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Abstract

We characterize belief-free equilibria in infinitely repeated games with incomplete informa-

tion with N ≥ 2 players and arbitrary information structures. This characterization involves

a new type of individual rational constraint linking the lowest equilibrium payoffs across play-

ers. The characterization is tight: we define a set of payoffs that contains all the belief-free

equilibrium payoffs; conversely, any point in the interior of this set is a belief-free equilibrium

payoff vector when players are sufficiently patient. Further, we provide necessary conditions

and sufficient conditions on the information structure for this set to be non-empty, both for

the case of known-own payoffs, and for arbitrary payoffs.
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1 Introduction

This paper characterizes the set of payoffs achieved by equilibria that are robust to the spec-

ification of beliefs, and provides necessary and sufficient conditions for its non-emptiness. We

consider n-player repeated games with incomplete information and low discounting. This class of

equilibria has been introduced by Hörner and Lovo (2009) in two-player games with incomplete

information, as defined by Aumann and Maschler (1995). A strategy profile is a belief-free equilib-

rium if, after every history, every player’s continuation strategy is optimal, given his information,

and independently of the information held by the other players. That is, it must be a subgame-

perfect equilibrium for every game of complete information that is consistent with the player’s

information.

Such equilibria offer several advantages. From a practical point of view, they do not require

the specification of beliefs after all possible histories, and the verification of their consistency with

Bayes’ rule. From a theoretical point of view, they represent a stringent refinement, in the sense

that such equilibrium outcomes are also equilibrium outcomes for every Bayesian solution concept,

such as sequential equilibrium, for instance. But more importantly, these equilibria do not rely on

the Bayesian paradigm. To predict behavior in environments with unknown parameters, a model

typically includes a specification of the players’ subjective probability distributions over these

unknowns, following Harsanyi (1967–1968). Since beliefs are irrelevant here, belief-free equilibria

do not require that players share a common prior, or that they update their beliefs according to

Bayes’ rule; and they remain equilibria even if players receive additional information as the game

unfolds.

Nevertheless, as in the case of games with complete information, players may randomize, and
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they maximize their expectation with respect to such lotteries.1 Belief-free equilibria require

precisely as much probabilistic sophistication as is usually assumed in games with complete infor-

mation.

In Hörner and Lovo (2009), the analysis is restricted to two-player games, and the players’ pri-

vate information has a “product” structure. That is, the information structure can be represented

as a matrix. Each state of nature corresponds to a cell in this matrix. Player 1 is informed of the

true row, while player 2 is informed of the true column. This paper generalizes these results to

the most general setting:

1. There are N ≥ 2 players, rather than only two players;

2. Arbitrary finite information structures are considered. In particular, the players’ combined

information may not pin down the state of nature. That is, the state of the world need not

be distributed knowledge.

This latter generalization requires an appropriate extension of the definition of belief-free equi-

librium. We choose the most restrictive version, and require players to use strategies that are

best-replies independently of the state of nature, even for those states that cannot be identified

by the players’ combined information. Clearly, such an equilibrium remains an equilibrium for

weaker versions of this definition. For instance, one may wish to assume instead that each player

has a subjective probability distribution over those states of nature that the players’ combined

information cannot distinguish, and use this distribution to treat each such set as a singleton. We

do so for both practical and theoretical reasons. From a practical point of view, it is immediate

to modify our results to cope with less restrictive definitions, by replacing for instance such col-

1This is also the standard assumption used in the literature on “non-Bayesian” equilibria (see, for instance,
Monderer and Tennenholtz, 1999).
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lections of states by a single state, and payoffs in that state by the relevant expectations.2 From a

theoretical point of view, it is unclear to us why an optimality criterion used by a single decision-

maker should depend on whether those states that he cannot distinguish can be distinguished

collectively or not.

The focus of the analysis is on the set of belief-free equilibrium payoff vectors as the discount

factor tends to one. We provide a set of necessary conditions defining a closed, convex, and

possibly empty set. These necessary conditions have simple interpretations in terms of incentive

compatibility, individual rationality in every state, and joint rationality, an additional requirement

absent from the earlier analysis for two-player games, and that is related to the fact that, because

strategies depend on private information, there might be histories after which it is not possible

to uniquely identify the deviator. Conversely, we prove that every payoff vector in the interior of

this set is a belief-free equilibrium payoff vector provided that the discount factor is sufficiently

close to one.

As mentioned, this set of payoffs might be empty, and therefore, belief-free equilibria need

not exist. We provide necessary and sufficient conditions on the information structure for non-

emptiness of this set for different classes of payoff functions. With two players, for instance,

non-emptiness was already known to obtain if each player knows his own payoff, and one player is

informed of the state. For general payoff functions, the necessary and sufficient condition is that

no two players are essential (as defined in Section five) in distinguishing between any two states.

This result is due to Renault and Tomala (2004) for undiscounted games and we adapt it to our

setup. Our main result provides both a necessary and a sufficient condition for the important

case of known-own payoffs (KOP). In that case, non-emptiness obtains for all payoff functions

satisfying KOP only if a given information structure satisfies the following. Divide the states into

2Note that in this case the payoff function will depend on the beliefs used to compute such expectations.
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the finest partition with the property that for any two states lying in distinct cells of this partition,

at least three players distinguish them (i.e. get different signals for those two states), and restrict

attention to the projection of the information partition on any given cell. Then for each state k,

there must exist a player i who is as well informed as all others at that state. Further, either no

player can distinguish any two states for which he is not the best informed player (if he ever is),

or there is a second player j 6= i who is as well informed as all players but i at that state. This

latter case is shown to be sufficient. Our next result states that, if the payoff functions are such

that some action profile yields a payoff no larger than the individually rational payoff (the bad

outcome property), for all players and for all states simultaneously, then it must be that no single

player is essential to distinguish between any two states. Finally, for the class of payoff function

that satisfy both KOP and the bad outcome property, we show that there must be at most one

essential player per state.

A special class of games covered by these conditions is the class of “reputation” games in which

there is exactly one player whose payoff type is unknown. We identify the value of reputation for

such games. Consider the lowest belief-free equilibrium payoff that this player can guarantee for

a given set of alternative payoff types he might be. We identify the highest such payoff, across all

sets of alternative types, and identify a set of types achieving this maximum.

The set of belief-free equilibrium payoffs has already appeared in the literature, most notably

(but not only) for two players, in the context of undiscounted Nash equilibrium payoffs for games

with one-sided incomplete information. See, among others, Cripps and Thomas (2003), Forges

and Minelli (1997), Koren (1992) and Shalev (1994). The most general characterization of Nash

equilibrium payoffs is obtained by Hart (1985) for the case of one-sided incomplete information.

A survey is provided by Forges (1992). For more than two players, Renault (2001) studies three-

player games with two informed players and one uninformed player, and introduces the joint
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rationality condition in this context. Renault and Tomala (2004a) study existence for all payoff

functions in the n-player case.

Our work is also related to the literature on existence of equilibria for non-zero-sum undis-

counted games with incomplete information. It is known since Aumann and Maschler (1995)

that some conditions on information structures are required to get existence. Sorin (1983) shows

existence of belief-based equilibrium in two-player games with one-sided incomplete information

and two states of nature. Simon, Spież and Toruńczyk (1995) extend this result to an arbitrary

number of states. For more than two players, no general result is known. See for instance Renault

(2001) for 3-player games with lack of information on one-side.

Israeli (1999) provides an analysis of reputation in two-player undiscounted games, to which

our own analysis of reputation owes a great deal. Further references to non-Bayesian studies

can be found in Hörner and Lovo (2009). Finally, Pęski (2008) considers discounted games with

known-own payoffs, two states of the world, and one informed player. He defines the set of payoffs

that satisfy both individually rationality after every history, and incentive compatibility, and

shows that its closure is equal to the limit set (as the discount factor tends to one) of the Nash

equilibrium payoffs, under full dimensionality. Therefore, his result shows that, at least in his

set-up, the notion of individual rationality that captures Nash equilibrium is expected individual

rationality after every history (where the expectation is, for the uninformed player, with respect to

his beliefs about the state). In contrast, the notion of individual rationality that captures belief-

free equilibrium is individual rationality for every state (what he calls IR-in-every-state.) The

equivalence of those two notions of individual rationality in the case of undiscounted payoffs is the

main reason why the characterization of belief-free equilibrium payoffs is reminiscent of some of the

results in the literature on Nash equilibrium payoffs of undiscounted games. Understanding the

relationship between the two payoff sets in general environments is an important open question.

6



Belief-free equilibrium is also related to ex post equilibrium, used in mechanism design (see

Crémer and McLean, 1985) as well as in large games (see Kalai, 2004). A recent study of ex post

equilibria and related belief-free solution concepts in the context of static games of incomplete

information is provided by Bergemann and Morris (2007).

The notion of belief-free equilibria has been introduced in games with imperfect monitoring.

See Piccione (2002), Ely and Välimäki (2002) and Ely, Hörner and Olszewski (2005), among others.

In this literature, belief-free equilibria are defined as equilibria for which continuation strategies

are optimal independently of the private history observed by the other players, and has allowed

the construction of equilibria in cases in which only trivial equilibria were known so far.

The most closely related papers are Hörner and Lovo (2009), already discussed, and Fuden-

berg and Yamamoto (2009a, 2009b). Fudenberg and Yamamoto (2009b), which itself generalizes

Fudenberg and Yamamoto (2009a), is complementary to this paper. By combining belief-free equi-

librium with perfect public equilibrium, they extend the analysis to the case of repeated games

with incomplete information, and imperfect and unknown monitoring. That is, players receive im-

perfect public signals and the map from actions into signal distributions is itself unknown. Their

contribution is two-fold. First, they develop linear algebraic techniques to study the limit payoff

set, whose usefulness is illustrated via examples. Second, they use these techniques to provide

sufficient conditions for the folk theorem to hold. The latter contribution is especially important,

as it provides conditions under which, as far as limit payoffs are concerned, the restriction to these

equilibria is without loss of generality.

The paper is related more broadly to the literature on the robustness of equilibrium in repeated

games. Miller (2009) develops a related notion, in which the ex post requirement is imposed in each

period, but players’ continuation payoffs are evaluated according to their beliefs. Chassang and

Takahashi (2009) examine the robustness of equilibria to incomplete information that is modelled
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by payoff shocks that are independent across periods. Wiseman (2008) considers the case in which

the payoff matrix is unknown, but players learn over time, and provides conditions under which a

folk theorem obtains.

Section two introduces the notation and defines belief-free equilibria. Section three gives

necessary conditions that belief-free equilibrium payoffs must satisfy. Section four shows that

every payoff vector in the interior of the set defined by the necessary conditions is indeed a belief-

free equilibrium payoff vector for low enough discounting. Section five provides necessary and

sufficient conditions for non-emptiness of this set. Section six applies the previous results to

games of reputation with one informed player.

2 Notations

The finite set of players is N := {1, . . . , N}. Player i chooses action ai from a finite set Ai, and

a ∈ A :=
∏

i Ai is an action profile. The finite state space is K := {1, . . . , K}. Given a set S, let

△S denote the probability simplex over S, 1{S} the indicator function of S, |S| the cardinality

of S, int S the interior of S, and co S the convex hull of S. To avoid trivialities, assume that

|Ai| ≥ 2, all i ∈ N .

Player i’s reward function is a map ui : K × A → R. Let M := maxi∈N,k∈K,a∈A |ui(k, a)|.

A reward profile is denoted u := (u1, . . . , uN). Mixed actions of player i are denoted αi. The

definition of rewards is extended to mixed, possibly correlated, action profiles µ ∈ △A in the

usual way.

At the beginning of the game, each player receives once and for all a signal that allows him to

narrow down the set of possible states of nature. Without loss of generality (see Aumann, 1976),

this process can be represented by an information structure I := (I1, . . . , IN), where Ii denotes
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player i’s information partition of K. We let Ii(k) denote the element of Ii containing k. We

refer to Ii(k) =: θi ∈ Θi as player i’s type, and write Θ :=
∏

i Θi, and Θ−i :=
∏

j 6=i Θj . Given

θ ∈ Θ, κ(θ) :=
⋂

i∈N θi denote the set of states that are consistent with type profile θ. Also, for

θ−i ∈ Θ−i, we write κ(θ−i) :=
⋂

j 6=i θj for the set of states that are consistent with a type profile

of all players but i. We do not require that κ(θ) 6= ∅: it might be that some type profile cannot

arise. Similarly, it might be that |κ(θ)| > 1: the join of the players’ information partitions need

not reduce to the state. The information partitions are common knowledge, but the realized signal

is private information.

The game is infinitely repeated, with periods t = 0, 1, 2, . . .. A history of length t is a vector ht ∈

H t := At (H0 := {∅}). An outcome is an infinite history h ∈ H := A∞. Neither mixed actions

nor realized payoffs are observed. On the other hand, realized actions are perfectly observed.

