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ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT
RESTRICTIONS

YUICHI KITAMURA, TAISUKE OTSU, AND KIRILL EVDOKIMOV

Abstract. This paper is concerned with robust estimation under moment restrictions. A moment

restriction model is semiparametric and distribution-free, therefore it imposes mild assumptions. Yet

it is reasonable to expect that the probability law of observations may have some deviations from

the ideal distribution being modeled, due to various factors such as measurement errors. It is then

sensible to seek an estimation procedure that are robust against slight perturbation in the probability

measure that generates observations. This paper considers local deviations within shrinking topological

neighborhoods to develop its large sample theory, so that both bias and variance matter asymptotically.

The main result shows that there exists a computationally convenient estimator that achieves optimal

minimax robust properties. It is semiparametrically efficient when the model assumption holds, and

at the same time it enjoys desirable robust properties when it does not.

1. Introduction

Consider a probability measure P0 ∈M, where M is the set of all probability measures on the

Borel σ-field (X ,B (X )) of X ⊆ Rd. Let g : X ×Θ → Rm be a vector of functions parametrized by a

p-dimensional vector θ which resides in Θ ⊂ Rp. The function g satisfies:

(1.1) EP0 [g (x, θ0)] =
∫
g (x, θ0) dP0 = 0, θ0 ∈ Θ.

The moment condition model (1.1) is semiparametric and distribution-free, therefore imposes mild

assumptions. Nevertheless, it is reasonable to expect that the probability law of observations may have

some deviations from the restriction under the moment condition model. It is then sensible to seek for
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estimation and testing procedures that are robust against slight perturbations in the observed data,

or more formally, perturbations in the probability measure that generates observations. This notion

of robustness can be illustrated as follows. Let a functional θ(P ), P ∈M solve the moment condition

model (1.1), in the sense that θ0 = θ(P0). Suppose, however, observations x1, ..., xn are not drawn

according to P0, but its “perturbed” version P instead. This can be attributed to various factors,

including measurement errors or data contamination. These are imminent and realistic concerns in

applications. The goal of robust estimation is to obtain an estimator θ̄ = θ̄(x1, ..., xn) that is not

sensitive to such perturbations, so that the deviation of the estimated value θ̄ from and the parameter

value of interest θ0 = θ(P0) remains stable. Decompose the deviation as:

(1.2) θ̄ − θ0 = [θ̄ − θ(P )] + [θ(P )− θ(P0)].

In the asymptotic MSE calculation presented below, the expectation of the square of the term in the

first square bracket contributes to the variance of the estimator, whereas the second corresponds to

the bias. An estimator that achieves small MSE uniformly in P over a neighborhood of P0 is desirable.

Asymptotic theory of robust estimation when the model is parametric has been considered

extensively in the literature: see Rieder (1994) for a comprehensive survey. In a pioneering paper,

Beran (1977) discusses “robust and efficient” estimation of parametric models. Suppose Pθ, θ ∈

Θ ⊂ Rk is a parametric family of probability measures. Observations are drawn from a probability

law P , which may not be a member of the parametric family. Let pθ and p denote the densities

associated with the probability measures Pθ and P . It is well-known that the parametric MLE

procedure corresponds to minimizing the objective function ρ =
∫

log(p/pθ)pdx. Beran points out

that a small change in the density p can lead to a large change in the objective function ρ (note the

log in ρ), implying the non-robustness of the MLE. He shows that the parametric Minimum Hellinger

distance estimator (MHDE) is “robust and efficient,” in the sense that (i) it has an asymptotic minimax

robust property and (ii) it is asymptotically efficient when the model assumption is satisfied, i.e. when

the sample is generated from P0 = Pθ0 , where θ0 is the true value of the parameter of interest. Let

H(Pθ, P ) =
√∫

(p1/2
θ (x)− p1/2(x))2dx denote the Hellinger distance between Pθ and P (a slightly

more general definition of the Hellinger distance is given in the next section). The MHDE for the

parametric model is

θ̂ = argmin
θ

H(Pθ, P̂ )

= argmin
θ

∫
(p1/2
θ (x)− p̂1/2(x))2dx
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where p̂ is a nonparametric density estimator, such as a kernel density estimator, for P and P̂ is the

corresponding estimator for the probability measure of x. The MHDE is asymptotically equivalent to

MLE and thus efficient if the model assumption is satisfied. One can replace the Hellinger distance

with other divergence measures such as the Kolmogorov-Smirnov distance, which would make the

corresponding minimum divergence estimator even more robust, but it would incur efficiency loss.

The parametric MHDE has been studied extensively and applied to various models.

The parametric MHDE has theoretical advantages and excellent finite sample performance doc-

umented by numerous simulation studies, but it has limitations as well. It requires the nonparametric

density estimator when at least some components of x are continuously distributed. This makes its

practical application inconvenient, and is problematic when x is high dimensional, due to the curse

of dimensionality. It also necessitates the evaluation of the integral
∫

(p1/2
θ (x) − p̂1/2(x))2dx. This

would either involve numerical integration or an approximation by an empirical average with inverse

density weighting using a nonparametric density estimator. The former can be hard to implement,

and the latter may have undesirable effects in finite samples. This paper aims at developing robust

methods for moment restriction models, by applying the MHDE procedure. The resulting estimator

is semiparametrically efficient when the model assumption holds, and at the same time it enjoys an

optimal minimax robust property when it does not. The implementation of the estimator is easy.

Unlike its parametric predecessor, it requires neither nonparametric density estimation nor evaluation

of integration.

2. Preliminaries

Suppose a random sample {xi}ni=1 generated from P is observed. The econometrician wishes

to estimate the unknown θ0 in (1.1) from the sample. As discussed in Section 1, our focus is on robust

estimation of θ0 when the probability measure P , from which the observations are drawn, is a (locally)

perturbed version of P0, not P0 itself. There exists an extensive literature concerning the estimation of

(1.1) under the “classical” setting where data are indeed drawn from P0. Many estimators for θ0 are

available, including GMM (Hansen (1982)), the empirical likelihood (EL) estimator and its variants.

This paper is concerned with an estimator that can be viewed as the MHDE applied to the moment

restriction model (1.1). The Hellinger distance between two probability measures is defined as follows:
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Definition 2.1. Let P and Q be probability measures with densities p and q with respect to a domi-

nating measure ν. The Hellinger distance between P and Q is then given by:

H (P,Q) =
{∫ (

p1/2 − q1/2
)2
dν

}1/2

=
{

2− 2
∫
p1/2q1/2dν

}1/2

.

The following notation that does not explicitly refer to the dominating measure is often con-

venient:

H (P,Q) =
{∫ (

dP 1/2 − dQ1/2
)2

}1/2

=
{

2− 2
∫
dP 1/2dQ1/2

}1/2

.

We now provide some results concerning the Hellinger distance that are useful in understanding

the robustness theorems in the next section.

Definition 2.2. Let P and Q be probability measures with densities p and q with respect to a domi-

nating measure ν. The α-divergence from Q to P is given by

Iα (P,Q) =
1

α(1− α)

∫ (
1−

(
p

q

)α)
qdν, α ∈ R.

If P is not absolutely continuous respect to Q, then
∫

I {p > 0, q = 0} dν > 0, and as a conse-

quence Iα (P,Q) = ∞ for α ≥ 1. A similar argument shows that Iα (P,Q) = ∞ if Q 6� P and α ≤ 0.

Note that Iα is well-defined for α = 1 by taking the limit α→ 1 in the definition. Indeed, L’Hospital’s

Rule implies that

lim
α→1

Iα (P,Q) =
∫

log
(
p

q

)
pdν := K(P,Q)

(with the above convention for the case where P 6� Q), giving rise to the well-known Kullback-Leibler

(KL) divergence measure from P to Q. The case with α = 0 corresponds to the KL divergence with

the roles of P and Q reversed. Note that the α-divergence includes the Hellinger distance as a special

case, in the sense that

H2 (P,Q) =
1
2
I 1

2
(P,Q) .

The following Lemma provides an upper bound for the Hellinger distance. It generalizes well-

known information theoretic inequalities.

Lemma 2.1. For probability measures P and Q,

(2.1) max (α, 1− α) Iα (P,Q) ≥ 1
2
I 1

2
(P,Q)

for every α ∈ R.
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Proof. We first show the claim for α < 1
2 , that is,

(2.2) (1− α) Iα (P,Q)− 1
2
I 1

2
(P,Q) ≥ 0.

Let Hα (x) = 1
α (1− xα)− 2

(
1− x

1
2

)
, 0 ≤ x ≤ ∞, then the above inequality becomes

(2.3)
∫
Hα

(
p

q

)
qdν ≥ 0.

Note

d

dx
Hα (x) = −xα−1 + x−

1
2


> 0 if x > 1

= 0 if x = 1

< 0 if x < 1.

The above holds for the case with α = 0 as well, since H0 (x) = − log x − 2
(
1− x

1
2

)
. Moreover,

Hα (1) = 0. Therefore Hα (x) ≥ 0 for all x ≥ 0, and the desired inequality (2.3) follows immediately.

Next, we prove the case with α > 1
2 , that is,

αIα (P,Q) ≥ 1
2
I 1

2
(P,Q) .

Let β = 1− α < 1
2 , then the above inequality becomes

(2.4) (1− β) I1−β (P,Q) ≥ 1
2
I 1

2
(P,Q) .

By (2.2) and the symmetry of the Hellinger distance,

(1− β)Iβ (Q,P ) ≥ 1
2
I 1

2
(Q,P ) =

1
2
I 1

2
(P,Q) .

But the equality I1−β (P,Q) = Iβ (Q,P ) holds for every β ∈ R, and (2.4) follows. �

Remark 2.1. Lemma 2.1 has some implications on a neighborhood system generated by the Hellinger

distance. Consider the following neighborhood of a probability measure P with its radius in terms of

Iα is δ > 0:

BIα (P, δ) =
{
Q ∈M :

√
Iα (Q,P ) ≤ δ

}
.

Lemma 2.1 implies that

Iα (P,Q) ≥ 1
2

((
1
2 + L

)
∨

(
1
2 + U

))Iα0 (P,Q)

holds for every α ∈
[

1
2 − L, 1

2 + U
]

where L,U > 0 determine the lower and upper bounds for the

range of α, if α0 = 1
2 . It is easy to verify that this statement holds only if α0 = 1

2 . Now, define

C (L,U) =
(

1
2

+ L

)
∨

(
1
2

+ U

)
,
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then by the above inequality

(2.5) ∪α∈[ 1
2
−L, 1

2
+U] BIα (P0, δ) ⊂ BI1/2

(
P0,

√
2C (L,U)δ

)
.

That is, the union of the Iα-based neighborhoods over α ∈
[

1
2 − L, 1

2 + U
]

is covered by the Hellinger

neighborhood BI1/2
with a “margin” given by the multiplicative constant 2

√
C (L,U). (2.5) is impor-

tant, since in what follows we consider robustness of estimators against perturbation of P0 within its

neighborhood, and it is desirable to use a neighborhood that is sufficiently large to accommodate a

large class of perturbations. The inclusion relationship shows that the Hellinger-based neighborhood

covers other neighborhood systems based on Iα, α ∈
[

1
2 − L, 1

2 + U
]

if the radii are chosen appropri-

ately. It is easy to verify that (2.5) does not hold if the Hellinger distance I 1
2

is replaced by Iα, α 6= 1
2 ,

showing the special status of the Hellinger distance among the α-divergence family.

Remark 2.2. Lemma 2.1 is a statement for every pair of measures (P,Q), thus it holds even if P 6� Q

or Q 6� P . On the other hand, it is useful to consider the behavior of Iα when one of the two measures

is not absolutely continuous with respect to the other. Consider a sequence of probability measures

{P (n)}∞i=1. Suppose Iα(P (n), P0) → 0 for an α ∈ R, then Iα′(P (n), P0) → 0 for every α′ ∈ (0, 1).

But the reverse (i.e. reversing the roles of α and α′) is not true. If P (n), n ∈ N are not absolutely

continuous respect to P0, Iα′(P (n), P0) = ∞ for every α′ ≥ 1 even if ρα(P (n), P0) → 0 for α ∈ (0, 1)

(and a similar argument holds for α′ ≤ 0). This shows that Iα-based neighborhoods with α /∈ (0, 1)

are too small: there are measures that are outside of BIα(P0, δ), α /∈ (0, 1) no matter how large δ is,

or how close they are to P0 in terms of, say, the Hellinger distance H. This shortcoming applies to

neighborhoods based on the KL divergence and the χ2 measure (see Remark 2.3), as they correspond

to Iα with α = −1, 0, 1 and 2.

