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Abstract

Least absolute deviations (LAD) estimation of linear time-series models is considered un-

der conditional heteroskedasticity and serial correlation. The limit theory of the LAD estimator

is obtained without assuming the finite density condition for the errors that is required in stan-

dard LAD asymptotics. The results are particularly useful in application of LAD estimation to

financial time series data.

Keywords: Asymptotic leptokurtosis, Convex function, Infinite density, Least absolute devia-

tions, Median, Weak convergence.
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1 Introduction

This note derives asymptotics for the least absolute deviations (LAD) estimator in a linear time

series model under conditional heteroskedasticity and serial correlation. Our methods follow the

approach pioneered in Knight (1998, 1999), who derived LAD asymptotics under nonstandard

conditions that allow for possibly infinite or zero error density function conditions. Nonstandard

conditions such as these, particularly an infinite error density at the origin, are likely to arise in
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many empirical applications to financial data, which are well known to be characterized with high

kurtosis. In recent related work, the authors (Han, Cho and Phillips, 2009) have developed a test

for infinite density in stock returns and found in empirical applications that a significant number

of leading companies in U.S. industries have asset returns with infinite density at the median. The

present asymptotic results assist in validating such applications for financial data. In particular,

the current paper considers time-series models with predetermined variables as regressors, condi-

tionally heterogeneous errors, and possibly infinite error densities, thereby expanding the range of

potential empirical applications of LAD estimation theory.

Previous work in the literature has developed asymptotic theory for LAD estimation in var-

ious time series settings. Phillips (1991) developed LAD limit theory for stationary data under

the assumptions of a finite error density and exogenous regressors. Koenker and Zhao (1996)

considered the influence of conditional heteroskedasticity on the LAD estimator, also under fi-

nite error density conditions. Knight (1999) established LAD asymptotics for a linear model with

exogenous regressors and heteroskedastic errors under possibly infinite error density conditions,

but conditional heteroskedasticity and weakly exogenous regressors were not considered. Finally,

Rogers (2001) generalized the framework in Knight (1998) to stationary and integrated time-series

contexts without handling conditional heteroskedasticity.

The present note extends this literature by establishing an asymptotic theory for LAD esti-

mation with time series data that exhibits conditional heteroskedasticity and whose errors have

possibly infinite density. The model, regularity conditions and main result are given in Section 2

and Section 3 provides proofs.

2 Main Results

We consider the following linear median regression model:

yt = x′tβ + εt, E[xt sgn(εt)] = 0 iff β = β0,

where the regressor vector xt ∈ Rk may contain weakly exogenous variables and sgn(x) =

1 {x > 0} − 1 {x < 0}. The error term εt is conditionally heteroskedastic in the sense that εt :=

σtet, where σt is adapted to Ft, the sigma field generated by {xt, εt−1, xt−1, εt−2, . . .}, and the

primitive shock et is assumed to have a distribution function F e(z) := P (et ≤ z|Ft) for all t and

for all z in a neighborhood of zero. We maintain the following assumption throughout the paper:

Assumption A. (i) σt ≥ σ∗ > 0; (ii) (xt, σt) is stationary and ergodic; (iii) n−1
∑n

t=1 σ
2
t = Op(1);

and (iv) E‖xt‖4 <∞.
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The asymptotic behavior of the LAD estimator is well known to depend on the distribution of et

near zero. Specifically, as Knight (1998, 1999) shows, if we let ψe
n(x) :=

√
n[F e(a−1

n x)− F e(0)],

where an is selected in a way that ensures ψe
n(·) converges to a nondegenerate function, then ψe

n(x)

turns out to be the critical component in determining LAD asymptotics, as detailed below. The

sequence an is determined differently depending on whether or not f e(0) is finite. For example,

if f e(0) is finite, so that F e(·) has a finite slope at zero, then we can let an be
√
n, implying

