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Abstract
Linear cointegration is known to have the important property of invariance un-

der temporal translation. The same property is shown not to apply for nonlinear
cointegration. The requisite limit theory involves sample covariances of integrable
transformations of non-stationary sequences and time translated sequences, allowing
for the presence of a bandwidth parameter so as to accommodate kernel regression.
The theory is an extension of Wang and Phillips (2008) and is useful for the analysis
of nonparametric regression models with a misspeci�ed lag structure and in situations
where temporal aggregation issues arise. The limit properties of the Nadaraya-Watson
(NW) estimator for cointegrating regression under misspeci�ed lag structure are de-
rived, showing the NW estimator to be inconsistent with a �pseudo-true function�
limit that is a local average of the true regression function. In this respect nonlin-
ear cointegrating regression di¤ers importantly from conventional linear cointegration
which is invariant to time translation. When centred on the pseudo-function and ap-
propriately scaled, the NW estimator still has a mixed Gaussian limit distribution.
The convergence rates are the same as those obtained under correct speci�cation but
the variance of the limit distribution is larger. Some applications of the limit the-
ory to non-linear distributed lag cointegrating regression are given and the practical
import of the results for index models, functional regression models, and temporal
aggregation are discussed.

Keywords: Dynamic misspeci�cation, Functional regression, Integrable function,
Integrated process, Local time, Misspeci�cation, Mixed normality, Nonlinear cointe-
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1 Introduction

Cointegration methods have been highly popular for more than two decades in the empir-
ical time series literature, particularly in macroeconomics and international �nance. The
standard cointegrating model used in these empirical studies is linear, usually a parametric
vector autoregression (VAR) with reduced rank structure intended to capture the long run
relations and with a lag structure designed to deal with transient dynamics. Recent work
has begun to consider modi�cations to these models that introduce a variety of nonlinear
speci�cations. For example, Corradi, Swanson and White (2000), Teräsvirta and Ellianson
(2001) and others have introduced nonlinear short-run dynamics into vector error correc-
tion models (VECMs) and sought to allow for nonlinear transition mechanisms. But the
possibility of nonlinear long-run dynamics has received much less attention.
Park and Phillips (1999, 2001) developed a limit theory for nonlinear transformations of

unit root processes that provides a theoretical base for modeling nonlinear long-run relations
in a parametric framework (see also Chang, Park and Phillips (2001)). Other recent work
(Guerre, 2004; Karlsen, Mykelbust and Tjøstheim, 2007; Schienle, 2008; Wang and Phillips,
2008, 2009;) has provided a limit theory for nonparametric cointegrating regression using
Markov chain and local time asymptotics. The current paper takes the Wang and Phillips
(2009; hereafter WP) framework and analyzes the e¤ects of misspeci�cation relating to the
lag structure of the model. This kind of misspeci�cation is potentially relevant in a variety
of contexts and can be especially relevant in situations in which temporal aggregation issues
arise.
As shown in Park and Phillips (1999, 2001), the limit theory for nonlinear transfor-

mations of integrated processes can be quite di¤erent than that which is well known for
linear models. Park and Phillips consider two families of nonlinear functions of unit root
processes: locally integrable (LI ) functions and integrable (I ) functions. The linear coin-
tegrating model, for instance, is locally integrable and well studied. Correspondingly, the
limit theory for smooth locally integrable models tends to be similar to that of standard
cointegrating models. On the other hand the limit theory for integrable models is very
di¤erent. Sample averages of integrable transformations of unit root time series exhibit a
form of weak intensity �even weaker than that of an i.i.d. or stationary time series, which
typically carry a signal that is of the same order of magnitude as the sample size n. The ex-
planation for this reduction in intensity is that integrable functions attenuate the e¤ects of
large deviations of the process from the origin. Since nonstationary time series like random
walks spend much of their time away from the origin, this attenuation leads to an overall
reduction in the sample intensity of such functions. In addition, for integrable functions,
the limit theory is determined by the local time of the limit process of the standardized
time series at some point like the origin, and not by the local time averaged over the whole
real line, as in the case of sample functions in the LI family. A typical example of the
latter is the sample variance of a unit root process whose limit behavior takes the form of
a quadratic functional of Brownian motion which can be rewritten as a spatial integral (a
spatial sample variance, in fact) over the whole real line weighted by the local time density
process, as explained in Phillips (2001).
In this paper we stress another di¤erence between the two families. LI models are

typically invariant to �nite lags, at least as far as asymptotic properties are concerned. In
other words, cointegrating relations persist across �nite temporal shifts in the observations
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and consistent estimation of these relations applies in the usual way. On the other hand
I transformations are not invariant to �nite lags. This fact has the following important
implication. Contrary to LI models, misspeci�ng the lag structure in an I regression, can
lead to inconsistent estimation. For instance, suppose that the true model is the simple
linear in parameters nonlinear cointegrated system

yt = �g(xt) + ut, (1)

where � is an unknown parameter, �xt is iid (0; �2x) and ut is some independent iid (0; �
2
u)

error. In place of (1), suppose that the following dynamically misspeci�ed model is esti-
mated by least squares (LS):

yt = �̂g(xt�1) + ût:

If the regression function g is continuous and locally integrable it can be shown easily (see,
for example, Kasparis 2008, Lemma A1(b)) that the LS estimator in this case

�̂ = �

nX
t=1

g(xt)g(xt�1)

nX
t=1

g(xt�1)2
+ op(1) = �

nX
t=1

g(xt�1)
2

nX
t=1

g(xt�1)2
+ op(1) = � + op(1);

and so �̂ is consistent for � in spite of the lag misspeci�cation, just as in conventional linear
cointegrating regression. On the other hand, if the regression function f is integrable then
it follows directly from the limit theory of Kasparis, Phillips and Magdalinos (2008) (see
also Theorem 1 below) that

�̂ = �

nX
t=1

g(xt)g(xt�1)

nX
t=1

g(xt�1)2
+ op(1) = �

E
R1
�1 g(s)g(s+�xt)dsR1

�1 g(s)
2ds

+ op(1);

and �̂ is inconsistent. Thus, small issues of lag speci�cation and timing do matter in
nonlinear nonstationary regression.
One of the main results of the present paper is to show that the Nadaraya-Watson (NW)

kernel estimator f̂(x) of f(x) = �g(x) exhibits this kind of inconsistency due to the use of
integrable functions in the construction of the kernel regression function. In fact, it will be
shown that, under certain regularity conditions and this type of dynamic mistiming, the
NW estimator converges to a pseudo-true function of the following form

f̂(x)
p! Ef(x+�xt);

involving a functional of f (Theorem 2 and (13) below). Thus, the e¤ect of the lag misspec-
i�cation is to induce a shift in the limit, based on a local average of the function around
the regression point x: In addition, the NW estimator, when centred on the pseudo-true
function and appropriately scaled, has a mixed Gaussian limit distribution. The conver-
gence rates are the same as those reported by WP. Nevertheless, the variance of the limit
distribution is larger than that obtained under correct speci�cation.
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This kind of dynamic induced inconsistency arises in many other cases where the model
and estimation procedure involves integrable functions and timing issues are relevant in
speci�cation. For example, the maximum likelihood estimator of discrete choice models
involves integrable functions (see Park and Phillips, 2000) and will be similarly subject
to the e¤ects of dynamic speci�cation error. Issues of timing in dynamic speci�cation are
likely to be particularly important in market intervention models of the type studied in Hu
and Phillips (2004).
We start the analysis by providing a basic limit result, useful for the analysis of misspec-

i�ed non-parametric models. We consider sample covariances of functions of non-stationary
sequences and non-contemporaneous integrable functions of such sequences. A bandwidth
parameter is permitted in the integrable functions, thereby making the resultant limit the-
ory relevant in non parametric estimation. The limit result given here extends some of the
theory of WP and makes substantial use of that framework. WP consider sample sums of
integrable tranformations of non-stationary time series that involve a bandwidth sequence
and apply their theory to nonparametric nonstationary regression with correctly speci�ed
lag structure. Our work is also related to Kasparis, Phillips and Magdalinos (2008), who
consider parametric IV estimation of models with integrable functions where no bandwidth
elements are involved.
The WP limit theory has also been extended by Phillips (2009) in a di¤erent direction

where the focus is spurious non-parametric regression. That work provides a limit theory
for the sample covariance of a non-stationary sequence and a kernel function of another
(and possibly unrelated) nonstationary sequence. It is indirectly related to the current
paper because some similar sample covariances arise in the limit theory.
The remainder of the paper is organized as follows. Section 2 provides the model

framework, assumptions and some preliminary theory. Section 3 gives the main results.
Section 4 provides some applications in contexts of interest for applied work, and Section
5 concludes. Technical results and proofs are given in the Appendices.

