restrictions on
F� (�jxt; �t) for � =2supp ptjxt; �t. As already noted, F� (�jxt; �t) completely determines
Fv (�j�t). Thus, what is learned about Fv (�j�t) will combine restrictions obtained from
each partially identi�ed F _�j (�jxt; �t), i.e., from each �j (�) :
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4.3 Identi�cation of Marginal Costs

In the applied literature, adding a supply side to the model typically proceeds by speci-
fying a functional form for �rm costs and an extensive form for the competition between
�rms. A set of �rst-order conditions characterizing equilibrium prices and quantities
in terms of �rms�costs and features of demand (e.g., own- and cross-price elasticities)
then allow recovery of �rms�equilibrium marginal costs and, under additional exclusion
restrictions, their marginal cost functions. Given identi�cation of demand, it is straight-
forward to show that a similar approach can be applied to demonstrate identi�cation in
a nonparametric setting.
An identi�cation approach based on �rst-order conditions requires di¤erentiability of

�rms�pro�t functions with respect to their choice variables. This will be assured if the
market share functions �j (�t; pt) are continuously di¤erentiable with respect to prices,
and we will assume this directly. We also slightly strengthen part of the connected sub-
stitutes assumption (Assumption 2) by requiring @�k (�t; pt) =@pj > 0 whenever �k (�t; pt)
is strictly increasing in pj.

Assumption 6. (i) �j (�t; pt) is continuously di¤erentiable with respect to pk 8j; k 2 J ;
(ii) for each (�t; pt) 2supp(�t; pt) and any K � f1; : : : ; Jg ; there exist k 2 K and j =2 K
such that @�k (�t; pt) =@pjt > 0.

Let mcjt denote the equilibrium marginal cost of production of good j in market t.
For now we place no restriction on the structure of �rm costs. However, we follow the
literature in assuming one has committed to a model of supply, allowing each marginal
cost to be expressed as a known function of equilibrium prices, equilibrium quantities
(determined by st and Mt), and the �rst-order derivatives of the demand system �.19

Assumption 7a. For each j = 1; : : : ; J there exists a known function  j such that for
any Mt and any equilibrium value of (st; pt)

mcjt =  j (st;Mt; Dt (st; pt) ; pt) (9)

where Dt (st; pt) is the J�J matrix of partial derivatives
�
@�k((��11 (st;pt);:::;�

�1
J (st;pt));pt)

@p`

�
k;`

.

Although this is a high-level assumption, the following remark (proved in Appendix
A) demonstrates that, given di¤erentiability and our connected substitutes assumption
on demand, Assumption 7a holds in the standard models of oligopoly supply typically
considered in the empirical literature, where  j can be interpreted as a �product-speci�c
marginal revenue function�for product j. Relying on this high-level assumption thus
allows us to provide results for a variety of supply models at once.

19Our ability to express the matrix of derivatives in terms of (st; pt) exploits the invertibility result of
Lemma 1.
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Remark 1. Suppose supply is characterized by any of the following models, each allowing
single-product or multi-product �rms:
(i) marginal cost pricing;
(ii) monopoly pricing (or joint pro�t maximization);
(iii) Nash equilibrium in a complete information simultaneous price-setting game;
(iv) Nash equilibrium in a complete information simultaneous quantity-setting game.

Then under Assumptions 1, 2 and 6, Assumption 7a holds.

This remark demonstrates that Assumption 7a describes a feature common to stan-
dard models of oligopoly supply. This feature immediately allows identi�cation of mar-
ginal costs.

Theorem 3. Suppose Assumptions 1�4, 6, and 7a hold. Then mcjt is identi�ed for all
t; j = 1; : : : ; J .

Proof. Immediate from (9) and Theorem 1. �

Theorem 3 shows that marginal costs (and, therefore, markups) are identi�ed without
any additional exclusion condition or any restriction on �rms�cost functions. Given any
of the standard models of oligopoly supply described above, only the di¤erentiability as-
sumption (Assumption 6) has been added to the conditions we required for identi�cation
of demand.
Marginal costs and markups are sometimes the only objects of interest on the supply

side. However, unless one assumes constant marginal costs, counterfactual questions
involving changes in equilibrium quantities will require identi�cation of �rms�marginal
cost functions. Let Jj denote the set of goods produced by the �rm producing good j.
Let qjt =Mtsjt denote the quantity of good j produced, and let Qjt denote the vector of
quantities of all goods k 2 Jj. We allow each marginal cost to depend on the quantities
Qjt, on observable cost shifters wjt (which may include or consist entirely of demand
shifters), and on an unobserved cost shifter !jt 2 R. Thus, we let

mcjt = cj (Qjt;wjt; !jt) (10)

where the unknown function cj may di¤er arbitrarily across �rms.
Given Theorem 3, the values of each mcjt can be treated as known, so (10) takes the

form of a standard nonparametric regression equation. We have the usual endogeneity
problem: �rm output Qjt is correlated with the marginal cost shock !jt. However, typi-
cally there are many available instruments. Any demand demand shifter excluded from
the cost shifters wjt is a candidate instrument. These can include observable demand
shifters xkt for k 2 Jj. Because standard oligopoly models imply that demand shifters
for all goods a¤ect every market share through the consumer choice problem and equi-
librium, demand shifters xkt for k =2 Jj are also available as instruments. Other possible
instruments include observables like population that vary only at the market level and
may or may not directly a¤ect market shares, but do a¤ect quantities Thus, there will
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often be a large number of instruments for Qjt.20 Indeed, the large number of instruments
may lead to testable overidentifying restrictions, something we discuss in section 6.
With adequate instruments, identi�cation of the marginal cost function is straightfor-

ward. One way to obtain a formal result is to assume monotonicity of cj in the unobserved
cost shifter !jt and apply the identi�cation result of Chernozhukov and Hansen (2005)
for nonparametric nonseparable instrumental variables regression models. Alternatively,
one could consider the separable nonparametric speci�cation

mcjt = cj (Qjt;wjt; ) + !jt (11)

where identi�cation of the unknown function cj follows by direct application of Newey
and Powell�s (2003) identi�cation result for separable nonparametric regression models.21

We give a formal statement only for the latter case. Let yjt denote instruments excluded
from the own-product cost shifters, as discussed above, and make the following exclusion
and completeness assumptions.

Assumption 8. E[!jt jwjt; yjt ] = 0 almost surely for all j = 1; : : : ; J .

Assumption 9. For all j = 1; : : : ; J and all functions B (wjt; Qjt) with �nite expectation,
if E [B (wjt; Qjt) jwjt; yjt] = 0 almost surely, then B (wjt; Qjt) = 0 almost surely.

Theorem 4. Suppose marginal cost takes the form in (11) and that Assumptions 1�4, 6,
7a, 8, and 9 hold. Then for all j = 1; : : : ; J , (i) the marginal cost functions cj (Qjt;wjt; )
are identi�ed and (ii) !jt is identi�ed with probability one for all t.