that ψe
n(x) = f e(n−1/2x̃)x for some x̃ between x and 0 by first-order Taylor expansion. As n

tends to ∞, f e(n−1/2x̃)x converges to f e(0)x, which is non-degenerate. As another example, for

some α ≤ 1, suppose F e(x) = F e(0) + λ sgn(x)|x|α in a neighborhood of zero, then ψe
n(x) =

n1/2λ sgn(x)a−α
n |x|α, so that ψe

n(x) = λ sgn(x)|x|α when an = n1/2α. In this case, note that for

α < 1 the density f e(0) is not finite. Also, ψe
n(x) increases with respect to |x|, and ψe

n(x) = 0 if

and only if x = 0.

It is useful in the development of the asymptotics to make some assumptions regarding the

functional shape and properties of ψe
n(·) as well as some general regularity conditions to facilitate

central limit theory. We maintain the following assumptions.

Assumption B. For a function h(·), |F e(x) − F e(0)| ≤ h(x) for all x in an open interval

V containing zero such that h(x) increases with respect to |x|, and for some finite C0 and n0,

n1/2h(a−1
n x) ≤ C0(1 + |x|) for all x ∈ R provided that n > n0.

In general, Assumption B is satisfied by a wide class of density functions. If the density of et is

finite and continuous at zero, for example, then we can let an =
√
n, and F e(x)−F e(0) = f e(x̃)x

for some x̃ between x and 0. If we further let f ∗ be the maximum density in the neighborhood,

then |F e(x) − F e(0)| = f e(x̃)|x| ≤ f ∗|x|, so that Assumption B follows by letting h(x) =

f ∗|x|, because n1/2h(a−1
n x) = f ∗|x| ≤ f ∗(1 + |x|). These are not the only densities satisfying

Assumption B. If a density around zero can be approximated by a power density, then it also

satisfies Assumption B. More specifically, suppose that the density of et is bounded by two power

functions with the same exponent, i.e., for some α ≤ 1, 1
2
λα|x|α−1 ≤ f e(x) ≤ 2λα|x|α−1 on an

open interval containing zero, then we have an = n1/(2α), and |F e(x)−F e(0)| ≤ λ|x|α = h(x) on

the same interval. We note that h(·) satisfies the last part of Assumption B because n1/2h(a−1
n x) =

λ|x|α ≤ λ(1 + |x|) for all x ∈ R, where the last inequality holds because α ≤ 1.

Next we assume that ψe
n(·) converges to some ψe(·) in a proper mode as follows:

Assumption C. For some ψe(·), there is a symmetric and nonnegative sequence δ∗n(·) such that

δ∗n(s) is increasing as |s| increases, |ψe
n(·)− ψe(·)| ≤ δ∗n(·),

(1) lim sup
n→∞

E
[
‖xt‖δ∗n(‖xt‖)

]
<∞,
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and δ∗n(·) converges uniformly to zero on every compact neighborhood of zero.

Assumption C slightly differs from conditions in the previous literature. First, primitive con-

ditions are provided in Assumption C for the convergence of ψe
n(·) to ψe(·) such that Ψe(x) :=∫ x

0
ψe(s)ds is convex with respect to x, as proved in Lemma 5 below, whereas Knight (1999)

assumes this directly. Second, we allow for xt to be stochastic, differently from Knight (1999).

Many distribution functions satisfy Assumption C. For example, uniformly finite densities on

a neighborhood of zero satisfy the conditions. For this kind of density, we have an = n1/2, and

ψe
n(x) = f e(n−1/2x̃)x = f e(0)x + [f e(n−1/2x̃) − f e(0)]x = ψe(x) + δn(x) for some x̃ between

x and zero. Thus, if we let δ∗n(x) = sup|x̃|≤|x| |f e(n−1/2x̃) − f e(0)| · |x| and E‖xt‖2 < ∞, then

δ∗n(·) trivially satisfies all the conditions in Assumption C. Power densities are another example

satisfying Assumption C.