2 Theoretical framework and preliminary results

We assume that the time series fytgnt=1 is generated by the model:

yt = f(xt�r) + ut, for some integer lag r � 0: (2)

where f satis�es certain convolution integrability conditions given later (in particular, As-
sumption 2.1(c) below). The regressor xt is a nonstationary process and ut is a martingale
di¤erence sequence, respectively, both de�ned on some probability space (
;F ;P). For
example, in many applications it will be su¢ cient for fxtgnt=1 to be generated as a unit root
process or as a near integrated array of the commonly used form

xt = �nxt�1 + vt; x0 = Op (1) ; (3)

with �n = 1� c
n
for some constant c: To avoid unnecessary triangular array complications

in the development that follows we focus on the unit root generating model for xt, although
our main results continue to hold with minor changes under (3).
We concentrate on the case where a version of (2) is �tted by nonparametric kernel

regression. However, the �tted model involves a lag misspeci�cation resulting from incorrect
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timing, so that the �tted model has the (lag misspeci�ed) form

yt = f̂(xt�s) + ût, for some �xed integer lag s � 0, r 6= s; (4)

where f̂ is the NW regression estimator de�ned by

f̂(x) =

Pn
t=sK

�
xt�s�x
h

�
ytPn

t=sK
�
xt�s�x
h

� ; (5)

for some kernel function K:
In order to develop a limit theory for f̂(x) we need to be more speci�c about the

model (2) and its components. The assumptions below are largely based on WP. We start
by introducing the following notation used in that work. First, cn and dn are sequences
of real numbers satisfying cn; dn ! 1: The sequence dn provides a standardization for
the nonstationary regressor xt and is commonly just dn =

p
n; as in the case of (3).

Then, xt;n = xt=dn; 0 � t � n; n � 1 is a triangular array and the standardization ensures
that xt;n has a limit distribution. We also introduce a sequence of real numbers dl;k;n for
which (xl;n � xk;n) =dl;k;n has a limit distribution as l � k ! 1: When dn =

p
n; then

dl;k;n =
p
l � k=

p
n, as in WP. The sequence cn is a secondary sequence which di¤ers from

dn by a bandwidth factor, so that we usually have cn = dn=hn =
p
n=hn for some bandwidth

sequence hn ! 0 arising in the kernel estimation. As in WP, it is convenient also to use
the set notation.


n (�) = f(l; k) : �n � k � (1� �)n; k + �n � l � ng ; 0 < � < 1:

Assumption 2.1
For all 0 � k < l � n; n � 1, there exist a sequence of constants dl;k;n and a sequence

of �-�elds Fk;n (de�ne F0;n = �f?;
g, the trivial �-�eld) such that,
(a) for some p0 > 0 and C > 0, inf(l;k)2
n(�) dl;k;n � �p0=C as n!1,

lim
�!0

lim
n!1

1

n

[�n]X
l=1

(dl;0;n)
�1 = 0; (6)

lim
�!0

lim
n!1

1

n

nX
l=[(1��)n]

(dl;0;n)
�1 = 0; (7)

lim
�!0

lim
n!1

1

n
max

0�k�(1��)n

k+[� n]X
l=k+1

(dl;k;n)
�1 = 0; (8)

lim sup
n!1

1

n
max

0�k�n�1

nX
l=k+1

�
dl;k;n

��1
<1; (9)

(b) xk is adapted to Fn;k�1 and conditional on Fn;k�1, (xl;n � xk;n) =dl;k;n has density
function hl;k;n(x) such that
(i) supl;k supx hl;k;n(x) = C <1
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(ii) for some k0 > 0,

sup
(l;k)2
n(�1=(2k0))

sup
jxj��

jhl;k;n(x)� hl;k;n(0)j = op(1);

when n!1 �rst and then � ! 0.
(c) Conditional on Fn;(r^s)�1, xr � xs has density function pr�s(v), such thatZ 1

�1
jf(x+ v)j pr�s(v)dv <1;

for each x 2 R.

Remark. Conditions (6)-(9) hold when xt is a unit root or a near unit root process. In
that case the sequence dl;0;n =

p
l=n. Then, Euler summation gives

lim
�!0

lim
n!1

1

n

[�n]X
l=1

(l=n)�1=2 = lim
�!0

2

Z �

0

s1=2ds = 0;

and this establishes (6). Similar arguments validate (7) to (9).

Assumption 2.2.
(a) There is a sequence of real numbers dn !1 such that the process x[nt];n := x[nt]=dn

on the Skorohod space D[0; 1], converges weakly to a Gaussian process G(t) that has a
continuous local time process LG(t; s).
(b) On a suitable probability space sup0�t�1

��x[nt];n �G(t)�� = op(1).
Assumption 2.3. Set 0 <  � 1:
(a) limn!1 dn=cn = 0, where dn ! 1 is the sequence in Assumption 2.2 (b) and cn

also satis�es cn !1;
(b) For n large enough,

���f �dncn z + x� v�� f (x� v)��� � (dn=cn) f1(z; x; v) withR
v

R
z
f1(z; x; v) jg(z)j p(v)dzdv <1, for each x.

(c)
R
z
jzj jg (z)j dz and

R
v
jf (x� v)j pr�s(v) jvj dv <1 for all x.

Assumption 2.3�: Set 0 <  � 1:
(a) limn!1 dn=cn = m0 > 0,

(b) for n large enough,
���f �dncn z + x� v�� f (m0z + x� v)

��� � ���dncn �m0

��� f1(z; x; v)
with

R
v

R
z
f1(z; x; v) jg(z)j p(v)dzdv <1, for each x.

(c)
R
s

R
v
jf (m0z + x� v) g(z)j pr�s(v) (jvj+ jzj) dvdz <1, for each x and m0 � 0.

Assumptions 2.2 (a) and (b) are the same as Assumptions 2.2 and 2.3 in WP, and
Assumptions 2.1 (a) and (b) are similar to Assumption 2.3 of WP. Assumption 2.1 (c)
is a simple convolution integrability condition, which is clearly satis�ed under suitable
majorization, for example whenever the density pr�s is bounded and f is integrable. When
dn =

p
n and cn =

p
n=h; Assumption 2.3 (a) requires that the bandwidth sequence h! 0

as n ! 1: By contrast, Assumption 2.3� (a) corresponds in this case to �xed h: When
m0 = 1; this reduces to a condition relevant to a parametric estimation problem. The
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remaining parts of Assumptions 2.3 and 2.3� impose Lipschitz and integrability conditions
on f; which are useful technical conditions.
The following result provides a limit theory for functionals of the following form

cn
n

[n�]X
t=1

f (xt�r) g

�
cn

�
xt�s;n �

x

dn

��
: (10)

The result is therefore an extension of Theorem 1 of WP and relates also to Theorem 1
of Phillips (2009), although neither of the earlier results involved an additional integrable
function f in the sample function, as occurs in (10). The scale constant � in the limit
results (11) and (12) similarly involves the function f; whereas in WP, � is the energy
functional � =

R1
�1 g (z) dz involving only g:

In what follows it will be convenient to use the notation1X
rs

vi = 1 (s > r)
sX

i=r+1

vi � 1 (r > s)
rX

i=s+1

vi:

Theorem 1. Suppose that Assumption 2.1 and the following conditions hold:
(a)
���f �dncn z + x� v���� � f0 (z; x; v) for n large enough, with Rv Rz f0(z; x; v) jg(z)j pr�s(v)dzdv <

1,R
v

�R
z
jf0 (z; x; v)j jg (z)j dz

	2
pr�s(v)dv < 1 and

R
v

R
z
f 20 (z; x; v)g

2(z)pr�s(v)dzdv < 1,
for and each x 2 R, and r; s 2 N;
(b) Assumption 2.3 holds and

� := Ef

 
x+

X
rs

vi

!Z 1

�1
g (z) dz;

or
(c) Assumption 2.3 � holds and

� := E

Z 1

�1
f

 
m0z + x+

X
rs

vi

!
g(z)dz:

We have the following:

1Observe that for s > r we have

xt�r � xt�s =
s�rX
j=1

vt�s+j =d

s�rX
j=1

vj =d

sX
j=r+1

vj ;

by stationarity and similarly for s < r

xt�r � xt�s =d �
rX

j=s+1

vj :
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(i) If Assumption 2.2(a) holds, then, as n!1

cn
n

[n�]X
t=1

f (xt�r) g

�
cn

�
xt�s;n �

x

dn

��
d! �L(�; 0): (11)

(ii) If Assumption 2.2(b) holds, then, as n!1

sup
0���1

������cnn
[n�]X
t=1

f (xt�r) g

�
cn

�
xt�s;n �

x

dn

��
� �L(�; 0)

������ p! 0: (12)

When f = 1; (11) reduces to

cn
n

[n�]X
t=1

g

�
cn

�
xt�s;n �

x

dn

��
d!
�Z 1

�1
g (z) dz

�
L(�; 0);

corresponding to theorem 1 in WP. When m0 = 1, x = 0, r = s and cn � dn, the sample
function e¤ectively becomes dn

n

P[n�]
t=1 f (xt�r) g (xt�r) and we have the conventional limit

theory

dn
n

[n�]X
t=1

f (xt�r) g (xt�r)
d!
�Z 1

�1
f (z) g (z) dz

�
L(�; 0)

for integrable fg, as given in Park and Phillips (1999).

