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Abstract

Reduced rank regression (RRR) models with time varying heterogeneity are
considered. Standard information criteria for selecting cointegrating rank are
shown to be weakly consistent in semiparametric RRR models in which the er-
rors have general nonparametric short memory components and shifting volatility
provided the penalty coe¢ cient Cn !1 and Cn=n! 0 as n!1: The AIC cri-
terion is inconsistent and its limit distribution is given. The results extend those
in Cheng and Phillips (2008) and are useful in empirical work where structural
breaks or time evolution in the error variances is present. An empirical application
to exchange rate data is provided.

Keywords: Cointegrating rank, Consistency, Heterogeneity, Information criteria,
Model selection, Nonparametric, Time varying variances, Unit roots.

JEL classi�cation: C22, C32

1 Introduction

Much attention has been given to econometric estimation and inferential proce-
dures for time series with time-varying variances or nonstationary volatility. Among
others, Pagan and Schwert (1990), Loretan and Phillips (1994), and Watson (1999)

�Cheng acknowledges the support of an Anderson Fellowship from the Cowles Foundation for Re-
search in Economics. Phillips acknowledges partial support from the NSF under Grant No. SES
06-47086.
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documented empirical evidence for temporal heterogeneity in the variation of many
macroeconomic and �nancial time series. Particular concern has recently been given to
the e¤ect of the presence of heterogeneous unconditional variation and variance breaks
on the validity of unit root tests. Several authors (Hamori and Tokihisa, 1997; Kim
et al, 2002; Cavaliere, 2004; Cavaliere and Taylor, 2007) have shown that conventional
unit root tests may su¤er size distortions and reduced power when there is persistent
heterogeneity in variation. Depending on the speci�c pattern of the volatility changes,
the size distortions can be large enough to justify the use of more robust inferential
techniques or adaptive estimation methods to secure gains in e¢ ciency, such as those
developed for autoregressive models (Phillips and Xu, 2006; Xu and Phillips, 2008).
The e¤ect of variance shifts on KPSS tests has also been studied (Busetti and Taylor,
2003; Cavaliere, 2004; Cavaliere and Taylor, 2005).

Modi�ed unit root tests have been proposed to deal with various forms of departure
from homoskedasticity for nonstationary time series. Kim et al (2002) dealt with the
case of a single abrupt change in variance by using a two-stage procedure where the
breakpoint together with the pre- and post-break variances are estimated in the �rst
step. Cavaliere and Taylor (2007) developed tests that are robust to multiple abrupt or
smooth volatility changes using simulation based methods. And Beare (2007) used ker-
nel methods to remove the heteroskedasticity before applying standard semiparametric
procedures such as the Phillips-Perron test. Boswijk (2006) evaluated the power loss
of various unit root tests, derived the asymptotic power envelope against a sequence
of local alternatives to a unit root under nonstationary volatility and gave an adaptive
test procedure based on volatility �ltering.

In contrast to these univariate studies in the presence of persistent shifts in volatility,
the present paper deals with multivariate systems and uses information based meth-
ods rather than Neyman Pearson tests. The focus of attention is the rank of the
cointegrating space in a model with some unit roots. Analogous to scalar unit root
tests, residual based cointegration tests su¤er from size distortion under nonstationary
volatility. Alternative methods based on vector autoregressions, such as the Johansen
(1987, 1995) trace test, are also invalidated by time varying variances. Some of these
methods impose strong parametric assumptions on the form of the model. The infor-
mation theoretic approach taken here uses a semiparametric framework and is shown
to be robust to variance changes of a very general form. It may be used to consistently
estimate cointegrating rank in a multivariate time series environment or as a scalar
unit root test. In both cases, the procedure is robust to persistent shifts in volatility
and is easy to implement in practical work.

The paper is closely related to past work on econometric model selection using
information criteria. The most common applications of these methods involve choice
of lag length in (vector) autoregression, variable choice in regression, and cointegrating
rank selection in parametric settings (Phillips, 1996). Cheng and Phillips (2008) show
that cointegrating rank selection by suitable information criteria is consistent in a more
general semiparametric framework using reduced rank regression (RRR) in a simple
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VAR model with one lag. In particular, RRR may be implemented without explicitly
taking into account weak dependence in the errors. The present paper strengthens the
results in Cheng and Phillips (2008) by showing that these methods remain consistent
when the errors are weakly dependent and there are persistent shifts in volatility. More
speci�cally, information criteria are weakly consistent for selecting cointegrating rank
provided that the penalty term goes to in�nity at a rate slower than the sample size.

The approach is quite straightforward for practical implementation. Simulations
indicate that under many forms of heteroskedasticity, the usual BIC criterion for coin-
tegrating rank selection performs satisfactorily. The main practical import of the paper,
therefore, is that the same cointegrating rank selection method may be used in empir-
ical work for a wide range of semiparametric models of cointegration with shifting
variances.

Another contribution of the paper is to provide a limit theory for regression in
multivariable systems with some unit roots, weakly dependent errors and nonstationary
volatility. This limit theory is useful in studying cases where reduced rank regressions
are misspeci�ed, possibly through the choice of inappropriate lag lengths in the vector
autoregression or ignorance of the persistent shifts in variance.

The organization of the paper is as follows. Section 2 introduces the semiparametric
heteroskedastic error correction model (ECM) and gives assumptions and estimation
details. Asymptotic results are given in Section 3. Section 4 brie�y reports some
simulation results. An empirical application to exchange rate data is reported in Section
5. Section 6 concludes. Proofs and technical material are in the Appendix.

2 The Semiparametric Heteroskedastic ECM

We consider the semiparametric ECM model

�Xt = ��0Xt�1 + ut; t 2 f1; :::; ng ; (1)

where Xt is an m- vector time series, and � and � are m� r0 full rank matrices. The
integer r0 is the unknown cointegrating rank parameter. The error term futg is weakly
dependent and heterogeneously distributed according to

ut = D (L) "t =

1X
j=0

Dj"t�j ;

"t = V

�
t

n

�
et; et � iid (0;�e) ; (2)

where V (�) = diag fV1 (�) ; � � � ; Vm (�)g and Vk (�) ; for k = 1; � � � ;m; is an unknown
positive scale function. Under this speci�cation, the innovation term "t has mean zero
and time-varying variance V

�
t
n

�
�eV

�
t
n

�
: The series Xt is initialized at t = 0 by some

(possibly random) quantity X0 = Op (1) ; although other initialization assumptions
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may be considered, as in Phillips (2008). Following conventions in the literature, we
neglect the triangular array notation for fXtg ; futg ; and f"tg :

Assumption 1 below imposes conditions on the linear process ut that facilitate the
partial sum limit theory. Assumption 2 gives conditions on the innovation variance that
are analogous to those used in Phillips and Xu (2006). The conditions in Assumption 3
are standard in the study of reduced rank regressions with some unit roots (Johansen,
1988, 1995; Phillips, 1995).