Remark 2.3. The inequality in Lemma 2.1 might be of interest on its own as it generalizes various

information theoretic inequalities in the literature. For α = 1 or 0, it corresponds to the well-known

inequality between the KL divergence and the Hellinger distance

(2.6) H(P,Q)2 ≤ K(P,Q),

see, for example, Pollard (2002), p.62. Also, consider the χ2 distance, which is given by χ2(P,Q) =∫ (p−q)2
q dν. Then

(2.7) H(P,Q)2 ≤ χ2(P,Q)



ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS 7

holds (Reiss (1989)). This is a special case of Lemma 2.1 with α = −1 and 2. Proposition 3.1 in Zhang

(2006) shows that the inequality (2.1) holds for α ∈ (0, 1). Note that Zhang’s result interpolates (2.6)

and the same inequality with P and Q reversed, but covers neither (2.6) nor (2.7)1. These results have

been obtained more or less on a case by case basis. Lemma 2.1 proves that this type of inequality

holds for all α ∈ R, unifying those well-established results in the literature.

Beran (1977), considering a parametric model, proposed MHDE that minimizes the Hellinger

distance between a model-based probability measure (from the parametric family) and a nonparamet-

ric probability measure estimate. An application of the MHDE procedure to the moment condition

model (1.1) yields a computationally simple procedure as follows. Let Pn denote the empirical measure

of observations {xi}ni=1. Pn is an appropriate model-free estimator in our construction of the MHDE.

Let

Pθ =
{
P ∈M :

∫
g (x, θ) dP = 0

}
and

(2.8) P = ∪θ∈ΘPθ,

then the MHDE, denoted by θ̂, is defined to be a parameter value that solves the optimization problem

inf
θ∈Θ

inf
P∈Pθ

H (P, Pn) = inf
P∈P

H(P, Pn).

By convex duality theory (Kitamura (2006)), the objective function has the following representation:

inf
P∈Pθ

H (P, Pn) = max
γ∈Rm

− 1
n

n∑
i=1

1
1 + γ′g (xi, θ)

Therefore the MHDE is θ̂ = arg minθ∈Θ maxγ∈Rm − 1
n

∑n
i=1

1
1+γ′g(xi,θ)

, which is easy to compute.

It is straightforward to verify that we can obtain the MHDE as a Generalized Empirical Likeli-

hood (GEL) estimator by letting γ = −1/2 in equation (2.6) of Newey and Smith (2004). Asymptotic

properties of the (G)EL estimators for θ0 in (1.1), when data drawn from P0 are observed are well-

understood (see, for example, Kitamura and Stutzer (1997), Smith (1997), Imbens, Spady, and John-

son (1998), and Newey and Smith (2004)). Let G = EP0 [∂g (x, θ0) /∂θ′], Ω = EP0

[
g (x, θ0) g (x, θ0)

′],
and Σ = G′Ω−1G. Then

(2.9)
√
n

(
θ̂α − θ0

)
d→ N

(
0,Σ−1

)
.

1Zhang (2006) also derives a lower bound for the Hellinger distance in terms of Iα.
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It follows that the MHDE and other GEL estimators are semiparametrically efficient in the absence

of data perturbation. At the same time, the MHDE possesses a distinct property of being asymptotic

optimal robust if observations are drawn from a perturbed version of P0, as we shall see in the next

section.

3. Robust Estimation Theory

We now analyze robustness of the MHDE θ̂. Define a functional

T (P ) = arg min
θ∈Θ

max
γ∈Rm

−
∫

1
1 + γ′g (x, θ)

dP

then the MHDE can be interpreted as the value of functional T evaluated at the empirical measure

Pn. In other words, each realization of Pn completely determines the value of the MHDE θ̂. To make

the dependence explicit, we write θ̂ = T (Pn), and study properties of the mapping T : M→ Θ. This

definition of T (·), however, causes a technical difficulty when the distribution of g(x, θ) is unbounded

for some θ ∈ Θ and P ∈ M. To overcome this, we introduce the following mapping defined by a

trimmed moment function:

T̄ (Q) = arg min
θ∈Θ

inf
P∈P̄θ

H (P,Q) ,

where {mn}n∈N is a sequence of positive numbers satisfying mn →∞ as n→∞, and

P̄θ =
{
P ∈M :

∫
g (x, θ) I {x ∈ Xn} dP = 0

}
,

Xn =
{
x ∈ X : sup

θ∈Θ
|g (x, θ)| ≤ mn

}
,

with the indicator function I {·} and the Euclidean norm |·|, i.e., Xn is a trimming set to bound the

moment function and P̄θ is a set of probability measures satisfying the bounded moment condition

EP [g (x, θ) I {x ∈ Xn}] = 0. Lemma 7.1 (i) guarantees that for each n ∈ N and Q ∈ M the value

T̄ (Q) exists.

Let τ : Θ → R be a possibly nonlinear transformation of the parameter. We consider the

estimation problem of the transformed scalar parameter τ (θ0). The transformation τ to a scalar, as

used by Rieder (1994), is convenient in calculating squared biases and MSE’s. One may, for example,

choose τ(θ) = c′θ using a p-vector c. We first investigate the behavior of the bias term τ ◦T̄ (Q)−τ (θ0)

in a (
√
n-shrinking) Hellinger ball with radius r > 0 around P0

BH
(
P0, r/

√
n
)

=
{
Q ∈M : H (Q,P0) ≤ r/

√
n
}
.

Assumption 3.1. Suppose the following conditions hold:
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(i): {xi}ni=1 is iid;

(ii): Θ is compact;

(iii): θ0 ∈ int(Θ) is a unique solution to EP0 [g (x, θ)] = 0;

(iv): g (x, θ) is continuous over Θ at each x ∈ X ;

(v): EP0 [supθ∈Θ |g (x, θ)|η] < ∞ for some η > 2, and there exists a neighborhood N around

θ0 such that EP0

[
supθ∈N |g (x, θ)|4

]
< ∞, g (x, θ) is continuously differentiable a.s. on N ,

supx∈Xn,θ∈N |∂g (x, θ) /∂θ′| = o
(
n1/2

)
, and EP0

[
supθ∈N |∂g (x, θ) /∂θ′|2

]
<∞;

(vi): G has the full column rank and Ω is positive definite;

(vii): {mn}n∈N satisfies mn → ∞, nm−η
n → 0, and n−1/2m1+ε

n = O (1) for some 0 < ε < 2 as

n→∞;

(viii): τ is continuously differentiable at θ0.

Assumptions 3.1 (i)-(vi) are standard in the literature on GMM. Assumption 3.1 (iii) is a global

identification condition of the true parameter θ0 under P0. Assumption 3.1 (iv) ensures the continuity

of the mapping T̄ (Q) in Q ∈ M for each n ∈ N. Assumption 3.1 (v) contains the smoothness and

boundedness conditions for the moment function and its derivatives. This is stronger than a typical

assumption imposed to obtain the standard asymptotic distribution (2.9). Assumption 3.1 (vi) is a

local identification condition for θ0. This assumption guarantees that the asymptotic variance matrix

Σ−1 exists. Assumption 3.1 (vii) is on the trimming parameter mn. If mn ∼ na, this assumption

is satisfied for 1/η < a < 1/2. Assumption 3.1 (viii) is a standard requirement for the parameter

transformation τ .

To characterize a class of estimators to be compared with the MHDE, we introduce the following

definition.

Definition 3.1. Let Ta (Pn) be an estimator of θ0 based on a mapping Ta : M→ Θ. Also, let Pθ,ζ be

a regular parametric submodel (see, Bickel, Klassen, Ritov, and Wellner (1993, p. 12)) of P in (2.8)

such that Pθ0,0 = P0.

(i): Ta is called Fisher consistent if

(3.1)
√
n

(
Ta

(
Pθ0+t/

√
n,ζn

)
− θ0

)
→ t.

holds for every submodel Pθ,ζ that satisfies Pθ0+t/
√
n,ζn ∈ BH (P0, r/

√
n) eventually with ζn =

O
(
n−1/2

)
and for every t ∈ Rp.
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(ii): Ta is called regular for θ0 if for every {Pθn,ζn}n∈N with (θ′n, ζ
′
n)
′ = (θ′0, 0)′+O(n−1/2), there

exists a probability measure M such that

(3.2)
√
n (Ta (Pn)− Ta (Pθn,ζn)) d→M, under Pθn,ζn ,

where the measure M does not depend on the sequence {(θ′n, ζ ′n)′}n∈N.

Both conditions are weak and satisfied by GMM, (G)EL and other standard estimators. For

example, the mapping Ta for the continuous updating GMM estimator (CUE) is given by

TCUE(P ) = argmin
θ∈Θ

[∫
g(x, θ)dP

]′ [∫
g(x, θ)g(x, θ)dP

]−1 [∫
g(x, θ)dP

]
,

and under Assumption 3.1 TCUE(Pθ0+t/
√
n, ζn) = θ0 + t/

√
n for large n. CUE therefore trivially

satisfies (3.1). The regularity condition (3.2) is standard in the literature of semiparametric efficiency;

see, for example, Bickel, Klassen, Ritov, and Wellner (1993) and Newey (1990).

The following theorem shows the optimal robustness of the (trimmed) MHDE in terms of its

maximum bias.

Theorem 3.1. Suppose that Assumption 3.1 holds.

(i): For every Ta which is Fisher consistent,

lim inf
n→∞

sup
Q∈BH(P0,r/

√
n)
n (τ ◦ Ta (Q)− τ (θ0))

2 ≥ 4r2B∗,

for each r > 0, where B∗ =
(
∂τ(θ0)
∂θ

)′
Σ−1

(
∂τ(θ0)
∂θ

)
.

(ii): The mapping T̄ is Fisher consistent and satisfies

lim
n→∞

sup
Q∈BH(P0,r/

√
n)
n

(
τ ◦ T̄ (Q)− τ (θ0)

)2 = 4r2B∗,

for each r > 0.

Remark 3.1. The above result is concerned with deterministic properties of Ta and T . Ta(Q) and

T (Q) can be regarded as the (probability) limit of the estimators Ta(Pn) and T (Pn) under Q, and

therefore the terms evaluated here correspond to the bias of each estimators due to the deviation

of Q from P0. The theorem says that in the class of all mappings that are Fisher consistent, the

mapping T̄ has the smallest maximum bias over the set BH (P0, r/
√
n). The (trimmed version of)

the Hellinger-based mapping T̄ is therefore optimally robust asymptotically in a minimax sense. The

term 4r2B∗ provides a sharp lower bound for maximum squared bias, and it is attained by T̄ .
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Remark 3.2. The second part of the theorem deals with the trimmed version of the MHDE. It

avoids the complications associated with the existence of T (Q) for certain Q’s. If the support of

supθ∈Θ |g (x, θ)| is bounded under every Q ∈ BH(P0, r/
√
n) for large enough n (e.g. if the moment

function g is bounded), then we do not need the trimming term I {x ∈ Xn}. In this case the mapping

T without trimming has the above optimal robust property.

Remark 3.3. The index n in the statement of Theorem 3.1 simply parameterizes how close Q ∈

BH(P0, r/
√
n) and P0 are, and does not have to be interpreted as the sample size. The next theorem,

however, is concerned with MSE’s and the index n represents the sample size there.

The next theorem is our main result, which is concerned with (the supremum of) the MSE of

the minimum Hellinger distance estimator θ̂ = T (Pn) and other competing estimators. Let

(3.3) B̄H
(
P0, r/

√
n
)

= BH
(
P0, r/

√
n
)
∩

{
Q ∈M : EQ

[
sup
θ∈Θ

|g (x, θ)|η
]
<∞

}
.

We use the notation P⊗n to denote the n-fold product measure of a probability measure P .

Theorem 3.2. Suppose that Assumption 3.1 holds.

(i): For every Fisher consistent and regular mapping Ta,

lim
b→∞

lim inf
n→∞

sup
Q∈B̄H(P0,r/

√
n)

∫
b ∧ n (τ ◦ Ta (Pn)− τ (θ0))

2 dQ⊗n ≥
(
1 + 4r2

)
B∗,

for each r > 0.

(ii): The mapping T is Fisher consistent and regular, and the MHDE θ̂ = T (Pn) satisfies

lim
b→∞

lim
n→∞

sup
Q∈B̄H(P0,r/

√
n)

∫
b ∧ n (τ ◦ T (Pn)− τ (θ0))

2 dQ⊗n =
(
1 + 4r2

)
B∗,

for each r > 0.