3 Kernel regression under dynamic misspeci�caion

We now proceed to develop a limit theory for the NW kernel regression estimator (5) in
the case of dynamic misspeci�cation of the form (4). We start with the following regularity
conditions on the kernel and regression function, which are similar to those used in WP.

Assumption 3.1. The kernel K satis�es
R1
�1K(s)ds = 1 and sups jK(s)j <1.

Assumption 3.2. For given x, there exists a real function f1(s; x) such that, when h is
su¢ cently small, jEf (hy + x+

P
rs vi)� Ef (x+

P
rs vi)j � hf1(y; x) with 0 <  � 1,

for all y 2 R and
R1
�1K(s)f1(s; x)ds <1. Further, Ef (x+

P
rs vi)

2 <1:

Assumption 3.3. (ut; Fn;t) is a martingale di¤erence sequence with E(u2t jFn;t�1) = �2u <
1 a.s.

Assumption 3.4. sup1�t�nE(u4t jFn;t�1) <1 a.s.

The following result gives the probability limit and limit distribution of f̂(x); showing
the e¤ect of dynamic misspeci�cation.

Theorem 2. Suppose that:
(a) Assumptions 3.1-3.3 hold.
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(b) The bandwidth h satis�es nh=dn !1 and h! 0 as n!1.

Then, as n!1,

f̂(x)
p! Ef

 
x+

X
rs

vi

!
: (13)

In addition, suppose the following hold:
(c) Assumption 3.4 holds.
(d) Set cn := dn=h. The component functions ff 2; f4g and the power kernel func-

tions fK2; K4g in the sample quantities cn
n

Pn
t=1 f

2 (dnxt�r;n)K
2
h
cn

�
xt�s;n � x

dn

�i
and

cn
n

Pn
t=1 f

4 (dnxt�r;n)K
4
h
cn

�
xt�s;n � x

dn

�i
both satisfy the conditions of Theorem 1.

(e) The bandwidth parameter h satis�es nh1+2=dn !1.
Then, as n!1, 

nX
t=1

K

�
xt�s � x
h

�!1=2 
f̂(x)� Ef

 
x+

X
rs

vi

!!
d! N

�
0; �2

�
; (14)

where �2 = [�2u +Var ff (x+
P

rs vi)g]
R1
�1K(s)

2ds.

The probability limit of the NW kernel estimator f̂(x) is

Ef

 
x+

X
rs

vi

!
=

Z
f (x+ w) pr�s (w) dw; (15)

where
P

rs vi has density pr�s (w) :
2 The limit (15) is an average of f taken around the

value at x with respect to this density. For instance, when s > r we have

xt�r � xt�s =
s�rX
i=1

vt�s+i =d

s�rX
i=1

vi =d

sX
i=r+1

vi;

under stationarity. If r = s then there is no dynamic misspeci�cation in the �tted equation
and the estimate is consistent so that f̂(x)!p f (x) with a limit distribution 

nX
t=1

K

�
xt�s � x
h

�!1=2 �
f̂(x)� f (x)

�
d! N

�
0; �2u

Z 1

�1
K(s)2ds

�
; (16)

as in WP under suitable undersmoothing or choice of h in the regression. Both (16) and
(14) may be adjusted to account for a bias term of O (h2) in the limit theory, as shown in

2As in footnote 1 we have X
rs

vi = 1 (s > r)
sX

i=r+1

vi � 1 (r > s)
rX

i=s+1

vi

Then, for s > r; pr�s (w) is the density of xt�r � xt�s =d
Ps

i=r+1 vi; and if s < r; pr�s (w) is the density
of xt�r � xt�s =d �

Pr
i=s+1 vi: So

P
rs vi has density pr�s (w) :
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Wang and Phillips (2009), but in view of the inconsistency already present in (14) there is
little reason to provide that development in the case of misspeci�cation.
The limit distributions (14) and (16) di¤er in terms of both centering and variance.

The centering is explained by the inconsistency (13) under mistiming (r 6= s) of the lagged
relationship. The additional variance in the limit distribution (14) occurs because

�2u +Var

(
f

 
x+

X
rs

vi

!)
> �2u

whenever r 6= s: The extra component in the variance is Var ff (x+
P

rs vi)g, which arises
as in (11) of Theorem 1 because the limit of the average conditional variance involves
averaging over the distribution of

P
rs vi; just as it does in the case of the �rst moment.

In consequence, lag misspeci�cation in the �tted nonparametric cointegrating relation (4)
produces both inconsistency and a reduction in precision in the limit theory for the NW
estimator.
In the special case of linear cointegration with f (xt) = �xt, we have from (13)

Ef

 
x+

X
rs

vi

!
= �x+

X
rs

Evi = �x;

so that kernel regression is consistent under lag misspeci�cation, corresponding to the
temporal invariance of linear cointegrating regression. In this case, (14) becomes 

nX
t=1

K

�
xt�s � x
h

�!1=2 �
f̂(x)� f (x)

�
d! N

�
0; �2

�
;

with

�2 =
�
�2u + js� rj�2v

� Z 1

�1
K(s)2ds > �2u

Z 1

�1
K(s)2ds;

since Varf
P

rs vig = js� rj�2v: Hence, lag shifts in a linear cointegrating regression do
impact the variance of the limit distribution in kernel regression. The same is true, of
course, for linear parametric cointegrating regression.
It is interesting to compare the limit results given in Theorem 2 with those of a stationary

time series regression. Suppose model (2) is the true model and (4) is the �tted model, as
above, but that xt is a stationary time series satisfying certain asymptotic dependence or
mixing conditions that validate nonparametric regression (see for example Li and Racine,
2007). This type of situation seems not to have been analyzed in the literature. However,
it is readily shown by conventional methods for stationary nonparametric regression that
under suitable regularity and mixing conditions

f̂(x)
p! Ef (xt�rjxt�s = x) ; (17)

which is the analogue for the stationary time series xt of the inconsistency shown in (13).
For when xt follows a unit root process, we have xt�r = xt�s+

Ps�r
i=1 vt�s+i for s > r: Then,

when we condition on xt�s = x for this nonstationary data generating process, the right
side of (17) may be written in the form

Ef

 
xt�s +

s�rX
i=1

vt�s+ijxt�s = x
!
= Ef

 
x+

sX
i=r+1

vi

!
;
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which corresponds precisely to the limit in (13) because
P

rs vi =
Ps

i=r+1 vi when s > r by
de�nition. Thus, the e¤ect of dynamic misspeci�cation on inconsistency in nonparametric
regression is the same for nonstationary time series as it is for stationary time series.
For speci�cation testing purposes it is useful to have an error variance estimator. We

consider the following estimator

�̂2 =

Pn
t=1

h
yt � f̂(x)

i2
Kh(xt�s � x)Pn

t=1Kh(xt�s � x)
Under correct speci�cation and a constant error variance �2u; we know from Wang and
Phillips (2008) that �̂2 = �2u + op(1): Under dynamic misspeci�cation, it turns out that �̂

2

estimates consistently the component that determines the limit variance under misspeci�-
cation. This is demonstrated in the following result.

Theorem 3. Suppose that the conditions of Theorem 2 hold. Then, as n!1,

�̂2
p! �2u +Var

(
f

 
x+

X
rs

vi

!)
:

Moreover, under linearity where f(x) = �x we have

t̂(x; �) :=

 Pn
t=1K

�
xt�s�x
h

�
�̂2
R1
�1K(s)

2ds

!1=2 �
f̂(x)� �x

�
d! N (0; 1) ;

as n!1.

Remarks.

(a) Theorem 3 shows that under linearity the t statistic t̂(x; �) d! N (0; 1) under both
correct and incorrect dynamic speci�cation. The statistic may therefore form the
basis of a linearity test that is robust to dynamic misspeci�cation, as we now discuss.

