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1 Introduction

It is often observed that conventional asymptotic theory provides a poor approximation of the finite

sample distribution of instrumental variables estimators or test statistics for instrumental variables

regression. Many studies document this problem in the presence of weak instruments (e.g., Staiger

and Stock, 1997; Stock and Wright, 2000) and in the presence of many instruments (e.g., Kunitomo,

1980; Morimune, 1983; Bekker, 1994; Anatolyev and Gospodinov, 2009; van Hasselt, 2009). It is

also well known that asymptotic approximation based on many (weak) instruments provides, in

many situations, more accurate approximation.

This paper examines specification tests for the linear instrumental variables regression when

the number of instruments increases with the sample size (e.g., Bekker, 1994) and the equation

error could be nonnormal. The null hypothesis is the orthogonality between the instruments and

the error term in the structural equation as for standard overidentifying restrictions tests. We

particularly consider the Sargan test (Sargan, 1958) and derive its limiting behavior using many

instrument asymptotics under which both the sample size and the number of instruments tend

to infinity. Based on this result, a new test is constructed by modifying the Sargan test so that

the asymptotic null distribution is standard normal under many instrument asymptotics. We also

study the local power of the proposed test under many instrument asymptotics.

Most interestingly, we show that the proposed test is very much closely related with the test

proposed by Hahn and Hausman (2002). Hahn and Hausman (2002) observe that under standard

asymptotics (i.e., with a fixed number of instruments) an instrumental variables estimator has

the same probability limit as the inverse of the instrumental variables estimator from the reverse

regression. These two estimators, however, have different limits when standard asymptotic analysis

is inadequate (e.g., the case with weak instruments). The Hahn–Hausman test is based on the

difference between these estimators and can be used to check whether the standard asymptotic

results are reliable. We show that the Hahn–Hausman test statistic is numerically equivalent up to

a sign to the modified Sargan test developed in this paper, though these tests develop from very

different motivations. Based on this equivalence result, it results that the null hypothesis of the

Hahn–Hausman test corresponds to standard overidentifying restrictions tests, and therefore it is

much easier to analyze the size and power properties of the Hahn–Hausman test. In particular,

the power properties of the Hahn–Hausman test are not well known in the literature and our local

power results should then facilitate the understanding of the behavior of the Hahn–Hausman test.
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Our new interpretation of the Hahn–Hausman test is also useful for overcoming several limita-

tions of the original Hahn–Hausman test and provides us with some guidelines on how to extend

the Hahn–Hausman test to more general settings. For example, we can easily handle cases with

multiple endogenous variables in our framework. While the Hahn–Hausman test involves the in-

verse of the estimate from the reverse regression it appears difficult to interpret the test when the

regression parameter is zero. A zero parameter value should then not be a problem because the test

is essentially an overidentifying restrictions test. Moreover, as the Sargan test is a special case of

the J-test by Hansen (1982), it would be possible to extend our new test to a more general setup,

such as moment condition-based nonlinear models, whereas the idea of using reverse regression in

Hahn and Hausman (2002) appears to be limited to linear regression models and thus difficult to

generalize further.

Several studies are closely related to the current discussion. For example, Kunitomo, Morimune

and Tsukuda (1983) derive higher-order asymptotic approximations of the distribution of the overi-

dentifying restrictions test but assume the number of instruments is fixed. Work by Andrews and

Stock (2007) and Newey and Windmeijer (2009) also consider testing problems with many weak in-

struments. However, the number of instruments is restricted to grow much slower than the sample

size. Independently of our work, Anatolyev and Gospodinov (2009) also consider the specification

testing problem under many instrument asymptotics. They propose an alternative way to com-

pute the critical values of the test so that the test has the correct size, even when the number of

instruments is proportional to the sample size. While their work is closely related to the current

analysis, our paper has a different scope and provides some novel results. In particular, we derive

the equivalence (up to a sign) between the modified Sargan test and the Hahn–Hausman test; we

obtain the local power of the overidentifying restriction test under many instrument asymptotics;

and unlike Anatolyev and Gospodinov (2009), we consider the case where the fourth moment of

the error term affects the asymptotic result.

The remainder of the paper is organized as follows. Section 2 describes the basic framework.

Section 3 proposes new specification tests based on the Sargan test under many instrument asymp-

totics. Section 4 establishes the equivalence between our new test and the Hahn and Hausman

(2002) test up to a sign. Some Monte Carlo simulation results are presented in Section 5. Section 6

concludes the paper with several important remarks. All of the mathematical proofs are provided

in the Appendix.

2



2 Model

We consider a linear instrumental variables regression model given by

yi = X ′
iβ + ui (1)

for i = 1, 2, · · · , n, where yi is the scalar outcome variable and Xi is the r × 1 vector of regressors

that is possibly correlated with an unobserved error ui. We assume a K × 1 vector of instruments,

Zi, which we treat as deterministic, where r ≤ K < n. The results hold when Zi is random,

provided that all of the assumptions given below are stated conditional on Z = (Z1, · · · , Zn)′. We

also let P = Z (Z ′Z)−1 Z ′. Throughout the paper, we consider the asymptotic sequence under

which both the sample size, n, and the number of instruments, K, tend to infinity with satisfying

αn ≡ K

n
→ α as n,K → ∞ (2)

for some 0 ≤ α < 1. However, the number of endogenous regressors, r, is fixed and does not depend

on n nor K. Note that we let K → ∞ as n → ∞ while we assume K to be smaller than n (i.e.,

α < 1). However, we exclude the fixed K case; α = 0 when K diverges at the slower rate than the

rate of n. We further assume that

Xi = Π′Zi + Vi, (3)

where Π is the K × r matrix of nuisance parameters whose value may depend on n as well as K.

For the independently and identically distributed vector of unobservables εi = (ui, V
′
i )′, we define:

V ar (εi) ≡ Σ =

 σ2
u σ′

V u

σV u ΣV

 (4)

conformably as (ui, V
′
i )′, where σV u 6= 0 in general so that Xi is correlated with ui through the

correlation between ui and Vi. We make the following assumptions.

Assumption 1. (i) αn = α+o(n−1/2) for some 0 ≤ α < 1 as n,K → ∞. (ii) Z and Π are of full

column rank. (iii) εi = (ui, V
′
i )′ are independently and identically distributed for i = 1, 2, · · · , n,

with mean zero and positive definite variance matrix Σ given in (4); the fourth moment of εi exists.

(iv) Π′Z ′ZΠ/n → Θ as n,K → ∞, where Θ is positive definite and finite. (v) sup1≤i≤n |Z ′
iπj | < ∞

for all j = 1, · · · , r, where πj is the jth column of Π. (vi) supn≥1 sup1≤j≤n

∑n
i=1 |Pij |/

√
αn < ∞,

where Pij is the (i, j)th element of P . (vii)
∑n

i=1(P
2
ii − α2

n)/(nαn) converges as n,K → ∞.
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Assumption 1 is similar to that imposed in van Hasselt (2009, Assumptions 1, 3 and 4). This

assumption also implies the conditions for the central limit theorem of the quadratic forms in

Kelejian and Prucha (2001).1 This assumption guarantees that the modified Sargan test statistic

in the next section has a well-defined asymptotic distribution under many instrument asymptotics.

We note that the normality of the unobservables is not assumed here but we implicitly assume

homoskedasticity. Given Zi is nonrandom, the null hypothesis of instrument validity (i.e., H0 :

E(uiZi) = 0 for all i) holds automatically. Condition (iv) implies that the information accumulation

by adding new instruments is limited and thus bounded even with K → ∞. Note that this condition

allows for moderately weak instruments though the full-rankness of Π in condition (ii) rules out

underidentification. The following condition is employed to show the consistency of the asymptotic

variance estimator of the modified Sargan test statistic.

Assumption 2. Xi and ui have finite eighth moments.

3 Specification Tests with Many Instruments

Let β̂2sls be the two-stage least squares (2SLS) estimator given by

β̂2sls =
(
X ′PX

)−1
X ′Py,

where X = (X1, · · · , Xn)′ and y = (y1, · · · , yn)′. The Sargan test statistic (Sargan, 1958; or the J

test statistic, Hansen, 1982) is defined as

Sn(β̂2sls) =
û′Pû

σ̂2
u

, (5)

where û = y − Xβ̂2sls and σ̂2
u = û′û/n. It is well known that under the null hypothesis H0 :

E(uiZi) = 0, standard asymptotic theory (i.e., when K is fixed) gives

Sn(β̂2sls) →d χ2
K−r as n → ∞. (6)

Conventional (first-order) asymptotics, however, may not provide an accurate approximation of the

finite sample distribution of Sn(β̂2sls), particularly when the number of instruments is large. In this

1Instead of condition (vi), we can assume a weaker condition, supn≥1 sup1≤j≤n

Pn
i=1 |Pij − αnκij |/

√
αn < ∞,

which is implied by the conditions (i) and (vi), where κij = 1 if i = j and 0 otherwise. Note that this condition

corresponds to Assumption 2 in Kelejian and Prucha (2001). To use the result by Kelejian and Prucha (2001, Theorem

1), however, we need a slightly stronger moment condition for ui: supn≥1 sup1≤i≤n E|ui|4+η < ∞ for some η > 0.
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section, we instead consider higher-order approximation based on the many instrument asymptotics,

which should provide more accurate finite sample results (e.g., Bekker, 1994). In particular, we

develop specification tests similar to the Sargan test that are suitable under n,K → ∞.

