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Abstract

We analyze the applicability of standard normal asymptotic theory for linear

process models near the boundary of stationarity. The concept of stationarity is

re�ned, allowing for sample size dependence in the array and paying special attention

to the rate at which the boundary unit root case is approached using a localizing

coe�cient around unity. The primary focus of the present paper is on estimation of

the the mean, autocovariance and autocorrelation functions within the broad region

of stationarity that includes near boundary cases which vary with the sample size.

The rate of consistency and the validity of the normal asymptotic approximation

for the corresponding estimators is determined both by the sample size n and a

parameter measuring the proximity of the model to the unit root boundary. An

asymptotic result on the estimation of the localizing coe�cient is also presented.

To assist in the development of the limit theory in the present case, a suitable

asymptotic theory for the behavior of quadratic forms in the vicinity of the boundary

of stationarity is provided.
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1 Introduction

The idea of developing asymptotics in near unit root situations is due at various levels

of generality to Bobkowski (1983), Cavanagh (1985), Phillips (1987) and Chan and Wei

(1987). These studies consider models in which the dominant autoregressive root is local

to unity in the speci�c sense of O (n�1) departures from unity, thereby making the value

of the root sample size dependent. The work has proved useful in studying near integrated

processes, in establishing the local asymptotic properties of tests, and in the construction

of con�dence intervals.

Recent work has shown that it is also useful to provide a broader characterization of

the locality of unity, the region of stationarity and the explosive region. In particular, the

concept of moderate deviations from unity was suggested and pursued by Phillips and

Magdalinos (2007a) and Giraitis and Phillips (2006), which leads to certain new possibil-

ities such as mildly explosive behavior and gives rise to a new limit theory. This broader

approach to modeling the region around unity conceptualizes the important practical no-

tion that in �nite samples a unit root may be treated as an interval around unity, whose

size is determined by the sample length n and measured according to units of 1=n. Out-

side such intervals we have regions that involve certain classi�able types of stationary and

explosive behavior, now measured in units of more general functions of 1=n:

The idea is well illustrated in the simple AR(1) model

Xt = �Xt�1 + "t; t = 1; :::; n(1.1)

where "t is iid (0; 1) noise and X0 is some appropriate �xed or random initialization. In

this model, the unit root � = 1 is conventionally taken to prescribe the boundary case

between stationarity and explosive behavior. Accordingly, a model with j�j < 1 is stable

or stationary, whereas a model with � > 1 is (non-stationary) explosive. However, from

both a practical and theoretical standpoint it has become increasingly clear that in �nite

samples of data a unit root is e�ectively an interval of the form

� 2 [1� an; 1 + an]; an = o(1=n);

which shrinks to the singular point at unity as n ! 1: Within such intervals the limit

theory and statistical tests that rely on that theory cannot distinguish di�erent values of

�:

Broadening the interval to include roots that are local to unity in the sense that

1 � � = c=n; for some constant c; gives rise to the class of near integrated processes

(Phillips, 1987) with � taking values in the region

� 2 [1� an; 1 + an]; an � c=n:
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This class is particularly useful in studying asymptotic local power functions of unit root

tests and in constructing con�dence intervals for � that allow for limit processes within

the di�usion class corresponding to the limits of n�1=2X[n�] for various values of c:

Based on this classi�cation of unit roots and roots local to unity, the region of sta-

tionarity may be described by intervals of the type

� 2 [�1 + an; 1� an]; ann!1:

These intervals of stationarity include moderate deviations from unity of the form � =

1 � c=kn and � = �1 + c=kn where kn = o (n) and c > 0; as considered in Phillips and

Magdalinos (2007). Likewise the region of explosive behavior may be characterized as

� 2 (�1;�1� an] [ [1 + an;1); ann!1:

In samples of size n we therefore have the following categories:

(i) the unit root region, described by pairs (n; �) for which n(1� �) = o (1) is very small;

(ii) the near unit root region, described by pairs (n; �) for which n(1 � �) = O (1) may

take moderate values;

(iii) the region of stationarity, described by pairs (n; �) for which n(1 � �) ! 1 takes

large values.

In each of these cases we may consider � (and hence v = 1��) to be functionally dependent
on n; or at least con�ned to an interval that depends on n, thereby making the process Xt

in (1.1) an array. This formulation will be understood throughout the paper even though

it is seldom made explicit.

The region of stationarity and unit root region are separated by a local to unity region

in which the least squares estimator �̂n of � in (1.1) has a non-Gaussian limit distribution.

The size of the stationarity region is determined by the sample size n and �, and when

n(1 � �) is large, �̂n has the same asymptotic properties as in the (�xed �) stationary

case. That is, s
n

1� �2
(�̂n � �)!d N(0; 1);(1.2)

as shown in Phillips and Magdalinos (2007) and Giraitis and Phillips (2006). The con-

vergence rate behaves as fn= (1� �2)g1=2 � fn=2(1� �)g1=2 when 1� � is small. As the

sample size n increases, the stationarity region approaches the boundaries of the interval

(�1; 1): Further, the convergence rate fn=2(1� �)g1=2 is determined by both n and � and

may increase from
p
n towards the unit root rate n for small 1� �:

It follows from (1.2) that standard asymptotic estimation and inferential theory applies

over the whole region of � for which (1.2) holds. Similarly, in more general autoregres-

sions than (1.1) and linear regressions where moderate deviations from a unit root occur,
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asymptotic normality will prevail although the rate of convergence may increase or slow

down depending on the value of � and bias e�ects may emerge because of endogeneity in

the regressors (Phillips and Magdalinos, 2007b; Magdalinos and Phillips, 2008).

The present paper seeks to explore generalizations of (1.2) for sample mean, auto-

covariance and autocorrelation functions near the boundary of stationarity and under a

wider class of models that allow for linear process errors. Consistency and limit distribu-

tion results are given, as well as conditions for the consistent estimation of the parameter

v = 1� � which measures nearness to the unit root boundary.

The paper is organized as follows. Section 2 considers a general class of linear pro-

cess models, where allowance is made for the presence of roots that deviate moderately

from unity. Our main results focus on the sample mean, sample correlation and sample

autocovariance function and we establish the rate of consistency and the validity of nor-

mal approximations for these sample functions. Section 3 contains asymptotic theory for

integrated periodograms (and hence quadratic forms) where the weighting function may

depend on n. These results are discussed in Section 4. Section 5 contains proofs of the

supporting asymptotic theory of Section 3. Proofs of the main results of Section 2 are

given in Section 6.

In addition to standard asymptotic notation, it is convenient, given sequences an; bn �
0, to use the notation an � bn to signify that C1bn � an � C2bn, holds for n � 1 and for

some C1; C2 > 0.