(b) Let �̂ be the least squares estimator �̂ =
Pn

t=1 xtyt=
Pn

t=1 x
2
t : Since �̂ isO (n) consistent

for � under linearity, we have

t̂(x; �̂)
d! N (0; 1) : (18)

Under the alternative speci�cation of (smooth) non-linear asymptotically homoge-
neous f(x) we �nd that

t̂(x; �̂) �
�
nh

dn

�1=2(
Ef

 
x+

X
rs

vi

!
+
�f (
p
n)
R1
�1 shf (s)LG(1; s)dsp

n
R1
�1 s

2LG(1; s)ds
x

)
; (19)

where hf and �f are the limit homogeneous function and asymptotic order of f
respectively (see Park and Phillips, 2001, for full de�nitions). Under the alternative
speci�cation of integrable f(x) (and xf(x)) we �nd that

t̂(x; �̂) �
�
nh

dn

�1=2(
Ef

 
x+

X
rs

vi

!
+

R1
�1 sf(s)dsLG(1; 0)

n3=2
R1
�1 s

2LG(1; s)ds
x

)
: (20)

Results (19) and (20) show that the simple linearity test statistic t̂(x; �̂) in (18) has
power against both homogeneous and integrable nonlinear functions and is robust to
dynamic speci�cation.
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4 Some Practical Applications

Example 1. (Single index model) Suppose that yt is generated by the single index model:

yt = f(�xt + (1� �)xt�1) + ut, 0 � � � 1;

where the regressor xt satis�es Assumptions 2.1 and 2.2 and ut is a martingale di¤erence
sequence satisfying Assumptions 3.3 and 3.4. The �tted model takes the following form

yt = f̂(xt) + ût,

omitting the indexed regressor and therefore misspecifying the lagged dependence in the
relationship. When xt is an integrated process,

�xt + (1� �)xt�1 = xt�1 + �vt = xt � (1� �)vt;

and then
f̂(x)

p! Ef(x� (1� �)vt);
as in Theorem 2 (b). Thus, indexing e¤ects are important in nonlinear models of cointegra-
tion, in contrast to linear models where the temporal invariance of long run linear relations
means that they can be safely ignored.

Example 2. (Temporal aggregation) When a regressor xt is sampled (two times) more
frequently than yt, Ghysels, Santa-Clara and Valkanov (2004, 2006) propose mixed data
sampling (MIDAS) regression models in which the conditional expectation of the dependent
variable yt is a distributed lag of the regressor, which may be recorded at a higher frequency.
A simple example of such a regression arises in the case of temporal aggregation where the
model takes the form

yt = �f(xt) + (1� �)f(xt�1) + ut, 0 � � � 1; (21)

and where xt and ut are as in Example 1. If the �tted model ignores the temporal aggre-
gation in (21) and is a simple nonparametric regression of the form

yt = f̂(xt) + ût,

then Theorem 2 shows that

f̂(x)
p! �f(x) + (1� �)Ef(x� vt):

Thus, in the same way as indexing, temporal aggregation has important e¤ects in nonlinear
cointegration models.

Example 3 (Nonparametric unit root autoregression) Suppose that the true model is given
by the autoregression

xt = f(xt�1) + ut; (22)

with f(x) = x; although the linear form of the autoregression is unknown to the econo-
metrician, and where ut is iid (0; �2). The �tted model involves a longer lag and has the
form

xt = f̂(xt�2) + ût: (23)

12



Under the true model (22) Assumption 2.2 holds with x[nt];n = 1p
n

P[nt]�2
t=3 ut

d! G(t), where
G(t) is Brownian motion. In view of Theorem 2 we get 

nX
t=1

K

�
xt�2 � x
h

�!1=2 �
f̂(x)� x

�
d! N

�
0; 2�2u

Z 1

�1
K(s)2ds

�
:

Note that the NW nonparametric estimator is consistent because f(x) is a linear function.
Nevertheless, there is a reduction in accuracy of f̂(x) due to the additional component �2u
in the asymptotic variance. Similar e¤ects occur in the case of linear unit root estimation.
In particular, if (23) is estimated by linear regression in the form

xt = �̂xt�2 + ût;

then conventional weak convergence methods show that

n (�̂� 1) d!
2
R 1
0
WdWR 1
0
W 2

;

so that the limit distribution of the parametric estimator is rescaled by 2:

Example 4. (Functional coe¢ cient regression models) Cai, Li and Park (2009, hereafter
CLP) recently considered functional coe¢ cient regression models with possibly nonstation-
ary covariates that determine the functional regression coe¢ cients. The model in CLP has
the form

yt = � (zt)
0 xt + "t; t = 1; :::; n (24)

where yt and zt are scalar, zt is an I(1) process, xt is stationary, and "t is a martingale
di¤erence sequence with constant conditional variance �2 and �nite fourth moments. The
functional coe¢ cient � (�) is twice continuously di¤erentiable and is the object of nonpara-
metric estimation interest. CLP consider the local linear nonparametric estimator �̂ (z) of
� (z) : Under regularity conditions and using methods closely related to those of Wang and
Phillips (2008), CLP showed that for any �xed z

p
n1=2h

�
�̂ (z)� � (z)� h

2

2
B� (z)

�
d!MN

�
0;
�2"�0 (K)

LWz (1; 0)
[E (xtx

0
t)]
�1
�
; (25)

where the bias function B� (z) = �2(K)�
00
(z) ; LWz (1; 0) is the local time of the limit

Brownian motion process Wz (r) for which n�1=2z[nr]
d! Wz (r) ; the constants have the

usual form �2(K) =
R
s2K (s) ds; �0 (K) =

R
K (s)2 ds; andMN signi�es mixed normality.

In practice, undersmoothing will typically be employed (in this case requiring that n1=10h!
0), leading to the following useable limit result

p
n1=2h

�
�̂ (z)� � (z)

�
d!MN

�
0;
�2"�0 (K)

LWz (1; 0)
[E (xtx

0
t)]
�1
�
: (26)

It will often be appropriate in empirical work to introduce lags into the speci�cation
(24). For example, the functional response function in (24) may take the form � (zt�r)
for some suitable integer r > 0 representing a delay in the impact of zt on the functional
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regression response. In general, of course, the correct lag response will be unknown and
any speci�cation will only be approximate. The present paper shows that such speci�ca-
tion issues are important in the nonstationary regression contest. For example, if (24) is
estimated when the true response function is � (zt�1) ; the methods of the present paper
may be used to show that the nonparametric estimate �̂ (z) has the following limit theory

p
n1=2h

�
�̂ (z)� E f� (z ��zt)g

�
d!MN

�
0;
f�2" +Var [� (z ��zt)]g �0 (K)

LWz (1; 0)
[E (xtx

0
t)]
�1
�
:

Misspeci�cation of functional regression therefore leads to inconsistency and an increase in
limiting variance. These results hold for local level and local linear nonparametric regression
procedures. Similar results also apply in the case of functional coe¢ cient cointegrating
regressions, which have recently been investigated by Xiao (2009) in the case of stationary
covariates. A detailed analysis of these models will be reported elsewhere.

Example 5. (Parametric distributed lag cointegrating regression) Suppose that f1 and f2
are integrable functions and that a nonlinear cointegrating relationship between yt and an
integrated process xt takes the following distributed lag form

yt = �1f1(xt) + �2f2(xt�1) + ut; (27)

where xt and ut are again as in Example 1. Let ft = (f1(xt); f2(xt�1))
0, � = (�1; �2)

0 and �̂
be the least squares estimator of � in (27). Applying Theorem 1 gives

1p
n

nX
t=1

ftf
0
t
d! L(1; 0)V;

where

V :=

� R1
�1 f1(s)

2ds E
R1
�1 f1(s+ vt)f2(s)ds

E
R1
�1 f1(s+ vt)f2(s)ds

R1
�1 f2(s)

2ds

�
:

Since V is positive de�nite in general, there is no asymptotic collinearity among the
regressors in (27) at this level of intensity, which contrasts with the linear case where xt
and xt�1 are, of course, trivially cointegrated. In view of the above and the martingale
central limit theorem (e.g. Kasparis, Phillips and Magdalinos, 2008) we have the following
limit theory in this case:

4
p
n
�
�̂ � �

�
d! �uLG(1; 0)

�1=2V �1=2Z; (28)

where Z is standard bivariate normal. Thus, �̂ is consistent and asymptotically mixed
normally distributed with the usual n1=4 rate of convergence that applies for regressors that
are integrable functions of a unit root process (Park and Phillips, 1999, 2001). Unlike the
linear case where the regressors are trivially cointegrated and the limit theory is degenerate,
there is no degeneracy in the limit distribution (28).

