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Abstract

We characterize optimal selling protocols/equilibria of a game in which an Agent first

puts hidden effort to acquire information and then transacts with a Firm that uses this

information to take a decision. We determine the equilibrium payoffs that maximize incen-

tives to acquire information. Our analysis is similar to finding ex ante optimal self-enforcing

contracts since information sharing, outcomes and transfers cannot be contracted upon. We

show when and how selling and transmitting information gradually helps. We also show

how mixing/side bets increases the Agent’s incentives.
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1 Introduction

In this paper, we study a dynamic game of selling information in which players cannot use

external enforcement of contracts. Motivated by a moral hazard problem of acquiring informa-

tion, we describe equilibria that maximize ex ante efficiency of a decision problem in which an

Agent needs to acquire information that a Firm can later use to make a decision.

The selling information game is divided into rounds of communication. Within a round, the

players first can transfer payments and then the Agent can send some information to the Firm.

We assume that information is verifiable and divisible. In particular, in our model the Agent has

one of two types (i.e. she has a binary information about the optimal Firm decision) and the

information transmission is modeled as tests to verify the Agent’s information. Verifiability of

information means that each test has a known difficulty so that the type-1 Agent can always pass

it but the type-0 Agent can pass it only with some known probability (so it is not a cheap talk).

Easy tests have a high probability of being passed by the type-0. Divisibility of information

means that there is a rich set of tests with varying difficulties.

In this game we construct tight bounds on the limits of the difference between type-1 and

type-0 Agent payoffs as the number of possible communication rounds grows to infinity (we

show an example where maximizing this difference is necessary for optimal incentive provision to

acquire information). We characterize three such bounds: when we consider only pure-strategy

equilibria (in which type-1 always passes the test), when we allow for mixed-strategy equilibria

(when type-1 may be mixing between passing and failing a test) and finally if we allow for noisy

tests that even the type-1 may not be able to pass (in the absence of noisy tests, the same

outcome can be achieved with the help of a trusted intermediary, for instance).

Since we assume that the agents cannot commit to payments or information disclosure, our

equilibria can be viewed as the best self-enforcing contracts that the players would like to co-

ordinate on ex ante. Alternatively, these equilibria describe the maximum payoffs achievable

in any equilibrium without external enforcement (as a function of the communication protocol)

and hence allow us to divide the value of explicit contracts into the coordination part and the

enforcement part.

Lack of commitment creates a hold-up problem: since the Agent is selling information, once
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the Firm learns it, it has no reason to pay for it (see Arrow, 1959). Therefore, it seems at first

difficult to make the Firm pay different amounts to different types, since such screening would

inform the Firm about the Agent’s type and lead it to renege on payments. Although we can

make the Firm pay for a piece of information, it is necessary that it pays before it learns it.

That leads to our first main result that “splitting information” generally increases the dif-

ference in payoffs. That is, it is usually better for incentives if the Agent takes two tests in a

sequence (and is paid for each separately) than if she takes both of them at once (which is equiv-

alent to taking one harder test). That intuition underlies the structure of the best equilibrium in

pure strategies in our leading example: first, an initial chunk of information is given away for free

that leads the Firm to be indifferent between both decisions. Then the Agent sells information

in dribs and drabs and gets paid a little for each bit. Although the expression for the limit payoff

depends on the assumption that there is a very rich set of tests and arbitrarily many rounds of

communication, the benefit of splitting does not depend on either assumption.

Second, we show how mixed strategies can help improve performance of the contract. In the

best pure-strategy equilibrium the type-0 Agent collects (in expectation) a non-trivial amount of

payments, which leaves room for improvement. We first show that using (non-observable) mixed

strategies can help by taking advantage of the fact that type-1 Agent and the Firm may have

different (endogenous) risk attitudes (more precisely, if the sum of their continuation payoffs is

not concave).

Mixed strategies can be further improved upon if the players have access to tests that both

types can fail with positive probability, or alternatively, by assuming that players have access

to a trusted intermediary that can “noise up” the tests (i.e., the intermediator’s role is to allow

the Agent to commit to a mixed strategy). Such tests allow us to exploit also the difference in

beliefs between the Firm and the two types of the Agent, regarding the very own evolution of the

Firm’s belief about the Agent’s type. This form of communication makes it possible for type-1

of the Agent to use side-bets (in which the Agent pays the Firm upon a failure of the test) to

extract the entire expected surplus of the information.

Our finding that selling information gradually is beneficial to the seller should (in terms of

providing the highest incentives to acquire information) come as no surprise to anyone who was

3



ever involved in consulting. The free first consultation is also reminiscent of standard business

practice. The further benefits of intermediation might be more surprising. Yet it is indeed

common practice to hire third party to evaluate the value of information. This third party

structure is used as a “buffer” to ensure that the buyer does not have access to any unnecessary

confidential information about the seller at any point during the sales process.1

Most of the paper (Sections 2 and 3) analyzes the information sales problem for the specific

payoff structure that is inherited from the motivating game of information acquisition. However,

there is nothing particular about this motivating example. In Section 4, we generalize our results

to arbitrary specifications of how the Firm’s payoff varies with its belief about the Agent’s

information. This specification could arise from decision problems that are more complicated

than the binary one considered in the example. We prove that selling information in small bits is

profitable as long as this payoff function is star-shaped, that is, as long as its average is increasing

in the belief. Moreover, we show that, with rich enough tests, the type-1 Agent can extract the

entire expected value quite generally.

The paper is related to the literature on hold-up, for example Gul (2001) and Che and

Sákovics (2004). One difference is that in our game what is being sold is information and hence

the value of past pieces sold depends on the realization of value of additional pieces. Moreover,

we assume that there is no physical cost of selling a piece of information and hence the Agent

does not care per se about how much information the Firm gets or what action it takes. In

contrast, in Che and Sákovics (2004) each piece of the project is costly to the Agent and the

problem is how to provide incentives for this observable effort rather than unobservable effort in

our model. Finally, our focus is on the different ways of information transmission, which is not

present in any of these papers.

The formal maximization problem, and in particular the structural constraints on information

revelation, are reminiscent of the literature on long cheap talk. See, in particular, Forges (1990)

and Aumann and Hart (2003), and, more generally, Aumann and Maschler (1995). As is the case

here, the problem is how to “split” a martingale optimally over time. That is, the Firm’s belief is

1We thank Rann Smorodinsky for sharing his experience in this respect. As a seller of software, the sale
involved no less than three third parties specialized in this kind of intermediation –Johnson-Laird, Inc., Construx
Software and NextGeneration Software Ltd.
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a martingale, and the optimal strategy specifies its distribution over time. There are important

differences between our paper and the motivation of these papers, however. In particular, unlike

in that literature, payoff-relevant actions are taken before information disclosure is over, since the

Firm pays the Agent as information gets revealed over time. In fact, with a mediator, the Agent

also makes payments to the Firm during the communication phase. As in Forges and Koessler

(2008), messages are type-dependent, as the Agent is constrained in the messages she can send

by the information she actually owns. Cheap-talk (i.e. the possibility to send messages from

sets that are type-independent) is of no help in our model. Rosenberg, Solan and Vieille (2009)

consider the problem of information exchange between two informed parties in a repeated game

without transfers, and establish a folk theorem. In all these papers, the focus is on identifying

the best equilibrium from the Agent’s perspective in the ex ante sense, i.e. before her type is

known. In our case, this is trivial and does not deliver differential payoffs to the Agent’s types.

Therefore, such an equilibrium does not provide the Agent with incentives to engage in inventive

activities in the first place (which determine the probability with which an Agent is informed).

To do so requires identifying the best equilibrium from the point of view of a particular type of

the Agent.

The martingale property is distinctive of information, and this is a key difference between our

set-up and other models in which gradualism appears. In particular, the benefits of gradualism

are well-known in games of public goods provision (see Admati and Perry, 1991, Compte and

Jehiel, 2004 and Marx and Matthews, 2000). Contributions are costly in these games, whereas

information disclosure is not costly per se. In fact, costlessness is a second hallmark of information

disclosure that plays an important role in the analysis. (On the other hand, the specific order of

moves is irrelevant for the results, unlike in contribution games.) The opportunity cost of giving

information away is a function of the equilibrium to be played. So, unlike in public goods game,

the marginal (opportunity) cost of information is endogenous. Relative to sales of private goods,

the marginal value of information cannot be ascertained without considering the information as

a whole, very much as for public goods.

But it is important to stress that by information, we mean here information that is relevant

for commonly known choice, such as an investment opportunity. The object of this information
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is not unknown per se.

Our focus (proving one owns information) and instrument (tests that imperfectly discriminate

between an Agent that holds information or not) are reminiscent of the literature on zero-

knowledge proofs, which also stresses the benefits of repeating such tests. This literature that

starts with the paper of Goldwasser, Micali and Rackoff (1985) is too large to survey here.

A key difference is that, in that literature, passing a test conveys information about the type

without revealing anything valuable (factoring large numbers into primes does not help the tester

factoring numbers himself). In many economic applications, however, it is hard to convince the

buyer that the seller has information without giving away some of it, which is costly –as it is in

our model.

Indeed, unlike in public goods games, or zero-knowledge proofs, splitting information is not

always optimal. As mentioned, this hinges on a (commonly satisfied) property of the Firm’s

payoff, as a function of its belief about the Agent’s type.

Less related are some papers in industrial organization. Our paper is complementary to Anton

and Yao (1994 and 2002) in which an inventor tries to obtain a return to his information in the

absence of property rights. In Anton and Yao (1994) the inventor has the threat of revealing

information to competitors of the Firm and it allows him to receive payments even after she

gives the Firm all information. In Anton and Yao (2002) some contingent payments are allowed

and the inventor can use them together with competition among firms to obtain positive return

to her information. In contrast, in our model, there are no contingent payments and we assume

that only one Firm can use the information.

Finally, there is a vast literature directly related to the value of information. See, among

others, Admati and Pfleiderer (1988 and 1990). Eső and Szentes (2007) take a mechanism design

approach to this problem, while Gentzkow and Kamenica (2009) apply ideas similar to Aumann

and Maschler (1995) to study optimal information disclosure policy when the Agent does not

have private information about the state of the world, but cares about the Firm’s action.
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2 The Main Example

We shall motivate this example by considering the following decision problem.

2.1 The Decision Problem

Consider the problem of an Agent who must decide whether to acquire information or not.

This information will then be sold to a Firm in a second stage. This second stage is the ultimate

focus of our analysis. Here we describe this first stage in which information is acquired.

There are two states of Nature, sN ∈ {L,H}, with prior P[sN = H ] = ρ ∈ (0, 1). The Agent

privately chooses an effort level e ∈ [0, ē] at cost c (e). The differentiable function c is strictly

increasing and convex, with c(0) = c′(0) = 0, and c′(ē) > ρ.

Given e, the Agent privately observes a signal, the private state ω ∈ Ω := {0, 1}, with

P [ω = 0|sN = L] = 1,P [ω = 1|sN = H ] = e.

Hence, conditional on private state 1, the probability of sN = H is 1, while

P [sN = H|ω = 0] = ρ
1− e

1− eρ
< ρ.

Given effort e, the unconditional probability of the Agent being in the private state 1 is p0 := ρ·e.
Information is useful because an investment decision must be taken, whose return depends

on the state of nature. Not investing yields a safe (i.e., state-independent) payoff normalized to

0. Investing yields a payoff 1 when sN = H and −γ̂ < 0 when sN = L. Hence, conditional on

the Agent’s private state, this implies that investing yields an expected return of

−γ := ρ
1− e

1− eρ
· 1 +

(

1− ρ
1− e

1− eρ

)

· (−γ̂) .

if ω = 0, and 1 if ω = 1. We assume that γ > 0 (for all feasible e), i.e., investing is optimal if

and only if the private state is ω = 1. Hence, the expected surplus is ρ · e − c (e), so that the
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first-best effort solves

c′ (eFB) = ρ.

However, it is not the Agent, but the Firm who takes the investment decision and reaps its

benefits. The Firm observes neither the exerted effort level nor the resulting private state.

Based on its expectation e∗ about the Agent’s effort level, the Firm forms a posterior belief p0

that ω = 1. This belief affects how the surplus will be split in the second stage. Anticipating

revenues V1 (p0) and V0 (p0) from the second stage, if the private state is ω = 1 or 0, respectively,

the Agent’s effort e∗ must maximize

ρeV1 (p0) + (1− ρe) V0 (p0)− c (e) ,

and so, assuming that V1 (p0) > V0 (p0), e
∗ solves

c′ (e∗) = ρ (V1 (p0)− V0 (p0)) . (1)

Unless V1(p0) = 1 and V0(p0) = 0, equilibrium effort is below first-best.2 This is a standard

hold-up problem, although investment is unobservable here. Because c is convex, social welfare

is then maximized when the difference V1 (p0)− V0 (p0) is highest.