Proof. Immediate from Theorem 3 and Newey and Powell (2003). �

4.4 Identifying Cost Shocks without a Supply Model

We conclude our exploration of nonparametric instrumental variables approaches to iden-
ti�cation by providing conditions under which the latent cost shocks !jt can be identi-
�ed without specifying a particular oligopoly model. This will enable us to obtain our
strongest results regarding discrimination between alternative oligopoly models in section
6. In addition, some of the structure introduced here will prove useful to our exploration
of identi�cation using nonparametric simultaneous equations in section 5.
We begin by replacing the assumption of a known supply model (Assumption 7a)

with the following less restrictive condition.

20In practice it is usually assumed that only qjt, not Qjt, enters the cost of good j. In that case only
a single excluded instrument is required.
21Note that unlike our prior use of a Newey-Powell inspired argument to identify demand, there is

nothing nonstandard about equation (11): the left-hand side variable is endogenous and all instruments
are excluded from the equation.
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Assumption 7b. For all j = 1; : : : ; J , there exists a function  j (possibly unknown)
such that for any Mt and any equilibrium value of (st; pt)

mcjt =  j (st;Mt; Dt (st; pt) ; pt)

where Dt (st; pt) is the J�J matrix of partial derivatives
�
@�k((��11 (st;pt);:::;�

�1
J (st;pt));pt)

@p`

�
k;`

.

Assumption 7b is identical to Assumption 7a except that the functions  j now need
not be known. We require only that a �rst-order condition of this form exist. As al-
ready noted, Appendix A shows that this exists in standard oligopoly models, including
those typically considered in empirical work.22 Violations of this condition could arise
in ill-de�ned models (e.g., models with no equilibrium) or in models with behavior char-
acterized by corner solutions.
With this relaxation of Assumption 7a we will require additional structure on the

marginal cost function. Partition wjt as
�
w
(1)
jt ;w

(2)
jt

�
, with w(1)jt 2 R, and de�ne the �cost

index�
�jt � w(1)jt 
j + !jt:

Parallel to our index restriction on the demand model, we now require that w(1)jt and !jt
a¤ect marginal cost only through the index �jt.

Assumption 10. For all j = 1; : : : ; J; mcjt = cj(Qjt; �jt;w
(2)
jt ), where cj is strictly

increasing in �jt.

This is an important restriction, but one that is satis�ed in many standard models.23

As with our model of demand, we focus on the case of a linear index although only
monotonicity of the index in !jt is essential.
We normalize 
j = 1 for each j without loss. Continuing to condition on (and

suppress) x(2)t , we now also condition on a value of w
(2)
t =

�
w
(2)
1t ; : : : ;w

(2)
Jt

�
and suppress

it in the notation by letting wjt now denote w
(1)
jt . We let wt = (w1t; : : : ;wJt) :

The following lemma provides a supply-side analog to our previous result on the
invertibility of demand. It shows that under Assumptions 7b and 10 there is unique
vector of cost indices (�1t; : : : ; �Jt) consistent with any vector of equilibrium prices and
market shares.

Lemma 2. Given any (Mt; st; pt), there is exactly one (�1t; : : : ; �Jt) 2 RJ consistent with
Assumptions 7b and 10.

22Without changing any argument, we could generalize Assumption 7b (likewise Assumption 7a) by
allowing  j depend arbitrarily on the demand system � (�). We use the simpler condition since in the
examples we have considered the matrix of derivatives Dt (st; pt) su¢ ces.
23Note that w(1)jt and !jt could be any known transformations of some other observed and unobserved

cost shifters.
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Proof. By Assumption 7b,

cj (Qjt; �jt) =  j (st;Mt; Dt (st; pt) ; pt) (12)

and by Assumption 10, the function cj can be inverted, yielding

�jt = c�1j
�
 j(st;Mt; Dt (st; pt) ; pt);Qjt

�
: (13)

Since each qjt =Mtsjt, the right-hand side is an unknown function of st; pt, and Mt. �

Henceforth we condition on a value of Mt and suppress it in the notation. We then
rewrite (13) as

wjt + !jt = ��1j (st; pt) j = 1; : : : ; J: (14)

Each function ��1j involves the composition of c�1j and  j; although we never de�ned a
function �j; we use the notation ��1j as a reminder that this represents an �inversion�of
supply side equilibrium conditions.
Equation (14) takes the same form as (6), and we can use it in the same way, exploiting

the exogenous cost shifters wt and demand shifters xt as instruments.

Assumption 11. E[!jtjwt; xt] = 0 almost surely for all j = 1; : : : ; J .

Assumption 12. For all functions B (st; pt) with �nite expectation, if E [B (st; pt) jwt; xt] =
0 almost surely then B (st; pt) = 0 almost surely.

Theorem 5. Suppose Assumptions 1�4, 6, 7b, and 10�12 hold. Then for all j = 1; : : : ; J ,
!jt is identi�ed with probability one for all t:

Proof. This follows by observing that the argument used in the proof of Theorem 1 can
be applied to (14) with trivial modi�cation to recover the inverse pricing relations ��1j
and the cost shocks �jt: �

An implication of Assumption 12 (given that we have held �xed both x(2)t and w(2)t )
is that n

x
(1)
t \

n
w
(1)
t ;w

(2)
t

oo
= ; =

n
w
(1)
t \

n
x
(1)
t ; x

(2)
t

oo
:

This was not required previously, and in practice it may rule out some demand shifters
for the role of x(1)t . However, several common types of observable product characteristics
will remain good candidates. For example, in BLP (see also Petrin (2002)) a measure
of a car�s fuel cost, miles per dollar, enters its demand but is excluded from its marginal
cost, the latter depending on the physical measure miles per gallon. This is an example
of a class of instruments involving interactions between product characteristics (which
may a¤ect marginal cost) and market characteristics (which do not). The latter might in-
clude market demographics, local climate, local distribution or transportation networks,
or local prices/availability of complementary goods. Other types of candidate instru-
ments include product characteristics produced with market-speci�c �xed costs, such
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as product-speci�c advertising or other marketing measures (e.g., Nevo (2001), Goeree
(2008)), �rm locations (e.g., Capps, Dranove, and Satterthwaite (2003)), or a �rm�s local
o¤erings of complementary products (e.g., Berry and Jia (2010)). In some applications
product characteristics themselves may vary without a¤ecting �rm costs due to techno-
logical constraints (e.g., satellite television reception in Goolsbee and Petrin (2004)) or
other exogenous market-speci�c factors (climate, topography, transportation network).
As these examples suggest, appropriate instruments can be found in a large share of the
most prominent applications of BLP-type models. Nonetheless, the required exclusion
restriction does require careful attention in practice.