As û = (I − X(X ′PX)−1X ′P )u, where u = (u1, . . . , un)′ and I is the n-dimensional identity

matrix, we can show that

û′Pû

n
=

u′Pu

n
− u′PX

n

(
X ′PX

n

)−1 X ′Pu

n
→p ασ2

u − α2σ′
V u(Θ + αΣV )−1σV u (7)

as n,K → ∞ under Assumption 1. Note that the probability limit (7) is simply zero when α = 0.

This is also the case of the standard asymptotics with n → ∞ but when K is fixed. The probability

limit (7) can be consistently estimated by

B̂ = αn

{
1
n

(y − Xβ̂b2sls)′(y − Xβ̂b2sls)
}

−
{

1
n

(y − Xβ̂b2sls)′PX

}(
1
n

X ′PX

)−1{ 1
n

X ′P (y − Xβ̂b2sls)
}

,

where

β̂b2sls =
{
X ′ (P − αnI) X

}−1
X ′ (P − αnI) y (8)

is the bias-corrected 2SLS estimator (e.g., Nagar, 1959; Donald and Newey, 2001; Hahn and Haus-

man, 2002). Using similar techniques as Bekker (1994), Kelejian and Prucha (2001), Hahn and

Hausman (2002) and van Hasselt (2009), we can derive that√
n

αn

(
û′Pû

n
− B̂

)
→d N (0, w) as n,K → ∞ (9)

under Assumption 1, where

w = 2(1 − α)σ4
u +

(
lim

n,K→∞

1
K

n∑
i=1

P 2
ii − α2

){
E(u4

i ) − 3σ4
u

}
. (10)

We note that in our setting the fourth moment of ui possibly affects the asymptotic distribution

(9); this is excluded from the analysis in Anatolyev and Gospodinov (2009). From (9), the t-test

statistic is given by

Tn,1 =
d̂1√
ŵ

, (11)

where

d̂1 =
√

n

αn

{
1
n

(y − Xβ̂2sls)′P (y − Xβ̂2sls) − B̂

}
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and

ŵ = 2 (1 − αn)
{

1
n

(y − Xβ̂b2sls)′(y − Xβ̂b2sls)
}2

(12)

+

(
1
n

n∑
i=1

P 2
ii − α2

n

αn

)[
1
n

n∑
i=1

(yi − Xiβ̂b2sls)4 − 3
{

1
n

(y − Xβ̂b2sls)′(y − Xβ̂b2sls)
}2
]

.

If we further assume that ui is normally distributed and thus E(u4
i ) = 3σ4

u, then the asymptotic

variance w can be simply estimated by

w̃ = 2 (1 − αn)
{

1
n

(y − Xβ̂b2sls)′(y − Xβ̂b2sls)
}2

. (13)

All technical details are in the Appendix. We note that Tn,1 in (11) is nothing but a properly

standardized quadratic form û′Pû and has a very similar structure as the standard Sargan test

statistic (5). It can thus be considered a modified Sargan test statistic, where the modification is

based on nonstandard (second-order) asymptotics with many instruments. The following theorem

derives the asymptotic null distribution of the test statistic Tn,1.

Theorem 1. If Assumptions 1 and 2 hold, Tn,1 →d N (0, 1) as n, K → ∞.

Under many instrument asymptotics, this result shows that the properly standardized quadratic

form û′Pû follows an asymptotic normal distribution. Therefore, we can expect that the standard

chi-square approximation in (6) performs poorly with Sargan’s model specification test, particularly

when K is large relative to n.2

Alternatively, we can consider the modified Sargan test based on the bias corrected 2SLS esti-

mator, β̂b2sls. By construction, we have

1
n

(y −Xβ̂b2sls)′P (y −Xβ̂b2sls) =
û′Pû

n
+

1
n

(y −Xβ̂b2sls)′PX
(
X ′PX

)−1
X ′P (y −Xβ̂b2sls) →p ασ2

u

as n, K → ∞ (see the proof of Lemma 1 in the Appendix for the details), which implies that

(y−Xβ̂b2sls)′(P −αnI)(y−Xβ̂b2sls)/n = û′Pû/n− B̂ from the definition of B̂. Therefore, similarly

as (9), we can show that√
n

αn

{
1
n

(y − Xβ̂b2sls)′(P − αnI)(y − Xβ̂b2sls)
}

→d N (0, w) (14)

2One problem may be that we do not know when we should use the chi-square approximation or a standard

normal approximation. Similar results could be found in Donald, Imbens and Newey (2003) with moderately many

instruments, or in Calhoun (2008) in the context of the F test in linear regressions with many regressors.
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as n, K → ∞, based on which we obtain the t-test statistic as

Tn,2 =
d̂2√
ŵ

, (15)

where

d̂2 =
√

n

αn

{
1
n

(y − Xβ̂b2sls)′(P − αnI)(y − Xβ̂b2sls)
}

.

The following lemma states that the test statistics, Tn,1 and Tn,2, are in fact numerically equivalent.

Lemma 1. Under the linear specification (1) and (3), Tn,1 = Tn,2.

Because the 2SLS estimator is biased in the presence of many instruments, bias correction is

necessary when constructing overidentifying restrictions test statistics. Lemma 1 demonstrates

that for the 2SLS estimators and the overidentifying restrictions test statistics based on them, bias

correction for the estimators is equivalent to bias correction for the test statistics in the linear

instrumental variables regression. From Lemma 1 and Theorem 1, we can also conclude that

Tn,2 →d N (0, 1) as n,K → ∞ under Assumptions 1 and 2. The modified Sargan test could be

constructed based on the limited information maximum likelihood (LIML) estimator3

β̂liml = arg min
β

(y − Xβ)′ P (y − Xβ)
(y − Xβ)′ (y − Xβ)

,

whose asymptotic normality is obtained similarly.

Corollary 1. If Assumptions 1 and 2 hold, Tn,2 →d N (0, 1) and,

Tn,3 =
1√
ŵl

√
n

αn

{
1
n

(y − Xβ̂liml)′(P − αnI)(y − Xβ̂liml)
}

→d N (0, 1)

as n,K → ∞, where ŵl is defined as (12) with replacing β̂b2sls by β̂liml.

Note that the asymptotic variance of β̂liml generally differs from that of β̂b2sls under the second-

order asymptotics (e.g., van Hasselt, 2009). However, this difference does not affect the asymptotic

variance of the properly standardized quadratic form in the fitted residuals. Therefore, we can use

the same formula (12) for ŵl when constructing the specification test Tn,3.

3We note that it is difficult to extend the idea of Hahn and Hausman (2002) when the test is based on the LIML

estimators. This is because the LIML estimator is the optimal linear combination of the bias-corrected forward 2SLS

and reverse 2SLS estimators (Hahn and Hausman, 2002, p.169), and therefore the estimators become identical when

we use LIML.
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We finally discuss the power properties of the test by considering the following data generating

process:

yi = X ′
iβ + Z ′

iγ + ui,

Xi = Π′Zi + Vi,

where γ is a K×1 parameter vector and γ = 0 corresponds to the null hypothesis H0 : E(uiZi) = 0.

We let ξ be a K ×1 vector, which does not depend on the sample size n, and consider the following

Pitman-type local alternative:

Ha : γ =
α

1/4
n

n1/4
ξ. (16)

We further assume the following conditions.

Assumption 3. As n,K → ∞, both ξ′Z ′Zξ/n and ξ′Z ′X/n converge in probability; and ξ′Z ′u/
√

n =

Op(1).

Note that Assumption 3 is satisfied when Z ′
iξ, Xi and ui have finite fourth-order moments.

Theorem 2. Suppose that Assumptions 1, 2 and 3 are satisfied. Then, under the local alternative

(16), Tn,1 = Tn,2 →d N (C/
√

w, 1) as n,K → ∞, where

C = (1 − α)
{(

lim
n,K→∞

1
n

ξ′Z ′Zξ

)
−
(

lim
n,K→∞

1
n

ξ′Z ′X

)
Θ−1

(
lim

n,K→∞

1
n

X ′Zξ

)}
.

Theorem 2 shows that the modified Sargan test consistently detects the same set of alternatives

the standard Sargan test detects. The modified Sargan test has a nontrivial power against local

alternatives that contract to the null at the rate of α
1/4
n n−1/4. Note that this rate corresponds to

n−1/2 when K is fixed. When K is proportional to the sample size (i.e., αn converges to a nonzero

constant), the rate is n−1/4. This result illustrates the difficulty of detecting a violation of the

orthogonality condition in the presence of many instruments.

When C = 0, the test cannot detect this type of local alternative (16). A leading example

of such alternatives is the case of γ = Π when the dimension of X is one. This inconsistency of

overidentifying restrictions tests is also observed when K is fixed, as discussed in Newey (1985).