This gives us the motivation and the objective function for the game played in the second

stage that determines the split of the surplus, to which we now turn.3

2.2 The Game of “Selling Information”

Some basic ingredients of this game are inherited from the decision problem. As this game

can be understood independently from the decision problem, we repeat them here, so that the

exposition be self-contained.

There are two risk-neutral players: an Agent (she) and a Firm (it). There are two states of

the world, ω ∈ Ω := {0, 1}. The Agent is privately informed of the state of the world at the

2Shares of surplus V0, V1 will always be in [0, 1].
3It is straightforward to extend this decision problem to the case of more general outside options, as described

in Section 4.
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beginning of the game, but the Firm is not. The Firm’s prior belief that the state is 1 is p0,

which is common knowledge. The fact that the Agent is perfectly informed is a normalization.4

The game lasts K rounds, but our focus will be on what happens as K grows arbitrarily large.

After theK rounds have elapsed, the Firm must take a binary action a ∈ {I, N}. Either the Firm
chooses to “Invest” (I) or to “Not Invest” (N). Not investing yields a safe payoff normalized to

0. Investing yields a payoff 1 if ω = 1 and −γ < 0 if ω = 0. That is, the “Investing” action is

risky: it can pay more than the safe action, but only in one state. The parameter γ measures

the cost of taking this action, if it is inappropriate.

Because the Agent knows the state, call her the type-1 Agent if ω = 1, and the type-0 Agent

otherwise.

Note that, absent any information revelation, the Firm’s optimal action is to invest if and

only if its belief p that the state is 1 satisfies

p ≥ p∗ :=
γ

1 + γ
,

and obtain thereby a payoff of

w(p) := (p− (1− p)γ)+,

where x+ := max{0, x}. While our analysis will cover both the case in which the prior belief p0

is below or above p∗, we shall often focus on the more interesting case in which p0 is smaller than

p∗, unless stated otherwise. The payoff w(p) is the Firm’s outside option, and we shall generalize

the analysis to outside options with rather arbitrary specifications in Section 4.

In each of the K rounds before the action is taken, the Firm and Agent can make a monetary

transfer, and the Agent can reveal some information if she wishes to. More precisely, the strategy

has two parts. In rounds k = 1, . . . , K, as a function of the history of transfers and information

disclosures up to that point, the Agent and the Firm can simultaneously make a non-negative

transfer tAk and tFk , respectively, to the other party.5 Second, once these transfers are made and

4Here, a state of the world is what we called a private state in the decision problem. With that interpretation
of the information that is available to the Agent, the fact that she is perfectly informed is somewhat tautological.

5The Reader might wonder why we allow the Agent to pay the Firm. After all, it is the Agent who owns
the unique valuable good, information. Indeed, as we shall see, such payments are irrelevant when only pure
strategies are considered. But they play a critical role once more general strategies are considered.
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observed, the Agent may disclose some verifiable information.6

Information disclosure/gradual persuasion is modeled as follows. The Agent chooses a number

m ∈ [0, 1]. This choice is observed by the Firm. Number 1 −m represents the difficulty of the

test that the Agent picks: The type-1 Agent can always pass the test (though she can choose to

fail it), while the type-0 Agent can only pass it with probability m. The realizations of tests are

independent across periods (and values of m), conditional on the state.

Note that the Agent can always choose an uninformative test if she wishes to, by picking

m = 1. This is interpreted as not revealing any information. If m < 1 and the Agent passes the

test, we say that information gets disclosed.

Note that, given any belief p ∈ (0, 1) that the Firm might assign to state 1 and for any p′ ≥ p,

there exists a test that leads the Firm to update its belief to p′, if the Agent passes it. Indeed,

if the Agent picks the value

m =
1− p′

p′
p

1− p
.

independently of her type, and does not flunk it on purpose, it follows from Bayes’ rule that the

posterior belief assigned to ω = 1 is equal to

p

p+ (1− p)m
= p′.7

If the Agent fails the test, then the Firm correctly updates its belief to zero.8

The set of possible tests that we assume is rich, and implies that information is perfectly

divisible.9 This allows us to conduct the analysis entirely in terms of beliefs, and to make

abstraction from issues relative to the type of information that is being disclosed, leaving open

some fascinating questions (for instance, in which order should information be released?). Tests

6It is easy to see that nothing hinges on this timing. Payments could be made sequentially rather than
simultaneously, and could occur after rather than before information disclosure.

7A modeling issue arises for p = 0. What if the Firm, after some history of transfers and disclosures, assigns
probability 0 to ω = 1, but the Agent then passes a test with m = 0? But our purpose is to identify the best
equilibrium, not to characterize the set of all equilibria, and so this issue is irrelevant: the equilibria we shall
describe remain equilibria if it is required that players cannot switch away from probability 1 beliefs, and remain
the best equilibria if this requirement (not imposed by perfect Bayesian equilibrium) is dropped.

8That is, unless the type-1 Agent is expected to flunk it on purpose with positive probability.
9Yet our result that it is better to “split information” by using two easier tests instead of a difficult one also

holds when the set of tests is coarse.
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only serve the purpose of modeling how beliefs can evolve gradually, and could be replaced with

any other formalism achieving the same end. But richer sets of tests could be conceived of and

will be considered in the analysis: for instance, we might wish to consider tests that even the

type-1 Agent could fail with some positive probability, so that the Firm’s belief that the Agent

is of type 1 can go down just as gradually as it can go up.

The Agent does not care about the Firm’s decision per se. All she seeks to do is to maximize

the sum of the net transfers she receives during the K rounds. The Firm seeks to maximize

the payoff from its decision after the K rounds, net of the payments that it has made. There is

neither discounting, nor any other type of frictions during the K rounds. In particular, there is

no cost to disclosing information.

2.2.1 Histories and Payoffs

A public history of length k is a sequence

hk = {(tAk′, tFk′, mk′, rk′)}k−1
k′=0,

where (tAk′, t
F
k′, mk′, rk′) ∈ R

2
+ × [0, 1]× {0, 1}. Here, mk is the difficulty of the test chosen by the

Agent in stage k and rk is the result of that test (which is either positive, 1, or negative, 0). The

set of all such histories is denoted Hk (set H0 := ∅). Given some final history hK (this does not

include the Firm’s final action to invest or not), the Agent’s realized payoff is simply the sum of

all net transfers over all rounds, independently of her type:

Vω(hK) =
K−1
∑

k=0

(τFk − τAk ).

Given state ω, the Firm’s overall payoff results from its action, as well as from the sum of net

transfers. If the Firm chooses the safe action, it gets

W (ω, hK , N) =
K−1
∑

k=0

(τA
k − τF

k ).
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If instead the Firm decides to invest, it receives

W (ω, hK , I) =

K−1
∑

k=0

(τAk − τFk ) + 1 · 1ω=1 − γ · 1ω=0,

where 1A denotes the indicator function of the event A.

2.2.2 Strategies and Equilibrium

A (behavior) strategy σF for the Firm is a collection ({τFk }K−1
k=0 , α

F ), where (i) τF
k is a proba-

bility transition τFk := Hk → R+, specifying a transfer tFk := τF (hk) as a function of the (public)

history so far, as well as (ii) an action (a probability transition as well), αF : HK → {I, N} after

the K-th round.

A (behavior) strategy σA for the Agent is a collection {τAk , µA
k , ρ

A
k }K−1

k=0 , where (i) τ
A
k : Ω×Hk →

R+ is a probability transition specifying the transfer tAk := τA(hk) in round k given the history

so far and given the information she has, (ii) µA
k : Ω×Hk×R

2
+ → [0, 1] is a probability transition

specifying the information that is released in round k (i.e., the value of m), as a function of the

state, the history up to the current round, and the transfers that were made in the round, and

(iii) ρAk : Ω×Hk×R
2
+ → {0, 1} is the decision to flunk the test on purpose, given the outstanding

test.10

A prior belief p0 and a strategy profile σ := (σF , σA) define a distribution over Ω×HK×{I, N},
and we let V (σ),W (σ), or simply V,W , denote the expected payoffs of the Agent and the Firm,

respectively, with respect to this distribution. When the strategy profile is understood, we also

write V (hk),W (hk) for the players’ continuation payoffs, given history hk. We further write

V0, V1, for the payoff to the Agent, when we condition on the state ω = 0, 1.

The solution concept is perfect Bayesian equilibrium, as defined in Fudenberg and Tirole

(1991, Definition 8.2).11

10Note that, for notational simplicity, we assume that the Agent’s private strategy does not depend on her past
private information –whether she has flunked the test on purpose in the past– aside from the state of the world.
Nothing can be gained by considering such strategies. Further, this allows us to view this game as a multistage
game, and so to apply Fudenberg and Tirole’s definition of perfect Bayesian equilibrium.

11Fudenberg and Tirole define perfect Bayesian equilibria for finite multistage games with observed actions only.
Here instead, both the type space and the action sets are infinite. The natural generalization of their definition
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This game admits a plethora of equilibria. Our focus is to identify the equilibrium that

maximizes the spread V1−V0. Given the decision problem of Subsection 2.1, the motivation is two-

fold. First, if the Firm and the Agent could coordinate ex ante (i.e. before the decision problem)

and make side-payments, then clearly it would be in their interest to choose an equilibrium

that maximizes the ex ante payoffs, as a form of a self-enforcing contract (or relational contract).

Second, we are interested in the upper bound on efficiency that can be achieved without property

rights, through such self-enforcing contracts, to better understand the agency costs, and how they

depend on the coordination failures vs. on the constraints from the way information is sold and

acquired (that is, in the spirit of mechanism design, we separate the question of what is the most

any equilibrium can achieve from the question of how to coordinate on that equilibrium).

To recap, we are interested in the limit of the difference in the Agents’ payoffs as the number

of rounds becomes arbitrarily large.12 To do so, we shall relax the problem by assuming that

players have access to a public randomization device at the beginning of every round (a draw

from a uniform distribution), as this will facilitate one argument. The resulting equilibria that

we consider (whether we consider pure or mixed strategies, or allow a mediator) turn out not to

take advantage of this device, so that the findings hold for the model without it.

2.3 Preliminary Observations

If the probability of state 1 is p, given the history hk, then the expected surplus (assuming

that the Firm takes an optimal eventual decision) is p · 1 + (1 − p) · 0 = p. This means that

continuation payoffs must satisfy

pV1(hk) + (1− p) V0(hk) +W (hk) ≤ p. (2)

From any history onward, the Agent can secure a payoff of zero, independently of her type:

V1(hk) ≥ 0, V0(hk) ≥ 0. (3)

is straightforward and omitted.
12The equilibrium we shall obtain is also an equilibrium of the infinite-horizon, undiscounted game, but taking

limits allows us to uniquely pin down the limiting strategy profile.
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The Firm, on the other hand, can secure a higher continuation payoff. If it receives no further

information, it receives its outside option

w(p) = (p− γ (1− p))+ . (4)

Since additional information cannot hurt the Firm, this is a lower bound on W (hk).

It is easy to see that (2) (with p = p0), (3) and (4) define the set of feasible and individually

rational (continuation) payoffs. Note that the type-1 Agent cannot receive more than 1−w(p)/p,

the entire expected surplus. While this is the maximum she can hope for, this is still short of

the actual surplus, given state 1, 1−w(p); hence, even appropriating the entire expected surplus

does not solve the moral hazard in the decision problem altogether.

We conclude this section with a series of observations about the selling information game.

Fix K and p0 throughout.

- There exists an equilibrium (the “worst” equilibrium) that minmaxes both players simulta-

neously: Making no transfers (expecting none) and releasing no information is an equilibrium,

with payoffs

W = w(p0), V1 = V0 = 0.13

Although there are many ways for the Agent to signal her information through transfers or

deviations in terms of the test difficulty that she picks, and therefore, many out-of-equilibrium

beliefs to “worry” about, such beliefs play no role: observable deviations by the Firm do not

affect its beliefs (this is the “no signalling what you don’t know” ingredient of perfect Bayesian

equilibrium), and observable deviations by the Agent can be deterred through the threat of

reverting to this worst equilibrium, independently of how this affects the Firm’s belief.14

An equilibrium is efficient if the constraint (2) is binding, that is, if the type-1 Agent discloses

all her information eventually, on the equilibrium path.

- If an equilibrium gives (V0, V1) to the Agent, there is an efficient equilibrium that does so:

13For brevity, we often write Vω for Vω(hk), but because the maximum equilibrium payoff only depends on the
Firm’s belief (and the number of periods left), we also sometimes write Vω(p), where p is this belief. Finally, we
also write Vω for the resulting function of the belief. Hopefully, no confusion will arise.

14This also implies that the equilibrium payoffs that we shall determine can easily be obtained as well for
alternative orders of moves within a period, such as disclosure before transfer, etc.
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Indeed, the Agent can always disclose the state in the last period on the equilibrium path. This

cannot weaken the incentives for the players to carry out the planned transfers (because it can

only increase the payoff from following the specified equilibrium actions), but it guarantees that

the correct action is taken.15

Some efficient equilibrium payoffs giving all the surplus to one of the parties are easy to

describe.

