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Abstract

This paper examines circumstances under which subjectivity en-
hances the effectiveness of inductive reasoning. We consider a game in
which Fate chooses a data generating process and agents are character-
ized by inference rules that may be purely objective (or data-based) or
may incorporate subjective considerations. The basic intuition is that
agents who invoke no subjective considerations are doomed to “over-
fit” the data and therefore engage in ineffective learning. The analysis
places no computational or memory limitations on the agents—the
role for subjectivity emerges in the presence of unlimited reasoning
powers.
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SUBJECTIVITY IN INDUCTIVE INFERENCE

1 Introduction

Inductive inference is the art of selecting theories based on observations. It
is at the heart of scientific and statistical research, as well as of everyday rea-
soning. The economist who engages in model selection to explain data, the
investor who seeks trends in the behavior of financial markets, and the ex-
ecutive who plans her next marketing campaign all share the same question:
Given what I’ve seen, which general rule (or “theory” or “model”) should be
used to predict future observations?

A first fundamental principle is that one should only consider theories that
have not been refuted by the data. As stated, this principle may appear to
be an objective guideline that is almost too obvious to mention. In practice,
however, it is neither objective nor obvious. There is often considerable room
for interpretation of data and of theories, so that people may disagree about
how well a given theory fits the data. In addition, psychological studies
suggest that people may have confirmatory biases, clinging to theories that
should in fact be deemed falsified. We assume these issues away in this paper,
considering a simple world in which a theory’s ability to fit the data is an
easily observable and quantifiable magnitude.

This paper focusses on the following question: How should people choose
among the theories that match the data? Our point of departure is the
observation that people tend to choose theories that are simple or elegant,
or that seem to them a priori reasonable or intuitive. People may also have
biases for the known and the familiar, resulting in a theoretical status quo
bias. All of these are subjective criteria. The notion of simplicity depends
on one’s culture and education, as well as on other determinants of personal
taste. Elegance and aesthetics are notoriously personal, while the status quo
surely cannot have a claim to objectivity beyond a specific culture and a
given period.

Why does such subjective reasoning persist? Would it not be better to
base model selection on objective criteria alone? We claim that the answer
is negative. Should inductive inference rely on objective criteria alone, it is
doomed to fail. By contrast, relying on subjective criteria alongside objective
ones results in successful learning. Clearly, the subjective criteria cannot
entirely replace the objective ones, and the subjective criteria must exhibit a
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certain degree of consistency to be effective. Specifically, we show that if one’s
subjective a priori preference over theories satisfies mild assumptions, and
if it is used to select among (objectively) unrefuted theories, then effective
inductive inference is ensured in a wide range of situations.

While there are many sources of subjective biases that distinguish among
theories, our prime example is the preference for simplicity. This is among
the most universal criteria for theory selection—people tend to prefer simpler
explanations and simpler theories to more complex ones. This preference for
simplicity has been championed on normative grounds (most famously by
William of Occam (see Russell [14])) and has long been offered as a descrip-
tive model of human reasoning (e.g., Wittgenstein [23]). Moreover, in many
situations there seems to be a large degree of agreement among people about
simplicity judgments.1 For concreteness, we refer throughout this paper to
the subjective notions that color people’s inferences as a concern for simplic-
ity. We stress, however, that simplicity is but one of many subjective criteria
that suffice for effective inductive inference.

Is there any reason to expect the world to be simple? Is the preference for
simplicity a by-product of cognitive limitations of the human mind? This pa-
per suggests that both answers may be negative. Because the preference for
simplicity can render induction effective, such a preference will be adaptive
even if the world does not happen to be simple, and could emerge without
any cognitive limitations. In other words, an evolutionary process would
favor reasoners who prefer simpler theories, perhaps with the notion of sim-
plicity and the practice of induction evolving together as part of our shared
cultural heritage.2 More generally, one can view our analysis as explaining
the evolutionary benefits of subjective biases that make people prefer some
theories to others.

1.1 Examples

A pair of examples will illustrate our argument.

1Footnote 12 explains that in a computable model there is a well-defined sense in which
simplicity judgments are asymptotically objective.

2Ely [4] examines a model in which seemingly suboptimal decision-making procedures
evolve via a series of “kludges.” Decision-making is costly in his model, with a resource con-
straint that imposes a trade-off between more effective decision making and more effective
exploitation of the resulting decisions.

2



Example 1: Lisa and Sally, adjusting their commuting habits to a new job,
check whether the bus runs between their home and the office in consecutive
12-hour periods, observing the pattern

0 1 0 1 0 1,

where a 1 denotes that the bus runs. They are now asked their prediction
for the seventh and subsequent periods. To make this prediction, they must
choose between the many theories consistent with the data they have ob-
served. Lisa proceeds without the help of any criterion that might help her
choose among the various theories that fit the data, viewing any one as being
as good as any other. She selects the theory “f(n) is the nth digit in the
binary expansion of 43

128
,” and predicts that the next six observations will be

100000. Sally, in contrast, believes that the data are more likely to be ex-
plained by a simple pattern than a more complicated one, and believes that
the simplest pattern consistent with these data is is “f(n) = 1 iff n is even.”
Her prediction is that the following six observations will be 010101. Who is
more likely to be disappointed the next evening, when Sally drives to work
while Lisa waits at the bus stop?

Without some method for sorting between theories, Lisa is doomed to
helplessly puzzle which, amongst the inevitable multitude of theories that fit
the data, should be used for prediction. The theory we have ascribed to her
is quite arbitrary. Lisa could as well have taken the expansion of 42

128
as her

theory, predicting the bus would never run again, or 87
256

, predicting it would
run the next two periods, or ... . Indeed, the point is that an unguided
choice from this multitude of possibilities is essentially an arbitrary choice,
ensuring that Lisa learns nothing from her observations. We have, of course,
heightened the contrast (perhaps even rigged the example) by endowing Sally
with what appears to be a particularly fortuitous belief about what is simple
in this context. Importantly, our finding is that it suffices for Sally to have
any such belief, as long as she has some belief with which to escape Lisa’s
arbitrary foundering, and applies this belief relentlessly.

Example 2: Lloyd and Sam take a test in which they are asked to extend
the sequence

1 2 4 8 . . . .

Lloyd (like Lisa) has no way of sorting through the various theories consistent
with the data, and chooses the value 7. In doing so, Lloyd may be well aware
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that the sequence is consistent with the function

f(n) = 2n−1, (1)

yielding the continuation 16. However, there is an endless list of other func-
tions consistent with the data, and Lloyd has happened to select

f(n) = −1

3
n4 +

7

2
n3 − 73

6
n2 + 18n− 8,

(whose next value is f(5) = 7), which (at least to Lloyd) seems just as good
a theory by which to predict the next value as does any other, including (1).
Sam (like Sally), in contrast, tends to look for the simplest theory consistent
with the data, taking (1) to be this theory and offering 16 as his prediction
for the next value. Once again, we have made what looks like a suspiciously
fortuitous choice for Sam’s simplicity relation. However, the important point
will again turn out to be not that Sam happens to be right (or at least we
suspect he is), but rather that he consistently applies some systematic way
of sorting theories consistent with the data.

An alternative account might suggest that what Sally exhibits is a taste
for plausibility rather than simplicity. She chose her theory, that the bus
runs during the day but not at night, not for its mathematical simplicity
but because it matches her understanding of how the world works. Similarly,
Sam understands that there is a method to the way exams are made, and
that when questions like this are encountered, the answer is likely to be the
result of an obvious pattern. We do not contest this point of view. Our
claim is that some a priori preference order over theories is an essential part
of effective induction, with the choice of a theory then reflecting this a priori
preference as well as its goodness of fit. Our primary interpretation of this
order is that of simplicity, but such an a priori order over theories may result
from other considerations, including a Bayesian prior over theories, aesthetic
considerations, notions of plausibility, social norms, computational costs, and
so on.3 Our point is that effective learning requires some such information—
it cannot be based on evidence alone. Induction is doomed to failure unless
coupled with some exogenous prejudice, whatever its origin or interpretation.

3The key features of the relation are that it is a weak order and that every theory
has only finitely many theories that are preferred to it. Any such order can serve as the
“simplicity” order for our purposes.
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There is a vast body of literature in statistics and machine learning that
deals with statistical learning. In particular, the Vapnik-Chervonenkis [18,
19] theory, recently applied to decision theory by Al-Najjar [2], deals with the
rate at which one can learn the probabilities of several events simultaneously.
In contrast to this literature, we are interested in optimal learning without
assuming that there is an underlying probability law from which the learner
can sample in an independent-and-identically-distributed manner. Rather,
our main concern is the learning of a pattern that has been selected once and
for all at the beginning of time. For example, while statistical learning might
be concerned with the prediction of the weather on a given day, assuming that
it follows an i.i.d. distribution, our main concern would be in determining
whether global warming is underway.4 We are thus interested in a learning
problem that is non-trivial even for deterministic processes.

1.2 Results

We begin in Section 3 with a simple deterministic model that conveys the
basic point. For an infinitely patient reasoner, a preference for simplicity
weakly dominates indifference to simplicity, provided that the environment
is not a “simplicity trap,” i.e., provided that the actual data generating
process is not malevolent enough to outsmart a simplicity-preferring reasoner
(Section 3.1).5

Our result rests on a simple enumeration argument: a simplicity-liking
reasoner will eliminate incorrect theories until she gets to the correct one,
thereafter predicting the environment with precision (assuming that the envi-

4There are many economic problems that are appropriately modeled as classical statis-
tical learning. However, there are also many problems that do not have sufficiently many
repetitions to make the i.i.d. sampling a reasonable assumption. For example, one might
reasonably describe candidates for admission to a graduate school as a long sequence of
i.i.d. (conditional on observable characteristics) repetitions. By contrast, when deciding
whether to get married, one has a limited database about oneself and one’s prospective
spouse. Similarly, predicting whether a particular customer will make a purchase falls
under the classical theory of statistical learning, but predicting a stock market crash or a
war likely do not.

5When the reasoner is not infinitely patient, similar results hold with the appropriate
order of quantifiers: for every distribution over data generating processes, sufficiently pa-
tient reasoners will be better off preferring simpler theories to more complex ones (Section
5.3). However, given a degree of patience, there could be sufficiently complex environments
that the preference for simplicity can be detrimental.
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ronment is not infinitely complex). An agent who relentlessly chases goodness
of fit may well never settle on the correct theory, being ultimately doomed
to predict no better than chance.

The agents in our examples had to choose among theories that fitted
the data perfectly, so that simplicity had no cost. More generally, there
will be a trade-off between simplicity and likelihood (or goodness of fit).
Section 4 extends the results to more realistic settings in which the world
about which the agent reasons is random rather than deterministic. Our
result that the agent cannot simply rely on goodness-of-fit comparisons is
strengthened in this environment. It is an optimal strategy for the agent to
regularly reject theories that provide superior fits in favor of less successful
but simpler ones, for much the same reasons that statisticians prefer simpler
models and scientists prefer more parsimonious theories in order to avoid the
dangers of overfitting their data. To ensure this preference for simplicity is
successful, however, it must be coupled with a preference for stability. The
agent will thus embrace a theory promising enhanced explanatory power only
if it is sufficiently simple and has provided sufficiently good fit for sufficiently
long time.