Thus, the test cannot detect local alternatives with C = 0, regardless of whether K is fixed or

increases with n.
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4 Comparison with the Hahn–Hausman Test

In this section, we show that the modified Sargan test statistics, Tn,1 and Tn,2, are numerically

equivalent to the test statistics suggested by Hahn and Hausman (2002) up to a sign. Here, we

consider the case where the dimension of Xi is one and the error term ui is normally distributed. In

the Appendix B, we show that even when there are two endogenous variables, the equivalence result

(up to a sign) remains to hold. We, in fact, expect that the equivalence result holds in general,

irrespective of the number of endogenous regressors and of the error distribution. Note that Hahn

and Hausman (2002) do not discuss cases where there are more than three endogenous regressors.

The Hahn–Hausman test is based on the difference between the instrumental variables estimator

of β and the inverse of the estimator that uses the same set of instruments, but where the roles of

the dependent variable and the regressor are reversed. The basic idea is that the 2SLS estimator

of X on y (i.e., the reverse regression) using Z as instruments is asymptotically equivalent to

1/β̂2sls when the standard first-order asymptotics (with K fixed) is adequate. However, when the

conventional asymptotics do not provide a good approximation (e.g., K → ∞), these estimators

converge to two different limits.

To avoid the problem of the bias in the difference, we consider the bias-corrected 2SLS estimator

of β in (8). We define the difference as

X ′(P − αnI)y
X ′(P − αnI)X

− y′(P − αnI)y
X ′(P − αnI)y

. (17)

Given (y−Xβ̂b2sls)′(P −αnI)X = 0 by construction, however, the difference (17) can be rewritten

as

X ′(P − αnI)y
X ′(P − αnI)X

− y′(P − αnI)y
X ′(P − αnI)y

= β̂b2sls −
(y − Xβ̂b2sls + Xβ̂b2sls)′(P − αnI)y

X ′(P − αnI)y

= −(y − Xβ̂b2sls)′(P − αnI)y
X ′(P − αnI)y

= −(y − Xβ̂b2sls)′(P − αnI)(y − Xβ̂b2sls)
X ′(P − αnI)y

. (18)

Note that (y − Xβ̂b2sls)′P (y − Xβ̂b2sls) is a quadratic form of the sample covariance between the

regression residual and the instruments upon which Sargan’s overidentifying restrictions test (5)

is based. As shown in the previous section, we can see that αn(y − Xβ̂b2sls)′(y − Xβ̂b2sls) in the

numerator of (18) is the term that demeans (or corrects the bias of) the Sargan statistic when K is

proportional to n. This basic result shows that both the Hahn–Hausman test and the Sargan test

are indeed based on the asymptotic behavior of the same quantity.
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More precisely, the Hahn–Hausman test statistic based on the bias-corrected 2SLS estimator is

defined as4

m2 =

 2K

n − K
·

{
(y − Xβ̂b2sls)′(y − Xβ̂b2sls)

}2

β̂2
b2sls

{
X ′PX − K

n−K X ′ (I − P ) X
}2


−1/2

×
√

n

{
X ′(P − αnI)y
X ′(P − αnI)X

− y′(P − αnI)y
X ′(P − αnI)y

}

=

2 (1 − αn)

{
(y − Xβ̂b2sls)′(y − Xβ̂b2sls)

}2

β̂2
b2sls {X ′(P − αnI)X}2


−1/2

(19)

×
√

n

αn

{
X ′(P − αnI)y
X ′(P − αnI)X

− y′(P − αnI)y
X ′(P − αnI)y

}
under normality, where the term in the square root is the standard error of the difference. In

comparison, the modified Sargan test Tn,2 in (15) with w̃ in (13), which reflects the many instrument

asymptotics, is given by

Tn,2 =
1√

2αn (1 − αn) n

{
Sn(β̂b2sls) − K

}
=

[
2 (1 − αn)

{
(y − Xβ̂b2sls)′(y − Xβ̂b2sls)

}2
]−1/2

(20)

×
√

n

αn

(
y − Xβ̂b2sls

)′
(P − αnI)

(
y − Xβ̂b2sls

)
,

where Sn(β̂b2sls) = {(y −Xβ̂b2sls)′P (y −Xβ̂b2sls)}/{(y −Xβ̂b2sls)′(y −Xβ̂b2sls)/n} is the standard

Sargan statistic based on the bias-corrected 2SLS estimator. The following theorem shows that the

m2 test of Hahn and Hausman (2002) is equivalent to the test based on Tn,2 in (20) up to a sign.

Theorem 3. m2 = Tn,2 · sgn [−X ′(P − αnI)y], where sgn[·] gives the sign of its argument.

This result shows that the test of Hahn and Hausman (2002) can be regarded as a modification of

Sargan’s overidentifying restrictions test reflecting many instrument asymptotics (up to the scalar

multiplication of sgn [−X ′(P − αnI)y]). Though omitted in this paper, the equivalence result could

be also derived without the normality assumption if we use ŵ in (12) and the variance expression

in Theorem 4-4 of Hahn and Hausman (2002).

4In addition to m2, Hahn and Hausman (2002) also discuss a different statistic m1 based on the 2SLS estimator.

Theorem 4-3 of Hahn and Hausman (2002) shows that, however, m1 and m2 are asymptotically equivalent. Therefore,

in this discussion we focus our attention on m2.
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Several interesting implications are in order from Theorem 3. Hahn and Hausman (2002)

document good finite sample properties of their tests as compared to the Sargan test. Theorem 3

shows that, however, this good performance comes from the many instrument asymptotics providing

better (finite sample) approximation, not that the test statistics are fundamentally different from

the standard overidentifying restrictions tests, including Sargan’s. Another implication is that the

possibility of the coefficient being zero in the reverse regression is no longer a problem when using the

Hahn–Hausman test once we reformulate it as the modified Sargan test. For example, in Theorem

4-2 in Hahn and Hausman (2002), the coefficient β appears in the denominator of the asymptotic

variance and it will make the test difficult to interpret when the coefficient is indeed zero though

the test statistic itself is well-defined. Moreover, because of the equivalence, the results obtained in

the previous section apply to the Hahn–Hausman test. In particular, the power properties of the

Hahn–Hausman test (Theorem 2) are new to the literature.

It is important to note that the Hahn–Hausman test m2 is two-sided because we do not know, a

priori, whether a violation of the null hypothesis implies a large negative value of the test statistics or

a large positive value of it. On the other hand, the modified Sargan test Tn,2 is one-sided. Therefore,

we can achieve a higher power by using the new test statistic Tn,2 and making the test one-sided

because we know that a violation of the null implies a large positive value of the test statistic Tn,2.

For example, the Hahn–Hausman test rejects the null hypothesis at the 5% level when |m2| > 1.96.

From Theorem 3, however, it is equivalent to |Tn,2| > 1.96 since |sgn[−X ′(P − αnI)y]| = 1 unless

X ′(P − αnI)y = 0. Note that the probability of X ′(P − αnI)y = 0 is typically zero (even when

β = 0 and n,K are large) because X ′(P − αnI)y is random.5 One the other hand, the modified

Sargan test rejects the null hypothesis at the 5% level when Tn,2 > 1.68 since it is one-sided test.

This difference makes the power properties of these tests different.

5 Monte Carlo Simulations

In this section, we employ Monte Carlo experiment results to consider the size and power perfor-

mance of the modified Sargan test proposed in this paper. We note that the simulation results

reported in Hahn and Hausman (2002) are also useful for this purpose because of the equivalence

result in Theorem 3. In addition to the findings of Hahn and Hausman (2002), however, we examine

5When β = 0, it is easy to see that X ′(P − αnI)y/n →p −ασV u, which is normally assumed not zero, and

X ′(P − αnI)y/
√

n = Op(1) as n, K → ∞ under Assumption 1. (See Lemma A.2) So even when n, K are large,

X ′(P −αnI)y = 0 is very unlikely. One remark is that, under this case, sgn[−X ′(P −αnI)y] reflects the sign of σV u.
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the powers of the tests when a subset of the instruments violate orthogonality. The Monte Carlo

experiments are conducted using Ox 5.10 (Doornik, 2007) for Linux.

The design of the experiment is similar to that considered by Hahn and Hausman (2002). The

data generating process is given by

yi = Xiβ + Z ′
iγ + ui and Xi = Π′Zi + Vi

for i = 1, . . . , n, where Xi ∈ R and Zi ∈ RK . We let β = 0 since the new test statistic is exactly

invariant to the value of β; we define the parameters Π and γ later.6 We consider two different

distributions of the instruments and the error term:

[D-I] Zi ∼ N (0, IK) and (
ui

Vi

)
∼ N

0,

1 ρ

ρ 1

 ,

where ρ is the parameter representing the degree of endogeneity;

[D-II] Zi = ηi

√
3/5, where ηi is a K × 1 vector of independent t-distributed random variables

with 5 degrees of freedom and

(
ui

Vi

)
∼ ζi

√
3/5 ×N

0,

1 ρ

ρ 1

 ,

where ζi is distributed as a t-distribution with 5 degrees of freedom.