Assumption 1 The lag polynomial D(L) =
P1
j=0DjL

j satis�es that D0 = I; D (1)
is full rank, and

P1
j=0 j jjDj jj < 1; where jj�jj is some matrix norm. The covariance

matrix �e is positive with unity diagonal elements and E jjetjj4 <1:

Assumption 2 Vk (�) ; for k = 1; :::;m; is non-stochastic, measurable and uniformly
bounded on the interval (�1; 1]; with a �nite number of points of discontinuity, Vk (�) >
0 and satis�es a Lipschitz condition except at points of discontinuity.

Assumption 3 (a) The determinantal equation
��Im � (Im + ��0)L�� = 0 has roots on

or outside the unit circle, i.e. jLj � 1:
(b) Set � = Im + ��0 where � and � are m� r0 matrices of full column rank r0,

0 � r0 � m: (If r0 = 0 then � = Im; if r0 = m then � has full rank m)
(c) The matrix R = Ir + �

0� has eigenvalues within the unit circle.

Under (1), the time series Xt is cointegrated with cointegration matrix � of rank
r0; so there are r0 cointegrating relations in the true model. As in Cheng and Phillips
(2008), we treat (1) semiparametrically with regard to ut and to estimate r0 directly in
(1) by information criteria. The procedure we use here is identical to that of Cheng and
Phillips (2008) and is straightforward. Model (1) is estimated by conventional RRR for
all values of r = 0; 1; � � � ;m just as if ut were a martingale di¤erence, and r is chosen
to optimize the corresponding information criteria as if (1) were a correctly speci�ed
parametric framework up to the order parameter r. Thus, no account is taken of the
weak dependence structure and time-varying variance of ut in the process.

Following Cheng and Phillips (2008), the information criterion used to evaluate
cointegrating rank is

IC (r) = log
���b� (r)���+ Cnn�1 �2mr � r2� ; (3)

with coe¢ cient Cn = log n; log log n; or 2 corresponding to the BIC (Schwarz, 1978;
Akaike, 1977; Rissanen, 1978), Hannan and Quinn (1979), and Akaike (1974) penal-
ties, respectively, or even sample information-based versions (Wei, 1992; Phillips and
Ploberger, 1996). The BIC version of (3) was given in Phillips and McFarland (1997).
In (3) the degrees of freedom term 2mr � r2 is calculated to account for the 2mr ele-
ments of the matrices � and � that have to be estimated, adjusted for the r2 restrictions
that are needed to ensure structural identi�cation of � in RRR.
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The procedure is now the same as in Cheng and Phillips (2008). Only the limit
theory di¤ers because this depends on the persistent shifts in volatility. For each
r = 0; 1; � � � ;m; we estimate the m � r matrices � and � by RRR and, for use in (3),
we form the corresponding residual variance matrices

b� (r) = n�1
nX
t=1

�
�Xt � �̂�̂

0
Xt�1

��
�Xt � �̂�̂

0
Xt�1

�0
; r = 1; :::;m

with b� (0) = n�1
Pn
t=1�Xt�X

0
t: Then, r is selected as br = argmin0�r�mIC (r) :

De�ne

S00 = n�1
nX
t=1

�Xt�X
0
t; S11 = n�1

nX
t=1

Xt�1X
0
t�1;

S01 = n�1
nX
t=1

�XtX
0
t�1; and S10 = n�1

nX
t=1

Xt�1�X
0
t:

and then (Johansen, 1995) ���b� (r)��� = jS00j�ri=1 �1� b�i� ; (4)

where b�i; 1 � i � r; are the r largest solutions to the determinantal equation���S11 � S10S�100 S01�� = 0: (5)

The criterion (3) is then well determined for any given value of r:

3 Asymptotic Results

Assumption 3 ensures that the matrix �0� has full rank. Let �? and �? be or-
thogonal complements to � and �; so that [�; �?] and [�; �?] are nonsingular and
�0?�? = Im�r: As in Cheng and Phillips (2008), we have the Wold representation of
�0Xt

vt := �0Xt =
1X
i=0

Ri�0ut�i = R (L)�0ut = R (L)�0D (L) "t; (6)

and the partial sum (or generalized Granger) representation

Xt = C
tX
s=1

us + �
�
�0�
��1

R (L)�0ut + CX0; (7)

where C = �? (�
0
?�?)

�1 �0?:
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For k = 1; :::;m; we de�ne

�k (r) :=

�Z 1

0
Vk (s) ds

��1 Z r

0
Vk (s) ds and �k :=

Z 1

0
Vk (s) ds: (8)

The volatility of the k�th element of "t is characterized by its variance pro�le �k (r) ;
which is equal to r only when the innovation is homogeneous. The variance pro�le
�k (r) is normalized by the average innovation variance �k so that �k (r) is an increasing
homeomorphism on [0; 1] with �k (0) = 0 and �k (1) = 1:

Lemma 1 Under Assumptions 1-3,
(a)

n�1=2
[n�]X
s=1

us ) D (1)B" (�) ; where B" (r) =
Z r

0
V (s) dBe (s) ;

and Be (�) is a Brownian motion with variance �e.
(b)

BV (�) := D (1)B" (�) = D (1)
B� (�) �1=2e ;

where 
 = diag (�1; :::; �m) ; B� (�) = (B1 (�1 (�)) ; :::Bm (�m (�)))0 ; and B1 (�) ; :::; Bm (�)
are independent standard Brownian motions.

(c)

n�1=2
[n�]X
s=1

vs ) �
�
�0�
��1

�0BV (�) ;

n�1=2�0?X[n�] )
�
�0?�?

��1
�0?BV (�) :

These limit laws involve the variance transformed Brownian motion BV (�) ; which is
Brownian motion under time deformation. In particular, at time r 2 [0; 1] ; Bk (�k (�))
has the same distribution as the standard Brownian motion Bk (�) at time �k (r) 2 [0; 1] :

Let
vt = G(L)"t and �Xt = �vt�1 + ut =W (L)"t; (9)

where G (L) = R (L)�0D (L) by (6) and W (L) = �LG (L) +D(L): De�ne the average
variance of "t by

V :=

Z 1

0
V (r) �eV (r)

0 dr: (10)

The following results provide some asymptotic limits that are useful in deriving the
asymptotic properties of b� (r), extending a corresponding result in Cheng and Phillips
(2008).
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Lemma 2 Under Assumptions 1-3,

S00 ! p �00; �
0S11� !p ���; �

0S10 !p ��0

n�1�0?S11�? )
�
�0?�?

��1
�0?

�Z 1

0
BVB

0
V

�
�?
�
�0?�?

��1
;

�0?S11� ) �
�
�0?�?