5 Concluding Discussion

The results presented here show that the temporal invariance of linear cointegrating rela-
tions fails in the nonlinear case and mistiming of the regression function results in incon-
sistency in kernel regresion. In consequence, correct dynamic speci�cation takes on new
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signi�cance in nonlinear cointegrating systems. Speci�cation tests for nonlinear cointegra-
ton therefore need to take lag distribution and timing e¤ects speci�cally into account.
The nonlinear setting clearly opens up many new possibilities for speci�cation testing,

including testing functional form in a particular locality corresponding to the kernel re-
gression, allowance for short memory in the regression equation errors and endogeneity
in the regressors. The di¤ering e¤ect on nonstationarity of various nonlinear functional
forms in regression also means that simple residual based tests for stationarity, such as
KPSS (1971) tests, may be misleading in the nonlinear context. Indeed, the long run and
memory properties of the regressor may be substantially altered through nonlinear �lter-
ing. Since nonlinear functionals can change the integration order, the dependent variable
in a nonlinear model may well have less memory than the regressor, meaning that mis-
speci�cation may be harder to detect than it is in linear models. Speci�cation tests for
cointegration models where there is nonlinearity of unknown form are therefore likely to
present far greater challenges than in the case of parametric linear cointegration.

6 Appendix A: Supporting Results

The following lemmas are largely based on WP, extending that framework as needed to
accommodate sample covariances of convolution integrable functions (f) and integrable ker-
nels (g) involving xt: It will be convenient to use notation ��(x) = (2��

2)
�1=2

exp (�x2=2�2)
and �(x) = �1(x). We also often write the density p1 (v) as p (v) :

Lemma 1. Suppose that
(a) Assumption 2.1 holds.

(b)
���f �dncn z + x� v���� � f0 (z; x; v), for n large enough and

(i)
R
v

R
z
f0(z; x; v) jg(z)j pr�s(v)dzdv <1,

(ii)
R
v

�R
z
jf0 (z; x; v)j jg (z)j dz

	2
pr�s(v)dv <1 and

(iii)
R
v

R
z
f 20 (z; x; v)g

2(z)pr�s(v)dzdv <1,
for r; s 2 N and x 2 R.

Let

Ln;�(�) :=
cn
n

[n�]X
t=1

Z 1

�1
f (dn (xt�r;n + z�)) g

�
cn

�
xt�s;n �

x

dn
+ z�

��
� (z) dz

Then

Ln;�(�) =
cn
n

[n�]X
t=1

Et�(r_s)�1

Z 1

�1
f (dn (xt�r;n + z�)) g

�
cn

�
xt�s;n �

x

dn
+ z�

��
� (z) dz+op(1),

uniformly in �.

Proof of Lemma 1: Without loss of generality, we shall assume that r = 1 and s = 0. The
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proof for the general case is identical but requires more complicated notation. Consider

Ln;�(�) =
cn
n

[n�]X
t=1

Z 1

�1
f (dn (xt�1;n + z�)) g

�
cn

�
xt;n �

x

dn
+ z�

��
� (z) dz| {z }

:=zt

=
cn
n

[n�]X
t=1

Et�2zt +
cn
n

[n�]X
t=1

(zt � Et�2zt) : (29)

We show that the second term in (29) is op (1) : Notice that f(zt � Et�2zt) ;Ft�1g is a
martingale di¤erence sequence. Hence,

EEt�2

0@cn
n

[n�]X
t=1

(zt � Et�2zt)

1A2

=
�cn
n

�2
EEt�2

[n�]X
t=1

(zt � Et�2zt)2

=
�cn
n

�2
E

8<:
[n�]X
t=1

Et�2z
2
t �

[n�]X
t=1

(Et�2zt)
2

9=; :
Consider

�cn
n

�2 [n�]X
t=1

EEt�2z
2
t

=
�cn
n

�2 [n�]X
t=1

EEt�2

�Z 1

�1
f (dn (xt�1;n + z�)) g

�
cn

�
xt;n �

x

dn
+ z�

��
� (z) dz

�2

=
�cn
n

�2 [n�]X
t=1

E

Z
v

�Z
l

f (dnl + x� v) g (cnl)��
�
l � xt�1;n �

v

dn
+
x

dn

�
dl

�2
p(v)dv

� �2� (0)
c2n
n

Z
v

�Z
l

f (dnl + x� v) g (cnl) dl
�2
p(v)dv

� �2� (0)
cn
n

Z
v

�Z
m

����f �dncnm+ x� v
����� jg (m)j dm�2 p(v)dv

� �2� (0)
cn
n

Z
v

�Z
m

jf0 (m;x; v)j jg (m)j dm
�2
p(v)dv ! 0;
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where the last inequality holds for n large enough. Next consider

�cn
n

�2
E

[n�]X
t=1

(Et�2zt)
2

=
�cn
n

�2
E

[n�]X
t=1

�
Et�2

Z 1

�1
f [dn (xt�1;n + z�)] g

�
cn

�
xt;n �

x

dn
+ z�

��
� (z) dz

�2

=
�cn
n

�2 [n�]X
t=1

E

�Z
v

Z
z

f [dn (xt�1;n + z�)] g

�
cn

�
xt�1;n +

v

dn
� x

dn
+ z�

��
� (z) p(v)dzdv

�2
� �2� (0)

1

n

�Z
v

Z
l

����f �dncn l + x� v
�
g (l)

���� p(v)dvdl�2
� �2� (0)

1

n

�Z
v

Z
l

f0 (l; x; v) jg (l)j p(v)dvdl
�2
! 0;

as required. �

Lemma 2. Suppose that Assumption 2.3 or Assumption 2.3 � holds. Set

Ln;�(�) =
cn
n

[n�]X
t=1

Et�(r_s)�1

Z 1

�1
f [dn (xt�r;n + �z)] g

�
cn

�
xt�s;n �

x

dn
+ �z

��
�(z)dz:

Then

lim
n!1

sup
0���1

������Ln;�(�)� �
[n�]X
t=1

��(xt�(r_s);n)

������ = 0;
where � :=

�
Ef (x+

P
rs vi)

R1
�1 g (z) dz, if Assumption 2 :3 holds

E
R1
�1 f (moz + x+

P
rs vi) g(z)dz; if Assumption 2 :3

� holds :

Proof of Lemma 2: Without loss of generality, assume that r = 1 and s = 0.
(a) We �rst show the result under Assumption 2.3. Consider

cn
n

[n�]X
t=1

Et�2

Z 1

�1
f (dn fxt�1;n + �zg) g

�
cn

�
xt�1;n +

vt
dn
� x

dn
+ �z

��
�(z)dz

=
cn
n

[nr]X
t=1

Z
v

Z
z

f (dn fxt�1;n + �zg) g
�
cn

�
xt�1;n +

v

dn
� x

dn
+ �z

��
��(z)p(v)dzdv

=
1

n

[n�]X
t=1

Z
v

Z
z

f

�
dn

�
z

cn
+
x

dn
� v

dn

��
g (z)��

�
z

cn
� xt�1;n +

x

dn
� v

dn

�
p(v)dzdu

: = Tn(�)
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Notice that by Assumption 2.3(b) and the Lipschitz continuity of �� we get����f �dncn z + x� v
�
��

�
z

cn
� xt�1;n +

v

dn
� x

dn

�
� f (x� v)�� (xt�1;n)

����
� j��(0)j

����f �dncn z + x� v
�
� f (x� v)

����
+ jf (x� v)j

������� zcn � xt�1;n + v

dn
� x

dn

�
� �� (xt�1;n)

����
� j��(0)j

�
dn
cn

�
f0(z; v; x) + jf (x� v)jC

���� zcn + v

dn
� x

dn

���� ;
where C is a Lipschitz constant. Therefore,������Tn(�)� 1

n

[n�]X
t=1

Z
v

Z
z

f (x� v)�� (xt�1;n) g(z)p(v)dzdv

������
�

�
dn
cn

�
j�(0)j

Z
u

Z
z

f0(z; v; x) jg(z)j p(v)dzdv

+C

Z
v

Z
z

jf (x� v)j p(v)
���� zcn + v

dn
� x

dn

���� jg (z)j dzdv ! 0

as required.
(b) Suppose that Assumption 2.3� holds. Consider,����f �dncn z + x� v

�
�

�
z

cn
� xt�1;n +

v

dn
� x

dn

�
� f (moz + x� v)�� (xt�1;n)

����
� j��(0)j

����dncn �mo

���� f0(z; v; x) + jf (moz + x� v)jC
���� zcn + v

dn
� x

dn

����! 0;

as n ! 1. In view of the above, the result can be shown using the same arguments as
those in part (a). �

Lemma 3. Suppose that
(a) Assumption 2.2 holds.

