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Abstract

This paper considers efficient estimation of copula-based semiparametric strictly stationary
Markov models. These models are characterized by nonparametric invariant (one-dimensional
marginal) distributions and parametric bivariate copula functions; where the copulas capture tem-
poral dependence and tail dependence of the processes. The Markov processes generated via tail
dependent copulas may look highly persistent and are useful for financial and economic applications.
We first show that Markov processes generated via Clayton, Gumbel and Student’s ¢ copulas and
their survival copulas are all geometrically ergodic. We then propose a sieve maximum likelihood
estimation (MLE) for the copula parameter, the invariant distribution and the conditional quan-
tiles. We show that the sieve MLEs of any smooth functionals are root-n consistent, asymptotically
normal and efficient; and that their sieve likelihood ratio statistics are asymptotically chi-square
distributed. We present Monte Carlo studies to compare the finite sample performance of the sieve
MLE, the two-step estimator of Chen and Fan (2006), the correctly specified parametric MLE and
the incorrectly specified parametric MLE. The simulation results indicate that our sieve MLEs
perform very well; having much smaller biases and smaller variances than the two-step estimator
for Markov models generated via Clayton, Gumbel and other tail dependent copulas.
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1 Introduction

A copula function is a multivariate probability distribution function with uniform marginals.
Copula-based method has become one popular tool in modeling nonlinear, asymmetric and tail
dependence in financial and insurance risk managements. See Embrechts, et al. (2002), McNeil,
et al (2005), Embrechts (2008), Genest et al. (2008), Patton (2002, 2006, 2008) and the refer-
ences therein for reviews of various theoretical properties and financial applications of the copula
approach.

While the majority of the previous work using copulas have focused on modeling the contempo-
raneous dependence between multiple univariate series, there are also a growing number of papers
using copulas to model the temporal dependence of a univariate nonlinear time series. Granger
(2003) suggests to define persistence (such as ‘long memory’ or ‘short memory’) for general nonlin-
ear time series models via copulas. Darsow, et al. (1992), de la Pena et al. (2006) and Ibragimov
(2009) provide characterizations of a copula-based time series to be a Markov process. Joe (1997)
proposes a class of parametric (strictly) stationary Markov models based on parametric copulas
and parametric invariant (one-dimensional marginal) distributions. Chen and Fan (2006) study a
class of semiparametric stationary Markov models based on parametric copulas and nonparametric
invariant distributions.

Let {Y};} be a stationary Markov process of order one with a continuous invariant (one-dimensional
marginal) distribution G. Then its probabilistic properties are completely determined by the bi-
variate joint distribution function of Y;_1 and Y;, H(y1,y2) (say). By Sklar’s theorem (see McNeil,
et al (2005), Nelsen (2006)), one can uniquely express H(-,-) in terms of the invariant distribution
G and the bivariate copula function C(-,-) of Y;—1 and Y;:

H(y1,y2) = C(G(y1),G(y2))-

Thus one can always specify a stationary first order Markov model with continuous state space by
directly specifying the marginal distribution of Y; and the bivariate copula function of Y;_; and
Y;. The advantage of the copula approach is that one can freely choose the marginal distribution
and the bivariate copula function separately; the former characterizes the marginal behavior such
as the fat-tails and/or skewness of the time series {Y;}}",, while the latter characterizes all the
temporal dependence properties that are invariant to any increasing transformations, as well as
the tail dependence properties of the time series. Although being strictly stationary first-order
Markov, a model generated via a copula (especially a tail dependent copula) is very flexible. This
model can generate a rich array of nonlinear time series patterns, including persistent clustering

of extreme values via tail dependent copulas evaluated at fat-tailed marginals, asymmetric depen-



dence, and other “look alike ” behaviors present in many popular nonlinear models such as ARCH,
GARCH, stochastic volatility, near-unit root, long-memory, models with structural breaks, Markov
switching, etc. From the point of view of financial applications, one attractive property of the
copula-based Markov model is that the implied conditional quantiles are automatically monotonic
across quantiles. This nice feature has been exploited by Chen et al. (2008) and Bouye and Salmon
(2008) in their study of copula-based nonlinear quantile autoregression and value at risk (VaR).

In this paper, we shall focus on the class of copula-based, strictly stationary, semiparametric first
order Markov models, in which the true copula density function has a parametric form (c(-,-; ap)),
and the true invariant distribution is of an unknown form (Gg(-)) but is absolutely continuous with
respect to the Lebesgue measure on the real line. Any model of this class is completely described by
two unknown characteristics: the copula dependence parameter oy and the invariant distribution
Go(+). To establish the asymptotic properties of any semiparametric estimators of (ag,Gp), one
needs to know temporal dependence properties of the copula-based Markov models. For this class
of models, Chen and Fan (2006) show that the S-mixing temporal dependence measure is purely
determined by the properties of copulas (and does not depend on the invariant distributions);
and Beare (2008) provides simple sufficient conditions for geometric [-mixing in terms of copulas
without any tail dependence (such as Gaussian, Frank and Eyraud-Farlie-Gumbel-Morgenstern
(EFGM) copulas). Neither paper is able to verify whether or not a Markov process generated via
a tail dependent copula (such as Clayton, survival Clayton, Gumbel, survival Gumbel, Student’s
t) is geometric G-mixing. Ibragimov and Lentzas (2008) demonstrate via simulation that Clayton
copula-based first order strictly stationary Markov models could behave as ‘long memory’ in copula
levels. In this paper, we show that Clayton, survival Clayton, Gumbel, survival Gumbel and
Student’s ¢t copula based Markov models are actually geometrically ergodic (hence geometric (-
mixing). Therefore, according to our this theorem, although a time series plot of a Clayton copula
(or survival Clayton, Gumbel, survival Gumbel, other tail dependent copula) generated Markov
model may look highly persistent and ‘long memory alike’, it is in fact weakly dependent and ‘short
memory’.

In this paper, we propose a sieve maximum likelihood estimation (MLE) procedure for the
copula parameter «q, the invariant distribution GGy and the conditional quantiles of a copula-based
semiparametric Markov model. This procedure approximates the unknown marginal density by
flexible parametric family of densities with increasing complexity (sieves), and then maximizes
the joint likelihood with respect to the unknown copula parameter and the sieve parameters of the
approximating marginal density. We show that the sieve MLEs of any smooth functionals of (v, Gg)

are root-n consistent, asymptotically normal and efficient; and that their sieve likelihood ratio



statistics are asymptotically chi-square distributed. We also present simple consistent estimators
of asymptotic variances of the sieve MLEs of smooth functionals. It is interesting to note that
although the conditional distribution of a copula-based semiparametric stationary Markov model
depends on the unknown invariant distribution, the plug-in sieve MLE estimators of the nonlinear
conditional quantiles (VaR) are still \/n-consistent, asymptotically normal and efficient.

To the best of our knowledge, Atlason (2008) is the only other paper that also considers the
semiparametric efficient estimation of a copula parameter «q for a copula-based first-order strictly
stationary Markov model. His work and our work have been carried through independently but
are around the same time. While we propose sieve likelihood joint estimation of Gy and ay,
Atlason (2008) proposes rank likelihood estimation of the copula parameter «g, and relies on
simulation method to evaluate his rank likelihood. However, Atlason (2008) does not investigate
semiparametric efficient estimation of the invariant distribution G nor the conditional quantiles.

Previously, Chen and Fan (2006) propose a simple two-step estimation procedure, in which one
first estimates the invariant cdf Gy(-) by a re-scaled empirical cdf G,, of the data {Y;}} ;, and
then estimate the copula parameter «g by maximizing the pseudo log-likelihood corresponding to
copula density evaluated at pseudo observations {G,(Y;)}7~;. Chen and Fan’s procedure can be
viewed as an extension of the one proposed by Genest et al. (1995) for a bivariate copula-based
joint distribution model of a random sample {(X;,Y;)}" ; to a univariate first-order Markov model
of a time series data {Y;}7 ; (with X; = Y;_;). Both are semiparametric analogs of the two-step
parametric procedure that is called the “inference functions for margins” (IFM) in Joe (1997, Ch.
10). Just as the two-step estimator of Genest et al. (1995) is generally inefficient for a bivariate
random sample (see, e.g., Genest and Werker (2001)), the two-step estimator of Chen and Fan
(2006) is inefficient for a univariate Markov model.

We present Monte Carlo studies to compare the finite sample performance of our sieve MLE,
the two-step estimator of Chen and Fan (2006), the correctly specified parametric MLE and the
incorrectly specified parametric MLE for Clayton, Gumbel, Frank, Gaussian and EFGM copula-
based Markov models. Numerous simulation studies demonstrate that the two-step estimator of
Chen and Fan (2006) is not only inefficient but also severely biased (in finite sample) when the
time series has strong tail dependence, and it leads to a biased and inefficient plug-in estimator
of conditional quantiles (or VaR). The simulation results indicate that our sieve MLEs of the
copula parameter and the marginal distribution always perform very well. Even for Markov models
generated via strong tail dependent copulas and fat-tailed marginal distributions, the sieve MLEs
have much smaller biases and smaller variances than the two-step estimators.

The rest of this paper is organized as follows. In Section 2] we present the class of copula-based



semiparametric strictly stationary Markov models, and show that many widely used tail dependent
copula (Clayton, Gumbel and Student’s t) based Markov models are geometric f-mixing. In Section
Bl we introduce the sieve MLE, and obtain its consistency and rate of convergence. Section [
establishes the asymptotic normality and semiparametric efficiency of the sieve MLE. Section
shows that the sieve likelihood ratio statistics are asymptotically chi-square distributed, which
suggests a simple way to construct confidence regions for copula parameters and other smooth
functionals. In Section [ we first review some popular existing estimators (the two-step estimator,
the correctly specified parametric MLE, the misspecified parametric MLE and the infeasible MLE).
We then conduct some simulation studies to compare the finite sample performance of our sieve
MLE and these alternative estimators. Section [7] briefly concludes. All the proofs are relegated to
the Appendix.

Finally, we wish to point out that, given the characterization results of Darsow et al. (1992)
and Ibragimov (2009) on higher order Markov models via copulas, we can easily extend our sieve
MLE method and results for copula-based first-order Markov models to copula-based higher order

Markov models. For presentational clarity we do not give the details here.

2 Copula-Based Markov Models

In this section we first present the model, and then some implied temporal dependence properties.

2.1 The model

Darsow et al. (1992) provide characterization of first-order Markov processes by bivariate copu-
las and one-dimensional marginal distributions; see Nelsen (2006, section 6.4) for a brief review.
Throughout this paper, we assume that the true data generating process (DGP) satisfies the fol-
lowing assumption:
Assumption M (DGP): (1) {Y; : t = 1,--- ,n} is a sample of a strictly stationary first order
Markov process generated from (Gy(-),C(-,;ap)), where Gy(-) is the true invariant distribution
that is absolutely continuous with respect to Lebesgue measure on the real line (with its support
Y, a nonempty interval of R); C(-,+; ) is the true parametric copula for (Y;_1,Y;) up to unknown
value ap, is absolutely continuous with respect to Lebesgue measure on [0, 1]2. (2) the true marginal
density go(-) of Go(+) is positive on its support V; and the true copula density c(, -; ag) of C(-, ;)
is positive on (0,1)2.

In Assumption M(1), the assumption of absolute continuity of the bivariate copula C(-,-; ap)
rules out the Fréchet-Hoeffding upper (C'(u1, u2) = min(u1, u2)) and the lower (C'(u1, ug) = max(ui+

uz —1,0)) bounds, as well as their linear combinations (and, say, shuffles and Min copulas discussed



in Darsow, 1992).
Under Assumption M(1), the true conditional probability density function, p°(-|[Y*~!) of Y;
given Y1 = (Y;_1,...,Y7) is given by:

PPCIYT) = ho(|Yim1) = go(1)e(Go(Yiz1), Go(+); ), (2.1)

where ho(+]Y;—1) denotes the true conditional density of Y; given Y;_;. We note that the conditional
density is a function of both copula and marginal; hence the g—th, ¢ € (0, 1), conditional quantile

of Y; given Y1 is also a function of both copula and marginal:

QY (v) = G (C3t lalGo(v)s o)) (2:2)
where Cy1 [-|u; ap] = a%C(u, s ap) = C1(u, - ap) is the conditional distribution of Uy = Go(Y;) given
Uy 1 = u; and C2_|11 [q|u; ap] is the g—th conditional quantile of U; given U;—1 = u. By definition,
02_|11 [q|u; ag] is increasing in ¢; hence the g—th conditional quantile of Y; given Y1, Q};(y), is also
increasing in q.

Under Assumption M(1), we have that the transformed process {U, : Uy = Go(Y;)}}-, is also a
strictly stationary first order Markov process with uniform marginals and C(-, -; o) the joint distri-
bution of Uy_; and U;. Chen and Fan (2006) express any copula-based first-order strictly stationary
Markov model for {Y;}}; in terms of the following semiparametric transformation autoregression

model for the transformed process {U;}{:
A (U) = Mo (Up1) + &, E{et|Up—a, ..., Ui} = E{&|Up—1} = 0,

where A1 (-) is an increasing function, Ag(u) = E{A;(U;)|Ui—1 = u}, and the conditional density of

g given U;_1 = u satisfies:

Fothora(®) = el AT e + Ag(u); ) - ZE L R2()

2.2 Tail dependence, Temporal dependence

All the dependence measures that are invariant under increasing transformations can be expressed
in terms of copulas (see McNeil, et al (2005), Nelsen (2006), Joe (1997)). For example, Kendall’s

tau is
7-:4//H(y1,y2)dH(y1,y2) —124/ o1 C(u1,u2)dC(uy,uz) — 1,
0,1

and Spearman’s rho is: pg = 12ff[0 1}Q(C’(ul,ug) — ugug)duidus. The lower (resp. upper) tail

dependence coefficients Az, (resp. Ay) in terms of copulas are

Ap = lim Pr (U2 < U|U1 < ’LL) = lim M, and
u—0Tt w0 U
1-2

Av = lm Pr(Us = u|Uy 2 u) = lim_ zti(u’“)



provided the limits exist. (See Kortschak and Albrecher (2008) for examples of copulas with non-
existing limits for tail dependence and their applications.)

For financial risk management, the Markov models generated via tail-dependent copulas are
much more relevant than models without tail dependence. In particular, the following three exam-
ples have been widely used in financial applications:

Example 2.1 (Clayton copula-based Markov model): The bivariate Clayton copula is
Clur, ug, @) = [uy® +uy® — 1]—1/04’ 0<a<oo.

Clayton copula has Kendall’s tau 7 = and lower tail dependence coefficient \;, = 27/ that

(0%
2Fa’
is increasing in «, but no upper tail dependence. Clayton copula becomes the independence copula
Cr(u1,u2) = ujug in the limit when oo — 0.

Example 2.2 (Gumbel copula-based Markov model): The bivariate Gumbel copula is
C(ur, up; ) = exp(—[(—Inu)® + (—Inuy)?]/), 1< a < co.

Gumbel copula has Kendall’s tau 7 =1 — é, and upper tail dependence coefficient Ay = 2 — 21/«
that is increasing in «, but no lower tail dependence. Gumbel copula becomes the independence
copula Cr(uy,us) = ujug in the limit when o — 1.

Example 2.3 (Student ¢ copula-based Markov model): The bivariate Student ¢t— copula is
C(ulauQ; Oé) = tl/,ﬁ(t;l(ul)vt;l(u2))v o= (V7 10)7 |p| <L ve (17 00]7

where t, ,(-,-) is the bivariate Student-¢ distribution with mean zeros, correlation matrix having
off-diagonal element p, and degrees of freedom v, and t¢,(-) is the cdf of a univariate Student-

t distribution with mean zero, and degrees of freedom v. Student ¢ copula has Kendall’s tau
2

™

7 = 2 arcsin p, and symmetric tail dependence: A\, = Ay = 2t,11(—+/(v +1)(1 — p)/(1 + p)) that

is decreasing in v. Student t copula becomes Gaussian copula in the limit when v — oo.

2.2.1 Geometric S-mixing

For analyzing asymptotic properties of any semiparametric estimators of (ag,Gy), it is conve-
nient to apply empirical processes results for strictly stationary geometrically ergodic (or geometric
[-mixing) Markov processes. See Appendix A for some equivalent definitions of S-mixing and
ergodicity for strictly stationary Markov processes.
Remark 2.1: (1) Under Assumption M, the time series {Y;}}-, is strictly stationary ergodic and
is also f-mixing. See, e.g., Bradley (2005, corollary 3.6) and Chen and Fan (2006).

(2) Proposition 2.1 of Chen and Fan (2006) presents high-level sufficient (and almost necessary)

conditions in terms of a copula to ensure S-mixing decaying either exponentially fast or polynomially



fast. Their working paper version points out that their Proposition 2.1 implies the Morkov models
based on Gaussian and EFGM copulas are geometric S-mixing. However, they do not verify whether
any other copulas satisfy the conditions of their Proposition 2.1.