Section 5 discusses our analysis. What if the environment is a simplicity
trap? Expanding our model to allow such possibilities, we show that a “cau-
tious” preference for simplicity provides protection against simplicity traps
and weakly dominates theory selection criteria that do not take simplicity
into account (Section 5.1). Is our reasoner’s enumeration task computable?
If not, is it reasonable to assume that the reasoner performs it? In response,
Section 5.2 provides a computable version of the basic result, requiring both
theories and the reasoner’s strategy to be implementable by Turing machines.
The result invokes a simplicity notion based on a combination of program
complexity and computational complexity, and again relies on caution against
simplicity traps.

1.3 Implications

We view this exercise as making the case that inference cannot effectively be
based on likelihood arguments alone. Simply observing that one theory fits
the data better than another is not sufficient to prefer the former over the
latter. Instead, one must also argue that the candidate theory fares well in
terms of subjective auxiliary criteria.

Subjective evaluations of potential theories may have many origins. In
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particular, cognitive limitations may give rise to effectively subjective con-
siderations by simply excluding some theories from consideration. In the
process, these limitations may allow one to reason more effectively than an
agent free from such constraints, if the latter exploits the resulting capacity
to envision all possible theories by basing choice on likelihood considerations
alone.6 The literature on bounded rationality may thus benefit from a dis-
tinction between bounds on rationality that are typically detrimental and
those that may be useful. Economic models of idealized rational agents may
wish to ignore limitations of the first type, but perhaps not of the second
type. The study of the reasoning and behavior of intelligent agents may
therefore be enriched by evolutionary psychology and a closer study of the
origins of various limitations of the human mind.

2 The Model

2.1 The Environment

We consider a repeated prediction game. In each period, an agent has to
predict an observation from the set {0, 1}. His stage payoff is 1 for a correct
prediction and 0 for an incorrect one.

The agent has a history-dependent preference relation over theories in a
set T , and at each stage he makes a prediction according to a theory that is
a maximizer of this relation for the given history. Each theory is a function
from all conceivable histories to predictions.

Before the repeated prediction game begins, two other players are called
upon to make their choices in a one-shot meta-game. Fate chooses the data
generating process the agent will face. Formally, data generating processes,
like the agent’s theories, are functions from histories to observations or, more
generally, to probabilities over observations. The data generating process
does not depend on the agent’s predictions.

The second player in the meta-game is Evolution, who chooses the prefer-
ence relation of the agent over theories. In the meta-game, Evolution’s payoff
will be the long-run average payoff of the agent, to be defined shortly.7

6To paraphrase Voltaire, if computational costs did not exist, it would be necessary to
invent them.

7Fate’s payoff is immaterial as Fate is non-strategic. Fate thus plays a role analogous to
“nature” in the conventional description of a decision problem as a game “against nature.”
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Two views of the problem we study are available. We can view Evolution
as a process by which the agent is programmed with a preference relation over
theories. More precisely, we would imagine an evolutionary process in which
mutations regularly give rise to agents with various preference relations over
theories, with a process of natural selection leading to outcomes in which
those preference relations giving rise to relatively high payoffs survive while
other preference relations disappear from the population. Alternatively, we
can take a normative approach, viewing the agent’s preference relation over
theories as the result of a decision problem under uncertainty. The states
of the world correspond to the various data generating processes that might
be chosen by Fate, while Evolution in this case is simply a decision maker
charged with choosing a preference relation over theories. In either interpre-
tation, the relevant payoff is a long-run average of the agent’s probability of
success in predicting the observations of the data generating process.8

Observations. At the beginning of each period n ≥ 0, the agent observes
a profile of variables xn = (x1

n, ..., x
m
n ) ∈ {0, 1}m ≡ X. The agent then

predicts the value of another variable, yn ∈ {0, 1}, to be revealed at the
end of period n. We assume the xn are pre-determined. That is, we fix
a sequence {xn}n≥0 and conduct the discussion relative to this sequence,
without specifying the process that generated it.9 Indeed, one could simplify
the notation be eliminating the xn from the model altogether, though we find
them helpful for interpretations.

A history of length n ≥ 0 is a sequence hn = ((x0, y0), ..., (xn−1, yn−1), xn).
The set of all histories of length n is denoted by Hn = (X × {0, 1})n × X.
The set of all histories is H = ∪n≥0Hn.

Fate. A data generating process is a function d : H → [0, 1], with d(hn)
being the probability that yn = 1 given history hn. The set of all data gener-
ating processes is thus [0, 1]H . We will typically be interested in problems in
which Fate is constrained to choose a data generating process from a certain

Since Evolution can also be thought of as Mother Nature, we avoid the term “nature.”
8Our initial assumption that agents are infinitely patient is relaxed in Section 5.3.
9None of our results depends on the characteristics of this data generating process

or on realizations of the data having particular properties. In a more general model,
some of these variables might be determined by the agent, who might decide to perform
experiments and test various theories. Our focus at this point is on learning without
experimentation.
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subset D ⊂ [0, 1]H . For example, D0 = {d ∈ [0, 1]H | d(h) ∈ {0, 1} ∀h ∈ H}
denotes the set of all deterministic data generating processes.

The Agent. In each period n ≥ 0, the agent chooses a theory, denoted
by tn, from a set T . We assume that T is itself a set of data generating
processes and typically also assume that D ⊂ T , so that the agent does not
face the impossible task of trying to learn a data generating process of which
he cannot conceive. We then typically further simplify the agent’s learning
process by assuming that D = T .

The agent uses the theory tn to predict the period-n value yn given history
hn. If tn(hn) > 0.5, then the agent predicts yn = 1 with probability 1. He
predicts yn = 0 if tn(hn) < 0.5, and predicts 0 and 1 with equal probability
if tn(hn) = 0.5. Given the agent’s payoff (cf. (2) below), this behavior is
optimal—the agent can only lose by (say) reporting the probability th(hn).

Evolution. Evolution endows the agent with a relation that the agent uses
to choose the theory tn. In particular, for every history h ∈ H, the agent
applies a relation %h ⊂ T × T to the set T of theories. We assume that,
for every h, %h is complete and transitive, and that it has maximal elements.
We define

B%h = {t ∈ T | t %h t
′ ∀t′ ∈ T}

to be the set of “best” theories in the eyes of the agent faced with history
h and characterized by %h. The agent’s choice following history h is unam-
biguous if B%h is a singleton, but this may often fail to be the case. What
does the agent do if there are a number of theories in B%h? The answer here
is irrelevant for many of our results, but when needed, our basic assumption
is that the agent in this situation treats the various best theories symmet-
rically, in the sense that he makes a choice that wherever possible exhibits
no bias for theories that predict 0 versus theories that predict 1 in the next
observation.

Assumption 1 The agent chooses from B%h according to a measure µB%h

on B%h satisfying

µB%h

({
t ∈ B%h | t(h) < 0.5

})
= µB%h

({
t ∈ B%h | t(h) > 0.5

})
whenever {

t ∈ B%h | t(h) < 0.5
}
,
{
t ∈ B%h | t(h) > 0.5

}
6= ∅.
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Assumption 1 is invoked only in the presence of Assumption 2 (or its gen-
eralization, Assumption 4), and only for the likelihood relation %L (defined
in Section 2.2.1, or its generalization, %L,γ.) We explain in Section 3.1 why
Assumption 1 is especially natural in these settings.

One might protest that if an agent has observed a relentless stream of
0s, perhaps many thousands long, then it surely makes no sense to view a 0
and a 1 as equally likely as the next observation. We agree: this is precisely
the reasoning behind the idea that subjectivity may be a valuable aid to
making decisions. However, we view the relation % (rather than the choice
from B%h) as capturing this type of reasoning. After observing a history
h consisting entirely of 0s, for example, the relation %h is likely to give
pride of place to theories predicting a zero on the next round. Assumption 1
applies only when the agent has exhausted all concerns about goodness of fit,
simplicity, plausibility, and so on, and still entertains theories predicting a 0
and theories predicting a 1 in the next period. Only then does Assumption
1 require symmetric treatment of such theories.

Payoffs. Let d(hn) ∈ [0, 1] and t̂n(hn) ∈ {0, 1} be the outcome of the data
generating process d and the agent’s prediction, respectively, given history
hn. The payoff to the agent in period n is defined by the probability of
guessing yn correctly, that is,

p(d, t̂n, hn) = d(hn)t̂n(hn) + (1− d(hn))
(
1− t̂n(h)

)
.

Intuitively, we would like to take the long-term payoff to the agent to be the
expected value of

lim
T→∞

1

T

T−1∑
n=0

p(d, t̂n, hn), (2)

where the expectation captures the potential randomness in the outcomes
produced by the data generating process, the agent’s choice of theories, and
the resulting predictions. However, this limit need not exist. We let

Λ({p(d, t̂n, hn)}∞n=0)

be a Banach limit defined on the set of sequences {p(d, t̂n, hn)}∞n=0, and let
the agent’s payoff P (d,%), when facing data generating process d and using
relation %= {%h}h∈H to choose theories, be given by the expected value of
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Λ. The key property of Banach limits we need is that

lim inf
T→∞

1

T

T−1∑
n=0

p(d, t̂n, hn) ≤ Λ({p(d, t̂n, hn)}∞n=0) ≤ lim sup
T→∞

1

T

T−1∑
n=0

p(d, t̂n, hn).

2.2 Choosing Theories

Our main interest is in the agent’s relation % for choosing theories. This
problem has one obvious solution: % will work very well if it has a unique
maximal element, corresponding to the choice d ∈ D made by Fate. This
ensures the agent a payoff of 1.

Why doesn’t Evolution simply give the agent this preference relation—
essentially, explain the world to the agent—and be done with it? The only
means evolution has for choosing the right data generating process is trial-
and-error. Our view is that the data generating process d is chosen from
too large a set for Evolution to reliably stumble upon it via trail-and-error.10

Alternatively, from a normative or statistical interpretation, the question
simply does not arise: finding the right theory is precisely the problem of
inductive inference.

We accordingly introduce our two primary contenders for the relation %.

2.2.1 The Likelihood Relation

We can view Lisa and Lloyd in our introductory examples as employing the
likelihood relation. The likelihood relation chooses theories based solely on
the evidence, selecting theories that fit the data best. Formally, for hn ∈ Hn,
let

L(t, hn) = Πn−1
j=0 [t(hj)yj + (1− t(hj))(1− yj)].

This is the likelihood of theory t given history hn. The likelihood relation
%L ranks theories after any history h by their likelihood:

∀h ∈ H, t %L
h t
′ ⇐⇒ L(t, h) ≥ L(t′, h).