Remark 3.4. This theorem establishes an asymptotic minimax optimality property of the MHDE in

terms of MSE among all the estimators that satisfies the two conditions in Definition 3.1. Note that

the expression supQ∈B̄H(P0,r/
√
n)

∫
b ∧ n (τ ◦ Ta (Pn)− τ (θ0))

2 dQ⊗n is the maximum MSE of Ta(Pn)

in a finite sample. Thus our criterion for evaluating Ta (and T ) is the limit of its maximum finite

sample MSE. Taking the supremum over BH before letting n go to infinity is important for capturing

finite sample robustness properties. The method of calculating the truncated MSE first, then letting

b→∞, is standard in the literature of robust estimation; see, for example, Bickel (1981). Once again,

we are able to derive a sharp lower bound for the maximum MSE and show that it is achieved by the

MHDE θ̂ = T (Pn).
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Remark 3.5. Unlike in Theorem 3.1, optimality is achieved by the untrimmed version of the MHDE.

Note that T (Pn) exists for large n under Assumption 3.1, in contrast to our discussion in Remark 3.2

on Theorem 3.1. Theorem 3.2, however, restricts the robustness neighborhood by an extra requirement

as in (3.3). This is useful in showing that the untrimmed MHDE achieves the lower bound.

Remark 3.6. Theorem 3.2 proves that the MHDE is asymptotically optimally robust over a sequence

of infinitesimal neighborhoods. Note that the Hellinger neighborhood over which the maximum of

MSE is taken is nonparametric, in the sense that potential deviations from P0 cannot be indexed

by a finite dimensional parameter. That is, our robustness concept demands uniform robustness

over a nonparametric, infinitesimal neighborhood. The use of infinitesimal neighborhoods where the

radius of the Hellinger ball shrinks at the rate n1/2 is useful in balancing the magnitude of bias and

variance in our asymptotics. If one uses a fixed and global neighborhood, then the bias term would

dominate the behavior of estimators. This may fail to provide a good approximation of finite sample

behavior in actual applications, since in reality it would be reasonable to be concerned with both the

stochastic fluctuation of estimators and their deterministic bias due to, say, data contamination. We

note that there is a related but distinct literature on the asymptotics theory when the model is globally

misspecified, as in White (1982), who considered parametric MLE. Kitamura (1998) and Kitamura

(2002) offer such analysis for conditional and unconditional moment condition models. Moreover,

Schennach (2007) provides novel and potentially very useful results of EL estimators and its variants

in misspecified moment condition models. We regard our paper as a complement to, rather than a

substitute for the results obtained in these papers. There are fundamental differences between the

characteristics of the problems the current paper considers and those of the papers on misspecification.

First, our object of interest is θ0, not a pseudo-true value, as we consider data perturbation rather than

model misspecification. Second, the nature of our analysis is local and therefore the parameter value

θ0 in (1.1) is still identified asymptotically. Third, as noted above, we consider uniform robustness

over a nonparametric neighborhood. The papers cited above consider pointwise problems. Therefore

our approach deals with phenomena that are very different from the ones analyzed in the literature

of misspecified models.

Remark 3.7. We have seen in Remark 2.1 that the Hellinger neighborhood BH has nice and distinct

properties, in particular the inclusion relationship (2.5). The neighborhood BH is commonly used

in the literature of robust estimation (of parametric models); see, for example, Beran (1977), Bickel

(1981), and Rieder (1994). We should note, however, that other neighborhood systems have been
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used in the literature as well. For example, one may replace the Hellinger distance H with the

Kolmogorov-Smirnov (KS) distance in the definition of BH . As Beran (1984) notes, however, that in

order to guarantee robustness in the Kolmogorov-Smirnov neighborhood system one needs

“to use minimum distance estimates based on the Kolmogorov-Smirnov metric or a

distance weaker than the Kolmogorov-Smirnov metric ... The general principle here is

that the estimation distance be no stronger than the distance describing the contami-

nation neighborhood....”

Donoho and Liu (1988) develop a general theory of the above point. What this means is that an

estimator that is robust against perturbations within Kolmogorov-Smirnov neighborhoods has to be

minimizing the KS (or weaker) distance. The “minimum KS estimator” for the moment restriction

model would be indeed robust, but it cannot be semiparametrically efficient when the model as-

sumption holds. Therefore, unlike the moment restriction MHDE, the estimator is not “robust and

efficient.” Another drawback is its computation, since, unlike the moment restriction MHDE, no

convenient algorithm to minimize the Kolmogorov-Smirnov distance under the moment restriction is

known in the literature.

The above MSE theorem conveniently summarizes the desirable robustness properties of the

MHDE in terms of both (deterministic) bias and variance. It has, however, some limitations. First,

its minimaxity result is obtained within Fisher consistent and regular estimators. While these require-

ments are weak, it might be of interest to expand the class of estimators. More importantly, implicit

in the MSE-based analysis is that we are interested in L2-loss. One may wish to use other types of

loss functions, however, and it is of interest to see whether the above minimax results can be extended

to a larger class of loss. The next theorem addresses these two issues. Of course, the MSE has an

advantage of subsuming the bias and the variance in one measure. To deal with general loss functions,

the next theorem focuses on the risk of estimators around a Fisher-consistent mapping evaluated at

the perturbed measure Q. This can be regarded as calculating the risk of the first bracket of the

decomposition (1.2), that is, the stochastic part of the deviation of the estimator from the parameter

of interest θ0.

Let S be a set of all estimators, that is, the set of all R̄p-valued measurable functions of the

data (x1, ..., xn). We now investigate robust risk properties of this large class of estimators. The loss

function we consider satisfies the following weak requirements.
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Assumption 3.2. The loss function ` : R̄p → [0,∞] is (i) symmetric subconvex (i.e., for all z ∈ Rp

and c ∈ R, ` (z) = ` (−z) and {z ∈ Rp : ` (z) ≤ c} is convex); (ii) upper semicontinuous at infinity;

and (iii) continuous on R̄p.

We now present an optimal risk property for the MHDE.

Theorem 3.3. Suppose that Assumptions 3.1 and 3.2 hold.

(i): For every Fisher consistent mapping Ta,

lim
b→∞

lim
r→∞

lim inf
n→∞

inf
Sn∈S

sup
Q∈B̄H(P0,r/

√
n)

∫
b ∧ `

(√
n (Sn − τ ◦ Ta (Q))

)
dQ⊗n ≥

∫
`dN (0, B∗) .

(ii): The mapping T is Fisher consistent and the MHDE θ̂ = T (Pn) satisfies

lim
b→∞

lim
r→∞

lim
n→∞

sup
Q∈B̄H(P0,r/

√
n)

∫
b ∧ `

(√
n

(
τ ◦ T (Pn)− τ ◦ T̄ (Q)

))
dQ⊗n =

∫
`dN (0, B∗) .

Theorem 3.3(ii) remains valid if T (Pn) is replaced by T̄ (Pn). This theorem shows that he

MHDE is once again optimally robust even for the general risk criterion, and this holds in the class

of essentially all possible estimators. As noted above, the result is concerned with the stochastic

component of the decomposition (1.2). Recall Theorem 3.1 has already established that the MHDE

is optimal in terms of its bias, that is, the deterministic part of the decomposition (1.2) in the second

bracket. The latter result does not depend on a specific loss function. Thus the MHDE enjoys general

optimal robust properties under a quite general setting, both in terms of the stochastic component

and the deterministic component. Note that analyzing these two parts separately is common in the

literature of robust statistics: see, for example, Rieder (1994).

4. Simulation

The purpose of this section is to examine the robustness properties of the MHDE and other well-

known estimators such as GMM using Monte Carlo simulations. MATLAB is used for computation

throughout the experiments. The sample size n is 100 for all designs, and we ran 5000 replications

for each design.

4.1. Experiment 1. The baseline simulation design in this experiment follows that of Hall and

Horowitz (1996). We then “contaminate” the simulated data to explore robustness of estimators.

More specifically, let x = (x1, x2)
′ ∼ N

(
0, 0.42I2

)
. This normal law corresponds to P0 in the
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preceding sections. The specification of the moment function g is

g (x, θ) = (exp {−0.72− θ (x1 + x2) + 3x2} − 1)

 1

x2

 .

The moment condition
∫
g(x, θ)dP0 = 0 is uniquely solved at θ0 = 3. The goal is to estimate this

value using the above specification of g from contaminated data, which consists of 100 IID draws of

x∗ = (x∗1, x
∗
2)
′ generated according to

x∗1 =

x1 with probability 0.95,

x1 + c · ω with probability 0.05,

x∗2 = x2

where ω = ρx1 +
√

1− ρ2 · 0.4ξ. The contaminating variable ξ are specified to be either normal, χ2
1,

−χ2
1 or t3, though all of them are normalized to have mean zero and variance one. Note that ξ can be

characterized to be a classical measurement error for ρ = 0, but not for the case with ρ = −0.5. We

consider five estimators: empirical likelihood (EL), MHDE, exponential tilting (ET), GMM (GMM2)

and CUE. GMM2 is calculated following the standard two step procedure where the initial estimate

is obtained from identity weighting. The results are displayed in Table 1.2

While RMSE is a potentially informative measure, it can be a highly misleading as some of

the estimators may not have finite moments. We thus focus on the simulated probability of an

estimator deviating from the target θ0 = 3 by more 0.5. The case with c = 0 is the baseline without

contamination. All the estimators work reasonably well for this case, though CUE seems to be

somewhat problematic. As we add ξ with ρ = 0, interesting patterns emerge. Most notably, the

performance of GMM2, which exhibits reasonable behavior with c = 0, deteriorates very rapidly as

the DGP becomes perturbed. This casts serious doubt on the notion that GMM is a robust procedure.

CUE is also sensitive to perturbations and performs poorly in general. In contrast, EL, MHDE and

ET seem to be stable overall. Note, however, EL yields relatively high deviation probabilities in cases

with c = 2 and ξ ∼ N(0, 1) or −χ2
1. A similar pattern appears with the case of negatively correlated

errors (i.e. ρ = −0.5), though in this case CUE is worse than GMM.

2When the values of moment function g fails to span the zero vector, EL, MHDE and ET cannot be calculated as they

do not permit negative probability weights to set the moment condition at zero (see, for example, Kitamura (2006)).

This occurs infrequently in our setting. Indeed, it never occurred in more than half of the simulation designs in our

experiments and very few in others, except for a small number of designs with large c where the rate of its occurrence

was at most about 1.5%. Those draws were discarded in calculating summary statistics in this section.
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RMSE Pr
{∣∣∣θ̂ − θ0

∣∣∣ > 0.5
}

c ξ EL MHDE ET GMM2 CUE EL MHDE ET GMM2 CUE

ρ = 0

0 0.292 0.295 0.303 0.427 2.398 0.080 0.085 0.091 0.119 0.232

0.5 N 0.304 0.304 0.311 0.442 2.265 0.095 0.097 0.099 0.140 0.222

1 N 0.439 0.428 0.423 0.660 2.067 0.225 0.213 0.209 0.345 0.316

2 N 0.777 0.704 0.678 1.291 2.066 0.451 0.375 0.357 0.667 0.493

0.5 χ2
1 0.288 0.291 0.298 0.419 2.241 0.073 0.075 0.080 0.105 0.200

1 χ2
1 0.295 0.295 0.297 0.383 2.045 0.086 0.087 0.089 0.119 0.185

2 χ2
1 0.487 0.476 0.470 0.649 2.497 0.340 0.324 0.314 0.494 0.440

0.5 −χ2
1 0.363 0.359 0.366 0.570 2.247 0.132 0.132 0.133 0.206 0.251

1 −χ2
1 0.533 0.494 0.484 0.915 2.146 0.247 0.219 0.210 0.389 0.326

2 −χ2
1 0.792 0.698 0.675 1.320 2.067 0.378 0.325 0.315 0.558 0.430

0.5 t3 0.318 0.317 0.324 0.486 2.291 0.102 0.101 0.105 0.151 0.225

1 t3 0.407 0.394 0.389 0.659 2.093 0.173 0.163 0.162 0.267 0.265

2 t3 0.658 0.603 0.582 1.100 2.078 0.346 0.310 0.297 0.529 0.407

ρ = −0.5

1 N 0.297 0.301 0.312 0.448 2.263 0.094 0.094 0.104 0.128 0.228

2 N 0.320 0.320 0.325 0.446 2.095 0.116 0.118 0.122 0.152 0.234

1 χ2
1 0.297 0.303 0.314 0.452 2.443 0.084 0.096 0.110 0.136 0.250

2 χ2
1 0.286 0.291 0.299 0.427 2.313 0.084 0.086 0.090 0.102 0.212

1 −χ2
1 0.311 0.313 0.319 0.498 2.525 0.104 0.104 0.112 0.158 0.262

2 −χ2
1 0.404 0.391 0.386 0.640 2.436 0.160 0.150 0.148 0.232 0.293

1 t3 0.298 0.299 0.306 0.474 2.480 0.076 0.078 0.088 0.114 0.232

2 t3 0.340 0.335 0.339 0.556 2.124 0.104 0.106 0.110 0.162 0.234
Table 1. The second column “ξ” specifies the distribution of ξ, where the labels N ,

χ2
1, −χ2

1, and t3 denote N(0, 1),(χ2
1−1)/

√
2,−(χ2

1−1)/
√

2, and Student-t3/
√

3, respec-

tively.