5 A Simultaneous Equations Approach

In this section we consider identi�cation of the entire demand and supply model in a sys-
tem of nonparametric simultaneous equations. This alternative approach requires some
additional structure, but complements the nonparametric IV approach by demonstrating
that one can replace the abstract completeness conditions with more transparent condi-
tions on excluded demand shifters and cost shifters. This leads to constructive proofs
with connections to classic identi�cation arguments for models of demand and supply in
perfectly competitive markets.
Throughout this section we maintain the demand index and connected substitutes

assumptions (Assumptions 1 and 2). We also maintain the cost index restriction of
Assumption 10 and assume equilibrium is characterized by a (possibly unknown) set
of �rst-order conditions. Exploiting Lemmas 1 and 2, demand and supply are then
characterized by the system of 2J equations in (6) and (14):

xjt + �jt = ��1j (st; pt) j = 1; : : : ; J

wjt + !jt = ��1j (st; pt) j = 1; : : : ; J:

These equations take a form considered previously by Matzkin (2008). However, we
will o¤er two new results� one dropping her density restriction, the other substituting
an alternative density restriction in order to drop her large support requirement.
Here a di¤erent location normalization of �t and !t will be convenient. For each j,

take arbitrary (x0;w0) and arbitrary (s0; p0) in the support of (st; pt) j (x0; z0) and let

��1j
�
s0; p0

�
� x0j = 0 j = 1; : : : ; J (15)

��1j
�
s0; p0

�
� w0j = 0 j = 1; : : : ; J:

Although the invertibility results above (Lemmas 1 and 2) ensure that there is a
unique (�t; �t) associated with any (st; pt), our reliance on a change-of-variables argument
will require that this map be one-to-one. The market share functions (4) already ensure
that there is exactly one vector st associated with any (�t; pt). We will assume directly
that there is also only one price vector pt consistent with any (�t; �t).

20



Assumption 13. There is a unique vector of equilibrium prices associated with any
(�t; �t).

A strong su¢ cient condition is that, at the true marginal cost and demand functions,
the equilibrium �rst-order conditions have a unique solution (for prices) given any (�; �).
However, this is often di¢ cult to verify in models of product di¤erentiation (see, for
example, Caplin and Nalebu¤ (1991)), and it is not hard to construct examples admitting
multiple equilibria. If there are multiple equilibria, Assumption 13 requires an equilibrium
selection rule such that the same prices pt arise whenever (�t; �t) is the same. This rules
out random equilibrium selection or equilibrium selection based on xjt or �jt instead of
their sum �jt (and similarly for �jt). This does not seem particularly strong, but is not
something we required previously.
The change-of-variables argument also require regularity conditions enabling one to

relate the joint density of the latent structural errors (�1t; : : : ; �Jt; !1t; : : : ; !Jt) to the
joint density of the observables (st; pt).

Assumption 14. (�t; !t) have a positive joint density f�;! on R2J :

Assumption 15. The function
�
��11 (st; pt) ; : : : ; �

�1
J (st; pt) ; �

�1
J (st; pt) ; : : : ; �

�1
J (st; pt)

�0
has continuous partial derivatives and nonzero Jacobian determinant jJ(st; pt)j.

Finally, we will require exclusion and support conditions on the demand and cost
shifters. Assumption 16 requires full independence from the structural errors, and As-
sumption 17 ensures that the instruments have su¢ cient variation to trace out the inverse
demand and supply functions. Below we will see that the full support assumption is not
necessary if we instead impose a shape restriction on the distribution of the unobserv-
ables.

Assumption 16. (xt;wt) j= (�t; !t):

Assumption 17. supp(xt;wt) = R2J :

We �rst show identi�cation of demand, which does not require us to specify the form
of oligopoly competition.

Theorem 6. Suppose Assumptions 1, 2, 6, 7b, 10, and 13�17 hold. Then for all j =
1; : : : ; J; (i) �jt is identi�ed for all t; and (ii) the function �j (�t; pt) is identi�ed on X .

Proof. We observe the joint density of market shares and prices, conditional on the
vectors xt and zt. This joint density is related to that of (�t; !t) by

fs;p (st; ptjxt;wt) = f�;!
�
��11 (st; pt)� x1t; : : : ; �

�1
J (st; pt)� wJt

�
jJ(st; pt)j : (16)

Since the joint density f�;!
�
��11 (st; pt)� x1t; : : : ; �

�1
J (st; pt)� wJt

�
must integrate to one,Z 1

�1
: : :

Z 1

�1
fs;p (st; ptjxt;wt) dxtdwt = jJ(st; pt)j :
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Combined with (16), this implies that the value of

f�;!
�
��11 (st; pt)� x1t; : : : ; �

�1
J (st; pt)� wJt

�
is identi�ed for all 8st; pt; xt;wt. Then, sinceZ

�w;~x�j ;~xj�xj
f�;!

�
��11 (s; p)� ~x1; : : : ; ��1J (s; p)� �wJ

�
d~xd�w = F�j

�
��1j (s; p)� xj

�
(17)

F�j
�
��1j (st; pt)� xjt

�
is identi�ed for all st; pt; xjt. From the normalization (15) we know

F�j
�
��1j (s0; s0)� x0j

�
= F�j (0). So for any (st; pt) we can �nd x

� (unique by Assumption
14) such that F�j

�
��1j (st; pt)� x�

�
= F�j (0). This reveals ��1j (st; pt) = x�, so the

function ��1j is identi�ed. With equation (6) this identi�es �jt for all t. Repeating for all
j, all �jt are identi�ed. Part (ii) then follows as in the proof of Theorem 1. �

If we are willing to assume a particular model of supply� i.e., to strengthen As-
sumption 7b to Assumption 7a, identi�cation of marginal costs follows directly from the
identi�cation of demand (Theorem 6) and equation (9). Alternatively, without strength-
ening Assumption 7b we can apply the argument used in the proof of Theorem 6 (part
(i)) to show identi�cation of the latent cost shocks !jt. This result, given as Theorem 7,
will be useful for discriminating between oligopoly models (see section 6).

Theorem 7. Suppose the hypotheses of Theorem 6 hold. Then each !jt is identi�ed.

Proof. The argument used in the proof of Theorem 6 can be repeated with trivial modi-
�cation to recover the inverse supply relations ��1j and the cost shocks !jt.24 �

These results demonstrate the identi�ability of demand and marginal costs using an
argument with close links to classical arguments for supply and demand models: ex-
cluded cost and demand shifters with su¢ cient support can trace out the entire demand
and supply structure. The results exploit the large support Assumption 17. This type
of condition is familiar from the prior literature on discrete choice models, simultaneous
equations models, and even classic supply and demand models. However, a large sup-
port assumption is not essential. The following result, which follows immediately from
Theorem 3 in Berry and Haile (2011), o¤ers an alternative.

Theorem 8. Let �t = (�1t; : : : ; �Jt; !1t; : : : ; !Jt) and suppose Assumptions 1, 2, 6, 7b,
10, and 13�16 hold. In addition, suppose f�;! is twice continuously di¤erentiable and that
for almost all (st; pt) there exists (x� (st; pt) ;w� (st; pt)) such that the matrix

@2f�;!
�
��11 (st; pt)� x�1 (st; pt) ; : : : ; �

�1
J (st; pt)� w�J (st; pt)

�
@�t @�0t

is nonsingular. Then , for all j = 1; : : : ; J (i) �jt is identi�ed for all t; and (ii) the
function �j (�t) is identi�ed on X .

24At equation (17), integrate instead over f~x; ~z�j ; ~zj � zjg and then use the normalization
��1j

�
s0; p0

�
�w0j = 0:
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This alternative result demonstrates that there can be a tradeo¤ between support
requirements on demand/cost shifters and shape restrictions on the distribution of the
structural errors. An analogous result can be obtained for identi�cation of the cost
shocks. We omit a formal statement.