We further illustrate the use of Assumption C by considering one of the examples given in

Knight (1998, p. 761). Suppose F e(x) − F e(0) = λx ln(|x|−1) in a neighborhood of zero so that

an is n1/2(lnn)/2, and for every x and for large enough n such that a−1
n x is in the neighborhood.

We then have

ψe
n(x) = n1/2λa−1

n x[ln(an) + ln(|x|−1)] = λx+
2λx(ln lnn− ln 2 + ln(|x|−1))

lnn
.

Letting ψe(x) = λx yields

|ψe
n(x)− ψe(x)| ≤ 2λ|x|(ln lnn+ 1 + |x|+ |x|−1)

lnn
≤ 2λ(1 + |x|+ |x|2)

(
ln lnn+ 1

lnn

)
,

because 0 ≤ ln(|x|−1) ≤ |x|−1 for |x| ≤ 1 and 0 > ln(|x|−1) > −|x| for |x| > 1. We may denote

the right hand side (RHS) of the final inequality by δ∗n(x), which is an increasing function of |x|
and converges to zero uniformly on every compact set as n → ∞. The other conditions stated in

Assumption C trivially hold if E‖xt‖3 <∞.

As the final regularity condition, it is convenient to impose the following high level central

limit theorem (CLT).

Assumption D. For some positive definite A, n−1/2
∑n

t=1 xt sgn(εt) ⇒ ζ ∼ N(0, A).

If the median of εt conditional on xt is zero, then Assumption D follows by the Lindeberg condition

and A = plimn−1
∑n

t=1 xtx
′
t in this case.

In order to present our main results, we briefly explain some technical details adapted mainly

from Knight (1998). First, note that for any an, the centered and rescaled LAD estimator θ̂n :=

an(β̂n − β0) minimizes

Zn(θ) :=
an√
n

n∑
t=1

(
|εt − a−1

n x′tθ| − |εt|
)
.
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For every x 6= 0, we have |x− y| − |x| = −y sgn(x) + 2
∫ y

0
[I(x ≤ s)− I(x ≤ 0)]ds, as shown by

Knight (1998, 1999) and Rogers (2001), where I(·) denotes the indicator function. Thus,

Zn(θ) = − 1√
n

n∑
t=1

θ′xt sgn(εt) +
2an√
n

n∑
t=1

∫ a−1
n x′tθ

0

[
I(εt ≤ s)− I(εt ≤ 0)

]
ds(2)

= Z(1)
n (θ) + Z(2)

n (θ), say.

Here, Z(1)
n (θ) ⇒ −θ′ζ by Assumption D, and

(3) Z(2)
n (θ) =

2

n

n∑
t=1

∫ x′tθ

0

n1/2
[
I(εt ≤ a−1

n s)− I(εt ≤ 0)
]
ds,

which converges in probability to a nonrandom quantity as shown by Lemmas 2, 4 and 5 in the

following section. Denoting this limit by τ(θ), the weak limit of Zn(θ) has the form Z (θ) =

−θ′ζ + τ(θ). Importantly, both Zn (θ) and its limit Z (θ) are convex functions of θ, as proved in

Lemma 5. Hence, if Z (θ) is minimized at a unique point under some regularity conditions for the

properly chosen an, we can invoke an ‘argmin’ continuous mapping theorem to obtain the limit

distribution of an(β̂n − β0) without establishing stochastic equicontinuity (e.g., Geyer, 1996).

The following LAD asymptotic theory is established for linear models with weakly exogenous

regressors and conditionally heteroskedastic disturbances.

Theorem 1. Under Assumptions A–D, an(β̂n − β0) ⇒ argminθ∈Rk{−θ′ζ + τ(θ)} provided that

the limit function Z (θ) = −θ′ζ + τ(θ) is uniquely minimized almost surely.