- There is an equilibrium in which the Firm receives W0 = p0: no transfers are ever made,

and the type-1 Agent reveals the state in the last period, so that the posterior belief is 1 with

probability p0, and 0 otherwise.

- There is an equilibrium in which the Agent’s expected payoff is p0V1+(1− p0)V0 = p0−w(p0):

the Firm pays this amount in the first period, and the Agent reveals the state. If the Firm fails

to pay, or the Agent deviates, play reverts to the worst equilibrium.

This shows that attaining the maximum expected payoff of the informed player is trivial in

our game, unlike in many games with incomplete information (see Aumann and Maschler, 1995).

Note also that, since the type-1 Agent can always mimic the type-0 Agent, her payoff must be

at least as high as the type-0’s payoff. This implies that the maximal equilibrium payoff for the

type-0’s Agent is the one that maximizes the Agent’s ex ante payoff, as described above.

However, all these equilibria are terrible for providing incentives to acquire information: in

all of them the two types of the Agent earn the same payoff and hence there is no return to the

effort. What is non-trivial is to identify an equilibrium that maximizes V1 − V0, the difference in

payoffs of the two types. We now argue that maximizing V1 among all equilibria is “equivalent”

to maximizing V1+W , the sum of the Firm’s and type-1 Agent’s payoff, as well as to maximizing

V1 − V0:

- An equilibrium that maximizes V1 also maximizes V1 +W over all equilibria: Given some

15This is clear if only at most the Agent randomizes on path, as her payoff from releasing additional information
at the end does not affect her incentives. If the Firm is supposed to randomize on path, there exists an equivalent
equilibrium that takes advantage of the public randomization device in which, conditional on the device’s outcome,
its action is pure, and so its incentives from following the equilibrium action are reinforced by this additional
disclosure. This is the only point in the analysis in which the relaxation (to a game with a public randomization
device) is used.
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equilibrium yielding payoffs (V0, V1,W ), note that

V1 +W ≤ V1 + w (p0) .

Otherwise, by simply starting from the equilibrium that yields V1 to the type-1 Agent and W

to the Firm, and by increasing the initial transfer that the Firm is asked to make by an amount

W −w (p0), we would obtain another equilibrium in which the type-1 Agent gets a payoff strictly

above V1 –a contradiction. Given that w (p0) is fixed, the conclusion follows.

Therefore, the equilibrium that maximizes the type-1 Agent’s payoff cannot leave any surplus

to the Firm.

- An equilibrium that maximizes V1 also maximizes V1 − V0: Efficient equilibria, to which

attention can be restricted to, satisfy

p0V1 + (1− p0)V0 +W = p0, (5)

so that

V1 − V0 =
V1 +W − p0

1− p0
.

Thus, given the prior belief p0, maximizing the payoff difference V1−V0 is equivalent to maximiz-

ing the sum V1 +W , but as we have already remarked, this is in turn implied by maximizing V1

only. Therefore, we can simplify further and focus on maximizing V1, the type-1 Agent’s payoff.

- The set of equilibrium payoffs is non-decreasing in K, the number of rounds : players can

always choose not to make transfers or disclose any information in the first round.

Hence, the highest equilibrium payoff for the type-1 Agent has a well-defined limit given p0

that we shall seek to identify. The functions V p
1 , V

m
1 , V int

1 are the (pointwise) limit payoffs (as p0

varies) in pure, mixed unobservable, and mixed observable strategies, that we shall consider in

turn.
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Figure 1: A feasible action

3 Equilibrium Analysis

We now turn to the focus of the analysis: what equilibrium maximizes the payoff of the type-1

Agent, and how much of the surplus can she appropriate?

3.1 Pure Strategies

We start by considering pure strategies by the Agent. A pure strategy calls for the Agent to

disclose a specific piece of information at each round, i.e. for both types to choose a test with

a particular equilibrium-path m and for type-1 to pass it for sure and type-0 to pass it with

probability m.

This implies that, from the Firm’s point of view, and ignoring the uninteresting case in which

the Agent is supposed to reveal nothing (m = 1), its posterior will take one of two values: either

it will jump from p0 up to some p′, if the piece of information is revealed. Or it will jump down to

zero. This is illustrated in Figure 1. The two arrows indicate the two possible posterior beliefs.

Note that, as a stochastic process, and viewed from the Firm’s perspective, this belief must follow

a martingale: the Firm’s expectation of its posterior belief must be equal to its prior belief. This

is not the case, however, from the Agent’s point of view. Given her knowledge of the state, she

assigns different probabilities to these posterior beliefs than the Firm. If she is the type-1 Agent,

she knows for sure that the belief will not decrease over time. If she is the type-0 Agent, the

expectation of the posterior belief is below p0 (the process is then a supermartingale).

More generally, an equilibrium outcome specifies a martingale splitting, summarized by the
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sequence of Firm’s beliefs that the state is 1, conditional on all pieces of information having

been exhibited up that round (all test difficulties chosen and the results of the tests). On the

equilibrium path, as long as the Agent passes the tests, Firm’s beliefs follow a non-decreasing

sequence {p0, . . . , pK+1} which starts at the Firm’s prior belief, p0, and ends up at pK+1 = 1

(assuming, without loss, that the equilibrium is efficient). If a piece of information fails to be

disclosed (i.e. the Agent fails a test), the posterior immediately drops to zero.

Of course, an equilibrium must also specify transfers, as well as how players behave off the

equilibrium path. The most effective punishment for deviations (whether in terms of information

disclosure or payment) is reversion to the worst equilibrium, and this is assumed throughout.

It turns out that type-1 Agent payoff decreases if the Firm is given any payoff in excess of

its outside option in this or future periods. It is obvious for the first round, since the payoffs

are transferred one-to-one between the Firm and the Agent. On the one hand, the Agent could

demand more in earlier rounds by promising surplus to the Firm in later rounds. On the other

hand, the willingness-to-pay of the Firm for this future surplus is lower than the cost to the type-

1 Agent of promising this surplus. The reason is that the Firm assigns a lower probability than

the type-1 Agent to the posterior increasing (and promising surplus after the posterior drops to

zero is not incentive compatible).

Therefore, if the Firm’s belief in the next round is either pk+1, or 0, given the current belief

pk, then the Firm is willing to pay

EF [w(p
′)]− w(pk),

where p′ is the (random) belief in the next round, with possible values 0 and pk+1, and EF [·] is
the expectation operator for the Firm. The Agent does not make any transfers. In other words,

the Agent extracts the maximal payment she can hope for from the Firm at every round. This

sounds intuitive, but as we shall see, this will no longer be optimal when a more general class of

mechanism is considered.

This leaves us with the determination of the sequence of posterior beliefs.

We already know that it is possible for the Agent to appropriate some of the value of her
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information, but the question is whether she can get more than p0−w(p0), which is just as much

as the type-0 Agent gets in the equilibrium we constructed so far.

Unless the Agent can reveal the information slowly, the answer is negative: If K = 1, the

highest equilibrium payoff to the type-1 Agent is equal to p0 − w(p0). With one round of

communication, the payoff of the Agent can come only from the payment in the first (and only)

round. Therefore, the payoffs of the two types of Agents have to be the same in all equilibria (for

K = 1). To identify the best for the type-1 Agent, recall that we can focus on efficient equilibria,

in which the posterior is either 0 or p1 = 1. Because beliefs must follow a martingale from the

Firm’s point of view, it must be that the probability that the posterior is p1 is p0/p1, because

p0 =
p0
p1

· p1 +
p1 − p0

p1
· 0.

This means that the additional value from this information, relative to what the Firm can secure,

is

EF [w(p
′)]− w(p0) =

p0
p1
w (p1)− w (p0) = p0 − w (p0) .

Note that, when p0 ≤ p∗, the highest payoff in one round that the type-1 Agent can get in

equilibrium is simply the prior p0. Note also that this payoff is increasing in p0 ≤ p∗.

This immediately suggests one way to improve on the payoff with as little as two rounds. In

the first step, the Agent discloses for free the piece of information leading to a posterior belief

of p∗ (or 0, if she fails to do so). In the second round, the equilibrium of the one-round game is

played, given the belief p∗. This second and only payment yields

p∗ − w(p∗) = p∗ > p0.

The right panel of Figure 2 illustrates. The lower kinked line is the outside option w, the upper

straight line is total surplus, p. Hence, the payment in the second round is given by the length

of the vertical segment at p∗ in the right panel, which is clearly larger than the payment with

only one round, given by the length of the vertical segment at p0.

Is the splitting that we described optimal with two periods to go? As it turns out, it is so if

and only if p0 < (p∗)2. But there are many other ways of splitting information with two periods
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Figure 2: Revealing information in two steps

to go that improve upon the one-round equilibrium, and among them, splits that also improve

over the one-period equilibrium when p0 > p∗. The optimal strategy will be given at the end of

this subsection.

Allowing additional rounds will further improve what the type-1 Agent can achieve. This

can be understood graphically. Consider Figure 3. As shown on the left panel, information is

revealed in three steps. First, the belief is split into 0 and p∗. Second, at p∗ (assuming this belief

is reached), it is split in 0 and p′. Finally, at p′, it is split in 0 and 1. The right panel shows

how to determine the type-1 Agent’s payoff graphically. The two solid (red) segments represent

the maximal payments that the type-1 Agent can demand at each round for the information

that is being released in the second and third round. (In the first round, no payment can be

demanded, because if future payments drive down the Firm’s continuation payoff from the second

round onward to its outside option, its continuation payoff is zero whether its posterior goes up

or down). Thus, the sum of their lengths is the payoff of the type-1 Agent. In contrast, in

the equilibrium involving two rounds only, in which information is fully disclosed once the belief

reaches p∗, the payment to the Agent is only equal to the distance of the vertical segment between

the outside option w at p∗ and the chord connecting (0, 0) and (1, 1) evaluated at p∗ (i.e., the

lower segment, plus the dotted segment). It is clear that the profit with three rounds exceeds

the profit with only two, as the chords from the origin to the point (p, w(p)) become steeper as
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Figure 3: Revealing information in three steps: evolution (left) and payoff (right)

p increases.

It is intuitively clear that further splitting information is beneficial, if possible. Figure 4

illustrates the total payoff that results from a splitting that involves many small steps (which is

the sum of all vertical segments). The Reader might be tempted to conject that, in the limit as

K → ∞, the type-1 Agent will be able to extract the full value of the information. The right

panel explains why this conjecture is incorrect. As the Firm’s belief goes from p − dp to p, its

outside option increases from w(p− dp) to w(p), yet the type-1 Agent only charges a fraction of

this, giving up w(p)dp/p in this process. This loss, or foregone profit, need not be large when

the step size dp is small, but then again, the smaller the step size, the larger the number of steps

that the disclosure policy involves. As a result, the type-1 Agent cannot avoid but to give up

a fraction of the value of the information. Note that this sacrificed profit does not benefit the

Firm, which is always charged its full willingness-to-pay. Therefore, it benefits the type-0 Agent,

whose profit does not tend to zero, even as the number of rounds goes to infinity.

What does the maximum payoff converge to as the number of rounds increase? Here is a

heuristic derivation of the solution. Note that, for p ≥ p∗, the payment that the type-1 Agent can

extract from the Firm if the following posterior belief is p′ ∈ {0, p+ dp} is (observing that, from

21



✻ ✻

✲ ✲
p0 p0 p∗ p′ p′′ p′′′ 1 1p− dpp∗ p

ss

s

s

s

s

s

s

s

1 1

s

s

s

$ $

w(p)

loss

Figure 4: Revealing information in many steps (left); Foregone profit at each step (right)

the martingale property of the Firm’s beliefs, the test must be passed with probability p
p+dp

),

p

p+ dp
w (p+ dp)− w (p) =

p

p+ dp
((p+ dp)− γ(1− p− dp)))− (p− γ(1− p)) = γ

dp

p
+O(dp2),

where O(x) < M |x| for some constant M and all x. If the entire interval [p∗, 1] is divided in this

fashion in smaller and smaller intervals, the resulting payoff tends to

∫ 1

p∗
γ
dp

p
= γ(ln 1− ln p∗) = −γ ln p∗.

This suggests that the limiting payoff is independent of the exact way in which information

(above p∗) is divided up over time, as long as the mesh of the partition tends to zero.

Lemma 1 As K → ∞, the maximum payoff to the type-1 Agent in pure strategies tends to, for

p0 < p∗,

V p
1 (p0) := −γ ln p∗.

This lemma will follow as immediate corollary from the next one. Note that this payoff is
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Figure 5: Revealing information in many steps (left); Payoff as a function of K (right).

independent of p0 (for p0 < p∗). Indeed, the first chunk of information, leading to a posterior

belief of p∗, is given away for free. It does not affect the Firm’s outside option, but it makes the

Firm as unsure as can be about what it is the right decision. From that point on, the Agent

starts selling information in excruciatingly small bits, leaving no surplus whatsoever to the Firm,

as in the left panel of Figure 5.