6 Discriminating Between Oligopoly Models

A central question in the empirical industrial organization literature is the nature of
�rm �conduct,�i.e., the form of competition between �rms. Firm conduct has important
implications for markups, pro�ts, e¢ ciency, and counterfactual predictions. Bresnahan
(1982), citing formal results in Lau (1982), o¤ered an in�uential insight for how �rota-
tions of demand�could be used to discriminate between alternative models of oligopoly
competition based on market level data (see also Bresnahan (1989)). The class of models
considered by Lau was very limited, including only deterministic conjectural variations
models, with linear conjectures, homogeneous goods, and symmetric �rms. However,
Bresnahan�s original intuition suggested much broader applicability. Here we show that
this intuition can indeed be given a formal foundation in a much more general setting.
Further, in contrast to the earlier focus on rotations of demand, we point out the key role
of rotation of the product-speci�c marginal revenue functions  j. This allows a much
wider range of variation in the data to be exploited.
We consider two cases. We obtain our strongest results in �case 1,�where we suppose

we have identi�ed the cost indices without specifying the oligopoly model, as in Theorem
5 or Theorem 7. This case, therefore, requires both the cost index structure and exclusion
of the demand shifters xt (i.e., x

(1)
t ) from �rms�marginal costs. �Case 2�provides a weaker

set of testable restrictions without these requirements.

6.1 Case 1

We begin with a simple example motivated by Bresnahan (1982). Consider a market with
a single producer and suppose the null hypothesis is that the �rm prices at marginal cost.
The alternative is that the �rm is a pro�t-maximizing monopolist. Panel (a) of Figure 1
shows the market demand curve DDt. Under the monopoly hypothesis the function  j
in Assumption 7b is the marginal revenue curveMRt. We label this curve  

1
jt, indicating

the alternative hypothesis: Under the null of marginal cost pricing, however, it is the
demand curve that is the function  j. We label this  

0
jt. The observed equilibrium

outcome Et in market t maps to two possible values of marginal cost at the quantity qt,
depending on the model.
Suppose that the monopoly model is the true model. Hold the cost index �xed and

consider a change in market conditions that �rotates�the curve  1jt around the point
(qt;mc

1
t )� i.e., this curve changes its slope but not its level at quantity qt. This is

illustrated in panel (b) with the curve  1jt0. Associated with this new marginal revenue
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curve is a market demand curve  0jt0. Since the true model is monopoly, the new observed
equilibrium outcome is Et0. Under the alternative, the implied marginal cost at quantity
qt is still mc1t . Under the null, the implied marginal cost is mc

0
t0, which is di¤erent from

mc0t . But since neither the cost index nor the quantity changed, this is impossible. This
contradiction rules out the false null.
This is a particularly simple example, similar to that in Bresnahan (1982) and using

a similar type of exogenous variation. But it points toward a more general strategy for
discriminating between alternative models of supply based on the following result.

Theorem 9. Suppose the function � (st; pt) is known and that the hypotheses of either
Theorem 5 or Theorem 7 hold. Then the oligopoly supply model is testable. In particular,
whenever cj (�) = cj0 (�) and (Qjt; �jt) = (Qj0t0 ; �j0t0), with t0 6= t and/or j0 6= j, the
restriction  j (st; Dt (st; pt) ; pt) =  j0 (st0 ; Dt0 (st0 ; pt0) ; pt0) must hold:

Proof. Under Assumption 7b

cj(Qjt; �jt) =  j (st; Dt (st; pt) ; pt) 8j; t: (18)

The right-hand side of (18) cannot change unless the left-hand side does. Qjt; st; and
pt are observed directly, and under the hypotheses of Theorem 5 or 7 each �jt is identi�ed.
Since � (�) is known, Dt (st; pt) is known. Thus, the restriction is testable. �

In the example above, we had (Qjt; �jt) = (Qjt0 ; �jt0) for the single �rm j and examined
the restriction  j (st; Dt (st; pt) ; pt) =  j (st0 ; Dt0 (st0 ; pt0) ; pt0). With more than one good,
if we assume cj0 (�) = cj (�) for some j0 6= j (a common assumption is that cj (�) = c (�)
8j > 0), then Theorem 9 requires  j (st; Dt (st; pt) ; pt) =  j0 (st; Dt (st; pt) ; pt) whenever
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(Qj0t; �j0t) = (Qjt; �jt). Thus, unlike the example above, the restriction can be applicable
within a single market and does not require any changes in market demand. Further,
there is no a priori restriction on the class of models that can be considered. Any false
null can be ruled out as long as there exists a change across �rms or across markets that
induces a rotation of at least one function  j under the true model that is not also a
rotation under the false null.
Conditions guaranteeing such variation will depend on the models considered. But

the types of variation that can alter  j form a much broader class than the movements
of market demand considered by Lau (1982) and Bresnahan (1982, 1989). For example,
even if preferences and market size are identical in markets t and t0 (i.e., there is no change
in demand),  jt and  jt0 can di¤er due to variation in the number of competing �rms,

the set of competing goods, characteristics of competing products (x(1)�jt and/or ��jt), or

costs of competing �rms (w(1)�jt and/or ��jt). Since we have shown how to identify the
demand shocks �jt without knowing the oligopoly model, the variation exploited here

need not be exogenous. Further, although we have conditioned on x(2)t , w
(2)
�jt and Mt,

variation in any of these will typically alter  j and/or Dt; and may also be exploited.
The following example illustrates some of this broader applicability in another simple

but less trivial model� one closer to those used to study di¤erentiated products markets
in practice.

6.1.1 Logit Example

Consider a cross section of markets, each with two inside goods and an outside good.
Demand is known to the researcher and characterized by a multinomial logit model,
where �j (�; p) = e�j�pj

1+e�1�p1+e�2�p2
. For simplicity, let each �rm have constant marginal

costs. This is not essential and we do not assume that the researcher knows that marginal
costs are constant. Supply is characterized by Nash equilibrium in a complete information
simultaneous move duopoly price-setting game. Equilibrium prices are then characterized
implicitly by the �rst-order conditions25

pj = mcj +
1

1� �j (�; p)
j = 1; 2: (19)

Let (s; p) denote one observed equilibrium outcome. Now consider another outcome
(p0; s0) realized when all shifters of mc1 are held �xed, mc2 falls to mc02 (due to an exoge-
nous cost shifter), and the market size exogenously grows fromM to M 0. Because prices
are strategic complements, both equilibrium prices fall. So by (19), s01 < s1: However, let
the increase in market size leave

q1 =Ms1 =M 0s01 = q01:

25Recall that in the logit model, @�j(�;p)@pj
= ��j (�; p) (1� �j (�; p)) while @�j(�;p)

@pk
= �j (�; p)�k (�; p).
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Since both prices decline, the market share of the outside good falls, i.e., s00 < s0. This
further implies s02 > s2. We will show that the two data points (p1; p2; s1; s2;M) and
(p01; p

0
2; s

0
1; s

0
2; q

0
1;M

0) are su¢ cient to rule out the the most commonly considered alter-
native models of supply.