A behavior strategy for player i’s type θi is a mapping σi,θi
: ∪t∈NH t → △Ai. We write σi :=

{σi,θi
}θi∈Θi

for player i’s strategy, and σ := (σ1, . . . , σN ) for a strategy profile.

Players use a common discount factor δ < 1. The payoff of player i in state k is the expected

average discounted sum of rewards, where the expectation is taken with respect to mixed action

profiles. That is, given some outcome h = (a0, . . . , at, . . .), player i’s payoff in state k is

∑
t≥0

(1 − δ)δtui(k, at).

As usual, the domain of rewards is extended to mixed action profiles and strategy profiles. Given

a strategy profile σ, let µk ∈ △A denote the occupation measure over action profiles induced by σ

when the state is k, that is, for every a ∈ A,

µk(a) := (1 − δ) Eσ

[∑
t≥0

δt1{at = a}
]
.
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Let u(k, µk) ∈ R
N denote the players’ payoff vector in state k under the occupation measure µk:

u(k, µk) :=
∑

a∈A
µk(a)u(k, a).

Definition: A belief-free equilibrium (hereafter, an equilibrium) is a strategy profile σ such

that, for every state k, σ is a subgame-perfect Nash equilibrium of the game with rewards u(k, ·). A

vector v ∈ R
NK is an equilibrium payoff vector if there exists an equilibrium σ such that v = u(σ).

In what follows, we write vk for the payoff vector in state k. Let Bδ be the set of belief

free equilibrium (BFE) payoff vectors of the δ-discounted game. The purpose of this paper is to

characterize limδ→1 Bδ (a limit that is shown to be well-defined) and establish conditions under

which this limit set is non-empty.

3 Necessary Conditions

We first derive necessary conditions for a vector v ∈ R
NK to be an equilibrium payoff vector.

These conditions can be divided into three categories: feasibility, incentive compatibility, and

(individual and joint) rationality.

3.1 Feasibility

Definition: The payoff vector v ∈ R
NK is feasible if there exists (µk)k∈K ∈ (△A)K such that

1. ∀k ∈ K : vk = u(k, µk);

2. ∀k, k′: Ii (k) = Ii (k
′) ∀i ∈ N ⇒ µk = µk′.
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The first condition is the obvious feasibility condition. That is, there exists an occupation

measure µk that yields the payoff vector vk.

The second condition is rather a measurability restriction. It states that, if players cannot

collectively distinguish two states, then the equilibrium occupation measures over action profiles

must be the same in both states. Given the second condition, we may alternatively write µθ for

the occupation measure. Conversely, throughout the paper, the notation (µθ)θ∈Θ implies that the

set (µk)k∈K satisfies the second condition.

3.2 Incentive Compatibility

If two signals θi and θ′i are both consistent with a signal profile θ−i of the other players, it must

be the case that player i weakly prefers the occupation measure µθi,θ−i
to µθ′i,θ−i

in every state that

is possible given (θi, θ−i). Therefore, if v is an equilibrium payoff vector, then it must be feasible

for some probability distributions satisfying a set of incentive compatibility conditions.

To introduce those, define UDi (for unilateral deviation) as the set of triples (θi, θ
′
i, θ−i) ∈

Θi ×Θi ×Θ−i such that κ(θi, θ−i) 6= ∅ and κ(θ′i, θ−i) 6= ∅. The incentive compatibility conditions

can be written as

∀i, (θi, θ
′
i, θ−i) ∈ UDi, k ∈ κ (θi, θ−i) : ui(k, µθi,θ−i

) ≥ ui(k, µθ′i,θ−i
). (IC(i, θi, θ

′
i, θ−i))

Lemma 3.1 If v ∈ Bδ, then v is feasible for some (µθ)θ∈Θ that satisfy IC(i, θi, θ
′
i, θ−i) for all

i ∈ N and (θi, θ
′
i, θ−i) ∈ UDi.

Proof: Suppose for the sake of contradiction that for some i ∈ N and (θi, θ
′
i, θ−i) ∈ UDi, the

reverse inequality holds. Consider now the game of complete information in which the state is
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k, and consider player i of type θi. By playing as if his type were θ′i, player i can guarantee

ui(k, µθ′i,θ−i
), which exceeds his equilibrium payoff ui(k, µθi,θ−i

). This is a profitable deviation. �

3.3 Individual and Joint Rationality

A deviating player might be easy to identify or not. For instance, if player i chooses an action

that is inconsistent with all his types’ equilibrium strategies, then it is immediately common

knowledge among players that i deviated. Since we seek to identify here a necessary condition

that player i’s equilibrium payoff vector must satisfy, the more effective the punishment, the

weaker the condition. Therefore, we may start by assuming that, if player i deviates, all other

players commonly know the information that is distributed among them, as these are the most

favorable conditions for a punishment. This is also the reason why we may assume that player i’s

deviation is common knowledge, even if, for some deviations by i, this need not be.

Still, if the set of states κ(θ−i) is not a singleton, players −i cannot tailor the punishment

strategy to the actual state of the world. Suppose, for instance, that κ(θ−i) = {1, 2}, as illustrated

in Figure 1. Because player −i’s strategy, after such a deviation, must be effective in both games

of complete information simultaneously, it must guarantee that player i’s payoff is lower than vi

in both its coordinates, independently of what strategy player i uses. Note that it is irrelevant

whether player i can distinguish these two states himself.

Determining for which values of the vector vi players −i have such a strategy available may

appear a formidable task, but as is well-known, this is by definition equivalent (at least in the

undiscounted case) to the orthant W := {vi} − R
2
+ being an approachable set, and necessary and

sufficient conditions for this are provided by Blackwell (1956).
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Figure 1: Players −i must have a strategy that guarantees that i’s payoff lies in W .

To this end, define, for θ−i ∈ Θ−i,

ϕi,θ(q) := min
α−i∈

Q

j 6=i △Aj

max
ai∈Ai

∑
k∈κ(θ−i)

q(k)ui(k, α−i, ai).

For each player i and each θ−i ∈ Θ−i, consider the set of inequalities

∀q ∈ △κ(θ−i) :
∑

k∈κ(θ−i)
q(k)vk

i ≥ ϕi,θ(q). (IR(i, θ−i))

These inequalities are the immediate generalizations of the individual rationality conditions for

the two-player case. Note that if κ(θ−i) = ∅, the inequality is vacuously satisfied. If κ(θ−i) is a

singleton set {k}, the inequality reduces to the familiar definition of individual rationality under

complete information, i.e. vk
i ≥ val ui(k, ·), where val ui(k, ·) denotes player i’s minmax payoff in

state k. In the definition of ϕi,θ, note that the action of players −i are statistically independent.

Lemma 3.2 If v ∈ Bδ, it satisfies the inequalities (IR(i, θ−i)) for each player i and θ−i.

Proof: If one of these conditions is violated, there necessarily exists one player, a type profile
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θ−i and q ∈ △κ(θ−i) such that the reverse inequality holds. This implies that for every α−i, there

exists ai(α−i) ∈ Ai such that

∑
k∈κ(θ−i)

q(k)ui(k, α−i, ai(α−i)) >
∑

k∈κ(θ−i)
q(k)vk

i . (1)

Assume instead that v is in Bδ and let σ be the corresponding equilibrium. Note that players −i

play the same strategy in each state k ∈ κ(θ−i). Consider thus the strategy τi of player i that

plays ai(α−i) after a history ht such that σ−i(h
t) = α−i. The reward of player i under (τi, σ−i)

satisfies the inequality (1) and therefore, so does the payoff. It follows that there exists a state

k ∈ κ(θ−i) at which τ is a profitable deviation. �

Under these conditions, following Blackwell (1956), players −i can devise a punishing strategy

against player i. Given θ−i, and any payoff vector v that satisfies these inequalities strictly, there

exists ε > 0 and a strategy profile ŝ
θ−i

−i for players −i such that, if players −i use ŝ
θ−i

−i , then

player i’s undiscounted payoff in any state k that is consistent with θ−i is less than vk
i − ε in any

sufficiently long finite-horizon version of the game, no matter i’s strategy. By continuity, this also

holds true for sufficiently long finite-horizon versions of the game when payoffs are discounted,

provided the discount factor is high enough, fixing the length of the game. When players −i use

ŝ
θ−i

−i , players −i are said to minmax player i. Player i is the punished player, and players −i are

the punishing players.

While individual rationality is a necessary condition, it is not the only one. There are other

conceivable deviations, leading to an additional necessary condition. In particular, even if a

deviation gets detected, it might not be possible to identify the deviator. It might be that i’s

action is consistent with some of his types’ strategies, and so is player j’s action, but no pair

of types for which both actions would be simultaneously consistent exists. Then it is common
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knowledge among all players that some player deviated, but not necessarily whether it is player i

or j. With two players, of course, the identity of the deviator is always common knowledge.

To be more formal, let D be the set of type profiles that are inconsistent, but could arise if there

was a unilateral deviation. That is, θ is in D if κ(θ) = ∅ and Ωθ := {(i, θ′i) | i ∈ N, κ(θ′i, θ−i) 6=

∅} 6= ∅. In other words, if players were to report their types, and the reported profile was in D,

all players would know that one player must have lied. The set Ωθ is the set of pairs (player, type)

that could have caused the problematic announcement θ.

For each θ ∈ D, consider the condition

∃µ ∈ △A, ∀(i, θ′i) ∈ Ωθ, ∀k ∈ κ (θ′i, θ−i) : vk
i ≥ ui(k, µ). (JR (θ))

These inequalities are called Joint Rationality (JR), since they involve payoffs of different players

simultaneously.3 Note that joint rationality does not imply individual rationality (there is no

requirement that player i’s action be a best-reply), nor is it implied by it.

Lemma 3.3 Every v ∈ Bδ satisfies all constraints (JR (θ))θ∈D.

Proof: Let v ∈ Bδ be an equilibrium payoff vector and σ be the corresponding equilibrium.

Let θ = (θi)i ∈ D and consider for each (i, θ′i) ∈ Ωθ the deviation τ i of player i such that, if his

type is θ′i, player i plays as if he were of type θi, i.e. τi,θ′i
= σi,θi

, and which coincides with σi for

all other types. Take two elements (i, θ′i) and (j, θ′j) in Ωθ. The distribution over outcomes under

(τi,θ′i
, σ−i,θ−i

) and (τj,θ′j
, σ−j,θ−j

) are the same, i.e. this is the distribution under σθ = (σl,θl
)l∈N . In

words, there is no way to distinguish the situation in which player i consistently mimics type θi

and the one in which player j consistently mimics type θj . Let µ ∈ △A denote the occupation

3Joint Rationality has been first introduced in Renault (2001) in a three-player setup.
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measure generated by σθ. If JR (θ) is violated, there exists a player i and a state k ∈ κ (θ−i) such

that player i’s equilibrium payoff in state k, vk
i , is strictly lower than his payoff if he were to follow

σθi
, a contradiction. �

To conclude this section, we note that the conditions JR (θ) are closely related to the conditions

IR(i, θ). Indeed, using the minmax theorem, we may write those inequalities in the following

alternative and compact way

∀q ∈ △{(i, k) : k ∈ κ(θ−i)} :
∑

i,k
q(i, k)vk

i ≥ min
a∈A

∑
i,k

q (i, k) ui (k, a) ,

which suggests interpreting the identity of the deviator as part of the uncertainty itself. For the

sake of brevity, we often omit arguments and refer to each type of condition simply as IC, IR, or

JR.

4 Sufficient Conditions

Let V ∗ ⊂ R
KN denote the set of feasible payoff vectors that satisfy IC, IR, and JR. We show

that this set characterizes the set of belief-free equilibrium payoff vectors, up to its boundary

points.

Let K̂ :=
{
k ∈ K :

⋂
i∈N Ii(k) 6= {k}

}
be the set of states that cannot be distinguished by the

join of the players’ information partitions. Let û be the matrix (uk
i (a)) with N × |K̂| rows and

|A| columns, where k belongs to K̂. The reward function u is generic if the matrix û has rank

N × |K̂|. Indeed, viewing any such matrix as an element of R
N |K̂||A|, this condition is generically

satisfied whenever |A| ≥ N |K̂|. The first main result of this paper is the following.

Theorem 4.1 If v ∈ int V ∗ and u is generic, there exists δ̄ < 1, ∀δ > δ̄, v ∈ Bδ.
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The interiority assumption is rather standard in the literature on repeated games with dis-

counting, and has been first introduced by Fudenberg and Maskin (1986). In the appendix, we

provide a proof under the additional assumptions that there exists a public randomization device

in every period (an independent draw from the uniform distribution on the unit interval), and

that players can send costless messages, or reports, at the end of every period, as well as before the

first period of the game. The proof without such a device or communication is rather standard

but very lenghty, and can be found in the working paper (Hörner, Lovo and Tomala, 2009).