��1
�0?

�Z 1

0
BV dB

0
V

�
�(�0�)�1 +	wv;

�0?S10 )
�
�0?�?

��1
�0?

�Z 1

0
BV dB

0
V

�
�?
�
�0?�?

��1
�0? +	

1
wu +	wv�

0;

where

�00 =
1X
j=0

WjVW
0
j+h; ��� =

1X
j=0

GjV G
0
j+h; ��0 =

1X
j=0

GjVW
0
j+h; (11)

	1wu =

1X
h=1

1X
j=0

�0?WjV Dj+h; 	wv =

1X
h=0

1X
j=0

�0?WjV Gj+h; (12)

and wt = �0?�Xt = �0?W (L)"t:

Remarks: When the innovation "t has time-varying variances, the asymptotic limit
associated with the non-stationary process �0?Xt involves the variance transformed
Brownian motion BV (�) : Under homogeneous innovations, BV (�) becomes anm- vector
Brownian motion with variance �2D (1)�eD (1)

0 and V reduces to �2�e; where � =
�1 = � � � = �m. As such, the sample variance and covariance terms �00; ���; ��0 and
the one sided long run variance 	1wu and 	wv are all simpli�ed to moments of �Xt and
vt; both of which are now stationary. Those results under homogeneous errors were
given in Cheng and Phillips (2008).

De�ne e� = �0���1�� (13)

and let e�? be an m� (m� r) orthogonal complement to e� such that [e�; e�?] is nonsin-
gular. The following reproduces Lemma 2 in Cheng and Phillips (2008) under shifting
variances.

Lemma 3 Under Assumptions 1-3, when the true cointegration rank is r0; the r0
largest solutions to (5); denoted by b�i with 1 � i � r0; converge to the roots of������ � ��0��100 �0��� = 0: (14)

The remaining m� r0 roots, denoted by b�i with r0+1 � i � m; decrease to zero at the
rate n�1 and fnb�i : i = r0 + 1; :::;mg converge weakly to the roots of�����Z 1

0
GuG

0
u �

�Z 1

0
GudG

0
u�

0
? +	

� e�? �e�0?�00e�?��1 e�0?��? Z 1

0
dGuG

0
u +	

0
����� = 0;
(15)
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where Gu (r) = (�0?�?)
�1 �0?BV (r) is m�r0 dimensional variance transformed Brown-

ian motion and 	 = 	1wu +	wv�
0:

Comparing Theorem 3 with the results under homogeneous or martingale di¤erence
errors, we see that in all cases the r0 largest roots of (5) are all positive in the limit and
the m�r0 smallest roots converge to 0 at the rate n�1: However, under the present set-
up, the determinantal equation (15) involves a variance transformed Brownian motion
Gu; which reduces to Brownian motion when the innovation is homogeneous, as in
Cheng and Phillips (2008).

Allowing for weak dependence in the errors, equation (15) involves the one sided
long run variance matrix 	: A general form of the one sided long run variance under
weakly dependent heterogeneously distributed errors was �rst given in Phillips and Park
(1988). Under Assumption 2, the components of 	 = 	1wu+	wv�

0 can be expressed as
in (12) using the average innovation variance V by means of Lemma 4 in the Appendix.

The main result now extends the corresponding theorem Cheng and Phillips (2008)
to allow for shifting variances.

Theorem 1 Under Assumptions 1-3,
(a) the criterion IC(r) is weakly consistent for selecting the rank of cointegration

provided Cn !1 at a slower rate than n;
(b) the asymptotic distribution of the AIC criterion (IC(r) with coe¢ cient Cn = 2)

is given by

lim
n!1

P (r̂AIC = r0)

= P

"
m
\

r=r0+1

(
rX

i=r0+1

�i < 2 (r � r0) (2m� r � r0)
)#

;

lim
n!1

P (r̂AIC = rjr > r0)

= P

( 
m
\

r0=r+1

(
r0X

i=r+1

�i < 2
�
r0 � r

�
(2m� r0 � r)

)!
\ 

r�1
\

r0=r0

(
rX

i=r0+1

�i > 2
�
r � r0

� �
2m� r � r0

�)!)
;

and
lim
n!1

P (r̂AIC = rjr < r0) = 0;

where �r0+1; :::; �m are the ordered roots of the limiting determinantal equation (15) :

This result provides a convenient basis for consistent cointegration rank selection
in most empirical contexts under very general assumptions on the errors. As in the
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homogeneous variance case, BIC, HQ and other information criteria with Cn ! 1
and Cn=n ! 0 are all consistent in the presence of weakly dependent errors with
time-varying variance. The information criterion consistently selects cointegrating rank
under general assumptions on the errors without having to specify any parametric
model of short memory or heterogeneity. Whenm = 1, the unit root model corresponds
to r0 = 0 and r0 = 1 to the stationary model. Unlike some standard unit root tests,
model choice by information criteria is then robust to the presence of permanent shifts
in variance. The theorem also applies in the case of models with intercepts and drifts.

AIC is inconsistent, asymptotically never underestimates cointegrating rank, and
favors more liberally parametrized systems. This outcome is analogous to the well-
known overestimation tendency of AIC in lag length selection in autoregression and is
consistent with earlier results on cointegration rank selection under homogenous errors.

4 Simulations

This section reports some brief simulations for di¤erent forms of the variance func-
tion V (�), di¤erent settings for the true cointegrating rank, and various choices of the
penalty coe¢ cient Cn: The data generating process follows (1) and the design of the
reduced rank coe¢ cient follows Cheng and Phillips (2008). Thus, when r0 = 0 we have
�0� = 0; and when r0 = 1 the reduced rank coe¢ cient matrix is set to

�0� = (1; 0:5)

�
�1
1

�
:

When r0 = 2; two di¤erent simulations (design A and design B) were performed, one
with smaller and one with larger stationary roots as follows:

A : �0� =

�
�0:5 0:1
0:2 �0:4

�
; with stationary roots �i

�
I + �0�

�
= f0:7; 0:4g ;

B : �0� =

�
�0:5 0:1
0:2 �0:15

�
; with stationary roots �i

�
I + �0�

�
= f0:9; 0:45g :

Following Cavaliere and Taylor (2007), we assessed the performance of the informa-
tion criteria uncontaminated by serial dependence by setting ut = "t: To evaluate the
method under weak dependence, simulations were also conducted under the following
AR(1), MA(1), ARMA(1,1) formulations

ut = Aut�1 + "t; ut = "t +B"t�1; ut = Aut�1 + "t +B"t�1; (16)

with coe¢ cient matrices A =  Im; B = �Im; where j j < 1; j�j < 1: The innovations
with time-varying variance are

"t = V

�
t

n

�
et and et = iid N (0;�") ; (17)

9



where

�" =

�
1 + � 0
0 1� �

�
> 0:

The parameters for these models were set to  = � = 0:4 and � = 0:25:
The design of the variance matrix V (�) follows that in Cavaliere (2004), Cavaliere

and Taylor (2007) and Phillips and Xu (2006). We assume that for any r 2 (�1; 1];
the m � m diagonal variance matrix V (r) = g (r)2 Im; where g (�) is a real positive
function. Under this setup, all variables share the same variance pro�le, characterized
by the variance function g (�) : Three models for the variance function g (�) were used:

1. g (r)2 = �20 +
�
�21 � �20

�
1fr��g; r 2 [0; 1] ;

2. g (r)2 = �20 +
�
�21 � �20

�
1f��r<1��g; r 2 [0; 1] ; � 2 [0; 1=2];

3. g (r)2 = �20 +
�
�21 � �20

�
rm; r 2 [0; 1] : (18)

There is a single volatility shift from �20 to �
2
1 at time [�n] in model 1 and there are

two volatility shifts in model 2, which happens at time [�n] and 1� [�n], respectively.
In contrast to the abrupt volatility jumps in these two models, model 3 models the
situation where volatility changes smoothly from �20 to �

2
1: The parameters in the

simulation are setup as follows. In model 1, the break date � takes values within
the set f0:1; 0:5; 0:9g ; so that early, middle and late breaks are all investigated. In
model 2, � takes value from f0:1; 0:4g ; where a small � corresponds to the case where
the �rst jump happens early in the sample and the second jump happens late in the
sample. In model 3, we allow for both linear trend and quadratic trend by setting
m 2 f1; 2g : Without loss of generality, we set �20 = 1 in all cases. The steepness of
the break is measured by the ratio of the post-break and pre-break standard deviation:
� = �1=�0; which takes values within the set f0:2; 5g for all three models to allow
for both positive (� > 1) and negative (� < 1) shifts. The performance of AIC and
BIC1 was investigated for sample sizes n = 100; 400 in all cases including 50 additional
observations to eliminate start-up e¤ects from the initializations X0 = 0 and "0 = 0:
The results are based on 20; 000 replications.

Tables 1-3 give simulation results for design A where the error ut follows an AR(1)
process. Similar results were obtained for the other error generating schemes in (16) : As
is evident in the tables, BIC generally performs well under di¤erent forms of volatility
changes when the true rank r0 is 1 or 2, although when r0 = 0; it may overestimate
in some cases under abrupt volatility shifts, depending on the pattern of the changes.
Speci�cally, in model 1, the overestimation tends to happen when there is an early
negative shift (� = 0:1; � = 0:2) or a late positive (� = 0:9; � = 5) shift, but not under
early positive shifts or late negative shifts; in model 2, the overestimation happens
when a very early shift is positive and a very late shift is negative. In the worst

1 It is shown in Cheng and Phillips (2008) that AIC and BIC generally have better performance
than other criteria such as Hannan-Quinn (HQ) or criteria with even weaker penalties than HQ such
as Cn = log log logn.
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case, BIC selects the true cointegration rank r0 = 0 with a probability around 65%
when the sample size is 400: We also observe that the conventional tendency of BIC
to underestimate order (here cointegrating rank) is mild when n = 100 and disappears
completely when n = 400: These results are analogous to those in Phillips of Xu (2006),
who show that in a stable autoregressive model various t statistics tend to over-reject
under early negative shifts or late positive shifts and that this tendency is attenuated
when the error variance dynamics follow a polynomial shape as in model 3. In all
cases, BIC performs much more satisfactorily than AIC, which has a strong tendency
to overestimate order, just as it does in lag length selection in autoregressive models.

Table 1
Cointegration rank selection in design A when ut follows an AR(1) process under model 1

n = 400 n = 100
r0 = 0 r0 = 1 r0 = 2 r0 = 0 r0 = 1 r0 = 2

� � br AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC
0.1 0.2 0 0.24 0.65 0.00 0.00 0.00 0.00 0.21 0.50 0.00 0.00 0.00 0.00

1 0.65 0.34 0.75 0.91 0.00 0.00 0.65 0.47 0.76 0.88 0.00 0.06
2 0.12 0.01 0.25 0.09 1.00 1.00 0.14 0.03 0.24 0.12 1.00 0.94

1 0 0.52 0.95 0.00 0.00 0.00 0.00 0.48 0.88 0.00 0.00 0.00 0.01
1 0.37 0.04 0.77 0.97 0.00 0.00 0.40 0.11 0.78 0.94 0.00 0.05
2 0.11 0.00 0.23 0.03 1.00 1.00 0.12 0.02 0.22 0.06 1.00 0.94

5 0 0.51 0.93 0.00 0.00 0.00 0.00 0.49 0.87 0.00 0.00 0.00 0.01
1 0.38 0.06 0.73 0.95 0.00 0.00 0.39 0.12 0.73 0.92 0.00 0.08
2 0.11 0.01 0.27 0.05 1.00 1.00 0.12 0.02 0.27 0.08 1.00 0.92

0.5 0.2 0 0.38 0.87 0.00 0.00 0.00 0.00 0.33 0.73 0.00 0.00 0.00 0.01
1 0.53 0.13 0.76 0.94 0.00 0.00 0.56 0.26 0.77 0.91 0.00 0.05
2 0.09 0.00 0.24 0.06 1.00 1.00 0.11 0.02 0.23 0.09 1.00 0.95

5 0 0.34 0.81 0.00 0.00 0.00 0.00 0.36 0.73 0.00 0.00 0.00 0.02
1 0.45 0.17 0.62 0.90 0.00 0.00 0.45 0.23 0.64 0.87 0.02 0.13
2 0.21 0.03 0.38 0.10 1.00 1.00 0.19 0.04 0.36 0.13 0.98 0.85

0.9 0.2 0 0.53 0.95 0.00 0.00 0.00 0.00 0.48 0.88 0.00 0.00 0.00 0.00
1 0.37 0.04 0.77 0.96 0.00 0.00 0.41 0.11 0.79 0.94 0.00 0.03
2 0.09 0.00 0.23 0.04 1.00 1.00 0.11 0.01 0.21 0.06 1.00 0.97

5 0 0.27 0.64 0.00 0.00 0.00 0.00 0.30 0.61 0.00 0.00 0.00 0.03
1 0.52 0.32 0.60 0.87 0.00 0.01 0.51 0.34 0.67 0.87 0.16 0.30
2 0.22 0.04 0.40 0.13 1.00 0.99 0.19 0.04 0.33 0.13 0.84 0.67
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Table 2
Cointegration rank selection in design A when ut follows an AR(1) process under model 2

n = 400 n = 100
r0 = 0 r0 = 1 r0 = 2 r0 = 0 r0 = 1 r0 = 2

� � br AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC
0.1 0.2 0 0.50 0.93 0.00 0.00 0.00 0.00 0.50 0.87 0.00 0.00 0.00 0.01