(3) Beare (2008, Theorem 3.1 and Remark 3.5) shows that all Markov models generated via
symmetric copulas with positive and square integrable copula densities are geometric S-mixing. His
Remark 3.7 points out that many commonly used bivariate copulas without tail dependence, such
as Gaussian, EFGM, Frank, Gamma, binomial and hypergeometric copulas, satisfy the conditions
of his Theorem 3.1.

(4) Beare (2008, Theorem 3.2) shows that all bivariate copulas with square integrable densities
do not have any tail dependence. Although he shows that a Markov model based on Student’s ¢
copula is rho mixing hence geometric strong mixing, Beare (2008) does not verify whether a Markov
model generated via any tail dependent copula (such as Clayton, Gumbel, Student’s ¢ copula) is
geometric G-mixing.

Ibragimov and Lentzas (2008) demonstrate via simulation that Clayton copula generated first
order strictly stationary Markov models behave as ‘long memory’ in copula levels when Clayton
copula parameter « is big. The time series plots (see Figure 1) of such Markov processes do look
‘long memory alike’. (See subsection 6.2 on how to simulate copula-based first order stationary
Markov time series. The clusterings of extremes in Figure 1 are due to tail dependence properties
of Clayton and Gumbel copulas.) Nevertheless, our next theorem shows that they are in fact
geometrically ergodic hence ‘short memory’ processes.

Theorem 2.1 (geometric ergodicity): Under Assumption M, the Markov time series {Y;}1, gen-
erated via Clayton copula with 0 < a < oo, Gumbel copula with 1 < « < 0o, Student’s t copula with

lp| <1 and 2 <v < o0, are all geometrically ergodic (hence geometric 3-mixing).

Remark 2.2: If {U;}} is a Cy (-, -) copula generated strictly stationary first order Markov model
with uniform marginals, then {V; =1 — U;}}; is also a copula based strictly stationary first order

Markov model with uniform marginals and bivariate copula function:

Cv(vi,v2) = Pr(Vici <o, Vi <) =Pr(Upm1 21 —01,Up > 1 — v9)

= v1+vy—14Cpy(l—v1,1—1v9)=C(vy,v9)

which is the survival copula of C{;(u1,u2) (see Nelsen, 2006). Therefore, a copula Cy/ (-, -) generated
strictly stationary first order Markov process is (geometric ergodic) or S-mixing with certain decay
speed 3; = o(1) if and only if its survival copula C};(-,-) generated Markov process is (geometric
ergodic) or S-mixing with the same decay speed 3; = o(1).

By Theorem 2.1 and Remark 2.2, we immediately have that survival Clayton and survival



a=15,t(3), Clayton 0a=15.7,1(3) ,Gumbel
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Figure 1: Markov time series: tail dependence index = 0.9548, student ¢3 marginal distribution

Gumbel generated first order stationary Markov processes are also geometric ergodic.

3 Sieve MLE, Consistency with Rate

Under Assumption M, we have that the true conditional density p°(-|Y*~!) of Y; given Yi~! =
(Y1, ..., Y1) is given by (Z1). Let
p(lY™h) = h(-[Yim1sa,9) = 9(-)e(G(Ye-1),G(): )
denote any candidate conditional density of Y; given Y!~!. Let Z; = (Y;—1,Y%), and denote
Ua,g.Z) = logp(Vi|Y'™") =log {h(V[Yi-1;0, 9)} = log g(V3) +log e (G(Yi-1), G(V3); @)
= togg(vi) +loge ([ 100 < Vi), [ 100 < ¥oaloisa
as the log-likelihood associated with the conditional density p(Y;|Y?~!). Here 1(-) stands for the

indicator function. Then the joint log-likelihood function of the data {Y;} is given by

1 1
Ln(a, 9) = o 25(04797 Zt) + - log g(Y1).
=2

The approximate sieve MLE 7,, = (&, ) is defined as

Ln(@n:Gn) 2 | max  Lu(a,g) = Oy (67), (3.1)

8



where §,, is a positive sequence such that 6,, = o(1), and G,, denotes the sieve space (i.e., a sequence
of finite dimensional parameter spaces that becomes dense (as n — o0) in the entire parameter
space G for gp).

There exist many sieves for approximating a univariate probability density function. In this

paper, we will focus on using linear sieves to directly approximate either a square root density:

K.
Gn = {gKn €G:9rk,(y) = [E ar A (y))?, /gKn(y)dy = 1}, Ky — 00, —= =0, (3.2)
k=1

or a log density:

K
n Kn
Gn = {gxn €G:gx,(y) = exp{D_arAr(y)}, /gKn(y)dy = 1} » Kp—o0,—= =0, (33)

k=1
where {Ag(-) : kK > 1} consists of known basis functions, and {a; : &k > 1} is the collection of
unknown sieve coefficients.

Suppose the support ) (of the true go) is either a compact interval (say [0, 1]) or the whole real
line R. Let r > 0 be a real-valued number, and [r] > 0 be the largest integer such that [r] <r. A
real-valued function g on ) is said to be r-smooth if it is [r] times continuously differentiable on
Y and its [r]-th derivative satisfies a Holder condition with exponent r — [r] € (0,1] (i.e., there is
a positive number K such that |[DI"lg(y) — Dg(y/)| < K|y — /""" for all y,4/ € Y. Here DU
stands for the differential operator). We denote A"()) as the class of all real-valued functions on
Y which are r-smooth; it is called a Holder space.

Let the true marginal density function go satisfy either /go € A"(Y) or loggg € A"(Y). Then
any function in A"())) can be approximated by some appropriate sieve spaces. For example, if Y
is a bounded interval and r > 1/2, it can be approximated by the spline sieve Spl(s, K,) with
s > [r], the polynomial sieve, the trigonometric sieve, the cosine series and etc. When the support
of Y is unbounded, thin-tailed density can be approximated by Hermite polynomial sieve, while
polynomial fat-tailed density can be approximated by spline wavelet sieve. See Chen (2007) for
detailed descriptions of various sieve spaces G,,. In our simulation study, we choose the sieve number
of terms K, using a modified AIC, although one could also use cross-validation (see, e.g., Fan and
Yao (2003), Gao (2007), Li and Racine (2007)) and other computationally more intensive model
selection methods (see, e.g., Shen et al. (2004)) to choose the sieve number of terms K,,. See Chen

et al. (2006) for further discussions.

3.1 Consistency

In the following we denote Qy, (e, ) = 2 Eg[l(av, g, Zo)] + L Ey[log g(Y1)], where E is the expecta-
tion under the true DGP (i.e., Assumption M). Denote v = («, g) and v9 = (v, 90) €' = A x G.



Assumption 3.1: (1) ag € A, where A is a compact set of R? with nonempty interior, c(uy, us; o) >
0 for all (ug,uz) € (0,1)%, o € A; (2) go €G, either G ={g= f2>0:f € A"(Y), [g(y)dy =1}
and G, given in 32), or G = {g = exp(f) > 0: f € A"(}), [ g(y)dy = 1} and G, given in [B3),
r>1/2; (3) Qulao, go) > —oo, there are a metric |||, = vVa’a+||g||l. on T = A x G and a positive
measurable function 7(-) such that for all € > 0 and for all & > 1,

Qn(ao,90) — sup Qn(a,g) = n(e) > 0.
acA,geGr:||v0—]|c>e

(4) the sieve spaces G,, are compact under the metric ||g||c; (5) there is II,,y9 € Ty, = A X G,, such
that [[TL,70 —yollc = o(1); and |Qn(Il70) — @n(y0)| = o(1).

For the norm |||l = vV&/a + ||g|lc on T' = A x G, one can use either the sup norm ||g||so, or
the lower order Holder norm ||g||,. for 7' € [0,7), or their weighted versions.
Assumption 3.2: (1) Ey [sup.cr, |¢(v, Zt)|] is bounded; (2) there are a finite constant £ > 0 and
a measurable function M (-) with Eg[M (Z;)] < const. < oo, such that for all § > 0,

sup [0(vy, Zy) — b, Zy)| < O°M(Zy) a.s.— Zy
{ymeln:|lv—mnlle<6}

We note that under Assumption 3.1(1)(4), Assumption 3.2(1) is implied by Assumption 3.2(2).
Proposition 3.1: Under Assumptions M, 3.1 - 3.2, 6, = o(1), K,, — oo and % — 0, we have:

[Fn = 0lle = 0p (1)
3.2 Convergence rate

Given the consistency result Proposition 3.1, ¢, := inf{h > 0 : Pr(||3, —0||lc > h) < h}, the Levy
distance between |3, — 70|l and 0, converges to 0. Let N' = {y € ' : ||7 — Yllc < ¢n} be the
new parameter space, and the corresponding shrinking neighborhood in the sieve space, denoted
as N, = N'NT,, be the new sieve parameter space. Denote Varg as the variance under the true
DGP (i.e., Assumption M).

Assumption 3.3: (1) There are a metric ||y||s = vV&/a + ||g||s on N such that ||v]|s < ||7||e, and
a constant Jy > 0 such that for all € > 0 and for all n > 1,

Qn (a0, 90) — sup Qnla,g) > Joe* > 0.
'YENn:H'YO_'YHsza

(2) SUDPLyen,|no—nllo<e} Varo((y, Zt) — €(y0, Zt)) < const. x € for all small € > 0.

Assumption 3.3 suggests that a natural choice of ||7||s could be /Qn(70) — Qn(7).
Assumption 3.4: (1) {Y;}}_, is geometrically ergodic (hence geometric S-mixing); (2) there are a

constant x € (0,2) and a measurable function M (-) with Eo[M (Z;)?log(1+ M (Z;))] < const. < oo,
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such that for any ¢ > 0,

sup [(, Zy) — Uy, Ze)| < O°M(Zy)  a.s. — Zy.
{veNn:|lvo—lls <0}

Although we do not need any [-mixing decay rate to establish consistency in Proposition
3.1, we need some [-mixing decay rate for rate of convergenceld Given the results in subsection
2.2.1, Assumption 3.4(1) is typically satisfied by copula-based Markov models. Note that in As-
sumption 3.4(2), the moment restriction on the envelop function M(Z;) is weaker than the one
(Eo[M(Z;)°] < const. < oo for some ¢ > 2) imposed in Chen and Shen (1998). This is because
Chen and Shen (1998) only assumed [-mixing with polynomial decay speed while our Assump-
tion 3.4(1) assumes geometric f-mixing. It is well-known that there are trade-off between speed
of mixing decay rate and finiteness of moments; see, e.g., Doukhan, et al (1995) and Nze and
Doukhan (2004). Assumption 3.4(2) is a very weak regularity condition and is satisfied whenever
SUDy[0,1]7EN 0| [ro—] s <6 |%W| < 0"M(Z;) with M (Z;) having finite slightly higher than
second moment, which is satisfied by all the copula-based Markov models that satisfy the regularity
conditions in Chen and Fan (2006) for semiparametric two-step estimators.

The next proposition is a direct application of Theorem 1 of Chen and Shen (1998) hence we
omit its proof.

Proposition 3.2: Under Assumptions M, 3.1 - 3.4, we have

N [ Ky,
|7 — 0lls = Op (05) , 6n:max{ 7,"’}’0—Hn70\’s}=0(1)-

4 Normality and Efficiency of Sieve MLE of Smooth Functionals

Let p: A X G — R be a smooth functional and p(5,) be the plug-in sieve MLE of p(7p). In this
section, we extend the results of Chen et al (2006) on root-n normality and efficiency of their sieve
MLE for copula based multivariate joint distribution model using i.i.d. data to our scalar strictly

stationary first order Markov setting.

4.1 /n-Asymptotic Normality of p(7,)

Recall that ¢, is the speed of convergence of ||7, — Yo||s to zero in probability, let Ny = {y €
N o — s < Sulogdrty and Ny, = {7y € Myt |10 — vlls < 6nlogd; '}, then 7, € N, with

probability approaching one. Also denote (Uy,Us) = (Go(Y1),Go(Y2)), u = (u1,uz) € [0,1]? and
c(Go(Yi—1),Go(Yy); avg) = c(U; avg) = (0, Z¢) (with the danger of slightly abusing notations).

3It is common to assume some [-mixing or strong mixing decay rates in semi/nonparametric estimation and
testing; see, e.g., Robinson (1983), Andrews (1994), Fan and Yao (2003), Gao (2007), Li and Racine (2007).
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Assumption 4.1: «ag € int(A).

9% log c(u;a) 02 loge(usa) 02 log c(u;a)
da! ’ Ou;0a Ou;Ouy

Assumption 4.2: the second order partial derivatives for k,j =
1,2, are all well-defined and continuous in v € Nj.

Denote V as the linear span of I' — {7p}. Under Assumption 4.2, for any v = (va,v4) € V, we
have that ¢(yo + nv, Z) is continuously differentiable in 1 € [0,1]. For any v € Ny, define the first

order directional derivative of ¢(v, Z;) at the direction v € V as:

86(77 Zt) [’U] — d€(’y + nv, Zt) |
oy o dn =0
dlog c(v, Z4) vy(Ys) | o= loge(v, Z0) /
= 2 D7 E < ,

and the second order directional derivative as:

82€(77 Zt)[’U ﬂ — i 86(7—1_7757 Zt)[U] |~ _ d2€(7+77v+771~)> Zt)| |~
ooy T diy 0y = drjdn n=01i=0-

2
Assumption 4.3: (1) 0 < Ejy [(%ﬁ[v]) } < oo forv#0,veEV;

(2) [sup,es, \%W!dy < oo and [sup,cg, \W\dy < oo almost surely,
for S, ={n €0,1] : v +nv e Ny}, v#0,v €V.
Assumption 4.3(2) is a condition that is assumed even for parametric Markov models such as

in Joe (1997, ch. 10) and Billingsley (1961b).

Lemma 4.1: Under Assumptions M, 3.1(1)(2), 4.1, 4.2 and 4.3, we have: for any v € V, (1)

Ey ((ag(gg’,&) [v]> (ae(g(;,lzs) [’D])) =0for v € Vandall s <t (2) {%ﬁ[v]}?ﬂ is a martingale

2
difference sequence with respect to the filtration ;1 = o(Y1;...;Y—1). (3) Ep <<%?Y’,Zt) [v]) ) =

9%4(0,Z.
—E <8(Jigv,t)[v,v]> .

Lemma 4.1 suggests that we can define the Fisher inner product on the space V as

and the Fisher norm for v € V as ||v||> = (v,v). Let V be the closed linear span of V under the
Fisher norm. Then (V, || - ||) is a Hilbert space.

The asymptotic properties of p(7,) depend on the smoothness of the functional p and the rate
of convergence of 7,,. For any v € V, we denote

dp(70 + 772}) ‘ — [?}]
d’l’] n=0 = 8,7/ ’

whenever the limit is well-defined.
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Assumption 4.4: (1) for any v € V, p(yo + nv) is continuously differentiable in 7 € [0, 1] near
n =0, and
0
9p(0), _ ol
= B
2l veV:||v||>0 | ?}|

< oQ;

(2) there exist constants ¢ > 0, w > 0, and a small € > 0 such that

8 w AV 1
(a0 +0) = plo0) ~ 28] < el for any v €  with o] < .

Under this assumption, by the Riesz representation theorem, there exists a v* € V such that

Op(y0) 1 _ ) v
27 [v] = (v*,v), forallv € V (4.1)
and 8p()
€2 _ Ip(10) 2 _ | %’7’0 [v]l”
I =l—5 "= s - 0.
v vEV:||v][>0 HUH

Assumption 4.5: (1) |3, — 70|l = O,(3,) for a decreasing sequence d,, satisfying (5,)* = o(n~1/?);
(2) there exists IL,v* € T',, — {7} such that §, x ||IL,v* — v*|| = o(n=/?).
Assumption 4.6: for all § € Ny, with |[¥—0| = O(8,,) and all v = (v,,v,)" € V with |[v]| = O(6,)

we have: , ,
O, Z) 0°L(v0, Z1) -1
Ey <W[%U] - W[%U] =o(n"").
For parametric likelihood models, Assumption 4.6 is automatically satisfied as long as the
second order derivatives of the log-likelihood is continuous in a shrinking neighborhood of the

true parameter value. For sieve MLE, Assumption 4.6 is satisfied provided that the third order

directional derivatives daZ(VOJFZ?[%_VO]’Zt) exists for n € [0,1], v € Ny, with [|[v — vl = O(6n),

and the sieve MLE convergence rate ¢, is not too slow. For example, under Assumption 3.1(2)
with polynomial, Fourier series, spline or wavelet sieves, we have a sieve MLE convergence rate of
6p ="/ (see, e.g., Shen (1997) for i.i.d. data, and Chen and Shen (1998) for f-mixing time
series data), and hence Assumption 4.6 is satisfied if r > 1.
Assumption 4.7: {%,;,Z”[an*] v e Ny, IV =0l = O((Sn)} is a Donsker class.

Under Assumption 3.4(1), Assumption 4.7 is satisfied by applying the results of Doukhan, et al
(1995) on Donsker theorems for strictly stationary [S-mixing processes.

Theorem 4.1 (Normality): Suppose that Assumptions M, 3.1-3.4 and 4.1-4.7 hold. Then:
~ 0
Vi(p(An) = p(0)) = N(0,[|2522[12).