The rank assumption serves a similar purpose, as it allows players to provide appropriate

incentives in states that cannot be distinguished.

It is worth making the following two remarks. First, if I and I ′ are two different informa-

tion structures for the same game, and V ∗, V ′∗ are the corresponding sets of feasible, incentive

compatible, individually and jointly rational payoff vectors, observe that V ∗ ⊆ V ′∗ if I ′
i is finer

than Ii for all i ∈ N . That is, the limit set of belief-free equilibrium payoffs is monotonic with

respect to the information structure, under the natural ordering on such structures. Second, note

that the IC, IR and JR conditions remain necessary even if we drop the sequential rationality

constraint imposed by subgame-perfection. That is, the same characterization would hold if belief-

free equilibria was defined with respect to Nash equilibria of the underlying complete information

game.

5 Existence

Our main theorem states that, given V ∗ 6= ∅, all points in the interior of V ∗ are BFE payoffs if

δ is large enough. However, achieving incentive compatibility together with individual rationality

and joint rationality might not be possible, as is already known from the two-player case, and
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some conditions are required. In this section, we give necessary and sufficient conditions for non-

emptiness of V ∗. We shall not address the issue of whether boundary points of V ∗ are themselves

equilibria or not. Even in the case of complete information, it is not known under which conditions

minmax payoffs are equilibrium payoffs themselves (this is the case, generically, when attention is

restricted to pure strategies and there exist points in the feasible payoff set that give each player his

minmax payoff (Thomas, 1995)), and such conditions appear all the more elusive here given that

both IR and JR are multi-dimensional versions of individual rationality. Incentive compatibility,

however, is an additional condition, and we will comment on when it can be made strict (this is

the case, for instance, for our first set of results). As a practical matter, it is immediate to apply

the characterization of V ∗ to verify that the set has non-empty interior. Note that Fudenberg

and Yamamoto (2009b) provide useful sufficient conditions for this to be the case. Note also that,

as mentioned, V ∗ has been shown to play an important role in the study of Nash equilibria in

repeated games without discounting, for those special cases in which such a characterization has

been obtained so far.

More precisely, we consider different classes of games each characterized by some properties

of the reward functions and/or of the information structure. For each one of these classes we

prove that V ∗ is not empty by identifying payoffs vectors satisfying IC, IR and JR, and provide

counter-examples within those classes for the necessity part. Given the set of players N , the set

of states K and the set of actions profiles A, let U := (RK×A)N be the set of all reward functions

and Y be the set of information structures. For an information structure I and a reward function

u, we denote by V ∗(I, u) the set of payoff vectors that satisfy IC, IR and JR.

We might wish to examine for which information structures non-emptiness obtains for all

reward functions, or for all reward functions within some class S ⊆ U . We shall consider this

first. Second, we examine for which reward functions non-emptiness obtains independently of the
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information structure. This, in particular, will ensure existence for the applications in which the

assumption that the information partitions are common knowledge appears exorbitant. We shall

address this next. Proofs are outlined in the text and, when necessary, detailed in the appendices

B–E.

5.1 Majority Components

It is useful to identify the information that can be readily disclosed either because it is shared by

sufficiently many players or, for 2-player games, because it is common knowledge. For instance, if

three (or more) players know the state of nature, it is straightforward to provide those players with

strict incentives to disclose it: each informed player reports the true state (through an appropriate

choice of actions); under any unilateral deviation, there are still at least two players (a majority)

among informed players who report it truthfully. Truth-telling is thus optimal, and the state is

revealed.

More generally, we shall make precise the information about the state that can be made

common knowledge among players even under unilateral deviations. This will define a partition

over the set of states K. An element of this partition is a majority component. That is, if the true

state k belongs to the majority component A, then under strategies that ask players to report

whether the state is in A or not, it becomes common knowledge that the true state lies in A once

the reports are made, and even if a player unilaterally deviates.

This requires that, for every k′′ ∈ K \ A, at least three players know that the state is not k′′,

so that, even if one of them deviates, at least two players’ reports rule out k′′. Conversely, if two

states k and k′ belong to the same majority component A, then, for some report of some player,

there are no two other players who could, by reporting truthfully, distinguish between k and k′.
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To define a majority component formally, we introduce the following equivalence relation.

Definition 5.1

- For each pair of states k, k′, let ν(k, k′) be the number of players who distinguish k from k′.

Define the binary relation R by kRk′ iff ν(k, k′) ≤ min{2, N − 1}.

- Let k ∼ k′ iff there is a chain of states k = k1, k2, ..., kn = k′ such that kmRkm+1 for each

m. A majority component of K is an equivalence class of this relation.

Note that R is symmetric but not necessarily transitive, and ∼ is the transitive closure of R

(i.e. the smallest transitive extension of R), thus it is an equivalence relation.

If A, B are two distinct majority components of K, then for each k ∈ A and each k′ in B,

ν(k, k′) ≥ 3. Otherwise, there would exist a link (for the relation R) between some point in A and

some point in B, and thus a chain linking any point in A to any point in B. Note that for 2-player

games two states belong to the same majority component only if they can be distinguished by at

most one player.

The study of belief-free equilibria can be made on each majority component separately. Given

A ⊆ K, let IA denote the information structure on A induced by I:

IA,i(k) = Ii(k) ∩ A, ∀i ∈ N, ∀k ∈ A.

Note that, by definition, a BFE given K and I must induce a BFE given A and IA. If A is a

majority component, the discussion above can be summarized in the following lemma.

Lemma 5.2 V ∗(u, I) 6= ∅ iff for each majority component A, V ∗(u, IA) 6= ∅.
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5.2 Existence for Various Reward Functions

In this subsection, we focus on information structures such that for each k, ∩i∈NIi(k) = {k}.

In this instance, K̂ = ∅ and the reward function u trivially satisfy the genericity condition of

Theorem 4.1.4

5.2.1 No restriction on rewards: S = U

The following result identifies the restriction on the information structure that ensures that

BFE exists for all reward functions (see also Renault and Tomala, 2004a).

Theorem 5.3 V ∗(I, u) 6= ∅, ∀u ∈ U , if and only if all majority components are singletons.

The proof is straightforward and follows the theorems 3.2. and 3.3. in Renault and Tomala

(2004a). The condition is obviously sufficient. If all majority components are singletons, then the

true state k can be identified by truthful announcements. Unilateral deviations are disregarded.

Then a feasible and individually rational payoff vector in the revealed state k is implemented. For

the necessity part we provide an example in Appendix B.

This condition is obviously very demanding, although BFE might very well exist for a given

reward function. The remainder of this section examines how the condition is relaxed once re-

strictions are imposed on the reward function. Without loss of generality, given Lemma 5.2, we

assume hereafter that there is a single majority component, with at least two states (if there is a

single state, existence is immediate).

4This is without loss of generality when players have known-own payoff. If no such restriction is imposed on
rewards, then it is also necessary for non-emptiness of V ∗. For example, if each player’s reward function depends
only on his own action and on the state, and the optimal action is not the same in two states that no player
distinguishes, then BFE do not exist.
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5.2.2 Known-own payoffs

In this subsection we provide a condition on the information structure that is necessary to

obtain V ∗(I, u) 6= ∅ in all games of known-own payoff, and a sufficient condition for non-emptiness.

Definition 5.4 The game has known-own payoffs (KOP) if the reward function of each player i

depends only on the action profile and on her type. That is, for each action profile a, and each

pair of states k, k′:

Ii(k) = Ii(k
′) =⇒ ui(k, a) = ui(k

′, a).

Let SI be the set of KOP reward functions when the information structure is I.

Note that the definition of known-own payoff implies that
⋂

i∈N Ii(k) = {k}. In two-player

games with KOP, existence obtains whenever information is one-sided, that is, whenever player 1

has more information than player 2 (Shalev, 1994). These conditions are also necessary in two-

player games: Hörner and Lovo (2009) and Koren (1992) provide examples in which existence fails

if information is two-sided. One might then expect that this result might generalize to N -player

games with KOP. However, the following example shows that having one fully informed player is

not sufficient to ensure existence.

Example 5.5 There are three states k, k′, k′′. The information of player 1 is I1(k) = {k, k′′},

I1(k
′) = {k′}. The information of player 2 is I2(k) = {k, k′}, I2(k

′′) = {k′′}. Player 3 knows the

state. The payoff matrix is as follows.

L R

T 3, 1, 0 0, 0, 0

B 0, 0, 0 1, 3, 0

state k

L R

T 3, 0, 3 0, 1, 3

B 0, 0, 3 1, 1, 0

state k′′

L R

T 1, 1, 0 1, 0, 3

B 0, 0, 3 0, 3, 3

state k′
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In this game, V ∗ is empty. Assume for the sake of contradiction that there is a point v in V ∗.

Individual rationality of players 1 and 2 imply that in state k′, T is always played, and (T, R) is

played with a (discounted) frequency no greater than 1/4. The payoff of player 3 in state k′ is thus

vk′

3 ≤ 3/4. Similarly, in state k′′, R is always played, and (T, R) with frequency no greater than

1/4. The payoff of player 3 in state k′′ is thus vk′′

3 ≤ 3/4.

Consider now the inconsistent reports in which player 1 claims that the state is k′, while player

3 claims that the state is k. Continuation play must “punish” player 1 in state k, and player 3 in

state k′. Note that, for every action profile a, uk
1(a) + uk′

3 (a) ≥ 3. Now, assume that the payoff of

player 1 in state k is such that: vk
1 ≤ 11

16
3. It follows that

v1
k + v3

k′ ≤
11

16
3 + 3/4 = 45/16 < 3.

This latter inequality is impossible. From JR, there must exist a distribution α of action profiles

such that vk
1 ≥ uk

1(α) and vk′

3 ≥ uk′

3 (α) and uk
1(α) + uk′

3 (α) ≥ 3. We conclude that vk
1 > 11

16
3. A

similar argument (considering the inconsistent reports in which player 2 claims that the state is

k′′ and player 3 claims that the state is k) yields vk
2 > 11

16
3. Thus v1

k +v2
k > 66/16 = 4+1/8, which

is impossible, since no action profile in state k yields uk
1 + uk

2 > 4.

In what follows we show that if V ∗ is nonempty in all games with KOP, then for each state k,

first, there exists a player i who is as well informed as all others at that state, and second, either

no player can distinguish any two states for which he is not the best informed player (if he ever

is), or there is a second player j 6= i who is as well informed as all players but i at that state. In

this latter case, we show that V ∗ is nonempty in all games with KOP.

More formally, we say that player i has more information than player j if player i can deduce

player j’s type from his own type, i.e. if player i’s information partition is finer than player j’s
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partition: Ii(k) ⊆ Ij(k) for each k.

Definition 5.6 1. The information structure is locally weakly embedded (LWE) if for each

state k, there exists a pair of players i, j, such that player i has more information than any

other player, and player j has more information than any player other than i. Note that i, j

may depend on the state5.

2. The information structure has the all-or-nothing property if there exists a partition of K,

K = ∪i=1,...,NKi with Ki possibly empty, such that for each i, Ii(k) = {k} if k ∈ Ki,

Ii(k) = K \ Ki otherwise.

We have the following result (recall that attention is restricted, without loss of generality, to

a single component).

Theorem 5.7 If V ∗(I, u) 6= ∅, ∀u ∈ SI , then the information structure is locally weakly em-

bedded, or has the all-or-nothing property. Further, if the information structure is locally weakly

embedded, then V ∗(I, u) 6= ∅, ∀u ∈ SI.

The proof is rather involved and is deferred to Appendix C. In order to prove necessity, we establish

a structural result on information structures with a single majority component. This reduces the

number of configurations for which counter-examples (in which V ∗(I, u) = ∅ for some u ∈ SI)

must be provided whenever the information structure is neither LWE nor has the all-or-nothing

property. The sufficiency part relies on the following lemma.

Lemma 5.8 Consider a N-player finite game with actions sets Ai and payoff functions ui and

let ui = minα−i∈×j 6=i△Aj
maxai∈Ai

ui(ai, α−i) be players i’s individual rationality level. There exists

5It is not difficult to check that the pair (i, j) is the same for all states in the same majority component.
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α∗
−1, such that

∀i 6= 1, ∀α1, ui(α1, α
∗
−1) ≥ ui

This states that N − 1 players can play cooperatively in order to secure their minmax level,

irrespective of the behavior of player 1. A more general statement is proved in Appendix C. With

known-own payoffs, one can easily deduce non-emptiness of V ∗, if player 1 is informed of the state

and the other players have no information. They just have to play such a profile α∗
−1, and player

1 takes a best-reply given his actual reward function. If there are two (partially) informed players

1 and 2, we use a sequential construction where player 1 announces his mixed action, allowing the

other players to secure their individually rational levels, irrespective of the action of player 2.