4.2. Experiment 2. This experiment uses the same model specification of g as above, though the

DGP is replaced by a family of normal distributions. Experiment 1 employs two types of perturbations

(ρ = 0 and ρ = −0.5) with varied magnitudes controlled by the parameter c, whereas this experimental
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setting attempts to perturb the original DGP x ∼ N
(
0, 0.42I2

)
into different directions. More

specifically, we use x ∼ N
(
0,Σ(δ,ρ)

)
, where

Σ(δ,ρ) = 0.42

 (1 + δ)2 ρ (1 + δ)

ρ (1 + δ) 1

 .

The unperturbed case thus corresponds to δ = ρ = 0. In the simulation we set ρ = 0.1
√

2 cos (2πω)

and δ = 0.1 sin (2πω) and let ω vary over ωj = j/64, j = 0, ..., 63. This yields 64 different designs, for

each of them 5000 replications is performed and RMSE and Pr
{∣∣∣θ̂ − θ0

∣∣∣ > 0.5
}

are calculated. The

results are presented in Figure 4.1. In the upper panel, each curve represents the RMSE of a particular

estimator as a function of ωj . The lower panel (labeled “Pr”) displays deviation probabilities.

We again focus on the results for deviation probabilities due to our concern about the existence

of moments. The graph labeled “Pr(all)” shows that the CUE’s performance is extremely sensitive

to data perturbations considered here; its deviation probability is uniformly higher than those of the

rest, and the difference can be quite large in places. We therefore plotted the same results without

CUE on the graph labeled “Pr(no CUE)” to visualize the relative rankings of the other four estimators

more clearly. We see that GMM2 is affected by perturbations much more than EL, MHDE and ET

except for the values of ω’s between 0.4 and 0.6, where the performance of the four estimators are

rather close. ET seems to perform a little worse than MHDE and EL.

One needs be cautious in drawing conclusions based on limited simulation experiments as

presented here. Nevertheless, it appears that two general features emerge form our results. First, the

GMM type estimators (two step GMM and CUE) tend to be highly sensitive to data perturbations.

Applying Beran’s (1977) logic that connects the robustness of estimators to the forms of their objective

functions, this may be attributed to the fact the GMM objective function is quadratic and therefore

tends to react sensitively to the added noises. Second, EL, MHDE and ET are relatively well-behaved,

and their rankings, not surprisingly, vary depending on the simulation design. The performance of

MHDE, however, seems more stable compared with that of EL or ET: EL and ET exhibits more

instability in Experiment 1 and Experiment 2, respectively. Note that EL, MHDE, ET and CUE

correspond to the GEL estimator with γ = −1,−1
2 , 0, 1 in equation (2.6) of Newey and Smith (2004).

Given the good theoretical robustness property of the MHDE and the proximity of EL and ET in

terms of their γ values, it is interesting to observe the reasonably robust behavior of EL and ET. Note

that CUE, whose behavior is quite different from that of the MHDE and thus highly non-robust, has

γ = 1, a value that is much higher than the optimally robust γ = −1/2 of the MHDE.
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Figure 4.1. Local Neighborhood of the True Model. “Pr” denotes Pr
{∣∣∣θ̂ − θ0

∣∣∣ > 0.5
}

.

5. Conclusion

In this paper we have explored the issue of robust estimation in a moment restriction model.

The model is semiparametric and distribution-free, therefore imposes mild assumptions. Yet it is

reasonable to expect that the probability law of observations may have some deviations from the ideal

distribution being modeled. It is then sensible to seek estimation procedures that are robust against
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slight perturbations in the probability measure that generates observations, which can be caused by,

for example, data contamination. Our main theoretical result is that the MHDE possesses optimal

minimax robust properties. We show this by deriving three asymptotic minimax theorems concerning

bias, MSE and general risk, and in each criterion the MHDE achieves the minimax lower bound.

Moreover, it remains semiparametrically efficient when the model assumptions hold. Convenient

numerical algorithms for its implementation are provided. Our simulation results indicate that GMM

can be highly sensitive to data perturbations. The performance of the MHDE remains stable over a

wide range of simulation designs, which is in accordance with our theoretical findings.

The results obtained in this paper are concerned with estimation, though it might be possible

to extend our robustness theory to parameter testing problems. Interestingly, there exists a literature

on parametric robust inference based on the MHDE method. It is of practical importance to consider

robust methods for parameter testing and confidence interval calculations so that the results of sta-

tistical inference for moment restriction models are reliable and not too sensitive to departures from

model assumptions. We plan to investigate robust testing procedure in moment condition models in

our future research.

6. Appendix

This Appendix presents the proofs of some of the results presented in the previous sections.

Notation. Let C be a generic positive constant, and ‖·‖ be the L2-metric,

θn = θ0 + t/
√
n, T̄Qn = T̄ (Qn) , T̄Pn = T̄ (Pn) ,

P̄θ,Q = arg min
P∈P̄θ

H (P,Q) , Rn (Q, θ, γ) = −
∫

1
(1 + γ′gn (x, θ))

dQ,

gn (x, θ) = g (x, θ) I {x ∈ Xn} , Λn = G′Ω−1gn (x, θ0) , Λ = G′Ω−1g (x, θ0) ,

ψn,Qn = −2
(∫

ΛnΛ′ndQn

)−1 ∫
Λn

{
dQ1/2

n − dP̄
1/2
θ0,Qn

}
dQ1/2

n .

6.1. Proof of Theorem 3.1.

6.1.1. Proof of (i). Pick arbitrary r > 0 and t ∈ Rp. Consider the following parametric submodel

having the likelihood ratio

(6.1)
dPθn,ζn

dP0
=

1 + ζ ′ngn (x, θn)∫
(1 + ζ ′ngn (x, θn)) dP0

= f (x, θn, ζn) ,

where

ζn = −EP0

[
g (x, θn) gn (x, θn)

′]−1
EP0 [g (x, θn)] .
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Note that Pθ0,0 = P0, Pθn,ζn ∈ Pθn (by the definition of ζn), and ζn = O
(
n−1/2

)
(by the proof of

Lemma 7.4 (i)). Also, since supx∈X |ζ ′ngn (x, θn)| = O
(
n−1/2mn

)
= o (1), the likelihood ratio dPθn,ζn

dP0

is well-defined for all n large enough. So, for this submodel the mapping Ta must satisfy (3.1).

We now evaluate the Hellinger distance between Pθn,ζn and P0. An expansion around ζn = 0 yields

H (Pθn,ζn , P0) =

∥∥∥∥∥∥ζ ′n ∂f (x, θn, ζn)
1/2

∂ζn

∣∣∣∣∣
ζn=0

dP
1/2
0 +

1
2
ζ ′n

∂2f (x, θn, ζn)
1/2

∂ζn∂ζ ′n

∣∣∣∣∣
ζn=ζ̇n

ζndP
1/2
0

∥∥∥∥∥∥ ,
where ζ̇n is a point on the line joining ζn and 0, and

∂f (x, θn, ζn)
1/2

∂ζn

∣∣∣∣∣
ζn=0

=
1
2
{gn (x, θn)− EP0 [gn (x, θn)]} ,

∂2f (x, θn, ζn)
1/2

∂ζn∂ζ ′n
= −1

4
(
1 + ζ ′ngn (x, θn)

)−3/2 (
1 + ζ ′nEP0 [gn (x, θn)]

)−1/2
gn (x, θn) gn (x, θn)

′

−1
2

(
1 + ζ ′ngn (x, θn)

)−1/2 (
1 + ζ ′nEP0 [gn (x, θn)]

)−3/2
gn (x, θn)EP0 [gn (x, θn)]

′

+
3
4

(
1 + ζ ′ngn (x, θn)

)1/2 (
1 + ζ ′nEP0 [gn (x, θn)]

)−5/2
EP0 [gn (x, θn)]EP0 [gn (x, θn)]

′ .

Thus, a lengthy but straightforward calculation combined with Lemma 7.4, ζn = O
(
n−1/2

)
, and

supx∈X |ζ ′ngn (x, θn)| = o (1) implies

(6.2) nH (Pθn,ζn , P0)
2 = n

∥∥∥∥1
2
ζ ′n (gn (x, θn)− EP0 [gn (x, θn)]) dP

1/2
0

∥∥∥∥2

+ o (1) → 1
4
t′Σ−1t.

Based on this limit, a lower bound of the maximum bias of Ta is obtained as (see, Rieder (1994, eq.

(56) on p. 180))

lim inf
n→∞

sup
Q∈BH(P0,r/

√
n)
n (τ ◦ Ta (Q)− τ (θ0))

2

≥ lim inf
n→∞

sup
{t∈Rp:Pθn,ζn∈BH(P0,r/

√
n)}

n (τ ◦ Ta (Pθn,ζn)− τ (θ0))
2

≥ max
{t∈Rp: 1

4
t′Σt≤r2−ε}

((
∂τ (θ0)
∂θ

)′
t

)2

= 4
(
r2 − ε

) (
∂τ (θ0)
∂θ

)′
Σ−1

(
∂τ (θ0)
∂θ

)
,

for each ε ∈
(
0, r2

)
, where the first inequality follows from the set inclusion relationship, the second

inequality follows from (3.1) and (6.2), and the equality follows from the Kuhn-Tucker theorem. Since

ε can be arbitrarily small, we obtain the conclusion.
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6.1.2. Proof of (ii). Pick arbitrary r > 0 and sequence Qn ∈ BH (P0, r/
√
n). We first show the Fisher

consistency of T̄ . From Lemma 7.2 (note: Pθn,ζn ∈ BH (P0, r/
√
n) for all n large enough),

√
n

(
T̄ (Pθn,ζn)− θ0

)
= −

√
nΣ−1

∫
ΛndPθn,ζn + o (1)

= Σ−1G′Ω−1

∫
∂g

(
x, θ̇

)
/∂θdPθn,ζnt+ o (1)

→ t

for all n large enough, where θ̇ is a point on the line joining θn and θ0, the second equality follows from∫
g (x, θ0) I {x /∈ Xn} dPθn,ζn = o

(
n−1/2

)
(by a similar argument to (7.2)),

∫
g (x, θn) dPθn,ζn = 0 (by

Pθn,ζn ∈ Pθn), and an expansion around θn = θ0, and the convergence follows from the last statement

of Lemma 7.4 (i). Therefore, T̄ is Fisher consistent.

We next show (3.1). An expansion of τ ◦ T̄Qn around T̄Qn = θ0, Lemmas 7.1 (ii) and 7.2, and

Assumption 3.1 (viii) imply

√
n

(
τ ◦ T̄Qn − τ (θ0)

)
= −

√
n

(
∂τ (θ0)
∂θ

)′
Σ−1

∫
ΛndQn + o (1)

= −
√
nν ′0

∫
Λn

{
dQ1/2

n − dP
1/2
0

}
dQ1/2

n −
√
nν ′0

∫
ΛndP

1/2
0

{
dQ1/2

n − dP
1/2
0

}
+ o (1) ,

where we denote ν ′0 =
(
∂τ(θ0)
∂θ

)′
Σ−1. From the triangle inequality,

n
(
τ ◦ T̄Qn − τ (θ0)

)2

≤ n


∣∣∣ν ′0 ∫

Λn
{
dQ

1/2
n − dP

1/2
0

}
dQ

1/2
n

∣∣∣2 +
∣∣∣ν ′0 ∫

Λn
{
dQ

1/2
n − dP

1/2
0

}
dP

1/2
0

∣∣∣2
+2

∣∣∣ν ′0 ∫
Λn

{
dQ

1/2
n − dP

1/2
0

}
dQ

1/2
n

∣∣∣ ∣∣∣ν ′0 ∫
Λn

{
dQ

1/2
n − dP

1/2
0

}
dP

1/2
0

∣∣∣
 + o (1)

= n {A1 +A2 + 2A3}+ o (1) .