4.2 Semiparametric Efficiency of p(7,)

We follow the approach of Wong (1992) to establish semiparametric efficiency. Related work can
be found in Shen (1997), Bickel et al. (1993), Bickel and Kwon (2001) and the references therein.
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Recall that a probability family {P, : v € T'} for the sample {Y;}}; is locally asymptotically normal
(LAN) at 7o, if (1) for any v in the linear span of I' — {yo}, 7o + nn~/2v € I for all small > 0,
and (2)

dP 1

Vod-;zyol/% (Yy,---,Y,) =exp {n[Ln(’yo + %v) — Ln(fyo)]} = exp {Zn(v) _ %HUH2 I Rn(’YO,’U)} 7

where ¥, (v) is linear in v, %, (v) LR N(0,||v]|?) and plim, oo Rn(70,v) = 0 (both limits are
under the true probability measure P,;). To avoid the “super-efficiency” phenomenon, certain
regularity conditions on the estimates are required. In estimating a smooth functional in the
infinite-dimensional case, Wong (1992, p.58) defines the class of pathwise regular estimates. An
estimate T}, (Y1, -+ ,Yy) of p(y0) is pathwise regular if for any real number n > 0 and any v in the

linear span of I' — {7y}, we have

limsup Py, (T, < p(yn,y)) <liminf P, (T, < p(Vn,—n)),

n—oo n—0o0

where 7,,.,, = Y0 + 1~ /?v. See Wong (1992) and Shen (1997) for details.
Theorem 4.2 (Efficiency): Under conditions in Theorem 4.1, if LAN holds, then the plug in

sieve MLE p(7,,) achieves the efficiency lower bound for pathwise regular estimates.

4.3 /n Normality and Efficiency of Sieve MLE of Copula Parameter

We take p(y) = Na for any arbitrarily fixed A € R% with 0 < |A\| < oo. It satisfies Assumption
4.4(2) with %W[v] = Nvg and w = oco. Assumption 4.4(1) is equivalent to finding a Riesz
representer v* € V satisfying ([@2) and (3)):

N(a—ag) = (y—70,v") foranyy—9"€V (4.2)
and ,
8p(70) * * % |A,Ua|
” o~/ szHv H2:<U y U >: sup H 2 < o0 (43)
v v20.0ev V]l

Let us change the variables before making statements on (4.3]). Denote:

£5([0,1]) = {e :[0,1] = R : /01 e(v)dv = O,/Ol[e(v)]2dv < oo}

By change of variables, for any v, € V, there is a unique function b, € £3([0,1]) with by(u) =

vy(Gyt(u))/g0(Gyt (u)), and vice versa. So we can express %ﬁ[v] as:

66(707 Zt) _ 66(707 Ut7 Ut—l) / /
Z?’y’ [U] - 8’}’/ [(Uoﬂ bg) ]
o 0 lOg C(Ut—17 Ut7 OZ(]) : alog C(Ut—17 Uta Oé()) Ut-2+
- B [va] + by (Ur) + Z du, /0 bg(u)du

i=1
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and

v||* = Eo

(2w B [(v;,bm)z]

2 U o

01 Ui_1,Uy; o1 U1, Us; t—2+4j

= | | Yo v %) ] + by (T) + 3 2108 o aO)/O by(u)du
j

2

j=1
Define:

B = {b = (U, bg)’ € (A = ag) x £5([0,1]) : []bI|* = Eo

(o]

Then there is a one-to-one onto mapping between the two Hilbert spaces (B, || -||) and (V,]|-]]).
So the Riesz representer v* = (v, v*) € V is uniquely determined by b* = (v}, b*)’ € B (and vice

a’ g ar g

versa) via the relation: vy (y) = by (Go(y))go(y) for all y € Y. Notice that

| N vg|?
Sup s
w00y IVl
=  sup Xval
- — : . : 2
b£0.b€B [ [(W[%] +by(Uy) + 2521 %ﬁﬂwo) fOUt,zH bg(u)du) ]

= )\/Z*(Oéo)_l)\ =N (EO[‘S’Olo‘s‘é‘co])_1 A,

where S, is the efficient score function for ay,

dlog c(ag, Up, Up—1) * & 0log (o, Ug, Up—1) U2+
S;o - oo —e (Uy) - Z du, /0 e*(u)du (4.4)

=1

and e* = (e, -+, e5) € (£3(]0,1]))¢ solves the following infinite-dimensional optimization problems
fork=1,---,d,

2
2

. 810g C(Ut—l7Ut;OéO) alOgC(Ut_ljUt;ao) /Ut2+j
inf  FE —er(Up) — er(u)du
er€£9([0,1]) 0 ooy, k( t) Z auj 0 k(W)

j=1
Therefore b* = (v}, b)) with v}, = Z, () "' X and b} (u) = —e*(u) x v}, and v* = [Ig, —e*(Go(+))go(-)]

Z.(og) "' A, Hence ([@3) is satisfied if and only if Z,(ag) = Eo[SaeSh,] is non-singular, which in
turn is satisfied under the following Assumption:

Assumption 4.4’: (1) [ %u;?o)du_j = 2 [ c(u;ap)du_; = 0 for (j,—5) = (1,2) with j # —j; (2)

Ay

. . 2 o(u:
Sigear = Eo <8lOgC(U5&17Ut7(XO){610gC(U5&17Ut7(X0)}/) is finite and positive definite; (3) %d’u_j —
J

&2% [ e(u;ap)du_; =0 for (j,—7) = (1,2) with j # —j; (4) there exists a constant K such that

uj

N2
Max;—1,2 SUPo<y, <1 £ [(uj(l - Uj)w) \U; = u]} <K.
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Assumption 4.4’ is a sufficient condition to ensure that the copula parameter could be esti-
mated at root-n parametric rate. It is imposed in Bickel et al (1993) and Chen et al (2006) for
semiparametric bivariate copula models. Bickel et al (1993) has shown that many popular copula
functions such as Clayton, Gaussian, Gumbel, Frank and others all satisfy this assumption. We
can now apply Theorems 4.1 and 4.2 to obtain the following result:

Proposition 4.1: Suppose that Assumptions M, 3.1-3.4 and 4.1-4.3, 4.4’, 4.5-4.7 hold. Then:
Vn(@, — ag) = N (0,Z.(ag) ") , and @, is semiparametrically efficient.
In general, there is no closed-form solution of Z,(ag). Nevertheless it can be consistently es-

timated by a sieve least squares method using its characterization in (4.4]). Let U, = CA}'n(Yt) for

t=1,---,n. Let B,, be some sieve space such as:
Kna Kna
B, = {e(u) = Z arV'2 cos(kmu), u € [0, 1], Z a3 < oo}, (4.5)
k=1 k=1
where K,q — 00, (Knq)?/n — 0. For k=1,--- ,d, we compute € as the solution to

2
2

1 & [dloge(Uiy, U _ dlogc(Up_y,Usia) (U2t
min Z ogc( t—1, tva)_ek(Ut)_Z ogc( t—1, t7a)/ Jek(u)du
0

ex€Bn, n — 1 = day, = Ou,;
Denote € = (€1, ,e4) and

BlogCier ) _ g5 — 372, 2loseln 00 [Dicavs ()
0

n
7 1 Z Ry j=1 du;
. = SO oo 0
n—1 610gc(Ut—1,Ut;a) ~(TT 2 810gc(Ut71,Ut;oe) Upt—o4j ~
= | (Beeelfen it (@) - 32, ZeselGenliit) (s ) du

Following the proof of Theorem 5.1 in Ai and Chen (2003) we immediately obtain:
Proposition 4.2: Under all the assumptions of Proposition 4.1, Z, = Z.(ag) + op(1).

4.4 Sieve MLE of the marginal distribution

Let us consider the estimation of p(y9) = Gp(y) for some fixed y € ) by the plug-in sieve MLE:
p(Fn) = Gu(y) = [ 1(z < y)gn(x)dx, where G, is the sieve MLE for go.
Clearly %&Y,‘))[v] = fy 1(z < y)vg(z)dx for any v = (v}, v,) € V. It is easy to see that w = oo

in Assumption 4.4, and

2
9p(70) 12 ‘fy L(z < y)vg(x)dx‘
H 8 / ” = 7llp 2 < 00.
v veV:||v||>0 ||U||
Hence the representer v* € V should satisfy (£8]) and [@7):
9p(0) < vg(Yt)> v

v ) = v] = Fp | 1(Y; < forallv eV 4.6
0} = 0] = o (105 < )24 (4:6)
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120 < oy = it = s HELO S ol CE @)
beB:||b||>0
Proposition 4.3: Let v* € V solve (@8] and ([ET). Suppose that Assumptions M, 3.1-3.4 and
4.1-4.3, 4.5-4.7 hold. Then for any fixed y € Y, vi(Gn(y) — Go(y)) = N (0,][v*|?). Moreover, G
is semiparametrically efficient.

Again, there are currently no closed-form expressions for the asymptotic variance |[v*||?. Nev-
ertheless, it can also be consistently estimated by the sieve method. Let 6% =
LS 1T < Gul)y 00

7 i7.-a = 77 7.5 77 . 2
oS, [W”a +b,(U)) + Z?:1 %@hwa) fOUt72+J bg(u)du]

max
va#0,bg€Bn,

where U; = G, (Y;), and B,, is given in (@3).
Proposition 4.4: Under all the assumptions of Proposition 4.3, we have: for any fixed y € ),

72 = [[v*||? + 0p(1).
4.5 Plug-in estimates of conditional quantiles

Under Assumption M, the ¢—th conditional quantile of Y; given Y;_; = y is given by Q};(y) =
Gyt (Cz_‘ll [91Go(v); ao]). Its plug-in sieve MLE estimate is given by:

Qy () = G5 (O3 [alGu(w)zan))

Let p(v) = Q};(y), then by some calculation, for any v = (va,v,) € V,

—Cu [ 1(z<y)vg(x)dz—Crava %
ap(’YO) ['U] _ C(Utfl70;1(Ut—1,q;a0),a0) f 1(33 < Qq (y))vg(x)dx
0’ 90(QY ()
92C(Ut—1,C1 * (Us-1,g300),00) _ 9*CUs—1,C1 N (Ur—1,4:00),000)

where C11 = 7 and Ci = 5ui0a .
We can see w = 2 in Assumption 4.4, as long as go(Q};(y)) # 0and ¢(U;_1, C; (U1, ¢; ap), g) #

0, which are satisfied under Assumption M (2). Thus we have:

Y —1 [=Cu1 [ 1(#z<y)vg(z)dz—Crava _ Y 2
() {90(QY ()} [l —Ciote _ 112 < Q) (y)vy(a)da |

| I?= sup
' vEV:||v||>0 HUH2

< Q.

Hence the Riesz representer v* € V should satisfy: (v*,v) = %W[v] for all v € V, and |[v*||? =
||%;Y,°)||2. Applying Theorems 4.1 and 4.2 we immediately obtain:

Proposition 4.5: Let v* € V be the Riesz representer for Q}I/(y). Suppose that Assumptions
M, 3.1-3.4, 4.1-4.3, 4.5-4.7 hold. Then: for a fixed y € ¥, vn(QY (y) — QY (y)) = N (0, [[v*[|?).

Moreover, Q;/(y) is semiparametrically efficient.
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5 Sieve Likelihood Ratio Inference for Smooth Functionals

In this section, we are interested in sieve likelihood ratio inference for smooth functional p(y) =
(p1(7), - k(7)) : T — RE:

Hy : p(0) =0,
where p is a vector of known functionals. (For instance, p(y) = o — ag € R% or p(vy) = G(y) —

Go(y) € R for fixed y.) Without loss of generality, we assume that

, , are linearly

9p1(0) .. 9pr(10)
oy’ oy’
independent. Otherwise a linear transformation can be conducted for the hypothesis.
Suppose that p; satisfies Assumption 4.4 for ¢ = 1,--- ,k. Then by the Riesz representation
theorem, there exists a v} € V such that

dpi(vo)
oy

Denote v* = (v],--- ,v;). By the Gram-Schmidt orthogonalization, without loss of generality, we

[v] = (v}, v), for all v € V.

assume (v, v;) = 0 for any i # j.
Shen and Shi (2005) provide a theory on sieve likelihood ratio inference for i.i.d. data. We now

extend their result to strictly stationary Markov time series data. Denote

Yo = arg max Lp(a,g); 7, =ar max L,(a,g).
o =arg max. n(9); Tn 8 e X n(a, g)

Theorem 5.1: Suppose that Assumptions M, 3.1-3.4, 4.1-4.3, 4.5-4.7 hold, also that Assumption
4.4 holds with p;, i = 1,--- ,k and Assumption 4.5(2) holds with v}, i =1,--- , k. Then:

2n(Ly(Yn) — Ln(Vn)) —¢ X(2k)7

where ka) stands for the chi-square distribution with k& degrees of freedom, and 8;}81_5/70)’ s m)g_w
are assumed to be linearly independent.

We can apply Theorem 5.1 to construct confidence regions of any smooth functionals. For
example, we can compute confidence region for sieve MLE of the copula parameter a. Define
gn(a) = argmaxgeg, Ln(a,g). By Theorem 5.1, 2n(Ly,(Qn, §n(@n)) — Ln(ao, gn(ao))) —¢ de),

where (Q,, §n(Q)) = 7y, is the original sieve MLE

6 Monte Carlo Comparison of Several Estimators

In this section we address the finite sample performance of sieve MLE by comparing it to several
existing popular estimators: the two-step semiparametric estimator proposed in Chen and Fan
(2006), the ideal (or infeasible) MLE, the correctly specified parametric MLE and the misspecified
parametric MLE.

41f we only care about estimation and inference of copula parameter «, we could also extend the results of Murphy
and van der Vaart (2000) on profile likelihood ratio to our copula based semiparametric Markov models.
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6.1 Existing Estimators

For comparison, we review several existing estimators that have been used in applied work.

6.1.1 Two-step semiparametric estimator

Chen and Fan (2006) propose the following two-step semiparametric procedure:
Step 1, estimate the unknown true marginal distribution Gy(y) by the empirical distribution
function: ZELG,, (y), where G, (y) = %H Yoy WY <y}
Step 2, estimate the copula dependence parameter o by:
1 n
627 = argmax — 3" log e(Gy (Y1), Gu(Y1); ).

acA n
t=2

Assuming that the process {Y;}}; is f-mixing with certain decay rate, under Assumption M

and some other mild regularity conditions, Chen and Fan (2006) show that

Vn(ap®? — ap) —q N (0,03,,),  with o3, = By 'Ss,, By

2 .
where By = —E (a log Cégg;},’Ut’ao)> = Yjgea; (under Assumption 4.4’), and

. 1 = [Ologe(Uiy, U ax
Yosp = lim Varg {% 2 [ gl gal ti @) + Wi (U—1) + Wz(Ut)]} < 00,
Lot 02 log c(v1, va; o
Wi(Ui—1) = /0 /0 [{U;—1 <wv1} — v g@(()z81u12 O)C(’Ul,’Ug;Oé(])d’Uld’Ug,
Lot 02 log c(v1, va;
Wo(Uy) = / / [1{U; < wvo} — v9] ga( L2 O)C(’Ul,’L)Q;Oé(])d’UldUQ.
o Jo aOus

Example 6.1 (Two-step semiparametric estimator of Gaussian copula parameter): The bivariate
Gaussian copula is

Clut,uz; @) = B (@ (ur), @ (u2)), |af <1,

where @, is the bivariate standard normal distribution with correlation «, and ® is the scalar

standard normal distribution. Chen and Fan (2006) show that:
\/ﬁ(&isp - Oé()) —d N (0, 1-— ag) .

Klaassen and Wellner (1997) establish that the semiparametric efficient variance bound for esti-

P is semiparametrically efficient for

mating a Gaussian copula parameter o is 1 — ozg; hence &2°
Gaussian copula. However, as pointed out by Genest and Werker (2002), Gaussian copula and
the independence copula are the only two copulas for which the two-step semiparametric estimator
is efficient for . Moreover, the empirical cdf estimator is still inefficient for Go(-) even in this

Gaussian copula-based Markov model.
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6.1.2 Possibly misspecified parametric MLE

Denote G(y,0) (g(y,0)) as the marginal distribution (marginal density) whose functional form is
known up to the unknown finite dimensional parameter #. Then the observed joint parametric

log-likelihood for {Y;}}; is:

1< 1<
9) = E Z;IOgg(Y;HG) + E tz_:lOgC(G(Y;f—lye)v G(Y},e% OZ) ’

and the parametric MLE is: (&4, éﬁ) = argmax(q g)eAxo Ln(a,0) , where A x © is the parameter
space.

Denote ¢(a, 0, Z;) = log g(Yt, 6) + log ¢ (G(Yi—1,0),G(Y:, 0); ) as the parametric log-likelihood
for one data point Z; = (Y;—1,Y;).
Assumption 6.1 (1) A x © is a compact set of RP with nonempty interior. (a*,0*) € Ax © is the
unique maximizer of Ey(¢(«, 0, Z;)) over A x ©; (2) (v, 0, Z;) is continuous in (a, @) for any data
Zt, and is a measurable function of Z; for all (a,0) € A X ©; (3) Eo[sup(s g)caxe [€(e, 0, Z;)|] < oo.