(b)
���f �dncn z + x� v���� � f0 (z; x; v) for n large enough with Rv Rz f0(z; x; v) jg(z)j pr�s(v)dzdv <

1, for each x 2 R, and r > s 2 N:
(c) sups jg(s)j <1

Let q 2 N with q > 1. We have

Mn(�) :=
cn
n

[n�]X
t=1

f (dnxt�r;n)

�
Et�r�1g

�
cn

�
xt�s;n �

x

dn

���q
= op(1)

uniformly in �.
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Proof of Lemma 3: Without loss of generality, assume that r = 1 and s = 0. We have

E jMn(�)j

=
cn
n

Z
s

������
[n�]X
t=1

Z
v1

:::

Z
vq

f (dndt�1;0;nl) g

�
cn

�
dt�1;0;nl +

v1
dn

��
:::g

�
cn

�
dt�1;0;nl +

vq
dn

��
� p(v1)p(vq)dv1:::dvqjht�1;0;n (l) dl

� 1

n

nX
t=1

1

dt�1;0;n

Z
m

Z
v1

:::

Z
vq

����f �dncnm� v1
����� jg (m)j

�����
qY
i=2

g

�
m+

cn
dn
(vi � v1)

������
�p(v1):::p(vq)dv1:::dvqdm

� 1

n

nX
t=1

1

dt�1;0;n

Z
m

Z
v1

:::

Z
vq

f0 (m; v1) jg (m)j

�
�����
qY
i=2

g

�
m+

cn
dn
(vi � v1)

������ p(v1):::p(vq)dv1:::dvqdm (for n large enough)

� A

Z
m

Z
v1

:::

Z
vq

f0 (m; v1) jg (m)j
�����
qY
i=2

g

�
m+

cn
dn
(vi � v1)

������ p(v1):::p(vq)dv1:::dvqdm! 0;

as n ! 1, by dominated convergence since g
�
m+ cn

dn
(vi+1 � v1)

�
! 0 everywhere,R

v1

R
m
f0 (m; v1) jg (m)j p(v1)dv1dm <1, and sups jg(s)j <1. �

Lemma 4. Suppose that
(a) Assumption 2.2 holds.

(b)
���f �dncn z + x� v���� � f0 (z; x; v) for n large enough with Rv Rz f0(z; x; v) jg(z)j pr�s(v)dzdv <

1, for each x 2 R and r > s 2 N:
Set

Mn(�) :=
cn
n

[n�]X
t=1

f (dnxt�r;n)Et�r�1g

�
cn

�
xt�s;n �

x

dn

��
Then

sup
n
sup
0���1

E jMn(�)j <1:

Proof of Lemma 4: Without loss of generality, assume that r = 1 and s = 0. We have

E jMn(�)j =
�cn
n

�
E

[n�]X
t=1

Z
v

����f (dnxt;n�1) g �cn�xt�1;n + v

dn
� x

dn

������ p(v)dv
=

�cn
n

�
E

[n�]X
t=1

Z
s

Z
v

����f (dndt�1;0;ns)) g �cn�dt�1;0;ns+ v

dn
� x

dn

������ p(v)ht�1;0;n (s) dvds
� 1

n

[n�]X
t=1

1

dt�1;0;n

Z
s

Z
v

����f �dncnm+ x� v)
�
g (m)

���� p(v)dvdm
� A

Z
s

Z
v

jf0 (m; v; x)) g (m)j p(v)dvdm <1;
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as required. �

Lemma 5. Suppose that Assumptions 2.1-2.3 and the conditions of Theomem 1 hold. Let
q; r; s 2 N with q > 1 and r < s. Then

sup
0���1

������cnn
[nr]X
t=1

Z 1

�1
fEt�s�1f [(xt�r)]gq g

�
cn

�
xt�s;n �

x

dn

��
� �L(�; 0)

������ p! 0

where � := fEf (x+
P

rs vi)g
q R1

�1 g (z) dz.

Proof of Lemma 5: Set

Ln;�(�) =
cn
n

[n�]X
t=1

Z 1

�1
fEt�s�1f [dn (xt�r;n + �z)]gq g

�
cn

�
xt�s;n �

x

dn
+ �z

��
�(z)dz:

and

Ln(�) =
cn
n

[n�]X
t=1

fEt�s�1f (dnxt�r;n)gq g
�
cn

�
xt�s;n �

x

dn

��
:

It can be shown along the lines of Lemma 2 that

lim
n!1

sup
0���1

������Ln;�(�; x)� �
[n�]X
t=1

��(xt�s;n)

������ = 0:
In addition, using arguments similar to those used in the proof of Theorem 1 we get

lim
�!0

lim
n!1

sup
0���1

E jLn(�)� Ln;�(�)j = 0:

�

7 Appendix B: Proofs of the Main Results

Proof of Theorem 1. Set,

Ln(�) =
cn
n

[nr]X
t=1

Z 1

�1
f (dnxt�1;n) g

�
cn

�
xt;n �

x

dn

��
�(z)dz:

Ln;�(�) =
cn
n

[nr]X
t=1

Z 1

�1
f [dn (xt�1;n + �z)] g

�
cn

�
xt;n �

x

dn
+ �z

��
�(z)dz:

Then
lim
�!0

lim
n!1

sup
0�r�1

E jLn(�)� Ln;�(�)j = 0; (30)

and the stated results follow as in WP. We proceed to prove (30). In what follows, we use
A as a generic constant whose value may change in each location.
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Set

Yt;n(z) = f (dnxt�1;n) g

�
cn

�
xt;n �

x

dn

��
� f

�p
n (xt�1;n + �z)

�
g

�
cn

�
xt;n �

x

dn
+ �z

��
Notice that

sup
0�r�1

E jLn(�)� Ln;�(�)j �
cn
n

Z 1

�1

[n�]X
t=1

E jYt;n(z)j�(z)dz:

Next, we have

cnE jYk;n(z)j

= cnE

����f (dnxk�1;n) g �cn�xk;n � x

dn

��
� f

�p
n (xk�1;n + �z)

�
g

�
cn

�
xk;n �

x

dn
+ �z

������
�

Z
s

Z
v

jf (dndk�1;0;ns� v + x) g (cndk�1;0;ns) �

f
�p
n (dk�1;0;ns+ �z)� v + x

�
g [cn (dk�1;0;ns+ �z)]

�� p (v) dvds
� 2A

dk�1;0;n

Z
s

Z
v

����f �dncn s� v + x
�
g (s)

���� p (v) dvds
� 2A

dk�1;0;n

Z
s

Z
v

f0 (s; v; x) jg (s)j p(v)dvds;

for n large enough. In view of this condition (a) of Theorem 1 and (9) we get

cn
n
sup
0���1

E

������
[n�]X
k=1

Yk;n(z)

������ � A1 1n
nX
k=1

(dk�1;0;n)
�1 <1:

Set

�n(�) �
�cn
n

�2
sup
0�r�1

E

0@ [nr]X
k=1

Yk;n(z)

1A2

:

In view of the above and dominated convergence, it would su¢ ce to show that for each z

lim
�!0

lim
n!1

�n(�) = 0;

which is what we now set out to do. Notice that

�n(�) �
�cn
n

�2
E

nX
k=1

Y 2k;n(z) +
2c2n
n2

nX
k=1

jEYk;n(z)Yk+1;n(z)j+
2c2n
n2

nX
k=1

nX
l=k+2

jEYk;n(z)Yl;n(z)j

: = �1n(�) + �2n(�) + �3n(�):

Under condition (b) of Theorem 1 and using similar arguments as before it can be shown
that

�1n(�) �
cn
n2

nX
k=1

2A

dk�1;0;n

Z
s

Z
v

f0 (s; v; x)
2 g (s)2 p(v)dvds � Acn

n
! 0:
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Similarly, it can be shown that �2n(�) ! 0. Next, we consider �3n(�). Recall that xk;n is
adapted to Fk�1;n and conditional on Fk�1;n, (xl�1;n � xk;n) =dl�1;k;n has density hl�1;k;n(s)
which is uniformly bounded. Write 
n = 
n

�
�1=(2k0)

�
. We have

cndl�1;k;n jEk�1Yl;n(z)j

=

����Ek�1�f (dnxl�1;n) g �cn�xl;n � x

dn

��
� f

�p
n (xl�1;n + �z)