Unfortunately, we were unable to prove or disprove existence in the remaining case of infor-

mation structures satisfying the all-or-nothing property. Countless numerical simulations suggest

the following conjecture.

Conjecture 5.9 The set V ∗(I, u) is non-empty for all u ∈ SI if and only if the information

structure is locally weakly embedded, or has the all-or-nothing property.

5.2.3 Bad outcome

In this subsection, we consider a class of reward functions in which there is a distribution of

action profiles which yields a low payoff to all players simultaneously. This encompasses many

economic settings, e.g. environments with quasi-linear utilities.

Definition 5.10 The reward function has a bad outcome if there exists a distribution over action

profiles that provides each player with no more than his minmax payoff in each state:

∃µo ∈ △A, ∀i ∈ N, ∀k ∈ K, ui(k, µo) ≤ uk
i ,
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with uk
i := minα−i∈

Q

j 6=i △Aj
maxai∈Ai

ui(k, ai, α−i). Let B be the set of payoff functions that have a

bad outcome.

For each player i and state k, denote by I−i(k) := ∩l 6=iIl(k) the combined information of the

other players at k. We say that player i is essential at k if I−i(k) 6= {k}. The information structure

I has no essential player if, for each state k, no player is essential at k.

Theorem 5.11 V ∗(I, u) 6= ∅, ∀u ∈ B, if and only if I has no essential player.

The proof is straightforward and the intuition is as follows. Let players report their type.

Then either a state is identified, or there is an inconsistency in the reports. In that case, the bad

outcome is played long enough to deter such deviations. Details are provided in Appendix D.

5.2.4 Known-own-payoffs and bad outcome

Assuming both known-own-payoffs and bad outcome yields existence for a broader set of

information structures.

Theorem 5.12 V ∗(I, u) 6= ∅, ∀u ∈ SI ∩ B, if and only if I has at most one essential player in

each state.

The proof of this result can be found in Appendix E.

5.3 Existence for all Information Structures

Our objective is to find conditions on the reward function u such that V ∗ is non-empty inde-

pendently of the information structure. Note first that V ∗(I, u) is non-empty for all information

structure I ∈ Y if and only if V ∗(I, u) is non-empty for the coarser information structure I, i.e.

for Ii(k) = K for all i ∈ N and all k ∈ K. Necessity is trivial. Sufficiency follows from our earlier
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observation that, for any pair of comparable information structures I and I ′, with I ′ finer than

I (i.e., I ′
i finer than Ii for all i), if V ∗(I, u) is non-empty, then V ∗(I ′, u) is also non-empty. Let

ϕi(q) := min
α−i∈

Q

j 6=i △Aj

max
ai∈Ai

∑
k∈K

q(k)ui(k, α−i, ai).

Proposition 5.13 The set V ∗(I, u) is non-empty for all I if and only if there exists a distribution

over action profile µ∗ ∈ △A such that, for each i ∈ N ,

∀q ∈ △K :
∑

k∈K
q(k)ui(k, µ∗) ≥ ϕi(q).

Proof. It is sufficient to show that when I satisfies Ii(k) = K for all i ∈ N and all k ∈ K,

then the conditions of the proposition are necessary and sufficient for V ∗(I, u) 6= ∅. Sufficiency:

Consider the payoff vector v∗ obtained by implementing the distribution µ∗ independently of the

state. This payoff is clearly IC and JR since it is achieved using a strategy that is independent

of the state. This payoff vector satisfies IR since the condition on µ∗ states that no player i in

no state k can guarantee more than vk∗
i when the other players use the Blackwell punishment

strategy corresponding to a situation in which player i knows the state and the other players do

not. Necessity: note first that the equilibrium play must be independent of the state because of

feasibility condition 2. Second, suppose that there exists no µ∗ satisfying the condition of the

proposition. In other words for each µ ∈ △A there exists a player i and qµ ∈ △K such that

∑
k∈K

qµ(k)ui(k, µ) < ϕi(q
µ).

This implies that for any candidate equilibrium payoff achieved with some distribution over action

profiles µ that is independent of the state, there exists a player i that finds it profitable to deviate
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in some state. �

The condition of proposition 5.13 is trivially satisfied when it is possible to find a pooling

equilibrium distribution µ∗ and a punishment strategy that is independent of the state. This is

the case, for instance, in most auction formats and oligopoly games (take a very high and a very

low price, or quantity).

When focusing on finer information structures in which players have non-degenerate types,

punishment strategies sustaining an equilibrium can depend on types. There are some obvious

properties of the reward functions ensuring existence, if one gives up the requirement that existence

obtains for all information structures. Proposition 5.14 provides a useful criterion, which is the

N -player counterpart of condition 4 in Hörner and Lovo (2009). Let D̂ be the set of type profiles

that are consistent with some state after deletion of some player’s type. That is,

D̂ := {θ ∈
∏

i∈N
Θi : ∃i ∈ N, κ(θ−i) 6= ∅}.

The following condition guarantees that V ∗ is non-empty.

Proposition 5.14 If there exists a distribution over action profile µ∗ ∈ △A, and for all θ ∈ D̂,a

profile µθ ∈ △A such that for all i, k ∈ κ(θ−i),

max
ai∈Ai

ui(k, ai, µ
θ
−i) ≤ ui(k, µ∗),

then V ∗ is non-empty.

Proof. It is sufficient to show that v := (ui(k, µ∗))i∈N,k∈K is in V ∗. IC: The payoff vector v can be

achieved by implementing the occupation measure µ∗ irrespective of the announcements, hence it

is incentive compatible. IR and JR: the condition on µθ implies that when the distribution over
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action profile µθ is implemented, in all possible states a player cannot gain more than v even if he

unilaterally deviates or makes a report leading to an inconsistent report profile. Thus, µθ can be

used to deter unilateral deviations or misreports, guaranteeing that v is individually and jointly

rational. �

6 Reputations

It follows from the previous section that V ∗ is non-empty when players know their own payoffs,

and the incomplete information concerns one player’s payoff only, so that the payoffs of all players

but one are commonly known. Formally, for every player i, ui(k, ·) = ui(θi, ·), and for all i 6= 1,

|Θi| = 1. This environment with one-sided incomplete information is the focus of a large literature

on “reputations,” starting with Fudenberg and Levine (1989), and is assumed throughout this

section. While there exists a large literature on reputation in two-player games, Fudenberg and

Kreps (1987) and Ghosh (2007) are, to the best of our knowledge, the only other papers considering

reputations when the informed player faces multiple opponents. In Hörner and Lovo (2009), it

was shown how results by Israeli (1999) for the set of undiscounted Nash equilibrium payoffs in

two-player games with such information structures could be applied with hardly any change to

the set of belief-free equilibrium payoffs as the discount factor tends to one. In this section, the

generalization of those results to N players is presented. Proofs are generalizations of those by

Israeli.

Fix one (payoff) type of player 1, the rational type. The purpose of this section is to identify

how much the rational type is guaranteed to get in equilibrium, as the discount factor tends to

one, as a function of his other possible payoff types. The rational type’s reward is denoted u1,

while his other possible payoff types are denoted uk
1, k = 2, . . . , K. We fix throughout the reward
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functions (u2, . . . , uN) of players i = 2, . . . , N . Given some reward function uk
1, ui, let uk

1, ui denote

the corresponding minmax payoffs val uk
1 and val ui.

Given any vector uK := (u2
1, . . . , u

K
1 ) such that V ∗ is non-empty, let v1(u

K) be the infimum

of the payoff of player 1’s rational type over V ∗. We define the reputation payoff of player 1’s

rational type as

u∗
1 := sup

{uK :K≥2}

v1(u
K).

Observe that the rational type’s equilibrium payoff must be at least equal to

min
µ∈△A

u1(µ) such that uk
1(µ) ≥ uk

1, ui(µ) ≥ ui, ∀i, k ≥ 2.

Indeed, if the state is k, the play specified by the equilibrium strategies must be an equilibrium

of the game with complete information in state k, and therefore this play must be such that all

players get at least their minmax payoff in that state. Since player 1’s rational type can always

follow the strategy of player 1’s type k, he must receive at least as much as he would get from

following this play. Therefore, it must be that

u∗
1 ≥ sup

{uK :K≥2}

{
min
µ∈△A

u1(µ) : uk
1(µ) ≥ uk

1, ui(µ) ≥ ui, ∀i, k ≥ 2

}
.

Focusing on K = 2, the dual problem is

sup
u2

1

max
{pi≥0:i=1,...,N}

p1u
2
1 +

∑N

i=2
piui such that p1u

2
1 +

∑N

i=2
piui ≤ u1.
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Since the constraint must bind, the reputation payoff is at least

sup
{pi≥0:i=2,...,N}

val (u1 −
∑N

i=2
pi(ui − ui1)),

where 1 is a vector in R
|A| with all entries equal to one. Note that this lower bound is always larger

than u1 (take (p2, . . . , pN) = 0). The following theorem shows that this lower bound is actually

achieved, and provides an alternative characterization of it. The proof of it can be found in the

supplemental material (Appendix F).

Theorem 6.1 The reputation payoff is equal to

u∗
1 = sup

{pi≥0:i=2,...,N}

val (u1 −
∑N

i=2
pi(ui − ui1)) = sup

α1∈△A1

min
α−1∈Y (α1)

u1(α1, α−1),

where Y (α1) := {α−1 ∈ △A−1 : ui(α1, α−1) ≥ ui, ∀i = 2, . . . , N}. The reputation payoff is

achieved if K = N and uk
1 = −uk, ∀k = 2, . . . , N :

u∗
1 = v1(−u2, . . . ,−uN).6

As is clear from the alternative characterization, the reputation payoff is lower than the usual

Stackelberg payoff

sup
α1∈△A1

min
α−1∈B(α1)

u1(α1, α−1),

where B(α1) is the set of Nash equilibria in the one-shot game between players i = 2, . . . , N , given

α1. A Stackelberg sequence is any sequence {an
1}n∈N achieving the supremum.

6Note that zero-sum games violate the interiority assumption. However, as in Hörner and Lovo (2009, online
appendix), it is straightforward to approach this reputation payoff by considering payoff matrices satisfying the
interiority assumption, which are arbitrarily close to the zero-sum game.
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A game has conflicting interest if, for some Stackelberg sequence {an
1}n∈N, all Nash equilibria

in B(an
1 ) yield players i 6= 1 exactly their minmax payoff, for all n ∈ N. It follows immediately

from the theorem that player 1’s rational type can secure the Stackelberg payoff in all games of

conflicting interest.

7 Conclusion

This paper provides a characterization of the set of belief-free equilibrium payoffs in games

with perfect monitoring. Further, necessary and sufficient conditions on the information structure

are identified for non-emptiness of this set.

As discussed, belief-free equilibria have appealing properties. However, because they do not

rely on beliefs, they are silent on how beliefs actually shape play. Game theory has played an

important role in providing insights about when and how agents learn, whether it is advantageous

to hide or disclose private information, or how fast to reveal it. This provides a useful perspective

on the existence or non-existence results of belief-free equilibria. In an environment in which such

equilibria do not exist, play must necessarily reflect beliefs, and this opens the door for robust

findings on this dependence. This is the case, for instance, in zero-sum games with incomplete

information on one-side, in which the speed of convergence can be determined (Mertens, 1998).

On the other hand, if one attempts to address such issues in an environment in which belief-free

equilibria exist, it becomes more important to stress why the choice of the particular equilibrium

is compelling. This could be, for instance, because the equilibrium that is considered is efficient

(see, however, the folk theorems established by Fudenberg and Yamamoto, 1999b). Alternatively,

one must invoke considerations that are external to the repeated game, such as those involving

measures of complexity, for instance.
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Appendix A: Proof of Theorem 4.1 with a

communication device

Player i’s message set is Θi. The timing in a given period is as follows.

1. A draw from the uniform distribution on [0, 1] is publicly observed;

2. Actions are simultaneously chosen;

3. Messages are simultaneously chosen.

As far as messages go, players always report their types truthfully in equilibrium. We refer to

the event in which one player does not report truthfully as misreporting by this player. A type

profile is inconsistent if κ(θ) = ∅, and it is consistent otherwise.

As far as actions go, equilibrium play can be divided into three phases: regular phases, penitence

phases and punishment phases. Regular and penitence phases last one period. Punishment phases

last T period, for some T ∈ N to be defined.

In regular and penitence phases, players use an action profile that is coordinated by the public

randomization device. In a punishment phase, a player is minmaxed by his opponents, in the

sense of Blackwell described above.

To ensure that the strategy profile is belief-free, we must make sure that the punished player is

playing the same way independently of the state, and that the punishing players have incentives to

carry out the minmax strategy, even when this strategy calls for mixed actions. This complicates

somewhat the description of the equilibrium strategies.