2 Main Results

2.1 Model

We consider the model

(1� �L)Xt = Yt; Yt =
1X
j=0

bj"t�j(2.1)

where 0 < � < 1 and Yt is a linear MA(1) process with coe�cients bj, where ("t) is a

sequence of i.i.d. random variables with

E"t = 0; E"2t = 1(2.2)

and L is the back-shift operator. Our attention will focus on the impact of the closeness

of � to 1 (i.e., the smallness of v = 1 � �) on the validity of the asymptotic normal

approximations for the distributions of the sample mean, sample autocovariance and

sample autocorrelation.
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The spectral density function f(�); j�j � �; of fXtg can be written as

f(�) = (2�)�1f �(�)g(�); j�j � �(2.3)

where

f �(�) = j1� �ei�j�2 = 1

v2 + 2�(1� cos(�))
; g(�) = j

1X
s=0

bse
�i�sj2

and j�j < 1. Then

f(0) = (2�)�1v�2g0; g0 = g(0);(2.4)

f �(�) � (v2 + ��2=3)�1; j�j � �; j�j < 1;(2.5)

using 2(1� cos(�)) � �2=3 for j�j � �. We shall assume that g0 > 0, and

1X
s=j

jbsj � Cj�1��; j � 1(2.6)

for some � > 2. Then, since g is an even function,

jg(�)� g(0)j � C�2; j�j � �:(2.7)

It is natural to raise the question of how the closeness of the parameter � to 1 impacts

the validity of the usual normal approximation of the distribution of the sample mean

and second moments. Moreover, if � is close to one and may depend on the sample size

n as discussed in the Introduction, it is of interest to determine the set of pairs (n; �) for

which the asymptotic theory corresponding to a stationary model with �xed � continues

to apply.

We also examine the e�ect of the closeness of � to 1 on the estimation error, the rate

of convergence and the length of con�dence intervals.

2.2 Estimation of the mean

De�ne the sample mean:

�X =
1

n

nX
t=1

Xt:

It is well known that for any �xed � with j�j < 1 as n!1,

s
n

2�f(0)
( �X � �)!d N(0; 1)(2.8)

where � = E[Xt] = 0 in case of (2.1). Since f(0) = (2�)�1v�2g0, this implies

s
nv2

g0
( �X � �)!d N(0; 1):(2.9)
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On the other hand, the convergence (2.8)-(2.9) fails to extend smoothly for a unit root

model, with � = 1, nor does the model (2.1) itself exist, unless suitable assumptions are

made concerning the initialization X0 to ensure that it is well de�ned.

The critical question we address is under which restrictions on � and n does the

approximation implied by the limit theory (2.8)-(2.9) continue to hold? We shall show

that, for given (�; n), the normal approximation (2.9) holds if nv is large. As discussed

earlier, we allow for an array formulation of the model in which � = �n and v = vn may

change with n.

Theorem 2.1 Assume that fXtg follows the model (2.1), satisfying (2.6) and

vnn!1; as n!1:(2.10)

Then the convergence s
nv2n
g0

( �X � �)!d N(0; 1)(2.11)

holds.

The proof of Theorem 2.1 is given in Appendix 2.

We conclude that if the parameter � = 1 � v and sample size n are such that nv is

large, then the normal approximation (2.9) is applicable. The rate of convergence of the

normal approximation (2.11) depends on the value of v and varies in the interval

n�1=2 <<
p
nv2 � pn:

The convergence (2.9) shows that the rate
p
nv2 does not exceed

p
n: It becomes slow

when v is close to n�1=2 and even tends to 0, when v approaches n�1: The value of

v has a strong impact on the length of con�dence intervals for �, and estimation of �

dramatically worsens in quality as the unit root model is approached. The sample mean
�X is a consistent estimator of � only if v >> n�1=2, and � cannot be consistently estimated

when n�1 << v << n�1=2, although the normal approximation (2.11) with � = 0 still

holds. Observe, that the lower bound n�1=2 of the rate (2.9) is in line with results in the

unit root case � = 1, for which under the initial condition X0 = 0, we have Xt =
Pt

j=1 Yj
and

n�1=2 �X = n�3=2
nX

k=1

kX
j=1

Yj !d !Y

Z 1

0
W (t)dt;

where Wt is the standard Wiener process and !2
Y is the long run variance of Yj:

This example demonstrates that the closeness of the model to unit root non-stationarity

not only a�ects the properties of semiparametric estimation but can also have a strong

impact on the quality of simple parametric estimation such as the sample mean.
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2.3 Autocovariance and autocorrelation function estimation

We now consider estimation of the autocovariances

j = Cov(Xj; X0) =
Z �

��
cos(�j)f(�)d�; j � 0

and the autocorrelation function �j =
j
0
, j = 0; 1; 2; ::: using the sample analogues

̂k = n�1
n�kX
t=1

Xt+kXt; �̂k =
̂k
̂0
; k � 0:

The next lemma describes the asymptotic behavior of j and �j as �! 1. Set

�k = (2�)�1
Z �

��

1� cos(k�)

2(1� cos(�))
g(�)d�; k = 1; 2; :::

and

�0 = (2�)�1
Z �

��

g(�)� g0
2(1� cos(�))

d�:

The asymptotic distributions of the sample mean, autocovariances, and autocorrela-

tions for short memory and long memory time series were studied in Hosking (1995). We

focus here on stationary short memory time series which approach the unit root region.

First, we discuss some asymptotic properties of j and �k as v ! 0.

Lemma 2.1 For �xed k = 0; 1; 2; ::, as v ! 0,

0 =
g0
2v

+
g0
4
+ �0 + o(1);(2.12)

k = 0 � �k + o(1) =
g0
2v

+
g0
4
+ �0 � �k + o(1); k = 1; 2; :::(2.13)

and

�k = 1� 2v�k + o(v); k = 1; 2; ::::(2.14)

Our next theorem deals with asymptotic properties of the estimators ̂j and �̂k:

Theorem 2.2 Assume that (X1; :::; Xn) is a sample generated by (2.1) which satis�es

(2.6) with � = �n and where vn = 1� �n > 0 has property (2.10).

(i) If E"4t <1; then

Eĵk � kj � C
1q
nv3n

; ̂k = k(1 +OP (
1p
nvn

))(2.15)

where C does not depend on n and vn.
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(ii) If E"2+�t <1; for some � > 0, and vn ! 0, then

s
2nv3

g20
(̂k � k)!d N(0; 1):(2.16)

(iii) If E"2t <1 then

j�̂k � �kj = OP (
1

nvn
+

r
vn
n
):(2.17)

Moreover, if

n v3n !1; vn ! 0; n!1(2.18)

then s
nvn

2(1� �k)2
(�̂k � �k)!d N(0; 1);

s
nvn

2(1� �k)2
� 1

2�k

s
n

2vn
(2.19)

The following theorem considers estimation of the quantity
p
v. Denote the peri-

odogram by In(�) = (2�n)�1jPn
t=1 e

it�Xtj2, and de�ne

q
v̂n =

1p
2

R �
��

p
� In(�)d�R �

�� In(�)d�
:(2.20)

Theorem 2.3 Assume that (X1; :::; Xn) is a sample generated from (2.1) which satis�es

(2.6) with � = �n and where vn = 1� �n > 0 has property (2.10). If E"4t <1, then

q
v̂n =

p
vn +OP (vn +

1

nvn
+

1p
n
):(2.21)

The proofs of Lemma 2.1 and Theorems 2.2-2.3 are given in Appendix 2.

Remarks.

(i) Estimation of ̂k and �̂k is based on approximation of these statistics by quadratic

forms of the form
Pn

t;s=1 bn(t � s)"t"s with suitable weights bn(t � s). In case of �̂k, the

diagonal elements bn(t � s) become 0, whereas in case of ̂k, the contribution of the

diagonal
Pn

t=s=1 bn(t � s)"2t , as vn ! 0, is asymptotically negligible. This representation

leads to the requirement of �nite 2+ � moments of "t in (ii), and second moments in (iii).