Marginal Cost Pricing Let fmc1 denote the value of �rm 1�s marginal cost at quantity
q1 inferred under the (incorrect) hypothesis of marginal cost pricing. Since q1 = q01,
Theorem 9 requires that fmc1 rationalize both data points, i.e.,

p1 = fmc1 = p01:

Since p01 < p1, this is a contradiction.

Quantity Competition With logit demand, inverse demand for good j is given by

pj = ��1j (s; �) = �j + ln (s0)� ln (sj) : (20)

Since s0 = 1�s1�s2, we have @p1@s1
= � 1

s0
� 1
s1
and @p1

@s2
= � 1

s0
. If supply is characterized by

Nash equilibrium in a complete information simultaneous move quantity-setting game,
�rm 1 chooses s1 to maximize Ms1p1 � C1(Ms1), where C1(�) is the total cost function
of �rm 1. This yields the �rst-order condition (after substituting for @p1

@s1
)

p1 �mc1 �
s1
s0
� 1 = 0: (21)

As above, because q1 = q01 , if (21) is the correct �rst-order condition, one marginal cost
must rationalize both data points, i.e., there must be some fmc1 such that

fmc1 = p1 �
s1
s0
� 1 = p01 �

s01
s00
� 1: (22)

With logit demand s1
s0
= e�1�p1, so (22) requires

p1 � p01 = e�1�p1 � e�1�p
0
1

which is impossible because p1 > p01 implies e
�1�p1 < e�1�p

0
1.

Joint Pro�t Maximization Finally, consider the alternative model in which prices
(or quantities) are set to maximize the joint pro�ts from the two inside goods,

p1Ms1 � C1 (Ms1) + p2Ms2 � C2 (Ms2) :

Prices would be determined by the �rst-order conditions

1� (1� s1) (p1 �mc1) + s2 (p2 �mc2) = 0

1� (1� s2) (p2 �mc2) + s1 (p1 �mc1) = 0:
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Straightforward algebra yields

1

s0
� (p1 �mc1) = 0:

Following the logic above, if this is the correct model we must have

fmc1 = p1 �
1

s0
= p01 �

1

s00
:

But this cannot hold, since p01 < p1 and s00 < s0.

6.2 Case 2

In Case 1, we used the fact that if  j is correctly speci�ed there must be a single cost
function cj such that equation (18) always holds� i.e., such that whenever (Qjt; �jt) are
the same  j (st; Dt (st; pt) ; pt) is the same. We now consider a version of the same idea
that is applicable without the additional index and exclusion restrictions that enable
identi�cation of each �jt without specifying  j. Then the restriction (18) no longer has
bite when comparing pairs of observations: variation in the right-hand side can always
be attributed to latent variation in �jt. However, one can obtain a testable restriction
by taking expectations conditional on exogenous variables.
To demonstrate this, we will again work with the separable speci�cation of the mar-

ginal cost function (11)
mcjt = cj (Qjt;wjt; ) + !jt

and maintain the exclusion restrictions of Assumption 8.26 Consider a candidate speci�-
cation of  j If this gives the correct �rst-order condition for the �rm producing good j
then, taking expectations of (18) using Assumption 8, we have

E [cj (Qjt;wjt; ) jwjt; yjt] = E
�
 j (st;Mt; Dt (st; pt) ; pt) jwjt; yjt

�
a:s: (23)

Thus, a testable restriction of the model is that there exist some (possibly counterfactual)
marginal cost function ecj (Qjt;wjt; ) such that

E
hecj (Qjt;wjt; ) jwjt; yjti = E

�
 j (st;Mt; Dt (st; pt) ; pt) jwjt; yjt

�
a:s: (24)

Theorem 10. Suppose the function � (st; pt) is known and that Assumption 8 is satis�ed.
Then the oligopoly supply model is testable. In particular, for each j > 0 there must exist
a function ecj consistent with (24).
26A similar restriction could be derived with a nonseparable cost function and full independence of

the instruments.
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This can be seen as a weaker version of the restriction (18) considered in Case 1�
weaker because the restriction applies only to conditional expectations rather than to
each value of  j (st;Mt; Dt (st; pt) ; pt).27

Note that we did not assume the completeness condition (Assumption 9) used in
Theorem 4. This is because it is possible that variation in the instruments wjt; yjt can
rule out a false supply model even when there is no strict subset of these instruments that
would point identify the marginal cost function when this is the true model. Of course,
a natural special case is that in which the instruments wjt; yjt lead to overidenti�cation.
For example, suppose there are two distinct subsets of the instruments that would allow
point identi�cation of a marginal cost function ecj (Qjt;wjt; ) consistent with (24) using
Theorem 4 and a candidate function  j. Let !

�
jt denote the cost shocks implied by the

�rst set of identifying instruments, and let !��jt denote those implied by the second. A
testable restriction of the candidate oligopoly speci�cation is that !�jt = !��jt for all j; t.

7 Discussion: Functional Form vs. Instruments

Our results demonstrate that strong functional form restrictions are not necessary for
identi�cation or for discrimination between alternative models of oligopoly competition.
Rather, the essential requirement is the availability of instruments. A need for instru-
ments to identify demand and supply is not surprising, and it should be comforting that
this essentially all that is required. From a practical perspective, our results clarify
the types of exclusion restrictions needed. Intuition from elementary supply and de-
mand models might have suggested that identi�cation of demand would require only
cost shifters or other excluded instruments for prices. However, we required instruments
for both prices and �quantities�(market shares), even for identi�cation of demand alone.
This need arises from the fact that in a multi-good setting, demand is de�ned by a system
of equations, each depending on the J-dimensional endogenous price vector pt as well as
the J-dimensional latent demand shocks �t. One can obtain a system of equations with
one unobservable per equation when the demand system is inverted (Lemma 1) to give

�jt = ��1j (st; pt)� xjt j = 1; : : : ; J: (25)

But now each equation depends on the 2J endogenous variables (st; pt) . As we have
shown, because xjt is exogenous and enters with a known coe¢ cient, it is available as one
such instrument. Thus, the demand shifters xt provide J of the 2J instruments required
for identi�cation, leaving a need for J additional instruments such as product-speci�c
cost shifters.
We have seen that once demand is identi�ed, identi�cation of marginal costs requires

no additional IV conditions, and �rms�marginal cost functions are likely to be overiden-
ti�ed. Focusing then on the IV requirements for identi�cation of demand, it is useful to

27The power of the restriction may be increased if one imposes shape restrictions on the marginal cost
function, for example, weak monotonicity in output.
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compare the inverse demand equations (25) to those in more familiar parametric models.
In a multinomial logit model with linear random utilities, inverse demand takes the form
(see, e.g., Berry (1994))

�jt = ln

�
sjt
s0t

�
+ �pjt � xjt� (26)

or, equivalently,

~�jt =
1

�
ln

�
sjt
s0t

�
+
�

�
pjt � xjt (27)

where ~�jt =
1
�
�jt, giving a di¤erent scale normalization of the latent demand shocks. It is

clear from either equation that identi�cation of the unknown parameters (�; �) requires,
in addition to the exogenous xjt, an excluded instrument for price. Valid instruments
could include cost shifters or the BLP instruments x�jt. Observe that in (27), as in (25),
xjt enters with a known coe¢ cient; however, there it provides exogenous variation in the
function of market shares, ln( sjt

s0t
), which enters with unknown coe¢ cient 1

�
.