1 0.38 0.06 0.74 0.96 0.00 0.00 0.38 0.12 0.74 0.92 0.00 0.08
2 0.11 0.01 0.26 0.04 1.00 1.00 0.12 0.02 0.26 0.08 1.00 0.92

5 0 0.24 0.65 0.00 0.00 0.00 0.00 0.21 0.50 0.00 0.00 0.00 0.00
1 0.64 0.34 0.75 0.90 0.00 0.00 0.65 0.48 0.76 0.89 0.00 0.05
2 0.12 0.01 0.25 0.10 1.00 1.00 0.14 0.02 0.24 0.11 1.00 0.94

0.4 0.2 0 0.38 0.84 0.00 0.00 0.00 0.00 0.39 0.77 0.00 0.00 0.00 0.02
1 0.44 0.14 0.65 0.92 0.00 0.00 0.44 0.20 0.67 0.89 0.01 0.12
2 0.18 0.02 0.35 0.08 1.00 1.00 0.17 0.04 0.33 0.11 0.99 0.87

5 0 0.33 0.82 0.00 0.00 0.00 0.00 0.27 0.65 0.00 0.00 0.00 0.01
1 0.57 0.17 0.75 0.93 0.00 0.00 0.62 0.33 0.76 0.90 0.00 0.05
2 0.09 0.01 0.25 0.07 1.00 1.00 0.11 0.02 0.24 0.10 1.00 0.94

Table 3
Cointegration rank selection in design A when ut follows an AR(1) process under model 3

n = 400 n = 100
r0 = 0 r0 = 1 r0 = 2 r0 = 0 r0 = 1 r0 = 2

m � br AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC
1 0.2 0 0.44 0.90 0.00 0.00 0.00 0.00 0.37 0.76 0.00 0.00 0.00 0.00

1 0.46 0.09 0.78 0.95 0.00 0.00 0.52 0.23 0.78 0.92 0.00 0.03
2 0.10 0.00 0.22 0.05 1.00 1.00 0.12 0.02 0.22 0.08 1.00 0.96

5 0 0.41 0.86 0.00 0.00 0.00 0.00 0.40 0.77 0.00 0.00 0.00 0.02
1 0.43 0.13 0.66 0.93 0.00 0.00 0.43 0.20 0.66 0.88 0.02 0.14
2 0.16 0.02 0.34 0.07 1.00 1.00 0.17 0.03 0.34 0.12 0.98 0.84

2 0.2 0 0.49 0.93 0.00 0.00 0.00 0.00 0.43 0.82 0.00 0.00 0.00 0.00
1 0.42 0.07 0.78 0.96 0.00 0.00 0.46 0.16 0.78 0.93 0.00 0.03
2 0.09 0.00 0.22 0.04 1.00 1.00 0.11 0.01 0.22 0.07 1.00 0.97

5 0 0.37 0.79 0.00 0.00 0.00 0.00 0.40 0.74 0.00 0.00 0.00 0.03
1 0.45 0.18 0.63 0.92 0.00 0.00 0.43 0.23 0.68 0.90 0.05 0.19
2 0.18 0.03 0.37 0.08 1.00 1.00 0.17 0.03 0.32 0.10 0.95 0.78

To show the e¤ect of variance shifts when they are uncontaminated by temporal
dependence, we performed simulations for design A under independent errors with the
variance structure speci�ed in (18) : To save space, we only report the results under
model 1, as shown in Table 4. Comparing Tables 4 and 1, we �nd that BIC is generally
more reliable when the errors have low temporal dependence. Similar results were
found for models 2 and 3.
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Table 4
Cointegration rank selection in design A when ut is independent under model 1

n = 400 n = 100
r0 = 0 r0 = 1 r0 = 2 r0 = 0 r0 = 1 r0 = 2

� � br AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC
0.1 0.2 0 0.49 0.93 0.00 0.00 0.00 0.00 0.43 0.82 0.00 0.00 0.00 0.00

1 0.42 0.07 0.78 0.96 0.00 0.00 0.46 0.16 0.78 0.93 0.00 0.03
2 0.09 0.00 0.22 0.04 1.00 1.00 0.11 0.01 0.22 0.07 1.00 0.97

1 0 0.52 0.95 0.00 0.00 0.00 0.00 0.64 0.98 0.00 0.00 0.00 0.00
1 0.37 0.04 0.77 0.97 0.00 0.00 0.31 0.02 0.81 0.96 0.00 0.00
2 0.11 0.00 0.23 0.03 1.00 1.00 0.05 0.00 0.19 0.04 1.00 1.00

5 0 0.37 0.79 0.00 0.00 0.00 0.00 0.40 0.74 0.00 0.00 0.00 0.03
1 0.45 0.18 0.63 0.92 0.00 0.00 0.43 0.23 0.68 0.90 0.05 0.19
2 0.18 0.03 0.37 0.08 1.00 1.00 0.17 0.03 0.32 0.10 0.95 0.78

0.5 0.2 0 0.48 0.93 0.00 0.00 0.00 0.00 0.43 0.83 0.00 0.00 0.00 0.00
1 0.43 0.07 0.77 0.96 0.00 0.00 0.46 0.16 0.78 0.93 0.00 0.03
2 0.09 0.00 0.23 0.04 1.00 1.00 0.11 0.01 0.22 0.07 1.00 0.96

5 0 0.37 0.80 0.00 0.00 0.00 0.00 0.40 0.75 0.00 0.00 0.00 0.03
1 0.45 0.18 0.63 0.91 0.00 0.00 0.44 0.22 0.69 0.90 0.06 0.19
2 0.19 0.03 0.37 0.09 1.00 1.00 0.16 0.03 0.31 0.10 0.94 0.78

0.9 0.2 0 0.49 0.93 0.00 0.00 0.00 0.00 0.42 0.83 0.00 0.00 0.00 0.00
1 0.42 0.07 0.77 0.96 0.00 0.00 0.46 0.16 0.78 0.93 0.00 0.03
2 0.09 0.00 0.23 0.04 1.00 1.00 0.11 0.01 0.22 0.07 1.00 0.96

5 0 0.36 0.80 0.00 0.00 0.00 0.00 0.40 0.75 0.00 0.00 0.00 0.03
1 0.45 0.18 0.63 0.91 0.00 0.00 0.44 0.22 0.68 0.90 0.05 0.20
2 0.19 0.03 0.37 0.09 1.00 1.00 0.16 0.03 0.32 0.10 0.95 0.77