In the case where vn is �xed, the convergence (2.16) requires �nite fourth moments of "t.

(ii) It follows from (2.15) that ̂k is a consistent estimate of k. The CLT (2.16) is valid

with the convergence rate
q
nv3n which depends on the value of vn and varies in the interval

n�1 <<
q
nv3n <<

p
n:
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(iii) As vn decreases, con�dence intervals for k will increase. When nv3n ! 0 then (2.16)

can be written in the form

̂k � k(1 +
g0

k
p
2nv3

Z) � k(1 +

s
2

nv
Z); Z � N(0; 1):

(iv) Theorem 2.2 shows that the sample autocorrelation �̂k is a consistent estimator of �k
as long as nv !1, and E"2t <1. The proof indicates that �̂k � �k can be decomposed

into a bias term of order OP ((nvn)
�1) and the stochastic CLT term

q
vn
n
N(0; 1) which

dominates the bias under the condition nv3 !1.

(v) To apply these results in samples of size n we set vn = v = 1 � � where � is the

parameter of the data generating process. The parameter v can be consistently estimated

as shown in Theorem 2.3.

The proof of Theorem 2.2 is based on central limit theory for certain quadratic forms

and this theory is developed in the following Section.

Figure 1 shows the ACF �k of the AR(2) model (1 � rL)(1 � 0:4L)Xt = "t for the

parameter values r = 0:5; 0:7; 0:85 and 0:95. Figure 2 shows a realization of the sample

ACF, �̂k, computed from a sample of n = 125 observations. Figures 3 and 4 show the bias

�̂k� �k and the relative bias (�̂k� �k)=�k corresponding to these realizations. The �gures
con�rm the theory based on (2.19) that the rate of convergence

q
n=v of the sample ACF

in the near unit root region improves when v ! 0, and nv3 remains large. That condition

is not well satis�ed when r = 0:95, partly explaining the large bias in this case1.

Figures 5-6 indicate the adequacy of the standard normal approximation (2.19) to the

probability density function of the standardized sample ACFs t̂n(k) =
q

nv̂
2(1��̂k)2

(�̂k � �k)

for lags k = 5; 25; 45 in the same AR(2) model and with n = 2000. The probability density

of t̂n(5) was estimated using a kernel estimator based on 50; 000 replications. The �gures

indicate that the density is generally well �tted by the standard normal for r = 0:8; 0:95,

corresponding to the near unit root case with v = 0:2 and 0:05, respectively, although we

note that the departure from the standard normal is greater for larger lag values.

Figures 1 - 6 about here

3 Asymptotic theory for quadratic forms

We assume that

Xj =
� 1X
t=0

atL
t
�
Yj =

1X
t=0

atYj�t; j = 0; 1; 2; ::(3.1)

1We thank Violetta Dalla for preparing Figures 1-4.
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is a linear process where

Yt =
� 1X
s=0

bsL
s)"s =

1X
s=0

bs"t�s;

("t) is a sequence of i.i.d. random variables with E"t = 0; E"2t = 1, and the real

coe�cients at; bs are absolutely summable. We can write Xt as

Xj =
� 1X
t=0

atL
t
�� 1X

s=0

bsL
s
�
"j =

1X
j=0

 j"t�j; t = 0; 1; 2; :::

with

 j =
jX

k=0

akbj�k; k = 0; 1; 2; 3; :::

The spectral density function f(�); j�j � �; of fXtg can be written as

f(�) = (2�)�1j	(�)j2; 	(�) = 	a(�)	b(�)(3.2)

where

	a(�) =
1X
t=0

ate
�i�t; 	b(�) =

1X
s=0

bse
�i�s:

We impose the following restrictions on at and bs.

Assumption 3.1 (i) The coe�cients aj satisfy

jajj � C�j; j = 1; 2; 3; :::(3.3)

for some 0 � � < 1, where � = �n may depend on n.

(ii) The coe�cients bs are such that

1X
s=j

jbsj � Cj�1��; j = 1; 2; 3; :::(3.4)

for some � > 1=2, and the bs do not vary when n changes.

C here and below denotes a generic positive constant which may change from line to

line but does not depend on n and �. As before, we let

v = 1� �:(3.5)

Under Assumption 3.1, the spectral density

f(�) � Cj
1X
t=0

�tj2 � Cv�2(3.6)
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is bounded by a constant times v�2 which increases to 1 as � tends to 1. For example,

the model

Xt = (1� �L)�1Yt = (
1X
j=0

�jLj)Yt =
1X
j=0

�jYt�j

where 0 < � < 1 and Yt is a stable ARMA(p; q) model has properties (3.3) and (3.4).

In e�ect, we consider data that takes the form of a triangular array

(X1; :::; Xn) = (X
(n)
1 ; :::; X(n)

n ); n = 1; 2; ::

generated by model (3.1) where, as n increases, the coe�cient � = �n in (3.3) may change

with n, e.g. they may approach unity, whereas the coe�cients bj remain the same and

satisfy condition (3.4) with the same C and � for all n.

Denote by

In(�) =
1

2�n

������
nX

j=1

Xje
i�j

������
2

; In;"(�) =
1

2�n

������
nX

j=1

"je
i�j

������
2

the periodograms of the observed variable Xt and the noise variable "t. A number of

useful statistics can be written in the form of functionals of the integrated periodogram

Tn;X =
Z �

��
�n(�)In(�)d�;

where �n(�) is a real even function. The well-known Bartlett (1955) decomposition

In(�) = 2�f(�)In;"(�) + Ln(�)(3.7)

divides the periodogram In(�) into the weighted periodogram 2�f(�)In;"(�) of the noise

and the remainder Ln(�). The expression suggests that Tn;X can be similarly decomposed

as

Tn;X = Tn;" + "small term"

where

Tn;" = 2�
Z �

��
�n(�)f(�)In;"(�)d�;

is a quadratic form of the i.i.d. variables "j. The asymptotic properties of Tn;" are much

easier to analyze then those of Tn;X , as long as Tn;" dominates the remainder Tn;X � Tn;".
Our objective is to derive a precise upper bound for the remainder term. Then, using

asymptotic theory for quadratic forms Tn;" in i.i.d. variables, we derive the asymptotic

distribution of Tn;X . We shall assume that the functions �n have the following property.

Assumption 3.2 �n is a real even function such that

j�n(�)j � kn; � 2 [��; �]; n � 1:(3.8)
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Thus, the functions �n are bounded but their upper bound kn might vary with n, for

example, �n may be a kernel function.

Let

hn(�) = �n(�)f(�):(3.9)

Then Tn;" = 2�
R �
�� hn(�)In;"(�)d�: We shall assume that hn(u) is periodically extended

to R. Set

Bn =
Z �

��
h2n(x)dx:(3.10)

Theorem 3.1 Suppose that Assumptions 3.1 and 3.2 hold and the noise f"tg has �nite

second moment.