For A1, observe that

A1 ≤
∣∣∣∣ν ′0 ∫

ΛnΛ′ndQnν0

∣∣∣∣ ∣∣∣∣∫ {
dQ1/2

n − dP
1/2
0

}2
∣∣∣∣ ≤ B∗

r2

n
+ o

(
n−1

)
,

where the first inequality follows from the Cauchy-Schwarz inequality, and the second inequality

follows from Lemma 7.5 (i) and Qn ∈ BH (P0, r/
√
n). Similarly, we have A2 ≤ B∗ r

2

n + o
(
n−1

)
and

A3 ≤ B∗ r
2

n + o
(
n−1

)
. Combining these terms,

lim sup
n→∞

n
(
τ ◦ T̄Qn − τ (θ0)

)2 ≤ 4r2B∗,
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for any sequence Qn ∈ BH (P0, r/
√
n) and r > 0. This implies the conclusion because BH (P0, r/

√
n)

is compact with respect to the Hellinger distance for each n ∈ N and τ ◦T̄ (Q) is upper semi-continuous

at each Q ∈M under the Hellinger distance (Lemma 7.1 (i)).

6.2. Proof of Theorem 3.2.

6.2.1. Proof of (i). Pick arbitrary ε ∈
(
0, r2

)
and r > 0. Consider the parametric submodel Pθn,ζn

defined in (6.1). The convolution theorem (Theorem 25.20 of van der Vaart (1998)) implies that for

each t ∈ Rp, there exists a probability measure M0 which does not depend on t and satisfies

(6.3)
√
n (τ ◦ Ta (Pn)− τ ◦ Ta (Pθn,ζn)) d→M0 ∗N (0, B∗) under Pθn,ζn ,

where the symbol ∗ denote convolution. Let

t∗ = arg max
{t∈Rp: 1

4
t′Σt≤r2−ε}

((
∂τ (θ0)
∂θ

)′
t

)2

s.t.
(
∂τ (θ0)
∂θ

)′
t∗

∫
ξdM0 ∗N (0, B∗) ≥ 0.

Since the integral
∫
ξdM0 ∗ N (0, B∗) does not depend on t, such t∗ always exists. From 1

4 t
∗′Σt∗ ≤

r2 − ε and (6.2), it holds that Pθ0+t∗/
√
n,ζn ∈ BH (P0, r/

√
n) for all n large enough. Also, note that

EPθn,ζn
[supθ∈Θ |g (x, θ)|η] <∞ for all n large enough (by supx∈X |ζ ′ngn (x, θn)| = o (1) and Assumption

3.1 (v)). Thus, Pθ0+t∗/
√
n,ζn ∈ B̄H (P0, r/

√
n) for all n large enough, and we have

lim
b→∞

lim inf
n→∞

sup
Q∈B̄H(P0,r/

√
n)

∫
b ∧ n (τ ◦ Ta (Pn)− τ (θ0))

2 dQ⊗n

≥ lim
b→∞

lim inf
n→∞

∫
b ∧ n (τ ◦ Ta (Pn)− τ (θ0))

2 dP⊗n
θ0+t∗/

√
n,ζn

= lim
b→∞

lim inf
n→∞

∫
b ∧ n

(
ξ +

(
∂τ (θ0)
∂θ

)′
t∗

)2

dM0 ∗N (0, B∗)

=
∫
ξ2dM0 ∗N (0, B∗) +

((
∂τ (θ0)
∂θ

)′
t∗

)2

+ 2
(
∂τ (θ0)
∂θ

)′
t∗

∫
ξdM0 ∗N (0, B∗)

≥
{
1 + 4

(
r2 − ε

)}
B∗,

where the first equality follows from the Fisher consistency of Ta, (6.5), and the continuous map-

ping theorem, the second equality follows from the monotone convergence theorem, and the second

inequality follows from the definition of t∗. Since ε can be arbitrarily small, we obtain the conclusion.
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6.2.2. Proof of (ii). Pick arbitrary r > 0 and b > 0. Applying the inequality b∧(c1 + c2) ≤ b∧c1+b∧c2
for any c1, c2 ≥ 0,

lim sup
n→∞

sup
Q∈B̄H(P0,r/

√
n)

∫
b ∧ n (τ ◦ T (Pn)− τ (θ0))

2 dQ⊗n

≤ lim sup
n→∞

sup
Q∈B̄H(P0,r/

√
n)

∫
b ∧ n

(
τ ◦ T (Pn)− τ ◦ T̄ (Pn)

)2
dQ⊗n

+2lim sup
n→∞

sup
Q∈B̄H(P0,r/

√
n)

∫
b ∧

{
n

∣∣τ ◦ T (Pn)− τ ◦ T̄ (Pn)
∣∣ ∣∣τ ◦ T̄ (Pn)− τ (θ0)

∣∣} dQ⊗n
+lim sup

n→∞
sup

Q∈B̄H(P0,r/
√
n)

∫
b ∧ n

(
τ ◦ T̄ (Pn)− τ (θ0)

)2
dQ⊗n

= A1 + 2A2 +A3,(6.4)

For A1,

A1 ≤ b× lim sup
n→∞

sup
Q∈B̄H(P0,r/

√
n)

∫
(x1,...,xn)/∈Xn

n

dQ⊗n

≤ b× lim sup
n→∞

sup
Q∈B̄H(P0,r/

√
n)

n∑
i=1

∫
xi /∈Xn

dQ

≤ b× lim sup
n→∞

sup
Q∈B̄H(P0,r/

√
n)
nm−η

n EQ

[
sup
θ∈Θ

|g (x, θ)|η
]

= 0,(6.5)

where the first inequality follows from T (Pn) = T̄ (Pn) for all (x1, . . . , xn) ∈ X n
n , the second inequality

follows from a set inclusion relation, the third inequality follows from the Markov inequality, and the

equality follows from Assumption 3.1 (vii) and EQ [supθ∈Θ |g (x, θ)|η] <∞ for all Q ∈ B̄H (P0, r/
√
n).

Similarly, we have A2 = 0.

We now consider A3. Note that the mapping fb,n (Q) =
∫
b ∧ n

(
τ ◦ T̄ (Pn)− τ (θ0)

)2
dQ⊗n is con-

tinuous in Q ∈ BH (P0, r/
√
n) under the Hellinger distance for each n, and the set BH (P0, r/

√
n)

(not B̄H (P0, r/
√
n)) is compact under the Hellinger distance for each n. Thus, there exists Q̃b,n ∈
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BH (P0, r/
√
n) such that supQ∈BH(P0,r/

√
n) fn (Q) = fn

(
Q̃b,n

)
for each n. Then we have

A3 ≤ lim sup
n→∞

sup
Q∈BH(P0,r/

√
n)

∫
b ∧ n

(
τ ◦ T̄ (Pn)− τ (θ0)

)2
dQ⊗n

= lim sup
n→∞

∫
b ∧ n

(
τ ◦ T̄ (Pn)− τ (θ0)

)2
dQ̃⊗nb,n

=
∫
b ∧

(
ξ + t̃b

)2
dN (0, B∗)

≤ B∗ + t̃2b

≤
(
1 + 4r2

)
B∗,

where t̃b = lim sup
n→∞

√
n

(
τ ◦ T̄

(
Q̃b,n

)
− τ (θ0)

)
, the first inequality follows from B̄H (P0, r/

√
n) ⊆

BH (P0, r/
√
n), the second equality follows from Lemma 7.8 (with Qn = Q̃b,n) and the continu-

ous mapping theorem, the second inequality follows from b ∧ c ≤ c and a direct calculation, and the

last inequality follows from Theorem 3.1 (ii). Combining these results, the conclusion is obtained.

6.3. Proof of Theorem 3.3.

6.3.1. Proof of (i). Consider the parametric submodel Pθn,ζn defined in (6.1). Since ` is uniformly

continuous on R̄p (by Assumption 3.2) and Ta is Fisher consistent,

b ∧ `
(√
n {Sn − τ ◦ Ta (Pθn,ζn)}

)
− b ∧ `

(√
n {Sn − τ (θ0)} −

(
∂τ (θ0)
∂θ

)′
t

)
→ 0,

uniformly in t, |t| < c and {Sn}n∈N for each c > 0 and b > 0. Thus,

(6.6)

inf
Sn∈S

sup
|t|≤c

∫
b∧`

(√
n {Sn − τ ◦ Ta (Pθn,ζn)}

)
dP⊗nθn,ζn

= inf
Rn∈R

sup
|t|≤c

∫
b∧`

(
Rn −

(
∂τ (θ0)
∂θ

)′
t

)
dP⊗nθn,ζn

+o (1) ,

for each c > 0, whereRn =
√
n {Sn − τ (θ0)} is a standardized estimator andR = {

√
n {Sn − τ (θ0)} : Sn ∈ S}.

By expanding the log likelihood ratio log
dP⊗n

θn,ζn

dP⊗n
0

around ζn = 0,

log
dP⊗nθn,ζn

dP⊗n0

= ζ ′n

n∑
i=1

{gn (xi, θn)− EP0 [gn (x, θn)]}

−
ζ ′n

∑n
i=1 gn (xi, θn) gn (xi, θn) ζn

2
(
1 + ζ̇ ′ngn (xi, θn)

)2 +
nζ ′nEP0 [gn (x, θn)]EP0 [gn (x, θn)]

′ ζn

2
(
1 + ζ̈ ′n

∫
gn (x, θn)

)2

= L1 − L2 + L3.
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where ζ̇n and ζ̈n are points on the line joining ζn and 0. For L1, an expansion of gn (x, θn) (in ζn)

around θn = θ0 combined with Lemma 7.4 (i) implies that under P0,

L1 = −t′G′Ω−1 1√
n

n∑
i=1

{gn (xi, θn)− EP0 [gn (x, θn)]}+ op (1) .

Also, Lemma 7.4 (i) and supx∈X |ζ ′ngn (x, θn)| = o (1) imply that under P0,

L2
p→ 1

2
t′Σt, L3 → 0.

Therefore, in the terminology of Rieder (1994, Definition 2.2.9), the parametric model Pθn,ζn is asymp-

totically normal with the asymptotic sufficient statistic−G′Ω−1 1√
n

∑n
i=1 {gn (xi, θn)− EP0 [gn (x, θn)]}

and the asymptotic covariance matrix Σ. Note that this is essentially the LAN (local asymptotic nor-

mality) condition introduced by LeCam. If Pθn,ζn is asymptotically normal in this sense, we can

directly apply the result of the minimax risk bound by Rieder (1994, Theorem 3.3.8 (a)), that is

(6.7) lim
b→∞

lim
c→∞

lim inf
n→∞

inf
Sn∈S

sup
|t|≤c

∫
b ∧ `

(
Rn −

(
∂τ (θ0)
∂θ

)′
t

)
dP⊗nθn,ζn

≥
∫
`dN (0, B∗) .

From (6.6) and (6.7),

lim
b→∞

lim
c→∞

lim inf
n→∞

inf
Sn∈S

sup
|t|≤c

∫
b ∧ `

(√
n {Sn − τ ◦ Ta (Pθn,ζn)}

)
dP⊗nθn,ζn

≥
∫
`dN (0, B∗) .

Finally, since EPθn,ζn
[supθ∈Θ |g (x, θ)|η] < ∞ for all n large enough (by supx∈X |ζ ′ngn (x, θn)| = o (1)

and Assumption 3.1 (v)), we have Pθn,ζn ∈ B̄H (P0, r/
√
n) for all t satisfying 1

4 t
′Σt ≤ r2 − ε with any

ε ∈
(
0, r2

)
and all n large enough. Therefore, the set inclusion relation yields

lim
b→∞

lim
r→∞

lim inf
n→∞

inf
Sn∈S

sup
Q∈B̄H(P0,r/

√
n)

∫
b ∧ `

(√
n {Sn − τ ◦ Ta (Q)}

)
dQ⊗n

≥ lim
b→∞

lim
c→∞

lim inf
n→∞

inf
Sn∈S

sup
|t|≤c

∫
b ∧ `

(√
n {Sn − τ ◦ Ta (Pθn,ζn)}

)
dP⊗nθn,ζn

,

which implies the conclusion.

6.3.2. Proof of (ii). Pick arbitrary r > 0 and b > 0. Since T (Pn) = T̄ (Pn) for all (x1, . . . , xn) ∈ X n
n ,

lim
n→∞

sup
Q∈B̄H(P0,r/

√
n)

∫
b ∧ `

(√
n

{
τ ◦ T (Pn)− τ ◦ T̄ (Q)

})
dQ⊗n

≤ lim
n→∞

sup
Q∈B̄H(P0,r/

√
n)

∫
(x1,...,xn)/∈Xn

n

b ∧ `
(√
n

{
τ ◦ T (Pn)− τ ◦ T̄ (Q)

})
dQ⊗n

+ lim
n→∞

sup
Q∈B̄H(P0,r/

√
n)

∫
(x1,...,xn)∈Xn

n

b ∧ `
(√
n

{
τ ◦ T̄ (Pn)− τ ◦ T̄ (Q)

})
dQ⊗n.(6.8)
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An argument similar to (6.5) implies that the first term of (6.8) is zero. From X n
n ⊆ X n and

B̄H (P0, r/
√
n) ⊆ BH (P0, r/

√
n), the second term of (6.8) is bounded from above by

lim
n→∞

sup
Q∈BH(P0,r/

√
n)

∫
b ∧ `

(√
n

{
τ ◦ T̄ (Pn)− τ ◦ T̄ (Q)

})
dQ⊗n =

∫
b ∧ `dN (0, B∗) ,

where the equality follows from Lemma 7.8, the uniform continuity of ` over R̄p, and compactness of

BH (P0, r/
√
n) under the Hellinger distance. Let r →∞ and b→∞ then the conclusion follows.