There are two kinds of deviations. The punishment phase is triggered if a player deviates in

his choice of an action (“deviation in action”), and deters him from making such deviations. The

penitence phase is triggered only if an inconsistent type profile is observed, and deters players from
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misreporting (“deviation in report”) to induce an inconsistent type profile. Incentive compatibility

of payoffs deters players from misreporting to induce a false but consistent type profile.

The equilibrium path consists of an infinite repetition of the regular phases.

Regular phases are denoted Rθ (ε), with κ (θ) 6= ∅ and ε ∈ R
N |κ(θ)|. Penitence phases are

denoted Eθ (ε), where κ (θ) = ∅ and ε ∈ R
NK . Punishment phases are denoted P θ−i, with

κ (θ−i) 6= ∅.

Actions and Messages

(i) Regular phase: In a regular phase, actions are determined by the outcome of the public

randomization device. In phase Rθ (ε), action profiles are selected according to a probability

distribution µθ (ε) in such a way that

ui(k, µθ (ε)) = vk
i + εi

for k ∈ κ (θi, θ−i), and

ui(k, µθi,θ−i
(ε)) > ui(k, µθ′i,θ−i

(ε′)) (2)

for all i, all εi ∈ [−ε, ε], all ε′i ∈ [−ε, ε], all (θi, θ−i) and (θ′i, θ−i) such that κ (θi, θ−i) 6= ∅ and

κ (θ′i, θ−i) 6= ∅. Such a distribution exists for sufficiently small ε > 0 given that v ∈ int V ∗ is

strictly incentive compatible.

At the end of a regular phase, all players truthfully report their types.

(ii) Penitence phase: In a penitence phase, actions are determined by the outcome of the public

randomization device. Consider penitence phase Eθ (ε). Recall that κ (θ) = ∅. We distinguish

two cases.
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1. θ ∈ D: by definition, there exist a set Ωθ of players and types (i, θ
′

i) such that κ
(
θ
′

i, θ−i

)
6= ∅.

Action profiles are selected according to a probability distribution µθ (ε) in such a way that

ui(k, µθ (ε)) < vk
i + εi (3)

for all (i, θ
′

i) ∈ Ωθ, k ∈ κ
(
θ
′

i, θ−i

)
and all εi ∈ [−ε, ε]. Such a distribution exists for sufficiently

small ε > 0 given that v ∈ int V ∗ satisfies (JR) with strict inequality.

2. θ /∈ D (i.e., at least two players misreported): Players use some fixed, but arbitrary action

profile a := {ai}
N
i=1 ∈ A.

At the end of a penitence phase, all players truthfully report their types.

(iii) Punishment phase: A punishment phase lasts T periods. In P θ−i, players −i use ŝ
θ−i

−i .

For some action ai ∈ Ai, let s
ai

i denote the strategy of playing ai after all histories within the

punishment phase.7 Player i plays s
ai

i throughout the phase.

We pick T ∈ N, δ < 1 and ε > 0 such that, for all δ > δ and all k ∈ κ (θ−i), player i’s average

discounted payoff over the T periods is no larger than vk
i − 2ε. This is possible since v satisfies

(IR) with strict inequality.

At the end of each period of a punishment phase, all players truthfully report their types.

Initial phase

All players truthfully report their types at the beginning of the game. Given report profile θ,

the initial phase is Rθ(0).

7To avoid introducing additional notation, we have used here the same notation (i.e., a
i
) than in one of the

specifications for the penitence phase. It is irrelevant whether these are the same actions or not.
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Transitions

(i) From a regular phase Rθ (ε): Let a denote the (pure) action profile determined by the

public randomization device, a′ the realized action profile, and θ′ the report of types at the end

of the phase.

1. (Unilateral deviation) a′
i 6= ai for some i ∈ N and a′

−i = a−i:

(a) κ(θ′−i) 6= ∅: the next phase is P θ′−i;

(b) κ(θ′−i) = ∅: the next phase is Eθ′ (ε′), where ε′j = −ε if (j, θ′′j ) ∈ Ωθ′ for some θ′′j ∈ Θj ,

and ε′j = εj otherwise.

2. (Multilateral deviations, or no deviation) a′
i 6= ai for some i ∈ N and a′

−i 6= a−i, or a′ = a:

(a) κ(θ′) 6= ∅:

i. θ′ = (θ−i, θ
′
i) for some i ∈ N and θ′i 6= θi: the next phase is Rθ′(−ε, ε−i);

ii. otherwise, the next phase is Rθ(ε);

(b) κ(θ′) = ∅: the next phase is Eθ′ (ε′), where ε′i = −ε if (i, θ′′i ) ∈ Ωθ′ for some θ′′i ∈ Θi,

and ε′i = εi otherwise.

(ii) From a penitence phase Eθ (ε): Let a denote the (pure) action profile determined by the

public randomization device, a′ the realized action profile, and θ′ the report of types at the end

of the phase.

1. (Unilateral deviations) a′
i 6= ai for some i ∈ N and a′

−i = a−i:

(a) κ(θ′−i) 6= ∅: the next phase is P θ′−i;
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(b) κ(θ′−i) = ∅: the next phase is Eθ′ (ε′), where ε′j = −ε if (j, θ′′j ) ∈ Ωθ′ for some θ′′j ∈ Θj ,

and ε′j = εj otherwise.

2. (Multilateral deviations, or no deviation) a′
i 6= ai for some i ∈ N and a′

−i 6= a−i, or a′ = a:

(a) κ(θ′) 6= ∅: the next phase is Rθ(ε);

(b) κ(θ′) = ∅: the next phase is Eθ′ (ε′), where ε′i = −ε if (i, θ′′i ) ∈ Ωθ′ for some θ′′i ∈ Θi,

and ε′i = εi otherwise.

(iii) From a punishment phase P θ−i: The punishment phase lasts T periods. Let hT denote an

arbitrary history of length T . Let θ′ denote the reported type profile in the T -th period. Then

1. (a) κ(θ′) = ∅: the next phase is Eθ′ (ε′), where ε′i = −ε if (i, θ′′i ) ∈ Ωθ′ for some θ′′i ∈ Θi,

and ε′i = εi otherwise;

(b) κ(θ′) 6= ∅: the next phase is Rθ′(εi(h; P θ−i), ε−i(h; P θ−i)), with εj(h; P θ−i) ∈ [−ε̄, ε̄], all

j. The values εj(h; P θ−i) are such that:

(4) for all k ∈ κ (θ′), and conditional on any history h ∈ HT , playing s
ai

i in the punish-

ment phase is an optimal continuation strategy for player i, given ŝ
θ−i

−i ; further, if

θ′−i = θ−i, player i’s expected payoff, evaluated at the beginning of the punishment

phase, from playing s
ai

i given ŝ
θ−i

−i (and given that θ′ is truthfully reported), is equal

to
(
1 − δT

)
(vk

i − 2ε) + δT
(
vk

i − ε
)
, for all k ∈ κ (θ′). That this is possible follows

from inequality (6) below.

(5) for all k ∈ κ (θ′), and conditional on any history h ∈ HT , playing ŝ
θ−i

j is an optimal

continuation strategy for player j 6= i, given (s
ai

i , (ŝ
θ−i

j′ )j′ 6=j); In addition εj

(
·; P θ−i

)
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is in [ε/3, ε] if θ′j = θj , and it is in [−ε,−ε/3] otherwise (recall that h specifies θ′).

That this is possible follows from inequality (6) below.

It is clear that these strategies do not depend on players’ beliefs, but only on past history.

Optimality Verification

Given v ∈ int V ∗, we now pick ε > 0 small to ensure that the probability distributions in-

troduced above exist, and δ, and T such that the payoff of a punished player is low enough, as

specified above for the punishment phase (see ‘Actions and Messages’). In addition, we take these

values to satisfy

−
(
1 − δT

)
M + δT

(
vk

j + ε/3
)

>
(
1 − δT

)
M + δT

(
vk

j − ε/3
)
, (6)

− (1 − δ) M + δ
(
vk

j − ε
)

> (1 − δ) M + δ
((

1 − δT
)
(vk

j − 2ε) + δT
(
vk

j − ε
))

. (7)

Given v and ε > 0, these are all satisfied as δT → 1 and T → ∞, so they are also satisfied for

values of T and δ that are large enough. Inequality (6) guarantees that a variation of 2ε̄/3 in

continuation payoffs at the end of a punishment phase dominates any gains/losses that could be

incurred during such a phase. Inequality (7) guarantees that the punishment phase is long enough

to deter deviations in action.

Regular Phase: Rθ (ε) and penitence phases Eθ (ε): Let a denote the (pure) action profile

determined by the public randomization device, a′ the realized action profile, and θ′ the report of

types at the end of the phase.

Actions: Suppose that a′ = (a−i, a
′
i) for some i and a′

i 6= ai, i.e., player i unilaterally deviates

from the prescribed action profile. Then, provided players −i truthfully report, the punishment
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phase P θ′−i starts. The maximum that player i can obtain by deviating is the right-hand side of

(7), while by conforming to the prescribed action he gets at least as much as the left-hand side of

(7).

Messages: let θi be player i’s type. We distinguish two cases.

1. Either no or more than one player deviated in action:

If player i reports truthfully, he gets at least vk
i − ε, where k ∈ κ (θ′). If he misreports, we

further distinguish two cases:

(a) κ (θ′) = ∅: assuming the other players report truthfully, the next phase is Eθ′ (ε′) with

ε′i = −ε. So player i’s payoff is at most maxθ′i 6=θi
(1 − δ) ui(k, µθ′i,θ

′
−i

(ε)) + δ
(
vk

i − ε
)
,

which is less than vk
i − ε, because of (3).

(b) κ (θ′) 6= ∅: Player i gets at most maxθ′i 6=θi
(1 − δ)ui

(
k, µθ′i,θ

′
−i

(ε)
)

+ δ
(
vk

i − ε
)
, which

is less than
(
vk

i − ε
)
, because of (2).

2. a′ = (a−j, a
′
j) for some j and a′

j 6= aj (i.e., player j deviated in action):

Player j’s report is irrelevant and he can as well report truthfully.

If player i 6= j reports truthfully his type, he gets at least −
(
1 − δT

)
M + δT

(
vk

i + ε/3
)
. If

he misreports, there are two cases:

(a) κ (θ′) = ∅: the next phase is Eθ′ (ε′) with ε′i = −ε, so his payoff is smaller than

(1 − δ)M +δ
(
vk

i − ε
)

<
(
1 − δT

)
M +δT

(
vk

i − ε/3
)
, which is less than −

(
1 − δT

)
M +

δT
(
vk

j + ε/3
)

because of (6).

(b) κ (θ′i, θ−i) 6= ∅: Player i gets at most
(
1 − δT

)
M + δT

(
vk

i − ε/3
)

(assuming he reports

truthfully at the end), which is less than −
(
1 − δT

)
M + δT

(
vk

i + ε/3
)

because of (6).
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Punishment phase P θ−i: Let θ′ denote the reported type profile in the T -th period.

Actions: We consider first player i, then Player j 6= i.

1. Player i: as mentioned, inequality (6) guarantees that we can specify εi

(
h; P θ−i

)
such that

s
ai

i is optimal after every history in the punishment phase, given ŝ
θ−i

j 6=i.

2. Player j 6= i: similarly, inequality (6) guarantees that we can specify εj

(
h; P θ−i

)
such that

ŝ
θ−i

j is optimal after every history in the punishment phase, given ŝ
θ−i

j′ 6=i,j.

Messages: The only payoff relevant message is the one at the end of the punishment phase.

Let θ′ denote the reported type profile in the T -th period. If player i ∈ N reports truthfully his

type, he gets at least vk
i − ε. If he misreports, we distinguish two cases:

1. κ (θ′) = ∅: the next phase is Eθ′ (ε′) with ε′i = −ε, so player i’s payoff is at most

maxθ′i 6=θi
(1 − δ) ui(k, µθ′i,θ

′
−i

(ε)) + δ
(
vk

i − ε
)
, which is less than vk

i − ε because of (3).

2. κ (θ′) 6= ∅ : player i gets at most maxθ′i 6=θi
(1 − δ) ui(k, µθ′i,θ

′
−i

(ε)) + δ
(
vk

i − ε
)
, which is less

than vk
i − ε because of (2).

�

Appendix B: Proof of Theorem 5.3

Sufficiency is outlined in the Section 5. For the necessity part, assume that there are two states

k, ℓ such at most players 1 and 2 distinguish these two states. Consider the following example,

due to Renault (2001). There are three players 1, 2, 3, and we consider only the states k, ℓ. Other

players have no influence on rewards, and rewards in other states do not depend on actions.