Then, for n � 1,

EjTn;X � Tn;"j � C
kn
nv2

;(3.11)

and

Tn;X =
Z �

��
�n(�)f(�)d�+ (Tn;" � E[Tn;"]) + rn; Ejrnj � C

kn
nv2

:(3.12)

If "4t <1, then

E
���Tn;X �

Z �

��
�n(�)f(�)d�

��� � C
� kn
nv2

+

s
Bn

n

�
� C

� kn
nv2

+
knp
nv3

�
(3.13)

where C does not depend on n and v = 1� �.

Theorem 3.1 provides sharp upper bounds for the remainder term which reects the

interplay of n and �, with no restrictions on � imposed. The constants kn play a secondary

role. If the functions �n(�) not depend on n, we can set kn = 1. The proof of Theorem

3.1 is given in Appendix.

Next we derive the CLT for the term Tn;" � E[Tn;"] in (3.12) and describe conditions

under which it dominates the remainder rn.

First, to evaluate Var(Tn;"), we introduce the matrix En = (en(t�k))t;k=1;:::;n with the

entries

en(t) = 2�
Z �

��
hn(�)e

i�td�(3.14)

and denote by jjEnjj = (
Pn

t;k=1 e
2
n(t� k))1=2 its Euclidean norm. Observe that

(2�n)2Var(Tn;") = 2
nX

t;k=1:t6=k

e2n(t� k) + Var("20)e
2
n(0)n:(3.15)

Then

Var(Tn;") � 1

n2
jjEnjj2:(3.16)

12



If e2n(0) = 0, then En has zero diagonal, and

Var(Tn;") =
2

(2�n)2
jjEnjj2:(3.17)

To derive the asymptotic behavior of jjEnjj2 we introduce the following assumption.

Assumption 3.3 For any K > 0,

sup
juj�K=n

Z �

�
jhn(u� x)� hn(x)j2dx=Bn ! 0; n!1:(3.18)

In Lemma 5.2 in Appendix 1 we show that under Assumption 3.3,

jjEnjj2 � (2�)3nBn:

Lemma 3.1 below provides the central limit theorem for the quadratic form Tn;" in

i.i.d. variables, and is a direct consequence of Theorems 4.1 and 4.2 in Bhansali, Giraitis

and Kokoszka (2007) and Lemma 5.2 below. It takes into account the fact that the upper

bound k�n in j�n(�)jf(�) � k�n might be smaller than the product Ckn � v�2 of the upper

bounds j�n(�)j � kn and f(�) � Cv�2.

We shall distinguish two cases, (c1) and (c2), when the CLT does not require �nite

fourth moment of the noise "t.

Case (c1):

E"2t <1, and
Z �

��
hn(�)d� = 0:(3.19)

Case (c2):

E"2+�t <1 for some � > 0, and
Z �

��
hn(�)d� = o

�
(
Z �

��
hn(�)

2d�)1=2
�
:(3.20)

Case (c1) corresponds to the case where En has zero diagonal, whereas case (c2)

corresponds to the case of an asymptotically vanishing diagonal.

Lemma 3.1 Suppose that hn satis�es Assumption 3.3,

jhn(�)j � k�n; n � 1;

and
k�np
nBn

! 0; n!1:(3.21)

(i) If E"4t <1, then

[Var(Tn;")]
�1=2(Tn;" �

Z �

��
hn(�)d�)

d! N(0; 1); Var(Tn;") � Bn

n
:(3.22)
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(ii) If (c1) or (c2) hold, then

s
n

4�Bn

�
Tn;" �

Z �

��
hn(�)d�

�
d! N(0; 1):(3.23)

Lemma 3.1 remains valid also for any sequence of real even functions hn(�) without

assuming (3.9).

Applying Lemma 3.1 to the asymptotic expansion (3.12) in Theorem 3.1, we obtain the

CLT for Tn;X . Condition (3.24) below assures that the main term Tn;" � E[Tn;"] satis�es

the CLT and dominates the remainder term rn.

Theorem 3.2 Suppose that Assumptions 3.1, 3.2 and 3.3 are satis�ed and, as n!1,

kn=v
2

p
nBn

! 0:(3.24)

(i) If E"4t <1 then

[Var(Tn;X)]
�1=2(Tn;X �

Z �

��
�n(�)f(�)d�)

d! N(0; 1)(3.25)

and

Var(Tn;X) � Var(Tn;") � Bn

n
:(3.26)

(ii) If (c2) or (c3) hold, then

s
n

4�Bn

�
Tn;X �

Z �

��
�n(�)f(�)d�

�
d! N(0; 1):(3.27)

4 Discussion

The idea of approximation results similar to those in Theorem 3.1 goes back to the

work of Hannan and Heyde (1972) and Hannan (1973). Classical results in the time

series literature cover the case where the function �n(�) = �(�) is continuous and does

not depend on n, and fXtg is a stable ARMA process. Brockwell and Davis (1991),

Proposition 10.8.5, showed that

EjTn;X � Tn;"j = o(n�1=2):(4.1)

Recently, Bhansali, Giraitis and Kokoszka (2007) extended this type of approximation to

the class of linear processes fXtg allowing for both weak and strong dependence as well
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as antipersistence, and allowing �n(�) to depend on n. The bound (4.1) was improved to

the sharper bound

EjTn;X � Tn;"j = O(n�1):

In the present paper Theorem 3.1 provides the approximating bounds

EjTn;X � Tn;"j = O((nv2)�1);

E
���Tn;X �

Z �

��
�n(�)f(�)d�

��� � C
� kn
nv2

+
knp
nv3

�
;

that hold uniformly over n and the parameter v = 1 � � characterizing closeness of the

model to the boundary of the stationary region. The conditions of the CLT of Theorem

3.2 are easy to check. The Theorem simpli�es the derivation of asymptotics for statistics

which can be written in the form of functionals of the integrated periodogram Tn;X .

5 Appendix 1

Proof of Theorem 3.1. Set

vk =

(
2�
Pn�k

j=1�k  
2
j ; for k � 0,

2�
Pn

j=n�k+1  
2
j ; for 1 � k � n

and

dn = 2�
1X

j=n+1

 2
j ; n = 0; 1; 2; ::::

Let Vn =
Pn

k=�1 vk and Rn =
P1

j=0 j jj. First we prove the following result.

Lemma 5.1 Assume that �n(�) satis�es Assumption 3.2. Then

EjTn � Tn;"j � Cn�1kn
�
Vn + ndn + V 1=2

n R + d
1=2
0

nX
k=0

v
1=2
k + nd1=2n R + nd1=2n d

1=2
0

�
(5.1)

where C does not depend on n and �.