Theorem 1 is the main result of the current paper and extends the range of potential applications

of Knight’s (1998, 1999) limit theory to our time-series framework that allows for conditional

heterogeneity and serial dependence. Also, our limit theory differs from earlier work in the way

that τ(θ) is deployed. To see this more clearly let

(4) Dnt :=

∫ x′tθ

0

√
n
[
I(εt ≤ a−1

n s)− I(εt ≤ 0)
]
ds,

so Z(2)
n (θ) = (2/n)

∑n
t=1Dnt. We can split n−1

∑n
t=1Dnt into the sum of n−1

∑n
t=1E(Dnt|Ft)

and n−1
∑n

t=1[Dnt − E(Dnt|Ft)]. Lemma 2 in the next section shows that the second term is

asymptotically negligible, whereas for the first term, we have

(5)
1

n

n∑
t=1

E(Dnt|Ft) =
1

n

n∑
t=1

Ψnt(x
′
tθ),
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where Ψnt(x
′
tθ) :=

∫ x′tθ

0
ψnt(s)ds and ψnt(s) :=

√
n
[
Ft(a

−1
n s) − Ft(0)

]
. Further, Lemma 4 in

the next section shows that when ψnt(s) → ψt(s) pointwise for each t, the probability limit of (5)

equals the probability limit of n−1
∑n

t=1

∫ x′tθ

0
ψt(s)ds. Thus, essentially we have

(6) Z(2)
n (θ) =

2

n

n∑
t=1

Ψt(θ) + op(1), where Ψt(θ) :=

∫ x′tθ

0

ψt(s)ds.

The first term on the right side of (6) should obey the ergodic theorem, and we have ψt(s) =

σ−1
t ψe(σ−1

t s), where ψe(s) is the limit of ψe
n(s) := n−1[F e(a−1

n s) − F e(0)]. Consequently, τ(θ)

which is defined as the probability limit of 2n−1
∑n

t=1 Ψt(θ), is in fact the probability limit of

2n−1
∑n

t=1 σtΨ
e(σ−1

t x′tθ). In this expression we note that the stochastic regressors xt and the

conditional heteroskedasticity process σt interact so that σt plays the role of a standardizing factor,

which differs from previous limit theory and distinguishes the limit form of τ(θ) in the present

paper.

We now analyze two special examples using Theorem 1 to show explicity how the results in

Knight (1998, 1999) are modified in the presence of conditional heteroskedasticity and weakly

exogenous regressors.

Example (Finite density). Let 0 < f e(0) < ∞. Then for an =
√
n, we have ψe

n(s) → f e(0)s

by first-order Taylor expansion, which implies that ψnt(s) → ft(0)s with ft(0) = σ−1
t f e(0). Thus

Ψt(x) = ft(0)
∫ x

0
sds = 1

2
ft(0)x2, and

Z(2)
n (θ) =

2

n

n∑
t=1

1
2
ft(0)(θ′xt)

2 + op(1) →p τ(θ) = θ′Bθ, where B := plim
1

n

n∑
t=1

ft(0)xtx
′
t.

Thus, Zn(θ) ⇒ −θ′ζ + θ′Bθ, and this weak limit is minimized almost surely by (2B)−1ζ ∼
N(0, 1

4
B−1AB−1). Therefore, this expression gives the limit distribution of the LAD estimator

according to Theorem 1. Further, we note that ft(0)xtx
′
t = f e

t (0)σ−1
t xtx

′
t, implying that B =

f e(0) plimn−1
∑n

t=1 σ
−1
t xtx

′
t, and thereby showing how σt and xt influence B.

Example (Power density). If et has a power density, so that for some α ≤ 1, f e(x) = λα|x|α−1

in a neighborhood of zero, then we have ψe
n(s) = λ sgn(s)|s|α = ψe(s) by letting an = n1/2α.