Assumption 6.2 (1) (a*,0") € int(A x ©); (2) the second order partial derivatives %,
O log c(ur,uz,0) O loge(uruz,a) 0 logefur,uz,a)
da! ’ Ou;0a ) Ou;0uy,
neighborhood NV of (o, 8*), and for ally € Y, (ur,us) € (0,1)2; (3) Ey <Sup(a )N ||8é()a€éa 0.21) ||>

00; (4) By = —Ep <%) is nonsingular.

Assumption 6.3 —- Zt 9 Blla aeg Ze) —a N (0, Xyp) with Xy = limp oo Var{- vn D2 8Z(Ol(aee)Zt)} <

for k,5 = 1,2 are all well-defined and continuous in a

0.
Assumption 6.3 is satisfied by many well-known CLTSs, such as Gordin’s CLT for zero-mean er-
* [k * )k /
godic stationary processes, which holds under assumptions M, 3.4(1) and Ej <a£(g(&9052’5) [86(3(&995&)] <

00. The next Proposition 6.1 follows trivially from Propositions 7.3 and 7.8 of Hayashi (2000); hence

we omit its proof.
Proposition 6.1 (possibly misspecified case): Let (64,608) = arg max (4 9)e Axo Ln(a,0). Under

Assumptions M and 6.1 - 6.3, we have:
Vi ((@5,68) = (0*,6%)) —a N (0, B;'SupB5))
6.1.3 Efficiency of correctly specified parametric MLE

Under Assumption M and the correct specification of marginal G(Y%,6*) = Go(Yz), we have: a* =
«g. Asymptotic properties for the correctly specified MLE for Markov processes have been discussed
in Section 10.4 of Joe (1997) and Billingsley (1961b). For the sake of completeness, we present our

Proposition 6.2 here.
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Assumption 6.3’ (1) The range of Y; given Y;_; does not depend of («a, 6); the 1st and 2nd order
differentiations of ¢(«, 0, Z;) with respect to (a,0) € N may be carried out under the integral sign,
integration being with respect to Yz; (2) X, = Ey (8@(3?&0’;5&){84(3&0’;5&) }’) < 0.

Proposition 6.2 (correctly specified case): Let (a4, Gﬁ) = arg max(q,g)e Axo Ln(a,0). Under As-
sumptions M with G(Y, 0%) = Go(Y3), 6.1, 6.2 and 6.3, we have: a* = ag, Byp = Xy = Lop, and

(65, 0%) is efficient for (o, 0%):

Vi (@, 07) = (00, 0%)) —a N (0,5, ).

Moreover \/n (64, — a) —q N (0, Zup(cg) ") with

Olog ¢(Us—1,Ut;a0) 86((10,0*,Zt)b x
da a0

Olog c(U—1,U;c00) 8@(010,9*,Zt)b !
O 00

Tip(ap) = mgn Ey <

6.1.4 Ideal (or infeasible) MLE

We denote 4l as the ideal (or infeasible) MLE of the copula parameter g when the marginal
Go(-) is assumed to be completely known. Proposition 6.2 implies the following result:

Proposition 6.3 (ideal MLE): Let 4% = arg max,e4 % Soigloge(Ui—1,U; ). Suppose that
Assumption M holds with a completely known G(-,0) = Go(-). Let Assumptions 4.1, 4.2 and 4.4’

2 . .
hold. Then: By = —E) (8 log Cégg;j;“””) = Yjdeq is finite and nonsingular, and aL%% is efficient:

\/ﬁ(&fldeal - Oé()) —d N (0 szial)

Remark 6.1: Since Z.(ag) < Zup(p) < Sideat, we have: T,(ag)™t > Top(ap) ™t > Ezdial Also
Proposition 4.1 immediately implies that O'%Sp > T (ag)™ L.

Example 6.1’ (the ideal MLE of Gaussian copula parameter): For the Gaussian copula Example
6.1, the Gaussian copula density function is

Ga (@ (u1), @~ (u2))
(@~ (u1))p(2 (u2))’

where ¢,, is the bivariate standard normal density with correlation coefficient «, and ¢ is the scalar

c(uy, ug; ) = la] < 1,

standard normal density. Thus one can easily verify that

2 .
0 IOgC(Ut—laUt7a0)> _ (1+a0 < oo if ad # 1.

dada 1—ad)?

Consequently, /n (L% — ag) —q N(0,5} ) with ! = (1 - ad) x 1 a‘) We note that the

asymptotic variance Avar(al®d) =1 < 1—a2 = Avar(a 2P, and Avar( Ide“l) Avar(62P)

Eicleal = BO = _EO (

if and only if ag = 0 (i.e., independence). Also Avar(alde) is decreasing in |ay|.
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Example 2.1’ (the ideal MLE of Clayton copula parameter): For the Clayton copula in Example

2.1, the Clayton copula density function is given by
c(ur, ug, ) = (14 a)uy T uy T (e 4 uye —1)-0/e42) o 5 0,

By some tedious calculation,

0?logc(Ui—1,Us; v
Yideal = DBo=—Ep g elle1, Ui o)
Oada
1 | (14 a)(1 + 2)
= Int
alta)  altraP(l+oa) e x Int()

oo zy(log z—log y)?—z(log #)2—y(log y)*
where Int(a fl (rty—D)I+i/a

[—1,1]. Therefore, Eldeal € (0,00) prov1ded that ag > 0. Hence \/_( Ideal _ ao) —4 N (O, Ei_dial),

dxdy, which is a small number bounded in

where the asymptotic variance X7. , is increasing in o and is O(a3).

zd ea

Example 6.2 (the ideal MLE of EFGM copula parameter): For the EFGM copula with C'(uy, ug; ) =

uiug(1 + a(l —up)(1 — ug)), a € [—1,1], the copula density function is
82

aul 8u2

c(uy, ug; @) = Cug,ug;a) =1+ a — 2a(uyg + ug) + 4aujus.

Let Lig(2) = S 32, 2 /K2, |2| < 1, be the polylogarithm function with order 2. Then

2 .
2ideal _ _EO 0 10g C(Ut—17 Uta Oé())
Oada

_ / / 1 — 2u1 — 2U2 + 4U1U2) durdu
1+ a—2a(ug + uz) + daugug 12

a7 Liy(|o]) — Lis(e®)/4 — |o
(14 2k)2 la|3 )

k=1
6.2 Simulations

We consider several first-order Markov models generated by different classes of copulas (Clayton,
Gumbel, Frank, Gaussian and EFGM) but with the same kind of marginal distribution (the Stu-
dent’s t distribution with different degrees of freedom: t3 and t5). We simulate a strictly stationary
first-order Markov process {Y;}}~; from a specified bivariate copula C'(uy, ug; o) with given invari-
ant cdf G as follows:

Step 1: Generate an i.i.d. sequence of uniform random variables {V;};;

Step 2: Set Uy = Vi and Uy = Cyy [Vi| U1, ).

Step 3: Set Y; = GO (Up) fort =1,...,n

In our simulation, the true marginal distribution is ¢, with density go(y) = %’&%)(1 +

%)_0'5(”“) with degrees of freedom v = 3 or 5. For each specified copula C(uq,us; ), we
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Figure 2: Clayton copula (« = 2 and 12) and Student’s t(5) distribution

generate a long time series but delete the first 2000, and keep the last 1000 observation as our
simulated data sample data {Y;} (i.e., simulated sample size n = 1000). Figure 2 reports typical
simulated Clayton-copula Markov time series with parameter values a = 2, 12 (the corresponding
Kendall’s tau values are 7 = 0.5, 0.857) respectively. Figure 3 reports typical simulated Gumbel-
copula Markov time series with parameter values o = 2, 7 (the corresponding Kendall’s tau values
are 7 = 0.5, 0.857) respectively.

For all the copula based Markov models and for each simulated sample, we compute five estima-
tors of ag: sieve MLE, ideal (or infeasible) MLE, two-step estimator, correctly specified parametric
MLE (functional form of g is correctly specified) and misspecified parametric MLE (functional form
of g is misspecified). Sieve MLEs are computed by maximizing the joint log-likelihood L, (c, g) in
(BI) using either power series sieve or polynomial spline sieve to approximate the log-marginal

density (log ¢g). Then the marginal density function gy can be approximated by

e ()

_ i (6.1)
Jexp (25:1 akAk(y)) dy

where {Ag(y), k=1,--- K } might be a subset of power series or polynomial splines. We approx-

imate the density gg on the support [min(Y;) — sy, max(Y;) + sy|, where sy is the sample standard
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Figure 3: Gumbel copula (« = 2 and 7) and Student’s t(5) distribution

deviation of {Y;}. To evaluate the integral that appears in the equation (6.I]), we use a grid of
equidistant points on [min(Y;) — sy, max(Y;) + sy]. The grid size in our estimation report was cho-
sen to be 0.01. The selection of number of sieve terms & is based on the so-called small sample AIC
of Burnham and Anderson (2002): K = argmaxg {Ly(3.(K)) — K/(n — K — 1)}, where 3, (K) is
the sieve MLE of 79 = (ap, go) using K as the sieve number of terms

We compare the estimates of copula dependence parameter, and the estimates of 1/3 and
2/3 marginal quantiles in terms of Monte Carlo mean, bias, variance, mean squared errors and
confidence region. We also illustrate the performance of sieve MLE of the marginal density function.
We run Monte Carlo simulation MC' times (MC = 1000 in most of the reported results) and
summarize the results in tables and figures listed in Appendix B.

For Clayton copula generated Markov model, we also construct x? inverted confidence interval

(based on 500 Monte Carlo simulations) and report the estimates of the 0.01 conditional quantile

function.

5For the Monte Carlo simulation results reported in Appendix B, the sieve basis {1, |y|3/27 y?, y4} is used to
approximate log g for the case with true unknown Go = ts, while {1, |y|>/*, |y[>/?, y2, y*} is used to approximate
log g with true unknown Gy = ts.
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Since the two step estimator of Chen and Fan (2006) performs terribly for the Clayton copula
generated Markov model when « is big, we also compute and compare several other 2step estimators
that differ from each other by different ways of estimating marginal cdf in the first step. 2step-sieve
estimator estimates marginal density via sieve marginal maximum likelihood in the first step; 2step-
para estimator computes the marginal density via parametric marginal maximum likelihood with
a correctly specified marginal; 2step-mis estimator computes the marginal density via parametric
marginal maximum likelihood with a misspecified marginal. Our simulation results show that all
these 2step procedures perform worse than the correctly one step procedures (such as parametric
MLE and sieve MLE).

Brief summary of MC results: In Appendix B we present many tables and figures to report
the Monte Carlo findings in details. Here we give a brief summary of the overall patterns: (1) Sieve
MLESs of copula parameters always perform better than the 2-step estimator in terms of bias and
MSE, except for Gaussian copula and EFGM copula. For Gaussian copula, we already explained (in
Example 6.1) that both the sieve MLE and the 2-step estimators are semiparametric efficient for the
copula parameter with unknown marginal distributions. Table 8 also confirms the theoretical result
(in Example 6.1) that the asymptotic variance of Gaussian copula parameter estimator decreases
when the linear correlation coefficient increases. For EFGM copula, the distance between EFGM
copula function to the independent copula function is aujus(l — u1)(1 — u2) < 0.0625« for a €
[—1,1]. Therefore, EFGM copula is very close to the independent copula; hence the performance
of sieve MLE, 2step, correctly specified parametric MLE, ideal MLE for copula parameter are all
very close to one another; (2) For all the copula-based Markov models with some dependence in
terms of Kendall’'s 7 # 0, including Gaussian and EFGM copulas based Markov models, sieve
MLEs of marginal distributions always perform better than the empirical cdfs in terms of bias
and MSE; (3) For Markov models generated via strong tail dependent copulas, both the two-step
based estimators of copula parameters and the empirical cdf estimator of the marginal distribution
perform very poorly, both having big biases and big MSEs. Even for Markov models generated via
copulas without tail dependence, such as Frank copula, the two-step estimator of copula parameters
and the empirical cdf estimator of the marginal could have big bias and variances when Kendall’s
7 is large; (4) Sieve MLEs perform very well even for copulas with strong tail dependence and fat-
tailed marginal density ¢3; (5) Extreme conditional quantiles estimated via sieve MLE is much more
precise than those estimated via 2-step estimators; (6) Misspecified parametric MLE could lead to
inconsistent estimation of copula dependence parameter (in addition to inconsistent estimation of
marginal density parameter). In summary we recommend sieve MLE to estimate copula-based

Markov models and its implied conditional quantiles (VaRs).
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7 Conclusions

In this paper, we first show that several widely used tail dependent copula generated Markov
models are in fact geometrically ergodic (hence geometric S-mixing), albeit their time series plots
may look highly persistent and ‘long memory alike’. We then propose sieve MLEs for the class of
first order strictly stationary copula-based semiparametric Markov models that are characterized
by the parametric copula dependence parameter oy and the unknown invariant density go(). We
show that the sieve MLE of any smooth functionals of («, go) are root-n consistent, asymptotically
normal and efficient; and that their sieve likelihood ratio statistics are asymptotically chi-square
distributed. Monte Carlo studies indicate that, even for tail dependent copula based semiparametric
Markov models, the sieve MLEs of the copula dependence parameter, the marginal cdf and the
conditional quantiles all perform very well in finite samples.

In this paper we propose either consistent plug-in estimation of asymptotic variance or by
inverting profiled likelihood criterion function to construct confidence region for the sieve MLE &
of agp. In another paper, we extend the result of Andrews (2001) on parametric bootstraps for
parametric Markov models to a semiparametric bootstrap for our copula-based semiparametric
Markov models.

In this paper we assume that the parametric copula function is correctly specified. We could
test this assumption by performing a sieve likelihood ratio test; see e.g., Fan and Jiang (2007) for
a recent review about generalized likelihood ratio tests. Alternatively, we could also consider a
joint sieve ML estimation of nonparametric copula and nonparametric marginal. Recently Chen
et al (2009) provide an empirical likelihood estimation of nonparametric copula using a bivariate

random sample; their method could be extended to our time series setting.

A Mathematical Proofs

We first recall some equivalent definitions of S-mixing and ergodicity for strictly stationary Markov

processes. Then we present the drift criterion for geometric ergodicity of Markov chains.

Definition A.1. (1) (Davydov, 1973) For a strictly stationary Markov process {Y;}7°,, the [3-

mizing coefficients are given by:

8, — / sup |E[¢(Yian)|Vi = 9] — E6(Yisr))| dGo(y).

0<p<1

The process {Y;} is B-mizing if imy_o By = 0; is S-mizing with exponential decay rate if By <
vexp(—dt) for some §,v > 0; and is [-mizing with sub-exponential decay rate if imy_ &0 = 0

for some positive non-decreasing rate function & satisfying & — oo, t ™1 In& — 0 as t — oc.
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(2) (Chan and Tong, 2001) A strictly stationary Markov process {Yi} is (Harris) ergodic if

lim sup [E[p(Yi1)[Y1 = y] = E[d(Yia)l| = 0 for almost all y;

is geometrically ergodic if there exist a measurable function W with [ W (y)dGo(y) < oo and a
constant K € [0,1) such that for all t > 1,

S |E[¢(Yit1)|Y1 = y] = Elp(Yir)]| < &'W(y) (A1)
Definition A.2. Let {Y;} be an irreducible Markov Chain on with transition measure P"(y; A) =
PYiyn € AlY; = y), n > 1. A non-null set S is called small if there exists a positive integer n,
a constant b > 0, and a probability measure v(-) such that P"(y; A) > bv(A) for all y € S and all

measurable set A.

Theorem A.1. (Theorem B.1.4 in Chan and Tong, 2001) Let {Y;} be an irreducible and aperiodic
Markov Chain. Suppose there exists a small set S, a nonnegative measurable function L which is

bounded away from 0 and oo on S, and constants r > 1, v > 0, K > 0 such that
rE[L(Ye1)[Ye =yl < L(y) =, forally ¢ S, (A.2)
and, let S’ be the complement of S,
// L(w)P(y,dw) < K, for ally € S. (A.3)
Then {Y:} is geometrically ergodic and (A1) holds. Here L is called the Lyapunov function.

Proof of Theorem 2.1: We establish the results by applying Theorem A.1 or applying Propo-
sition 2.1(i) of Chen and Fan (2006).

(1) For Clayton copula, let {Y;}}"; be a stationary Markov process of order 1 generated from a
bivariate Clayton copula and a marginal cdf Go(-). Then the transformed process {U; = Go(Yz)}}-,
has uniform marginals and Clayton copula joint distribution of (Uy_1,U;). When o = 0 Clayton
copula becomes the independence copula; hence the process {U; = Go(Y:)}1, is i.i.d. and trivially
geometrically ergodic.