Note that [D-I] is the same specification as Hahn and Hausman (2002); in [D-II], the error distribu-

tion is symmetric but has heavy tails. We also note that the variances of an element of Zi, ui and Vi

are 1 for both cases. We consider n = 250, 1000 for the sample size, K = 5, 10, 30 for the number of

instruments, and ρ = 0, 0.5, 0.9 for the degree of endogeneity, R2
f = 0.01, 0.2 for the theoretical R2 of

the first-stage regression.7 R2
f = 0.01 reflects relatively weak instruments whereas R2

f = 0.2 reflects

6Even with finite samples, the simulation results does not vary much over the different values of β. More simulation

results for different (nonzero) values of β (e.g., β > 0 or β < 0) is available upon request to the authors.
7Hahn and Hausman (2002) consider ρ = −0.9,−0.5, 0.5, 0.9. However, the results with ρ = −0.9 and −0.5 are

very similar to those with ρ = 0.9 and 0.5 respectively, so are omitted. For the distributions of Zi and (ui, Vi)
′, we also

consider the case with Zi ∼ N (0, IK) and and the error term is multivariate lognormal:
`

ui
Vi

´

= [(e−1)e]−1/2
`ev1i−e1/2

ev2i−e1/2

´

for
`

v1i
v2i

´

∼ N
“

0,
`

1 ρ
ρ 1

´

”

. Note that the lognormal error distribution is skewed and has heavy tails. However, the

simulation result in this case still remains almost the same as the other designs.
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relatively strong instruments. There are two specifications of the coefficients γ = (γ1, · · · , γK)′ and

Π = (π1, · · · , πK)′. In Model M0, which imposes the null hypothesis H0 : E(uiZi) = 0, we let

M0 : γk = 0 and πk = c(K) for all k,

where c(K) is chosen so that R2
f = Π′Π/(Π′Π + 1) becomes the assigned value. γ = 0 implies that

the instruments are exogenous, which is the null hypothesis of the overidentifying restriction tests.

In Model M1, we let

M1 : γ1 = 0.1 and γk = 0 for all k 6= 1; πk = c(K) for all k.

This specification corresponds to an alternative hypothesis because the first instrument is not valid.

We compare the following eight tests: “Sargan” (Sargan test based on β̂2sls); “SB” (Sargan

test based on β̂b2sls); “SL” (Sargan test based on β̂liml); “HH” (the Hahn-Hausman test); “MSn”

(the modified Sargan test based on β̂b2sls assuming normality, which is equivalent up to a sign to

the Hahn–Hausman test); “MSnL” (the modified Sargan test based on β̂liml assuming normality);

“MSnn” (the modified Sargan test based on β̂b2sls without assuming normality, which is equivalent

up to a sign to the nonnormal version of the Hahn–Hausman test); and “MSnnL” (the modified

Sargan test based on β̂liml without assuming normality). We note that the difference between HH

and MSn is that HH is a two-sided test while MSn is one-sided. The nominal size of the tests is 5%.

For the first three Sargan tests, the critical value is obtained from the χ2
K−1 distribution; for the

Hahn–Hausman and the latter four modified Sargan tests, the critical value is obtained from the

standard normal distribution. For Model M0, we compute the empirical size of each test; for Model

M1, we compute the size-adjusted rejection probabilities. The number of replications is 1000. The

Monte Carlo results are summarized in Tables 1-4. Tables 1 and 3 report the actual sizes of the

tests (in Model M0) and Tables 2 and 4 report the size-adjusted powers (in Model M1).

[Tables 1-4 about here.]

For Model M0, we obtain results similar to those in Hahn and Hausman (2002). The results show

that the size of Sargan can be heavily distorted. The size distortion is particularly severe when

R2
f is small, ρ is large and/or K is large. Although SB performs better than Sargan in terms of

size, the size of SB also deviates from the nominal size when R2
f = 0.01 and ρ = 0.9. HH tends to

be conservative, but can exhibit size distortion when ρ = 0.9. The magnitude of the size distortion

of those tests is larger than that observed in Hahn and Hausman (2002) when ρ = 0.9 but smaller
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when ρ = 0, 0.5. This may be due to the fact that Hahn and Hausman (2002) use the LIML

estimator to compute the standard error while we use the bias-corrected 2SLS estimator. The size

properties of MSn and MSnn are similar to that of SB. We note that the sizes of MSn and MSnn are

very similar, even under the nonnormal designs (Distribution [D-II]). The performances of SL, MSnL

and MSnnL are similar to each other, even under the nonnormal designs. They do not exhibit size

distortion, instead they tend to be conservative.

Next, we consider the size-adjusted powers of the tests in Model M1. When R2
f = 0.2 and

K = 5, 10, all of the tests have similar power. The power of HH is worse than those of other tests

when R2
f = 0.02, n = 1000 and K = 30 while other tests are equally powerful. This result is due

to the fact that HH is two-sided while other tests are one-sided. The power properties of those

one-sided tests are different between the tests using the bias-corrected 2SLS (SB, MSn, MSnn) and

the LIML estimator (SL, MSnL, MSnnL) when R2
f = 0.01, however. We note that SB and MSn must

have similar size-adjusted powers because MSn is obtained by a linear transformation of SB. The

same comment applies to the relationship between SL and MSnL. On the other hand, it is notable

that the powers of MSn and MSnn are similar (and so are the powers of MSnL and MSnnL), even under

the nonnormal designs. We note that the power of Sargan is higher than the other tests. SB, MSn

and MSnn are more powerful than SL, MSnL and MSnnL. Lastly, we observe that the powers of the

tests decrease as K increases. This finding is consistent with the theoretical result in Section 3.

We may summarize the lessons from the Monte Carlo simulations in the following way. The

standard Sargan test should be used with caution because it may suffer from a severe size distortion

particularly when the number of instruments is moderately large comparing with the sample size.

It is then advisable to use a test based on a bias-corrected estimator or a modified Sargan test via

many instrument asymptotics. Moreover, it is better to make the test one-sided to improve the

power. Tests based on the LIML estimator may be conservative. Thus, it is safe to use LIML-based

tests because we can avoid the size distortion. However, these tests may have relatively weak power.

Correcting the test statistics for possible nonnormality may then not be that crucial.

6 Discussion

This paper develops a new specification test for instrumental variables regression. To this end, we

examine the asymptotic distribution of the Sargan test statistic when the number of instruments

increases with the sample size and modify it such that it asymptotically follows a standard normal
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distribution under the null hypothesis of correct specification.

We also show that the new test statistic is numerically equivalent to the test statistic developed

by Hahn and Hausman (2002) up to a sign. This implies that the Hahn–Hausman test is in fact

a test for overidentifying restrictions, properly adjusted to reflect many instruments or to obtain

better finite sample approximation. Our equivalence result is useful when we consider the extension

of the Hahn–Hausman test to more general settings. For example, in our framework we can easily

handle cases with multiple endogenous variables. Note that the test statistic with two endogenous

regressors in Hahn and Hausman (2002, Section 5) is very complicated. Furthermore, as the Sargan

test is a special case of the J-test by Hansen (1982), we could consider extensions to more general

nonlinear moment restriction models and develop a modified J-test in the presence of many moment

conditions, whereas it is difficult to extend the use of reverse regression equations to such general

cases. We note that Newey and Windmeijer (2009, Theorem 5) provide an asymptotic result for

the J-test under many weak moments asymptotics though they restrict the number of instruments

to grow much slower than the sample size in order to achieve a standard chi-square asymptotic

distribution.

It is also interesting to consider the properties of the Sargan test under alternative asymptotic

sequences. For instance, Hausman, Stock and Yogo (2005) examine the performance of the Hahn–

Hausman test in the presence of weak instruments. They find that the Hahn–Hausman test does

not have a strong power in detecting the presence of weak or irrelevant instruments. This result

also applies to our test because of the equivalence result. On the other hand, this finding is natural

from our point of view: the Hahn–Hausman test statistic is numerically equivalent (up to a sign)

to the overidentifying restrictions test statistic as the latter does not examine the strength of the

instruments. Note that as we assume the concentration parameter grows at the same rate as the

sample size (Assumption 1(iv)), the set of instruments in our case is stronger than what the many

weak instrument asymptotics literature normally assumes (e.g., Chao and Swanson, 2005; Han

and Phillips, 2006; Andrews and Stock, 2007; Hansen, Hausman and Newey, 2008; Newey and

Windmeijer, 2009).
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A Appendix: Mathematical Proofs

A.1 Proof of Lemma 1

Given the denominators of Tn,1 and Tn,2 are the same, it is sufficient to show that d1 = d2 to derive
the equivalence between Tn,1 and Tn,2. We note that

(y − Xβ̂b2sls)′(P − αnI)(y − Xβ̂b2sls)

= (y − Xβ̂2sls − Xβ̂b2sls + Xβ̂2sls)′P (y − Xβ̂2sls − Xβ̂b2sls + Xβ̂2sls)

−αn(y − Xβ̂b2sls)′(y − Xβ̂b2sls)

= (y − Xβ̂2sls)′P (y − Xβ̂2sls) − αn(y − Xβ̂b2sls)′(y − Xβ̂b2sls)

+(β̂2sls − β̂b2sls)′X ′PX(β̂2sls − β̂b2sls),

where the last equality follows because (y − Xβ̂2sls)′PX = 0. Given

β̂2sls − β̂b2sls = (X ′PX)−1X ′Py − β̂b2sls = (X ′PX)−1X ′P (y − Xβ̂b2sls),

we have

(y − Xβ̂b2sls)′(P − αnI)(y − Xβ̂b2sls)

= (y − Xβ̂2sls)′P (y − Xβ̂2sls)

−αn(y − Xβ̂b2sls)′(y − Xβ̂b2sls) + (y − Xβ̂b2sls)′PX(X ′PX)−1X ′P (y − Xβ̂b2sls)

= (y − Xβ̂2sls)′P (y − Xβ̂2sls) − nB̂.