7. Auxiliary Lemmas

Lemma 7.1. Suppose that Assumption 3.1 holds. Then

(i): for each n ∈ N, T̄ (Q) exists and is upper semi-continuous at each Q ∈ M under the

Hellinger distance,

(ii): T̄Qn → θ0 as n→∞ for each r > 0 and sequence Qn ∈ BH (P0, r/
√
n).

Proof of (i). The proof is based on Lemma 1 of Kitamura (2001). See also Beran (1984, p. 744).

Pick an arbitrary n ∈ N. Denote Rn (Q, θ) = infP∈P̄θ
H (P,Q). Since gn (x, θ) is bounded a.s.

for all θ ∈ Θ, the duality of partially finite programming (Borwein and Lewis (1993)) implies that

Rn (Q, θ) = maxγ∈Rm Rn (Q, θ, γ) for each (Q, θ) ∈M×Θ. From Theorem 10.8 of Rockafeller (1970)

and Assumption 3.1 (iv), Rn (Q, θ) is continuous in (Q, θ) ∈ M × Θ under the Lévy metric (for

M). This continuity also implies that for each Q ∈ M, Rn (Q, θ) is continuous in θ ∈ Θ. Since

Θ is compact (Assumption 3.1 (ii)), the Weierstrass theorem guarantees the existence of T̄ (Q) =

arg minθ∈ΘRn (Q, θ). Also, since Rn (Q, θ) is continuous in (Q, θ) ∈ M × Θ under the Lévy metric

and Θ is compact, the maximum theorem (e.g., Berge (1963)) implies that the minimizer T̄ (Q) is

upper semi-continuous at each Q ∈ M under the Lévy metric. Since the Hellinger distance is always

larger than the Lévy metric for any pair of probability measures, T̄ (Q) is also upper semi-continuous

under the Hellinger distance.

Proof of (ii). Pick arbitrary r > 0 and sequence Qn ∈ BH (P0, r/
√
n). From the triangle inequality,

(7.1)

sup
θ∈Θ

|EQn [gn (x, θ)]− EP0 [g (x, θ)]| ≤ sup
θ∈Θ

|EQn [gn (x, θ)]− EP0 [gn (x, θ)]|+sup
θ∈Θ

|EP0 [g (x, θ) I {x /∈ Xn}]| .
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The first term of (7.1) satisfies

sup
θ∈Θ

|EQn [gn (x, θ)]− EP0 [gn (x, θ)]|

≤ sup
θ∈Θ

∣∣∣∣∫ gn (x, θ)
{
dQ1/2

n − dP
1/2
0

}2
∣∣∣∣ + 2 sup

θ∈Θ

∣∣∣∣∫ gn (x, θ) dP 1/2
0

{
dQ1/2

n − dP
1/2
0

}∣∣∣∣
≤ mn

r2

n
+ 2

√
EP0

[
sup
θ∈Θ

|g (x, θ)|2
]
r√
n

= O
(
n−1/2

)
,

where the first inequality follows from the triangle inequality, the second inequality follows from

Qn ∈ BH (P0, r/
√
n) and the Cauchy-Schwarz inequality, and the equality follows from Assumption

3.1 (v) and (vii). The second term of (7.1) satisfies

sup
θ∈Θ

|EP0 [g (x, θ) I {x /∈ Xn}]|

≤
(∫

sup
θ∈Θ

|g (x, θ)|η dP0

)1/η (∫
I {x /∈ Xn} dP0

)(η−1)/η

≤
(
EP0

[
sup
θ∈Θ

|g (x, θ)|η
])1/η (

m−η
n EP0

[
sup
θ∈Θ

|g (x, θ)|η
])(η−1)/η

= o
(
n−1/2

)
,(7.2)

where the first inequality follows from the Hölder inequality, and the second inequality follows from

the Markov inequality, and the equality follows from Assumption 3.1 (v) and (vii). Combining these

results, we obtain the uniform convergence supθ∈Θ |EQn [gn (x, θ)]− EP0 [g (x, θ)]| → 0. Therefore,

from the triangle inequality and
∣∣EQn

[
gn

(
x, T̄Qn

)]∣∣ = O
(
n−1/2

)
(Lemma 7.6 (i)),

∣∣EP0

[
g

(
x, T̄Qn

)]∣∣ ≤ ∣∣EP0

[
g

(
x, T̄Qn

)]
− EQn

[
gn

(
x, T̄Qn

)]∣∣ +
∣∣EQn

[
gn

(
x, T̄Qn

)]∣∣ → 0.

The conclusion follows from Assumption 3.1 (iii).

Lemma 7.2. Suppose that Assumption 3.1 holds. Then for each r > 0 and sequence Qn ∈ BH (P0, r/
√
n),

(7.3)
√
n

(
T̄Qn − θ0

)
= −

√
nΣ−1

∫
ΛndQn + o (1) .

Proof. The proof is based on Rieder (1994, proofs of Theorems 6.3.4 and Theorem 6.4.5). Pick

arbitrary r > 0 and Qn ∈ BH (P0, r/
√
n). Observe that
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∥∥∥∥dQ1/2
n − dP̄

1/2
θ0,Qn

+
1
2

(
T̄Qn − θ0

)′ ΛndQ1/2
n

∥∥∥∥2

=
∥∥∥∥dQ1/2

n − dP̄
1/2
θ0,Qn

+
1
2
ψ′n,Qn

ΛndQ1/2
n

∥∥∥∥2

+
∥∥∥∥1
2

(
T̄Qn − θ0 − ψn,Qn

)′ ΛndQ1/2
n

∥∥∥∥2

+
{∫ (

dQ1/2
n − dP̄

1/2
θ0,Qn

+
1
2
ψ′n,Qn

ΛndQ1/2
n

)
Λ′ndQ

1/2
n

} (
T̄Qn − θ0 − ψn,Qn

)
=

∥∥∥∥dQ1/2
n − dP̄

1/2
θ0,Qn

+
1
2
ψ′n,Qn

ΛndQ1/2
n

∥∥∥∥2

+
∥∥∥∥1
2

(
T̄Qn − θ0 − ψn,Qn

)′ ΛndQ1/2
n

∥∥∥∥2

,(7.4)

where the second equality follows from∫ {
dQ1/2

n − dP̄
1/2
θ0,Qn

+
1
2
ψ′n,Qn

ΛndQ1/2
n

}
Λ′ndQ

1/2
n

=
∫

Λ′n
{
dQ1/2

n − dP̄
1/2
θ0,Qn

}
dQ1/2

n +
1
2
ψ′n,Qn

∫
ΛnΛ′ndQn = 0.

The left hand side of (7.4) satisfies∥∥∥∥dQ1/2
n − dP̄

1/2
θ0,Qn

+
1
2

(
T̄Qn − θ0

)′ ΛndQ1/2
n

∥∥∥∥
≤

∥∥∥dQ1/2
n − dP̄

1/2

T̄Qn ,Qn

∥∥∥ + o
(∣∣T̄Qn − θ0

∣∣) + o
(
n−1/2

)
≤

∥∥∥dQ1/2
n − dP̄

1/2
θ0+ψn,Qn ,Qn

∥∥∥ + o
(∣∣T̄Qn − θ0

∣∣) + o
(
n−1/2

)
≤

∥∥∥∥dQ1/2
n − dP̄

1/2
θ0,Qn

+
1
2
ψ′n,Qn

ΛndQ1/2
n

∥∥∥∥ + o
(∣∣T̄Qn − θ0

∣∣) + o (|ψn,Qn |) + o
(
n−1/2

)
,(7.5)

where the first inequality follows from the triangle inequality and Lemma 7.3 (i), the second inequality

follows from T̄Qn = arg minθ∈Θ

∥∥∥dQ1/2
n − dP̄

1/2
θ,Qn

∥∥∥, and the third inequality follows from the triangle

inequality and Lemma 7.3 (ii). From (7.4) and (7.5),∣∣∣∣∣
∥∥∥∥dQ1/2

n − dP̄
1/2
θ0,Qn

+
1
2
ψ′n,Qn

ΛndQ1/2
n

∥∥∥∥2

+
∥∥∥∥1
2

(
T̄Qn − θ0 − ψn,Qn

)′ ΛndQ1/2
n

∥∥∥∥2
∣∣∣∣∣
1/2

≤
∥∥∥∥dQ1/2

n − dP̄
1/2
θ0,Qn

+
1
2
ψ′n,Qn

ΛndQ1/2
n

∥∥∥∥ + o
(∣∣T̄Qn − θ0

∣∣) + o (|ψn,Qn |) + o
(
n−1/2

)
.

This implies

o
(∣∣T̄Qn − θ0

∣∣) + o (|ψn,Qn |) + o
(
n−1/2

)
≥

√
1
4

(
T̄Qn − θ0 − ψn,Qn

)′ ∫ ΛnΛ′ndQn
(
T̄Qn − θ0 − ψn,Qn

)
≥ C

∣∣T̄Qn − θ0 − ψn,Qn

∣∣ ,(7.6)
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for all n large enough, where the second inequality follows from Lemma 7.5 (i) and Assumption 3.1

(vi).

We now analyze ψn,Qn . From the definition of ψn,Qn ,

ψn,Qn = −2

{(∫
ΛnΛ′ndQn

)−1

− Σ−1

}∫
Λn

{
dQ1/2

n − dP̄
1/2
θ0,Qn

}
dQ1/2

n

−2Σ−1

∫
Λn

{
dQ1/2

n − dP̄
1/2
θ0,Qn

}
dQ1/2

n .(7.7)

From this and Lemma 7.5 (i), the first term of (7.7) is o
(
n−1/2

)
. The second term of (7.7) satisfies

−2Σ−1

∫
Λn

{
dQ1/2

n − dP̄
1/2
θ0,Qn

}
dQ1/2

n

= −2Σ−1G′Ω−1

(∫
gn (x, θ0) gn (x, θ0)

′ dQn

)
γn (θ0, Qn)

+2Σ−1G′Ω−1

(∫
γn (θ0, Qn)

′ gn (x, θ0)
1 + γn (θ0, Qn)

′ gn (x, θ0)
gn (x, θ0) gn (x, θ0)

′ dQn

)
γn (θ0, Qn)

= −Σ−1G′Ω−1

{∫
gn (x, θ0) dQn +

1
2

∫
%n (x, θ0, Qn) gn (x, θ0) dQn

}
+ o

(
n−1/2

)
= −Σ−1

∫
ΛndQn + o

(
n−1/2

)
,

where the first equality follows from (7.8), the second equality follows from (7.9) and Lemma 7.5, and

the third equality follows from Lemma 7.5. Therefore,

√
nψn,Qn = −

√
nΣ−1

∫
ΛndQn + o (1) ,

which also implies |ψn,Qn | = O
(
n−1/2

)
(by Lemma 7.5 (i)). Combining this with (7.6),

√
n

(
T̄Qn − θ0

)
=
√
nψn,Qn + o

(√
n

∣∣T̄Qn − θ0
∣∣) + o (1) .

By solving this equation for
√
n

(
T̄Qn − θ0

)
, the conclusion is obtained.

Lemma 7.3. Suppose that Assumption 3.1 holds. Then for each r > 0 and sequence Qn ∈ BH (P0, r/
√
n),

(i):
∥∥∥dP̄ 1/2

T̄Qn ,Qn
− dP̄

1/2
θ0,Qn

+ 1
2

(
T̄Qn − θ0

)′ ΛndQ1/2
n

∥∥∥ = o
(∣∣T̄Qn − θ0

∣∣) + o
(
n−1/2

)
,

(ii):
∥∥∥dP̄ 1/2

θ0+ψn,Qn ,Qn
− dP̄

1/2
θ0,Qn

+ 1
2ψ

′
n,Qn

ΛndQ
1/2
n

∥∥∥ = o (|ψn,Qn |) + o
(
n−1/2

)
.