Let o > 0. Recall that Cy|i[wl|u;a] = a%C(u,w;oz) = (u™® +w™® — 1)"1 "V~ 1= and that
C2_|11 [q|u; ] = [(g~ /04 — 1)y~ 4 1]71/ is the g—th conditional quantile of U; given U;_; = u.
Denote Xy = U; “. Let {V;}]_, be a sequence of i.i.d. uniform(0,1) random variables such that V;

is independent of U;_1. Let ¢ = V; in the above conditional quantile expression of Uy given U;_1,

then we obtain the following nonlinear AR(1) model from the Clayton copula:

1/a

X, = (V70 X, +1 with X,V = Uy ~ uniform(0,1).
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Note that the state space of {X;} is (1,00). Since
Bol(vy /) — e =1,

we can let p € (0,1/a), and L(xz) = 2P > 1 be the Lyapunov function. Then by Hélder’s inequality,
p= EO[L(V;_Q/(HQ) —1)] <1 Letr=p~2>1and

o = max{z >1: TEOH:U(V;_Q/(HO‘) — 1)+ 1] > 2P — 1}.

Such x( always exists since

—a/(14+a) . P
By e, 1)+ 191

o 1)2
Jim. 1 =rp=p/° <1

Let the set S = [1,z¢]. Clearly L is bounded away from 0 and oo on S. We now show that S is a
small set. Let f(-|z) be the conditional density function of X; given Xy = x. Then

14+« < 14+«

Jyle) = aly — 14 x)2tle = oy — 1 4 z9)2+1/

if # < xp. Choose the probability measure v on (1,00) as v(dy) = f(y|zo)dy. Then
Pr(X; € A|Xg=z) > v(A), forall z € S and A € B.
Hence S is indeed a small set; see Definition A.2. Notice that, by the definition of z,
rEo[L(X1)|Xo = 2] < L(x) — 1, for all z > xq,

Ey[L(X1)|Xo = 2] < 00, for all x € S = [1, 0],

thus all conditions in Theorem A.1 are satisfied; hence {X;}}"; is geometrically ergodic, and geo-
metric f-mixing (or absolutely regular with geometrically decaying coefficients).

(2) For Gumbel copula, let {Y;}}" ; be a stationary Markov process of order 1 generated from a
bivariate Gumbel copula and a marginal cdf Go(-). Then the transformed process {U; = Go(Yz)}}-,

has uniform marginals and (U;_1,Uy) has the following Gumbel copula joint distribution:
C(ur, ug; @) = exp{—[(—logu)® + (—loguz)®]/*}, 0 <up,up <1, o> 1.

When a = 1 Gumbel copula becomes the independence copula; hence the process {U; = Go(Yz)}),
is i.i.d. and trivially geometrically ergodic.

Let a > 1. Let X; = (—logU;)®. Then U; = F(X;), with F(z) = exp{—z/*}. Let f(z) =
—F'1gt/ el exp{—z/*}. Then for X; we have

f(z1 + z2)

Pr (Xt—l—l Z :E2|Xt = l‘l) = f(:l?l)

, x1,29 > 0.
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Hence

- ® flry+
By (Xi11|Xe =m1) = / Pr (X1 > 22| Xy = 21) dag = / [z 2)d$2
0 0

f(x1)

_ F(z) _ azp}—(l/a)‘

f(z1)

Note that as x1 — 0,

“1/(2a), v [ C1@a) — [ (@1 + 20)
E() (Xt—i-l ‘Xt = xl) = /0 Lo —f(azl) dajg

1-1/2a) [ _1/00) —f (X1 + z10)
] /( )/0 oY/ (20) o) du

~ 2TV (1 Z1/a) /Olt—l/(2a)(1 ) 1/2e) gy
where the last relation is due to
Xz = (1—1/a)(1 +u)/*"2,
Observe that, as a > 1,

1

kg = (1— 1/a)/ /(1 — )7V = (1 - 1/a) x B(1 —1/(2a),1 —1/(20)) < 1
0

where B(-,-) is the beta function.

Let L(z) = /2% 4 z be the Lyapunov function. Let z = inf,~¢ L(z)/2. Then:
Eo(L(X¢11)| X = 2)

li =0
m1—>Holo L(:E) —Z ’
and
i POEX )| X =) Ko < 1.

0 L(z)—=z

Let S = [1/A, \] with sufficient large A > 0. Then S is a small set. So all conditions in Theorem
A1 are satisfied; hence {X;}}" is geometrically ergodic and geometric S-mixing.

(3) For Student’s ¢ copula, let {Y;}}; be a stationary Markov process of order 1 generated from

a bivariate t-copula and a marginal cdf Gp(-). Then the transformed process {U;y = Go(Y7)}}-;

satisfies the following:

v+ (ty' (Ui1))?
v+1

t, (Uy) ZPtZI(Ut—l)Jr@t\/ (1—p?),

where e; ~ t,11, and is independent of U*~! = (U;_1,...,U;) (see, e.g., Chen et al. 2008). Let
X; =t,;%(U;). Then

v+ (Xt_1)2

Xy =pXio1+o(Ximr)er, o(Xi—1) = \/ o1 (1—p?),
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where e; ~ t,.1, and is independent of X! = (X;_1,...,X1). Let L(z) = |z| + 1 > 1 be the
v—1
Lyapunov function. Then Eq{L(X;)} = ﬁ% + 1 < oo provided that v > 1. Then:

Eo (L(X¢)|Xim1 =2) = Eo(|pXem1 +o(Xir)er| [Xem1 = ) + 1= Ep (|px + o(x)eq]) + 1

< VE (pr+o@el) +1= /(%2 +02(@) Bole}]) +1,

where the strict inequality is due to e; ~ t,+1 and for fixed z,
2 2 2
0 < Var (|pz + o(z)er]?) = E (|px + o()er|*) — [Eo (|pz + o(x)es])]” .

Since o%(z) = (1 — p?)(v + 2?)/(v + 1), we have

Eo (L(X})| X—1 = ) Eo (|px +o(x)e]) + 1

lim = lim
\/(p2:132 + o2(x)Ey [e?]) +1
< lim
1— p?
— 2 E, 2
\/p i v+1 olet]

1— p?
< 24 " F[t3 =1

where the last inequality is due to Ep[e?]/(v + 1) decreasing in v € [2,00], and the last equality
is due to E[t3] = 3. Then we can choose a small set S = [—z0, 70| with sufficiently large z¢ > 0.
Clearly the density of e; is bounded from above and below on a compact set. Hence, all conditions
in Theorem A.1 or in Proposition 2.1(i) of Chen and Fan (2006) are satisfied, and {X;}}" is

geometrically ergodic (hence geometric S-mixing). O

Proof of Proposition 3.1: Since most of the conditions of consistency Theorem 3.1 of Chen
(2007) are already assumed in our Assumptions M, 3.1 and 3.2, it suffices to verify Condition
3.5 (uniform convergence over sieves) of Chen (2007). Assumptions M implies that {Y;}} ; is
stationary ergodic. This and Assumption 3.2 imply that Glivenko-Cantelli theorem for stationary
ergodic processes is applicable, and hence:

sup |Ln(v) — E{Ln(7)}| = 0p(1).

The result now follows from Theorem 3.1 of Chen (2007). O

Proof of Lemma 4.1: For (1), recall that Z; = (Y;_1,Y;), under Assumptions M, 3.1(1)(2),
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4.1 and 4.2, we have: for all s < t,

 ((50) (%570
- (o ((H50) (F5) i i)
- () m (R )

Recall that the true conditional density function is: p°(Y;|Y*™1) = go(Y;)xc (Go(Yi—1), Go(Y3); o) =
h(Yi|Yi-1570) - We have:

Oh(yt|Yi—1;70)

86(707 Zt) . v .
EO < 87/ [U] ’ wth_1> - /h(yt‘}/;f—hfy()) [v]h(yt‘}/;f—lafy())dyt
Oh(ye|Yi—1;70)
— [Py,
_ d(fhwﬂﬁ—u70+nwdw)| A,
- dn n=0 — dn n=0 — Y,

where the order of differentiation and integration can be reversed due to Assumption 4.3.

For (2), the above equality also implies that {%,Y;Zt)[v]}?zl is a martingale difference sequence
with respect to the filtration ;1 = o(Y7;...;Y—1).

For (8), Since [ h(y|Yi—1;70 + nv)dy = 1, by differentiating this equation with respect to 7
twice and evaluating it at n = 0, we get Ejy <<%§;Zﬁ)[v])2 |Y;_1> = —E, (%[v,vﬂn_l),
where the interchange of differentiation and integration is guaranteed by Assumption 4.3. O

Proof of Theorem 4.1: Let ¢, be any positive sequence satisfying €, = o(n_l/ 2). Denote

0 Lt — n
V0, Ze] = Uy, Ze) — (o, Zt) — %[’Y — 0] and pn(9(Ze)) = 0! 34sl9(Z:) — Eog(Zy))-
Then by the definition of sieve MLE 7,, (with abuse of notation, we denote it as 4 in the following),

RN . .
0< =3 (63, Z) — U7 £ enllnv”, Z)
t=2

= Hn (6(;}/7 Zt) - g(;}/ + Ean’U*, Zt)) + EO (e(;% Zt) - 6(;}/ + eanU*a Zt)) + Op(n_l)
_ 1 ¢ 86(707Zt)
= Fen— ; o

- L, 0] + pin (r[Y, 70, Zt] — 7[5 £ €nlnv™, Y0, Z4])
+E0 (T[’A}@ Y0, Zt] - T[’A}/ + GanU*, Y0, Zt]) + O(n_l)'

Claim 1: % PO %V}Zt)[ﬂnv* —v*] = 0,(n"1/?). This claim is true due to Chebyshev’s inequality,

serially uncorrelated (Lemma 4.1) and identically distributed data, and ||II,v* — v*|| = o(1).
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Claim 2: p, (r[4,70, Zi] — r[5 + €xI1,0*, 70, Zi]) = €n X 0p(n~/2). This claim holds since

i (r[3: 70, Ze) — 77 £ 11,0, 70, Z4))
= ln (f(&, Zy) — (7 £ e, 110", Zy) + enM[an*]>

oY
oA, Z o 00,2 . _
= Fénlin <%[an ] - %[an ]) = €n X 0p(n 1/2)7
where 7 € T'), lies between 4 and 4 =+ ¢€,11,,v*, and the last equality is implied by Assumption 4.7.
Claim 3: Ej (1,70, Zi] — r[§ £ enllnv*, 70, Ze]) = F€n (3 — 70,0") + €n0p(n™12) + 0p(n 7).
Note that

Emhmmﬁbz%<%Mm—awlo—%@ﬁ@h—%0

o'
826(:}/7 Zt) 826(70720
Ey <Wh—%w—%] - Wh—%w—%])

1 826(’}’0,Zt) —
+=kEp (W[’Y — Y0, — ’YO]) + €n X 0p(n 1/2)

1

2

2
1 0%0(y0, Zy) _ _

= §E0 <Wh — 0,7 — 70]) +én X Op(n 1/2) + Op(” 1)

where 4 € '), is located between v and 7y, and the last equality is due to Assumption 4.6. By

Lemma 4.1 (3), we have:

v —ll* = Eo

2 2
<_a€(g:/z—t) [y - 70]) ] = —Ep (78 g(;yg;,Zt) [y =07 — 70]) .

Therefore,

EO (T[/S//)/Ov Zt] - 7"[’3/ + Ean'U*, Y0, Zt])
A =0l = A+ enllv* =0l

= 5 + op(enn™Y?) + 0,(n71)

R * 1 " _ _
= Feu(§ — 0, ™) + §H€anU ||2 + Op(enn 1/2) + Op(n 1)

= den X (5 — 70, 0") + € X 0p(n”Y?) + 0, (n7Y).

In summary, Claims 1, 2 and 3 imply that

n

1 . . "
0 § - ZW% Zt) - 6(’}/ + EanU 7Zt)]
t=2
1 = (0, Z
— :Fen_z (’YO t)

- oy V'] £ € X (¥ —70,0™) + €, X op(n_l/z) + op(n_l)
t—2

AN ) ) } )
= e (P2 e x (3 =0 0) + e x 07 0y,
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Thus we obtain:

V(i —70,v") = Vg (M

o'

where the asymptotic normality is guaranteed by Billingsley’s (1961a) ergodic stationary martingale

m) Top(1) = N(O, 0" %),

difference CLT, and the asymptotic variance being equal to ||v*||? = ||%;Y,O) |? is implied by Lemma

4.1 (1) and the definition of the Fisher norm || - ||. 0

Proof of Theorem 4.2: Given our normality results in Theorem 4.1, for our model we can
take X, (v) = ﬁ oo m(%’,zt)[v], which is linear in v and converges in distribution to N (0, ||v]|?),
and = >7, (%[v]f = 3||v|[* + 0p(1) hence LAN holds. Notice that the proof in Wong
(1992) allows for time series data, following his proof, under LAN, we obtain that p(7,) achieves
the semiparametric efficiency bound.

Alternatively, from the last equation in our proof of Theorem 4.1, we have:

p(n) = p(10) = (G = 0,0") + 0p(n™"/2) = pin (ag(%ﬁ[v*o +0p(n7172),

which means p(5,) is a regular asymptotically linear estimate and its influence function equals to
%,Y‘),")[v*] that belongs to the tangent space of the model. So we can also conclude that p(7,)
is semiparametrically efficient by applying the result of Bickel and Kwon (2001), which allows for

strictly stationary semiparametric Markov models. O

Proof of Proposition 4.1: Thanks to Lemma 4.1, we can directly extend the results in
Bickel et al. (1993) for bivariate copula models with i.i.d. data to our copula-based first-order
Markov time series setting. In particular, the score space in our Markov setup acts in much the
same way as the score space when data were i.i.d. So the semiparametric efficiency bound for
ag is Zi(ag) = Ep {SQOS(’XO}, where S, is the efficient score function for «gp, which is defined
as the ordinary score function for ag minus its population least squares orthogonal projection
onto the closed linear span (clsp) of the score functions for the nuisance parameters gp. And
ap is /n-efficiently estimable if and only if Ey {SQOSQO} is non-singular; see e.g. Bickel et al.
(1993). Hence ([3)) is clearly a necessary condition for \/n-normality and efficiency of &, for «.
Under Assumptions 4.2, 4.3 and 4.4’, Propositions 4.7.4 and 4.7.6 of Bickel, et al. (1993, pages
165-168) for bivariate copula models apply. Therefore with S,, defined in (4.4]), we have that
Zi(ap) = Ey {SQOS(’)O} is finite, positive-definite. This implies that Assumption 4.4 is satisfied with
p(7) = Na and w = oo and |[v*||? = ||%;Y,O)H2 = NZ,(p)"'X < oo. By Theorem 4.1, for any
A€ RN #0, we have \/n(Na, — Nag) = N (0, NZ.(cg)"*A). This implies Proposition 4.1. O

Proof of Theorem 5.1: The proof basically follows from that of Shen and Shi (2005), except

using our definition of joint log-likelihood, our definition of Fisher norm ||-||, and applying Billings-
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ley’s CLT for ergodic stationary martingale difference processes. These modifications are the same
as the ones in our proof of Theorem 4.1. Detailed proof is omitted due to the length of the paper,

but is available upon request. O
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B Tables and Figures

Results are all based on 1000 MC replications of estimates using n = 1000 time series simulation, except
that X2 inverted confidence intervals are based on 500 MC replications. 7 = Kendall’s 7, A = lower tail
dependence index. Bmsfo37 Varygs and MSE;ys are the true values of Bias?, Var and M SE multiplied by
1000 respectively.

Different two-step estimators: 2step-sieve = 2step procedure while estimating marginal by sieves in
1st step; 2step-empirical = Chen-Fan = 2step; 2step-para = 2step procedure while estimating marginal
correctly assuming parametric Student’s ¢, distribution in 1st step; 2step-misN = 2step procedure while
estimating marginal assuming parametric normal distribution in 1st step; 2step-misEV = 2step procedure
while estimating marginal assuming parametric extreme value distribution in 1st step.

Different one-step estimators: Sieve = Sieve MLE; Ideal = Ideal MLE; Para = correctly specified
parametric MLE; Mis-N = parametric MLE using misspecified normal distribution as marginal; Mis-EV =
parametric MLE using misspecified extreme value distribution as marginal.