We conclude this subsection by the explicit description of the equilibrium that achieves the

maximum payoff of the type-1 Agent, as a function of the number of rounds and the prior belief

p0. Here, (x)
− := −min{0, x} ≥ 0.

Lemma 2 The maximal equilibrium payoff of the type-1 Agent with K rounds, given the Firm’s

prior belief p0, is recursively given by

V1,K(p0) =







Kγ(1− p
1/K
0 )− (p0 − γ(1− p0))

− if p0 ≥ (p∗)
K

K−1 ,

V1,K−1(p
∗) if p0 < (p∗)

K

K−1 ,

for K > 1, with V1,1 (p0) = γ(1− p0)− (p0 − γ(1− p0))
−. On the equilibrium path, in the initial

round, the type-1 Agent reveals a piece of information leading to a posterior belief of

p1 =







p
K−1

K

0 if p0 ≥ (p∗)
K

K−1 ,

p∗ if p0 < (p∗)
K

K−1 ,
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after which the play proceeds as in the best equilibrium with K − 1 rounds, given prior p1.

Note that, fixing p0 < p∗, and letting K → ∞, it holds that p0 < (p∗)
K

K−1 for all K large

enough, so that, with enough rounds ahead, it is optimal to set p1 = p∗ in the first, and then

to follow the sequence of posterior beliefs (p∗)
K−1

K , (p∗)
K−2

K , . . . , 1, and the sequence of posteriors

successively used becomes dense in [p∗, 1]. Therefore, with sufficiently many rounds, the equilib-

rium involves progressive disclosure of information, with a first big step leading to the posterior

belief p∗, given the prior belief p0 < p∗, followed by a succession of very small disclosures, leading

the Firm’s belief gradually up all the way to one. The right panel of Figure 5 shows how the

payoff varies with K.

Note also that, for any K and any equilibrium, if p and p′ > p are beliefs on the equilibrium

path, then V0(p
′) − V1(p

′) ≤ V0(p) − V1(p), as long as only the Firm makes payments. Indeed,

going from p to p′, the type-1 Agent forfeits the payments that the Firm might have made over

this range of beliefs (hence V1(p
′) < V1(p)), while the type-0 Agent only forfeits them in the

event that she is able to produce the relevant information: hence she loses less, and might even

gain (for instance, she might not have been able to produce the first piece of evidence that is

given away at p < p∗). As a result, and quite generally, the type-1 Agent has a preference for

lower beliefs, relative to the type-0 Agent. Having to give away information is more costly to

an Agent who knows that she owns it. This plays an important role in the analysis of mixed

strategies that we do next.

An implication of this analysis is that, with pure strategies, there is no role for payments

going from the Agent to the Firm. We believe, but have not shown, that the converse also holds,

and that, without payments from the Agent to the Firm, one cannot improve on the equilibrium

in pure strategies.

3.2 Mixed Strategies

We now consider mixed strategies by the Agent. Specifically, consider the following scenario.

The type-1 Agent passes the test with positive but non-unitary probability; that is, she flunks

on purpose some of the time. The type-0 Agent passes the test whenever she is able to. This
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requires (i) the type-1 Agent to be indifferent between the two resulting continuations, and (ii)

the type-0 Agent to (weakly) prefer not flunking the test.

In this case, failure to exhibit information does not lead to a posterior of zero. Indeed, the

type-1 Agent might conceivably mix in such a way that exhibiting information leads to a lower

posterior (though this won’t occur in the analysis).

Whether one views mixed strategies as plausible in their own right or not, such dynamics of

beliefs would also result from pure strategies with an appropriately extended set of actions: if the

Agent can commit to run a test which is noisy (e.g., applying her expertise to a particular task, or

letting the Firm experiment with, or make measurements of, her invention), the posterior belief

will not necessarily drop to zero after a failure (operating systems do crash occasionally). In fact,

such tests endow the Agent with even more commitment than mixed strategies as considered here,

as they do not require the Agent to be indifferent over the resulting outcomes. The importance

of such commitment will be evaluated in the next subsection.

One might wonder what the type-1 Agent could gain from using mixed strategies. The ratio-

nale is actually well-known. The type-1 Agent and the Firm have both differences in preferences

over posterior beliefs, and differences in beliefs about the event that these posterior beliefs ma-

terialize. The next subsection will show how to take advantage of the heterogeneity in beliefs.

Mixed strategies take advantage of the heterogeneity in preferences.

To illustrate this, consider the case in which γ = 1, so that p∗ = 1/2, and consider the limiting

case K = ∞, for simplicity. Using the best equilibrium (for the type-1 Agent) as a benchmark,

the preferences of the Firm are piecewise affine in p (w(p) = (2p− 1)+). Meanwhile, the type-1

Agent has a payoff function that is convex in p (over [1, 2/1]), given by − ln p. We shall use

side bets to take advantage of this differential attitude towards the resolution of uncertainty. Of

course, if the type-1 Agent gains from such side bets, and the Firm does not lose from them (as

its payoff is already down to its outside option), it must be that the type-0 Agent loses. Her

payoff function is given by V0(p) = 1 + (p ln p)/(1− p). See the left panel of Figure 6.

Side bets, however, require payments to go back and forth between the Firm and the Agent.16

16As mentioned, we do not know what payoffs can be obtained if mixed strategies are allowed, but payments
from the Agent to the Firm are not. We cannot rule out that some of the back payments of the bets could take
the form of deductions on later payments by the Firm, but is unclear how far such deductions could substitute
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If the Firm pays more than the “fundamental” expected value of the information disclosed, in

anticipation of the returns of such side bets, it had better be that the Agent has incentives to

honor such payments if necessary. If the posterior belief dropped to zero, even the threat of

reversion to the worst equilibrium could not discipline the Agent into paying back. Therefore,

the stakes of such bets are limited on two accounts: the type-0 Agent should be willing to make

the requisite payments if the case occurs, and the type-1 Agent must be indifferent between

the two continuation equilibria. Note that, if the type-1 Agent is indifferent between the two

continuations, the type-0 Agent prefers the one starting with the higher posterior belief, given

their relative preferences over starting beliefs, so that the type-0 Agent will disclose the requisite

information, whenever she is able to (as we argued at the end of the previous subsection).

The left panel of Figure 6 illustrates how the mixing works, starting from a given belief

p > 1/2. If information is disclosed, the Firm becomes more optimistic, with a corresponding

posterior of p + ∆, for some ∆ > 0. If it does not, the Firm becomes more pessimistic, with a

posterior of p−∆ > 1/2: the type-1 Agent randomizes in the right proportion for this posterior to

arise, given that the type-0 Agent will disclose the information whenever she is able to. Because

the possible posterior beliefs are symmetric around p, the two events (that information gets

disclosed or not) must be equally likely from the Firm’s point of view.

The Agent is expected to pay the Firm an amount X > 0 if the event p′ = p − ∆ realizes.

We must set X so that type-1 Agent is willing to randomize. Assuming that after this payment

play resumes according to the best pure strategy equilibrium described above, the continuation

payoffs after this payment are − ln(p + ∆) and − ln(p − ∆) respectively; hence, we must set

X = ln(p + ∆) − ln(p − ∆). As mentioned, because V0 − V1 (the difference in payoffs in the

best equilibrium) is increasing in p, this implies that the type-0 Agent discloses the information

whenever she is able to. We must also pick ∆ sufficiently small to ensure that V0(p −∆) ≥ X ,

so that the type-0 Agent will not renege on the payment. Because, by definition of X , X = 0

when ∆ = 0, it is possible to find a small enough ∆ > 0 for this to hold.

Because both posterior beliefs are equally likely, the Firm is willing to pay X/2 upfront in

for explicit payments by the Agent.
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Figure 6: Construction of the side bet (left); Maximum limit payoff V m
1 + w, γ = 1 (right).

exchange for this contingent future payment. This gives a total payoff of

V̂1(p) :=
ln(p+∆)− ln(p−∆)

2
+ ln(p−∆) = − ln(p+∆) + ln(p−∆)

2
> − ln p

to the type-1 Agent, where the second term is the continuation payoff from the next round onward

(which is equal across posterior beliefs, by construction), and the strict inequality follows from

Jensen’s inequality.

We have just improved on our upper bound based on pure strategies. The key here was

the convexity of the type-1 Agent, relative to the Firm’s payoff function (i.e. the convexity of

w (p) + V1 (p)). What is the limit of using such mixing/side bets to improve V1?

Let V m
0 (p) and V m

1 (p) denote the limiting payoffs as K → ∞ in the best equilibrium that

uses mixed (or pure) strategies and define h(p) := V m
1 (p)+w(p). There are two possibilities that

could prevent an extra round with side bets to improve upon a given equilibrium payoff. Either

V m
0 (p) = 0 at some p, so that by feasibility and individual rationality h(p) = 1− (1 − p)w(p)/p

and it cannot increase any more. Or, h (p) is locally concave, preventing further improvements

through side bets. As we add rounds with the side-bets the difference in curvatures of V1 (p) and

w (p) goes down. Does it vanish before we reduce V0 (p) down to zero?
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Other than these two bounds on h (that it has to be either equal to the upper bound or

locally concave) we additionally know that h cannot be steeper than w(p)/p: indeed, starting

from p0, we can always use a pure-strategy with posterior beliefs in {0, p1}, so that

V m
1 (p0) ≥ V m

1 (p1) +
p0
p1
w(p1)− w(p0),

or
h(p1)− h(p0)

p1 − p0
≤ w(p1)

p1
. (6)

Finally, h must exceed w, as the type-1 Agent’s payoff is non-negative. What is the lowest

function that satisfies these four requirements? In our example, it gives us:

V m
1 (p) =







2
√
γ(
√
1 + γ −√

γ)− w(p) if p < pm :=
√
p∗,

1− w(p)/p if p ≥ pm.

See the right panel of Figure 6. In Appendix, we prove that this is the limit maximum equilibrium

payoff of the type-1 Agent with mixed strategies.17 That is, full extraction occurs for high enough

(p ≥ pm, in which case V0 (p) = 0) but not for low beliefs. Still, this is a marked improvement

upon pure strategies.

The following corollary records the limiting value for prior beliefs below p∗.

Lemma 3 As K → ∞, the maximum payoff to the type-1 Agent in mixed strategies tends to,

for p0 < p∗,

V m
1 (p0) = 2

√
γ(
√

1 + γ −√
γ) < 1.

3.3 Intermediary/Noisy Tests

Mixed strategies only allowed us to take advantage of the differences between the Firm and

the type-1 Agent as long as their preferences had different curvatures. This constrains how much

17Roughly, any function satisfying these properties cannot be improved upon with one more round, even with
mixed strategies. Because the payoff of the type-1 Agent is increasing in her continuation payoff, this means
that the highest limiting payoff must be below this function. Conversely, the limiting payoff must satisfy these
properties. Hence, it follows that this lowest function is the limiting payoff.
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surplus can be channeled from the type-0 Agent to the type-1 Agent. While the type-1 Agent

and the Firm had different beliefs regarding the occurrence of future events –in particular, the

Firm’s next belief– such differences could not be leveraged, because the type-1 Agent had to be

indifferent over both continuations, so that it did not matter for the type-1 Agent how likely

each posterior belief was.

If the Agent could commit to such a mixed action, this constraint no longer applies. As

usual, this is a matter of the definition of what is observable: in the case of random, but

informative tests, all parties could observe that the Agent is running such a test, and the Agent

would no longer be in control of its outcome. The previous subsection considered unobservable

mixed actions. Alternatively, if the Agent delegates the decision to disclose the information to a

disinterested third party –what we call an intermediary– the Agent can no longer control whether

the information gets disclosed or not.

In this section, we allow such an intermediary. Formally, we drop the requirement that the

Agent be indifferent over the actions in the support of her mixed strategy. As we argue, this

allows the type-1 Agent to further improve on her payoff. The key still lies in the design of side

bets. This time around, those bets take advantage of the difference in beliefs.

Consider the simple example in which γ = 1, so that p∗ = 1/2. The right panel of Figure 7

illustrates one of the procedures that the intermediary may follow, starting from a given belief

p0 = 1/3. Here, the intermediary sends one of two messages, low or high. The high message

makes the Firm more optimistic, with a corresponding posterior of 1/2. The low message makes

the Firm more pessimistic, with a posterior of 1/6. Because the Firm’s belief is a martingale,

and because p0 = 1/3 is the mean of 1/2 and 1/6, the two messages must be equally likely from

the Firm’s point of view.

How likely is each message from the type-1 Agent’s point of view? Note that the low posterior,

1/6, is half as high as the prior belief, 1/3. This means that, from the Firm’s point of view,

the low message is half as likely to be observed when the state is ω = 1, as the high message.