Proof of (i). From the convex duality of partially finite programming (Borwein and Lewis (1993)),

the Radon-Nikodym derivative dP̄θ,Q/dQ is written as

(7.8)
dP̄θ,Q
dQ

=
1(

1 + γn (θ,Q)′ gn (x, θ)
)2 ,
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for each n ∈ N, θ ∈ Θ, and Q ∈M, where γn (θ,Q) solves

(7.9) 0 =
∫

gn (x, θ)(
1 + γn (θ,Q)′ gn (x, θ)

)2dQ = EQ
[
gn (x, θ)

{
1− 2γn (θ,Q)′ gn (x, θ) + %n (x, θ,Q)

}]
,

with

%n (x, θ,Q) =
3

(
γn (θ,Q)′ gn (x, θ)

)2 + 2 (γn(θ,Q)′gn (x, θ))3(
1 + γn (θ,Q)′ gn (x, θ)

)2 .

Denote tn = T̄Qn − θ0. Pick arbitrary r > 0 and sequence Qn ∈ BH (P0, r/
√
n). From the triangle

inequality and (7.8),

∥∥∥∥dP̄ 1/2

T̄Qn ,Qn
− dP̄

1/2
θ0,Qn

+
1
2
t′nΛndQ

1/2
n

∥∥∥∥
≤

∥∥∥∥{
γn (θ0, Qn)

′ gn (x, θ0)− γn
(
T̄Qn , Qn

)′
gn

(
x, T̄Qn

)}
dQ1/2

n +
1
2
t′nΛndQ

1/2
n

∥∥∥∥
+

∥∥∥∥∥∥∥∥
{
γn (θ0, Qn)

′ gn (x, θ0)− γn
(
T̄Qn , Qn

)′
gn

(
x, T̄Qn

)}
×

{
1(

1+γn(T̄Qn ,Qn)′gn(x,T̄Qn)
)
(1+γn(θ0,Qn)′gn(x,θ0))

− 1

}
dQ

1/2
n

∥∥∥∥∥∥∥∥ = T1 + T2.

For T2, Lemmas 7.5 and 7.6 imply T2 = o
(
n−1/2

)
. For T1, the triangle inequality and (7.9) yield

T1 ≤

∥∥∥∥∥∥
 −1

2EQn

[
gn

(
x, T̄Qn

)]′
EQn

[
gn

(
x, T̄Qn

)
gn

(
x, T̄Qn

)′]−1
gn

(
x, T̄Qn

)
+1

2EQn [gn (x, θ0)]
′EQn

[
gn (x, θ0) gn (x, θ0)

′]−1
gn (x, θ0) + 1

2 t
′
nΛn

 dQ1/2
n

∥∥∥∥∥∥
+

∥∥∥EQn [%n (x, θ0, Qn) gn (x, θ0)]
′EQn

[
gn (x, θ0) gn (x, θ0)

′]−1
gn (x, θ0) dQ1/2

n

∥∥∥
+

∥∥∥∥EQn

[
%n

(
x, T̄Qn , Qn

)
gn

(
x, T̄Qn

)]′
EQn

[
gn

(
x, T̄Qn

)
gn

(
x, T̄Qn

)′]−1
gn (x, θ0) dQ1/2

n

∥∥∥∥
= T11 + T12 + T13.
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Lemmas 7.5 and 7.6 imply that T12 = o
(
n−1/2

)
and T13 = o

(
n−1/2

)
. For T11, expansions of gn

(
x, T̄Qn

)
around T̄Qn = θ0 yield

T11 ≤

∥∥∥∥∥∥−1
2
EQn

[
gn

(
x, T̄Qn

)]′ EQn

[
gn

(
x, T̄Qn

)
gn

(
x, T̄Qn

)′]−1

−EQn

[
gn (x, θ0) gn (x, θ0)

′]−1

 gn
(
x, T̄Qn

)
dQ1/2

n

∥∥∥∥∥∥
+

∥∥∥∥−1
2
EQn

[
gn

(
x, T̄Qn

)]′
EQn

[
gn (x, θ0) gn (x, θ0)

′]−1 {
gn

(
x, T̄Qn

)
− gn (x, θ0)

}
dQ1/2

n

∥∥∥∥
+

∥∥∥∥∥∥∥−
1
2
t′n

∫ ∂gn

(
x, θ̇

)
∂θ′

dQn −G

′

EQn

[
gn (x, θ0) gn (x, θ0)

′]−1
gn (x, θ0) dQ1/2

n

∥∥∥∥∥∥∥
+

∥∥∥∥1
2
t′nG

′
(
Ω−1 − EQn

[
gn (x, θ0) gn (x, θ0)

′]−1
)
gn (x, θ0) dQ1/2

n

∥∥∥∥
= o

(
n−1/2

)
+ o (tn) ,

where θ̇ is a point on the line joining θ0 and T̄Qn , and the equality follows from Lemmas 7.5 (i) and

7.6 (i).

Proof of (ii). Similar to the proof of Part (i) of this lemma.

Lemma 7.4. Suppose that Assumption 3.1 hold. Then for each t ∈ Rp,

(i): |EP0 [gn (x, θ0)]| = o
(
n−1/2

)
, |EP0 [gn (x, θn)]| = O

(
n−1/2

)
,
∣∣EP0

[
gn (x, θn) gn (x, θn)

′]− Ω
∣∣ =

o (1), and |EP0 [∂gn (x, θn) /∂θ′]−G| = o (1),

(ii): γn (θn, P0) = arg maxγ∈Rm −
∫

1
(1+γ′gn(x,θn))dP0 exists for all n large enough, |γn (θn, P0)| =

O
(
n−1/2

)
, and supx∈X

∣∣γn (θn, P0)
′ gn (x, θn)

∣∣ = o (1).

Proof of (i). Proof of the first statement. The same argument as (7.2) with Assumption 3.1

(iii) yields the conclusion.

Proof of the second statement. Pick an arbitrary t ∈ Rp. From the triangle inequality,

(7.10) |EP0 [gn (x, θn)]| ≤ |EP0 [g (x, θn) I {x /∈ Xn}]|+ |EP0 [g (x, θn)]| .

By the same argument as (7.2) and EP0 [|g (x, θn)|η] < ∞ (from Assumption 3.1 (v)), the first term

of (7.10) is o
(
n−1/2

)
. The second term of (7.10) satisfies

|EP0 [g (x, θn)]| ≤ EP0

[
sup
θ∈N

∣∣∣∣∂g (x, θ)
∂θ′

∣∣∣∣] ∣∣∣∣ t√
n

∣∣∣∣ = O
(
n−1/2

)
,

for all n large enough, where the inequality follows from a Taylor expansion around t = 0 and

Assumption 3.1 (iii), and the equality follows from Assumption 3.1 (v). Combining these results, the

conclusion is obtained.
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Proof of the third statement. Pick an arbitrary t ∈ Rp. From the triangle inequality,

∣∣EP0

[
gn (x, θn) gn (x, θn)

′]− Ω
∣∣

≤
∣∣EP0

[
gn (x, θn) gn (x, θn)

′]− EP0

[
g (x, θn) g (x, θn)

′]∣∣ +
∣∣EP0

[
g (x, θn) g (x, θn)

′]− Ω
∣∣ .

The first term is o
(
n−1/2

)
by the same argument as (7.2) and the second term converges to zero by

the continuity of g (x, θ) at θ0.

Proof of the fourth statement. Similar to the proof of the third statement.

Proof of (ii). Pick an arbitrary t ∈ Rp. Let Γn = {γ ∈ Rm : |γ| ≤ an} with a positive sequence

{an}n∈N satisfying anmn → 0 and ann1/2 →∞. Observe that

(7.11) sup
γ∈Γn,x∈X ,θ∈Θ

∣∣γ′gn (x, θ)
∣∣ ≤ anmn → 0.

Since Rn (P0, θn, γ) is twice continuously differentiable with respect to γ and Γn is compact, γ̃ =

arg maxγ∈Γn Rn (P0, θn, γ) exists for each n ∈ N. A Taylor expansion around γ̃ = 0 yields

− 1 = Rn (P0, θn, 0) ≤ Rn (P0, θn, γ̃) = −1 + γ̃′EP0 [gn (x, θn)]− γ̃′EP0

[
gn (x, θn) gn (x, θn)

′

(1 + γ̇′gn (x, θn))
3

]
γ̃

≤ −1 + γ̃′EP0 [gn (x, θn)]− Cγ̃′EP0

[
gn (x, θn) gn (x, θn)

′] γ̃
≤ −1 + |γ̃| |EP0 [gn (x, θn)]| − C |γ̃|2 ,(7.12)

for all n large enough, where γ̇ is a point on the line joining 0 and γ̃, the second inequality follows from

(7.11), and the last inequality follows from Lemma 7.4 (i) and Assumption 3.1 (vi). Thus, Lemma 7.4

(i) implies

(7.13) C |γ̃| ≤ |EP0 [gn (x, θn)]| = O
(
n−1/2

)
.

From ann
1/2 →∞, γ̃ is an interior point of Γn and satisfies the first-order condition ∂Rn (Qn, θ0, γ̃) /∂γ =

0 for all n large enough. SinceRn (Qn, θ0, γ) is concave in γ for all n large enough, γ̃ = arg maxγ∈Rm Rn (P0, θn, γ)

for all n large enough and the first statement is obtained. Thus, the second statement is obtained

from (7.13). The third statement follows from (7.13) and Assumption 3.1 (vii).

Lemma 7.5. Suppose that Assumption 3.1 holds. Then for each r > 0 and sequence Qn ∈ BH (P0, r/
√
n),

(i): |EQn [gn (x, θ0)]| = O
(
n−1/2

)
, and

∣∣EQn

[
gn (x, θ0) gn (x, θ0)

′]− Ω
∣∣ = o (1),

(ii): γn (θ0, Qn) = arg maxγ∈Rm −
∫

1
(1+γ′gn(x,θ0))dQn exists for all n large enough, and |γn (θ0, Qn)| =

O
(
n−1/2

)
, and supx∈X

∣∣γn (θ0, Qn)
′ gn (x, θ0)

∣∣ = o (1).
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Proof of (i). Proof of the first statement. Pick any r > 0 and sequence Qn ∈ BH (P0, r/
√
n).

We have

|EQn [gn (x, θ0)]|

≤
∣∣∣∣∫ gn (x, θ0) {dQn − dP0}

∣∣∣∣ + |EP0 [gn (x, θ0)]|

≤
∣∣∣∣∫ gn (x, θ0)

{
dQ1/2

n − dP
1/2
0

}2
∣∣∣∣ + 2

∣∣∣∣∫ gn (x, θ0) dP
1/2
0

{
dQ1/2

n − dP
1/2
0

}∣∣∣∣ + o
(
n−1/2

)
≤ mn

r2

n
+ 2EP0

[
|g (x, θ0)|2

] r√
n

+ o
(
n−1/2

)
= O

(
n−1/2

)
,

where the first and second inequalities follow from the triangle inequality and Lemma 7.4 (i), the third

inequality follows from the Cauchy-Schwarz inequality and Qn ∈ BH (P0, r/
√
n), and the equality

follows from Assumption 3.1 (v) and (vii).

Proof of the second statement. Pick arbitrary r > 0 and sequence Qn ∈ BH (P0, r/
√
n). From

the triangle inequality,∣∣EQn

[
gn (x, θ0) gn (x, θ0)

′]− Ω
∣∣(7.14)

≤
∣∣EQn

[
gn (x, θ0) gn (x, θ0)

′]− EP0

[
gn (x, θ0) gn (x, θ0)

′]∣∣ +
∣∣EP0

[
g (x, θ0) g (x, θ0)

′ I {x /∈ Xn}
]∣∣ .

The first term of the RHS of (7.14) satisfies∣∣EQn

[
gn (x, θ0) gn (x, θ0)

′]− EP0

[
gn (x, θ0) gn (x, θ0)

′]∣∣
≤

∣∣∣∣∫ gn (x, θ0) gn (x, θ0)
′
{
dQ1/2

n − dP
1/2
0

}2
∣∣∣∣ + 2

∣∣∣∣∫ gn (x, θ0) gn (x, θ0)
′ dP

1/2
0

{
dQ1/2

n − dP
1/2
0

}∣∣∣∣
≤ m2

n

r2

n
+ 2EP0

[
|g (x, θ0)|4

] r√
n

= o (1) ,

where the first inequality follows from the triangle inequality, the second inequality follows from the

Cauchy-Schwarz inequality and Qn ∈ BH (P0, r/
√
n), and the equality follows from Assumption 3.1

(v) and (vii). The second term of the RHS of (7.14) satisfies∣∣EP0

[
g (x, θ0) g (x, θ0)

′ I {x /∈ Xn}
]∣∣

≤
(∫ ∣∣g (x, θ0) g (x, θ0)

′∣∣1+δ dP0

) 1
1+δ

(∫
I {x /∈ Xn} dP0

) δ
1+δ

≤
(
EP0

[
|g (x, θ0)|2+δ

]) 1
1+δ (

m−η
n EP0 [|g (x, θ0)|η]

) δ
1+δ = o (1) ,

for sufficiently small δ > 0, where the first inequality follows from the Hölder inequality, the second

inequality follows from the Markov inequality, and the equality follows from Assumption 3.1 (vii).
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Proof of (ii). Similar to the proof of Lemma 7.4 (ii). Repeat the same argument with Rn (Qn, θ0, γ)

instead of Rn (P0, θn, γ).