The results for design B, where the stationary roots of the system are closer to unity,
are shown in Table 5. Just as in Cheng and Phillips (2008), when the stationary root is
large, BIC has a tendency to underestimate the rank when n = 100 and r0 = 2; thereby
choosing more parsimoniously parameterized system in this case. When n = 400; the
underestimation is signi�cantly attenuated.
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Table 5
Cointegration rank selection in design B when ut follows an AR(1) process under model 1

n = 400 n = 100
r0 = 0 r0 = 1 r0 = 2 r0 = 0 r0 = 1 r0 = 2

� � br AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

0.1 0.2 0 0.24 0.65 0.00 0.00 0.00 0.00 0.21 0.50 0.00 0.00 0.00 0.02
1 0.65 0.34 0.75 0.91 0.00 0.05 0.65 0.47 0.76 0.88 0.09 0.36
2 0.12 0.01 0.25 0.09 1.00 0.95 0.14 0.03 0.24 0.12 0.91 0.62

1 0 0.52 0.95 0.00 0.00 0.00 0.00 0.48 0.88 0.00 0.00 0.00 0.05
1 0.37 0.04 0.77 0.97 0.00 0.02 0.40 0.11 0.78 0.94 0.26 0.75
2 0.11 0.00 0.23 0.03 1.00 0.98 0.12 0.02 0.22 0.06 0.74 0.21

5 0 0.51 0.93 0.00 0.00 0.00 0.00 0.49 0.87 0.00 0.00 0.00 0.06
1 0.38 0.06 0.73 0.95 0.00 0.03 0.39 0.12 0.73 0.92 0.32 0.78
2 0.11 0.01 0.27 0.05 1.00 0.97 0.12 0.02 0.27 0.08 0.68 0.16

0.5 0.2 0 0.38 0.87 0.00 0.00 0.00 0.00 0.33 0.73 0.00 0.00 0.00 0.04
1 0.53 0.13 0.76 0.94 0.00 0.03 0.56 0.26 0.77 0.91 0.15 0.57
2 0.09 0.00 0.24 0.06 1.00 0.97 0.11 0.02 0.23 0.09 0.85 0.39

5 0 0.34 0.81 0.00 0.00 0.00 0.00 0.36 0.73 0.00 0.00 0.00 0.08
1 0.45 0.17 0.62 0.90 0.00 0.09 0.45 0.23 0.64 0.87 0.36 0.69
2 0.21 0.03 0.38 0.10 1.00 0.92 0.19 0.04 0.36 0.13 0.64 0.23

0.9 0.2 0 0.53 0.95 0.00 0.00 0.00 0.00 0.48 0.88 0.00 0.00 0.00 0.04
1 0.37 0.04 0.77 0.96 0.00 0.01 0.41 0.11 0.79 0.94 0.16 0.70
2 0.09 0.00 0.23 0.04 1.00 0.99 0.11 0.01 0.21 0.06 0.84 0.26

5 0 0.27 0.64 0.00 0.00 0.00 0.00 0.30 0.61 0.00 0.00 0.00 0.08
1 0.52 0.32 0.60 0.87 0.08 0.25 0.51 0.34 0.67 0.87 0.38 0.59
2 0.22 0.04 0.40 0.13 0.92 0.75 0.19 0.04 0.33 0.13 0.62 0.33

In summary, the simulation results show that the BIC criterion for cointegration
rank selection is robust to weak dependence and heterogeneity of the errors, gener-
ally con�rming the asymptotic theory. The main weakness of BIC is that it tends to
overestimate when early negative or late positive volatility shifts happen in a system
without cointegration and to underestimate when the system is stationary but with a
root near unity. The performance of BIC signi�cantly improves as the sample size gets
larger, the volatility shifts become smoother, or the temporal dependence of the errors
is weaker. In all cases, BIC performs much better than alternative criteria such as AIC
and seems su¢ ciently reliable to recommend for empirical practice

5 Empirical Application

This section reports the application of model selection techniques to cointegrating
rank estimation in a dynamic exchange rate system. Using Johansen�s trace test, Baillie
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and Bollerslev (1989) found evidence of one cointegration relation in vector autoregres-
sions of seven daily spot and seven one-month forward rates. They concluded that these
�oating exchange rates follow one long-run equilibrium path. However, when adding
an intercept to the model, Diebold et al. (1994) found no support for a cointegrating
relation in these data. In addition to conventional cointegration tests, various frac-
tional cointegration formulations have been considered in the same dynamic exchange
rate setting, including Baillie and Bollerslev (1994), Kim and Phillips (2001), Nielsen
(2004), Hassler et al. (2006), and Nielsen and Shimotsu (2007). These papers on frac-
tional cointegration generally agree on the existence of fractional cointegration among
the exchange rates of di¤erent currencies under the �oating exchange rate regime.

Our focus in this application is to apply semiparametric rank selection methods to
investigate possible cointegrating relations among exchange rates under both �oating
exchange rate regimes (post 1973) and �xed exchange rate regimes (under the Bretton
Woods agreement of 1946-1973). It is now a well-established stylized fact that many
macro-economic and �nancial variables, including exchange rates, are characterized by
breaks in volatility. So our approach, with its robustness to shifting variances includ-
ing both abrupt breaks and smooth transitions, seems well suited to this application.
Moreover, there is no need to specify a particular parametric model for variance shifts
or weak dependence in our approach, making it easy to implement and robust to a
variety of di¤erent model speci�cations.

Our data set concentrates on the same exchange rates as those in the literature
cited above. The data comprise log exchange rates for seven currencies: the Canadian
Dollar, French Franc, Deutsche Mark, Italian Lira, Japanese Yen, Swiss Franc and
British Pound, all relative to the US Dollar. Baillie and Bollerslev (1989,1994) and
Diebold et al. (1994) used these seven nominal exchange rates observed daily from 1980
to 1985, Kim and Phillips (2001) used quarterly data from 1957 to 1997, and Nielsen
and Shimotsu (2007) applied their estimation techniques to a data set of monthly
averages of noon (EST) buying rates running from January 1974 through December
2001. Our data set, taken from the DRI Economics Database (previously Citibase), is
also monthly averages of noon buying rates and runs from November 1967 to December
19982. The data set can be divided into two subperiods: the �rst period, from November
1967 to December 1973, corresponds to the �xed exchange rate regime by the Bretton
Woods agreement (1946-1973); and the second period, from January 1974 to December
1998, corresponds to the �oating exchange rate regime before the introduction of the
Euro. Compared with earlier applications, our data for the �oating exchange rate
period covers a long time span of 25 years with 300 observations. We do not include
observations after December 1998, as in Nielsen and Shimotsu (2007), because since
then the exchange rates between some major European currencies have been �xed in
relation to the Euro. The log exchange rate data series are plotted in Figure 1.