�
g

�
cn

�
xl;n �

x

dn
+ �z

�������
=

����Ek�1 Z
v

�
f (dnxl�1;n) g

�
cn

�
xl�1;n +

v

dn
� x

dn

��
� f [dn (xl�1;n + �z)] g

�
cn

�
xl�1;n +

v

dn
� x

dn
+ �z

���
p(v)dv

����
=

����Ek�1 Z
v

�
f [dn (xk;n + (xl�1;n � xk;n))] g

�
cn

�
xk;n + (xl�1;n � xk;n) +

v

dn
� x

dn

��
� f [dn (xk;n + (xl�1;n � xk;n) + �z)] g

�
cn

�
xk;n + (xl�1;n � xk;n) +

v

dn
� x

dn
+ �z

���
p(v)dv

����
=

����Z
s

Z
v

�
f [dn (xk;n + dl;k�1;ns)] g

�
cn

�
xk;n + dl;k�1;ns�

x

dn

��
� f [dn (xk;n + dl;k�1;ns+ �z)] g

�
cn

�
xk;n + dl;k�1;ns�

x

dn
+ �z

���
p(v)hl�1;k;n(s)ds

����
�

Z
y

Z
v

����f �dncn y � v
����� jg(y)j jV (y; cnxk;n; v)j p(v)dvdy

�

8<:
A; for (l � 1; k) =2 
n,
A
R
jyj�pcn

R
v
fo (y; v; x) jg(y)j p(v)dvdy

+
R
jyj<pcn

R
v
f0 (y; v; x) jg(y)j jV (y; cnxk;n; v)j p(v)dvdy; for (l � 1; k) 2 
n

where

V (y; r; v) = hl�1;k;n

 
y � r + cn x�vdn
cndl�1;k;n

!
� hl�1;k;n

 
y � r + cn x�vdn � cnz�

cndl�1;k;n

!
:
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Consider

E jYk;n(z)j jV (y; cnxk;n; v)j

= AE

Z
w

����f [dn (xk�1;n + z�)] g �cn�xk�1;n + w

dn
� x

dn
+ z�

������
�
����V �y; cnxk�1;n + cn

dn
w; v

����� p(w)dw
= A

Z
s

Z
w

����f (dn (dk�1;0;ns+ z�)) g �cn�dk�1;0;ns+ w

dn
� x

dn
+ z�

������
�
����V �y; cndk�1;0;ns+ cn

dn
w

����� p(w)hk�1;0;n(s)dwds
=

A

cndk�1;0;n

Z
l

Z
w

����f �dncn l � w + x
�
g (l)

����
�
�����V �y; l + cn

dn
x� cnz�; v

�����+ ����V �y; l + cn
dn
x; v

������ p(w)dwdl
� A

cndk�1;0;n

"Z
l�pcn

Z
w

f0 (l; w; x) jg (l)j p(w)dwdl + sup
jrj�2C[1+jzj+jvj]�1=2

jhl�1;k;n (r)� hl�1;k;n (0)j
#
;

where the last inequality holds for n large enough, and can be established using similar
arguments to those in WP.
In view of the above, for (l � 1; k) =2 
n

jEYk;n(z)Yl;n(z)j = jEYk;n(z)Ek�1Yl;n(z)j � A (cndl�1;k;n)�1Ek�1 jYl;n(z)j � A1
�
c2ndl�1;k;ndk�1;0;n

��1
:

On the other hand, for (l � 1; k) 2 
n

jEYk;n(z)Yl;n(z)j = jEYk;n(z)Ek�1Yl;n(z)j

� A (cndl�1;k;n)
�1E jYk;n(z)j

Z
jyj�pcn

Z
v

f0 (y; v; x) jg(y)j p(v)dvdy

+A (cndl�1;k;n)
�1
Z
jyj<pcn

Z
v

f0 (y; v; x) jg(y)jE jYk;n(z)j jV (y; cnxk;n; v)j p(v)dvdy

� A1
�
c2ndl�1;k;ndk�1;0;n

��1(Z
jyj�pcn

Z
v

f0 (y; v; x) jg(y)j p(v)dvdy

+

Z
y

Z
v

sup
jrj�2C[1+jzj+jvj]�1=2

jhl�1;k;n (r)� hl�1;k;n (0)j jg(y)j f0 (y; v; x) p(v)dvdy
)
:

Notice that the last term above converges to zero as n!1, due to dominated convergence.
In view of the above and (6)-(9) we have for � = �1=2=C
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�3n(�) � 2c2n
n2

24 nX
l�1>k;(l�1;k)=2
n

+

nX
(l�1;k)2
n

35 jEYk;n(z)Yl;n(z)j
� A1

n2

nX
k=(1��)n

(dk;0;n)
�1 max

1�k�n�2

nX
l=k+2

(dl�1;k;n)
�1

+
A2
n2

(1��)nX
k=�n

(dk;0;n)
�1 max

0�k�(1��)n

k+�nX
l=k+2

(dl�1;k;n)
�1

+
A3
n2

�nX
k=1

(dk;0;n)
�1 max

0�k�n�2

nX
l=k+2

(dl�1;k;n)
�1

+
A4
n2

nX
k=1

(dk;0;n)
�1 max

0�k�n�2

nX
l=k+2

(dl�1;k;n)
�1

�
(Z

jyj�pcn

Z
v

f0 (y; v; x) jg(y)j p(v)dvdy

+

Z
y

Z
v

sup
jrj�2C[1+jzj+jvj]�1=2

jhl�1;k;n (r)� hl�1;k;n (0)j jg(y)j f0 (y; v; x) p(v)dvdy
)

! 0;

as required. �

Proof of Theorem 2. We prove the result for one lag di¤erential (i.e., js� rj = 1) and
the result for the general case follows in the same way.
First, we consider the case r > s. Set � := Ef(x� vt). We have

f̂(x)� Ef(x� vt) =

:=Rnz }| {�
dn
nh

�1=2X
Et�2 f[f(xt�1)� Ef(x� vt)]Kh(xt � x)g�

dn
nh

�1=2P
Kh(xt � x)

+

P :=�tz }| {
f(xt�1)Kh(xt � x)� Et�2f(xt�1)Kh(xt � x)P

Kh(xt � x)

+

P :=�tz }| {
�Et�2Kh(xt � x)� �Kh(xt � x)P

Kh(xt � x)
+

P :=tz }| {
Kh(xt � x)utP
Kh(xt � x)

: =
Rn +Mn�

dn
nh

�1=2Pn
t=1Kh(xt � x)

:
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Notice that

E jRnj

= E

�����
�
dn
nh

�1=2 nX
t=1

Et�2

h
(f (xt�1)� Ef(x� vt))K

�xt
h
� x
h

�i�����
= E

�����
�
dn
nh

�1=2 nX
t=1

Z
u

[f (xt�1)� Ef(x� vt)]K
�
dnxt�1;n
h

+
v

h
� x
h

�
p1(v)dv

�����
�

�
dn
nh

�1=2 nX
t=1

Z
y

����Z
u

[f (dndt�1;0;ny)� Ef(x� vt)]K
�
dndt�1;0;ny

h
+
v

h
� x
h

�
p1(v)dv

����
�ht�1;0;n(y)dy

=

�
dn
nh

�1=2
h

dn

nX
t=1

(dt�1;0;n)
�1
Z
z

j[Ef(hz + x� vt)� Ef(x� vt)]K (z)jht�1;0;n
�
hz + x� vt
dndt�1;0;n

�
dz

�
�
n

hdn

�1=2
h1+

n

nX
t=1

(dt�1;0;n)
�1
Z
z

f1(z; x)K (z) dz ! 0:

Next, fMn;Fn�1g is a martingale sequence. We shall establish a martingale CLT for this
term. Consider

dn
nh

nX
t=1

Et�2 (�t + �t + t)
2

=
dn
nh

nX
t=1

Et�2 f[f(xt�1)Kh(xt � x)� Et�2f(xt�1)Kh(xt � x)]

+� [Et�2Kh(xt � x)�Kh(xt � x)] +Kh(xt � x)utg2

=
dn
nh

nX
t=1

Et�2
�
f 2(xt�1)K

2
h(xt � x)

�
� dn
nh

nX
t=1

[Et�2f(xt�1)Kh(xt � x)]2

+
dn
nh
� 2

nX
t=1

Et�2K
2
h(xt � x)�

dn
nh
� 2

nX
t=1

[Et�2Kh(xt � x)]2

+
dn
nh

nX
t=1

Et�2K
2
h(xt � x)u2t

� dn
nh
2�

nX
t=1

f(xt�1)Et�2K
2
h(xt � x)�

dn
nh
2�

nX
t=1

f(xt�1) [Et�2Kh(xt � x)]2

=
dn
nh

nX
t=1

Et�2
�
f 2(xt�1)K

2
h(xt � x)

�
+
dn
nh
� 2

nX
t=1

Et�2K
2
h(xt � x)

+
dn
nh

nX
t=1

K2
h(xt � x)�2u �

dn
nh
2�

nX
t=1

f(xt�1)Et�2K
2
h(xt � x) + op(1) (by Lemma 3)

: = Tn + op(1):
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In addition, by Lemma 1 and Theorem 1, we get

Tn
p!
�
Ef 2(x� vt) + � 2 + �2u � 2� 2

�
LG(1; 0)

Z 1

�1
K2(s)ds

=
�
Varf(x� vt) + �2u

�
LG(1; 0)