Table 1: Clayton copula with true o = 12, true marginal G = t5: 2-step estimates of «

| | 2step-sieve | 2step-empirical | 2step-para | 2step-misN | 2step-misEV |
Mean 11.370 7.896 12.098 10.709 13.185
Bias -0.631 -4.104 0.098 -1.291 1.185
Var 3.584 5.656 6.801 14.469 23.827
MSE 3.982 22.5 6.811 16.135 25.231
0‘?’2{397.5) (8.91,16.52) (4.35,13.6) | (10.18, 18.42) | (5.65, 20.33) | ( 7.19, 26.81)

Table 2: Clayton copula with true o = 12, true marginal G = t5: 2-step estimates of G

2step-sieve 2step-empirical 2step-para 2step-misN 2step-misEV

Q3 | Qasz | Quys Qa3 | Qusz | Qo3 Q13 Q2/3 Q13 Q23
Mean 0.326 | 0.664 | 0.331 0.665 | 0.332 | 0.668 | 0.329 0.642 0.340 | 0.607
Bias%o3 0.014 | 0.039 | 0.001 0.023 | 0.003 | 0.003 | 0.000 0.786 0.104 | 4.012
Varigs 2.151 | 1.196 | 28.83 12.08 | 0.039 | 0.039 | 25.763 | 15.154 | 16.729 | 15.208
MSFEgs | 2.165 | 1.235 | 28.83 12.10 | 0.041 | 0.041 | 25.764 | 15.941 | 16.833 | 19.220
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Table 3: Clayton copula, true marginal G = t5: estimation of «

| | Sieve | Ideal | 2step | Para | Mis-N | Mis-EV |
=2 Mean 2.001 2.005 1.920 2.001 2.111 2.907
Bias 0.001 0.005 -0.080 0.001 0.111 0.907
Var 0.020 0.008 0.102 0.012 0.015 0.019
MSE 0.020 0.008 0.109 0.012 0.027 0.841
oS | (1742.28) | (1.84,218) | (1.40,2.63) | (1.78,2.23) | (1.92,2.37) | (2.67,3.16)
Mean 4.970 5.006 4.400 5.002 5.379 6.026
Bias -0.030 0.006 -0.600 0.002 0.379 1.026
Var 0.139 0.027 1.257 0.044 0.054 0.186
MSE 0.140 0.027 1.617 0.044 0.198 1.239
a(ﬂg_gém) (4.40,5.77) | (4.69, 5.33) | (2.71,6.93) | (4.60 , 5.43) | (4.96,5.83) | (5.47,6.50)
ooy | (4.41,5.45)
Mean 9.889 10.01 7.169 10.01 10.77 11.75
Bias -0.111 0.01 -2.831 0.01 0.77 1.75
T Var 0.483 0.086 4.620 0.143 0.247 0.568
(0.833) MSE 0.495 0.086 12.63 0.143 0.841 3.637
A ag\g_gém) (8.83,11.25) | (9.44,10.6) | (4.02,12.5) | (9.29,10.8) | (9.78,11.7) | (10.4,12.8)
(0.933) | afss) (8.96, 10.8)
a=12 | Mean 11.85 12.01 7.896 12.00 12.94 14.04
Bias -0.149 0.01 -4.104 0.00 0.94 2.04
T Var 1.623 0.119 5.656 0.206 0.405 0.960
(0.857) MSE 1.646 0.120 22.5 0.207 1.285 5.112
A ag\g_gém) (10.6,13.6) | (11.3,12.7) | (4.35,13.6) | (11.2, 13.0) | (11.7, 14.2) | (12.4, 15.3)
(0.944) | o) (10.8, 12.9)
Table 4: Clayton copula, true marginal G = t3: estimation of «
| | Sieve | Ideal | 2step | Para | Mis-N | Mis-EV |
a=2 Mean 1.969 2.002 1.912 1.989 2.400 2.957
T Bias -0.031 0.002 -0.088 -0.011 0.400 0.957
(0.500) Var 0.019 0.007 0.101 0.012 0.103 0.056
A MSE 0.020 0.007 0.109 0.012 0.264 0.971
(0.707) | oS, o | (1.70,2.25) | (1.83,217) | (1.36,2.60) | (1.76,2.19) | (1.99,3.28) | (257, 3.36 )
a=5 | Mean 4.849 5.003 4.359 4.979 5.859 5.923
T Bias -0.151 0.003 -0.642 -0.021 0.859 0.923
(0.714) Var 0.093 0.026 1.247 0.041 0.189 0.338
A MSE 0.116 0.026 1.658 0.042 0.927 1.190
(0.871) | aMSy, o | (4.25,5.48) | (4.69,532) | (2.67,7.12) | (458,5.35) | (5.36,6.95) | (4.89,6.62)
a=10 | Mean 9.687 10.00 7.115 9.967 11.42 11.57
T Bias -0.313 0.004 -2.886 -0.033 1.425 1.570
(0.833) Var 0.351 0.085 4.852 0.129 0.577 1.194
A MSE 0.449 0.085 13.18 0.130 2.607 3.659
(0.933) | o€, 5 | (8.68,10.87) | (9.43,10.6) | (3.87,12.5) | (9.26,10.6) | (10.33,12.9) | (9.68, 12.9)
a=12] Mean 11.62 12.01 7.896 11.98 13.67 13.82
T Bias -0.382 0.012 -4.104 -0.016 1.668 1.816
(0.857) Var 0.541 0.119 5.656 0.222 0.770 1.917
A MSE 0.687 0.120 22.50 0.222 3.552 5.214
(0.944) | oMC . | (10.5,13.3) | (11.3,12.7) | (4.35,13.6) | (11.0,12.9) | (12.3,15.7) | (11.4,15.4)
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Table 5: Gumbel copula, true marginal G = t5: estimation of «

| Sieve | Ideal | 2step | Para | Mis-N | Mis-EV |
a=2 Mean 2.003 1.999 1.982 1.996 2.110 1.991
Bias 0.003 -0.001 -0.018 -0.004 0.110 -0.009
T Var 0.007 0.002 0.013 0.004 0.020 0.030
(0.5) MSE 0.007 0.002 0.014 0.004 0.032 0.030
oS5 | (185,217) | (1.91,2.10) | (1.78,2.23) | (1.87,2.13) | (1.94,2.55) | (1.69,2.35)
a=3.5 Mean 3.477 3.498 3.352 3.491 3.672 4.028
Bias -0.023 -0.002 -0.148 -0.009 0.172 0.528
T Var 0.066 0.008 0.130 0.018 0.050 0.245
(0.714) MSE 0.066 0.008 0.152 0.018 0.0794 0.524
oM g5 | (3.03,4.06) | (3.34,3.68) | (2.76,4.20) | (3.25,3.77) | (3.35,4.26) | ( 3.06, 4.91)
a=26 Mean 5.778 5.998 5.253 5.994 6.220 7.439
Bias -0.222 -0.002 -0.747 -0.006 0.220 1.439
T Var 0.315 0.023 0.676 0.062 0.107 1.230
(0.833) MSE 0.365 0.023 1.235 0.062 0.155 3.302
oM g | (472,6.96) | (5.72,631) | (3.92,7.17) | (5.54,6.51) | (5.55,6.79) | (5.03, 9.46)
a="7 Mean 6.622 6.997 5.873 6.993 7.250 8.775
Bias -0.378 -0.003 -1.127 -0.007 0.250 1.775
T Var 0.457 0.032 0.968 0.086 0.142 1.833
(0.857) MSE 0.600 0.032 2.238 0.086 0.204 4.983
oMo | (5:31,8.04) | (6.67,7.37) | (4.23,8.20) | (6.47,7.59) | (6.50,7.94) | (5.75, 11.3)
Table 6: Gumbel copula, true marginal G = t3: estimation of «
| Sieve | Ideal | 2step | Para | Mis-N Mis-EV |
a=2 Mean 2.002 1.999 1.982 1.992 2.377 1.864
Bias 0.002 -0.001 -0.018 -0.008 0.377 -0.136
T Var 0.007 0.002 0.013 0.005 0.153 0.026
(0.5) MSE 0.007 0.002 0.014 0.005 0.295 0.045
oMC o | (185,218) | (1.91,2.10) | (1.782.23) | (1.85,2.14) | (1.99,355) | (1.60,2.22)
a=3.5 Mean 3.486 3.498 3.352 3.481 3.906 3.629
Bias -0.014 -0.002 -0.148 -0.019 0.406 0.129
T Var 0.064 0.008 0.130 0.021 0.269 0.315
(0.714) MSE 0.064 0.008 0.152 0.021 0.434 0.331
oS o5 | (3.06,4.07) | (3.34,3.68) | (2.76,4.20) | (3.21,3.87) | (3.21,5.38) | (2.73,4.83)
a=256 Mean 5.797 5.998 5.253 5.971 6.359 6.8805
Bias -0.203 -0.002 -0.747 -0.029 0.359 0.881
Var 0.320 0.023 0.676 0.071 0.396 2.328
(0.833) MSE 0.362 0.023 1.235 0.072 0.525 3.103
oMoy | (467,6.95) | (5.72,6.31) | (3.92,7.17) | (5A47,6.67) | (5.20,7.48) | (4.32,9.78)
a="T Mean 6.667 6.997 5.873 6.971 7.357 8.257
Bias -0.333 -0.003 -1.127 -0.029 0.357 1.257
T Var 0.456 0.032 0.968 0.106 0.506 3.859
(0.857) MSE 0.566 0.032 2.238 0.107 0.633 5.438
oS5 | (5:34,812) | (6.67,7.37) | (4.23,8.20) | (6.34,7.79) | (6.01,8.58) | (4.96,12.24)
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Table 7: Frank copula, true marginal G = t5: estimation of a.

| | Sieve | Ideal | 2step | Para | Mis-N Mis-EV
a = 26.22, 7 = 0.857
Mean 26.39 26.25 23.30 26.23 26.95 29.25
Bias 0.171 0.030 -2.917 0.008 0.727 3.034
Var 0.695 0.524 4.823 1.165 1.147 25.09
MSE 0.725 0.525 13.33 1.165 1.675 34.30
oMo | (247,280) | (249,27.7) | (180,267) | (247,27.7) | (25.0,203) | (25.3,50.0)
a = 2218, 7 =0.833
Mean 22.36 22.20 20.36 22.17 23.05 24.34
Bias 0.179 0.022 -1.824 -0.009 0.870 2.163
Var 0.531 0.385 2.452 0.448 0.836 1.757
MSE 0.563 0.386 5.778 0.448 1.592 6.437
oS | (209,238) | (21.0,23.4) | (16.8,229) | (208,235) | (21.5,25.0) | (219, 27.0)
a=12.08, 7=0.714
Mean 12.18 12.09 11.77 12.07 13.24 14.52
Bias 0.098 0.008 -0.311 -0.008 1.160 2.442
Var 0.211 0.139 0.334 0.159 0.347 0.553
MSE 0.220 0.139 0.431 0.159 1.692 6.516
oS o | (13,130) | (11.4,128) | (106,129) | (11.3,12.0) | (12.2,145) | (13.0, 16.0)
a=>5.7T4,17=05
Mean 5.756 5.747 5.711 5.738 6.630 7.450
Bias 0.016 0.007 -0.029 -0.002 0.890 1.710
Var 0.082 0.057 0.086 0.061 0.158 0.188
MSE 0.082 0.057 0.087 0.061 0.949 3.112
oS o | (523.637) | (5.28,622) | (5.15,631) | (5.26,624) | (5.947.54) | (6.65,831)
a=—-574,17=-05
Mean -5.734 -5.736 -5.726 -5.728 -6.625 -6.816
Bias 0.006 0.004 0.014 0.012 -0.885 -1.076
Var 0.082 0.057 0.088 0.063 0.154 0.113
MSE 0.082 0.057 0.089 0.063 0.937 1.272
o€ o | (630,-5.18) | (-6.20-5.20) | (-6.28, -5.15) | (-6.22,-5.23 ) | (-7.47,-5.92) | (-7.46, 6.15)
a=-12.08, 7 = —0.714
Mean -12.15 -12.08 -12.00 -12.06 -13.19 -13.10
Bias -0.071 0.002 0.078 0.021 -1.106 -1.023
Var 0.221 0.140 0.311 0.158 0.335 0.173
MSE 0.226 0.140 0.317 0.158 1.557 1.220
o€ | (13.0-11.2) | (12.8,-114) | (13.0,-10.9) | (12.8,-113) | (-14.4,-12.1) | (-13.9, -12.3)
a=—22.18, 7 = —0.833
Mean -22.36 -22.18 -21.67 -22.13 -22.91 -20.87
Bias -0.179 0.001 0.508 0.047 -0.729 1.310
Var 0.563 0.380 1.139 0.448 0.742 0.451
MSE 0.594 0.380 1.397 0.450 1.273 2.168
oS o | (23.9,-20.9) | (-23.4,-210) | (235,-10.2) | (-23.5,-20.8) | (-24.6,-21.4) | (-22.2, -10.7)
a=—26.22, 7 = —0.857
Mean -26.41 -26.22 -25.38 -26.16 -26.76 -23.37
Bias -0.185 -0.003 0.838 0.057 -0.537 2.853
Var 0.752 0.517 1.753 0.611 1.021 0.644
MSE 0.786 0.518 2.455 0.615 1.309 8.786
oS o | (281, 24.8) | (-27.6,-24.8) | (27.6,-22.1) | (-27.7,24.7) | (:28.7.-24.9) | (-25.021.9)
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Table 8: Gaussian copula, true marginal G = t5: estimation of a. Reported Var and MSE are the
true ones multiplied by 1000.

| | Sieve | Ideal 2step | Para | Mis-N | Mis-EV |
a=0.9511,7=0.8
Mean 0.945 0.951 0.943 0.951 0.950 0.873
Bias -0.006 0.000 -0.008 -0.000 -0.002 -0.079
Var 0.104 0.005 0.111 0.013 1.411 81.56
MSE 0.136 0.005 0.172 0.013 1.414 87.74
aliSors | (:923,.962) | (.947,.955) | (920, .961 ) (.944, .958 ) (.949, .953 ) | (-.236,.970)
a=0.9008, 7 = 0.714
Mean 0.897 0.901 0.894 0.900 0.899 0.796
Bias -0.004 0.000 -0.007 -0.001 -0.002 -0.105
Var 0.194 0.020 0.199 0.049 1.317 117.6
MSE 0.209 0.020 0.241 0.050 1.321 128.6
alySors | (:867,.921) | (.893,.910) | (.864,.919) (.887,.915) | (.895,.9133) | (-.236,.951)
a=0.7071, 7 = 0.5
Mean 0.707 0.707 0.704 0.706 0.704 0.641
Bias 0.000 -0.000 -0.003 -0.001 -0.003 -0.067
Var 0.547 0.177 0.510 0.332 1.593 134.3
MSE 0.547 0.177 0.519 0.334 1.602 138.7
a3 o7 | (-660,.752) | (.680,.731) | (.656,.747) | (.671,.744) | (.673,.792) | (- .236, 877 )
a=0.1564, 7 = 0.1
Mean 0.156 0.156 0.156 0.155 0.160 0.388
Bias -0.000 -0.001 -0.001 -0.001 0.003 0.231
Var 1.034 0.997 1.040 1.022 3.607 70.94
MSE 1.034 0.998 1.040 1.023 3.617 124.4
(35 ors | (092,.217) | (.094,.215) | (.093,.217) | (.092, 216 ) (.085,.302) | (- .236, .635 )
a=—0.1564, 7 = —0.1
Mean -0.158 -0.157 -0.159 -0.156 -0.167 0.352
Bias -0.001 -0.000 -0.002 0.000 -0.010 0.509
Var 1.163 0.953 1.026 1.015 3.709 64.15
MSE 1.165 0.953 1.031 1.015 3.810 322.9
(3% o75) | (-:218,-.093) | (-216,-.094 ) | (-219,-.096 ) | (-220,-.093 ) | (--333,-.092) | (-.236, .564 )
a=—0.7071, 7 = —0.5
Mean -0.710 -0.707 -0.708 -0.706 -0.711 0.668
Bias -0.003 -0.000 -0.001 0.001 -0.004 1.375
Var 0.577 0.170 0.495 0.332 3.336 160.7
MSE 0.583 0.170 0.496 0.333 3.353 2051
a3 975 | (-753,-.659) | (-.732,-.681) | (-.748-.660) | (-.741,-.670 ) | (-.919-.674) (-.236,.878)
a = —0.9008, r = —0.714
Mean -0.902 -0.901 -0.899 -0.900 -0.899 0.784
Bias -0.001 -0.000 0.002 0.000 0.002 1.684
Var 0.210 0.020 0.192 0.050 0.952 147.5
MSE 0.211 0.020 0.196 0.051 0.956 2984
a3 o75) | (-:928,-873) | (-.910,-.892) | (-.923,-870) | (-914,-.887) | (-.907,-.893) | (-.236, .953)
a=-0.9511, 7 =-0.8
Mean -0.949 -0.951 -0.948 -0.951 -0.950 0.816
Bias 0.002 -0.000 0.003 0.000 0.001 1.767
Var 0.093 0.005 0.097 0.014 0.518 117.7
MSE 0.099 0.005 0.105 0.014 0.519 3241
a(s% ors | (-:965,-.929) | (-.955,-.947) | (-965-.927) | (-.958,-.943 ) | (-.952,-.949) | (-.236, .958)
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Table 9: EFGM copula, true marginal G = t3 :

true ones multiplied by 1000.