Because it assigns an unconditional probability of 1/2 to the low message, it must then assign

probability 1/2 · 1/2 = 1/4 to this low message conditional on the Agent being of type 1. This

is then the probability that the type-1 Agent must assign to this low message.
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Figure 7: The Role of Side Bets

The left panel of Figure 7 depicts the three continuation payoffs in the best pure-strategy

equilibrium without an intermediary, starting from a Firm’s belief 1/6. The type-1 Agent receives

V1

(

1
6

)

= −γ ln p∗ = ln 2, the Firm receives w(1/6) = 0, yet the sum of all three payoffs must

equal the surplus p = 1/6, so that the type-0’s Agent payoff can be read off the y-axis as shown.

Note that 0 < V0

(

1
6

)

≤ V1

(

1
6

)

.

Consider then the following scheme when there are arbitrarily many rounds. In the second

round, it is understood that the Agent will make a payment of V0

(

1
6

)

to the Firm if and only if

the realized message is low (in particular, there is no payment by the Agent to the Firm if the

realized message is high). Aside from this one-time, conditional payment from the Agent to the

Firm, all payments by the Firm to the Agent, and all information disclosures from the Agent to

the Firm occur from the second round onward as in the pure-strategy equilibrium without an

intermediary (which is obviously possible even with an intermediary), given the realized message.

In the initial round, before the message is sent, the Firm must pay the difference between its

expected continuation payoff and its current outside option, 0. (If it fails to do so, we switch to

the worst equilibrium, as usual). How much is the Firm willing to pay? Note that, if there was

no payment from the Agent to the Firm conditional on a low message, it is not willing to pay

anything, since its outside option after either message is still 0. Nevertheless, because it expects
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to receive V0

(

1
6

)

in an event whose probability is 1/2 from its point of view, it is willing to pay

up to V0

(

1
6

)

/2 upfront in this scheme. How much is this scheme worth to the type-1 Agent?

Her expected payoff is:

1

2
V0

(

1

6

)

+
1

4

[

V1

(

1

6

)

− V0

(

1

6

)]

+
3

4
V1

(

1

2

)

= V1

(

1

3

)

+
1

4
V0

(

1

6

)

> V1

(

1

3

)

.

To see this, note that she gets V0

(

1
6

)

/2 up-front, V1

(

1
6

)

− V0

(

1
6

)

in the event that the message

is low (an event to which she assigns probability 1/4) and V1

(

1
2

)

in the event that the message

is high. Since V1 (p) is constant for p ∈
[

0, 1
2

]

, the equality follows. As a result, with this

scheme, her payoff with a prior 1/3 is strictly larger than V1

(

1
3

)

, her maximal payoff without an

intermediary.

This scheme is nothing but a bet, or a trade, between two agents whose beliefs about some

event differ. The type-1 Agent attaches probability 1/4 to the event that the Firm’s posterior

belief will be 1/6, while the Firm attaches probability 1/2 to this event. Therefore, there is

room for a profitable trade, and the only bound on this trade is that the bet cannot exceed the

type-0’s continuation payoff. Note that the type-0 Agent loses from this scheme (as compared

to our original equilibrium), for she is the one who assigns a high probability to the event that

the posterior is 1/6. Still, her payoff remains positive, and she has no choice but to go along

(her payoff is equal to the Firm’s payment in the initial period plus the expected payoff from

reaching the higher posterior).

Observe that such a scheme is not possible without an intermediary, because the type-1 Agent

is not indifferent over realized messages. She strictly prefers the high message to obtain, so that

such a scheme cannot be replicated by mixed strategies without an intermediary.18 Second, note

that the payment that the Agent makes if a low message occurs is not informative per se. This is

because this payment is no larger than V0, and the continuation payoffs of the Agent is at least

18The payoff that is used as continuation payoff here –the maximum type-1 equilibrium payoff in pure strategies–
is affine over the beliefs considered; hence, mixed strategies (without an intermediary) cannot improve her payoff,
since the type-1 Agent and the Firm have identical risk attitudes. Alternatively, we could have used as continuation
payoff the maximum type-1 equilibrium payoff in mixed strategies: because this payoff is also constant over these
beliefs, and the type-0 Agent gets a positive payoff, the same construction would work, and improve on this
maximum payoff.
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as much, independently of her type. Higher payments would not work, because the type-0 Agent

would not be willing to make it given the continuation equilibrium, and so the occurrence of a

payment or not would convey information about the Agent’s type. From the left panel of Figure

7, it is clear that, the closer the expected payoff pV1 of the type-1 Agent is to the total surplus

p, the smaller is the resulting V0, and so, the smaller the scope for such a scheme becomes. But

as long as V0 remains strictly positive, such schemes remain possible.

We concluded the previous subsection by noting the two constraints preventing full surplus

extraction. Here, only V0(p) ≥ 0 remains. Hence, it should be no surprise that such bets allow full

surplus extraction. The maximum equilibrium payoff of the type-1 Agent tends to, as K → ∞,

V int
1 (p) := 1− w(p)

p
,

giving us the following corollary:

Lemma 4 As K → ∞, the maximum equilibrium payoff to the type-1 Agent with an intermedi-

ary tends to, for p0 < p∗,

V int
1 (p0) = 1.

4 General Outside Options

How do our results depend on our assumptions on the outside option? While the piecewise

linear structure of the Firm’s payoff proves quite convenient for explicit formulas, the main results

of Section 3 generalize to more general specifications.

Suppose that the payoff of the Firm (gross of any transfers) as a function of its posterior belief

p after the K rounds is a non-decreasing continuous function w(p), and normalize w(0) = 0,

w (1) = 1. We further assume that w (p) ≤ p, for all p ∈ [0, 1], for otherwise full information

disclosure is not socially desirable. These assumptions on w are maintained throughout the next

three subsections.

This payoff can be thought as the reduced-form of some decision problem that the Firm

faces, as in our baseline model. In that case, w must be convex, but since we are taking w
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as a primitive here, we do not assume such a property here. We consider the three cases of

pure-strategy, mixed-strategy, and of an intermediary in turn.

4.1 Pure Strategies

Recall that the best equilibrium with many rounds called for a first burst of information

released for free (assuming p < p∗), after which information is disclosed in dribs and drabs. One

might wonder whether this is a general phenomenon.

The answer, as it turns out, depends on the shape of the outside option. It is in the interest

of the type-1 Agent to split information as finely as possible for any prior belief p0 if and only

if the function w is star-shaped, i.e., if and only if the average, w(p)/p, is a strictly increasing

function of p.19 More generally, if a function is star-shaped on some intervals of beliefs, but not

on others, then information will be sold in small bits at a positive price for beliefs in the former

type of interval, and given away for free as a chunk in the latter. In our main example, w is

not star-shaped on [0, p∗], as the average value w(p)/p is constant (and equal to zero) over this

interval. However, it is star-shaped on [p∗, 1]. Hence our finding.

Let us first consider a star-shaped outside option. If in a given round the Firm’s belief goes

from p to either (p+ dp) or 0, the Agent can charge up to

p

p + dp
w(p+ dp)− w(p) = (w′(p)− w(p)/p)dp+O(dp2)

for it.20 Given the Firm’s prior belief p0, the type-1 Agent’s payoff becomes then (in the limit,

as the number of rounds K goes to infinity)

∫ 1

p0

[w′(p)− w(p)/p]dp = w(1)− w(p0)−
∫ 1

p0

w(p)dp/p,

which generalizes the formula that we have seen for the special case w(p) = (p − (1 − p)γ)+.21

19This condition already appears in the economics literature in the study of risk (see Landsberger and Meilijson,
1990). It is weaker than convexity: the function p 7→ pα is star-shaped for α > 1, but only convex for α ≥ 2.

20In case w (p) is not differentiable, then w′ (p) is the right-derivative, which is well-defined in case w is star-
shaped.

21In our main example, w is (globally) weakly star-shaped: that is, the function p 7→ w(p)/p is only weakly
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That is, the type-1 Agent’s payoff is the area between the marginal payoff of the Firm and its

average payoff.

To see that splitting information as finely as possible is best in that case, fix some arbitrary

interval of beliefs [p, p̄], and consider the alternative strategy under which the posterior belief of

the Firm jump from p to p̄, the payoff in that round is given by

p

p̄
w(p̄)− w(p).

If instead this interval of beliefs is split as finely as is possible, the payoff over this range is

w(p̄)− w(p)−
∫ p̄

p

w(p)

p
dp.

Hence, splitting is better if and only if

1

p̄− p

∫ p̄

p

w(p)

p
dp ≤ w(p̄)

p̄
, (7)

which is satisfied if the average w(p)/p is increasing.

Equation (7) also explains why splitting information finely is not a good idea if the average

outside option is strictly decreasing over some range [p, p̄], as the inequality is reversed in that

case. What determines the jump? Note that, as mentioned, the payoff from a jump is pw(p̄)/p̄−
w(p), while the marginal benefit from finely splitting information disclosures at any given belief

p (in particular, at p̄ and p) is w′(p) − w(p)/p. Setting the marginal benefits equal at p and p̄,

respectively, yields that
w(p̄)

p̄
=

w(p)

p
and w′(p̄) =

w(p̄)

p̄
.

See Figure 8. The left panel illustrates how having two rounds improves on one round. Starting

with a prior belief p0, the highest equilibrium payoff the type-1 Agent can receive in one round

is given by the dotted black segment. If instead information is disclosed in two steps, with an

increasing. The formula for the maximum payoff in the limit K → ∞ is the same whether there is a jump in the
first period or not. But for any finite K, splitting information disclosures over the range [p0, p

∗] is suboptimal, as
it is a “wasted period,” whose cost only vanishes in the limit.
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Figure 8: Splitting information with an arbitrary outside option

intermediate belief p1, the type-1 Agent’s payoff becomes the sum of the two solid (red) segments,

which is strictly more, since w(p)/p is strictly increasing. The right panel illustrates the jump in

beliefs that occurs over the relevant interval when w(p)/p is not strictly increasing, as occurs in

our leading example for p < p∗.

There is a simple way to describe the maximum resulting payoff. Given a non-negative

function f on [0, 1], let

sha f

denote the largest weakly star-shaped function that is smaller than f . In light of the previous

discussion (see right panel of Figure 8), the following result should not be too unexpected.

Theorem 1 The maximum equilibrium payoff to the type-1 Agent in pure strategies tends to, as

K → ∞,

V p
1 (p0) = 1− sha w (p̂0)−

1
∫

p̂0

sha w (p) dp/p,

where p̂0 := min {p ∈ [p0, 1] : w (p) = sha w (p)}.

That is, the same formula as in the case of a star-shaped function applies, provided one applies
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it to the largest weakly star-shaped function that is smaller than w. The proof also elucidates

the structure of the optimal information disclosure policy, at least in the limit. Let

Iw := cl {p ∈ [0, 1] : sha w (p) = w (p) and w(p)/p is strictly increasing at p} .

In our main example, sha w(p) = w(p) for all p, but Iw = [1/2, 1]. Then the set of on-path beliefs

as K → ∞ held by the firm is contained, and dense, in Iw if Iw 6= ∅. If Iw = ∅, any policy is

optimal.

Note that this result immediately implies that the highest payoff to the type-1 Agent is higher,

the lower the outside option w. That is, if we consider two functions w, w̃ such that w ≥ w̃,

then the corresponding payoffs satisfy V p
1 ≤ Ṽ p

1 . The “favorite” outside option for the Agent

is w(p) = 0 for all p < 1, and w(1) = 1 (though this does not quite satisfy our maintained

continuity assumptions). In that case, the type-1 Agent appropriates the entire surplus. This

is the case considered in the literature on “zero-knowledge proofs:” the revision in the Firm’s

belief that successive information disclosures entail does not affect its willingness-to-pay.

4.2 Mixed Strategies

The description of the maximum payoff is somewhat more complicated in this case, and we

restrict attention in this section to the case in which w is weakly star-shaped.

As discussed in the main example, the (limiting) maximum payoff function V1 must obey

several constraints. Stated equivalently in terms of the function h = V1 +w, it must be the case

that:

1. The function h is no steeper than p 7→ w(p)/p, as explained in Subsection 3.2;22

2. The function h is bounded above, because V0 is non-negative:

h(p) ≤ h̄(p) := 1− 1− p

p
w(p);

22Formally, (6) holds for all p0, p1.
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3. On any interval in which h < h̄, h must be weakly concave;

4. The function h weakly exceeds w, because V1 is non-negative.

Note that, from the definition of h̄, it is no steeper than p 7→ w(p)/p, because w is star-

shaped. Hence, whenever h = h̄, h also satisfies the first requirement. In particular, the function

h̄ satisfies all four requirements, but it is generally not the only function that does (cf. our main

example).

The only constraint that might not be obvious is the third, briefly mentioned in Subsection

3.2. Let us illustrate its necessity via a simple example. Suppose that h is not concave, i.e. there

exists p1 < p < p2 such that

h(p) <
p2 − p

p2 − p1
h(p1) +

p− p1
p2 − p1

h(p2).