The payoff matrix in state k is the following:
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L R

T 1, 1, 0 1, 1, 0

B 1, 1, 0 1, 1, 0

W

L R

T 0, 0, 1 0, 0, 1

B 0, 0, 1 0, 0, 1

E

The payoff matrix in state ℓ is:

L R

T 0, 0, 1 0, 0, 1

B 0, 0, 1 0, 0, 1

W

L R

T 1, 1, 0 1, 1, 0

B 1, 1, 0 1, 1, 0

E

First, assume that only player 1 knows the state and assume that V ∗(I, u) is non-empty. The

IR condition for player 3 implies that he plays E in state k and W in state ℓ. Since the preference

ordering of player 1 is the opposite of the one of player 3, this violates the IC condition.

Assume now that players 1 and 2 know the state. Suppose that there exists a payoff vector in

V ∗(I, u). If players 1 and 2 both announce k, individual rationality implies that player 3 plays

E. The payoff vector in state k is thus (0, 0, 1). Similarly, if players 1 and 2 announce ℓ, player 3

plays W and the payoff vector in state ℓ is (0, 0, 1).

Now, suppose that player 1 announces k and player 2 announces ℓ: either the true state is k

and player 2 is misreporting or the true state is ℓ and player 1 is misreporting. The JR condition

implies that there exists a distribution of action profiles α such that u1(ℓ, α) ≤ 0 and u2(k, α) ≤ 0.

This is impossible since for each action profile a, u1(ℓ, a) + u2(k, a) = 1. �

Appendix C: Proof of Theorem 5.7
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Necessity

We prove that if an information structure has a single majority component and is neither LWE

nor has the all-or-nothing property, then there is a reward function (which satisfies KOP) such

that V ∗ is empty. First observe that it is sufficient to focus on four information structures.

Proposition 7.1 If an information structure has a single majority component and is neither

LWE nor has the all-or-nothing property, then there there is a subset of three states such that the

restriction of I to this subset is of one of the following four types

k1 k2 k3

1 k1 ∗ ∗

2 ∗ k2 ∗

A

k1 k2 k3

1 k1 ∗ ∗

2 ∗ k2 ∗

3 k1 k2 k3

B

k1 k2 k3

1 k1 ∗ ∗

2 ∗ k2 ∗

3 k1 ∗ ∗

C

k1 k2 k3

1 k1 ∗ ∗

2 ∗ k2 ∗

3 k1 ∗ ∗

4 ∗ k2 ∗

D

where the entries are the types, or signals, of the players and it is understood that other players

have no information on those states.

The proof is relegated to supplemental material (Appendix G).

Counter-examples

For each information structure, we present a counter-example, i.e. a reward function for which

V ∗(u, I) = ∅.
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A: a two-sided battle of the sexes We start by a counter-example due to Koren (1992),

see also Hörner and Lovo (2009). There are three states k, k′, k′′. The information of player 1

is I1(k) = {k, k′′}, I1(k
′) = {k′}. The information of player 2 is I2(k) = {k, k′}, I2(k

′′) = {k′′}.

Player 1 chooses rows and player 2 chooses columns.

L R

T 3, 1 0, 0

B 0, 0 1, 3

state k

L R

T 3, 0 0, 1

B 0, 0 1, 1

state k′′

L R

T 1, 1 1, 0

B 0, 0 0, 3

state k′

The proof that V ∗ = ∅ for this game is in Hörner and Lovo (2009). The main argument is the

following. In state k′, player 1 has a dominant strategy, and individual rationality requires T to

be played with frequency 1 in that state. Now, in state k, player 1 may claim that the state is

k′. Incentive compatibility requires thus (T, L) to be played with frequency at least 3/4 in state

k. A symmetric argument for player 2 shows that (B, R) must be played with frequency at least

3/4 in state k. These two requirements are mutually incompatible.

B: Adding a fully informed player Consider example 5.5. This corresponds to the previous

game with the addition of a third player, player 3, who knows the state.

C: Adding a partially informed player Consider the game of case A again, and assume that

there is a player 3 who has the same information as player 2. The payoff of player 3 does not

depend on the state and is:
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L R

T 3 3 − ε

B 3 0

u3

In this game, V ∗ is empty. Assume for the sake of contradiction that there is a point v in V ∗.

Individual rationality of players 1 and 2 implies that in state k′, T is played with frequency 1, and

(T, R) with frequency no more than 1/4. Then, since player 1 is the only player to distinguish k

and k′, incentive compatibility requires that the payoff vk
1 of player 1 in state k satisfies: vk

1 ≥ 3× 3
4
.

Since the sum of players 1 and 2’s payoffs in state k is at most 4, this implies vk
2 ≤ 7

4
. Individual

rationality of players 1 and 2 also implies that in state k′′, R is played with frequency 1, and (T, R)

with frequency no more than 1/4. This implies that the payoff of player 3 in state k′′ is such that:

vk′′

3 ≤ (3 − ε)/4.

Consider now the following inconsistent reports: player 2 claims that the state is k′′ and

player 3 claims that the state is k. Joint rationality requires that there exists a distribution α

of action profiles such that vk
2 ≥ uk

2(α) and vk′′

3 ≥ u3(α). This is impossible, because vk
2 + vk′′

3 ≤

7/4 + (3 − ε)/4 < 3 − ε for ε small and since for every action profile, uk
2 + u3 ≥ 3 − ε.

D: Adding two partially informed player Consider once again the game of case A, and

assume that there is a third player, player 3, who has the same information as player 2, and a

fourth player, player 4, who has the same information as player 1. The payoff of player 3 is as in

case C. The payoff of player 4 does not depend on the state and is:
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L R

T 0 3 − ε

B 3 3

u4

In this game, V ∗ is empty. Assume for the sake of contradiction that there is a point v in

V ∗. As in the previous example, individual rationality of players 1 and 2 in state k′′ implies

vk′′

3 ≤ (3− ε)/4. Consider again the inconsistent reports in which player 2 claims that the state is

k′′, while player 3 claims that the state is k. Since for every action profile uk
2 + u3 ≥ 3 − ε, joint

rationality implies vk
2 + vk′′

3 ≥ 3 − ε and thus vk
2 ≥ (3 − ε)3/4.

By a symmetric argument, considering the inconsistent reports in which player 1 claims that

the state is k′ and player 4 claims that the state is k, we find vk
1 ≥ (3 − ε)3/4. This implies that

vk
1 + vk

2 ≥ (3 − ε)3/2 > 4 for small ε, which is impossible.

The following Proposition show that an information structure with a single majority compo-

nent, that is neither LWE nor has the all-or-nothing property is necessary of one of type A, B, C

or D.

LWE is sufficient

In this part we show that if the information structure is locally weakly embedded, then

V ∗(I, u) 6= ∅, ∀u ∈ SI . Note that if there is a single majority component, LWE implies that there

exists two players 1,2 and a partition of the set of states K = K1 ∪ K2 such that:

• Il(k) = K for each k and each l 6= 1, 2.

• I1(k) = {k} for each k ∈ K1.
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• I2(k) = {k} for each k ∈ K2.

We first prove the result assuming K1 = K, i.e. player 1 is fully informed at each state.

Proposition 7.2 Consider an information structure such that: player 1 knows the state and

players 3, . . . , n have no information (i.e. ∀k, I1(k) = {k}, I3(k) = · · · = IN (k) = K). Then

V ∗(I, u) 6= ∅, ∀u ∈ SI.

Proof. Denote by ui the minmax level of player i = 3, . . . , N , uk
1 the minmax level of player 1 in

state k and uθ
2, the minmax level of player 2 of type θ. For each type θ of player 2, consider the

set Aθ of mixed actions profiles α such that:

• For each i = 3, . . . , N ,

∀a2 ∈ A2, ui(α1, a2, α3, . . . , αN) ≥ ui.

• α2 is a best-reply of player 2 of type θ to (α1, α3, . . . , αN)

The set Aθ is clearly compact.

Claim 7.3 Aθ is non-empty.

Proof. We fix α1. For i ≥ 3 consider the correspondence Fi(α1, ·) : ×j /∈{1,2,i}△Aj → △Ai defined

by:

Fi(α1, α−1−2−i) = {αi : ∀a2, ui(α1, a2, αi, α−1−2−i) ≥ ui}

This correspondence is convex and compact valued. Let us prove that this is also non-empty

valued. For a given α−1−2−i, player i has a mixed action that yields a payoff no less than:

max
αi

min
a2

ui(α1, a2, αi, α−1−2−i) = min
α2

max
ai

ui(α1, α2, ai, α−1−2−i)
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where the equality follows from the minmax theorem. Now, minα2
maxai

ui(α1, α2, ai, α−1−2−i) ≥

ui, and Fi(α1, α−1−2−i) is non-empty.

Let us denote BR2,θ the best-reply correspondence of player 2 of type θ and BR1,f is the

best-reply correspondence of player 1 when his payoff function is f : A → R. Consider the

correspondence Φf,θ from ×i△Ai to itself defined as follows:

Φf,θ(α) = {β : β1 ∈ BR1,f (α−1), β2 ∈ BR2,θ(α−2), ∀i ≥ 3, βi ∈ Fi(α1, α−1−2−i)}

Φf,θ has non-empty, convex and compact values and it is straightforward to check that it has a

closed graph. It admits thus a fixed point ᾱ by Kakutani’s fixed point theorem. Clearly, ᾱ is in

Aθ. Note that this profile has the additional property to be on the best-reply graph of player 1.

We thus have some degrees of freedom as we can choose any payoff function for player 1. This

property is used later on. This ends the proof of the Claim.

Note that this proves Lemma 5.8 by considering the special case where player 1 has a single

action.

Let αk be a mixed action profile that maximizes u1(k, α) over α ∈ AI2(k). We claim that the

payoff vector:

(u1(k, αk), u2(I2(k), αk), u3(α
k), . . . , uN(αk))

is in V ∗. To phrase this definition, the informed player announces an action profile for all players

but player 2, who takes a best-reply. Player 1 may choose the profile as she wishes, provided that

it secures the minmax level of players 3, . . . , N , irrespective of the action of player 2.

Under the assumptions of Proposition 7.2, the constraints defining V ∗ are the following:
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• Individual rationality for player 1.

For each θ and each q ∈ △θ,

∑
k∈θ

qku1(k, αk) ≥ min
α−1

max
α1

∑
k∈θ

qku1(k, α1, α−1)

• Individual rationality for players 2, 3, . . . , n.

For each k, u2(I2(k), αk) ≥ u
I2(k)
2 , for each i ≥ 3, ui(α

k) ≥ ui.

• Incentive compatibility for player 1.

For each k, k′ such that I2(k) = I2(k
′), u1(k, αk) ≥ u1(k, αk′

).

• Joint rationality for players 1 and 2.

For each announcement (k′, θ) such that θ 6= I2(k
′), set αk′,θ = (αk′

−2, α
k′,θ
2 ), where αk′,θ

2

is a best-reply of player 2 of type θ to αk′

. The true state is either k′ (and player 2 is

misreporting) or k ∈ θ (in which case player 1 is misreporting). The following must hold:

u1(k, αk) ≥ u1(k, αk′,θ) for k ∈ θ, and u2(I2(k
′), αk′

) ≥ u2(I2(k
′), αk′,θ).

Let us check all these points.

Individual rationality for player 1. Fix θ and q ∈ △θ. It follows from our construction that:

∑
k∈θ

qku1(k, αk) =
∑

k∈θ
qk max

α∈Aθ

u1(k, α) ≥ max
α∈Aθ

∑
k∈θ

qku1(k, α)

Let ᾱ be a fixed point of Φf,θ where f is chosen to be
∑

k∈θ qku1(k, ·). We get:

max
α∈Aθ

∑
k∈θ

qku1(k, α) ≥
∑

k∈θ
qku1(k, ᾱ) = max

α1

∑
k∈θ

qku1(k, α1, ᾱ−1)
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where the last equality holds since ᾱ is on the graph of BR1,f . The right-hand-side is no less than

minα−1
maxα1

∑
k∈θ qku1(k, α1, α−1).

Individual rationality for players 2, 3, . . . , N . Individual rationality for players 3, . . . , n holds by

construction of Aθ. Individual rationality for player 2 holds since she plays a best-reply to some

mixed action profile.

Incentive compatibility for player 1. Suppose that the true state is k and let θ = I2(k). Player

1 gets the payoff maxα∈Aθ
u1(k, α). If player 1 pretends that the state is k′ with I2(k

′) = θ, the

induced action profile αk′

also belongs to Aθ, and the resulting payoff for player 1 is at most

maxα∈Aθ
u1(k, α).

Joint rationality. Suppose as above, that the true state is k ∈ θ, but player 1 pretends that the

true state is k′ with θ′ = I2(k
′) 6= θ. Still, since the action of player 2 his dictated by her true

type θ, so the induced action profile belongs to Aθ. Thus player 1 does not increase her payoff by

this deviation.