estimation of a. Reported Var and MSE are the

| | Sieve | Ideal | 2step | Para | Mis-N | Mis-EV |
a=0917=02
Mean 0.896 0.893 0.891 0.892 0.990 0.974
Bias -0.004 -0.007 -0.009 -0.008 0.090 0.074
Var 5.392 5.055 5.517 5.047 0.695 1.807
MSE 5.405 5.099 5.596 5.114 8.713 7.276
O‘gg-,Wﬁ) (0.74,1.00 ) (0.74,1.00 ) (0.74, 1.00 ) (0.74, 1.00 ) (0.90, 1.00 ) (0.85, 1.00 )
a=0.75, 7 = 0.167
Mean 0.748 0.746 0.743 0.744 0.924 0.868
Bias -0.002 -0.004 -0.007 -0.006 0.174 0.118
Var 7.402 7.009 7.361 6.988 6.222 8.007
MSE 7.406 7.028 7.405 7.021 36.40 21.86
O‘gg-,f)?ﬁ) (.582,.921) (.576, .913) (.573, .911) (.576, .908 ) (.741,1.00 ) | (.673,1.00)
a=0.57=0.111
Mean 0.496 0.495 0.493 0.494 0.660 0.588
Bias -0.004 -0.005 -0.007 -0.006 0.160 0.088
Var 8.333 8.128 8.303 8.075 16.13 12.07
MSE 8.346 8.153 8.356 8.111 41.79 19.80
O‘fg.g.,w.a (0.31, 0.68 ) (0.32, 0.67) (0.31, 0.67) (0.32, 0.67) (0.42,0.92) (0.37,0.80 )
a=-0.5,7=-0.111
Mean -0.506 -0.504 -0.508 -0.503 -0.674 -0.592
Bias -0.006 -0.004 -0.008 -0.003 -0.174 -0.092
Var 8.035 7.700 7.954 7.768 15.64 10.71
MSE 8.070 7.716 8.017 7.7 45.80 19.11
O‘fg.g.,w.a (-0.68,-0.33 ) | (-0.67,-0.33 ) | (-0.69,-0.34) | (-0.67,-0.33) | (-0.93,-0.43 ) | ( -0.79,-0.39 )
a=—0.75 7= -0.167
Mean -0.757 -0.753 -0.758 -0.752 -0.930 -0.848
Bias -0.007 -0.003 -0.008 -0.002 -0.180 -0.098
Var 7.024 6.493 6.877 6.643 5.852 7.304
MSE 7.066 6.503 6.933 6.646 38.20 16.86
O‘fg.g.,w.a (-.916, -.596) | ( -.902, -.600) | (-.913,-.599 ) | ( -.902, -.597) | (-1.00, -.754 ) | ( -1.00, -.671)
a=-09,7=-0.2
Mean -0.904 -0.900 -0.903 -0.899 -0.990 -0.955
Bias -0.004 -0.000 -0.003 0.001 -0.090 -0.055
Var 5.120 4.827 5.005 4.966 0.617 2.695
MSE 5.132 4.827 5.017 4.968 8.789 5.681
O‘fg.g.,w.a (-1.00, -0.76) | (-1.00, -0.76 ) (-1.00,-0.76) | (-1.00,-0.76 ) | (-1.00,-0.91) | (-1.00, -0.83 )
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Table 10: Clayton copula, true marginal G = t5: estimation of G. Reported Bias?, Var and MSE
are the true ones multiplied by 1000.

Sieve 2step Para Mis-N Mis-EV
Qi3 | Qasz | Quyz | Qasz | Quyz | Qayz | Quyz | Qayz | Quyz | Qays
a=2 Mean | 0.327 | 0.671 | 0.334 | 0.667 | 0.333 | 0.667 | 0.349 | 0.619 | 0.346 | 0.595

Bz’asfo3 0.007 | 0.002 | 0.015 | 0.008 | 0.011 | 0.011 | 0.357 | 2.558 | 0.258 | 5.703
7(0.500) | Varygs | 0.061 | 0.059 | 1.282 | 0.719 | 0.002 | 0.002 | 0.678 | 1.865 | 0.503 | 0.824
A(0.707) | MSEs | 0.067 | 0.061 | 1.297 | 0.727 | 0.012 | 0.012 | 1.035 | 4.423 | 0.761 | 6.527
o= Mean 0.326 | 0.670 | 0.333 | 0.667 | 0.333 | 0.667 | 0.337 | 0.600 | 0.334 | 0.590
Bz’asfo3 0.017 | 0.000 | 0.012 | 0.009 | 0.011 | 0.011 | 0.046 | 4.874 | 0.019 | 6.421
7(0.714) | Varyes | 0.101 | 0.105 | 6.018 | 2.686 | 0.002 | 0.002 | 1.093 | 3.734 | 1.293 | 3.134
A(0.871) | MSFEgs | 0.117 | 0.105 | 6.030 | 2.695 | 0.013 | 0.013 | 1.139 | 8.608 | 1.312 | 9.554
a=10 Mean 0.323 | 0.663 | 0.331 | 0.666 | 0.333 | 0.667 | 0.356 | 0.627 | 0.362 | 0.633
Bz’as%o3 0.046 | 0.054 | 0.002 | 0.014 | 0.011 | 0.011 | 0.657 | 1.857 | 1.014 | 1.404
7(0.833) | Varygs | 0.142 | 0.123 | 20.93 | 8.944 | 0.002 | 0.002 | 0.690 | 2.364 | 1.345 | 1.810
A(0.933) | MSEg: | 0.188 | 0.177 | 20.93 | 8.958 | 0.013 | 0.013 | 1.347 | 4.221 | 2.359 | 3.214
oa=12 Mean 0.322 | 0.660 | 0.331 | 0.665 | 0.333 | 0.667 | 0.363 | 0.638 | 0.367 | 0.642
Bz’as%o3 0.069 | 0.102 | 0.001 | 0.023 | 0.011 | 0.011 | 1.116 | 1.038 | 1.389 | 0.810
7(0.857) | Varygs | 0.243 | 0.140 | 28.83 | 12.08 | 0.002 | 0.002 | 1.158 | 2.149 | 1.632 | 2.473
A(0.944) | MSE;ps | 0.312 | 0.243 | 28.83 | 12.10 | 0.013 | 0.013 | 2.274 | 3.188 | 3.022 | 3.283

Table 11: Clayton copula, true marginal G = t3: estimation of G. Reported Bias?, Var and MSE
are the true ones multiplied by 1000.

Sieve 2step Para Mis-N Mis-EV
Qi3 | Qa3 | Quyz | Qo | Quyz | Qasz | Quyz | Qoyz | Quyz | Qays
a=2 Mean 0.325 | 0.673 | 0.333 | 0.666 | 0.333 | 0.667 | 0.347 | 0.557 | 0.382 | 0.614

Biasfo_g 0.026 | 0.007 | 0.011 | 0.013 | 0.009 | 0.009 | 0.282 | 12.84 | 2.710 | 3.145
7(0.500) | Varygs | 0.054 | 0.049 | 1.430 | 0.801 | 0.002 | 0.002 | 1.921 | 5.651 | 0.755 | 0.947
A(0.707) | MSE;ps | 0.080 | 0.056 | 1.441 | 0.814 | 0.011 | 0.011 | 2.203 | 18.49 | 3.465 | 4.092
oa=5 Mean 0.322 | 0.671 | 0.332 | 0.667 | 0.333 | 0.667 | 0.331 | 0.537 | 0.342 | 0.579
BiastS 0.072 | 0.002 | 0.003 | 0.011 | 0.009 | 0.009 | 0.001 | 17.65 | 0.134 | 8.276
7(0.714) | Varyes | 0.081 | 0.085 | 6.474 | 2.969 | 0.002 | 0.002 | 1.401 | 5.697 | 2.234 | 5.346
A(0.871) | MSEg: | 0.153 | 0.087 | 6.478 | 2.980 | 0.011 | 0.011 | 1.403 | 23.35 | 2.369 | 13.62
a=10 Mean 0.319 | 0.664 | 0.331 | 0.666 | 0.333 | 0.667 | 0.364 | 0.584 | 0.371 | 0.624
BiastS 0.128 | 0.042 | 0.001 | 0.013 | 0.009 | 0.009 | 1.132 | 7.452 | 1.642 | 2.123
7(0.833) | Varyes | 0.109 | 0.137 | 22.28 | 9.800 | 0.003 | 0.003 | 0.711 | 3.410 | 2.103 | 4.192
A(0.933) | MSE1gs | 0.236 | 0.178 | 22.29 | 9.813 | 0.012 | 0.012 | 1.843 | 10.86 | 3.744 | 6.315
oa=12 Mean 0.318 | 0.661 | 0.331 | 0.665 | 0.333 | 0.667 | 0.374 | 0.598 | 0.375 | 0.633
Biasfo_g 0.154 | 0.079 | 0.001 | 0.023 | 0.010 | 0.010 | 1.903 | 5.242 | 2.052 | 1.351
7(0.857) | Varys | 0.127 | 0.141 | 28.83 | 12.08 | 0.003 | 0.003 | 0.950 | 2.662 | 2.494 | 4.934
A(0.944) | MSE1s | 0.281 | 0.220 | 28.83 | 12.10 | 0.013 | 0.013 | 2.853 | 7.904 | 4.547 | 6.286
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Table 12: Gumbel copula, true marginal G = t5: estimation of G. Reported Bias?, Var and MSE
are the true ones multiplied by 1000.

Sieve 2step Para Mis-N Mis-EV
Qiyz | Qasz | Quyz | Qosz | Quyz | Qaysz | Quyz | Qayz | Quyz | Qays
a=2 Mean 0.329 | 0.672 | 0.333 | 0.666 | 0.333 | 0.667 | 0.363 | 0.633 | 0.402 | 0.650

Bias%og 0.002 | 0.005 | 0.007 | 0.018 | 0.010 | 0.010 | 1.055 | 1.376 | 5.236 | 0.384
7(0.500) | Varygs | 0.053 | 0.057 | 0.755 | 1.025 | 0.002 | 0.002 | 1.059 | 1.414 | 3.459 | 4.357
MSEgs | 0.055 | 0.062 | 0.762 | 1.043 | 0.012 | 0.012 | 2.114 | 2.790 | 8.694 | 4.742
oa=3.5 Mean 0.328 | 0.674 | 0.332 | 0.665 | 0.333 | 0.667 | 0.407 | 0.670 | 0.429 | 0.648
Bias%og 0.005 | 0.017 | 0.005 | 0.030 | 0.010 | 0.010 | 5.964 | 0.000 | 9.694 | 0.487
7(0.714) | Varyes | 0.134 | 0.140 | 2.353 | 3.482 | 0.003 | 0.003 | 8.112 | 4.451 | 14.32 | 11.69
MSEgs | 0.139 | 0.158 | 2.358 | 3.511 | 0.013 | 0.013 | 14.08 | 4.451 | 24.01 | 12.18
oa=06 Mean 0.324 | 0.680 | 0.330 | 0.664 | 0.333 | 0.667 | 0.391 | 0.651 | 0.394 | 0.606
Bias%og 0.034 | 0.100 | 0.000 | 0.036 | 0.011 | 0.011 | 3.761 | 0.375 | 4.042 | 4.139
7(0.833) | Varyes | 0.241 | 0.239 | 6.840 | 10.37 | 0.003 | 0.003 | 24.82 | 13.31 | 22.64 | 18.28
MSEgs | 0.275 | 0.339 | 6.840 | 10.41 | 0.014 | 0.014 | 28.58 | 13.69 | 26.68 | 22.42
a="T Mean 0.322 | 0.683 | 0.329 | 0.665 | 0.333 | 0.667 | 0.370 | 0.630 | 0.378 | 0.591
Bias%og 0.066 | 0.177 | 0.000 | 0.029 | 0.011 | 0.011 | 1.593 | 1.576 | 2.341 | 6.219
7(0.857) | Varyes | 0.285 | 0.272 | 9.362 | 13.79 | 0.004 | 0.004 | 28.87 | 16.86 | 24.44 | 20.39
MSEjgs | 0.352 | 0.449 | 9.362 | 13.82 | 0.014 | 0.014 | 30.46 | 18.43 | 26.78 | 26.61

Table 13: Gumbel copula, true marginal G = t3: estimation of G. Reported Bias?, Var and MSE
are the true ones multiplied by 1000.

Sieve 2step Para Mis-N Mis-EV
Qi3 | Qa3 | Quyz | Qaz | Quz | Qasz | Quyz | Qoyz | Quyz | Qoys
a=2 Mean 0.328 | 0.673 | 0.333 | 0.666 | 0.333 | 0.667 | 0.401 | 0.613 | 0.519 | 0.737

Biasiy | 0.004 | 0.011 | 0.007 | 0.018 | 0.009 | 0.009 | 5.069 | 3.239 | 35.53 | 4.456
7(0.500) | Varyes | 0.059 | 0.063 | 0.755 | 1.025 | 0.003 | 0.003 | 2.389 | 3.111 | 10.44 | 7.202
MSEps | 0.063 | 0.074 | 0.762 | 1.043 | 0.012 | 0.012 | 7.457 | 6.350 | 45.98 | 11.66
a=35 Mean 0.328 | 0.675 | 0.332 | 0.665 | 0.333 | 0.667 | 0.524 | 0.719 | 0.565 | 0.746
Biasiy | 0.004 | 0.025 | 0.005 | 0.030 | 0.009 | 0.009 | 37.55 | 2.386 | 55.42 | 5.762
7(0.714) | Varyes | 0.139 | 0.147 | 2.353 | 3.482 | 0.004 | 0.004 | 18.71 | 9.238 | 28.40 | 18.12
MSEps | 0.143 | 0.171 | 2.358 | 3.511 | 0.013 | 0.013 | 56.26 | 11.62 | 83.82 | 23.88
a=06 Mean 0.325 | 0.681 | 0.330 | 0.664 | 0.333 | 0.667 | 0.501 | 0.700 | 0.497 | 0.676
Biasiy | 0.025 | 0.120 | 0.000 | 0.036 | 0.009 | 0.009 | 29.17 | 0.899 | 27.97 | 0.037
7(0.833) | Varyes | 0.273 | 0.255 | 6.840 | 10.37 | 0.005 | 0.005 | 40.49 | 20.60 | 40.98 | 29.81
MSEg: | 0.298 | 0.375 | 6.840 | 10.41 | 0.014 | 0.014 | 69.66 | 21.50 | 68.96 | 29.84
a=7 Mean 0.324 | 0.684 | 0.329 | 0.665 | 0.333 | 0.667 | 0.477 | 0.679 | 0.476 | 0.655
Bias}y | 0.041 | 0.182 | 0.000 | 0.029 | 0.009 | 0.009 | 21.46 | 0.076 | 21.35 | 0.227
7(0.857) | Varyes | 0.314 | 0.275 | 9.362 | 13.79 | 0.006 | 0.006 | 49.51 | 26.89 | 45.82 | 33.93
MSEgs | 0.355 | 0.457 | 9.362 | 13.82 | 0.016 | 0.016 | 70.97 | 26.96 | 67.16 | 34.16
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Table 14: Frank copula, true marginal G = t5: estimation of G. Reported Bias?, Var and MSE
are the true ones multiplied by 1000.

Sieve 2step Para Mis-N Mis-EV
Qi3 | Qa3 | Quyz | Qasz | Quyz | Qayz | Quya | Qoyz | Quyz | Qay3
a = 26.22 Mean 0.329 | 0.671 | 0.330 | 0.664 | 0.333 | 0.667 | 0.361 | 0.638 | 0.417 | 0.674
Bias}y, | 0.002 | 0.002 | 0.000 | 0.040 | 0.010 | 0.010 | 0.940 | 1.023 | 7.546 | 0.016
7(0.857) Varygs | 0.044 | 0.038 | 12.38 | 12.49 | 0.003 | 0.003 | 0.407 | 0.368 | 1.750 | 1.453
MSFEqgs | 0.045 | 0.039 | 12.38 | 12.53 | 0.013 | 0.013 | 1.347 | 1.390 | 9.296 | 1.469
a=22.18 Mean 0.329 | 0.671 | 0.330 | 0.664 | 0.333 | 0.667 | 0.363 | 0.637 | 0.422 | 0.677
Biasiy, | 0.001 | 0.001 | 0.000 | 0.031 | 0.010 | 0.010 | 1.074 | 1.103 | 8.508 | 0.053
7(0.833) Varygs | 0.039 | 0.038 | 8.947 | 8.947 | 0.002 | 0.002 | 0.384 | 0.335 | 0.779 | 0.353
MSEis | 0.040 | 0.039 | 8.947 | 8.979 | 0.012 | 0.012 | 1.459 | 1.438 | 9.287 | 0.405
a=12.08 Mean 0.330 | 0.671 | 0.334 | 0.667 | 0.333 | 0.667 | 0.368 | 0.633 | 0.439 | 0.677
Biasiy | 0.000 | 0.000 | 0.014 | 0.013 | 0.010 | 0.010 | 1.433 | 1.400 | 11.92 | 0.043

7(0.714) Varygs | 0.051 | 0.051 | 2.767 | 2.767 | 0.002 | 0.002 | 0.335 | 0.304 | 0.430 | 0.323
MSEgs | 0.051 | 0.051 | 2.781 | 2.780 | 0.012 | 0.012 | 1.768 | 1.704 | 12.35 | 0.366
o =05.74 Mean 0.328 | 0.672 | 0.334 | 0.667 | 0.333 | 0.667 | 0.367 | 0.633 | 0.414 | 0.655
Bias}y | 0.003 | 0.003 | 0.019 | 0.007 | 0.010 | 0.010 | 1.389 | 1.358 | 7.081 | 0.237
7(0.500) Varygs | 0.046 | 0.046 | 0.821 | 0.849 | 0.002 | 0.002 | 0.407 | 0.426 | 0.383 | 0.513