It thus follows that d1 = d2. �

A.2 Proofs of Theorem 1 and Corollary 1

We first present two technical lemmas used to show the theorem.

Lemma A.2. Under Assumption 1, as n,K → ∞ we have8

1
√

nαn
u′(P − αnI)u →d N (0, w) , (A.1)

1√
n

u′(P − αnI)X = Op(1), (A.2)

1
n

X ′(P − αnI)X →p (1 − α)Θ. (A.3)

8It is important to note that u′(P−αnI)u needs to be normalized by
√

nαn not by
√

n. By doing so, the asymptotic
distribution does not degenerate, even when α = 0. This is because the asymptotic variance of u′(P − αnI)u/

√
n is

given by 2α(1−α)σ4
u +

`

limn,K→∞ n−1 Pn
i=1 P 2

ii − α2
´ ˘

E(u4
i ) − 3σ4

u

¯

and it is zero when α = 0. In general, the rate
of convergence of u′(P − αnI)u/n is n if K is fixed;

√
n if K → ∞ but K/n → α > 0 using the CLT for quadratic

forms (e.g., Kelejian and Prucha, 2001); somewhere between n and
√

n if K → ∞ but K/n → 0. Normalizing
with

√
nαn reflects this irregular rate of convergence. Actually, if we exclude the case of α = 0, then we simply

derive the asymptotic distribution of u′(P −αnI)u/
√

n. However, even in this situation, the test statistics developed
in this paper do not change. This is because the modification is simply moving the αn (or α) term between the
numerator and the denominator. Therefore, it would also not affect the equivalence result in Section 4. However,
this degenerating asymptotic variance problem does not take place for (A.2).
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Proof of Lemma A.2 We use Theorem 1 of van Hasselt (2009) to show (A.1). The matrices
U,M, V,C, Ω and a in Theorem 1 of van Hasselt (2009) are u, 0, u, (P − αnI)/

√
αn, σ2

u and 1
in our case, respectively. The conditions for Theorem 1 of van Hasselt (2009) are summarized in
Assumption 1 in van Hasselt (2009). Assumption 1(iii) in this paper corresponds to Assumption
1(a) in van Hasselt (2009). In our case, M = 0 so Assumption 1(b) in van Hasselt (2009) is
automatically satisfied. We now consider Assumption 1(c) in van Hasselt (2009). The first two
conditions in Assumption 1(c) hold with QCM = µCM = 0 because M = 0 in our case.9 Next, we
have

1
n

tr {(P − αnI)/
√

αn} =
1

n
√

αn
(K − K) = 0 and

1
n

tr
{
(P − αnI)2/αn

}
=

1
nαn

tr
{
(1 − 2αn) P + α2

nI
}

= 1 − αn,

so the third and the fourth conditions in Assumption 1(c) are satisfied with τC = 0 and τC2 = 1−α.
The fifth condition in Assumption 1(c) is also satisfied because

∑n
i=1(P

2
ii −α2

n)/(nαn) converges by
Assumption 1(vii). Lastly, we have

sup
n≥1

sup
1≤j≤n

∑n

i=1
|Pij − αnκij |/

√
αn ≤ sup

n≥1
sup

1≤j≤n

∑n

i=1
|Pij |/

√
αn + sup

n≥1

√
αn < ∞

by Assumptions 1(i) and (vi) where κij = 1 if i = j and = 0 if i 6= j. Therefore, under Assumption 1,
the conditions for Theorem 1 of van Hasselt (2009) are satisfied, which yields u′(P−αI)u/

√
nαn →d

N (0, w) as n,K → ∞, where w is given as (10).
We also use Theorem 1 of van Hasselt (2009) to show (A.2). The matrices U,M, V,C, Ω and a

in Theorem 1 of van Hasselt (2009) are now (u,X), (0, ZΠ), (u, V ), (P −αnI), Σ and (1, 0, · · · , 0)′

in this case, respectively. We verify that Assumption 1 in van Hasselt (2009) is similarly satisfied as
above. Assumption 1(iii) implies Assumption 1(a) in van Hasselt (2009); Assumption 1(v) implies
Assumption 1(b) in van Hasselt (2009); and Assumptions 1(iv), 1(vi) and 1(vii) imply Assumption
1(c) in van Hasselt (2009). Therefore, under Assumption 1, Theorem 1 of van Hasselt (2009) yields
(A.2) as E{u′(P −αnI)X} = 0. Lastly, given E{X ′(P −αnI)X} = (1−αn)Π′Z ′ZΠ, (A.3) follows.

Lemma A.3. Under Assumptions 1 and 2, as n,K → ∞ we have

2(1 − α)
{

1
n

(y − Xβ̂b2sls)′(y − Xβ̂b2sls)
}2

+

(
1
K

n∑
i=1

P 2
ii − α2

)[
1
n

n∑
i=1

(yi − X ′
iβ̂b2sls)4 − 3

{
1
n

(y − Xβ̂b2sls)′(y − Xβ̂b2sls)
}2
]

→p 2(1 − α)σ4
u +

(
lim

n,K→∞

1
K

n∑
i=1

P 2
ii − α2

)
{E(u4

i ) − 3σ4
u}.

Proof of Lemma A.3 We only need to show

1
n

(y − Xβ̂b2sls)′(y − Xβ̂b2sls) →p σ2
u and

1
n

n∑
i=1

(yi − X ′
iβ̂b2sls)4 →p E(u4

i )

as n, K → ∞. First, we have

1
n

(y − Xβ̂b2sls)′(y − Xβ̂b2sls) =
1
n

(β − β̂b2sls)′X ′X(β − β̂b2sls) +
2
n

(β − β̂b2sls)′X ′u +
1
n

u′u →p σ2
u

9Though QCM is zero in this case and thus it is no longer positive definite, it only affects the final expression of
the variance.
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given under Assumption 1, β − β̂b2sls →p 0 as n, K → ∞ by Theorem 3 of van Hasselt (2009) and
it can be easily verified that X ′X/n = Op(1), X ′u/n = Op(1) and u′u/n →p σ2

u. Second, for the
estimation of the fourth moment of ui, we similarly have

1
n

n∑
i=1

(yi − X ′
iβ̂b2sls)4 =

1
n

n∑
i=1

{
X ′

i(β − β̂b2sls)
}4

+
4
n

n∑
i=1

{
X ′

i(β − β̂b2sls)
}3

ui

+
6
n

n∑
i=1

{
X ′

i(β − β̂b2sls)
}2

u2
i

+
4
n

n∑
i=1

{
X ′

i(β − β̂b2sls)
}

u3
i +

1
n

n∑
i=1

u4
i

=
1
n

n∑
i=1

u4
i + op(1) →p E(u4

i )

from Assumptions 1 and 2. The last equality follows because∣∣∣∣∣ 1n
n∑

i=1

{
X ′

i(β − β̂b2sls)
}4
∣∣∣∣∣ ≤ 1

n

n∑
i=1

‖Xi‖4‖β − β̂b2sls‖4 = Op(1)op(1) = op(1)

by the existence of the eighth-order moment of Xi (Assumption 2) and β − β̂b2sls →p 0, where
‖ · ‖ is the Euclidean norm. A similar argument can show that

∑n
i=1{X ′

i(β − β̂b2sls)}3ui/n = op(1),∑n
i=1{X ′

i(β − β̂b2sls)}2u2
i /n = op(1) and

∑n
i=1{X ′

i(β − β̂b2sls)}u3
i /n = op(1).