Suppose now that the true state is k′ but player 2 pretends that her type is θ. Players other

than 2 play αk′

−2 and the best-reply of player 2 of type θ′ is αk′

−2 by construction. Player 2 has thus

no incentive to misreport. This ends the proof of the proposition. �

Now, let us take up the general LWE case where there is a partition of the set of states

K = K1 ∪ K2 such that: Il(k) = K for each k and each l 6= 1, 2, I1(k) = {k} for each k ∈ K1,

I2(k) = {k} for each k ∈ K2.

Proposition 7.4 Under KOP, then V ∗(I, u) is non-empty for the above information structure.
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Proof. Let take {K1, K2} be the partition of K such that K1 is the largest subset of K satisfying

I1(k) = {k} for each k ∈ K1. Let L := {L1, . . . , LM} be the partition over K2 that is induced by

player 1 information. Then we have,

• ∪mLm = K2

• If k, k′ ∈ Lm, then I1(k) = I1(k
′)

• If k, k′ ∈ Lm, then u1(k, α) = u1(k
′, α)

• ∀Lm ∈ L, if k ∈ Lm, then there exists k′ 6= k, k′ ∈ Lm

Consider first the game ΓK1 obtained by eliminating the states in K2. The only possible states

for this game are those in K1 and player 1 is the best informed player. This game has a non-empty

V ∗ from Proposition 7.2. Consider the above construction for this restricted game and denote αk
i ,

i = 1, . . . , N , k ∈ K1 player i’s corresponding mixed action in state k. Note that αk
i , i 6= 2 are such

that when all players i 6= 2 play αk
i , then player j ≥ 3 payoff is individually rational independently

of player 2’s strategy.

Consider now ΓK2 defined as the game where the only possible states are those in K2 and

the payoff function of player 2 in state l ∈ K2 is û2(l, α) := −u1(l, α) while the payoff functions

of all the other players are as in the original game. This is a game of known-own payoff where

player 1 knows at least as much as player 2, i.e. player 1 is fully informed. Let αl
i, i = 1, . . . , N ,

l ∈ K2 be player i’s mixed action obtained by using the previous construction in ΓK2 (player 1

announcing all players but player 2 stage game strategies and player 2 best replying). Note that

if l, l′ ∈ Lm ⊆ K2, then αl
i = αl′

i . Also for this game αl
i, i 6= 2 are such that when all players i 6= 2

play αl
i, then player j ≥ 3 payoff is individually rational independently of player 2 strategy. In

addition player 1 incentive compatibility constraint implies that
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min
α2

u1

(
l, αl

−2, α2

)
≥ min

α2

u1

(
l, αl′

−2, α2

)

for any pair l, l′ ∈ K2. Note also that for any l ∈ K2

max
k∈K1

min
α2

u1

(
l, αk

−2, α2

)
≤ min

α2

u1

(
l, αl

−2, α2

)

Otherwise, in game ΓK2, player 1 would have chosen for state l a strategy αk
−2 for some k ∈ K1

instead of αl
−2.

Take a state k ∈ K and a strategy profile α−2 for all players but 2 and choose

βk
2 (α−2) ∈ arg min

α2

u1 (k, α−2, α2) ,

brk
2(α−2) ∈ arg max

α2

u2 (k, α−2, α2) ,

Consider the following construction:

• Step 1: Types announcement. Players 1 and 2 announce their types. Let θ1 and θ2 be their

announcement.

• Step 2.a: Regular Play. If the there is no contradiction in player 1 and 2 announcements,

then

– If the state k ∈ K1 is announced, then players other than 2 play αk
−2 and and player

2 takes a best reply.

– If the state l ∈ K2 is announced , then players other than 2 play αl
−2 and player 2

takes a best reply.
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• Step 2.b: Penitence Play. If there is a contradicting announcement, then

– If the announcement is θ1 = k ∈ K1 and θ2 = l ∈ K2, then players other than 2 play

αk
−2 and player 2 plays βl

2(α
k
−2).

– If the announcement is θ1 = Lm ∈ L and θ2 = l′ /∈ Lm, then players other than 2 play

αl
−2, with l ∈ Lm, and player 2 plays βl′

2 (αl
−2).

– If the announcement is θ1 = Lm ∈ L and θ2 ∈ K1, then players other than 2 play αl
−2

with l ∈ Lm, and player 2 takes a best-reply for the announced type θ2.

The interpretation is the following. As in the proof of Proposition 7.2, player 1 chooses an action

profile α2 that secures the minmax levels of the uninformed players (irrespective of the action of

player 2), and player 2 takes a best-reply. On K1, the construction is essentially unchanged. On

K2, player 1 makes this choice, expecting player 2 to be adversarial (û2(l, α) := −u1(l, α)). If

player 1 misreports, player 2 makes this expectation happen and minimizes the payoff of player 1.

Otherwise, she takes a best reply according to her actual payoff function. This gives an incentive

to player 1, who prefers player 2 to take her best reply rather than punishing him.

Verification that the strategy define a payoff vector in V ∗

Individual rationality. Consider the payoffs from the regular play. The payoff is clearly IR for

player i ≥ 3 from the constructuion. Player 2 payoff is IR since she is best replying to the other

players strategies. In states k ∈ K1, player 1’s IR follows from the construction of the equilibrium

of the game ΓK1 . In a state l ∈ K2, player 1’s payoff is at least as large as the one in the game

ΓK2 which is individually rational. I.e., for l ∈ K2 we have,

vl
1 = u1

(
l, αl

−2, br
l
2(α

l
−2)

)
≥ min

α2

u1

(
l, αl

−2, α2

)
≥ ul

1.
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Incentive compatibility. In states K1, incentive compatibility for player 1 follows the equilibrium

of ΓK1. For the states l which belong to some Lm ∈ L, player 2’s takes a best-reply to (αLm

−2 )

which does not depend on l ∈ Lm, and incentive compatibility follows.

Joint Rationality. There are three possible types of contradicting announcement: First, θ1 = k ∈

K1 and θ2 = l ∈ K2; second θ1 = L′
m ∈ L and θ2 = l /∈ Lm; and third, θ1 = L′

m ∈ L and θ2 ∈ K1.

If the state is k ∈ K1, player 2 has no incentive of announcing θ2 = l ∈ K2 as by doing so she

punishes player 1 instead of taking her best reply. That is,

u2

(
k, αk

−2, β
l
2(α

k
−2)

)
≤ u2

(
k, αk

−2, br
k
2(α

k
−2)

)
= vk

2 .

Similarly if player 1 announces θ1 = k ∈ K when the state is l ∈ Lm ⊆ K2, this triggers a

punishment by player 2 and player 1’s payoff is at most,

max
k∈K1

u1

(
l, αk

−2, β
l
2(α

k
−2)

)
= max

k∈K1

min
α2

u1

(
l, αk

−2, α2

)
≤

≤ min
α2

u1

(
l, αl

−2, α2

)
≤ u1

(
l, αl

−2, br
l
2(α

l
−2)

)
= vl

1

Consider now the announcement θ1 = Lm and θ2 = l′ ∈ K2 with l′ /∈ Lm. If the state is l ∈ Lm,

then player 2 has no incentive to announce l′ as this would trigger a punishment yielding

u2

(
l, αl

−2, β
l′

2 (αl
−2)

)
≤ u2

(
l, αl

−2, br
l
2(α

l
−2)

)
= vl

2.
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If the state is l′ /∈ Lm, then player 1 has no incentive to announce Lm as this would trigger a

punishment yielding at most

max
l∈K2

u1

(
l′, αl

−2, β
l′

2 (αl
−2)

)
= max

l∈K2

min
α2

u1

(
l′, αl

−2, α2

)
≤

≤ min
α2

u1

(
l′, αl′

−2, α2

)
≤ u1

(
l′, αl′

−2, br
l′

2 (αl′

−2)
)

= vl′

1

where the first inequality follows form the IC constraint of player 1 in game ΓK2.

Finally, consider the announcement θ1 ⊆ K2 and θ2 ⊆ K1. This occurs for instance if the state

is k ∈ K1 and player 1 announces Lm ⊆ K2. Let l ∈ Lm, then player 1’s payoff in the induced

penitence play is

u1

(
k, αl

−2, br
θ2

2 (αl
−2)

)
≤ u1

(
k, αk

−2, br
θ2

2 (αk
−2)

)
= vk

1 ,

otherwise, in game ΓK1
player 1 would have chosen strategies αl

−2 as the equilibrium strategies for

state k. Similarly, if the state l ∈ Lm and player 2 announces θ1 = K1, then player 2 payoff in the

penitence phase is u2

(
l, αl

−2, br
θ2

2 (αl
−2)

)
≤ u2

(
l, αl

−2, br
l
2(α

l
−2)

)
= vl

2, since player 2 prefers to take

the best-reply according to her actual payoff function. �

Appendix D: Proof of Theorem 5.11

Sufficiency: For each state k, fix a vector vk that is individually rational in the complete

information game corresponding to state k, i.e., vk ≥ uk. We show that v :=
{
vk

}
is in V ∗. This

profile is chosen to be individually rational. IC and JR: when there is no essential player, the

information held by players other than i is sufficient to reveal the state. Thus, player i has no

choice but to be inconsistent with the other players, or go along with the identification of the
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state. The distribution corresponding to the bad outcome can be used to deter a player from

deviating.

Necessity: Consider the following game that has a bad outcome and where player 1 is essential

to identify the state. For this game, V ∗(I, u) = ∅.

Example 7.5 (This example is adapted from Hörner and Lovo, 2009). There are two states k, k′,

and two players. Player 1 is informed of the state, player 2 is not. The payoff matrix in states k

and k′ are the following:

L M R

T 10,−4 1, 1 10,−4

B 1, 1 0, 0 −1,−4

state k

L M R

T 0, 0 1, 1 10,−4

B 1, 1 10,−4 −1,−4

state k′

Action profile {B, R} is the bad outcome. Player 1 can guarantee a payoff of at least 3 in one

of the states by randomizing equally between U and D and player 2 can guarantee at least 0 in each

state. This implies that the equilibrium distribution over action profiles cannot assign probability

more than 1/5 to action profiles yielding −4 to player 2. In turn, this implies that player 1’s

payoff is at most 14/5 in each state, a contradiction. �

Appendix E: Proof of Theorem 5.12

Necessity can be shown by considering a two-player two-sided game where both players are

essential. In this context a counter-example is found in Koren (1992) and in Hörner and Lovo

(2009). This example is also in appendix C (example A). To prove sufficiency, consider a game with
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known-own payoffs and a bad outcome, and an information structure with at most one essential

player per state. Partition the set of states as

K = K0 ∪ K1 ∪ · · · ∪ KS,

where for each k ∈ K0, there is no essential player at k, and for each s = 1, . . . , S, there exists a

unique player is who is essential at states in Ks. That is,

a) for all k, k′ in Ks, Iis(k) 6= Iis(k
′),

b) for all k, k′ in Ks and all players j 6= is, Ij(k) = Ij(k
′),

c) for all k ∈ Ks, k′ /∈ Ks, there exists j 6= is such that Ij(k) 6= Ij(k
′).

To construct one cell Ks of this partition, consider a state k such that some player i is essential at

this state. This means that I−i(k) 6= {k}. Set then Ks = I−i(k) and is = i. Property b) is clearly

satisfied. Property a) holds since I−i(k)∩Ii(k) = {k}. Property c) holds since if k′ /∈ Ks = I−i(k),

there must exist j 6= is such that Ij(k) 6= Ij(k
′).

Choose, for each k ∈ K0, an individually rational payoff vk in state k. For each s = 1, . . . , S,

consider the game with incomplete information Γs where:

• It is common knowledge that the state belongs to Ks,

• Player is knows the state and other players have no information.

Let V ∗
s be the set of IC, IR and JR payoffs of this game. The information structure of Γs is locally

weakly embedded. Thus, from Theorem 5.7, V ∗
s is non-empty. Let us choose a payoff array in

this set, for each s. We construct the overall equilibrium as follows. Let players announce their

information:
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• If the announcements identify a state k ∈ K0, vk is implemented.

• If after the announcements, the set Ks is common knowledge, the chosen equilibrium of Γs

is played.

• If the announcements are inconsistent, the bad outcome is played.

The induced payoff array is individually rational. We argue now that no player has an incentive

to misreport. Player i who is not essential at state k has no other choice than letting the state be

revealed or being inconsistent with the other players. The bad outcome ensures that he weakly

prefers to tell the truth. Consider player is at some state k ∈ Ks. If he announces Iis(k
′) for

some k′ ∈ Ks, the announcements are consistent. Each player is now aware that the true state

may be any k in Ks and the equilibrium of Γs can be played. If player is announces Iis(k
′) for

some k′ /∈ Ks, property c) above says that this announcement is inconsistent with some other

player’s report. Player is has thus no other choice than letting Ks be revealed or inducing the bad

outcome. This provides a weak incentive to tell the truth. �

62



Appendix F: Proof of Theorem 6.1

Define

u′
1 := sup

{pi≥0:i=2,...,N}

val (u1 −
∑N

i=2
pi(ui − ui1)),

and

u′′
1 := sup

α1∈△A1

min
α−1∈Y (α1)

u1(α1, α−1).