Lemma 7.6. Suppose that Assumption 3.1 holds. Then for each r > 0 and sequence Qn ∈ BH (P0, r/
√
n),

(i):
∣∣EQn

[
gn

(
x, T̄Qn

)]∣∣ = O
(
n−1/2

)
,
∣∣∣EQn

[
gn

(
x, T̄Qn

)
gn

(
x, T̄Qn

)′]− Ω
∣∣∣ = o (1), and∣∣EQn

[
∂gn

(
x, T̄Qn

)
/∂θ′

]
−G

∣∣ = o (1),

(ii): γn
(
T̄Qn , Qn

)
= arg maxγ∈Rm −

∫
1

(1+γ′gn(x,T̄Qn))dQn exists for all n large enough,
∣∣γn (

T̄Qn , Qn
)∣∣ =

O
(
n−1/2

)
, and supx∈X

∣∣∣γn (
T̄Qn , Qn

)′
gn

(
x, T̄Qn

)∣∣∣ = o (1).

Proof of (i). Proof of the first statement. Pick any r > 0 and sequence Qn ∈ BH (P0, r/
√
n).

Define γ̃ =
EQn [gn(x,T̄Qn)]

√
n|EQn [gn(x,T̄Qn)]| . Since |γ̃| = n−1/2,

(7.15) sup
x∈X ,θ∈Θ

∣∣γ̃′gn (x, θ)
∣∣ ≤ n−1/2mn → 0.

Observe that

∣∣∣EQn

[
gn

(
x, T̄Qn

)
gn

(
x, T̄Qn

)′]∣∣∣
(7.16)

≤
∫

sup
θ∈Θ

|gn (x, θ)|2
{
dQ1/2

n − dP
1/2
0

}2
+ 2

∫
sup
θ∈Θ

|gn (x, θ)|2 dP 1/2
0

{
dQ1/2

n − dP
1/2
0

}
+ EP0

[
sup
θ∈Θ

|gn (x, θ)|2
]

≤m2
n

r2

n
+ 2mn

√
EP0

[
sup
θ∈Θ

|g (x, θ)|2
]
r√
n

+ EP0

[
sup
θ∈Θ

|g (x, θ)|2
]
≤ CEP0

[
sup
θ∈Θ

|g (x, θ)|2
]
,

for all n large enough, where the first inequality follows from the triangle inequality, the second in-

equality follows from the Cauchy-Schwarz inequality and Qn ∈ BH (P0, r/
√
n), and the last inequality

follows from Assumption 3.1 (v) and (vii). Thus, an expansion around γ̃ = 0 yields

Rn
(
Qn, T̄Qn , γ̃

)
= −1 + γ̃′EQn

[
gn

(
x, T̄Qn

)]
− γ̃′EQn

[
gn

(
x, T̄Qn

)
gn

(
x, T̄Qn

)′(
1 + γ̇′gn

(
x, T̄Qn

))3

]
γ̃

≥ −1 + n−1/2
∣∣EQn

[
gn

(
x, T̄Qn

)]∣∣− Cγ̃′EQn

[
gn

(
x, T̄Qn

)
gn

(
x, T̄Qn

)′]
γ̃

≥ −1 + n−1/2
∣∣EQn

[
gn

(
x, T̄Qn

)]∣∣− Cn−1,(7.17)

for all n large enough, where γ̇ is a point on the line joining 0 and γ̃, the first inequality follows from

(7.15), and the second inequality follows from γ̃′γ̃ = n−1 and (7.16). From the duality of partially

finite programming (Borwein and Lewis (1993)), γn
(
T̄Qn , Qn

)
and T̄Qn are written as γn

(
T̄Qn , Qn

)
=
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arg maxγ∈Rm Rn
(
Qn, T̄Qn , γ

)
and T̄Qn = arg minθ∈ΘRn (Qn, θ, γn (θ,Qn)). Therefore, from (7.17),

−1 + n−1/2
∣∣EQn

[
gn

(
x, T̄Qn

)]∣∣− Cn−1

≤ Rn
(
Qn, T̄Qn , γ̃

)
≤ Rn

(
Qn, T̄Qn , γn

(
T̄Qn , Qn

))
≤ Rn (Qn, θ0, γn (θ0, Qn)) .(7.18)

By a similar argument to (7.12) combined with |γn (θ0, Qn)| = O
(
n−1/2

)
and |EQn [gn (x, θ0)]| =

O
(
n−1/2

)
(by Lemma 7.5), we have

(7.19) Rn (Qn, θ0, γn (θ0, Qn)) ≤ −1+|γn (θ0, Qn)| |EQn [gn (x, θ0)]|−C |γn (θ0, Qn)|2 = −1+O
(
n−1

)
.

From (7.18) and (7.19), the conclusion follows.

Proof of the second statement. Similar to the proof of the second statement of Lemma 7.5 (i).

Proof of the third statement. Pick arbitrary r > 0 and sequence Qn ∈ BH (P0, r/
√
n). From the

triangle inequality,

∣∣EQn

[
∂gn

(
x, T̄Qn

)
/∂θ′

]
−G

∣∣ ≤
∣∣EQn

[
∂gn

(
x, T̄Qn

)
/∂θ′

]
− EP0

[
∂gn

(
x, T̄Qn

)
/∂θ′

]∣∣
+

∣∣EP0

[
I {x /∈ Xn} ∂g

(
x, T̄Qn

)
/∂θ′

]∣∣ +
∣∣EP0

[
∂g

(
x, T̄Qn

)
/∂θ′

]
−G

∣∣ .(7.20)

The first term of (7.20) satisfies

∣∣EQn

[
∂gn

(
x, T̄Qn

)
/∂θ′

]
− EP0

[
∂gn

(
x, T̄Qn

)
/∂θ′

]∣∣
≤

∣∣∣∣∫ ∂gn
(
x, T̄Qn

)
/∂θ′

{
dQ1/2

n − dP
1/2
0

}2
∣∣∣∣ + 2

∣∣∣∣∫ ∂gn
(
x, T̄Qn

)
/∂θ′dP

1/2
0

{
dQ1/2

n − dP
1/2
0

}∣∣∣∣
≤ sup

x∈Xn,θ∈N

∣∣∂gn (x, θ) /∂θ′
∣∣ r2
n

+ 2EP0

[
sup
θ∈N

∣∣∂gn (x, θ) /∂θ′
∣∣2] r√

n
= o (1) ,

where the first inequality follows from the triangle inequality, the second inequality follows from the

Cauchy-Schwarz inequality, and the equality follows from Assumption 3.1 (v) and (vii). The second

term of (7.20) is o (1) by the same argument as (7.2). The third term of (7.20) is o (1) by the continuity

of ∂g (x, θ) /∂θ′ at θ0 and Lemma 7.1 (ii). Therefore, the conclusion is obtained.

Proof of (ii). Similar to the proof of Lemma 7.4 (ii). Repeat the same argument with Rn
(
Qn, T̄Qn , γ

)
instead of Rn (P0, θn, γ).

Lemma 7.7. Suppose that Assumption 3.1 holds. Then for each sequence Qn ∈ BH (P0, r/
√
n) and

r > 0, T̄Pn

p→ θ0 under Qn.

Proof. Similar to the proof of Lemma 7.1 (i).
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Lemma 7.8. Suppose that Assumption 3.1 holds . Then for each r > 0 and sequence Qn ∈

BH (P0, r/
√
n),

√
n

(
T̄Pn − θ0

)
= −

√
nΣ−1

∫
ΛndPn + op (1) under Qn,

√
n

(
T̄Pn − T̄Qn

) d→ N
(
0,Σ−1

)
under Qn.

Proof. The proof of the first statement is similar to that of Lemma 7.2 (replace Qn with Pn and use

Lemmas 7.9 and 7.10 instead of Lemmas 7.5 and 7.6). For the second statement, Lemma 7.2 and the

first statement imply

√
n

(
T̄Pn − T̄Qn

)
= −Σ−1G′Ω−1 1√

n

n∑
i=1

{gn (xi, θ0)− EQn [gn (x, θ0)]}+ op (1) ,

under Qn. Thus, it is sufficient to check that we can apply a central limit theorem to the triangular

array {gn (xi, θ0)}1≤i≤n,n. Observe that

EQn

[
|gn (x, θ0)|2+ε

]
=

∫
|gn (x, θ0)|2+ε

{
dQ1/2

n − dP
1/2
0

}2
+ 2

∫
|gn (x, θ0)|2+ε dP 1/2

0

{
dQ1/2

n − dP
1/2
0

}
+ EP0

[
|gn (x, θ0)|2+ε

]
≤ m2+ε

n

r2

n
+ 2m1+ε

n EP0

[
|g (x, θ0)|2

] r√
n

+ EP0

[
|g (x, θ0)|2+ε

]
<∞,

for all n large enough, where the first inequality follows from the Cauchy-Schwarz inequality, and the

second inequality follows from Assumption 3.1 (v) and (vii). Therefore, the conclusion is obtained.

Lemma 7.9. Suppose that Assumption 3.1 holds. Then for each r > 0 and sequence Qn ∈ BH (P0, r/
√
n),

the followings hold under Qn:

(i): |EPn [gn (x, θ0)]| = Op
(
n−1/2

)
,
∣∣EPn

[
gn (x, θ0) gn (x, θ0)

′]− Ω
∣∣ = op (1),

(ii): γn (θ0, Pn) = arg maxγ∈Rm −
∫

1
(1+γ′gn(x,θ0))dPn exists a.s. for all n large enough, |γn (θ0, Pn)| =

Op
(
n−1/2

)
, and supx∈X

∣∣γn (θ0, Pn)
′ gn (x, θ0)

∣∣ = op (1).

Proof of (i). Proof of the first statement. From the triangle inequality,

|EPn [gn (x, θ0)]| ≤ |EPn [gn (x, θ0)]− EQn [gn (x, θ0)]|+ |EQn [gn (x, θ0)]| .

The first term is Op
(
n−1/2

)
by the central limit theorem for the triangular array {gn (xi, θ0)}1≤i≤n,n.

The second term is O
(
n−1/2

)
by Lemma 7.5 (i).
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Proof of the second statement. From the triangle inequality,∣∣EPn

[
gn (x, θ0) gn (x, θ0)

′ − Ω
]∣∣

≤
∣∣EPn

[
gn (x, θ0) gn (x, θ0)

′]− EQn

[
gn (x, θ0) gn (x, θ0)

′]∣∣ +
∣∣EQn

[
gn (x, θ0) gn (x, θ0)

′]− Ω
∣∣ .

From a law of large numbers, the first term is op (1). From Lemma 7.5 (i), the second term is o (1).

Proof of (ii). Similar to the proof of Lemma 7.4 (ii) except using Lemma 7.9 (i) instead of Lemma

7.4 (i).

Lemma 7.10. Suppose that Assumption 3.1 holds. Then for each r > 0 and sequence Qn ∈

BH (P0, r/
√
n), the followings hold under Qn:

(i):
∣∣EPn

[
gn

(
x, T̄Pn

)]∣∣ = Op
(
n−1/2

)
,
∣∣∣EPn

[
gn

(
x, T̄Pn

)
gn

(
x, T̄Pn

)′]− Ω
∣∣∣ = Op

(
n−1/2

)
, and∣∣EPn

[
∂gn

(
x, T̄Pn

)
/∂θ′

]
−G

∣∣ = op (1),

(ii): γn
(
T̄Pn , Pn

)
= arg maxγ∈Rm −

∫
1

(1+γ′gn(x,T̄Pn))dPn exists a.s. for all n large enough,
∣∣γn (

T̄PnPn
)∣∣ =

Op
(
n−1/2

)
, and supx∈X

∣∣∣γn (
T̄Pn , Pn

)′
gn

(
x, T̄Pn

)∣∣∣ = op (1).

Proof of (i). Similar to the proof of Lemma 7.6 (i).

Proof of (ii). Similar to the proof of Lemma 7.6 (ii).
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