Assume, in addition, that V0(p1) > V1(p1) − V1(p2) (this is not implied by h(p) ≤ h̄, but see

below). We construct a bet that strictly improves on V1(p) with one more period. Suppose that

the agent pays V1(p1)− V1(p2) to the principal if and only if the posterior drops to p1, and that

play reverts then (or if the posterior belief turns out to be p2) according to the equilibrium that

achieves V1. Note that the type-1 Agent is indifferent between both posterior beliefs, and so is

willing to randomize. Given her assessment of the likelihood of each of these events, the Firm is

willing to pay upfront, given its prior p,

p2 − p

p2 − p1
[w(p1) + V1(p1)− V1(p2)] +

p− p1
p2 − p1

w(p2)− w(p),

as this is the difference between its expected continuation payoff and its current outside option.

The type-1 Agent’s payoff V̂1(p) consists then of this payment and her continuation payoff V1(p2),

so that, adding up,

h(p) ≥ V̂1(p) + w(p) =
p2 − p

p2 − p1
[w(p1) + V1(p1)− V1(p2)] +

p− p1
p2 − p1

w(p2) + V1(p2)

=
p2 − p

p2 − p1
h(p1) +

p− p1
p2 − p1

h(p2).
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Note that the constraint V0(p1) > V1(p1)− V1(p2) is always satisfied if p1, p2 are close enough to

p and V0(p1) > 0, and so h must be locally concave at any p at which V0(p) > 0.23

Let hm be the smallest function satisfying the four requirements above (which is well-defined,

as the lower envelope of functions satisfying the requirements satisfies them as well). The fol-

lowing theorem elucidates the role of hm.

Theorem 2 Assume that w is weakly star-shaped. As K → ∞, the maximum payoff to the

type-1 Agent in mixed strategies tends to:

V m
1 (p0) = hm(p0)− w(p0).

4.3 Intermediary

Finally, we come back to the case in which the Agent can commit to mixed actions, perhaps

because such mixed actions are observable. The maximum payoff has its simplest expression in

this case, and the result does not require to assume that w is star-shaped.

As in the main example, the next theorem is established by considering (local) bets that take

advantage of the difference in beliefs between the type-1 Agent and the Firm, and that can be

constructed as long as V0 > 0. In this way, the type-1 Agent can extract all the surplus, from

the type-0 Agent as well as of the Firm, up to its outside option.

Theorem 3 As K → ∞, the maximum payoff to the type-1 Agent with an intermediary tends

to:

V int
1 (p0) = 1− w(p0)

p0
.

5 Final Remarks

We described ways for self-enforcing contracts based on gradual persuasion/communication

and possibly mixed strategies and side bets to help resolve the moral hazard/holdup problem

23This hinges on continuity of V1 and V0; V1 is continuous because it is always possible to use the same disclosure
strategy starting at p2 as the continuation strategy given p1 would specify from the first posterior belief above
p2 onward; the first payment must be adjusted, but the continuity in payoffs as p1 → p2 then follows from the
continuity of w. Continuity of V0 follows then from the continuity of V1.
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in one-shot interaction to acquire information. Clearly, in real-life applications these kinds of

contracts can be aided by repeated interactions and reputation building.

Although it may not appear that way at first glance, we claim that the model is quite robust,

as we discuss the following extensions.

1. It is an important assumption in our model that we are selling information rather than a

service or a physical good, since that allows us to assume that the transaction (i.e. taking

the test) does not have any physical cost to the Agent. If taking tests was costly, to preserve

results we would need to assume that taking a test is contractible and that flunking the

test on purpose is as costly for the type-1 as passing it. If tests were not contractible

the standard hold-up problem would apply: in the last round of transactions the Agent

would always renege on taking the test and hence the Firm would never pay for it, and

the equilibrium would unravel. Che and Sákovics (2004) suggests the following solution

to this known problem: if we relax the equilibrium concept to be an epsilon-equilibrium

and assume that easier tests are proportionally less expensive (for example, if we interpret

harder tests as taking many easier tests at once), then splitting tests would allo! w to resolve

that aspect of hold-up and hence gradualism would have an additional and independent

benefit for sustaining good equilibria (this rationale resolves the problem of the Agent

holding up the Firm, while our results are about resolving the opposite hold-up).

2. In our model it does not really matter that it is the Agent who chooses the difficulty of

the test. We would obtain the same results in case the Firm was choosing the difficulty.

What is important, however, is that either taking the test itself in not contractible or that

the Agent has the option of flunking the test on purpose. The reason is that otherwise the

Firm would deviate to paying nothing in all but the last round and then offer an epsilon

contingent on the Agent taking the hardest test. It would not be a profitable deviation in

our equilibria since there the Agent would respond by taking the money and flunking the

test for sure.

3. Suppose that there is discounting with every round of communication, and the Firm can

decide to take its investment decision before the K rounds are over. Then it is no longer true
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that adding another round of communication will strictly increase the Agent’s maximum

equilibrium payoff. This is both because the Agent faces a trade-off between collecting

more money overall and collecting it earlier, and because the Firm will ultimately prefer

to take its outside option rather than wait for another period, once the possible benefits

from waiting become too small. Hence, in the best equilibrium, the number of rounds in

which communication actually takes place is bounded, so that the exact number of rounds

available will be of no importance, provided that there are sufficiently many of them.

However, as long as the players are not too impatient, the best equilibrium still involves a

gradual release of information, and the number of rounds of active communication increases

with the discount factor. While this version with discounting does not lend itself to closed-

form formulas, it is easy to see that, as the discount factor approaches one, the payoff

to the type-1 Agent must tend to the payoff in the undiscounted game. Furthermore,

in our leading example, numerical simulations show that for the pure-strategy case this

convergence occurs at a geometric rate.

4. Suppose that the Agent cares to some extent that the Firm takes the correct action (say,

ceteris paribus, her payoff increases by some small ε > 0). Then, in the one-shot game, it

is dominant for the Agent to reveal all her information, and so the Firm will not make any

payment. This logic clearly extends to the finite horizon game, no matter how long the

horizon is. On the other hand, this unraveling argument does not extend to the infinite-

horizon game (say, with little but positive discounting), and it is possible to construct

equilibria in our leading example in which the Agent is paid for a gradual release of infor-

mation. Of course, the value of ε does put bounds on how extreme the Firm’s posterior

belief can become before the Agent discloses all information. Nevertheless, our results are

robust, inasmuch as the maximal equilibrium payoff to the type-1 Agent will be continuous

at ε = 0 (if we allow for discounting).

5. As we mentioned in the introduction, our gradual tests are related to the literature on

zero-knowledge proofs. The main difference between our paper and most of that literature

is that we assume that the Firm knows which actions are relevant and with every piece

of information its outside option changes, while in these other models although the Firm
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becomes more and more certain that the Agent knows that the state is 1, the Firm does

not know which action is optimal in that state. For example, our model fits a situation

where the Agent may have information about a particular investment while in these other

models the Agent has information about some investment opportunity. This is also similar

to a model where an inventor shows elements of its invention to the Firm, but unless the

Firm learns all elements, it cannot “steal” the idea. Mapping this situation to our model

would mean that w(p) is constant for all p < 1 and increases discontinuously at 1. That

would su! ggest an immediate, familiar solution: the Agent should reveal almost all details

other than the “last key,” increasing the Firm’s posterior close to 1, and then sell just that

remaining piece. In our model that does not work since the information is valuable to the

Firm per se. It is possible that the two models could be much more similar if one assumed

that the Firm had done some research as well and may already know how to make some

of the elements of the invention. If so, then an inventor would always risk that by showing

additional elements to the Firm, she would make herself obsolete. However, since such a

model requires some private information on the side of the Firm, it would not be equivalent

to our model and the analysis of that situation remains an open question.
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[10] Che, Y.-K. and J. Sákovics (2004). “A Dynamic Theory of Holdup,” Econometrica, 72,

1063–1103.

[11] Compte, O. and P. Jehiel (2004). “Gradualism in Bargaining and Contribution Games,”

The Review of Economic Studies, 71, 975–1000.
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A Proofs

A.1 Proof of Lemma 2 and Lemma 1

The proof of Lemma 2 is by induction on the number of rounds. Lemma 2 immediately

implies Lemma 1

Our induction hypothesis is that, with k ≥ 1 periods to go, and a prior belief p = p0, the

best equilibrium involves setting the next (non-zero) posterior belief, p1, equal to p1 = p
k−1

k if

p
k−1

k ≥ p∗ (i.e. if p ≥ (p∗)
k

k−1 for k ≥ 2), and equal to p∗ otherwise.24 Further, the type-1 Agent’s

maximal payoff with k rounds to go is equal to

V1,k(p) = kγ(1− p1/k)− (p− γ(1− p))− if p ≥ (p∗)
k

k−1 , and V1,k(p) = V1,k−1(p
∗) if p < (p∗)

k

k−1 .

24In this proof, when we say that the equilibrium involves setting the posterior belief p1, we mean that, from
the type-1 Agent’s point of view, the posterior belief will be p1, while from the point of view of the Firm, the
posterior belief will be a random variable p′ with possible values {0, p1} .
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Note that this claim implies that V1,k(p
∗) = kγ

(

1− (p∗)1/k
)

. Finally, as part of our induction

hypothesis, we claim the following. Given some equilibrium, let X ≥ 0 denote the payoff of the

Firm, net of its outside option, with k rounds left. That is, X := Wk(p)− w(p), where Wk(p) is

the Firm’s payoff given the history leading to the equilibrium belief p with k rounds to go. Let

V1,k(p,X) be the maximal payoff of the type-1 Agent over all such equilibria, with associated

belief p, and excess payoff X promised to the Firm (set V1,k(p,X) := −∞ if no such equilibrium

exists). Then we claim that V1,k(p,X) ≤ V1,k(p)−X. We first verify this with one round. Clearly,

if K = 1, it is optimal to set the posterior p1 equal to 1, which is p
K−1

K , the relevant specification

given that p
0

1 = 1 ≥ p∗. The payoff to the type-1 Agent is

V1,1 (p) = p− (p− γ(1− p))+ = γ(1− p)− (p− γ(1− p))−,

as was to be shown. Note that this equilibrium is efficient. This implies that V1,1(p,X) ≤
V1,1(p)−X, for all X ≥ 0, because any additional payoff to the Firm must come as a reduction

of the net transfer from the Firm to the Agent.

Assume that this holds with k rounds to go, and consider the problem with k + 1 rounds.

Of course, we do not know (yet) whether, in the continuation game, the Firm will be held to its

outside option.

Note that the Firm assigns probability p/p1 to the event that its posterior belief p′ will be

p1, because, by the martingale property, we have

p = EF [p
′] =

p

p1
· p1 +

p1 − p

p1
· 0.

This implies that, with k+1 rounds, the Firm is willing to pay at most t̄Fk+1 :=
p
p1
(w (p1) +X ′)−

w (p) , where X ′ is the excess payoff of the Firm with k rounds to go, given posterior belief p1.

Therefore, the payoff to the type-1 Agent is at most

V1,k+1(p) ≤ t̄Fk+1 + V1,k(p1;X
′) ≤ p

p1
(w (p1) +X ′)− w(p) + V1,k(p1)−X ′,

where the second inequality follows from our induction hypothesis. Note that, since p/p1 < 1,
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this is a decreasing function of X ′: it is best to hold the Firm to its outside option when

the next round begins. Therefore, we maximize p
p1
w (p1) + V1,k(p1). Note first that, given the

induction hypothesis, all values p1 ∈ [p, (p∗)
k

k−1 ) yield the same payoff, because for any such p1,

V1,k(p1) = V1,k−1(p
∗). The remaining analysis is now a simple matter of algebra. Note that, for

p1 ∈ [(p∗)
k

k−1 , p∗) (which obviously requires p < p∗), the objective becomes (using the induction

hypothesis)

V1,k(p1) = kγ(1− (p1)
1/k)− (p1 − γ(1− p1))

−,

which is increasing in p1, so that the only candidate value for p1 in this interval is p1 = p∗.

Consider now picking p1 ≥ p∗. Then we maximize

p

p1
(p1 − γ(1− p1)) + kγ(1− p

1/k
1 ),

which admits a unique critical point p1 = p
k

k+1 , achieving a payoff equal to (k+1)γ(1−p1/(k+1))+

p− γ(1 − p) = (k + 1)γ(1 − p1/(k+1)). Note, however, that this critical point satisfies p1 ≥ p∗ if

and only if p ≥ (p∗)
k+1

k .

Therefore, the unique candidates for p1 are {p∗,max{p∗, p k

k+1}, 1}. Observe that setting the

posterior belief p1 equal to max{p∗, p k

k+1} does at least as well as choosing either p∗ or 1. This

establishes the optimality of the strategy, and the optimal payoff for the type-1 Agent, with k+1

rounds to go.

Finally, we must verify that V1,k+1(p;X) ≤ V1,k+1(p)−X . Given that we have observed that

it is optimal to set X ′ = 0 in any case, any excess payoff to the Firm with k + 1 rounds to go is

best obtained by a commensurate reduction in the net transfer from the Firm to the Agent in the

first round (among the k+ 1 rounds). This might violate individual rationality for some type of

the Agent, but even if it does not, it still yields a payoff V1,k+1(p;X) no larger than V1,k+1(p)−X

(if it does violate individual rationality, V1,k+1(p;X) must be lower).
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A.2 Proof of Theorem 1

Given a function f , the average function of f is denoted

fa (x) := f (x) /x.