We have already argued that u∗
1 ≥ u′

1. Let us first show that u′
1 ≥ u′′

1. By definition, for all ε > 0,

there exists (p2, . . . , pN) ≥ 0 and α1 ∈ △A1 such that

u′
1 − ε ≤ val (u1 −

∑N

i=2
pi(ui − ui1))

≤ min
α−1

{u1(α1, α−1) −
∑N

i=2
pi(ui(α1, α−1) − ui)}

≤ min
α−1

{u1(α1, α−1) −
∑N

i=2
pi(ui(α1, α−1) − ui1) : α−1 ∈ Y (α1)}

≤ min
α−1

{u1(α1, α−1) : α−1 ∈ Y (α1)} ≤ u′′
1.

Conversely, for every ε > 0, there exists α1 ∈ △A1 such that minα−1∈Y (α1) u1(α1, α−1) ≥ u′′
1−ε.

Therefore, fixing α1 ∈ △A1, for every α−1 ∈ R
|A−1|
+ ,

(
ui(α1, α−1) − ui

∑|A−1|

a=1
α−1,a

)

i6=1

≥ 0 ⇒ u1(α1, α−1) − (u′′
1 − ε)

∑|A−1|

a=1
α−1,a ≥ 0.

By Farkas’ Lemma, there exists (p2, . . . , pN) ≥ 0 and a constant γ ∈ R
|A−1|
+ such that, for every

α−1 ∈ △A−1,

u1(α1, α−1) − u′′
1 + ε =

∑N

i=2
pi(ui(α1, α−1) − ui) + γ · α−1

≥
∑N

i=2
pi(ui(α1, α−1) − ui).
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Therefore,

u′
1 + ε ≥ val (u1 −

∑N

i=2
pi(ui − ui1)) + ε ≥ u′′

1.

We now show that the bound is attained by uk
1 = −uk, ∀k = 2, . . . , N . Given some equilibrium, let

µi ∈ △A be the occupation measure when player 1 is of type i (the rational type is type 1). Player

i’s individual rationality is equivalent to, for all i, ui(µ
i) ≥ ui. Further, player 1’s individuality

rationality condition states that, for every p ∈ △{1, . . . , N},

p1u1(µ
1) +

∑N

i=2
pi(−ui(µ

i)) ≥ val (p1u1 −
∑N

i=2
piui),

and therefore, for the choice pi = 1, pj = 0, all j 6= i, it follows that −ui(µ
i) ≥ val (−ui) = −ui.

Hence, ui(µ
i) = ui. Thus, we can rewrite the individual rationality condition as

u1(µ
1) ≥ val (u1 −

∑N

i=2

pi

p1
(ui − ui1)),

i.e. u1(µ
1) ≥ u′

1. Incentive compatibility of (µi)i is obvious.

It remains to show that, for every choice of K and uK , there always exists an equilibrium in

which player 1’s rational type does not exceed u′
1. Pick any such game. Let

vk
1 := max

µ∈△A
{uk

1(µ) : u1(µ) ≤ u′
1, ui(µ) ≥ ui, ∀i ≥ 2},

for all k = 1, . . . , K, with u1
1 = u1. Since u′

1 ≥ u1, the folk theorem under complete information

ensures that the set on the right-hand side is non-empty, so that vk
1 is well-defined. Clearly, the

action profiles αk are incentive compatible, and individually rational for all players i ≥ 2. It

2



remains to show that it is incentive compatible for player 1, i.e., that for all p ∈ △{1, . . . , K},

∑K

k=1
pkv

k
1 ≥ val (

∑K

k=1
pku

k
1).

From the definition of vk
1 , it follows that for every k = 1, . . . , K and α ∈ R

|A|
+ ,

ui(α) ≥ ui1 · α, u′
11 · α ≥ u1(α) ⇒ vk

11 · α ≥ uk
1(α).

By Farkas’ Lemma, for every k = 1, . . . , K, there exists γk ≥ 0, λk
i ≥ 0 such that vk

11 − uk
1 ≤

γk(u′
11 − u1) +

∑N
i=2 λk

i (ui − ui1). Therefore, for all p ∈ △{1, . . . , K},

val (
∑K

k=1
pku

k
1) ≤

∑K

k=1
pkv

k
1 −

∑K

k=1
pkγ

ku′
1 + val (

∑K

k=1
pk(γ

ku1 −
∑N

i=2
λk

i (ui − ui1))),

and so individual rationality for player 1 is satisfied if

∑K

k=1
pkγ

ku′
1 ≥ val (

∑K

k=1
pk(γ

ku1 −
∑N

i=2
λk

i (ui − ui1))).

This is satisfied if
∑K

k=1 pkγ
k = 0, and if not, defining

νi := (
∑K

k=1
λk

i pk)/(
∑K

k=1
pkγ

k) ≥ 0,

it is equivalent to

u′
1 ≥ val (u1 −

∑N

i=2
νi(ui − ui1))),

which is satisfied by definition of u′
1. �

3



Appendix G: Proof of Proposition 7.1

Take an information structure I with a single majority component and say that player i is

trivial if Ii(k) = K for all k; player i is non-trivial otherwise.

Lemma 7.6 If there are at most two non-trivial players, then either I is LWE or there is a subset

of three states, such that the restriction of I to this subset is of type A.

Proof. Let 1, 2 be the two non-trivial players. If it holds for each k that I1(k) ⊆ I2(k) or

I2(k) ⊆ I1(k), then it is LWE. Otherwise there exists a state c such that the two sets I1(c), I2(c)

are not comparable. That is, there exists c′ and c′′ such that c′ ∈ I1(c)\I2(c) and c′′ ∈ I2(c)\I1(c).

The subset {c, c′, c′′} is as required. �

Proposition 7.7 If there are at least three non-trivial players, then either I has the all-or-nothing

property, or there is a subset of three states such that the restriction of I to this subset is of type

A, B, C or D.

Proof. The proof is by induction on the number of states. First, assume that there are only three

states. We denote by E the 3-state, 3-player, all-or-nothing information structure:

k1 k2 k3

1 k1 ∗ ∗

2 ∗ k2 ∗

3 ∗ ∗ k3

E

Lemma 7.8 A 3-state information structure which has only one majority component and which

is not LWE is A, B, C, D or E.
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Proof. We prove this by enumeration.

First, because the information is not LWE, there must exist 2 players, say player 1, 2, and

three states, denoted k1, k2, k3, such that k1 /∈ I1(k3), k2 ∈ I1(k3), k2 /∈ I2(k3), k1 ∈ I2(k3). That

is, there must exist two players with non-comparable information at some state. We discuss the

information of the other players.

1. If all other players have no information, this is A. Otherwise:

2. If some player (player 3) is fully informed:

(a) If all other players have no information, this is B.

(b) If player 4 has some information, there is more than one majority component. For

instance, if player 4 has the same information as player 1, {k3} is a majority component.

The reasoning is the same if player 4 has the same information as player 2. If the

information of player 4 is I4(k3) 6= I4(k1) = I4(k2), we have the same conclusion: three

players (1, 3, 4) can distinguish k1 and k3, and three players (2, 3, 4) can distinguish

k2 and k3, so {k3} is a majority component.

3. If no player is fully informed, but some player (player 3) is partially informed:

(a) If all other players have no information, this is C (up to a relabelling of players) or E.

(b) If player 4 also has partial information, all other players being uninformed, then it is

either D or there is more than one majority component. By symmetry we may assume

that players 3 and 4 have the same information. If it is the same as that of player 1

(resp. player 2) then {k3} is a majority component. Otherwise, it is equivalent to E,
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with a fourth player having the same information as 1, 2 or 3. In this case, one sees

easily that if the fourth player has the same information as (e.g.) player 1, {k1} is a

majority component.

(c) Finally, if players 4 and 5 have partial information, there is more than one majority

component. There are three types of partial information and five players. Either

three of them have the same information and they can then distinguish states. Or the

information structure is the symmetric one, with two duplicated players, which leads

back to the previous case. �

Let us do now the induction step. Take |K| > 3 and assume that the statement of Proposition

7.7 holds for |K| − 1. We consider an information structure with |K| states which has only one

majority component, at least three non-trivial players and which is not all-or-nothing.

Consider the relation on states defined as aRb iff ν(a, b) ≤ 2, and consider also the graph of

this relation. I has only one majority component means that this graph is connected. Note that

if we delete a state and all its adjacent edges, we obtain the graph of the relation on the restricted

set of states. Take now two states a and b such that there is a path in the graph from a to b with

maximal length among the paths in this graph. The graph obtained by suppressing a (resp. b) is

still connected. Indeed, any other point c is connected to b (resp. a) by a path that does not go

through a (resp. b), since otherwise, this would contradict the maximality of the path from a to

b. It follows that IK\{a} (resp. IK\{b}) has only one majority component.

If IK\{a} or IK\{b} has at least three non-trivial players and is not symmetric, we are done by

induction. Assume otherwise.

Case A. Both IK\{a} and IK\{b} have at least three non-trivial players and are all-or-nothing.

First, the non-trivial players are the same for IK\{a} and IK\{b}. Indeed, let i be non-trivial for
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IK\{a}. There exists k 6= a such that Ii(k)∩K \ {a} = {k}, so that Ii(k) ⊆ {k, a}. Then i cannot

be trivial in IK\{b}: for a trivial player Ii,K\{b}(k) contains at least three states. Let now 1, . . . , m

be these non-trivial players.

Let K1, . . . , Km be the partition induced by IK\{a} on K \ {a}. Since IK\{b} is all-or-nothing,

there is a unique player, say player 1, such that I1,K\{b}(a) = {a}. So that I1(a) ⊆ {a, b}.

• If b ∈ K1, consider two other non-trivial players j, l and c′ ∈ Kl. By the all-or-nothing

property of IK\{a} and IK\{b}, one has a ∈ Ij(c
′) and b ∈ Ij(c

′). So that j does not

distinguish a and b. Now, either I1(a) 6= I1(b) and I is all-or-nothing, or I1(a) = I1(b) and

no player distinguishes a from b. In both cases, this is a contradiction.

• If b /∈ K1, say b ∈ K2. If I1(a) = I1(b), take c in K3. By the all-or-nothing property of IK\{a}

and IK\{b}, c ∈ I1(b) contradicting I1(a) ⊆ {a, b}. Thus I1(a) 6= I1(b), that is I1(a) = {a}

and by the all-or-nothing property of IK\{a}, I1(b) = K \ (K1 ∪ {a}). By the all-or-nothing

property of IK\{a}, no player, except player 2, distinguishes b from other states in K2 and by

the all-or-nothing property of IK\{b}, no player, except player 1, distinguishes a from other

states in K1. Thus I has the all-or-nothing property, a contradiction.

Case B. Both IK\{a} and IK\{b} have at most two non-trivial players. If IK\{a} or IK\{b} is

not LWE, we are done by lemma 7.6. Assume to the contrary that both are LWE. Then IK\{a,b}

is LWE as well which implies that the two non-trivial players are the same in IK\{a} and IK\{b},

say players 1 and 2. This implies that suppressing a or b changes some player, say player 3, from

non-trivial to trivial, which is not possible.

Case C. IK\{b} has at least three non-trivial players and has the all-or-nothing property and

IK\{a} has at most two non-trivial players. If IK\{a} is not LWE, we are done by lemma 7.6.
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Assume the contrary and consider IK\{a,b}. This is both all-or-nothing and LWE. This shows that

the non-trivial players from IK\{a} are non-trivial in IK\{b} as well, and that IK\{b} has exactly

three non-trivial players called henceforth 1, 2, 3. Suppressing a transforms, say player 1, from

non-trivial to trivial. So it must be the case that I1(a) = {a} and I1(k) = K \ {a} for k 6= a.

Let us choose now c 6= a such that I2(c) = I2(a) (which exists, because player 1 is the only

informed player at a) and assume that I3(c) ⊂ I2(c). Take d ∈ I2(c) \ I3(c). The information

structure on {a, c, d} is of type C or D, depending on whether player 3 can distinguish a from c

or not. If it is not the case that one can choose such a d (even by exchanging the roles of 2 and

3), it means that players 2 and 3 have the same information structure. One just has to choose a,

c 6= a such that I2(c) = I3(c) = I2(a) and d 6= a outside of I2(c), to end up with a type C. This

concludes the proof. �

8