Proof of Theorem 1 As Tn,1 = Tn,2 from Lemma 1, we consider Tn,2 here. We observe that

(y − Xβ̂b2sls)′(P − αnI)(y − Xβ̂b2sls)

= u′(P − αnI)u + (β̂b2sls − β)′X ′(P − αnI)X(β̂b2sls − β) − 2(β̂b2sls − β)′X ′(P − αnI)u

= u′(P − αnI)u + u′(P − αnI)X
{
X ′(P − αnI)X

}−1
X ′(P − αnI)u.

as β̂b2sls − β = (X ′(P − αnI)X)−1 X ′(P − αnI)u. Therefore, Lemma A.2 implies√
n

αn

{
1
n

(y − Xβ̂b2sls)′(P − αnI)(y − Xβ̂b2sls)
}

=
1

√
nαn

u′(P − αnI)u +
1√
K

{
1√
n

u′(P − αnI)X
}{

1
n

X ′(P − αnI)X
}−1{ 1√

n
X ′(P − αnI)u

}
=

1
√

nαn
u′(P − αnI)u + op(1) →d N (0, w)

as n,K → ∞. Furthermore, Lemma A.3 implies that ŵ →p w as αn = α+o(n−1/2). It thus follows
that Tn,2 →d N (0, 1) as n,K → ∞. �

Proof of Corollary 1 The result for Tn,2 is straightforward from the equivalence result in Lemma
1. For Tn,3, we first see that β̂liml − β = Op(n−1/2) even with n,K → ∞ by Theorem 2 of van
Hasselt (2009). Similarly as for the proof of Theorem 1, the

√
n-consistency of β̂liml and Lemma
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A.2 implies √
n

αn

{
1
n

(y − Xβ̂liml)′(P − αnI)(y − Xβ̂liml)
}

=
1

√
nαn

u′(P − αnI)u +
1√
K

√
n(β − β̂liml)′

{
1
n

X ′(P − αnI)X
}√

n(β − β̂liml)

+
2√
K

√
n(β − β̂liml)′

{
1√
n

X ′(P − αnI)u
}

=
1

√
nαn

u′(P − αnI)u + op(1) →d N (0, w)

as n,K → ∞. Noting that β̂liml − β →p 0, the essentially same argument as the proof of Lemma
A.3 shows that ŵl →p w and thus Tn,3 →d N (0, 1) as n,K → ∞. �

A.3 Proof of Theorem 2

We observe that, for y = Xβ + Zγ + u in this case,

β̂b2sls − β

=
{

1
n

X ′(P − αnI)X
}−1 1

n
X ′(P − αnI)(Zγ + u)

= (1 − αn)
α

1/4
n

n1/4

{
1
n

X ′(P − αnI)X
}−1 1

n
X ′Zξ +

{
1
n

X ′(P − αnI)X
}−1 1

n
X ′(P − αnI)u

= op(1)

from Lemma A.2 and Assumption 3. Thus, β̂b2sls is consistent, even under the local alternative.
This observation and the fact that we consider the local alternative, indicate that (y−Xβ̂b2sls)′(y−
Xβ̂b2sls)/n →p σ2

u and
∑n

i=1(yi − X ′
iβ̂b2sls)4/n →p E(u4

i ), which also yields ŵ →p w as n,K → ∞.
Next, we investigate the property of the numerator of the test statistic. Given

y − Xβ̂b2sls = [I − X{X ′(P − αnI)X}−1X ′(P − αnI)](Zγ + u),

we obtain

(y − Xβ̂b2sls)′(P − αnI)(y − Xβ̂b2sls)
= (Zγ + u)′(P − αnI)(Zγ + u)

−(Zγ + u)′(P − αnI)X{X ′(P − αnI)X}−1X ′(P − αnI)(Zγ + u)
= (1 − αn)γ′Z ′Zγ + 2(1 − αn)γ′Z ′u + u′(P − αnI)u

−{(1 − αn)γ′Z ′X + u′(P − αnI)X}{X ′(P − αnI)X}−1{(1 − αn)X ′Zγ + X ′(P − αnI)u},

where the last equality is because (P − αnI)Z = (1 − αn)Z. By Assumption 3 and using the local
alternative γ = (αn/n)1/4ξ, we have

1
√

nαn
γ′Z ′Zγ =

1
n

ξ′Z ′Zξ = Op(1),

1
√

nαn
γ′Z ′u =

1

n1/4α
1/4
n

1√
n

ξ′Z ′u =
1

K1/4
Op(1) = op(1),
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and
1

n3/4α
1/4
n

γ′Z ′X =
1
n

ξ′Z ′X = Op(1).

In addition, Lemma A.2 shows that

1

n3/4α
1/4
n

u′(P − αnI)X =
1

n1/4α
1/4
n

1√
n

u′(P − αnI)X =
1

K1/4
Op(1) = op(1).

Therefore, we have

d̂2 =
1

√
nαn

(y − Xβ̂b2sls)′(P − αnI)(y − Xβ̂b2sls) →d N (C, w)

from Lemma A.2, where,

C = (1 − α) lim
n,K→∞

ξ′Z ′Zξ

n
− (1 − α)

(
lim

n,K→∞

ξ′Z ′X

n

)
Θ−1

(
lim

n,K→∞

X ′Zξ

n

)
.

�

A.4 Proof of Theorem 3

It is straightforward from (19) and (20) because (18) implies

m2 =

2(1 − αn)

{
(y − Xβ̂b2sls)′(y − Xβ̂b2sls)

}2

[
X′(P−αnI)y
X′(P−αnI)X {X ′(P − αnI)X}

]2


−1/2

×
√

n

αn

{
−(y − Xβ̂b2sls)′(P − αnI)(y − Xβ̂b2sls)

X ′(P − αnI)y

}

=
d̂2√
w̃

×
{
−|X ′(P − αnI)y|

X ′(P − αnI)y

}
,

where β̂b2sls = {X ′(P − αnI)X}−1 X ′(P − αnI)y. �

B Appendix: Equivalence Result with Two Endogenous Regres-
sors

This appendix shows the equivalence between our modified Sargan test and the Hahn–Hausman
test under normality when there are two endogenous variables. We consider the Hahn–Hausman
test statistic in equation (5.5) of Hahn and Hausman (2002).

Let X = (x1, x2), where x1 and x2 are n × 1 vectors of endogenous regressors. Let β̂1 and β̂2

be the bias-corrected 2SLS estimators of the coefficient on x1 and x2, respectively. It appears that

β̂1 =
x′

2(P − αnI)x2 · x′
1(P − αnI)y − x′

1(P − αnI)x2 · x′
2(P − αnI)y

x′
1(P − αnI)x1 · x′

2(P − αnI)x2 − {x′
1(P − αnI)x2}2

. (A.4)

We also consider the reverse regression of x1 on y and x2 using the same instruments Z. Let δ̂1 and
δ̂2 be the bias-corrected 2SLS estimators of the coefficient on y and x2, respectively. We can see

δ̂1 =
x′

2(P − αnI)x2 · x′
1(P − αnI)y − x′

1(P − αnI)x2 · x′
2(P − αnI)y

y′(P − αnI)y · x′
2(P − αnI)x2 − {y′(P − αnI)x2}2

. (A.5)
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The Hahn–Hausman test statistic for the two endogenous variables case is given by10

√
nw̌−1/2

(
β̂1 −

1

δ̂1

)
, (A.6)

where

w̌ =
2K

n − K
·

{
(y − x1β̂1 − x2β̂2)′(y − x1β̂1 − x2β̂2)

}2

β̂2
1

[
x′

1Px1 − K
n−K x′

1(I − P )x1 −
{x′

1Px2− K
n−K

x′
1(I−P )x2}2

{x′
2Px2− K

n−K
x′
2(I−P )x2}

]2

= 2αn(1 − αn)

{
(y − x1β̂1 − x2β̂2)′(y − x1β̂1 − x2β̂2)

}2

β̂2
1

[
x′

1(P − αnI)x1 −
{x′

1(P−αnI)x2}2

x′
2(P−αnI)x2

]2
= n2αn

w̃

β̂2
1

[
x′

1(P − αnI)x1 −
{x′

1(P−αnI)x2}2

x′
2(P−αnI)x2

]2 .

We now show that the test statistic (A.6) is numerically equivalent to Tn,2 up to a sign. First,
(A.4) and (A.5) imply

β̂1 −
1

δ̂1

= −(y − x1β̂1)′(P − αnI)y · x′
2(P − αnI)x2 − (y − x1β̂1)′(P − αnI)x2 · y′(P − αnI)x2

x′
2(P − αnI)x2 · x′

1(P − αnI)y − x′
1(P − αnI)x2 · x′

2(P − αnI)y
.

(A.7)
by rewriting y = y − x1β̂1 + x1β̂1. Note that

(y − x1β̂1)′(P − αnI)x2 = (y − x1β̂1 − x2β̂2)′(P − αnI)x2 + β̂2x
′
2(P − αnI)x2

= β̂2x
′
2(P − αnI)x2,

by the definition of the estimators β̂1 and β̂2. Therefore, the numerator of the ratio (A.7) becomes

(y − x1β̂1)′(P − αnI)y · x′
2(P − αnI)x2 − β̂2x

′
2(P − αnI)x2 · y′(P − αnI)x2

= {x′
2(P − αnI)x2} · (y − x1β̂1 − x2β̂2)′(P − αnI)y

= {x′
2(P − αnI)x2} · (y − x1β̂1 − x2β̂2)′(P − αnI)(y − x1β̂1 − x2β̂2),

where the last equality follows from the fact that (y−x1β̂1−x2β̂2)′(P −αnI)x1 = 0 and (y−x1β̂1−
x2β̂2)′(P − αnI)x2 = 0. To sum up, the difference between the two estimators can be written as

β̂1 −
1

δ̂1

= −{x′
2(P − αnI)x2} · (y − x1β̂1 − x2β̂2)′(P − αnI)(y − x1β̂1 − x2β̂2)

x′
2(P − αnI)x2 · x′

1(P − αnI)y − x′
1(P − αnI)x2 · x′

2(P − αnI)y

= − 1

β̂1

×
[
x′

1(P − αnI)x1 −
{x′

1(P − αnI)x2}2

x′
2(P − αnI)x2

]−1

×
√

nαnd̂2.