The likelihood relation thus calls for agents to base their inferences on their
data, and on no other criterion.

10It may well be that the data generating process has been fixed since the start of human
history, and yet Evolution had time to go through so little of the set T as to have no hope
of hitting the true data generating process.
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In the simple case where T = D0, i.e., when only deterministic theories
are considered, %L

h boils down to two equivalence classes. All theories that
perfectly fit the data are equivalent, having L(t, h) = 1, and they are all
preferred to all theories that have been refuted by the data, where the latter
are also equivalent to each other and satisfy L(t, h) = 0.

2.2.2 The Simplicity Relation

We can view Sally and Sam in our examples have a taste for simplicity. The
simplicity relation takes complexity into account, though only as a secondary
criterion. To define this theory-selection procedure, we first order T according
to the simplicity of its elements. This takes the form of an order 3⊂ T × T
that is defined a priori, independently of history (in contrast to %h which is
a function of h ∈ H).11 In particular, an order 3S⊂ T × T is a simplicity
order if:

3S is a weak order (i.e., complete and transitive) (3)

and

T ′ ⊂ T countable =⇒ #
{
t′ ∈ T ′ | t′ 3S t

}
<∞ ∀t ∈ T ′. (4)

To see why (4) is necessary, let us return to the likelihood relation %L.
The problem with this relation is that it will often leave the agent with
too many indifferences, in the sense that the agent will be stuck choosing
between too many theories that fit the data. The simplicity order will help
select between such indifferent theories, but will be effective only if it does a
good enough job of breaking indifferences. In the absence of condition (4),
for example, the definition of a simplicity order would be consistent with the
trivial order 3S= T×T , according to which no theory is strictly simpler than
another, giving the agent absolutely no help in choosing between theories.
More generally, we would like to rule out the case that the simplicity order is
permissive enough to allow for infinitely many strategies to be equally simple.
Condition (4) ensures that if 3S is a simplicity order on T and T ′ ⊂ T is
countable, then there exist 3S-maximal elements in T ′.

11In an effort to keep things straight, we use % to denote a relation by which the agent
chooses theories, and 3 to denote a simplicity order over theories. We similarly associate
the label “relation” with the former and “order” with the latter (though they have the
same properties, i.e., each is complete and transitive).
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Condition (4) will hold if theories are ranked according to the length
of their shortest algorithmic description in a given language (with shorter
being simpler), but will likely fail if those expressed in some language A
are regarded as simpler than those that can only be expressed in terms of
language B, which are in turn simpler than those that require language C,
and so on. Fortunately, we emphasize again that there is nothing about
simplicity per se that is important our analysis, despite our penchant for
interpreting the results in terms of simplicity. If the agent has available some
ordering satisfying (3)–(4), then that order is a good candidate for making
the agent’s induction more effective. For example, Section 3.2.1 shows that
(3)–(4) will be hold if the agent’s simplicity relation is the result of Bayesian
updating.

If the set of data generating processes is countable, one way to ensure
that (3) and (4) hold is to enumerate T and set ti �S ti+1 for every i ≥ 1,
so that T = {t1, t2, ...} is ordered according to increasing complexity. Our
definition is less demanding, and allows for non-singleton equivalence classes
of the order ∼S, but not for infinite ones. Nonetheless, under the assumption
that T is countable, simplicity orders are closely related to enumerations of
T . Specifically, for every simplicity order 3S there exists an enumeration
T = {t1, t2, ...} such that ti 3S ti+1, with strict preference �S occurring for
infinitely many i’s. Alternatively, 3S is a simplicity order if and only if it
can be represented by a complexity function C : T → N such that12

t 3S t′ ⇐⇒ C(t) ≤ C(t′) (5)

and
|C−1(k)| <∞ ∀k ∈ N.

Given a simplicity order 3S, we define the associated simplicity relation
%LS for choosing theories as follows:

∀h ∈ H, t %LS
h t′ ⇐⇒

{
{t �Lh t′}

or {t ∼Lh t′ and t 3S t′} .

The relation %LS thus uses the simplicity order 3S to choose among those
theories with the highest likelihood. The likelihood and simplicity relations

12While there are obviously many different enumerations of T , and hence many com-
plexity functions C with their induced simplicity orders 3S , they cannot be too different
in the following sense. Let C1 and C2 be two complexity functions. Then, for every k there
exists l = l(k) such that C1(t) > l implies C2(t) > k. That is, a theory that is sufficiently
complex with respect to C1 will also be complex with respect to C2.
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%L and %LS agree in that they only choose theories with maximal likeli-
hoods, with the likelihood relation being indifferent over such theories and
the simplicity relation choosing the simplest one.

3 Subjectivity in Inductive Inference

This section uses an elementary deterministic model to show that subjective
criteria, interpreted for concreteness as a preference for simplicity, can be
useful in inductive inference. The key simplification in the model is con-
tained in the following assumption, which puts some structure on the data
generating processes. Its first two parts require the set of data generating
processes to be simple enough to be learned, and the final part requires it
be rich enough to describe any possible finite sequence of observations. The
latter is intended to rule out trivial cases in which a finite set of observa-
tions suffices to single out a unique theory, i.e., cases where the problem of
induction does not arise.

Assumption 2
[2.1] D ⊂ D0.
[2.2] D = T is countable.
[2.3] For every history h ∈ H there exists d ∈ D such that L(d, h) = 1.

Given Assumption 2.1, the remaining requirements are satisfied if D = T
is the set DH

0 of all Turing machines generating functions d ∈ D0 (i.e. Turing
machines that accept elements of the set H as inputs, halt, and produce
outputs from the set {0, 1}). The countability restriction will be discussed
and relaxed in Section 5.1 below. We view the restriction to deterministic
data generating processes as the substantive assumption here. One natural
simplicity relation 3S on computable processes is induced by Kolmogorov’s
complexity measure, namely, the minimal description length of a program
that generates the process in a given computer language.

The set DH
0 of all Turing machines generating functions d ∈ D0 has the

property that for any history of observations h, and for every data generating
process d in DH

0 consistent with h, there is another data generating process
in DH

0 that is also consistent with h but whose subsequent datum will be
precisely the opposite of d, generating a 0 whenever d produces a 1 and vice

versa. As a result, the sets
{
t ∈ B%Lh

| t(h) = 0
}

and
{
t ∈ B%Lh

| t(h) = 1
}

14



D Set of data generating processes
(
⊂ [0, 1]H

)
.

D0 Set of deterministic data generating processes (i.e., with outputs {0, 1}).
DT

0 Set of Turing machines with inputs H and outputs {0, 1}.
DH

0 Set of Turing machines in DT
0 that halt for all h ∈ H.

DB
0 Set of Turing machines in DT

0 with bounded halting time.
Dε Set of data generating processes with outputs {ε, 1− ε}.

Figure 1: Data Generating Processes. In each case, “Set of Turing ma-
chines....” should be read “set of data generating process that can be imple-
mented by a Turing machine....”

will not only be non-empty but will be symmetric in their treatment of the
next observation. Assumption 1, requiring that an unbiased choice be made
from these sets under the likelihood relation, is then quite natural.

In the course of our discussion, we will consider several possibilities for
the set D. It is useful for future reference to collect the notation for these
various sets in Figure 1.

3.1 Comparison of Payoffs

Recall that P (d,%) is the payoff function defined by a Banach limit corre-
sponding to (2), given that Fate has chosen data generating process d and
Evolution has endowed the agent with relation %.

Proposition 1 Let Assumption 2 hold.
[1.1] For every simplicity order 3S and every d ∈ D, P (d,%LS) = 1.
[1.2] If Assumption 1 also holds, then P (d,%L) = .5, and hence for every

simplicity order 3S, %LS strictly dominates %L.

Proposition 1.2 holds for much the same reason that statisticians and ma-
chine learning theorists are concerned with “overfitting,” even though there
are no statistical errors in our simple model and hence the term overfitting
does not quite apply.13 The agent has to choose among theories that have
been refuted and theories that match the data perfectly. Realizing that one

13The preference for simplicity among theories that match the data equally well may
be viewed as a tendency not to “overkill,” rather than not to overfit. Overfitting refers to
a willingness to complicate the theory for relatively small improvement in the goodness
of fit, while overkilling might be thought of as the willingness to complicate the theory
for no improvement in the goodness of fit whatsoever. Section 4 presents a more general

15



can always find many theories that match the data perfectly, with a variety
of differing predictions, standard statistics leads us to prefer theories that
are simpler than the data that they fit. The proof of Proposition 1.2 simi-
larly relies on the fact that, in the absence of preference for simplicity, one
is at a loss in selecting a theory. Many theories match the data perfectly,
but their predictions vary. There is nothing to ensure that we ever prefer the
correct theory to other theories, and our prediction ends up being completely
random.

It is important to observe again that our preference for simplicity is an
interpretation of an abstract subjective order 3S. In many cases, this order
will correspond to an intuitive sense of simplicity. However, Proposition 1
does not assume any particular structure on the subjective order and no
particular measure of simplicity can be singled out as the right one. Any
consideration that allows one to rank theories by an order satisfying (3)–(4)
would result in a simplicity relation %LS that dominates %L.

3.2 Other Contenders

The likelihood relation and the simplicity relation by no means exhaust all
strategies one can imagine for choosing theories. We devote this section
to the discussion of alternatives that help us understand the driving force
behind the success of simplicity.

3.2.1 Bayesian

Suppose that the agent views the data generating process d as having been
chosen by Fate according to a probability measure λ on (for simplicity) the
set D0 of deterministic data generating processes. Then the agent’s payoff is
maximized by a strategy that predicts 1 in period n after history hn if and
only if

λ{d : L(d, hn) = 1, d(n) = 1} > λ{d : L(d, hn) = 1, d(n) = 0},

that is, there is no way to do better than to make the agent Bayesian. Why
doesn’t our inquiry end with this observation?

model, in which statistical errors are allowed, to introduce a non-trivial trade-off between
the simplicity of a theory and its accuracy. The finding that preference for simplicity
is evolutionarily selected is then more closely related to the dangers of overfitting in the
standard statistical sense.
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Our approach is compatible with Bayesianism. Specifically, if the set of
conceivable theories T is countable (cf. Assumption 2) and the agent has
a Bayesian prior over T , then the relation “has at least as high a prior as”
can be viewed as a simplicity relation—it is a weak order that is monotoni-
cally decreasing along an enumeration of the theories, with finite equivalence
classes. In other words, a Bayesian prior defines a simplicity relation. Con-
versely, one may use a simplicity relation to define a Bayesian prior: simpler
theories are considered more likely.

There are a continuum of priors that are consistent with a given simplicity
relation. These priors are all equivalent in our model, because we suggest
that the agent choose a most-likely theory to generate the next prediction—a
practice we dub “simplicism.” By contrast, the Bayesian approach constructs
an expected prediction, using all possible theories. However, after a long
enough time, the Bayesian will have a posterior probability close to 1 for
the correct theory, and (assuming its prediction is deterministic) will also
converge to making predictions as if he used simplicism.