Therefore, Ψe(x) = λ(α + 1)−1|x|α+1, and this implies that Ψt(x) = λ(α + 1)−1σ−α
t |x|α+1 by

virtue of the fact that Ψt(x) = σtΨ
e(σ−1

t x). From this, for each θ,

2

n

n∑
t=1

Ψt(x
′
tθ) =

2λ

α+ 1
· 1

n

n∑
t=1

σ−α
t |x′tθ|α+1 → τ(θ).

If we further suppose that xt is a scalar, then

τ(θ) =
2λhα

α+ 1
· |θ|α+1, where hα := plim

1

n

n∑
t=1

σ−α
t |xt|α+1,
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so that ζ = 2λhα sgn(θ∗)|θ∗|α when θ∗ minimizes −θ′ζ + τ(θ). Thus, sgn(ζ) = sgn(θ∗), and we

obtain that θ∗ = (2λhα)−1/α sgn(ζ)|ζ|1/α. This result is very close to Example 1 in Knight (1998)

except that his λ is replaced with our λhα due to the influence of σt in τ(θ).

3 Proofs

For the proof of Theorem 1, the most difficult part is associated with (2) for which we need to

prove a law of large numbers (LLN) for Z(2)
n (θ). We start by writing Z(2)

n (θ) = 2n−1
∑n

t=1Dnt

using a change of variables, where Dnt is defined in (4), and decompose this sum as follows

(7)
1

n

n∑
t=1

Dnt =
1

n

n∑
t=1

Ψt(x
′
tθ) +

1

n

n∑
t=1

[
Ψnt(x

′
tθ)−Ψt(x

′
tθ)
]

+
1

n

n∑
t=1

[
Dnt −Ψnt(x

′
tθ)
]
.

The proof proceeds by showing that the second and third terms on the right side of (7) are negligible

in probability, as verified in Lemmas 4 and 2 below. Then, Lemma 5 below shows that the first

term on the right side obeys the ergodic theorem. These lemmas are integrated into the overall

proof of the theorem to aid readability in what follows.

We begin with the third term on the right side of (7), noting that Ψnt(x
′
tθ) = E(Dnt|Ft).

Lemma 2. Under Assumptions A(i,ii) and B, if E‖xt‖3 <∞, then

1

n

n∑
t=1

[
Dnt − E(Dnt|Ft)

]
→p 0.

Proof. If we let ξnt = Dnt − E(Dnt|Ft), then E(ξnt) = 0, so that it suffices to show that the

variance of n−1
∑n

t=1 ξnt goes to zero. We have var(ξnt|Ft) = E(D2
nt|Ft) − E(Dnt|Ft)

2 ≤
E(D2

nt|Ft), where

E(D2
nt|Ft) =

∫ x′tθ

0

∫ x′tθ

0

nE
[
I(εt ≤ a−1

n (s ∧ r))− I(εt ≤ a−1
n (s ∧ 0))

− I(εt ≤ a−1
n (r ∧ 0)) + I(εt ≤ 0)

∣∣∣Ft

]
drds

=
√
n

∫ x′tθ

0

∫ x′tθ

0

[
ψnt(s ∧ r)− ψnt(s ∧ 0)− ψnt(r ∧ 0)

]
drds

=
√
n

∫ x′tθ

0

∫ x′tθ

0

ψnt(s ∧ r)drds− 2
√
n θ′xt

∫ x′tθ

0

ψnt(s ∧ 0)ds.

Therefore, if x′tθ > 0, then 0 ≤ ψnt(s∧r) ≤ ψnt(s) over the domain of the second integral, so that

E(D2
nt|Ft) ≤

√
n

∫ x′tθ

0

∫ x′tθ

0

ψnt(s)drds+ 0 =
√
n θ′xtΨnt(x

′
tθ).
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On the other hand, if x′tθ < 0, then 0 ≥ ψnt(s ∧ r) ≥ ψnt(s) for all s and r between 0 and x′tθ, so

that
∫ x′tθ

0
ψnt(s ∧ r)dr ≤

∫ x′tθ

0
ψnt(s)dr = θ′xtψnt(s) for x′tθ ≤ s ≤ 0, implying that

E(D2
nt|Ft) ≤

√
n θ′xtΨnt(x

′
tθ)− 2

√
n θ′xtΨnt(x

′
tθ) = −

√
n θ′xtΨnt(x

′
tθ).