In the nested logit model, inverse demand takes the form (again see Berry (1994))

�jt =
�
ln(sjt)� ln(s0t)� �g ln(sj=g;t)

�
+ �pjt � xjt�

or
~�jt =

1

�

�
ln(sjt)� ln(s0t)� �g ln(sj=g;t)

�
+
�

�
pjt � xjt: (28)

Here �g is a parameter governing substitution within/between subgroups of products
(�nests�) and sj=g;t is the within-group share of product j. Relative to the more restric-
tive multinomial logit, one needs an additional instrument due to the presence of the
endogenous variable ln(sj=g;t), which enters with unknown coe¢ cient �g: The exogenous
demand shifters x�jt are available for this role, in which case xt may again be viewed as
providing the needed exogenous variation in the market shares appearing in (28).
Finally, in the BLP model, inverse demand takes the richer parametric form

�jt = ~�j (st; xt; pt;�)� �pjt � xjt� (29)

(or, equivalently, ~�jt =
1
�
~�j (st; xt; pt;�)� �

�
pjt�xjt), where the function ~�j maps market

shares to �mean utilities�xjt� � �pjt + �jt. This function is known up to the parameters
�, which govern the distribution of the random coe¢ cients. Since (st; pt) are endogenous,
identi�cation requires not only an excluded instrument for pjt, but also a su¢ cient number
of instruments (BLP instruments and/or others) to identify all parameters (�; �;�).
This need for additional instruments arises from the presence of unknown parameters
interacting with the endogenous variables (st; pt).
We can see that these examples are special cases of a general parametric model

�jt = ��1j (st; pt; �)� xjt (30)

where � is a �nite-dimensional parameter. Further, as additional �exibility in substi-
tution patterns is allowed, the inverse demand function ��1j (st; pt; �) takes a form that
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depends in a richer way on the vectors of market shares and prices, with the need for ex-
clusion restrictions growing accordingly. Our equation (25) is the natural nonparametric
extension of these examples. And as a result, our instrumental variables requirements
are an extension of those in these familiar parametric models.
One message from this discussion is that there are tradeo¤s between a priori func-

tional form restrictions and the need for exclusion restrictions. And it suggests a greater
range of alternatives that might be explored in future work by focusing directly on the
form of the inverse demand system. For example, suppose (as in many empirical appli-
cations) price enters only through the demand index, so that �jt = xjt � �pjt + �jt, with
� an unknown parameter. Equation (25) then takes the semiparametric form

�jt = ��1j (st) + �pjt � xjt:

Identi�cation of demand would require only a single instrument (e.g., a market level cost
shifter) beyond the exogenous product characteristics xt. In fact, the same reduction
in the need for excluded instruments can be obtained without linearity of the index.
Suppose instead that

�jt = �j
�
xjt; pjt; �jt

�
where �j is an unknown function required only to be strictly increasing in �jt. This is
a trivial variation on the model considered in Appendix B, and applying the argument
given there yields

sjt = hj
�
s�jt; xjt; pjt; �jt

�
where hj is an unknown function required only to be strictly increasing in �jt. This
equation takes the form of a nonseparable nonparametric regression model (e.g., Cher-
nozhukov and Hansen (2005)), and identi�cation of hj (and therefore of each �jt, yielding
identi�cation of demand) requires only a single excluded instrument beyond the exoge-
nous product characteristics xt. 28

Finally, it is instructive to consider the case in which prices are exogenous and can
therefore be �xed (as we did with x(2)t ) and dropped from the notation to consider identi-
�cation. One might speculate that identi�cation holds without any exclusion restrictions.
However, this is incorrect, again due to the determination of each quantity as a function
of the entire vector �t of latent demand shocks. In this case, (25) takes the form

�jt = ��1j (st)� xjt:

The presence of the J-dimensional vector of endogenous variables st in the unknown
function �j requires at least J instruments. As before, the entire J-vector xt is available.
However, no alternative instruments are available; in particular, exogenous shifters of
costs (or markups) do not help since these enter only through their e¤ect on the (�xed)

28Another possible restriction is the symmetry/exchangeability assumption �j (�t; pt) =
� (�jt; pjt; ��jt; p�jt) for all j. This would allow within-market (cross-product) variation to contribute
to identi�cation and would also allow a weaker version of the usual completeness condition.
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prices. Thus, identi�cation is possible here only because the index restriction leaves xt
available as instruments. This suggests not only the necessity of the BLP instruments,
but the crucial role of our index restriction for making them available.
This example clari�es several other things as well. One is the fundamental di¤erence

between models like ours and those often considered in the econometrics literature on
discrete choice, which lack the structural errors �t. In those models, an absence of endo-
geneity would make identi�cation of demand trivial in a market data setting: observed
conditional choice probabilities would be demand. Another is the the essential role of
the assumptions we do make on the random utility model. The connected substitutes as-
sumption allows us to invert the demand system, yielding equations taking a form nearly
identical to that of nonparametric regression models.29 Monotonicity of the index �jt
in the structural error �jt ensures that each �regression�equation is monotonic in �jt as
required for existing identi�cation results for regression models. And, as already noted,
the fact that xjt enters only through the index �jt yields the essential exclusion of x�jt
from the inverse demand function ��1j .

8 Conclusion

We have considered nonparametric identi�cation in a class of di¤erentiated products
models used in a large and growing body of empirical work in IO and other �elds of
economics. Our results demonstrate that the nonparametric foundation for these models
is strong, the primary requirement being the availability of instruments providing ad-
equate exogenous variation in the endogenous prices and quantities. Thus, functional
form and/or distributional assumptions relied on in practice can be viewed as playing
only their usual roles: smoothing, extrapolation, and compensation for the gap between
the exogenous variation necessary to discriminate between all functions and that avail-
able in practice. Our results also provide guidance on the key sources of variation one
should look for in applications, and point to tradeo¤s between a priori functional form
assumptions and the need for exclusion restrictions.
Although we motivated our analysis of demand with a widely used class of discrete

choice models, most of our results hold in other types of demand models. For example,
our results on the identi�cation of demand extend immediately to any environment in
which one can invert the demand system to obtain the inverse demand system (5). Berry,
Gandhi, and Haile (2012) provide a range of examples. Our results on identi�cation and
falsi�ability of the supply model hold also extend immediately whenever identi�cation of
demand holds.
Finally, while we have focused exclusively on identi�cation, our analysis may suggest

new estimation approaches. A critical aspect of our identi�cation strategy is to work
directly with the economic primitives of interest on the demand side of the model, in

29Berry, Gandhi, and Haile (2012) show that connected substitutes is �nearly necessary�for invertibility
even under additional smoothness conditions not imposed here.
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particular the demand functions �j. This approach contrasts with the usual strategy of
building up a random utility model from random parameters, using this to derive demand.
This approach enabled us to obtain positive results while also substantially relaxing
functional form and distributional assumptions relied on previously.30 Our alternative
approach may prove useful for developing new estimators as well, whether parametric,
semiparametric, or nonparametric.31