The time-varying behavior of the exchange rate volatilities is well characterized

2Our data, taken from the current version of the same source as that in Kim and Phillips (2001),
starts from November 1967.
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Figure 1: Log exchange rates

by its variance pro�le �k (r) ; for k = 1; � � � ;m; which is increasing from 0 to 1 and
only equal to r under homogeneous errors. We �rst estimate the variance pro�le of
each exchange rate series using the method of Cavaliere and Taylor (2007). Let fbutg
denote the residuals from the linear regression of bXt on bXt�1; where bXt is the residual
of Xt after detrending. Detrending Xt is necessary when we include an intercept in
(1) : The estimator of the variance pro�le, which is the sample analogue of (8) linearly
interpolated between the observed sample data, can be written as

b�k (r) =
P[nr]
t=1 bu2t � (nr � [nr]) bu2[nr]+1Pn

t=1 bu2t : (19)

Cavaliere and Taylor (2007) show that b�k (�) is a uniformly consistent estimator for the
variance pro�le �k (�) :

The estimated variance pro�les are presented in Figure 2. The �rst two rows are the
estimated variance pro�les for each currency (to the US Dollar) in the post-1973 �oating
exchange rate period, while the last two rows are the corresponding variance pro�les
estimated by data within the �xed exchange rate period. The 45o line corresponds to
the variance pro�le for homogeneous errors. During the relatively long time span after
1973, we see that most exchange rates did not experience sharp changes in volatility,
although multiple shifts and smooth transitions do exist in most series. Speci�cally,
in this period, the Canadian Dollar has the smoothest volatility pro�le, followed by
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French Franc, Deutsche mark and Swiss Franc, whose volatility generally exhibits a
smooth increase at the beginning of the period and a smooth decrease at the end of the
period. Compared with these currencies, the Lira had sharper positive shifts at both
the beginning and the end of the period, each followed by an immediate sharp negative
shift, and the British Pound has an abrupt positive shift near the end of the period,
which is also followed by a negative shift. The variance pro�le of the Yen exhibits an
positive shift in the beginning and several small shifts in the middle. These pro�les
indicate that the major European currencies are more closely related to each other and
the Yen and the Canadian Dollar are relatively independent. As we can see from the
last two rows of Figure 2, the volatility shifts under the �xed exchange rate regime is
much steeper, partially due to the relatively short time span. At the end of the �xed
exchange rate period, all currencies except the Canadian Dollar had steep increases in
volatility.

Information criteria are �rst used to reveal the dominant time series characteristic
of the exchange rate data with r = 0 signifying I (1) and r = 1 signifying I (0). The
�ndings con�rm earlier conclusions that nominal exchange rates are well characterized
as I(1) processes (c.f., Corbae and Ouliaris, 1988, and Baillie and Bollerslev, 1989).
Table 6 and 73 report results for AIC and BIC for each currency under both �exible and
�xed exchange rate regimes. Both the theory and the simulation results predict that
AIC generally overestimates order, which biases results to stationarity. BIC, which
is more reliable, shows almost all series to be I(1) processes. The only exception is
the British Pound in the �xed exchange rate period. However, from the simulation
�ndings in the last section, this outcome for the British Pound may well be due to
overestimation resulting from the huge volatility jump of the Pound at the beginning
of the period.

Next, cointegrating rank among the seven exchange rates is estimated by AIC and
BIC under (1). The method allows for both weak dependence and variance hetero-
geneity as detected in Figure 2. The estimation results are presented in Table 8 and
9. Under the �oating exchange rate regime, AIC �nds 4 cointegrating relations and
BIC �nds no cointegration in the system. Considering the overestimation problem as-
sociated with AIC and the small underestimation probability of BIC given our large
sample size, we conclude that there is no I (1) =I (0) cointegration in the exchange rate
dynamic system. Our result is consistent with that obtained using the Johansen trace
test, where the optimal number of lags is selected with information criterion (Diebold,
et al, 1994). Compared with Johansen�s method, our procedure do not require a �rst
step estimation of the number of lags in the ECM, is more robust to model speci�cation
and is valid in the presence of time-varying variance.

Table 9 shows that cointegrating rank is estimated as 6 by AIC and 1 by BIC under
the �xed exchange rate regime. The di¤erence in these outcomes is substantial, but
we note that: (i) simulations show that AIC has a strong tendency to overestimate

3AIC(0) and BIC(0) in table 1-4 are normalized to 0 for computational convenience, but this nor-
malization does not a¤ect estimation results.
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cointegrating rank, whereas BIC shows only a small tendency to underestimate rank;
and (ii) the empirical results show that the BIC estimate is more sharply determined
than AIC. Taking the more reliable result given by BIC, we conclude that under the
�xed exchanged rate regime di¤erent currencies were tied to one equilibrium path
in the long run and that deviations from this long run path were temporary. This
result is compatible with the nature of the �xed exchange rate regime, whereby under
the Bretton Woods agreement, exchange rates were tied to each other, allowing some
adjustments only under special circumstances. Thus, empirical con�rmation of some
long run equilibrium relationship among the exchange rates is to be expected during
the Bretton Woods era.

Table 6
Unit root test for individual series under �oating exchange rate regime

CAN FRA GER ITL JAN SW UK
AIC r = 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

r = 1 0.0056 0.0021 -0.0015 -0.0050 0.0031 -0.0123 -0.0047
BIC r = 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

r = 1 0.0180 0.0145 0.0109 0.0074 0.0154 0.0001 0.0077
AIC br 0 0 1 1 0 1 1
BIC br 0 0 0 0 0 0 0

Table 7
Unit root test for individual series under �xed exchange rate regime

CAN FRA GER ITL JAN SW UK
AIC r = 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

r = 1 0.0193 0.0203 0.0263 0.0052 0.0270 0.0247 -0.1223
BIC r = 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

r = 1 0.0507 0.0517 0.0577 0.0366 0.0584 0.0561 -0.0910
AIC br 0 0 0 0 0 0 1
BIC br 0 0 0 0 0 0 1

Table 8
Cointegration rank estimation under �oating exchange rate regime

r 0 1 2 3 4 5 6 7 br
AIC 0.00 -0.06 -0.09 -0.10 -0.11 -0.09 -0.09 -0.08 4
BIC 0.00 0.10 0.21 0.30 0.39 0.46 0.51 0.52 0

Table 9
Cointegration rank estimation under �xed exchange rate regime

r 0 1 2 3 4 5 6 7 br
AIC 0.00 -0.67 -0.87 -1.07 -1.14 -1.18 -1.22 -1.19 6
BIC 0.00 -0.26 -0.12 -0.04 0.12 0.23 0.29 0.35 1
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6 Conclusion

This paper shows that cointegrating rank can be consistently selected by informa-
tion criteria under weak conditions on the expansion rate of the penalty coe¢ cient. In
contrast to traditional reduced rank and other cointegration estimation methodologies,
our method does not require a full parametric model and it is robust to both weak
dependence and variance heterogeneity. As a cointegrating rank selector or as a sim-
ple unit root test it o¤ers substantial convenience to the empirical researcher in the
presence of these complications.