Proof of Lemma 5.1. De�ne

dk(�) =

(Pn�k
j=1�k  je

�i�j; for k � 0,

�Pn
j=n�k+1  je

�i�j; for 1 � k � n

and

cn(�) =
1X

j=n+1

 je
�i�j; n = 0; 1; 2; ::::
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For integers k and t, we introduce the coe�cients:

�n(k; t) =
Z �

��
ei(t�k)�dk(�)dt(�)j�n(�)jd�; �n(k; t) =

Z �

��
ei(t�k)�dk(�)	(�)�n(�)d�;

�n(k; t) =
Z �

��
ei(t�k)�jcn(�)j2j�n(�)jd�; �n(k; t) =

Z �

��
ei(t�k)�cn(�)	(�)�n(�)d�:

Observe that

vk =
Z �

��
jdk(�)j2d�; dn :=

Z �

��
jcn(�)j2d�; d0 :=

Z �

��
j	(�)j2d�

vk = C
n�kX

j=1�k

 2
j for k � 0; C

nX
j=n�k+1

 2
j for 1 � k � n;

dn = C
1X

j=n+1

 2
j :

To derive the bound (5.1), we shall use the estimate (5.31) of BGL(2007)

EjTn � Tn;"j � Cn�1(EjYnj+ EjVn;1j+ EjVn;2j)(5.2)

where it was shown that

EjYnj � C
� nX
k=�1

�n(k; k) +
nX

k=1

�n(k; k)
�
=: C[sn;1 + sn;2];

EjVn;1j � C
h� nX

k=�1

nX
t=1:t6=k

j�n(k; t)j2
�1=2

+
nX

k=1

j�n(k; k)j
i
=: C[s

1=2
n;3 + sn;4]

EjVn;2j � C
h� nX

k=1

nX
t=1:t6=k

j�n(k; t)j2
�1=2

+
nX

k=1

j�n(k; k)j
i
=: C[s

1=2
n;5 + sn;6]:

Recall that j�n(�)j � kn. Hence, by (5.2),

jsn;1j � Ckn
nX

k=�1

Z �

��
jdk(�)j2d� = Ckn

nX
k=�1

vk = CknVn;

jsn;2j � Cknn
Z �

��
jcn(�)j2d� = Cknndn;

jsn;4j � Ckn
nX

k=1

Z �

��
jdk(�)jj	(�)jd�

� Ckn
nX

k=1

�Z �

��
jdk(�)j2d�

�1=2�Z �

��
j	(�)j2d�

�1=2 � Ckn
nX

k=1

v
1=2
k d

1=2
0 ;

jsn;6j � Cknn
Z �

��
jcn(�)jj	(�)jd� � knnd

1=2
n d

1=2
0 :

The estimates (5.26)-(5.27) and (5.28)-(5.29) of BGK(2007) imply that

sn;3 � C
nX

k=�1

Z �

��
jdk(�)	(�)�n(�)j2d�; sn;5 � Cn

Z �

��
jcn(�)	(�)�n(�)j2d�:
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Since j�n(�j � kn and

j	(�)j � C
1X
j=0

j jj � CR;

it follows that

sn;3 � Ck2nR
2

nX
k=�1

Z �

��
jdk(�)j2d� = Ck2nR

2
nX

k=�1

vk = Ck2nR
2Vn;

sn;5 � Ck2nnR
2
Z �

��
jcn(�)j2d� = Ck2nnR

2dn:

Hence

s
1=2
n;3 � CknV

1=2
n R; s

1=2
n;5 � Cknn

1=2d1=2n R:

The above bounds for sn;j; j = 1; :::; 6 prove (5.1).

Now, using Assumption 3.1 we estimated quantities Vn, dn, d0 and R. We have

 j =
jX

s=0

asbj�s; s � 0

Recall that jajj � C�j, j = 1; 2; ::: and
P1

j=k jbjj � Cjkj�1��, k � 1, where � > 1=2.

First we show that

j jj � C(j�1�� + �j=2);(5.3)

where C does not depend on � and j = 1; 2; 3; ::: Write  j =  �j +  +
j where

 �j = (2�)�1
j=2X
t=0

atbj�t;  +
j = (2�)�1

jX
t=j=2+1

atbj�t:

In the sum in  �j we have j � t � j=2. Therefore

j �j j � C
j=2X
t=0

jbj�tj � C
1X

v=j=2

jbvj � Cjjj�1��; j = 1; 2; :::

j +
j j � C

jX
t=j=2+1

�tbj�t � C�j=2
1X
v=0

jbvj � C�j=2:

Applying (5.3), it follows that for k � 1,

1X
j=k

 2
j � C

1X
j=k

(j�2�2� + �j)

� C(k�1�2� + �k
1X
j=0

�j) � C(k�1�2� + �kv�1):
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Using this bound in (5.2), it follows that

vk � C

( jk � 1j�1�2� + ��kv�1; for k � 0,

(n� k + 1)�1�2� + �n�k+1v�1; for 1 � k � n

and

d0 � Cv�1; dn � C(n�1�2� + �nv�1); n = 1; 2; :::;Z �

��
f(�)d� = C

1X
j=0

 2
j = Cd0 � Cv�1:(5.4)

Then

Vn =
nX

k=�1

vk � C
X
k�0

((�k + 1)�1�2� + ��kv�1) +
nX

k=1

((n� k + 1)�1�2� + �n�k+1v�1)

� C(
1X
k=0

(k + 1)�1�2� +
1X
k=0

�kv�1) � Cv�2;

and

R �
1X
k=0

j kj � C
1X
k=0

((k + 1)�1�� + �k=2) � Cv�1:

Moreover, since

v
1=2
k � C((n� k + 1)�1�2� + �n�k+1v�1)1=2 � C((n� k + 1)�1=2�� + �(n�k+1)=2v�1=2)

and � > 1=2, then

nX
k=1

v
1=2
k � C

nX
k=1

((n� k + 1)�1=2�� + �(n�k+1)=2v�1=2) � Cv�3=2:

Note that log � � �(1� �) for 0 < � < 1 implies

n�n = n exp(n log �) � n exp(�n(1� �)) � 1=(1� �) = 1=v;

n�n=2 � 1=(1�p�) � C=v:

Now we use these bound to estimate the terms on the right hand side of (5.1):

Vn � Cv�2; ndn � C((n�2� + n�nv�1) � Cv�2;

V 1=2
n R � Cv�2; d

1=2
0

nX
k=1

v
1=2
k � Cv�2

nd1=2n R � Cn(n�1=2�� + �n=2)v�1 � Cv�2;

nd1=2n d
1=2
0 � Cn(n�1=2�� + �n=2v�1=2)v�1=2 � Cv�2;
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we obtain

EjTn � Tn;"j � Cn�1v�2

which proves (3.11).

It remains to show (3.13). We have Tn;" = 2�
R �
�� hn(�)In;"(�): By (3.16),

Var(Tn;") � CjjEnjj2 � Cn�2
nX

t;s=1

en(t� s)2

� Cn�1
1X

v=�1

en(v)
2 = Cn�1

Z �

��
j�n(�)f(�)j2d�

� Ck2nn
�1v�2

Z �

��
f(�)d� � Cn�1k2nv

�3

by (3.6) and (5.4), which together with (3.11) prove (3.13)

Lemma 5.2 If function hn satis�es Assumption 3.3 then, as n!1,

jjEnjj2 � (2�)3nBn:(5.5)

Proof of Lemma 5.2. By de�nition,

jjEnjj2 =
nX

t;s=1

en(t� s)2 = (2�)2
Z �

��

Z �

��

nX
t;s=1

ei(t�s)(x+y)hn(x)hn(y)dxdy

= (2�)2
Z �

��
jDn(u)j2Bn(u)du

where Dn(u) =
Pn

t=1 e
itu and Bn(u) =

R �
� hn(u� x)hn(x)dx; juj � �: Write

Z �

��
jDn(u)j2Bn(u)du = Bn(0)

Z �

��
jDn(u)j2du+ In

where In =
R �
�� jDn(u)j2(Bn(u)� B(0))dx. Since Bn(0) = Bn and

R �
�� jDn(u)j2du = 2�n,

it su�ces to show that

jInj = o(nBn):(5.6)