It follows that
√

nw̌−1/2

(
β̂1 −

1

δ̂1

)
= −sgn[τ1]

d̂2√
w̃

= Tn,2 · sgn[−τ1],

10As in the case of a single endogenous variable, there is minor difference between the test statistic here and that
given in equation (5.5) of Hahn and Hausman (2002). However, the difference disappears at a rate faster than n−1/2.
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where

τ1 = β̂1

[
x′

1(P − αnI)x1 −
{x′

1(P − αnI)x2}2

x′
2(P − αnI)x2

]
= x′

1(P − αnI)y − x′
1(P − αnI)x2 · x′

2(P − αnI)y
x′

2(P − αnI)x2
.

Thus, we have established that the Hahn–Hausman test statistic is numerically equivalent to the
modified Sargan test up to sign, even when there are two endogenous variables.

Note that if we let x̂1 = (P −αnI)x1 and x̂2 = (P −αnI)x2, which are the predicted x1 and x2

from the first-stage regression (with some modification to correct the bias), τ1 reflects nothing but
the sample covariance between x̂1 and y after x̂2 is projected out: τ1 = x̂′

1{I − x̂2(x̂′
2x̂2)−1x̂′

2}y.
In comparison, τ1 is simply x̂′

1y when there is only one endogenous regressor x1 in Theorem 3.
Therefore, even when there are more than three endogenous regressors (provided that the number
of endogenous regressors is small and finite compared to the number of instruments), we can
expect that the Hahn–Hausman test would be numerically equivalent to the modified Sargan test
up to a sign, where the sign depends on the negative of the marginal sample covariance between
the predicted endogenous regressor, which is used for the reverse regression, and the dependent
variable.
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Sargan SB SL HH MSn MSnL MSnn MSnnL

R2
f = 0.01
n = 250 K = 5 ρ = 0.0 0.037 0.028 0.011 0.015 0.021 0.006 0.022 0.006

ρ = 0.5 0.065 0.044 0.010 0.022 0.035 0.007 0.035 0.007
ρ = 0.9 0.229 0.205 0.038 0.138 0.183 0.027 0.183 0.027

K = 10 ρ = 0.0 0.044 0.027 0.006 0.010 0.024 0.003 0.024 0.003
ρ = 0.5 0.046 0.032 0.005 0.017 0.028 0.003 0.028 0.003
ρ = 0.9 0.249 0.173 0.031 0.122 0.159 0.024 0.161 0.025

K = 30 ρ = 0.0 0.028 0.011 0.002 0.012 0.013 0.002 0.014 0.002
ρ = 0.5 0.028 0.019 0.002 0.013 0.021 0.002 0.021 0.002
ρ = 0.9 0.184 0.092 0.015 0.071 0.100 0.015 0.100 0.015

n = 1000 K = 5 ρ = 0.0 0.044 0.038 0.031 0.020 0.028 0.026 0.028 0.026
ρ = 0.5 0.062 0.049 0.036 0.031 0.040 0.029 0.040 0.029
ρ = 0.9 0.182 0.088 0.051 0.061 0.077 0.043 0.078 0.044

K = 10 ρ = 0.0 0.046 0.036 0.016 0.017 0.030 0.011 0.031 0.011
ρ = 0.5 0.086 0.051 0.027 0.025 0.047 0.022 0.047 0.022
ρ = 0.9 0.314 0.121 0.055 0.091 0.115 0.049 0.115 0.049

K = 30 ρ = 0.0 0.045 0.026 0.011 0.021 0.026 0.011 0.026 0.011
ρ = 0.5 0.070 0.043 0.017 0.025 0.043 0.017 0.043 0.018
ρ = 0.9 0.591 0.155 0.043 0.119 0.155 0.043 0.155 0.043

R2
f = 0.2
n = 250 K = 5 ρ = 0.0 0.046 0.046 0.046 0.025 0.035 0.035 0.035 0.035

ρ = 0.5 0.055 0.051 0.049 0.027 0.039 0.034 0.039 0.035
ρ = 0.9 0.071 0.057 0.050 0.031 0.042 0.036 0.042 0.036

K = 10 ρ = 0.0 0.044 0.043 0.042 0.029 0.040 0.040 0.040 0.040
ρ = 0.5 0.056 0.046 0.044 0.033 0.042 0.040 0.042 0.041
ρ = 0.9 0.109 0.055 0.045 0.033 0.050 0.043 0.050 0.043

K = 30 ρ = 0.0 0.035 0.030 0.029 0.034 0.034 0.034 0.034 0.034
ρ = 0.5 0.063 0.038 0.032 0.034 0.042 0.036 0.043 0.036
ρ = 0.9 0.268 0.057 0.040 0.044 0.063 0.044 0.063 0.044

n = 1000 K = 5 ρ = 0.0 0.055 0.055 0.055 0.033 0.046 0.046 0.046 0.046
ρ = 0.5 0.057 0.056 0.055 0.034 0.046 0.045 0.046 0.045
ρ = 0.9 0.058 0.056 0.055 0.036 0.046 0.045 0.046 0.045

K = 10 ρ = 0.0 0.066 0.066 0.066 0.031 0.055 0.055 0.055 0.055
ρ = 0.5 0.070 0.067 0.067 0.031 0.055 0.055 0.055 0.055
ρ = 0.9 0.081 0.069 0.069 0.033 0.062 0.058 0.062 0.058

K = 30 ρ = 0.0 0.048 0.048 0.048 0.040 0.048 0.048 0.048 0.048
ρ = 0.5 0.070 0.050 0.048 0.042 0.050 0.048 0.050 0.048
ρ = 0.9 0.111 0.052 0.048 0.042 0.052 0.048 0.052 0.048

Table 1: Sizes of overidentifying restriction tests under Distribution D-I
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Sargan SB SL HH MSn MSnL MSnn MSnnL

R2
f = 0.01
n = 250 K = 5 ρ = 0.0 0.159 0.132 0.130 0.107 0.132 0.130 0.132 0.130

ρ = 0.5 0.124 0.125 0.118 0.108 0.125 0.118 0.125 0.118
ρ = 0.9 0.173 0.140 0.157 0.140 0.140 0.157 0.141 0.157

K = 10 ρ = 0.0 0.123 0.114 0.094 0.093 0.114 0.094 0.114 0.094
ρ = 0.5 0.123 0.108 0.087 0.097 0.108 0.087 0.108 0.087
ρ = 0.9 0.197 0.154 0.129 0.154 0.154 0.129 0.154 0.129

K = 30 ρ = 0.0 0.096 0.086 0.078 0.068 0.086 0.078 0.086 0.078
ρ = 0.5 0.099 0.083 0.086 0.066 0.083 0.086 0.083 0.086
ρ = 0.9 0.207 0.142 0.122 0.142 0.142 0.122 0.142 0.122

n = 1000 K = 5 ρ = 0.0 0.494 0.439 0.405 0.394 0.439 0.405 0.439 0.405
ρ = 0.5 0.563 0.534 0.475 0.509 0.534 0.475 0.534 0.476
ρ = 0.9 0.719 0.639 0.555 0.639 0.639 0.555 0.639 0.555

K = 10 ρ = 0.0 0.427 0.358 0.320 0.305 0.358 0.320 0.358 0.320
ρ = 0.5 0.447 0.414 0.363 0.392 0.414 0.363 0.414 0.363
ρ = 0.9 0.602 0.496 0.374 0.496 0.496 0.374 0.496 0.374

K = 30 ρ = 0.0 0.274 0.245 0.181 0.160 0.245 0.181 0.245 0.181
ρ = 0.5 0.334 0.240 0.189 0.211 0.240 0.189 0.240 0.189
ρ = 0.9 0.629 0.323 0.203 0.323 0.323 0.203 0.323 0.203

R2
f = 0.2
n = 250 K = 5 ρ = 0.0 0.164 0.162 0.162 0.15 0.162 0.162 0.162 0.162

ρ = 0.5 0.172 0.165 0.165 0.162 0.165 0.165 0.165 0.165
ρ = 0.9 0.183 0.186 0.185 0.186 0.186 0.185 0.186 0.185

K = 10 ρ = 0.0 0.144 0.145 0.144 0.117 0.145 0.144 0.145 0.144
ρ = 0.5 0.148 0.150 0.150 0.135 0.150 0.150 0.150 0.150
ρ = 0.9 0.167 0.157 0.157 0.154 0.157 0.157 0.157 0.156

K = 30 ρ = 0.0 0.103 0.100 0.102 0.070 0.100 0.102 0.100 0.102
ρ = 0.5 0.095 0.107 0.104 0.082 0.107 0.104 0.107 0.104
ρ = 0.9 0.103 0.105 0.100 0.104 0.105 0.100 0.105 0.100

n = 1000 K = 5 ρ = 0.0 0.575 0.575 0.575 0.572 0.575 0.575 0.575 0.575
ρ = 0.5 0.637 0.636 0.636 0.633 0.636 0.636 0.636 0.636
ρ = 0.9 0.666 0.667 0.668 0.667 0.667 0.668 0.668 0.668