MSEgs | 0.048 | 0.049 | 0.839 | 0.856 | 0.012 | 0.012 | 1.796 | 1.784 | 7.464 | 0.750
oa=—5.74 Mean 0.328 | 0.672 | 0.332 | 0.667 | 0.333 | 0.667 | 0.367 | 0.633 | 0.366 | 0.613
Biasfog 0.004 | 0.004 | 0.005 | 0.008 | 0.010 | 0.010 | 1.359 | 1.354 | 1.279 | 3.214
7(-0.500) Varygs | 0.043 | 0.043 | 0.129 | 0.129 | 0.002 | 0.002 | 0.062 | 0.064 | 0.054 | 0.049
MSEgs | 0.047 | 0.047 | 0.134 | 0.137 | 0.012 | 0.012 | 1.421 | 1.419 | 1.333 | 3.264
o =—12.08 Mean 0.329 | 0.671 | 0.333 | 0.667 | 0.333 | 0.667 | 0.367 | 0.633 | 0.372 | 0.611
Bias%og 0.001 | 0.001 | 0.010 | 0.011 | 0.010 | 0.010 | 1.370 | 1.369 | 1.743 | 3.489
7(-0.714) Varygs | 0.048 | 0.047 | 0.239 | 0.243 | 0.002 | 0.002 | 0.062 | 0.064 | 0.036 | 0.054
MSEgs | 0.048 | 0.048 | 0.250 | 0.254 | 0.012 | 0.012 | 1.432 | 1.433 | 1.778 | 3.543
o =—22.18 Mean 0.330 | 0.670 | 0.333 | 0.667 | 0.333 | 0.667 | 0.362 | 0.638 | 0.373 | 0.611
Bias%og 0.000 | 0.000 | 0.007 | 0.008 | 0.010 | 0.010 | 1.047 | 1.046 | 1.836 | 3.453
7(—0.833) Varygs | 0.041 | 0.041 | 0.679 | 0.678 | 0.002 | 0.002 | 0.070 | 0.071 | 0.069 | 0.143
MSEps | 0.041 | 0.041 | 0.686 | 0.686 | 0.012 | 0.012 | 1.117 | 1.117 | 1.904 | 3.596
o= —26.22 Mean 0.330 | 0.670 | 0.333 | 0.667 | 0.333 | 0.667 | 0.361 | 0.639 | 0.373 | 0.612
Bias%og 0.000 | 0.000 | 0.008 | 0.007 | 0.009 | 0.009 | 0.946 | 0.945 | 1.834 | 3.397
7(—0.857) Varygs | 0.038 | 0.038 | 0.896 | 0.905 | 0.003 | 0.003 | 0.073 | 0.074 | 0.095 | 0.195
MSEjgs | 0.038 | 0.038 | 0.904 | 0.912 | 0.012 | 0.012 | 1.018 | 1.019 | 1.928 | 3.592
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Table 15: Gaussian copula, true marginal G = t5: estimation of G. Reported Bias?, Var and MSE
are the true ones multiplied by 1000.

Sieve 2step Para Mis-N Mis-EV

Qi3 | Qa3 | Quyz | Qaz | Quyz | Qayz | Quuz | Qoyz | Quyz | Qoys

a=0.9511 Mean 0.321 | 0.679 | 0.332 | 0.665 | 0.333 | 0.667 | 0.365 | 0.634 | 0.801 | 0.910
Biasiy | 0.078 | 0.078 | 0.003 | 0.029 | 0.010 | 0.010 | 1.252 | 1.318 | 221.6 | 57.57

7=0.8 Varygs | 0.235 | 0.237 | 5.497 | 5.568 | 0.003 | 0.003 | 4.713 | 4.568 | 19.74 | 8.631
MSFEigs | 0.313 | 0.315 | 5.499 | 5.597 | 0.013 | 0.013 | 5.965 | 5.886 | 241.3 | 66.21

a = 0.9008 Mean 0.326 | 0.674 | 0.332 | 0.665 | 0.333 | 0.667 | 0.365 | 0.635 | 0.769 | 0.896
Biasiy | 0.015 | 0.015 | 0.006 | 0.025 | 0.010 | 0.010 | 1.208 | 1.257 | 192.3 | 51.15

T=0.714 Varygs | 0.135 | 0.140 | 2.660 | 2.693 | 0.003 | 0.003 | 2.326 | 2.355 | 6.558 | 3.217
MSEjgs | 0.150 | 0.155 | 2.666 | 2.717 | 0.013 | 0.013 | 3.534 | 3.612 | 198.8 | 54.36

a=0.7071 Mean 0.329 | 0.671 | 0.332 | 0.666 | 0.333 | 0.667 | 0.364 | 0.636 | 0.662 | 0.822
Biasiy | 0.002 | 0.002 | 0.005 | 0.018 | 0.010 | 0.010 | 1.187 | 1.175 | 110.5 | 22.96

7=0.5 Varygs | 0.079 | 0.080 | 0.870 | 0.879 | 0.002 | 0.002 | 0.809 | 0.865 | 2.965 | 0.845
MSFEjgs | 0.081 | 0.082 | 0.875 | 0.897 | 0.013 | 0.013 | 1.996 | 2.040 | 113.4 | 23.81

a = 0.1564 Mean 0.328 | 0.672 | 0.333 | 0.667 | 0.333 | 0.667 | 0.364 | 0.637 | 0.584 | 0.747
Bias}y | 0.003 | 0.003 | 0.011 | 0.013 | 0.010 | 0.010 | 1.135 | 1.097 | 64.34 | 5.900

7=0.1 Varygs | 0.041 | 0.042 | 0.255 | 0.259 | 0.001 | 0.001 | 0.387 | 0.297 | 4.370 | 1.805
MSEjgs | 0.044 | 0.044 | 0.266 | 0.271 | 0.012 | 0.012 | 1.522 | 1.394 | 68.71 | 7.705

a = —0.1564 Mean 0.329 | 0.672 | 0.333 | 0.666 | 0.333 | 0.667 | 0.365 | 0.637 | 0.607 | 0.752
Biasfo3 0.002 | 0.002 | 0.011 | 0.013 | 0.010 | 0.010 | 1.187 | 1.101 | 76.73 | 6.732

T=-0.1 Varygs | 0.048 | 0.048 | 0.181 | 0.178 | 0.002 | 0.002 | 0.444 | 0.244 | 2.710 | 1.467
MSEis | 0.050 | 0.051 | 0.192 | 0.191 | 0.012 | 0.012 | 1.632 | 1.345 | 79.44 | 8.199

a=—0.7071 Mean 0.330 | 0.671 | 0.333 | 0.666 | 0.333 | 0.667 | 0.367 | 0.635 | 0.683 | 0.761
Biasfo3 0.000 | 0.000 | 0.010 | 0.014 | 0.010 | 0.010 | 1.379 | 1.257 | 124.8 | 8.293

T=-0.5 Varygs | 0.088 | 0.089 | 0.140 | 0.138 | 0.002 | 0.002 | 0.586 | 0.356 | 0.438 | 1.283
MSFEigs | 0.089 | 0.089 | 0.150 | 0.152 | 0.013 | 0.013 | 1.965 | 1.614 | 125.2 | 9.576

a = —0.9008 Mean 0.330 | 0.670 | 0.334 | 0.666 | 0.333 | 0.667 | 0.366 | 0.636 | 0.678 | 0.734
Biasfo3 0.000 | 0.000 | 0.015 | 0.014 | 0.010 | 0.010 | 1.311 | 1.165 | 121.3 | 4.152

T=-0.714 Varygs | 0.151 | 0.152 | 0.246 | 0.261 | 0.003 | 0.003 | 0.556 | 0.168 | 0.382 | 1.626
MSEjs | 0.151 | 0.152 | 0.260 | 0.275 | 0.013 | 0.013 | 1.868 | 1.333 | 121.6 | 5.779

a=—0.9511 Mean 0.326 | 0.674 | 0.334 | 0.666 | 0.333 | 0.667 | 0.365 | 0.636 | 0.676 | 0.731
Bias?y, | 0.013 | 0.013 | 0.017 | 0.013 | 0.010 | 0.010 | 1.246 | 1.170 | 119.9 | 3.678

T=-0.8 Varygs | 0.214 | 0.214 | 0.453 | 0.434 | 0.003 | 0.003 | 0.383 | 0.159 | 0.368 | 1.290
MSEjgs | 0.227 | 0.228 | 0.470 | 0.448 | 0.013 | 0.013 | 1.629 | 1.328 | 120.3 | 4.967
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Table 16: EFGM copula, true marginal G = t3: estimation of G. Reported Bias?, Var and MSE
are the true ones multiplied by 1000.

Sieve 2step Para Mis-N Mis-EV
Qiz | Qa3 | Quyz | Qasz | Quyz | Qayz | Quyz | Qoyz | Quyz | Qa3
a=0.9 Mean | 0.328 | 0.673 | 0.333 | 0.666 | 0.333 | 0.667 | 0.387 | 0.613 | 0.372 | 0.623
Bias?ys | 0.006 | 0.006 | 0.009 | 0.020 | 0.010 | 0.010 | 3.230 | 3.282 | 1.778 | 2.222
7=0.2 Variygs | 0.028 | 0.028 | 0.344 | 0.338 | 0.001 | 0.001 | 0.443 | 0.445 | 0.276 | 0.494
MSFEg: | 0.034 | 0.034 | 0.353 | 0.358 | 0.011 | 0.011 | 3.673 | 3.727 | 2.054 | 2.716
a=0.75 Mean | 0.328 | 0.672 | 0.333 | 0.666 | 0.333 | 0.667 | 0.387 | 0.612 | 0.370 | 0.619

Bz’as%o3 0.006 | 0.005 | 0.009 | 0.019 | 0.010 | 0.010 | 3.297 | 3.359 | 1.614 | 2.605
7 =0.167 Varygs | 0.028 | 0.028 | 0.318 | 0.310 | 0.001 | 0.001 | 0.422 | 0.425 | 0.231 | 0.426
MSEgs | 0.034 | 0.034 | 0.327 | 0.328 | 0.011 | 0.011 | 3.720 | 3.784 | 1.846 | 3.031
a=0.5 Mean 0.328 | 0.672 | 0.334 | 0.666 | 0.333 | 0.667 | 0.388 | 0.612 | 0.364 | 0.612
Bz’as%o3 0.006 | 0.006 | 0.012 | 0.018 | 0.010 | 0.010 | 3.323 | 3.407 | 1.130 | 3.401
7=0.111 Varygs | 0.029 | 0.028 | 0.282 | 0.266 | 0.001 | 0.001 | 0.331 | 0.340 | 0.161 | 0.339
MSFEjps | 0.035 | 0.034 | 0.294 | 0.284 | 0.011 | 0.011 | 3.654 | 3.747 | 1.290 | 3.740
a=—0.5 Mean 0.328 | 0.672 | 0.334 | 0.666 | 0.333 | 0.667 | 0.388 | 0.612 | 0.358 | 0.606
Bz’asfog 0.006 | 0.006 | 0.013 | 0.016 | 0.010 | 0.010 | 3.328 | 3.403 | 0.799 | 4.158
7=—0.111 | Varyes | 0.029 | 0.030 | 0.179 | 0.167 | 0.001 | 0.001 | 0.142 | 0.150 | 0.082 | 0.156
MSEs | 0.035 | 0.035 | 0.192 | 0.183 | 0.011 | 0.011 | 3.469 | 3.554 | 0.881 | 4.314
oa=-0.75 Mean 0.328 | 0.672 | 0.334 | 0.666 | 0.333 | 0.667 | 0.387 | 0.612 | 0.358 | 0.606
Biasfo_g 0.006 | 0.005 | 0.012 | 0.015 | 0.010 | 0.010 | 3.289 | 3.360 | 0.780 | 4.134
7=—0.167 | Varyps | 0.029 | 0.029 | 0.161 | 0.153 | 0.001 | 0.001 | 0.126 | 0.133 | 0.074 | 0.136
MSEs | 0.035 | 0.034 | 0.174 | 0.168 | 0.011 | 0.011 | 3.414 | 3.493 | 0.853 | 4.270
a=-0.9 Mean 0.328 | 0.672 | 0.334 | 0.666 | 0.333 | 0.667 | 0.387 | 0.613 | 0.357 | 0.606
Biasfo_g 0.006 | 0.006 | 0.013 | 0.015 | 0.010 | 0.010 | 3.218 | 3.283 | 0.744 | 4.103
T=-02 Variygs | 0.029 | 0.028 | 0.149 | 0.146 | 0.001 | 0.001 | 0.120 | 0.127 | 0.068 | 0.126
MSEg: | 0.034 | 0.034 | 0.163 | 0.161 | 0.011 | 0.011 | 3.337 | 3.409 | 0.811 | 4.229

Table 17: Clayton copula, true marginal G = ¢5: estimation of 0.01 conditional quantile

| | | Sieve | Ideal | 2step | Para | Mis-N | Mis-EV |
a=5 Inths?O3 5.409 | 0.001 | 80.71 | 0.004 | 102.5 482.2

7(0.714) | IntVarygs | 14.03 | 3.362 | 336.1 | 5.751 | 85.38 127.3
A(0.871) | IntMSEqps | 19.44 | 3.363 | 416.8 | 5.755 | 187.8 609.5

a=10 IntBiast3 0.951 | 0.000 | 288.9 | 0.000 | 81.28 201.0
7(0.833) | IntVarigs | 10.35 | 1.463 | 353.2 | 2.113 | 41.15 40.26
A(0.933) | IntMSEqps | 11.31 | 1.464 | 642.1 | 2.114 | 1224 241.3

a=12 IntBias?,s | 0.689 | 0.000 | 227.0 | 0.000 | 17.35 80.14

7(0.857) | IntVarigs | 4.459 | 0.650 | 329.6 | 0.890 | 13.55 14.89

A(0.944) | IntMSEyps | 5.148 | 0.650 | 556.6 | 0.890 | 30.90 95.03

For each «, evaluation is based on the common support of 1000 MC simulated data. Reported integrated
Bias?, integrated Var and the integrated MSE are the true ones multiplied by 1000.
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Table 18: Clayton copula, true marginal G = t3: estimation of 0.01 conditional quantile

| | | Sieve | Ideal | 2step | Para | Mis-N | Mis-EV |
a=5 IntBias},; | 36.26 | 0.000 | 150.0 [ 0.172 | 900.7 704.8

7(0.714) | IntVarygs | 32.15 | 5.450 | 985.3 | 10.18 | 463.7 313.4
A(0.871) | IntMSEqps | 68.41 | 5.450 | 1135 | 10.35 1364 1018

a=10 IntBiast3 7.712 | 0.000 | 527.3 | 0.040 | 815.3 427.4
7(0.833) | IntVarygs | 19.36 | 2.475 | 855.3 | 3.716 | 361.7 202.7
A(0.933) | IntMSFEygs | 27.07 | 2.475 | 1383 | 3.756 1177 630.1

a=12 IntBias?ys | 2.851 | 0.000 | 367.7 [ 0.004 | 181.1 175.9

7(0.857) | IntVarygs | 6.236 | 1.068 | 590.9 | 1.578 | 59.44 46.12

A(0.944) | IntMSE;ps | 9.086 | 1.069 | 958.7 | 1.582 | 240.5 222.0

For each «, evaluation is based on the common support of 1000 MC simulated data. Reported integrated
Bias?, integrated Var and the integrated MSE are the true ones multiplied by 1000.

47



full (parametric)

100
- |
0
0 10 20 30
full (mlsnormal)
100
50
0
0 10 20 30
full (mlsev)
100
50
0 A
0 10 20 30
Sieve MLE
100
50
N |
0 10 20 30

Figure 4: Clayton copula (true o = 12, marginal G = t5): Histograms of « estimates: 2-step v.s.
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Figure 5: Clayton copula (true marginal G = t5):

true a =5, (¢) true a = 10, (d) true o = 12.
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Figure 6: Gumbel copula (true marginal G = t5): Histograms of a estimates:
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Figure 7: Sieve MLE of marginal density function (true marginal G = t5); Clayton copula: (a)
a =2, (d) a = 12; Gumbel copula: (b) a = 2, (e) o = 7; Gaussian copula: (c) a = 0.9511, (f)
a = —0.9511. True=solid, Sieve MLE=dashed. Evaluation is based on the common support of
1000 MC simulated data.
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Figure 8: Sieve MLE of marginal density function (true marginal ¢3); Clayton copula: (a) a = 2,
(d) @ = 12; Gumbel copula: (b) o = 2, (e) @ = 7; EFGM copula: (¢) o = 0.75, (f) o = —0.75.
True=solid, Sieve MLE=dashed. Evaluation is based on the common support of 1000 MC simulated
data.
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Figure 9: Clayton copula (true @ = 10, marginal G = t5, t3): estimation of 0.01 conditional
quantile. Evaluation is based on the common support of 1000 MC simulated data.
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Figure 10: Clayton copula (true o = 12, marginal G = t5, t3): estimation of 0.01 conditional
quantile. Evaluation is based on the common support of 1000 MC simulated data.
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