For K > 0, write In = In;1 + In;2 where

In;1 =
Z
K=n�juj��

jDn(u)j2(Bn(u)�Bn(0))du; In;2 =
Z
juj�K=n

jDn(u)j2(Bn(u)�Bn(0))du:

By the Cauchy inequality

jBn(u)j � (
Z �

��
h2n(u� x)dx)1=2(

Z �

��
h2n(x)dx)

1=2 = Bn
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since hn is periodically extended to R. Moreover, for n � 1,

jDn(x)j � C
n

1 + njxj ; jxj � �:(5.7)

So, for any �xed K > 0,

In;1 � CBn

Z
K=n�juj��

n2

(1 + njxj)2dx � CBnn�K

where

�K =
Z
juj>K

1

(1 + jxj)2dx! 0; K !1:

To estimate In;2, note that

sup
juj�K=n

jBn(u)�Bn(0)j � sup
juj�K=n

(
Z �

��
jhn(u� x)� h(x)j2dx)1=2(

Z �

��
h2n(x)dx)

1=2 = o(Bn)

by Assumption 3.3. Then �xed K > 0,

In;2 � sup
juj�K=n

jBn(u)�Bn(0)j
Z
juj��

jDn(u)j2dx = o(Bnn)

for any which proves (5.6).

6 Appendix 2

Proof of Theorem 2.1. The general idea of the proof is similar to that of Theorem

18.6.5 in Ibragimov and Linnink (1971). We provide a detailed proof. Start by writing

the linear process Xt, given in (2.1), in the form Xt =
Pt

s=�1  t�s"s. Then

Sn :=
nX
t=1

Xt =
nX

s=�1

cn;s"s; cn;s =
nX

t=max(1;s)

 t�s:

We shall show that as n!1,

�2n � V ar(Sn) � ng0v
�2;(6.1)

Sn;1 := ��1n

nX
s=1

cn;s"s !d N(0; 1);(6.2)

Sn;2 := ��1n

0X
s=�1

cn;s"s !P 0;(6.3)

which proves (2.11).
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Observe that

�2n = V ar(Sn) =
Z �

��
f(�)jDn(�)j2d�

where

jDn(�)j2 = j
nX
t=1

eit�j2 =
���sin(n�=2)
sin(�=2)

���2:
Since by (2.4) f(0) = (2�)�1v�2g0, thenZ �

��
f(0)jDn(�)j2d� = nv�2g0:

Then (6.1) follows if

Z �

��
jf(�)� f(0)jjDn(�)j2d� = o(nv�2):(6.4)

By (2.3)

jf(�)� f(0)j = (2�)�1jf �(�)g(�)� v�2g0j
� C(jf �(�)� f �(0)jg(�) + f �(0)jg(�)� g(0)j)
� C(�2f �(�)v�2 + �2);

since

jf �(�)� f �(0)j = j(v2 + 2�(1� cos(�))�1 � v�2j � C�2f �(�)v�2;

and, by (2.7), jg(�) � g(0)j � C�2. Since jDn(�)j2�2 � C, the left hand side of (6.4) is

bounded by

C
Z �

��
(�2f �(�)v�2 + �2)jDn(�)j2d�

� C
Z �

��
(f �(�)v�2 + 1)d� � C

Z �

��
[(v2 + ��2=3)�1v�2 + 1]d�

� Cv�3 = o(nv�2);

because nv !1 by (2.10), and using the bound (2.5) for f �.

Since the "t are i.i.d. variables with zero mean and unit variance, to prove (6.2) it

su�ces to check validity of Lindeberg condition, i.e. to show that for any � > 0,

in := ��2n

nX
s=1

E[c2n;s"
2
s1jcn;s"sj��n�]! 0; n!1:

First we show that for all s = 1; ::; n,

jcn;sj = o(�n):(6.5)
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Using the notation 	 from (3.2), we can write  s = (2�)�1
R �
�� e

isx	(x)dx, s = 0;�1; :::.
Then, for 1 � s � n,

cn;s =
nX

t=max(1;s)

 t�s = (2�)�1
Z �

��

nX
t=s

ei(t�s)x	(x)dx:(6.6)

Using the bound j	(x)j � Cf(x)1=2 � Cf �(x)1=2 � Cv�1 which follows from (3.2), (2.3)

and (2.4), we obtain

jcn;sj � Cv�1
Z �

��
j

nX
t=s

ei(t�s)xjdx � Cv�1
Z �

��
(jDn�s(x)j+ 1)dx � Cv�1 log n

for all s = 1; :::; n using (5.7). Since �n � Cn1=2v�1, this proves (6.5).

Fix K > 0. Then �K := E["2s1j"sj>K ]! 0, as K !1. Therefore, in view of (6.5),

E[c2n;s"
2
s1jcn;s"sj���n ] � (��n)

�2E[c4n;s"
4
s1j"sj�K ] + c2n;sE["

2
s1j"sj>K ] = c2n;s(o(1) + �K):

Then, using �2n =
Pn

s=�1 c2n;s,

in � ��2n

nX
s=1

c2n;s(o(1) + �K) = o(1) + �K ! 0; n;K !1;

which completes proof of (6.2).

To show (6.3), note that

ES2
n;2 = ��2n

0X
s=�1

c2n;s:(6.7)

Note that for s � 0, by (6.6),

cn;s = (2�)�1
Z �

��
e�isx

nX
t=1

eitx	(x)dx = (2�)�1
Z �

��
e�isx

nX
t=1

eitx(	(x)�	(0))dx

since j	(0)j <1 and
R �
�� e

�isxPn
t=1 e

itx	(0)dx = 0 for s � 0. Then by Parseval's identity,

ES2
n;2 � C��2n

Z �

��
j

nX
t=1

eitxj2j	(x)�	(0)j2dx:

Observe that

	(x) =
� 1X
t=0

�te�itx
�� 1X

s=0

bse
�isx

�
=: 	�(x)	b(x):

We have that

j	�(x)�	�(0)j � j(1� �e�ix)�1 � (1� �)�1j � 2jxjv�1j	�(x)j;
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whereas by (2.6),

j	b(x)�	b(0)j � Cjxj:
Then

j	(x)�	(0)j � j	�(x)�	�(0)jj	b(x)j+j	�(0)jj	b(x)�	b(0)j � C(jxjv�1j	�(x)j+jxjv�1):

So,

ES2
n;2 � C��2n

Z �

��
jDn(x)j2(jxjv�1j	�(x)j+ jxjv�1)2dx

� C��2n

Z �

��
(v�2j	�(x)j2 + v�2)dx � C��2n v�3 � C

v2

nv3
=

1

nv
! 0

by assumption (2.10), which proves (6.3).

Proof of Lemma 2.1. Using f(�) = (2�)�1f �(�)g(�) write

0 =
Z �

��
f(�)d� = s1 + s2

where

s1 = (2�)�1
Z �

��
f �(�)g0d�; s2 = (2�)�1

Z �

��
f �(�)(g(�)� g0)d� =: g1 + g2:

Then

s1 = g0(1� �2)�1 =
g0

v(2� v)
=
g0
2v

+
g0
4
+ o(1):

By (2.7) and (2.5),

f �(�)jg(�)� g0j � C�2f �(�) � C

for any v. Since for each �, f �(�) ! (2(1 � cos(�))�1 as v ! 0, then by theorem of

dominating convergence,

s2 ! �0 = (2�)�1
Z �

��

g(�)� g0
2(1� cos(�))

d�; v ! 0(6.8)

which completes the proof of (2.12).