Thus, we have E(D2
nt|Ft) ≤

√
n |θ′xt|Ψnt(x

′
tθ) regardless of the value of x′tθ, and exploiting this

inequality yields that

var

(
1

n

n∑
t=1

ξnt

)
=

1

n2

n∑
t=1

E
[
E(ξ2

nt|Ft)
]
≤ 1

n2

n∑
t=1

E
[
E(D2

nt|Ft)
]

(8)

≤ E

[
1

n3/2

n∑
t=1

|θ′xt|Ψnt(x
′
tθ)

]
=

1

n3/2

n∑
t=1

E
[
|θ′xt|σtΨ

e
n(σ−1

t x′tθ)
]
,

where the second inequality follows from the fact that E(D2
nt|Ft) ≤

√
n |θ′xt|Ψnt(x

′
tθ). The final

equality of (8) holds by the fact that Ψnt(x
′
tθ) = σtΨ

e
n(σ−1

t x′tθ). Now Lemma 3 below shows that

|ψe
n(x)| ≤ C(1 + |x|) for all x, and thus

(9) Ψe
n(x) ≤ C

∫ |x|

0

(1 + s)ds = C(|x|+ 1
2
|x|2) ≤ C(|x|+ |x|2),

implying that |θ′xt|σtΨ
e
n(σ−1

t x′tθ) ≤ C(|θ′xt|2+σ−1
∗ |θ′xt|3). Hence, the right side of (8) is bounded

by Cn−3/2
∑n

t=1(E|θ
′xt|2 + σ−1

∗ E|θ′xt|3), which is O(n−1/2) by Assumption A(i,ii) and the fact

that E‖xt‖3 <∞ by assumption.

Lemma 3. Under Assumption B, for some C <∞, |ψe
n(x)| ≤ C(1 + |x|) for all x ∈ R.

Proof. First, we suppose that the function h(·) satisfies Assumption B on V = (c1, c2) for some

c1 < 0 and c2 > 0. Second, we let M := max{1, 1/2h(c1), 1/2h(c2)} < ∞. Then, |F e(x) −
F e(0)| ≤Mh(x) for every x in V obviously; and if x is not an element of V , then Mh(c1) ≥ 1/2

and Mh(c2) ≥ 1/2 whereas |F e(x)− F e(0)| ≤ 1/2, so that |F e(x)− F e(0)| ≤ 1/2 ≤Mh(cj) ≤
Mh(x), j = 1, 2. Thus, for some M <∞, we can conclude that |F e(x)−F e(0)| ≤Mh(x) for all

x ∈ R. Third, therefore, we have ψe
n(x) ≤ Mn1/2h(a−1

n x) ≤ MC0(1 + |x|) for all x ∈ R, where

the last inequality holds by the final condition in Assumption B. The desired result now follows by

letting C = MC0 <∞.

Next, we show that the second term on the right side of (7) converges to zero.

Lemma 4. Under Assumptions A and C,

∆n :=
1

n

n∑
t=1

[
Ψnt(x

′
tθ)−Ψt(x

′
tθ)
]
→p 0.
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Proof. We have ∆n = n−1
∑n

t=1 σtξnt, where ξnt :=
∫ σ−1

t x′tθ

0
[ψe

n(s)− ψe(s)]ds. By Assumptions

A and C, we also have

|ξnt| ≤
∫ σ−1

t |x′tθ|

0

δ∗n(s)ds ≤ σ−1
t |x′tθ|δ∗n(σ−1

t |x′tθ|) ≤ σ−1
t |x′tθ|δ∗n(σ−1

∗ |x′tθ|) = σ−1
t ηnt, say,

where the second inequality follows from the fact that δ∗n(·) ≤ σ−1
t |x′tθ| over the domain of the

integral by virtue of the monotonicity condition of δ∗n(·) in Assumption C, so that

|∆n| ≤
1

n

n∑
t=1

ηnt =
1

n

n∑
t=1

ηntI(ηnt ≤M) +
1

n

n∑
t=1

ηntI(ηnt > M).