Simplicism and Bayesianism are thus similar both in their eventual se-
lection of the “best” theory and in the predictions they eventually generate.
Yet, simplicism is computationally and cognitively simpler than Bayesianism
in several important ways.14 First, in order to implement simplicism, one
need not conceive of all possible theories. For example, a scientist who finds
the simplest theory that explains the data may go on generating predictions
even if he has not even imagined alternative explanations. Second, in order
to generate predictions, simplicism requires only an ordering over the theo-
ries, rather than a quantification thereof. It is an easier task to ask which
theory is simpler than to assign a numerical value to the a priori likelihood
of a theory. Relatedly, a Bayesian approach requires that an “at least as
likely as” relation be defined for every two subsets of theories, and not just
for every pair of theories. Therefore, even if we restrict attention to qualita-
tive comparisons, a Bayesian needs to rank all elements in 2T , rather than
elements in T itself.

In summary, our justification of a preference for simplicity is compatible

14Clearly, simplicism is a more faithful model of how scientists actually think. For ex-
ample, relativity theory did not wait to be discovered by Einstein (or Poincare) because
until his time its posterior probability was too low to be prominent. It was simply not
conceived of by his predecessors. Indeed, if scientists were Bayesian, and were only up-
dating prior to posterior probabilities based on data, there would be little point in hiring
theoretical scientists in the first place.
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with a justification of a Bayesian approach. Both approaches use subjec-
tive notions—the preference for simplicity or the prior—that need not be
“correct” to be useful in the inductive inference task. We continue to dis-
cuss “simplicity” as our preferred interpretation of the a priori preference
between theories, thinking that bounded rationality would tip the scales in
this direction (see Section 5.4), but would not object to others adopting a
Bayesian interpretation.

3.2.2 Inertial

The simplicity relation has two components. It ensures that the agent will not
abandon a theory that fits the data perfectly well. In addition, it essentially
enumerates the theories, ensuring that an agent will eventually “try” all of
them, if needed. One might suspect that it would be sufficient to impose
the first requirement by assuming that agents do not abandon a theory until
receiving evidence of its falsity. In particular, the proof of Proposition 1
shows that an agent guided by the likelihood relation falters because every
period there is a multitude of theories with perfect likelihood scores, including
the truth and a host of imposters. The agent’s arbitrary choice from this set
implies that even if he hits upon the truth, he soon abandons it in favor of
another seemingly equivalent theory. Will it not suffice to assume that the
agent sticks to something that has worked in the past?

The phenomenon of inertia, or a preference for a status quo, is familiar
from casual observations as well as from psychological studies. Kuhn [12]
argued that scientists tend to cling to old theories rather than adopt those
theories that fit the data best.

To see if inertia suffices for effective learning, we define the inertial rela-
tion as that selecting the theory chosen in the previous period if the latter
maximizes the likelihood function, and otherwise choosing as does the likeli-
hood relation. Formally, define %LI as follows for all n > 1,

∀h ∈ H, t %LI
h t′ ⇐⇒


{L(t, h) > L(t′, h)}

or
or

{L(t, h) = L(t′, h) and t = tn−1}
{L(t, h) = L(t′, h) and t, t′ 6= tn−1}

,

with t ∼LIh0
t′ for all t, t′, so that in the absence of any evidence, all theories

are equally likely.
The following example shows that inertia alone does not suffice to ensure

effective learning.
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Example 3: Let (for this example only) D = T consist of the following set
of deterministic theories:{

y ∈ {0, 1}N | ∃n ≥ 0, y(k) = 0 ∀k ≥ n
}
.

The possible data generating processes are thus all those that generate only
0 from some point on. For example, the theories may be describing the
availability of a random resource, which is known to be depletable, but whose
date of ultimate exhaustion is uncertain.

For every hn, let the selection rule over the infinite set B%LIhn
be given by

µB
%LI
hn

(
tn+k

)
=

1

2k+1
k = 0, . . . , (6)

where, for all histories and all k,

tn+k(hn+k) = 1; tn+k(hl) = 0 ∀l 6= n+ k. (7)

Hence, given any history hn, the agent attaches positive probability only to
continuations that feature a single observation of 1 (and otherwise all 0’s),
with probability 1/2k+1 attached to the theory that generates its observation
of a 1 in precisely k periods.

Under this selection rule, theories predicting a 0 on the next step are
equally likely as theories predicting a 1, in accordance with (1). Assume
Fate has chosen the data generating process according to which yn = 0 for
all n. Consider %LI

hn
for a history hn consisting of n 0s. Then given (6)–

(7), %LI will choose a theory whose first 1 appears according to a geometric
distribution with parameter 0.5. The expected number of periods for which
this theory will match the observations is

∞∑
i=0

i

2i+1
= 1.

It is then a straightforward calculation that P (y0,%LI) = 0.5.

The difficulty in this example is that the selection rule over the various sets
B%LIhn

routinely ignores the correct theory. This suggests that inertial relations

will ensure effective learning only if they are coupled with a selection rule
that is sufficiently likely to select the correct theory. Proposition (2) shows
that inertia can then have evolutionary value, in effect serving as a safeguard
against the excessive fickleness of random choice.
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Assumption 3 There exists a strictly positive measure λ on the countable
set D such that for any h ∈ H, µB%h

equals λ conditioned on B%h.

Proposition 2 Under Assumptions 2 and 3, for all d ∈ D, P (d,%LI
h ) = 1.

Behind this result lies the observation that a sufficiently stationary theory
selection process is guaranteed to select the correct theory, d, at least once.
Once d has been chosen, inertia ensures that it will not be abandoned, and
hence the optimal payoff is obtained.

3.2.3 Exploitation and Exploration

The simplicity relation and the inertial relation can both be viewed as special
cases of the principle of “exploitation and exploration.” The agent exploits
theories that have worked by sticking with them, while effectively exploring
new theories when necessary. In the case of simplicity, the stability of a given
simplicity ordering ensures that a theory that fits the data is not abandoned,
while the simplicity enumeration allows the agent to “try out” all theories (as
long as a perfect fit has not been found). The likelihood relation’s lack of the
first characteristic dooms its adherents to randomness. The inertial relation
matches the performance of the simplicity relation in terms of exploitation,
but requires an additional assumption on the strategy selection process to
provide effective exploration.

4 A Random World

The assumption that the data generating process is deterministic (i.e., that
d(h) ∈ {0, 1} for all h) is unrealistic. Worse still, it beclouds the interesting
trade-off between likelihood and simplicity in the choice of theories. So far,
the choice of simple or random theories was made among the theories that
fit the data perfectly—the preference for simplicity involved no cost. A more
interesting problem arises when random data generating processes are intro-
duced. In this case, simplicity is no longer a free good, but has a likelihood
price tag attached to it. Should the agent be willing to give up a better fit
for a simpler theory, and if so, to what extent?
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4.1 Uniform Errors

To get some insight into this problem, we begin with a minimal modification
of our benchmark model. Define, for ε ∈ (0, 1/2),

Dε = {d ∈ [0, 1]H | d(h) ∈ {ε, 1− ε} ∀h ∈ H}.

Thus, Dε can be thought of as the deterministic data generating processes,
D0, with an error probability of ε added to the output.

The likelihood function, for a theory t ∈ Dε and a history h ∈ Hn, is

L(t, hn) = Πn−1
j=0 (t(hj)yj + (1− t(hj))(1− yj)).

In the presence of randomness, the likelihood function will inevitably con-
verge to zero for any theory—its largest possible value in period n is (1−ε)n,
since the best any theory can do is attach probability 1 − ε in each period
to the outcome that happens to be realized in that period. This convergence
makes the likelihood an awkward standard for comparing theories. It is more
convenient to consider the average of the logarithm of the likelihood function,

l (t, hn) =
1

n
log(L(t, hn))

=
1

n

n−1∑
j=0

log [t(hj)yj + (1− t(hj))(1− yj)] , (8)

which does not converge to zero. We hereafter use “likelihood” to denote the
average log likelihood, given by (8).

Let us say that a theory is “correct” in period t if it predicts a 1 with
probability 1 − ε and a 1 occurs, or if it predicts a 0 with probability 1 − ε
and a 0 occurs. It is helpful to define the function

θ(p) = p log(1− ε) + (1− p) log ε.

Then θ(p) is the (average log) likelihood of a theory that has been correct
proportion p of the time.

A theory that is correct in every period would give likelihood θ(1). This
is the highest possible likelihood. The theory that corresponds to the data
generating process gives a limiting likelihood of θ(1 − ε), and an agent who
always uses the data generating process to predict would achieve payoff 1−
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log(1− ε) = θ(1) Maximum possible limiting value.
(1− ε) log(1− ε) + ε log ε = θ(1− ε) Value achieved by the data generating process.

1
2

log(1− ε) + 1
2

log ε = θ
(

1
2

)
Value achieved by random choice.

Figure 2: Key values of the limiting average-log-likelihood function (8).

ε.15 Predicting randomly would give likelihood θ
(

1
2

)
and payoff 1

2
. Figure 2

summarizes these observations.
The counterpart of Assumption 2 is now:

Assumption 4
[4.1] D ⊂ Dε.
[4.2] D = T is countable.
[4.3] For every history h ∈ H there exists d ∈ D such that l(d, h) = θ(1).

Assumption 4.3 indicates that for any finite stream of data, there is a
theory that would have been correct in every period. Ex post, one can
rationalize anything.

4.2 Tolerance in Learning

The agent could once again adopt a relation over theories that first restricts
attention to likelihood-maximizing theories, such as the likelihood relation
%L of Section 2.2.1 or the simplicity relation %LS of Section 2.2.2. In the
random environment, this ensures that the agent will eventually exclude the
data generating process as a possible theory. In each period, the realization
may differ from the true theory’s prediction with probability ε. Hence, the
true theory will eventually almost surely have a likelihood value lower than
θ(1), whereas there will always be other theories with a likelihood value of
θ(1). That is, insisting on maximum-likelihood theories will lead to constant
theory hopping.

This suggests that the agent’s learning might be more effective if it in-
corporates some tolerance for inaccuracy. For any γ ∈ [0, 1], we say that a
theory t is a “γ-best fit” to the data after history h if

l (t, h) ≥ θ(γ).

15For large n, the likelihood will be approximately(1− ε)(1−ε)nεεn and the average log
likelihood l(d, h) will converge to θ(1− ε).
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The counterpart of the likelihood relation is then

∀h ∈ H, t %L,γ
h t′ ⇐⇒ Lγ(t, h) ≥ Lγ(t′, h)

where
Lγ(t, h) = min{L(t, h), θ(γ)}.

When working with D0, the likelihood relation %L separated theories into
two classes, those that predicted perfectly and those that did not. Here we
again divide theories into two classes, those achieving a likelihood of at least
θ(γ) and those that fall short of this goal.