30To see one challenge in the traditional approach, consider a linear random coe¢ cients model with
no endogeneity, where vijt = xjt�it + �ijt. Despite the linear formulation and the absence of structural
errors (making identi�cation of demand trivial), it is clear that the model is not identi�ed. This is
because the joint distribution of (�it; �i1t; : : : ; �iJtjxt) has dimension (conditional on xt) greater than
J , whereas behavior is determined entirely by the J-dimensional distribution Fv (�jxt). Even with the
assumption �ijt j= �it, the semiparametric model remains overparameterized.
31A recent working paper, Gandhi and Nevo (2011), pursues a semiparametric approach. Souza-

Rodrigues (2011) considers a nonparametric approach for the closely related �generalized regression
model.�
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Appendices
A Invertibility of Oligopoly First-Order Conditions

In the text we provided a high-level condition� Assumption 7b� ensuring that oligopoly
�rst-order conditions can be inverted to solve for each marginal cost as a function of
prices, market shares, and features of the demand system. Here we show that, as claimed
in Remark 1, this high-level assumption is satis�ed in standard models of di¤erentiated
products oligopoly under assumptions already maintained. These models include com-
plete information games with simultaneous choice of prices or quantities, with single- or
multi-product �rms. Joint pro�t maximization (perfect collusion) is a special case. For
any of the models discussed here, Assumption 7b could be viewed as a lemma (proved in
this appendix) rather than an assumption.
As emphasized in the text, the strategy of solving �rst-order conditions for marginal

costs has a long history in the IO literature (e.g., Rosse (1970), Bresnahan (1981), Bresna-
han (1987), and Berry, Levinsohn, and Pakes (1995)). The innovation in this appendix is
the demonstration, under general nonparametric conditions, of the invertibility of partic-
ular substitution matrices. A key condition is the same �connected substitutes�condition
we relied on to show the invertibility of the market share function on the demand side of
the model.
Throughout this appendix will �x the market size Mt and suppress it. Recall that

Dt (st; pt) is the J � J matrix with (k; `) element equal to
@�k(��1(st;pt);pt)

@p`
. Below we

will make use of the follow result, which follows immediately from Theorem 2 in Berry,
Gandhi, and Haile (2012).

Lemma 3. Let Assumptions 2 and 6 hold. Then for all �t 2 X ; every principle submatrix
of Dt (st; pt) is nonsingular.

A.1 Marginal Cost Pricing

Here the result is immediate:

 j (st; Dt (st; pt) ; pt) = pjt:

A.2 Price Setting

The most common model of supply for empirical work on di¤erentiated products markets
is Nash equilibrium in a complete information simultaneous price-setting game. Recall
that Jj denotes the set of products produced by the �rm that produces good j, e.g., the
singleton fjg in the special case of single-product �rms or the full choice set J in the
case of joint pro�t-maximization (perfect collusion).
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Letting �jt = �j (st; pt) as shorthand, the �rst-order condition for the price of good j
is

�jt +
X
k2Jj

(pkt �mckt)
@�kt
@pjt

= 0:

Following Bresnahan (1981, 1987), the �rst-order conditions for all �rms can then be
written in matrix form as

�t +�t (pt �mct) = 0 (A.1)

where �t = (�1t; : : : ; �Jt)
0 and the (j; k) element of the square matrix �t is equal to

@�kt=@pjt if products k and j are produced by the same �rm, and zero otherwise. Fol-
lowing BLP, the supply-side �inversion�for marginal cost is then

mct = pt +�
�1
t st:

Assumption 7b will be satis�ed if the matrix �t is invertible. Observe that by simul-
taneous permutation of rows and columns (i.e., re-ordering of the goods to match the
ownership structure), one can obtain from �t a matrix that is block diagonal, with each
block being a principle submatrix of Dt (st; pt)

0. Invertibility of this new matrix, and
therefore of �t, then follows from Lemma 3.

A.3 Quantity Setting

Consider the alternative model of simultaneous quantity-setting with complete informa-
tion, again with Nash equilibrium as the solution concept. A fundamental requirement
of this model is existence of an inverse demand function. Theorem 1 of Berry, Gandhi,
and Haile (2012) ensures that under Assumption 2 there is a unique price vector pt that
solves st = �(pt; �t). This implies existence of an inverse demand function, which we
write in vector form as pt = �(st; �t).
If the inverse demand function is di¤erentiable, equilibrium quantities are character-

ized by J �rst-order conditions of the form

mcjt = pjt +
X
k2Jj

@�k
@sjt

skt:

Thus, Assumption 7b holds as long as the derivatives @�k
@sjt

exist. Lemma 3 ensures that
the matrix Dt (st; pt) is invertible. So, given Assumption 6, the inverse function theorem
ensures that derivatives of the inverse demand function exist and are equal to the elements
of Dt (st; pt)

�1, i.e.,
@�k
@sjt

=
�
Dt (st; pt)

�1�
kj
:
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B Identi�cation with a Nonlinear Index

Here we discuss conditions under which the linearity of the indices �jt and �jt can be
relaxed. One possible relaxation is to allow the nonlinear speci�cation

�jt = gj (xjt) + �jt
�jt = hj (wjt) + !jt

where gj and hj are unknown strictly increasing functions. This partial relaxation
drops the requirement of linearity in the demand and cost shifters, while maintaining
separability and monotonicity. Our constructive identi�cation results using simultane-
ous equations (Theorems 6�8) can be extended to this setting by applying the results
given in Theorem 1 or 2 in Berry and Haile (2011). The former result, �rst shown in
Matzkin (2008), adds a restriction on the joint distribution of the structural errors (here,
(�1t; : : : ; �Jt; !1t; : : : ; !Jt)) to the large support condition required in Theorem 6. The
latter uses an alternative density restriction, but avoids any large support requirement.
Because the extensions are direct applications of the results in Matzkin (2008) and Berry
and Haile (2011), we omit a formal statement.
For the remainder of this appendix we consider an extension of the nonparametric IV

approach, where the restrictions on the index can be relaxed further. We focus on the
demand index and henceforth rede�ne

�jt = �j
�
xjt; �jt

�
with �j strictly increasing in its second argument. Relative to (2) this speci�cation drops
the assumptions of linearity, separability, and monotonicity in xjt, retaining only the key
requirement of strict monotonicity in �jt.
Two lemmas will be useful. The �rst is taken from Berry, Gandhi, and Haile (2012)

(their Lemma 2).

Lemma 4. Under Assumptions 1 and 2, if � and �0 are such that I+ �
�
j : �0j > �j

	
is

nonempty, then
P

j2I+ �j (�
0; p) >

P
j2I+ �j (�; p) for any p.

Lemma 5. Suppose Assumptions 1 and 2 hold. Then for all j = 1; : : : ; J and any s on
the interior of �J , ��1j (s; p) is strictly increasing in sj.