K = 10 ρ = 0.0 0.480 0.480 0.480 0.453 0.480 0.480 0.480 0.480
ρ = 0.5 0.500 0.500 0.500 0.473 0.500 0.500 0.500 0.500
ρ = 0.9 0.517 0.516 0.517 0.496 0.516 0.517 0.516 0.517

K = 30 ρ = 0.0 0.310 0.310 0.310 0.244 0.310 0.310 0.310 0.310
ρ = 0.5 0.315 0.321 0.321 0.255 0.321 0.321 0.321 0.321
ρ = 0.9 0.314 0.321 0.318 0.271 0.321 0.318 0.321 0.318

Table 2: Size-adjusted powers of overidentifying restriction tests under Distribution D-I

25



Sargan SB SL HH MSn MSnL MSnn MSnnL

R2
f = 0.01
n = 250 K = 5 ρ = 0.0 0.035 0.027 0.009 0.013 0.021 0.005 0.021 0.005

ρ = 0.5 0.058 0.046 0.011 0.019 0.036 0.007 0.038 0.007
ρ = 0.9 0.248 0.194 0.032 0.136 0.170 0.022 0.172 0.023

K = 10 ρ = 0.0 0.026 0.014 0.001 0.007 0.011 0.001 0.011 0.001
ρ = 0.5 0.045 0.025 0.001 0.014 0.023 0.001 0.023 0.001
ρ = 0.9 0.253 0.161 0.016 0.108 0.152 0.014 0.155 0.015

K = 30 ρ = 0.0 0.033 0.016 0.000 0.011 0.023 0.002 0.024 0.003
ρ = 0.5 0.041 0.024 0.001 0.020 0.032 0.003 0.032 0.003
ρ = 0.9 0.236 0.128 0.011 0.098 0.141 0.015 0.144 0.017

n = 1000 K = 5 ρ = 0.0 0.043 0.038 0.022 0.020 0.029 0.015 0.029 0.015
ρ = 0.5 0.073 0.055 0.034 0.034 0.044 0.025 0.044 0.025
ρ = 0.9 0.190 0.094 0.054 0.065 0.082 0.040 0.082 0.040

K = 10 ρ = 0.0 0.043 0.026 0.017 0.016 0.024 0.017 0.024 0.017
ρ = 0.5 0.070 0.043 0.024 0.025 0.039 0.023 0.039 0.023
ρ = 0.9 0.321 0.111 0.045 0.086 0.103 0.039 0.103 0.039

K = 30 ρ = 0.0 0.050 0.026 0.010 0.023 0.026 0.010 0.026 0.010
ρ = 0.5 0.076 0.029 0.014 0.021 0.029 0.014 0.029 0.014
ρ = 0.9 0.571 0.152 0.046 0.122 0.152 0.046 0.153 0.047

R2
f = 0.2
n = 250 K = 5 ρ = 0.0 0.049 0.048 0.048 0.024 0.038 0.037 0.039 0.039

ρ = 0.5 0.057 0.049 0.048 0.028 0.038 0.038 0.040 0.040
ρ = 0.9 0.078 0.057 0.050 0.034 0.044 0.040 0.044 0.041

K = 10 ρ = 0.0 0.039 0.036 0.036 0.019 0.033 0.033 0.034 0.033
ρ = 0.5 0.057 0.039 0.038 0.023 0.036 0.034 0.038 0.034
ρ = 0.9 0.109 0.052 0.041 0.030 0.046 0.036 0.048 0.038

K = 30 ρ = 0.0 0.036 0.032 0.030 0.037 0.039 0.036 0.042 0.039
ρ = 0.5 0.074 0.041 0.033 0.036 0.049 0.041 0.050 0.046
ρ = 0.9 0.285 0.061 0.035 0.044 0.066 0.052 0.069 0.055

n = 1000 K = 5 ρ = 0.0 0.061 0.061 0.061 0.034 0.045 0.045 0.046 0.046
ρ = 0.5 0.064 0.061 0.061 0.035 0.046 0.046 0.047 0.046
ρ = 0.9 0.063 0.062 0.062 0.037 0.048 0.047 0.048 0.047

K = 10 ρ = 0.0 0.046 0.046 0.046 0.032 0.042 0.042 0.042 0.042
ρ = 0.5 0.052 0.048 0.046 0.033 0.044 0.043 0.044 0.044
ρ = 0.9 0.066 0.049 0.049 0.033 0.046 0.045 0.046 0.045

K = 30 ρ = 0.0 0.054 0.054 0.054 0.048 0.054 0.054 0.055 0.055
ρ = 0.5 0.065 0.056 0.054 0.048 0.056 0.054 0.058 0.055
ρ = 0.9 0.123 0.061 0.056 0.051 0.061 0.056 0.061 0.059

Table 3: Sizes of overidentifying restriction tests under Distribution D-II
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Sargan SB SL HH MSn MSnL MSnn MSnnL

R2
f = 0.01
n = 250 K = 5 ρ = 0.0 0.165 0.157 0.126 0.121 0.157 0.126 0.158 0.126

ρ = 0.5 0.136 0.132 0.142 0.121 0.132 0.142 0.132 0.142
ρ = 0.9 0.196 0.165 0.190 0.165 0.165 0.190 0.163 0.191

K = 10 ρ = 0.0 0.136 0.126 0.078 0.096 0.126 0.078 0.127 0.078
ρ = 0.5 0.098 0.100 0.084 0.084 0.100 0.084 0.100 0.085
ρ = 0.9 0.202 0.164 0.123 0.164 0.164 0.123 0.163 0.123

K = 30 ρ = 0.0 0.088 0.090 0.073 0.078 0.090 0.073 0.091 0.073
ρ = 0.5 0.094 0.083 0.071 0.075 0.083 0.071 0.082 0.072
ρ = 0.9 0.174 0.133 0.120 0.133 0.133 0.120 0.134 0.120

n = 1000 K = 5 ρ = 0.0 0.496 0.424 0.398 0.385 0.424 0.398 0.422 0.398
ρ = 0.5 0.550 0.511 0.475 0.507 0.511 0.475 0.511 0.475
ρ = 0.9 0.670 0.643 0.540 0.643 0.643 0.540 0.643 0.540

K = 10 ρ = 0.0 0.422 0.358 0.336 0.288 0.358 0.336 0.359 0.336
ρ = 0.5 0.471 0.413 0.360 0.368 0.413 0.360 0.413 0.360
ρ = 0.9 0.558 0.470 0.380 0.470 0.470 0.380 0.470 0.380

K = 30 ρ = 0.0 0.286 0.272 0.226 0.170 0.272 0.226 0.272 0.226
ρ = 0.5 0.351 0.274 0.222 0.249 0.274 0.222 0.274 0.222
ρ = 0.9 0.588 0.35 0.199 0.350 0.350 0.199 0.350 0.199

R2
f = 0.2
n = 250 K = 5 ρ = 0.0 0.16 0.161 0.162 0.147 0.161 0.162 0.161 0.161

ρ = 0.5 0.177 0.180 0.183 0.167 0.180 0.183 0.183 0.182
ρ = 0.9 0.202 0.205 0.199 0.205 0.205 0.199 0.199 0.200

K = 10 ρ = 0.0 0.154 0.152 0.153 0.131 0.152 0.153 0.152 0.153
ρ = 0.5 0.159 0.16 0.162 0.141 0.160 0.162 0.160 0.162
ρ = 0.9 0.165 0.164 0.167 0.163 0.164 0.167 0.164 0.168

K = 30 ρ = 0.0 0.100 0.097 0.099 0.08 0.097 0.099 0.097 0.099
ρ = 0.5 0.093 0.096 0.097 0.084 0.096 0.097 0.099 0.097
ρ = 0.9 0.108 0.097 0.091 0.097 0.097 0.091 0.097 0.092

n = 1000 K = 5 ρ = 0.0 0.573 0.572 0.572 0.572 0.572 0.572 0.573 0.573
ρ = 0.5 0.601 0.601 0.601 0.601 0.601 0.601 0.601 0.601
ρ = 0.9 0.645 0.644 0.644 0.644 0.644 0.644 0.644 0.644

K = 10 ρ = 0.0 0.476 0.477 0.479 0.415 0.477 0.479 0.477 0.477
ρ = 0.5 0.503 0.510 0.510 0.454 0.510 0.510 0.506 0.509
ρ = 0.9 0.541 0.542 0.541 0.488 0.542 0.541 0.542 0.541

K = 30 ρ = 0.0 0.285 0.288 0.288 0.241 0.288 0.288 0.288 0.288
ρ = 0.5 0.299 0.298 0.299 0.250 0.298 0.299 0.299 0.299
ρ = 0.9 0.324 0.301 0.302 0.269 0.301 0.302 0.301 0.302

Table 4: Size-adjusted powers of overidentifying restriction tests under Distribution D-II
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