What would be a good value of γ? One suspects that we should set
γ < 1 − ε, since any value γ > 1 − ε will eventually surely exclude the true
data generating process. However, simply relaxing the likelihood threshold
to γ < 1 − ε does not suffice if one insists on using the likelihood criterion
alone to choose theories. The true theory (if such exists) will not be ruled
out, but there is no guarantee that it be selected. An argument analogous to
that establishing Proposition 1.2 immediately provides the (omitted) proof
of:

Proposition 3 Let Assumptions 1 and 4 hold. Then P (d,%L,γ) = 1
2
.

Intuitively, whatever the value of γ, the agent has a wealth of theories with
likelihoods exceeding θ(γ) from which to choose. In the absence of another
selection criterion, the agent is doomed to random prediction.

Once the agent is willing to pay the price of less than maximum likelihood,
he can afford to use the additional criterion of simplicity in a meaningful way.
Define

∀h ∈ H, t %LS,γ
h t′ ⇐⇒

{
{t �L,γh t′}

or {t ∼L,γh t′ and t 3S t′} .

The agent thus chooses the simplest among the γ-best fits.
Under the simplicity relation, setting γ > 1 − ε again implies that the

agent will discard the data generating process as a possible theory and subse-
quently hop between imposters. The implications of this switching between
strategies are now not obvious. The agent chooses the simplest theories
among those that provide γ-best fit. While the correct theory is not among
them, it is not clear how well their predictions are correlated with the true
data generating process. The following assumption adapts Assumption 4.3
to a tolerance for inaccuracy, and it allows us to compute the limit payoff for
such values of γ.
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Assumption 5 For simplicity order %LS,γ with γ > 1 − ε and sufficiently

large n,
{
t ∈ B%LS,γh

| t(h) = 1− ε
}

and
{
t ∈ B%LS,γh

| t(hn) = ε
}

are nonempty.

Thus, we assume that the simplest theories are rich enough to contain
theories that predict 0 and theories that predict 1. It is not obvious that
the simplicity relation should have this property. If, for example, we observe
the pattern 00000, it is not obvious that one of the simplest theories next
will predict 1. However, when n is large, the actual data generating process
has surely been discarded by order %LS,γ

h and any theory amassing a likeli-
hood above γ is surely a fluke. As a result, it is not obvious what a priori
information, if any, should be brought to bear. One might then view this
assumption as describing a potentially plausible worst-case scenario for the
agent. The (omitted) proof of the following is then immediate:

Proposition 4 Let Assumptions 1, 4.1–4.2 and 5 hold. Then P (d,%LS,γ) =
1
2
.

Less drastic requirements than Assumption 5 will give similar but weaker
results, with the key point being that setting γ > 1 − ε forces the agent to
abandon any theory that sufficiently often predicts as does the true theory,
in the process placing constraints on the payoff of which the agent can be
assured.

4.3 Stability in Learning

One virtue of a simplicity order in a deterministic environment is that it
prevents the agent from abandoning perfectly good theories. Setting γ < 1−ε
ensures that the agent will eventually retain the data generating process
among the γ-best fits. This alone, however, does not ensure effective learning.
Selecting the simplest γ-best fit leaves open the possibility that the agent may
switch back and forth between theories that are simpler than the true one,
where, at each period, one of the theories provides a γ-best fit, but fails to
predict correctly. This is possible if the simple theories tend to be wrong
precisely when they are used for prediction, but “catch up” in terms of the
likelihood during periods in which they are not used for prediction. To see
that this learner’s nightmare might come true, consider the following.
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Example 4 Fix γ < (1 − ε) and let d be the data generating process. To
simplify the presentation, but without losing any generality, assume that d
predicts 1 in each period (with probability 1− ε).

We construct k theories, denoted by t1, . . . , tk, which will be assumed the
simplest: t1 �S t2 �S . . . �S tk and tk �S t′ for all t′ /∈ {t1, ..., tk}.

For concreteness, we describe the theories by an algorithm. For n = 0,
ti (h0) = 1 for all i ≤ k. For n > 0, given history hn, every ti (i ≤ k)
computes the predictions of all tj (j ≤ k, j = i included) for all sub-histories
hm of hn (for all m < n). By induction, this is a computable task. Next,
each ti computes l(tj, hn) for all j ≤ k. If none of them has a likelihood
l(tj, hn) ≥ γ, ti predicts 1. Otherwise, ti finds the simplest of the theories in
{t1, ..., tk} with l(tj, hn) ≥ γ. If it is itself, it predicts 0; otherwise, it predicts
1.

Observe that each theory {t1, ..., tk} basically performs the same algo-
rithm, which simulates the calculations of all previous periods, and halts by
induction. The difference between the predictions of the different theories in
{t1, ..., tk} arises only out of the very last step of the algorithm, in case some
of them obtain a likelihood value above the threshold.

Observe also that in each period, at least k− 1 of the theories (t1, . . . , tk)
will produce a prediction matching that of d, and—if and only if some reach
the appropriate likelihood threshold—one of these theories will dissent. Let
εn be the proportion of realized 0’s up to time n. The collective number of
correct predictions among the k theories (t1, . . . , tk) in history hn will thus
be at least

[(1− εn)(k − 1)]n,

where εn gets arbitrarily close to ε with arbitrarily large probability as n gets
large. Hence, a lower bound on the number of correct predictions, among
the k theories (t1, . . . , tk) over periods 0, . . . , n− 1 is given by

[(1− ε− δ)(k − 1)]n

for some δ > 0. We can choose n∗ sufficiently large that

δ <
(1− ε)− γ

2

and then k sufficiently large that, for all n > n∗,[
(1− ε− (1− ε)− γ

2
)(k − 1)

]
n > kγn, (9)
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or
k − 1

k

(
1− ε+ γ

2

)
> γ.

(Since 1 − ε > γ, such a k exists.) From (9), we see that the theories
(t1, . . . , tk) must have collectively amassed at least kγn correct predictions
for any n > n∗, ensuring that at least one of them must have at least γn
correct predictions, and hence a likelihood of at least θ(γ). As a result, one
of these theories will be used for prediction in every period n > n∗, and by
definition predicts that outcome which appears with probability ε under the
data generating process d. Hence, the agent’s payoff converges to ε.

It may appear as if the theories (t1, . . . , tk) in Example 4 are hopelessly
special, tied closely to the structure of the true data generating process,
and hence that the example is simply a curiosity. While we make no claims
for the realism of the example, it is important to note that the simplicity
order may include as relatively simple a multitude of collections (t1, . . . , tk),
corresponding to different data generating processes, with the likelihoods of
those that do not match the actual data generating process falling until they
are irrelevant, and then the calculations of the example becoming relevant.
While still delicate, the phenomenon in the example is thus not as special as
it may first appear. If we are to achieve a general result, we must have some
additional structure.

There are likely to be many ways of addressing this problem. Our intu-
ition provides one alternative: suppose you have several experts to choose
from. It would appear natural to rely on an expert who has been consis-
tently successful at explaining the data, rather than on one who boasts a
great likelihood only at the present moment.

Formally, let there be given γ ≤ 1 − ε and k ≥ 1. For a theory t and
history h ∈ Hn, n ≥ k, define

Γγ,k(t) =
n∑
j=k

δj,

where

δj =

{
1 if l (t, hj) ≥ θ(γ)
0 if l(t, hj) < θ(γ)

(where hj is the j-th prefix of h). Next, define the relations %LS,γk
h for h ∈ H
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as follows.

t %LS,γk
h t′ ⇐⇒

{
[Γγ,k(t) > Γγ,k(t

′)]
or [Γγ,k(t) = Γγ,k(t

′) and t 3S t′].

Thus, a maximizer of %LS,γk
h has to be a theory that has obtained an

average log-likelihood of at least θ(γ) as often as possible over the past con-
secutive (n− k + 1) periods. If there are several theories that obtained this
likelihood threshold for the entire period, the maximizer has to be (one of)
the simplest among them. If no theory has done as well as θ(γ) for (n−k+1)
periods (perhaps because k > n)), %LS,γk

h selects the simplest among those
that have achieved at least θ(γ) for at least (n − k) periods out of the past
(n− k + 1) periods, and so forth.

Clearly, the choice of the parameters γ and k allows a wide range of

relations
(
%LS,γk
h

)
. What should be the values of γ and k and how are they

determined?16

We discuss two possibilities for determining γ and k. First, we assume
that Evolution “programs” the tolerance for inaccuracy (γ) and the prefer-
ence for stability (captured by k) into the reasoner’s preferences, and, second,
we endogenize this optimization process to be the result of a dynamic selec-
tion by the agent himself.

4.4 Evolutionarily Determined Tolerance

How much inaccuracy should the reasoner be willing to tolerate? The critical
value 1− ε builds sufficient tolerance for inaccuracy into the agent’s choices
as to ensure effective learning:

Proposition 5 Under Assumption 4, for every simplicity relation 3S and
for every d ∈ D, P (d,%LS,γk)→ (1− ε) as γ ↗ 1− ε and k →∞.

We thus find that, in the presence of randomness, augmenting the prefer-
ence for simplicity with a preference for stability enhances the agent’s payoff.
Indeed, we tend to trust experts who have always provided good explana-
tions more than experts who have sometimes provided good explanations.

16Notice that it makes no sense to insist on stability if one sets γ > 1− ε, since we know
that no theory can long sustain a likelihood above 1− ε.
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Even if two experts, or theories, reach the same level of goodness of fit at
present, a better history may well be a reason to prefer one over the other.

Observe that one cannot do away with the preferences for simplicity and
rely on stability alone. In the absence of a preference for simplicity, for every
history hn there exists a theory tn such that l(tn, hj) = θ(1) for every j ≤ n.
Such a theory would maximize the likelihood function for each prefix of the
history hn, and would therefore be chosen for prediction. Thus the preference
for stability alone does not provide a safeguard against overfitting the data
by choosing a theory post-hoc.

4.5 Reasoned Tolerance

Section 4.4 assumed that Evolution looks for an optimal tolerance level γ and
stability parameter k to equip the reasoner with the “right” preferences that
can asymptotically select the correct theory. We can alternatively endow the
agent with preferences that perform the same job.

Proposition 6 Let Assumption 4 hold. For every simplicity order 3S there
exists a relation %S∗, independent of ε, such that

(i) for every d ∈ D, we have P (d,%S∗) = 1− ε
and

(ii) for every t, t′ ∈ T , for large enough n, if Γγ,k(t) = Γγ,k(t
′), then

t %S∗ t′ ⇐⇒ t 3S t′.

The agent who implements %S∗ engages not only in learning but also in
meta-learning. This agent selects theories that provide a γ-best fit and that
are simple, but at the same time, he observes his own learning process and
learns from this process itself. Specifically, the agent looks at the choices he
would have made for various levels of γ and asks, “What can I learn from
the fact that for some levels of γ my learning process would have continued
indefinitely, whereas for others I would have settled on a specific theory?”
The fact that certain levels of γ do not let the agent converge on a given
theory is taken to be an indication that this level is too high.