Z 1

�1
K2(s)ds:

Fix � > 0 and consider

dn
nh

nX
t=1

Et�2 (�t + �t + t)
2 1

(�
dn
nh

�1=2
j�t + �t + tj > �

)

� 3
dn
nh

nX
t=1

Et�2
�
�2t + �

2
t + 

2
t

�
1

(�
dn
nh

�1=2
j�t + �t + tj > �

)

� 3
dn
nh

nX
t=1

n
Et�2

�
�2t + �

2
t + 

2
t

�2o1=2(
Pt�2

"�
dn
nh

�1=2
j�t + �t + tj > �

#)1=2

� 3
dn
nh

nX
t=1

n
Et�2

�
�2t + �

2
t + 

2
t

�2o1=2( 1
�4

�
dn
nh

�2
Et�2

�
(�t + �t + t)

4�)1=2

� 9
p
3
dn
nh

nX
t=1

�
Et�2

�
�4t + �

4
t + 

4
t

�	1=2( 1
�4

�
dn
nh

�2
Et�2

�
(�t + �t + t)

4�)1=2

= 9
p
3
1

�2
dn
nh

 
dn
nh

nX
t=1

Et�2
�
�4t + �

4
t + 

4
t

�!
:

We shall show that
�
dn
nh

�2Pn
t=1Et�2�

4
t = op(1). We have�

dn
nh

�2 nX
t=1

Et�2�
4
t � 9

�
dn
nh

�2 nX
t=1

�
Et�2f

4(xt�1)K
4
h(xt � x) + f 4(xt�1) fEt�2Kh(xt � x)g4

�
:

By Lemma 1 and Theorem 1�
dn
nh

�2 nX
t=1

Et�2f
4(xt�1)K

4
h(xt � x) = Op

�
dn
nh

�
;

and by Lemma 3 �
dn
nh

�2 nX
t=1

f 4(xt�1) fEt�2Kh(xt � x)g4 = op
�
dn
nh

�
:

Using similar arguments to those used above we have
�
dn
nh

�2Pn
t=1Et�2

�
�4t + 

4
t

�
= op(1).

Therefore, by Hall and Heyde (1980, Theorem 3.2)

Mn
d!
��
Varf(x+ vt) + �

2
u

�
LG(1; 0)

Z 1

�1
K2(s)ds

�1=2
W :=M;
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where W is a standard normal variate. Next, the quadratic variation of Mn, is [Mn] =
dn
nh

Pn
t=1 (�t + �t + t)

2. The following condition (see Jacod and Shiryaev, 1986)

sup
n

�
dn
nh

�1=2
max
0�t�n

E j�t + �t + tj <1

is su¢ cient for
([Mn] ;Mn)

d! ([M ] ;M) :

For some  > 2 we have�
dn
nh

�1=2
max
0�t�n

E j�t + �t + tj

�
�
dn
nh

�1=2
max
0�t�n

fE j�t + �t + tj
g

1
 � A

�
dn
nh

�1=2
max
0�t�n

fE (j�tj + j�tj
 + jtj

)g
1


= A

�
dn
nh

�1=2�
E max
0�t�n

(j�tj + j�tj
 + jtj

)

� 1


� A
�
dn
nh

�1=2(
E

nX
t=1

(j�tj + j�tj
 + jtj

)

) 1


:

Consider the �rst summand. We have�
dn
nh

�=2
E

nX
t=1

j�tj =

�
dn
nh

�=2
E

nX
t=1

jf(xt�1)Kh(xt � x)� Et�2f(xt�1)Kh(xt � x)j

� A

�
dn
nh

�=2
E

nX
t=1

jf(xt�1)j Et�2 jKh(xt � x)j = O
 �

dn
nh

�(�2)=2!
;

where the last equality is due to Lemma 4. Dealing with the other terms in a similar way,
we get �

dn
nh

�1=2
max
0�t�n

E j�t + �t + tj = O
 �

dn
nh

�(�2)=2!
= o(1):

Next consider the predictable quadratic variation ofMn, hMni := dn
nh

Pn
t=1Et�2 (�t + �t + t)

2.
We shall show that [Mn] = hMni+ op(1). This will be su¢ cient for the joint convergence

(hMni ;Mn)
d! ([M ] ;M) :

We have

E j[Mn]� hMnij

� dn
nh
E

������
nX
t=1

ztz }| {�
(�t + �t + t)

2 � Et�2 (�t + �t + t)
2�������

�
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�
dn
nh

�2
E

 
nX
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zt

!29=;
1=2

=

(�
dn
nh

�2
E

nX
t=1

z2t

)1=2

=

(�
dn
nh
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E

nX
t=1

�
(�t + �t + t)

2 � Et�2 (�t + �t + t)
2�2)1=2

�
(
A

�
dn
nh

�2
E

nX
t=1

Et�2
�
�4t + �

4
t + 

4
t

�)1=2
= o(1);
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where the last equality can be established using similar arguments as those above (Lemma
4).
Hence, the NW estimator has the following form 

nX
t=1

Kh(xt � x)
!1=2 h

f̂(x)� Ef(x+ vt)
i

=
Mn�

dn
nh

Pn
t=1Kh(xt � x)

�1=2 = hMni1=2�
dn
nh

Pn
t=1Kh(xt � x)

�1=2 Mn

hMni1=2
:= AnBn:

Now by Theorem 1, it can be easily seen that

An
p!

�
(�2u +Varf(x� vt))LG(1; 0)

R1
�1K

2(s)ds
�1=2

�
LG(1; 0)

R1
�1K(s)ds

�1=2 =

��
�2u +Varf(x� vt)

� Z 1

�1
K2(s)ds

�1=2
:

In addition, Bn
d! W; and the result for r > s follows.

Next, suppose that r < s. Set � := Ef(x+ vt). We have

f̂(x)� Ef(x+ vt) =

:=Rnz }| {�
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nh

�1=2 nX
t=1
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dn
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t=1Kh(xt�1 � x)

+
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�tz }| {
[f(xt)� Et�2f(xt)]Kh(xt�1 � x)Pn

t=1Kh(xt�1 � x)

+

Pn
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�tz }| {
Kh(xt�1 � x)utPn

t=1Kh(xt�1 � x)

: =
Rn +Mn�
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�1=2Pn
t=1Kh(xt � x)

:
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Notice that

E jRnj
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�����
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������
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�
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Z
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h

� x
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�

�
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Z
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����Z
v
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�
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h
� x
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�
p1(v)dv

����
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�
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�1
Z
z

����Z
v
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�
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=

�
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h
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Z
z
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�
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�
�
n
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�1=2
h1+

n
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�1
Z
z

f1(z; x)K (z) dz ! 0:

Next, notice that fMn;Fn�1g is a martingale sequence and satis�es a martingale CLT. The
proof is similar to that provided in the previous part. Consider

dn
nh

nX
t=1

Et�2 (�t + �t)
2

=
dn
nh

nX
t=1

K2
h(xt�1 � x)Et�2f 2(xt)�
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nh
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Kh(xt�1 � x) [Et�2f(xt)]2

+
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nh

nX
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h(xt�1 � x)Et�2u2t
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�
Ef 2(x+ vt)� � 2 + �2u

�
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Z 1

�1
K2(s)ds

=
�
Varf(x+ vt) + �

2
u

�
LG(1; 0)
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where the last limit is due to Lemma 1, Lemma 5 and Theorem 1. The remaining proof
follows from similar arguments to those used in the previous part. �

Proof of Theorem 3.

Write (
dn
nh

nX
t=1

Kh(xt�s � x)
)
�̂2 =
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=
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nh

nX
t=1

h
f(xt�r)� f̂(x)

i2
Kh(xt�s � x) +
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nh

nX
t=1

u2tKh(xt�s � x)

+
2dn
nh

nX
t=1
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h
f(xt�r)� f̂(x)

i
Kh(xt�s � x) := �n + �n + n:

It follows directly from Theorem 1 and Theorem 2 that

�n
p! Var

(
f

 
x+

X
rs

vi

!)Z 1

�1
K(s)ds:

In addition, manipulations similar to those used in the proof of Theorem 2 give

�n + n = �
2
u

Z 1

�1
K(s)ds+Op

 �
dn
nh

�1=2!
:

This shows the �rst part of Thorem 3.
In view of the above and Theorem 2, it can be easily seen that t̂(x; �) d! N(0; 1). �
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Notation

� Et (:) = E(: j Ft)

� Pt (:) = P(: j Ft)

� Kh(�) = K
� �
h

�
� a _ b = max(a; b)
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� a ^ b = min(a; b)

�
P

rs vi = 1 (r > s)
Pr

i=s+1 vi � 1 (s > r)
Ps

i=r+1 vi
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