Proof. Arguing by contradiction, take j = 1 without loss and suppose

s01 > s1; s
0
j = sj8j > 1 (B.1)

but
�01 = ��11 (s0; p) � ��11 (s; p) = �1:

Because probabilities sum to one, we must have s00 < s0, i.e.,

�0 (�
0; p) < �0 (�; p) : (B.2)
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If the set I+ �
�
j : �0j > �j

	
is nonempty, by Lemma 4 we haveX
j2I+

�j (�
0; p) >

X
j2I+

�j (�; p) :

Since 1 =2 I+ and 0 =2 I+, this contradicts the hypothesis that s0j = sj for all j > 1. Thus,
I+ must be empty, i.e.,

�0j � �j 8j > 0:
But in that case Assumption 2 requires �0 (�

0; p) � �0 (�; p), contradicting (B.2). �

Lemma 1 (which did not require a linear index) guarantees that for all j and t

�j
�
xjt; �jt

�
= ��1j (st; pt)

for some functions ��1j , j = 1; : : : ; J . Since �j
�
xjt; �jt

�
is strictly increasing in �jt we can

then write

�jt = ��1j
�
��1j (st; pt) ; xjt

�
� gj (st; pt; xjt)

for some unknown function gj. Moreover, since �j (�) is strictly increasing in �jt, ��1j (�;xjt)
is strictly increasing. So, by Lemma 5, gj must be strictly increasing in sjt. Inverting
gj (�), we obtain

sjt = g�1j
�
�jt; s�jt; pt; xjt

�
� hj

�
s�jt; pt; xjt; �jt

�
(B.3)

where s�jt denotes (skt)k 6=j and hj is an unknown function that is strictly increasing in
�jt. The shares sjt and s�jt are bounded by de�nition, and we may assume without loss
that pt has been transformed to be bounded as well.
For arbitrary j > 0 consider the identi�cation of the functions hj in equation (B.3),

which has the form of a nonseparable nonparametric regression function. Because xjt is
exogenous, we can condition on it and drop it from the notation, rewriting (B.3) as

sjt = hj
�
s�jt; pt; �jt

�
: (B.4)

We will assume for simplicity that �jt has an atomless marginal distribution. Then,
without loss, we can normalize �jt to have a standard uniform marginal distribution. We
will also assume that (st; pt) are continuously distributed conditional on (zt; x�jt) and let
fjsp (s�jt; ptjzt; x�jt) denote the conditional density of s�jt; pt. Let fjs (sjtjs�jt; pt; zt; x�jt)
denote the conditional density of sjt.
Let �1 and �2 be some small positive constants. Let �j(s�jt; pt) denote the set

fs : fjs (sjs�jt; pt; zt; x�jt) � �1 8 (zt; x�jt) such that fjsp (s�jt; ptjzt; x�jt) > 0g :
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For each j and � 2 (0; 1) de�ne Lj (�) as the convex hull of functions mj (�; �; �) that
satisfy (a) for all (zt; x�jt), Pr (sjt � mj (s�jt; pt; �) jzt; x�jt) 2 [� � �2; � + �2]; and (b) for
all (s�jt; pt), mj (s�jt; pt; �) 2 �j(s�jt; pt). Consider the following instrumental variables
conditions, from Chernozhukov and Hansen (2005, Appendix C).

Assumption 18. �jt j= (zt; x�jt)8t:

Assumption 19. For all j = 1; : : : ; J and � 2 (0; 1),
(i) Let "jt � sjt�hj (s�jt; pt; �). For any bounded function Bj (s�jt; pt; �) = mj (s�jt; pt; �)�
hj (s�jt; pt; �) with mj (�; �; �) 2 Lj (�) and

�j (s�jt; pt; zt; x�jt,�) �
Z 1

0

f"j (bBj (s�jt; pt; �) js�jt; pt; zt; x�jt) db > 0;

E
�
Bj (s�jt; pt; �) �j (s�jt; pt; zt; x�jt,�) jzt; x�jt

�
= 0 a.s. only if Bj (s�jt; pt; �) = 0 a.s.;

(ii) the conditional density f"j (ejs�jt; pt; zt; x�jt) of �jt is continuous and bounded in e
over R a.s.;
(iii) hj (s�jt; pt; �) 2 �j(s�jt; pt) for all (s�jt; pt).

Assumption 18 strengthens the exclusion restriction of Assumption 3 to require full
independence. Assumption 19 is a type of �bounded completeness�condition that replaces
Assumption 4 in the text. It was used previously by Chernozhukov and Hansen (2005)
to demonstrate nonparametric identi�cation of quantile treatment e¤ects.

Theorem 11. Suppose Assumptions 1, 2, 18 and 19 hold. Then (i) �jt is identi�ed with
probability one for all t, and (ii) the function �j (�) is identi�ed on X .

Proof. Identi�cation of hj (�; �) for each � 2 (0; 1) follows from Theorem 4 of Cher-
nozhukov and Hansen (2005) after noting that for each value of �jt 2 (0; 1), the model
(B.4) is equivalent to the model they consider. Parts (i) and (ii) then follow immediately,
as in the proof of Theorem 1. �

Since j was arbitrary, this shows that the analog of Theorem 1 (i.e., identi�cation of
demand) can be obtained with the relaxed index structure.

C An Example: Multiple Endogenous Product Char-
acteristics

As discussed in the text, extension of our results to the case of more than one endogenous
product characteristic is straightforward provided that su¢ cient instruments are avail-
able. Here we point out that in some special cases, additional instruments may not be
necessary, at least for identi�cation of key features of demand such as own- and cross-price
elasticities.
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The important observation is that the exclusion conditions relied on in the text re-
quired independence (or mean independence) between instrument vector x(1)t and the

structural errors �t conditional on x
(2)
t (or, in some cases, between

�
x
(1)
t ;w

(1)
t

�
and (�t; !t)

conditional on both x(2)t and w(2)t ). This type of conditional independence is possible even

when
�
x
(1)
jt ; x

(2)
jt ; �jt

�
are all jointly determined.

Consider a simple model of automobile product design. Suppose x(2)jt consists of

indicators for automobile class� e.g., luxury sedan, pickup truck, etc., x(1)jt is a measure
of size, and �jt is an index representing unmeasured quality� e.g., leather seats, electronic
features, and safety features.32 Suppose further that

x
(1)
jt = A

�
x
(2)
jt

�
+ �

(1)
jt

�jt = B
�
x
(2)
jt

�
+ �

(2)
jt

where �(1)jt ; �
(2)
jt are independent of x

(2)
jt . An interpretation is that A

�
x
(2)
jt

�
and B

�
x
(2)
jt

�
are the �standard�size and unmeasured quality for an automobile in class x(2)jt , with �

(1)
jt

and �(2)jt representing idiosyncratic deviations from the standard in each dimension arising

through the design process. Here, size of the car x(1)jt , its class x
(2)
jt , and its unobserved

quality �jt are all correlated. However, conditional on x
(2)
jt , x

(1)
jt is independent of �jt.

Thus, in this example, identi�cation of demand (conditional on x
(2)
t ) follows from

Theorem 1 without modi�cation. Note, however, that the e¤ects of an exogenous change
in x

(2)
t on demand would not be identi�ed without additional structure such as that

provided by the example.
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