The parameter γ may be viewed as the agent’s aspiration level for the
degree of accuracy of the theory (in the sense of Simon [16]). We can imagine
the agent setting a large value of γ in the hope of finding a theory that is
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quite close to the maximal likelihood one. However, if he finds that the
search for such a theory does not result in a stable choice, and that he keeps
bouncing around among theories no matter how large n is, then the agent
may reduce his aspiration level γ. When γ is low enough, the agent will find
a theory that has a higher degree of inaccuracy, but that can be chosen over
and over again. This search for the optimal γ can be viewed as the search
for the optimal aspiration level.

Remark 1 The arguments behind Propositions 5 and 6 make it clear that
nothing depends on the fixed error rate ε. Let D∗ be the set of data generating
processes with the property that, for every outcome h, there exists a pair
(ρ, ρ ∈ [0, 1/2)× (1/2, 1], such that

lim
T→∞

1

T+(h(n))

T−1∑
n=1

d+(hn) = ρ

lim
T→∞

1

T−(h(n))

T−1∑
n=1

d−(hn) = ρ,

where d+(hn) equals d(hn) if the latter exceeds 1/2 and is zero otherwise,
d−(hn) is analogous for values of d(hn) less than 1/2, T+(h(n)) is the number
of times theory d has produced a prediction exceeding 1/2 on the history hn,
and T−((n)) is analogous for predictions less than 1/2. We are thus assuming
that the average error rate in the data generating process, when predicting
either 1 or 0, converges (though not necessarily to the same limits). If this
is not the case, there is no hope for the agent to identify the appropriate
error rates for effective learning. Then arguments analogous to those giving
Proposition 6 allow us to establish that for every simplicity order 3S, there
exists a strategy %S∗ such that the agent’s limiting payoff in periods in which
a 1 is predicted approaches ρ and the agent’s limiting payoff in periods in in
which a 0 is predicted approaches ρ.

4.6 Smooth Trade-Offs

Our central result is that effective learning couples concerns about a the-
ory’s likelihood with an auxiliary criterion we have interpreted as simplicity.
Studies of model selection in statistics and in machine learning often similarly

29



suggest a trade-off between likelihood and simplicity that, unlike our lexico-
graphic criterion, is reflected in a smooth objective function. For example,
the Akaike Information Criterion (Akaike [1]) is given by

log(L(t))− 2k,

where L(t) is the likelihood function of theory t and k is the number of
parameters used in model t. Related to Kolmogorov’s complexity measure
(Kolmogorov [10, 11], Solomonoff [17], Chaitin [3]), the Minimal Message
Length criterion (Wallace and Boulton [21], Rissanen [13]) suggests

log(L(t))−MDL(t),

where the MDL(t) is the minimum description length of the theory t. (See
also Wallace and Dowe [22] and Wallace [20].)

The general form of these measures is

logL(t)− αC(t), (10)

where C(t) is a complexity function (cf. (5)) and α a constant determining
the relative weights placed on the likelihood and on the complexity of the
theory. Gilboa and Schmeidler [6] offer an axiomatization of this criterion. In
their model the reasoner has an order over theories given data, akin to %h in
our case. Certain axioms on the way theories are ranked by this relation for
different histories h imply an additive trade-off between the log-likelihood
and a parameter of the theory that may be interpreted as its measure of
complexity.

We cannot apply (10), designed to evaluate theories given a fixed set of
data, directly to our setting. As we have noted, the likelihood L(t) inevitably
declines to zero and hence its log decreases without bound as observations
accumulate. This ensures that complexity considerations will eventually play
no role in the analysis. We accordingly examine

l(t, h)− αC(t), (11)

ensuring that likelihood and complexity considerations remain on a common
footing.17

17In so doing, we move close to criteria such as the Schwarz Information Criterion (also
known as the Bayesian Information Criterion (Schwarz [15])), which retains the additive
trade-off but uses a complexity measure that depends on the number of observations.
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We can draw a connection between smooth measures such as (11) and
our lexicographic criterion. Fix a complexity function C(t) and parameter
α, and let %α be the resulting order over theories induced by (11). How does
%α compare to %LS?

To simplify the discussion, let us restrict attention to a set of data generat-
ing processes DC

ε ⊂ Dε with the property that for any d, d′ ∈ DC
ε , the average

log likelihood ratio l(d′, hn) converges with probability one, when the data
generating process is d. If we did not do this, %α could fall prey to instability
of the type presented in Example 4, and would have to be supplemented by
the type of stability criterion presented in Section 4.3 to be effective. Doing
so would be straightforward, but would clutter the argument.

Proposition 7 Let D = T ⊂ DC
ε be countable. Then

lim
α→0

P (d,%α) = 1− ε.

For a fixed α, the criterion L(t) − αC(t) restricts attention to a finite
subset of DC

ε as possible maximizers of L(t) − αC(t), since a theory that is
too complex can never amass a likelihood value large enough to exceed the
value L(t) − αC(t) attained by the simplest theory. Among this finite set,
no theory can consistently achieve a likelihood above 1− ε. If α is too large,
this finite set will exclude the data generating process itself, and all of the
eligible theories may well fall short of likelihood 1 − ε. Smaller values of
α will not exclude the data generating process a priori, but may still lead
to the selection of a simpler theory and an attendant likelihood loss. As α
gets arbitrarily small, we can be assured that the data generating process is
encompassed in the set of eligible theories and that very little likelihood is
sacrificed in the interests of simplicity, leading to a payoff approaching 1− ε.

Notice, however, that P (d,%0) = P (d,%L), and hence P (d,%0) equals
1/2 (given Assumptions 1 and 4.3). In addition, we cannot say a priori how
small α must be in order to ensure that P (d,%α) is close to 1− ε. We thus
need to make α arbitrarily close to zero, without actually equalling zero.
This is just what our lexicographic criterion does. We can accordingly view
the lexicographic criterion as the limiting case of the smooth criteria that
have been offered in the literature.
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5 Discussion

This section explores several aspects of our model and results. To keep the
discussion simple, we present formal results in Sections 5.1–5.3 for the case
of a deterministic data generating process.

5.1 Countability

We have assumed that D = T is countable. The countability of T may
seem quite restrictive. Indeed, most statistical models allow continuous pa-
rameters, and thereby seemingly refer to uncountable families of processes.
However, our inclination is to be persuaded by Church’s thesis—if the agent
can make a particular set of predictions, then there must be a Turing ma-
chine generating these predictions (Hopcraft and Ullman [8, Chapter 7]), and
hence the set T can reasonably be taken to be countable.18

But this limitation on the agent’s cognitive abilities need not be shared
by Fate. We may well have a set D that is an uncountable superset of T .
How will a simplicity seeking agent fare then? Worse still, what if Fate
is malevolent, using a (noncomputable) strategy that predicts the agent’s
(computable) predictions in order to then generate unpredicted observations?
To investigate this possibility, we retain the assumption that T ⊂ D0 is
countable, but allow D ⊂ D0 to be a superset of T .

The standard way for the agent to protect himself against a malevolent
Fate is to randomize. Specifically, for a simplicity order 3S and for ε > 0, let
the relation %LS,ε be defined by augmenting %LS with a “safety net.” If the
average payoff at history hn is lower than 0.5− ε/ log n, then %LS,ε

hn
= T × T .

Otherwise, %LS,ε
hn

=%LS
hn

.

18Alternatively, one may arrive at countability via a more lenient model, in which a
Turing machine (or, equivalently, a PASCAL program) can also perform algebraic opera-
tions on arbitrary real-valued variables, where the actual computations of these operations
are performed by an “oracle” that is not part of the machine’s computation. A stricter
interpretation of computability, which does not resort to “oracles,”would restrict attention
to statistical models in which all parameters are computable numbers. A number x ∈ R is
computable if there exists a Turing machine M that, given the description of any rational
ε > 0, performs a computation that halts, and writes a number M(ε) ∈ Q such that
|M(ε) − x| < ε. All rational numbers are computable, but so is any irrational number
that can be described by a well-defined algorithm, including algebraic irrational numbers
(such as

√
2), e, and π.
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Proposition 8 Let T ⊂ D0 be countable. Under Assumptions 1, 2.1 and
2.3 (but allowing D ⊂ D0 to be a superset of T ), %LS,ε weakly dominates
%L for every simplicity relation 3S, with %LS,ε performing strictly better for
data generating processes d ∈ T .

Proposition 8 can be interpreted as saying that a preference for simplicity
could be evolutionarily favored even when a cruel Fate ensnares the agent to
believe the world is simple, only to prove her wrong.

5.2 Computability

We have justified the assumption that T is countable by appealing to com-
putability arguments, in the form of an assumption that the agent can only
implement predictions generated by a Turing machine. Continuing in this
spirit, we now take computability issues more seriously. Let us first restrict
Fate to the set DH

0 of deterministic data generating processes implementable
by Turing machines that halt after every input h ∈ H.

In contrast, we now allow the agent to consider the set DT
0 of all Turing

machines, even those that do not always halt. It is a relatively easy task for
the agent to enumerate all Turing machines, but it is not an easy task to
check which of them do indeed define a data generating process.19 A model
that respects the agents’ computability constraints must then allow the set
T to include pseudo-theories : all machines that can be written in a certain
language (and therefore appear to define a data generating process), even if
they may not halt for all histories. Clearly, this additional freedom cannot
help the agent: if, at a given history h, the agent chooses a machine that
does not halt for that history, he will never be able to make a prediction
(in which case we take his payoff to be 0). However, “helping” the agent by
assuming that T ⊂ DH

0 would be unreasonable, as it would be tantamount to
magically endowing the agent with the ability to solve the celebrated halting
problem.20

19One could simulate the computation of any given machine given input h, but there is
no way to distinguish between computations that take a long time and computations that
never end.

20Formally speaking, the objects of choice for the agent are not theories but descriptions
thereof. A rigorous treatment of this problem would call for the definition of a formal
language and of a means of describing programs in that language. Some descriptions give
rise to well-defined theories (i.e., that halt for every history), whereas others would not.
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We also restrict the agent to relations % that are computable, in the sense
that for every h ∈ H, the choice made by the relation %h from the set B%h ⊂
DT

0 could itself be implemented by a Turing machine that inevitably halts.
This restriction is a binding constraint for some data generating processes:

Proposition 9 For every computable relation %⊂ DT
0 ×DT

0 , there exists a
data generating process d ∈ DH

0 such that P (d,%) ≤ 0.5.

Proposition 9 imposes a bound on what can be guaranteed by a com-
putable strategy, in the sense that any such strategy must fare no better
than chance against some data generating processes. The proof consists of
observing that if the agent’s strategy is computable, then one may always
construct a malevolent strategy d that mimics the agent’s computation and
chooses an observation that refutes it.