Given a non-negative functionf on [0, 1], let sha f denote the largest weakly star-shaped function

that is smaller than f . This function is well-defined, because (i) if f1, f2 are two weakly star-

shaped functions lower than f , the pointwise maximum g (i.e. g(p) := max{f1(p), f2(p)}) is

star-shaped as well,25 and (ii) the limit of a convergent sequence of star-shaped functions is star-

shaped (Thm. 2, Bruckner and Ostrow, 1962), who also show that a star-shaped function must

be non-decreasing.

The theorem claims that the equilibrium payoff, given w, and ŵ := sha w, is given by

V p
1 (p0) = 1− ŵ (p̂0)−

1
∫

p̂0

ŵa (p) dp,

where p̂0 := min {p ∈ [p0, 1] : w (p) = sha w (p)}. Further, letting

Iw = cl {p ∈ [0, 1] : sha w (p) = w (p) and wa is strictly increasing at p} ,

we show that the set of beliefs held by the firm is contained, and dense, in Iw if Iw 6= ∅. If

Iw = ∅, any policy is optimal.

Let us start by showing that this payoff can be achieved asymptotically (i.e., as K → ∞). Let

Jw denote the complement of Iw, which is a union of disjoint open intervals. Let {(p−n , p+n )}n∈N
denote an enumeration of its endpoints. Finally, let p̌0 := min {p ∈ Iw, p ≥ p0}. Note that, for

25Given p1 < p2 , let g(p1) = fi(p1), g(p2) = fj(p2). Then ga(p2) = fa
j (p2) ≥ fa

i (p2) ≥ fa
i (p1) = ga(p1).
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all n, by continuity of w(using that ŵ(p+n )

p+n
= ŵ(p−n )

p−n
by definition of (p−n , p

+
n )),

ŵ
(

p+n
)

− ŵ
(

p−n
)

−
p+n
∫

p−n

ŵa (p) dp = p−n
(

wa
(

p+n
)

− wa
(

p−n
))

= 0.

Similarly, if p̂0 < p̌0,

ŵ (p̌0)− ŵ (p̂0)−
p̌0
∫

p̂0

ŵa (p) dp = 0.

Fix any sequence of finite subsets of points PK =
{

pKk : k = 0, . . . , K
}

⊆ Iw ∩ [p0, 1] (where

pKk is strictly increasing in k), for K ∈ N, with pK0 = p̌0, p
K
K = 1, such that pK becomes dense

in Iw as K → ∞. Consider the pure strategy according to which, in the first period, if p̌0 > p0,

the type-1 Agent gives away the information for free that leads to a posterior p̌0; afterwards, the

price paid in each period given that the posterior is supposed to move from pKk to pKk+1 is given by

the maximum amount pKk
(

wa
(

pKk+1

)

− wa
(

pKk
))

. Failure to pay leads to no further disclosure,

and failure to disclose leads to no further payment. Given K, the payoff of following this pure

strategy is (by considering Riemann sums and using the equality from the previous equation)

K−1
∑

k=0

pKk
(

wa
(

pKk+1

)

− wa
(

pKk
))

→ 1− ŵ (p̌0)−
∫

Iw∩[p̌0,1]
ŵa (p) dp = 1− ŵ (p̂0)−

1
∫

p̂0

ŵa (p) dp.

Conversely, we show that (i) for any K, the best payoff given w is the same as for some

weakly star-shaped function smaller than w, and (ii) if w ≥ w̃, then V1 ≤ Ṽ1. The result follows.

Note that the payoff from the sequence of beliefs p1, p2, . . . , pK−1, pK = 1, starting from p0 is

given by

p0(w
a(p1)− wa(p0)) + p1(w

a(p2)− wa(p1)) + · · ·+ pK−1 · (wa(1)− wa(pK−1))

= 1− w(p0)− (1− pK−1)w
a(1)− · · · − (p1 − p0)w

a(p1),
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so that

V1,K(p0) + w(p0) = 1−
K−1
∑

k=0

(pk+1 − pk)w
a(pk+1).

Note that maximizing V1,K(p) +w(p) and maximizing V1,K(p) are equivalent, so this amounts to

finding the sequence that maximizes the sum

1−
K−1
∑

k=0

(pk+1 − pk)w
a(pk+1),

with p0 = p. Because w ≤ w̃ implies wa ≤ w̃a, we have just established the following.

Lemma 5 Suppose that w̃ ≥ w pointwise. Then, for every K, and every prior belief p0,

Ṽ1,K(p0) ≤ V1,K(p0),

where Ṽ1,K(p0) and V1,K(p0) are the type-1 Agent’s payoffs given outside option w̃ and w, respec-

tively.

To every sequence of beliefs p0, p1, . . . , pK = 1, we can associate the piecewise linear function wK

on [p0, 1] that obtains from linear interpolation given the points

(p0, w(p0)), (p1, w(p1)), . . . , (1, 1).

Lemma 6 For all K, p0, the optimal policy is such that the function wK is weakly star-shaped.

Proof: This follows immediately from the payoff from the formula for the price of a jump from

p1 to p2,

p1 (w
a (p2)− wa (p1)) .

Indeed, if p1, p2, p3 are consecutive jumps, it must be that doing so dominates skipping p2, i.e.

p1 (w
a (p2)− wa (p1)) + p2 (w

a (p3)− wa (p2)) ≥ p1 (w
a (p3)− wa (p1)) ,

or wa(p3) ≥ wa(p1). A similar argument applies to the first jump. �
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Note finally that the payoff from the sequence {p1, . . . , pK} given w is the same as given wK .

The result follows. The asymptotic properties of the optimal policy follow as well.

We start with the theorem, which implies the lemma by a straighforward computation.

A.3 Proof of Lemma 4 and Theorem 3

We start with the theorem, which implies the lemma.

The procedure used by the intermediary can be summarized by a distribution Fk(·|p) over

the Firm’s posterior beliefs, given the prior belief p, and given the number of rounds k. Due to

the fact that this distribution is known, the Firm’s belief must be a martingale, which means

that, given p,
∫

[0,1]

p′dFk(p
′|p) = p, or

∫

[0,1]

(p′ − p)dFk(p
′|p) = 0. (8)

To put it differently, Fk(·|p) is a mean-preserving spread of the Firm’s prior belief p. 26

Given such a distribution, and some equilibrium to be played in the continuation game for

each resulting posterior belief p′, how much is the Firm willing to pay up front? Again, this must

be the difference between its continuation payoff and its outside option, namely

t̄Fk :=

∫ 1

0

(w(p′) +X(p′))dFk(p
′|p)− w(p),

where, as before, X(p′), or X ′ for short, denotes the Firm’s payoff, net of the outside option, in

the continuation game, given that the posterior belief is p′.

Assume that the distribution Fk(·|p) assigns probability q to some posterior belief p′. This

means that the Firm attaches probability q to its next posterior belief turning out to be p′. What

is the probability q1 assigned to this event by the type-1 Agent? This must be qp′/p, because

p′ = P[ω = 1|p′] = pq1
q
,

where the first equality from the definition of the event p′, and the second follows from Bayes’

26The notation [0, 1] for the domain of integration emphasizes the possibility of an atom at 0. This, however,
plays no role for payoffs, as there is no room for transfers once the prior drops to zero, and w(0) = 0, and we will
then revert to the more usual notation.
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rule, given the prior belief p.

Therefore, the maximal payoff that the type-1 Agent expects to receive from the next round

onward is
∫ 1

0

V1,k−1(p
′, X ′)

p′

p
dFk(p

′|p),

where, as before, V1,k−1(p
′, X ′) denotes the maximal payoff of the type-1 Agent, with k−1 rounds

to go, given that the Firm’s payoff, net of its outside option, is X ′ and its belief is p′.

Combining these two observations, we obtain that the payoff of the type-1 Agent is at most

∫ 1

0

(w(p′) +X ′)dFk(p
′|p)− w(p) +

∫ 1

0

V1,k−1(p
′, X ′)

p′

p
dFk(p

′|p), (9)

and our objective is to maximize this expression, for each p, over all distributions Fk(·|p), as well
as mappings p′ 7→ X ′ = X(p′) (subject to (8) and the feasibility of X ′).

A.3.1 The Optimal Transfers

As a first step in the analysis, we prove the following.

Lemma 7 Fix the prior belief p and the number of remaining rounds k. The best equilibrium

payoff of the type-1 Agent, as defined by (9), is achieved by setting, for each p′ ∈ [0, 1], the Firm’s

net payoff in the continuation game defined by p′ equal to

X(p′) =







X∗(p′) if p′ < p,

0 if p′ ≥ p,

where

X∗(p′) :=
p′ (1− V1,k−1 (p

′))− w(p)

1− p′
.

The type-1 Agent’s continuation payoff is then given as

V1,k−1(p
′, X∗(p′)) = V1,k−1(p

′)−X∗(p′).
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Proof : First of all, we must understand the function V1,k(p,X). Note that, as observed earlier,

we can always assume that the equilibrium is efficient: take any equilibrium, and assume that, in

the last round, on the equilibrium path, the type-1 Agent discloses the state. This modification

can only relax any incentive (or individual rationality) constraint. This means that payoffs must

satisfy (5), which provides a rather elementary upper bound on the maximal payoff to the type-1

Agent: in the best possible case, the payoffs X and V0,k(p,X) are zero, and hence we have

V1,k(p) ≤
p− w(p)

p
.

Our observation that the equilibrium that maximizes the type-1 Agent’s payoff also maximizes

the sum of the Firm’s and type-1 Agent’s payoffs is obviously true here as well. Hence, any

increase in X must lead to a decrease in V1,k(p,X) of at least that amount. As long as X is

such that V0,k (p,X) is positive, we do not need to decrease V1,k(p,X) by more than this amount,

because it is then possible to simply decrease the net transfer made by the Firm to the Agent

in the initial period by as much. Therefore, either V1,k(p,X) = V1,k(p)−X , if X is smaller than

some threshold value X∗
k(p) (X

∗ for short), or V0,k(p,X) = 0. By continuity, it must be that, at

X = X∗,

p(V1,k(p)−X∗) +X∗ + w(p) = p, or X∗ =
p (1− V1,k (p))− w(p)

1− p
.

Therefore, for values of X below X∗, we have that V1(p,X) = V1,k(p) − X , and this payoff is

obtained from the equilibrium achieving the payoff V1,k(p) to the type-1 Agent, by reducing the

net transfer from the Firm to the Agent in the initial round by an amount X . For values of X

above X∗, we know that V0,k(p,X) = 0, so that

V1,k (p,X) ≤ 1− w(p) +X

p
.

We may now turn to the issue of the optimal net payoff to grant the Firm in the continuation

round. This can be done pointwise, for each posterior belief p′. The previous analysis suggests

that, to identify what the optimal value of X ′ is, it is convenient to break down the analysis into

two cases, according to whether or not X ′ is above X∗. Consider some posterior belief p′ in the
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support of the distribution Fk(·|p). From (9), the contribution to the type-1 Agent’s payoff from

this posterior is equal to

w(p′) +X ′ + V1,k−1(p
′, X ′)

p′

p







= w(p′) +X ′ + (V1,k−1 (p
′)−X ′)p

′

p
if X ′ ≤ X∗(p′),

≤ w(p′) +X ′ +
(

1− w(p′)+X′

p′

)

p′

p
if X ′ > X∗(p′).

Note that, for X ′ > X∗ (p′), the upper bound to this contribution is decreasing in X ′, and since

this upper bound is achieved at X ′ = X∗(p′), it is best to set X ′ = X∗(p′) in this range. For

X ′ ≤ X∗(p′), this depends on p′: if p′ > p, it is best to set X ′ to zero, while if p′ < p, it is optimal

to set X ′ to X∗(p′). To conclude, the optimal choice of X ′ is

X(p′) =







X∗(p′) if p′ < p,

0 if p′ ≥ p,

as claimed. �

This lemma formalizes the intuition from the example that we used in Subsection 3.3: it is

best to promise as high a rent as possible to the Firm if the posterior belief is lower than the prior

belief, and as low as possible if it is higher. The function X∗ describes this upper bound. As in

the example, this bound turns out to be the entire continuation payoff of the type-0 Agent in

the best equilibrium for the type-1 Agent with k−1 periods to go. We can express this bound in

terms of the Firm’s belief and the type-1 Agent’s continuation payoff, given that the equilibrium

is efficient. Of course, it is possible to give even higher rents to the Firm, provided that the

equilibrium that is played in the continuation game gives the type-0 Agent a higher payoff than

the equilibrium that is best for the type-1 Agent. The proof of this lemma establishes that what

is gained in the initial period by considering higher rents is more than offset by what must be

relinquished in the continuation game, in order to generate a high enough payoff to the type-0

Agent.