To prove (2.13), write

k =
Z �

��
cos(k�)f(�)d� =

Z �

��
f(�)d�

+
Z �

��
(cos(k�)� 1)f(�)d� =: 0 +Rk:

Since 0 satis�es (2.12), and j cos(k�)� 1j � C�2, then by the same argument as used in

(6.8), it follows

Rk ! ��k; v ! 0;
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to prove (2.13).

Finally, by (2.13) and (2.12),

�k =
k
0

=
0 � �k + o(1)

0
= 1� �k + o(1)

0
= 1� �k + o(1)

(2v)�1(1 + o(1))
= 1� 2v�k + o(1):

Proof of Theorem 2.2. Proof of (2.15)-(2.16). Write

̂k � Tn;X =
Z �

�
cos(k�)I(�)d�:(6.9)

Applying (3.13) of Theorem 3.1 with �n(�) = cos(k�) and kn = 1, it follows that

ĵk � kj � C(
1

nv2
+

1p
nv3

) � C
1p
nv3

since 1=(nv2) � C=
p
nv3 under (2.10). Next, by (2.13), 1=k � Cv, and therefore

̂k = k(1 +OP (
1

k
p
nv3

)) = k(1 +OP (
1p
nv

))

proving (2.15).

To prove (2.16), we shall show that assumptions of (ii) (c2) of Theorem 3.2 are satis�ed.

Set hn(�) = cos(k�)f(�). Set

Bn =
Z �

��
h2n(�)d�; Jn(u) =

Z �

��
jhn(x+ u)� hn(x)j2dx:(6.10)

For simplicity, we write below v = vn. By Lemma 6.1 (ii) below,

Bn � 1

8�
g20v

�3(6.11)

and Jn(u) � Cu2v�5. Therefore, for any �xed K > 0,

sup
juj�K=n

Jn(u) � C(nv)�2v�3 = o(Bn)

in view of (6.11), since vn!1. Next

Z �

��
jhn(�)jd� � C

Z �

��
f �(�)d� � Cv�1 = o(Bn)

because of (6.11). Finally, since kn = 1

kn=v
2

p
nBn

� C
1=v2p
nv�3

= C
1p
nv

! 0
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showing that condition (3.24) of Theorem 3.2 is satis�ed. Therefore, by (3.27),

s
n

4�Bn

�
̂k � k

�
d! N(0; 1);

where
q

n
4�Bn

=
r

2nv3

g2
0

; proving (2.16).

Proof of (2.17). We have

�̂k � �k =

R �
�� cos(k�)In(�)d�R �

�� In(�)d�
� k
0

=
Jn
̂0

where

Jn � Tn;X =
Z �

��
�n(�)In(�); �(�) = cos(k�)� �k:

Observe that
R �
�� �n(�)f(�)d� = 0 and

j�n(�)j � Cj cos(k�)� 1j+ j1� �kj � C(�2 + v) � C(6.12)

by (2.14). Then by (3.11) of Theorem 3.1,

Tn;X = Tn;" � E[Tn;"] + rk; Ejrkj � C(nv2)�1(6.13)

where

Tn;" = 2�
Z �

�
hn(�)In;"d�; hn(�) = (cos(k�)� �k)f(�):

Since
R �
�� hn(�)d� = 0, from (3.17) and Lemma 5.2 it follows that

Var(Tn;") = 2(2�n)�2jjEnjj2 � CBn=n; Bn =
Z �

��
�2n(�)f

2(�)d�:

This implies

jEJnj � C(
1

nv2
+

s
Bn

n
):

Estimating �n(�) by (6.12), and noting that for small v, (2.5)implies f(�) � C(v2+�2)�1,

we obtain

Bn � C
Z �

��

(�2 + v)2

(�2 + v2)2
d� � Cv�1

Z 1

�1

(�2 + 1)2

(�2 + 1)2
d� � Cv�1:

Thus

jEJnj � C(
1

nv2
+

1p
nv

); Jn = OP (
1

nv2
+

1p
nv

):

We show below that

̂0 =
g0
2v

(1 + oP (1))(6.14)
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as v ! 0, which implies

�̂k � �k = OP (
1

nv2
+

1

v
p
nv

)v = OP (
1

nv
+

r
v

n
);

to prove (2.17).

In addition we showvuut 2nv3

(1� �k)2g20
(Tn;" � E[Tn;"])!d N(0; 1)(6.15)

which together with (6.14) and (6.13) implies (2.19), since (nv2n)
�1 = o(1=

p
nvn) when

nv3n !1.

Proof of (6.14). Write ̂0 =
R �
�� In(�)d�): By (3.12) of Theorem 3.1,

̂0 = 0 +Qn +OP ((nv
2)�1); Qn = Tn;" � E[Tn;"]:

Note that 0 =
g0
2v
(1 + O(v)) by (2.12) of Lemma 2.1. Using the matrix En with entries

de�ned as in (3.14), we can write

Qn = n�1
nX

t;s=1:t6=s

en(t� s)"t"s + en(0)n
�1

nX
t=1

("2t � E"2t ) = Qn;1 +Qn;2:

Under assumption E"2t <1,

Var(Qn;1) � Cn�2jjEnjj2 � Cn�1
Z �

��
f 2(x)dx � C(nv3)�1 = o(v�2)

by Lemma 5.2 and (6.18), using assumption nv ! 1. Hence Qn;1 = oP (v
�1): On the

other hand, by ergodicity, n�1
Pn

t=1("
2
t � E"2t ) = oP (1), and

en(0) = (2�)�1
Z �

��
f(�)d� � C

Z �

��
f �(�)d� � Cv�1:

Therefore Qn;2 = oP (v
�1) which proves (6.14).

Proof of (6.15). The proof of (6.15) will be based on part (ii) of Theorem 3.2 and

assumption (c1). For that we need to evaluate quantities Bn and Jn(u) in (6.10).

Note that

hn(x) = (cos(k�)� �k)f(x) = (cos(kx)� 1)f(x) + (1� �k)f(x)

= O(1) + (1� �k)f(x)(6.16)

since

j(cos(kx)� 1)f(x)j � Cx2f �(x) � C; jxj � �:
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By (2.14), 1� �k � 2v�k; v ! 0. Hence

h2n(x) = (O(1) + (1� �k)f(�))
2 = O(1) +O(v)f(�) + (1� �k)

2f 2(�)

and

Bn =
Z �

��
h2n(x)dx = O(1) + (1� �k)

2
Z �

��
f(x)2dx:

By (6.11),
R �
�� f

2(x)dx � 1
8�
g20v

�3 which implies

Bn � (1� �k)
2 1

8�
g20v

�3:(6.17)

To estimate Jn(u), note that by (6.16)

j(h(x+ u)� h(x))j = jO(1) + (1� �k)(f(x+ u)� f(x))j
Hence

Jn(u) � C
�
1 + (1� �k)

2
Z �

��
jf(x+ u)� f(x)j2dx

�
= C + (1� �2k)O(u

2v�5)

in view of (6.19). So for juj � K=n, where K is a �xed constant,

jJn(u)j � C + (1� �2k)O((nv)
�2v�3) = o(Bn)

because of (6.17) and (2.14). Hence hn satis�es Assumption 3.3.