The malevolent strategy d used to prove Proposition 9 is quite far from
most statistical models. Fate might be quite complex, but it is hard to imag-
ine that Fate spitefully lures the agent into believing in a simple environment,
only to refute this belief period after period. Will a more neutral model of
Fate allow a possibility result? One way to obtain a more realistic set of data
generating processes is to limit their computation time. Specifically, let DB

0

be the set of data generating processes that are implementable by Turing
machines that halt within a bounded number of steps. That is, for d ∈ DB

0

there exists a Turing machine M(d) and an integer K(d) such that, for every
history hn and attendant prediction yn, the computation of M(d) on hn halts
within K(d) steps, producing yn.

The agent is restricted to have a simplicity order that is represented by
a computable function C : DT

0 → N, so that

C(t) ≤ C(t′) ⇐⇒ t 3S t′.

Thus, because C is computable, the agent can compute 3S.
The following result adapts simplicity-based rankings to the computable

set-up.

Proposition 10 For every computable simplicity order 3S⊂ DT
0 ×DT

0 , there
exists a computable relation % with each %h⊂ DT

0 ×DT
0 such that

In such a model, every theory would have infinitely many equivalent descriptions. Thus,
the function that maps descriptions to theories is not defined for all descriptions and is
not one-to-one.
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(10.1) P (%, d) = 1 for every d ∈ DB
0 ;

(10.2) for every d, d′ ∈ DB
0 there exists N such that, for every n ≥ N and

every h ∈ Hn for which L(d, h) = L(d′, h) ,

d �Sh d′ ⇒ d �h d′.

Proposition 10 ensures the existence of a computable strategy yielding
optimal payoffs, as well as its asymptotic agreement with the (strict part of)
the given simplicity ordering 3S over DT

0 .21 The relation % cannot follow
%LS precisely, but it does so for long enough histories. In other words, it is
possible that for a short history the relation % will not reflect the simplicity
ranking 3S, but in the long run, any two theories that are equally accurate
but not equally simple will be ranked according to 3S.

Observe that most deterministic statistical models encountered in the
social sciences are in DB

0 . The deterministic version of models such as linear
regression, non-linear regression, as well as many models in machine learning,
can be described by an algorithmic rule whose computation time does not
depend on the input. A notable exception are time series in economics, where
the model describes the dependence of yn on {yi}i<n, and thus the length of
the computation increases with the length of history, n.

5.3 Impatient Agent

Suppose that the agent has a discounted payoff criterion,

P δ(d,%) = (1− δ)
∞∑
n=0

δnp(d, t̂n, hn). (12)

We assume that Fate chooses a data generating process (as usual, indepen-
dently across agents) according to a probability measure λ on D.

Simplicity has an advantage provided that the agent is sufficiently pa-
tient. In particular, the (omitted) proof of the following is a straightforward
modification of the arguments used to prove Proposition 1.2:

21It would be natural to think of d as simpler than d′ if the Kolmogorov complexity of
d is lower than that of d′, i.e., if d has a shorter minimal description length than d′. This
still leaves some freedom in defining 3S . For instance, one may choose a description in
a given programming language, such as PASCAL, as opposed to Turing machines, and
one may take the description of constant values into account in the measurement of the
description length, or decide to ignore them, and so on.
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Proposition 11 Let Assumptions 1 and 2 hold and let payoffs be given by
(12).

[11.1] For every d ∈ D, there is a discount factor δ∗ such that for all
δ ≥ δ∗,

P δ(d,%LS) > P δ(d,%L).

[11.2] If the data generating process is chosen according to density λ on
D, then there is δ∗ such that for all δ > δ∗,∫

D

P δ(d,%LS)dλ >

∫
D

P δ(d,%L)dλ.

5.4 Bayesianism

We have observed that the Bayesian approach bears some similarity to “sim-
plicism”, i.e., to the simplicity-preferring approach. How do we compare the
two?

The Bayesian approach requires computational capabilities that are much
more demanding than the simplicistic one. The Bayesian approach requires a
quantification of beliefs, and a comparison between the likelihood of every two
sets of theories, not only of particular ones. This is particularly demanding
in case there are infinitely many theories. Another complication arises out
of the fact that a theory typically has many possible representations. For
example, consider the theory t, “predict always 0” and the addition of the
theory t′, “At odd periods predict 0, and at even ones predict 0”. A Bayesian
reasoner would need to observe that the two are equivalent, and to assign
both of them the same probability that he would have assigned t if it were
the only one listed. That is, when contemplating a series of possible theories,
say, described as Turing machines, a Bayesian reasoner is implicitly assumed
to know which are observationally equivalent. In the case of computable
theories, the task of verifying their equivalence is not computable itself.

By contrast, a simplicistic agent has no such concerns. Since he uses only
one theory for prediction, he need not conceive of all possible theories, let
alone to verify their independence. Should the simplest theory happen to
be equivalent to another, less simple theory, the predictions generated by a
simplicity-liking reasoner would not change. Similarly, if a theory is “split”
into several theories (say, seemingly more specific ones), all theories might
still be considered in the set of candidate theories, and the reasoner need not
subject this set to any pre-processing to guarantee their non-equivalence.
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5.5 Stability and Simplicity

We found that, in the presence of uncertainty, stability needs to be added to
likelihood and simplicity as a theory selection criterion. We could reduce the
preference for stability to a preference for simplicity if we adopt a broader
conceptualization of a “theory”. Suppose the agent must not only choose a
theory at each period, but also an explanation for the way the period-by-
period choice is made. An agent who sticks to a particular theory t from
some period onwards will have a simpler pattern of choice than another who
continually switches among theories. Hence, if we ask the agent to select
a simple meta-theory, which explains why specific theories are selected at
different periods, a stable selection will have a lower complexity than an
unstable one.

5.6 Simplicity and Language

The measurement of simplicity depends on language. This fundamental in-
sight was made all too clear by Goodman’s [7] famous “grue-bleen” paradox.
In this paper we did not delve into this issue because our results do not
depend on the particular measure of complexity one uses. Specifically, any
enumeration of theories is sufficient to define a collection (due to equiva-
lences) of simplicity relations. Moreover, taking a computational point of
view, the differences between the simplicity rankings of different theories can
be bounded (cf. Solomonoff [17]).22

22Consider two languages, L1 and L2. If the languages are computationally equivalent,
there are compilers that can translate a program from L1 to L2 and vice versa. It is
certainly possible that in L1 the minimal description length (MDL) of a theory t, MDL1(t),
is shorter than that of t′, MDL1(t′), while the converse is true in language L2. But the
MDL of each theory in language L1 cannot exceed its MDL in language L2 plus the length
of the compiler translating from L1 to L2. The converse is also true, and this means that
there is a bound on the difference between the MDL of a theory in the two languages.
That is, there exists c such that

|MDL1(t)−MDL2(t)| < c

for all t. Hence, if theory t has a sufficiently shorter MDL in L1 than does theory t′, this
ranking will have to be preserved in language L2.
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5.7 Statistics and Evolutionary Psychology

Statistics and evolutionary psychology are not typically seen as closely re-
lated disciplines. Researchers in statistics and in machine learning tend to
seek optimal inference and learning techniques. Evolutionary psychologists
seek to explain psychological phenomena as solutions to realistic constrained
optimization problems faced by an organism. Both fields seek optimal so-
lutions, but they assume different constraints. Nonetheless, similar types of
reasoning have been independently developed in both domains. The prefer-
ence for simplicity can be viewed as a case in which the natural preference
of people in reasoning coincides with the normative considerations of statis-
ticians.

Similar concurrences can be found in other examples. Techniques of
nearest-neighbor classifications are similar to categorization by examples.
The same is true of kernel-based probabilities and “exemplar learning.” More-
over, Gayer [5] points out that the bias of kernel methods familiar in the
statistical literature can also serve as an explanation of the “distortion” of
probabilities in Prospect Theory (Kahneman and Tversky [9]). Thus, both
the successes and the failures of certain statistical techniques can also be
found in the human mind. We find it encouraging that evolution has en-
dowed the human mind with some of the patterns of reasoning developed in
statistics and in machine learning.

6 Appendix: Proofs

Proof of Proposition 1.1. Fix d ∈ D = T . There are finitely many
theories in S(d) ≡

{
t ∈ T | t 3S d

}
, i.e., that are as simple as or simpler

than d. Choose some t ∈ S(d) and suppose that t and d are not observa-
tionally equivalent, meaning that they do not generate identical outcomes
((x0, y0), ..., (xn, yn), ...). Then at some period n theory t will be refuted, i.e.,
the data generating process will produce a history hn = ((x0, y0), ..., (xn−1, yn−1), xn)
for which L(t, hn) = 0 and hence d �LSh t. Applying this argument to the
finitely many theories in S(d), there must exist a finite time n′ by which
either theory d is chosen by %LS

hn′ or some element t ∈ S(d) is chosen by %LS
hn′

that is observationally equivalent to d. Thereafter, p(d, tn, hn) = 1 holds.
This yields P (d,%LS) = 1

38



Proof of Proposition 1.2. Assumption 2.3 ensures that, for every history
hn there are theories t ∈ D consistent with hn, that is, L(t, hn) = 1. Consider

B%Lh
= { d |L(d, h) = 1 }.

For any finite continuation of hn there is a theory t ∈ B%Lh
that is consis-

tent with this continuation. In particular, this is true for the history hn+1

generated from hn and yn = 0 (coupled with xn+1) as well as for the history
h′n+1 generated from hn and yn = 1 (coupled with xn+1). Assumption 1 then
ensures that the order %L is equally likely to select a theory predicting yn = 0
as it is to select a theory yn = 1. Thus, the probability of making a correct
prediction is 1/2, and hence p(d, hn, tn) = 0.5, regardless of the true process
d. This establishes

P (d,%L
h ) = 0.5.

We conclude that, for every simplicity relation %S, and for every data gen-
erating process d, the limit payoff under %LS is 1, while it is only 0.5 under
%L. Hence, %LS strictly dominates %L.

Proof of Proposition 2. Consider an agent characterized by %LI and
suppose Fate has chosen theory d. If P (d,%LI) < 1, it must be that infinitely
often, p(d, tj, hj) = 0. Hence, the agent infinitely often chooses a new theory
but never chooses d. By Assumption 3, the probability that the agent chooses
a new theory n times without choosing d is at most (1 − λ(d))n. Since
limn→∞(1 − λ(d))n = 0, the probability that P (d,%LI) < 1 is zero, and
hence the expected value of P (d,%LI) is unity.

Proof of Proposition 8. The relation T × T guarantees a random choice
(by Assumption 2.3), and hence this relation ensures an expected payoff of
0.5 at each period in which it is played. Thus, if %LS,ε = T × T for a
long enough period, the average payoff converges to 0.5 with probability 1.
Moreover, it does so at a rate proportional to n−1/2. It follows that, with
probability 1, the sustained application of relation T ×T leads to a period n
at which the average payoff surpasses the threshold 0.5 − ε/ log n, at which
point %LS,ε switches to %LS.