By the stationarity of xt and (1), the second term in the RHS can be made as small as desired by

increasing M . For the same M , the first term converges to zero because its mean converges to zero

by the dominated convergence.

Finally, the asymptotic limit of the first component on the right side of (7) is established by

ergodicity as follows:

Lemma 5. Under Assumptions A–C, 2n−1
∑n

t=1 Ψt(x
′
tθ) →p τ(θ), where τ(·) is a nonrandom

convex function.

Proof. When (xt, σt) is stationary and ergodic, Ψt(x
′
tθ) = σtΨ

e(σ−1
t x′tθ) is also stationary and

ergodic, and the convergence of n−1
∑n

t=1 Ψt(x
′
tθ) follows from the ergodic theorem.

We now continue with the proof of the theorem. The convexity of τ(·) follows from the con-

vexity of Ψt(·), which, in turn, is implied by the convexity of Ψe
n(x) :=

∫ x

0
ψe

n(s)ds with respect

to x. Thus, we focus on the latter. Note that

Ψe
n(x) =

√
nan

∫ a−1
n x

0

[
F e(s)− F e(0)

]
ds,

by change of variables. For notational simplicity, let H ′(s) := F e(s) − F e(0) and H(x) :=∫ x

0
H ′(s)ds and then H(·) is convex, which follows by showing that for any z1, z2 and λ ∈ [0, 1],

λH(z1) + (1 − λ)H(z2) ≥ H(λz1 + (1 − λ)z2). If we let z1 < z2 without loss of generality and

that H1 := H(z1), H2 := H(z2), and z̃λ := λz1 + (1− λ)z2, then

λH1 + (1− λ)H2 = H1 + (1− λ)(H2 −H1)

= H(z̃λ) + (1− λ)(H2 −H1)− [H(z̃λ)−H1] = H(z̃λ) + δ(λ), say.

The proof is completed if for all λ ≤ [0, 1], δ(λ) ≥ 0. We note that

δ′(λ) = −(H2 −H1) +H ′(z̃λ)(z2 − z1),

9



which is a decreasing function in λ because z̃λ decreases in λ and H ′(·) is increasing. Further,

δ′(0) = −(H2 −H1) +H ′(z2)(z2 − z1) ≥ 0 by the mean-value theorem and the monotonicity of

H ′(z) in z. Similarly, we obtain that δ′(1) = −(H2 − H1) + H ′(z1)(z2 − z1) ≤ 0. Therefore,

δ(λ) ≥ min{δ(0), δ(1)} = 0, yielding that H(·) is convex. This proves the convexity of Ψe
n(·), so

that its weighted average τn(θ) := n−1
∑n

t=1 Ψnt(x
′
tθ) and its limit τ(θ) must be convex in θ as

well.

Proof of Theorem 1. By (7) and Lemmas 2, 4 and 5, Z(2)
n (θ) →p τ(θ) under Assumptions A–C,

where Z(2)
n (θ) is defined in (2). Assumption D also implies that Z(1)

n (θ) ⇒ −θ′ζ , where Z(1)
n (θ) is

defined in (2). Thus, Zn(θ) ⇒ −θ′ζ + τ(θ) for every θ, where the limit is convex by Lemma 5 and

is uniquely minimized almost surely by supposition. The desired result follows from Geyer (1996)

in the same manner as Knight (1998, 1999).
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