It remains to show (3.27). By (6.12) and (2.5),

jhn(x)j = j�n(x)f(x)j � C(x2 + v)=(v2 + x2) � Cv�1 = k�n:

Then
k�np
nBn

� C
1=vp
nv�1

= C
1p
nv

! 0:

Therefore, by (3.27), s
n

4�Bn

�
Tn;" � E[Tn;"]

�
d! N(0; 1);

where
q

n
4�Bn

�
r

2nv3

(1��k)2g
2

0

� c
p
nv which proves (6.15).

Lemma 6.1 (i) Under assumption (2.3) and (3.27), as v ! 0,Z �

��
f 2(x)dx � 1

8�
g20v

�3(6.18)

and

V (u) :=
Z �

��
jf(x+ u)� f(x)j2dx � Cu2v�5(6.19)

where C does not depend on u and v.

(ii) Estimates (6.18) and (6.19) remain valid when f(x) is replaced by cos(kx)f(x).
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Proof of Lemma 6.1. First we show (6.18). Note that f = (2�)�1f �g where jg(x) �
g0j � Cx2, and x2f �(x) � C. Hence,

f(x) = (2�)�1f �(x)g(x) = (2�)�1f �(x)g0 +O(1);

and

f 2(x) = (2�)�2g20f
�(x)2 +O(1)f �(x) +O(1) = (2�)�2g20f

�(x)2 +O(v�2):

Observe that, as v ! 0,

Z �

��
f �2(x)dx =

Z �

��
(v2 + 2�(1� cos(x))�2dx

� v�3
Z 1

�1
(1 + x2)�2dx � �

2
v�3;

since
R1
�1(1 + x2)�2dx = �

2
, see Je�rey (1995), 15.1.1 (16). Hence

Z �

��
f 2(�)d� = (2�)�2g20

Z �

��
(f �(x)2 +O(v�2))dx =

1

8�
g20v

�3(1 + o(1));

to prove (6.18)

To show (6.19), note that

jf �(x+ u)� f �(x)j � 2j cos(x+ u)� cos(x)jf �(x+ u)f �(x)

� Cu(jxj+ jx+ uj)f �(x+ u)f �(x)

since

j cos(x+ u)� cos(x)j � juj sup
�2[x;x+u]

j sin(�)j � juj(jxj+ jx+ uj):

Since f �(x) � Cv�2 and jxj
q
f �(x) � C, then jxjf �(x) � Cv�1, and

jf �(x+ u)� f �(x)j � Cjujv�1(f �(x) + f �(x+ u)):

Under assumption (2.6), jg(x+ u)� g(x)j � Cjuj. Therefore

jf(x+ u)� f(x)j = jf �(x+ u)g(x+ u)� f �(x)g(x)j
� C(jf �(x+ u)� f �(x)j+ f �(x)jg(x)� g(x+ u)j
� Cjujv�1(f �(x) + f �(x+ u)):

Hence

V (u) � Cu2v�2
Z �

��
(f �(x) + f �(x+ u))2dx � Cu2v�2

Z �

��
f �(x)2dx � Cu2v�5
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by (6.18), which proves (6.19).

In case (ii), the estimates (6.18)-(6.19) follow using the same argument.

Proof of Theorem 2.3. By (2.6) and (2.12) we have that

2v̂0 = g0 + oP (1):

We shall show that

tn �
Z �

��

q
jxjIn(x)dx =

g0p
2v

+OP (1 +
1

nv2
+

1

v
p
n
)(6.20)

which implies (2.21). By (3.13) of Theorem 3.1,

tn =
Z �

��

q
jxjf(x)dx+OP (

1

nv2
+

s
Bn

n
)

where, using (2.5),

Bn =
Z �

��
jxjf 2(x)dx � C

Z �

��
jxj(v2 + x2)�2dx � Cv�2:

To prove (6.20) it remains to show that

in :=
Z �

��

q
jxjf(x)dx = (2v)�1=2g0 +O(1):(6.21)

Write

in := (2�)�1
Z �

��

p
xf �(x)g0dx + (2�)�1

Z �

��

p
xf �(x)(g(x)� g0)dx

= in;1 + in;2:

Since jf �(x)(g(x) � g0)j � Cf �(x)x2 � C, then in;2 � C. To estimate in;1, write in;1 =

jn;1 + jn;2, where

jn;1 = g0(2�)
�1
Z �

��
jxj1=2(v2 + x2)�1dx; jn;2 = (2�)�1

Z �

��
jxj1=2(f �(x)� (v2 + x2)�1)dx:

Observe that that

jf �(x)� (v2 + x2)�1j � jx2 � 2�(1� cos(x))jf �(x)(v2 + x2)�1

� C(vx2 + x4)(v2 + x2)�2 � C(v(v2 + x2)�1 + 1)

since

jx2 � 2�(1� cos(x))j = jx2 � �(x2 +O((x)4))j = x2v +O(x4))
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and f(x) � C(v2 + x2)�1 by (2.5), as v ! 0. So,

jjn;2j � C
Z �

��
jxj1=2(v(v2 + x2)�1 + 1)dx � C:

Next, observe that

A =
Z 1

�1
jxj1=2(1 + x2)�1dx =

Z 1

0
jyj�1=4(1 + y)�1dy

=
�

sin(3�=4)
=
p
2�;

using formula 15.1.1 (2) from Je�rey (1995):

Z 1

0

yp�1

1 + y
dy =

�

sin(p�)
; 0 < p < 1:

Therefore, changing variables we obtain,

jn;1 = g0v
�1=2(2�)�1

Z �=v

��=v
jxj1=2(1 + x2)�1dx

= g0v
�1=2(2�)�1A+O(1) = g0(2v)

�1=2 +O(1)

which together with estimates above implies (6.21).
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1

True ACF of AR(2) model:  (1‐rL)(1‐0.4L)Xt=εt
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Figure 1: ACF �k of AR(2) model with r = 0:5; 0:7; 0:85; 0:95, n = 125

1

Sample ACF of AR(2) model:  (1‐rL)(1‐0.4L)Xt=εt
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Figure 2: Example of realizations of Sample ACF �̂k of AR(2) model with r =

0:5; 0:7; 0:85; 0:95, n = 125
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0.3

Bias of sample ACF of AR(2) model:  (1‐rL)(1‐0.4L)Xt=εt
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Figure 3: Bias of Sample ACF of AR(2) model with r = 0:5; 0:7; 0:85; 0:95, n = 125

8

Relative bias of sample ACF of AR(2) model:  (1‐rL)(1‐0.4L)Xt=εt
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Figure 4: Relative bias (�̂k � �k)=�k of Sample ACF of AR(2) model with r =

0:5; 0:7; 0:85; 0:95, n = 125
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Figure 5: Densities of t̂n(k) : k = 5; 25; 45 versus the standard normal for r = 0:8 and

n = 2000.

 
 
 

 

Figure 6: Densities of t̂n(k) : k = 5; 25; 45 versus the standard normal for r = 0:95 and

n = 2000.
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