The key intuition here is that the type-1 Agent assigns a higher probability to the event that

the posterior belief will be p′ > p than does the Firm and conversely, a lower probability to the

event that p′ < p, because she knows that the state is 1. Therefore, the type-1 Agent wants to
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offer the Firm an extra continuation payoff in the event that p′ < p (and collect extra money

for it now), and offer as small a continuation payoff as possible in the event that p′ > p. Given

that the Agent and the Firm have different beliefs, there is room for profitable bets, in the form

of transfers whose odds are actuarially fair from the Firm’s point of view, but profitable from

the point of view of the type-1 Agent. Such bets were not possible without the intermediary (at

least in pure strategies), because, at the only posterior belief lower than p, namely p′ = 0, there

was no room for any further transfer in this event (because there was no further information to

be sold).

A.3.2 The Value of an Intermediary

Having solved for the optimal transfers, we may now focus on the issue of identifying the

optimal distribution Fk(·|p). Plugging in our solution for X ′ into (9), we obtain that

V1,k(p) = sup
Fk(·|p)

∫ 1

0

vk−1(p
′; p)dFk (p

′|p)− w(p), (10)

where

vk−1(p
′; p) :=







w(p′) + p−p′

p
X∗ (p′) + p′

p
V1,k−1 (p

′) for p′ < p,

w(p′) + p′

p
V1,k−1 (p

′) for p′ ≥ p,

and the supremum is taken over all distributions Fk(·|p) that satisfy (8), namely, Fk(·|p) must

be a distribution with mean p.

This optimality equation cannot be solved explicitly. Nevertheless, the associated operator is

monotone and bounded above. Therefore, its limiting value as we let k tend to infinity, using the

initial value V1,0(p) = 0 for all p, converges to the smallest (positive) fixed point of this operator.

This fixed point gives us the limiting payoff of the type-1 Agent as the number of rounds grows

without bound.

It turns out that we can guess this fixed point. One of the fixed points of (10) is V1(p) =
p−w(p)

p
.

Recall that this value is the upper bound on V1,k(p) that we derived earlier, so it is the highest

payoff that we could have hoped for. We may now finally prove the theorem.
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Proof of Theorem 3: Recall that the function to be maximized is

∫ p

0

[

w(p′) + V1,k−1(p
′)
p′

p
+

p− p′

p

p′(1− V1,k−1(p
′))− w(p′)

1− p′

]

dFk(p
′|p)

+

∫ 1

p

[

w(p′) + V1,k−1(p
′)
p′

p

]

dFk(p
′|p)− w(p),

or re-arranging,

∫ p

0

[

1− p

p

p′w(p′) + p′V1,k−1(p
′)

1− p′
+

(p− p′)p′

p(1− p′)

]

dFk(p
′|p) +

∫ 1

p

[

w(p′) + V1,k−1(p
′)
p′

p

]

dFk(p
′|p)−w(p).

Let us define xk(p) := p − w(p) − pV1,k(p), and so multiplying through by p, and substituting,

we get

p− w(p)− xk(p) =

∫ p

0

[
1− p

1− p′
(p′w(p′) + p′ − w(p′)− xk−1(p

′)) +
(p− p′)p′

1− p′
]dFk(p

′|p)

+

∫ 1

p

[pw(p′) + p′ − w(p′)− xk−1(p
′)]dFk(p

′|p)− pw(p),

or re-arranging,

xk(p) = p− w(p)−
∫ p

0

[
1− p

1− p′
((p′ − 1)w(p′)− xk−1(p

′)) + p′]dFk(p
′|p)

−
∫ 1

p

[p′ − (1− p)w(p′)− xk−1(p
′)]dFk(p

′|p) + pw(p).

This gives

xk(p) = (1− p)

∫ p

0

xk−1(p
′)

1− p′
dFk(p

′|p) +
∫ 1

p

xk−1(p
′)dFk(p

′|p) + (1− p)

∫ 1

0

(w(p′)− w(p))dFk(p
′|p).

Note that the operator mapping xk−1 into xk, as defined by the minimum over Fk(·|p) for each
p, is a monotone operator. Note also that x = 0 is a fixed point of this operator (consider

Fk(·|p) = δp, the Dirac measure at p). We therefore ask whether this operator admits a larger
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fixed point. So we consider the optimality equation, which to each p associates

x(p) = min
F (·|p)

{(1− p)

∫ p

0

x(p′)

1− p′
dF (p′|p) +

∫ 1

p

x(p′)dF (p′|p) + (1− p)

∫ 1

0

(w(p′)− w(p))dF (p′|p)}.

It is standard to show that x is continuous on (0, 1). Further, consider the feasible distribution

F (·|p) that assigns probability 1/2 to p− ε, and 1/2 to p+ ε, for ε > 0 small enough. This gives

as upper bound

x(p) ≤ 1

2
· 1− p

1− p+ ε
x(p− ε) +

1

2
· x(p + ε) + (1− p)

(

w(p+ ε) + w(p− ε)

2
− w(p)

)

,

or

x(p) + (1− p)w(p) ≤ 1

2
· 1− p

1− p+ ε
(x(p− ε) + (1− p+ ε)w(p− ε))

+
1

2
(x(p + ε) + (1− p− ε)w(p+ ε)) + εw(p+ ε)

=
1

2
(x(p− ε) + (1− p+ ε)w(p− ε)) +

1

2
(x(p+ ε) + (1− p− ε)w(p+ ε))

+ ε

(

w(p+ ε)− w(p− ε)− x(p− ε)

1− p+ ε

)

.

Suppose that x(p) > 0 for some p ∈ (0, 1). Then, since x is continuous, x > 0 on some interval

I. Because w is continuous, the last summand is then negative for all p ∈ I, for ε > 0 small

enough. This implies that the function z : p 7→ x(p) + (1− p)w(p) is convex on I, and therefore

differentiable a.e. on I. Re-arranging our last inequality, we have

2

(

w(p− ε)− w(p+ ε) +
x(p− ε)

1− p+ ε

)

+
z(p)− z(p− ε)

ε
≤ z(p+ ε)− z(p)

ε
.

Integrating over I, taking limits as ε → 0 and using the a.e. differentiability of z gives
∫

I
x(p)
1−p

≤ 0.

Because x is positive and continuous, it must be equal to zero on I. Because I is arbitrary, it

follows that x = 0 on (0, 1).

Because x is the largest fixed point of the optimality equation, and because the map defined

by the optimality equation is monotone, it follows that the limit of the iterations of this map,
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applied to the initial value x0 : x0 (p) := p − w(p) − pV1,0(p), all p ∈ (0, 1), is well-defined and

equal to 0. Given the definition of x, the claim regarding the limiting value of V1,k follows. �

A.4 Proof of Lemma 3 and Theorem 2

We adapt the arguments from the proof of Theorem 3. Recall that w is assumed to be weakly

star-shaped (in particular, non-decreasing). Consider a mixed-strategy equilibrium. In terms of

beliefs, such an equilibrium can be summarized by a distribution Fk+1(·|p) that is used by the

Agent (on the equilibrium path) with k + 1 rounds left, given belief p, and the continuation

payoffs Wk(·) and Vk(·). As before, we may assume that the equilibrium is efficient, and so we

can assume that, given that the Firm obtains a net payoff ofXk (i.e., given that Wk = w(p)+Xk),

the type-1 Agent receives V1,k(p,Xk), the highest payoff to this type given that the Firm receives

at least a net payoff of Xk. Since V1,k maximizes the sum of the Firm’s and type-1 Agent’s payoff,

it holds that, for all k, p and X ≥ 0,

V1,k(p,X) ≤ V1,k(p)−X.

The payoff V1,k+1(p) of the type-1 Agent is at most, with k + 1 rounds to go,

sup
Fk+1(·|p)

∫ 1

0

[

w(p′) +Xk(p
′) + V1,k(p

′, Xk(p
′))

p′

p

]

dFk+1(p
′|p)− w(p),

where the supremum is taken over all distributions Fk+1(·|p) that satisfy
∫

[0,1]

(p′ − p)dFk+1(p
′|p) = 0,

i.e. such that the belief of the Firm follows a martingale. To emphasize the importance of the

posterior p′ = 0, we alternatively write this constraint as
∫ 1

0
(p′ − p)dFk+1(p

′|p) = pFk+1(0|p),
where

∫ 1

0
dFk+1(p

′|p) := 1− Fk+1(0|p).
If the type-1 Agent randomizes, she must be indifferent between all elements in the support

of its mixed action, that is, for all p′ > 0 in the support of Fk+1(·|p), V1,k(p
′, X ′) = V k, for some

V k independent of p′. Assume (as will be verified) that in all relevant arguments, p′ and X ≥ 0
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are such that it holds that

V1,k(p
′, X) = V1,k(p

′)−X.

Recall that this is always possible if X is small enough, cf. Lemma 7. Furthermore, for the type-0

Agent to go along, we must verify that V0,k ≥ X . By substitution, we obtain that V1,k+1(p) is at

most equal to

sup
Fk+1(·|p)

∫ 1

0

[

w(p′) + V1,k(p
′)− V k + V k

p′

p

]

dFk+1(p
′|p)− w(p)

= sup
Fk+1(·|p)

∫ 1

0

[w(p′) + V1,k(p
′)] dFk+1(p

′|p) + Fk+1(0|p) min
p′∈supp Fk+1(·|p),p′>0

V1,k(p
′)− w(p).

So let V ∗
1 denote the smallest fixed point larger than 0 of the map T given by

T (V1)(p) = sup
F (·|p)

∫ 1

0

[w(p′) + V1(p
′)] dF (p′|p) + Fk+1(0|p) min

p′∈supp F (·|p),p′>0
V1(p

′)− w(p),

for which V ∗
1 (1)+w(1) = 1. The function V ∗

1 , and hence h∗ is continuous by standard arguments.

As argued in the text, either h∗ := V ∗
1 +w is equal to h̄ at p, or it is locally concave at p. Indeed,

for any 0 < p1 < p < p2 ≤ 1,

V ∗
1 (p) + w(p) ≥ p2 − p

p2 − p1
(V ∗

1 (p1) + w(p1)) +
p− p1
p2 − p1

(V ∗
1 (p2) + w(p2)),

and by choosing p1, p2 close to p, the constraint (that X is small enough) is satisfied. Clearly,

also, h∗ is no steeper than p 7→ w(p)/p (given p < p′, consider the distribution F (·|p) that splits p
into {0, p′}, as explained in Subsection 3.2), so that h∗ is no steeper than w. That is, h∗ satisfies

all four constraints from Section 4.2.

Recall that hm is defined to be the smallest function satisfying the four requirements. This

function is well-defined, because if h, h′ are two functions satisfying these requirements, the lower

envelope h′′ = min{h, h′} does as well, and if (hn), n ∈ N, is a converging sequence of functions

satisfying them, so does limn→∞ hn.

We now show that hm cannot be improved upon. By monotonicity of the operator T , it

follows that, starting from h0 := w and iterating, the resulting sequence h1 = T (h0 − w) + w,
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h2 = T (h1 − w) + w, etc. must converge to hm.

To show that hm cannot be improved upon, it suffices to consider arbitrary two-point distri-

butions splitting p into p1 < p < p2.
27 If all three beliefs belong to an interval in which hm < h̄,

the result follows from the concavity of hm on such intervals. If p1 = 0, the result follows from

the fact that h∗ is no steeper than p 7→ w(p)/p. If p1 > 0 is such that hm(p1) = h̄(p1), such a

splitting is impossible, as V0(p1) = 0, and so the type-0 Agent would not pay X > 0, and hence

the type-1 Agent could not be indifferent. Hence, we are left with the case in which p1 > 0,

hm(p1) < h̄(p1), and hm(p̃) = h̄(p̃) for some p̃ ∈ [p1, p2], which can be further reduce! d to the

case hm(p2) = h̄(p2). The side bet X must equal V1(p1) − V1(p2), and because V0(p2) = 0, we

have V1(p2) = (p2 − w(p2))/p2. We must have

V0(p1) =
p1 − w(p1)− p1V1(p1)

1− p1
≥ X = V1(p1)− V1(p2).

This implies that h1(p1) ≤ 1− (1− p1)
w(p2)
p2

, or, rearranging, and using the formula for V1(p2),

w(p2)

p2
≤ 1− h(p1)

1− p1
.

Note, however, that, since h is no steeper than w(p)/p,

h(p1) ≥ h(p2)−
∫ p2

p1

wa(p)dp,

and hence, replacing h(p1) and rearranging,

wa(p2) ≤
1

p2 − p1

∫ p2

p1

wa(p)dp,

a contradiction, given star-shapedness (if w is weakly star-shaped on the entire interval [p1, p2],

the bet is feasible, but worthless).

27Note that, with arbitrarily many periods, we can always decompose more complicated distributions into a
sequence of two-point distributions. But the linearity of the optimization problem actually implies that two-point
distributions are optimal.
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