Suppose that Fate chooses d ∈ T . Since %LS,ε=%LS infinitely often,
%LS,ε will eventually select d or a theory equivalent to d. Predictions will
subsequently be perfect, ensuring that %LS,ε will not revert to T × T and
that P (d,%LS,ε) = 1.
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If Fate chooses d /∈ T , the lowest the average payoff at history hn can drop
without ensuring %LS,ε= T × T is 0.5− ε/ log n− 1/n (obtained by coupling
a history of length n− 1 in which the payoff is precisely 0.5− ε/ log(n− 1)
with one more incorrect observation). Hence P (d,%LS,ε) ≥ 0.5. Combining
the two, we thus find that P (d,%LS,ε) ≥ P (d,%L) for all d ∈ D, with strict
equality for every d ∈ T .

Proof of Proposition 9. Let % be computable. Then there is a Turing
machine τ that implements % by, for any history h, computing a maximizer
of % from the set DH . Let d simulate the machine τ , for any history h,
finding the maximizer th that the agent will use for prediction, and then
generating prediction 1 if th(h) ≤ 0.5 and 0 if th (h) > 0.5. A deterministic t
will result in a payoff of 0. The maximal payoff for the agent at each period
is 0.5, obtained by the random prediction th (h) = 0.5.

Proof of Proposition 10. The basic idea is to construct the relation %
by combining the underlying simplicity order 3 with the time complexity of
the machine.

Let DT = {t1, t2, ...} be the class of all Turing machines, including those
that always halt and those that do not halt for certain inputs h ∈ H. There
is no difficulty in writing a machine that generates DT , or, equivalently, that
can accept i ≥ 1 as an input and, after a finite number of steps, provide the
description of ti.

Assume we are given a history h and we wish to select a theory that
has high likelihood and that halts for h. When considering a machine t, we
thus need to determine whether it fits the data, namely whether L(t, hn) = 1
(taking L(t, hn) = 0 if the machine fails to halt for any prefix of hn), and
we need to compute its prediction for yn, or t(hn), taking into account the
possibility that it may not halt when making this prediction. That is, we
need to know the result of n + 1 computations of ti (one to verify that the
theory fits the observation generated in each of the preceding n periods, and
one to generate the current prediction), each of which may not halt.

Let C : D → N be a computable complexity function for the underlying
simplicity order 3S, so that

C(t) ≤ C(t′) ⇐⇒ t 3S t′.

Define c : D × H → N ∪ {∞} to be the length of computation, that is,
c(t, h) ∈ {1, 2, ...,∞} is the number of steps that t takes to compute where
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h is its input. Next define a function C∗ : D ×H → R+ ∪ {∞} by

C∗(t, h) = C(t) +
1

n2

n∑
j=0

c(t, hj)

where t ∈ D, h ∈ Hn and hj is the j-th prefix of h. Using this function, we
define our candidate relation over theories:

t′ %h t ⇐⇒
{

L(t′, h) > L(t, h)
or [L(t′, h) = L(t, h) and C∗(t′, h) ≤ C∗(t, h)]

.

We argue that it is a computable task to find a maximizer of %h from
among those machines that halt on history h, and that this maximizer will
have likelihood one. First observe that for every h there exists a machine t
such that L(t, hn) = 1 and C∗(t, hn) <∞. To see this, it suffices to consider
a machine t that generates history hn irrespective of the data. For any
history longer than n, the machine can generate 0. This takes a computation
time c(t, h) = O(n). By construction, t ∈ DB

0 . Since this machine appears
somewhere in the enumeration corresponding to 3S, we have C(t) <∞ and
hence C∗(t, h) <∞.

Given C∗(t, h), there are finitely many machines t′ with C(t′) ≤ C∗(t, h),
and therefore only finitely many machines that can beat t according to %.
Each of these has to be simulated only a bounded number of steps, C∗(t, h),
to see if, indeed, it gives L(t′, hn) = 1 and a lower value for C∗(t′, h).

Note that for all d ∈ DB
0 , c(t, hn) ≤ K(d) and

1

n2

n∑
j=0

c(t, hj) ≤
1

n2
nK(d)→ 0

hence,
C∗(t, h)→ C(t).

Now consider d, d′ ∈ DB
0 with d �S d′ and hence C(d) ≤ C(d′). Then for all

sufficiently large n, C∗(d, hn) < C∗(d′, hn), and hence L(d, hn) = L(d′, hn)⇒
d �h d′. This establishes (10.2).

We now turn to (10.1), namely that P (%, d) = 1 for every d ∈ DB
0 . For

t′ %h d to hold, we must have L(t′, h) = 1 and C(t′) ≤ C(d). An argument
analogous to that of the proof of Proposition 1 ensures that at some point,
d or a theory equivalent to it is found, and from that point on only such
theories (predicting d(h) for every h) can be maximizers of %. Hence the
agent makes perfect predictions and obtains P (%, d) = 1.
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Proof of Proposition 5. Fix a data generating process d. Assume that
γ satisfies θ(γ) = θ(1 − ε) − δ for δ > 0. For any η > 0, there exists k such
that, with probability 1− η at least, for all n ≥ k,

l(d, hn) > [(1− ε) log(1− ε) + ε log ε]− δ = θ(1− ε)− δ = θ(γ).

Thus, from period k on, it is likely that the correct theory d is among the
γ-maximizers of l(·, hn). If d is the maximizer of %LS,γk used for prediction,
a payoff of (1− ε) is guaranteed. We wish to show that, if another theory is
used for prediction, it cannot be much worse than d itself.

Let us condition on the probability 1 − η event that for every n > k,
l(d, hn) > θ(γ). If a theory t 6= d is used for prediction at period n ≥ k, then
it must be the case that (i) t is a γ-best fit for all periods j = k, ..., n; and
(ii) t 3S d. Hence, for each period n > k, there are only a finite number of
theories satisfying conditions (i) and (ii), of which the simplest will be chosen.
Moreover, the set of such theories is decreasing in n (since a theory whose
likelihood ratio drops below γ is subsequently disqualified). Eventually, a
period n′ will be reached such that some theory t (possibly d) satisfying (i)
and (ii) will be used in all subsequent periods. Let n > n′, and let α be the
proportion of times, up to n, that t made the correct prediction. Then, since
t is a γ-best fit at n, we have

l(t, h) = α log(1− ε) + (1− α) log ε

= α [log(1− ε)− log ε] + log ε

= α log
1− ε
ε

+ log ε

≥ θ(γ)

= θ(1− ε)− δ
= (1− ε) log(1− ε) + ε log ε− δ
= (1− ε) [log(1− ε)− log ε] + log ε− δ

= (1− ε) log
1− ε
ε

+ log ε− δ.

This gives

α log
1− ε
ε

+ log ε ≥ (1− ε) log
1− ε
ε

+ log ε− δ

or

[α− (1− ε)] log
1− ε
ε
≥ −δ

42



that is,

α ≥ (1− ε)− δ

log 1−ε
ε

.

Intuitively, the payoff obtained by predicting according to t cannot be much
lower than (1 − ε). Taking into account the probability of convergence by
time k we get

P (d,%LS,γk) ≥ (1− η)

[
(1− ε)− δ

log 1−ε
ε

]
,

which converges to (1 − η)(1 − ε) as δ ↘ 0. Finally, increasing k results in
decreasing η to any desired degree, and the result follows.

Proof of Proposition 6. The basic idea is have the agent simulate the
choices of theories that would have corresponded to %LS,γk for different values
of γ and of k. For values of γ larger than 1− ε, the agent will find that the
maximizers of %LS,γk keep changing, indicating that γ is too high. For values
of γ that are lower than 1 − ε, the agent will find theories that get selected
asymptotically, an indication that γ might be too low. By refining the search
for γ, while simultaneously gathering more observations, the reasoner will
approach 1− ε and make predictions according to the correct theory.

We make these ideas precise in the form of a reasoning algorithm that is
simple, but makes no claims to efficiency. At stage n the reasoner considers
as possibilities for γ all values in

Γn =
{ r

2n
| r = 0, 1, ..., 2n

}
.

Given n, define k = xn/2y. For each γ ∈ Γn, and for each m = k, ..., n,
the reasoner finds all the maximizers of %LS,γk

hm
(to make this an algorithm,

we need to assume that an oracle can perform this task). Denote the set of
maximizers for each γ by M(m, k, γ). This is a finite set, due to the agent’s
preference for simplicity. Then, for each γ, define

M∗(n, γ) = ∩k≤m≤nM(m, k, γ).

Thus, M∗(n, γ) contains precisely those theories that have been among the
“γ-best” theories for the past n/2 periods.
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If M∗(n, γ) = ∅ for all γ ∈ Γn, define %S∗
hn

= D × D. In this case all
theories are equivalent in terms of %S∗

hn
, and the reasoner’s choice will be

arbitrary.
If, however, M∗(n, γ) 6= ∅ for some γ ∈ Γn, let γn be the maximal such

value in Γn, and define

t %S∗
hn t

′ ⇐⇒


t ∈ M∗(n, γn) and t′ /∈M∗(n, γn)

or t, t′ ∈ M∗(n, γn) and t 3S t′

or t, t′ /∈ M∗(n, γn).

That is, the 3S-simplest theories in M∗(n, γn) are considered to be the “best”
theories and one of them will be used for prediction.

To see that the definition of %S∗ satisfies the desired properties, observe
that, by the proof of Proposition 5, if γ > 1 − ε, M∗(n, γ) = ∅ for large n.
For γ < 1− ε, d ∈M∗(n, γ) for large n. As n→∞, the minimal γ for which
M∗(n, γ) 6= ∅ converges to 1− ε, and d is among the maximizers of %S∗. We
then repeat the argument of Proposition 5, by which any theory t 6= d such
that t ∈M∗(n, γ) obtains a payoff that converges to (1− ε) as γ ↗ 1− ε.

Proof of Proposition 7. Fix a complexity function C(t), a value α > 0,
and a data generating process d∗. Let d̂ ∈ arg mind∈DCε C(d). Then no theory

d for which θ(1)− αC(d) < θ(ε)− αC(d̂) will ever be chosen by the relation
%α, no matter what the history. The agent’s choice of theory in each period
will thus be drawn from the finite set DC

ε (α) ≡ {d ∈ DC
ε : θ(1) − αC(d) <

θ(ε)− αC(d̂)}.
For sufficiently small α, the data generating process d∗ is contained in

DC
ε (α). In addition, with probability 1, the limit limn→∞ l(d, hn) exists for

all d ∈ DC
ε (α). Since this set is finite, with probability 1, the agent’s choice

of theory becomes constant across periods, being the maximizer over DC
ε (α)

of
lim
n→∞

l(d, hn)− αC(d).

But since d∗ ∈ DC
ε (α) for small α, the agent’s payoff is bounded below by

lim
n→∞

l(d, hn)− αC(d) = θ(1− ε)− αC(d∗).

Taking α to zero then gives the result.
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