Some further extensions of this semiparametric cointegrating rank selection ap-
proach are possible and may be useful in empirical research. We mention a few ideas
here. First, allowance for stochastic volatility shifts seems important for practical work,
especially in �nancial econometric applications. Second, there is scope for using BIC to
test for a shifts in variance while jointly conducting cointegrating rank estimation. Fi-
nally, models of fractional cointegration might be encompassed by using a multivariate
version of the exact local Whittle procedure (Shimotsu and Phillips, 2005) to jointly
estimate the fractional di¤erencing paramaters and a reduced rank coe¢ cient matrix,
by means of which cointegrating rank might be assessed as in the much simpler model
(1) used here.

7 Appendix

Lemma 4 Under Assumption 1-3, if at = A(L)"t =
P1
j=0Aj"t�j and bt = B(L)"t =P1

j=0Bj"t�j with
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Since "t is a martingale di¤erence sequence, we �nd, e.g. as in Phillips and Solo (1992),
that
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Next, note that
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for any integer L > 0 chosen so that Ln +
1
L ! 0: For each �xed j � L; we have
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1
n

V

�
n� [nr]� j

n

�
�eV

�
n� [nr]� j

n

�0
dr

!
Z 1

0
V (r) �eV (r)

0 dr = V ; (23)

uniformly in j; for j � L: By (22), (23) ; and the Toeplitz Lemma, we then have

n�1
n�1X
h=1

n�hX
t=1

AjV

�
t� j
n

�
�eV

�
t� j
n

�0
B0j+h !

1X
h=1

AjV B
0
j+h;

uniformly in j; for j � L: As a result,

LX
j=0

n�1
n�1X
h=1

n�hX
t=1

AjV

�
t� j
n

�
�eV

�
t� j
n

�0
B0j+h !

1X
j=0

1X
h=1

AjV B
0
j+h; (24)
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as n!1 and L!1:
Let C be a positive constant such that V (r) is uniformly bounded above by CIm

for r 2 (�1; 1]: Then
1X

j=L+1

n�1
n�1X
h=1

n�hX
t=1

AjV

�
t� j
n

�
�eV

�
t� j
n

�0
B0j+h


� C2 k�ek

1X
j=L+1

kAjk
1X
h=1

B0j+h! 0; (25)

as L!1 since
P1
j=0 jjAj jj <1;

P1
j=0 jjBj jj <1.

It follows from (21) ; (24) and (25) that

n�1
nX
t=2

t�1X
j=1

E(ajb
0
t)!

1X
h=1

1X
j=0

AjV B
0
j+h:

�:

Proof of Lemma 1: This is a vector generalization of Theorem 1 of Cavaliere and
Taylor (2007). Using the Phillips-Solo device,

n�1=2
[nr]X
s=1

us = D (1)

[nr]X
s=1

V
� s
n

� esp
n
+ op (1)) D (1)

Z r

0
V (s) dBe (s) ; (26)

where Be (�) a m-vector Brownian motion with variance �e: Under Assumption 1, the
op (1) term in (26) can be veri�ed in the same way as in Cavaliere and Taylor (2007).

By Lemma 2 of Cavaliere (2004),Z r

0
Vk (s) dB (s) = �kB (�k (r)) ;

for k = 1; :::;m: Because V (�) is diagonal, we have

Z r

0
V (s) dBe (s) =

0B@
R r
0 V1 (s) dB1 (s)

...R r
0 Vm (s) dBk (s)

1CA�1=2e = 


0B@ B1 (�1 (r))
...

Bk (�m (r))

1CA�1=2e ; (27)

where 
 = diag (�1; :::; �m) and Bk(�); for k = 1; � � � ;m; are all standard Brownian
motions that are independent of each other. By (26) and (27) we obtain

n�1=2
[n�]X
s=1

us ) BV (�) := D (1)
B� (�) �1=2e ;

where B� (�) = (B1 (�1 (�)) ; � � � ; Bm (�m (�)))0 :
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In view of (7) we have

�0?Xt = �0?C
tX
s=1

us + �
0
?�
�
�0�
��1

R (L)�0ut + �
0
?CX0

=
�
�0?�?

��1
�0?

(
tX
s=1

us +X0

)
+ �0?�

�
�0�
��1

R (L)�0ut;

so that the standardized process n�1=2�0?X[n�] ) (�0?�?)
�1 �0?BV (�) : Using (6) and

the fact that R (1) =
P1
i=0R

i = (I �R)�1 = �
�
�0�
��1, we have

n�1=2
[n�]X
s=1

�0Xs ) �
�
�0�
��1

�0BV (�) : (28)

�:

Proof of Lemma 2: Writing �Xt =W (L) "t and �0Xt = G(L)"t as in (9) and noting
that the lag polynomials W (L) and G(L) satisfy the conditions of Lemma 4 by virtue
of Assumptions 1 and 3, we have

S00 = n�1
nX
t=1

�Xt�X
0
t !p

1X
j=0

WjVW
0
j = �00;

�0S11� = n�1
nX
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�
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�0 !p

1X
j=0
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0
j = ���;

�0S10 = n�1
nX
t=1

�0Xt�1�X
0
t !p

1X
j=0

GjVW
0
j+1 = ���:

Using Lemma 1 and Lemma 4, it follows from Park and Phillips (1988) that
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�
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0
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0
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�
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�
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n
)
�
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0
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1
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p
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where

	1wu = lim
n!1

n�1
nX
t=2

t�1X
j=1

E(
�
�0?�Xt�1

�
u0t) =

1X
h=1

1X
j=0

�0?WjV Dj+h;

	wv = lim
n!1

n�1
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�
�0?�Xt�1

� �
�0Xt�1

�0
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1X
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j=0
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Finally, using (29) and (30), we obtain

�0?S10 = �0?(S10 � S11��0) + �0?S11��0

)
�
�0?�?

��1
�0?

Z 1

0
BudB

0
u�?

�
�0?�?

��1
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1
wu +	wv�

0;

since � (�0�)�1 �0 + �?
�
�0?�?

��1
�0? = I (e.g., Johansen, 1995, p. 39). �

Proof of Lemma 3: This Lemma follows the proof of Lemma 2 of Cheng and Phillips
(2008) by replacing Bu (r) with the variance transformed Brownian motion BV (r) : �

Proof of Theorem 1: The proof follows in the same way as the proof of Theorem 1
of Cheng and Phillips (2008). �
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Figure 2: Estimated variance pro�les of exchange rates over two periods (1: 1974-1998;
and 2: 1967-1973).
CAN: Canadian Dollar; FRA: French Franc; GER: Deutsche Mark; ITL: Italian Lira;
JAN: Japanese Yen; SW: Swiss Franc; UK: British Pound.
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