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Abstract

We present a dynamic model of venture capital �nancing, described as a sequential in-

vestment problem with uncertain outcome. Each venture has a critical, but unknown threshold

beyond which it cannot progress. If the threshold is reached before the completion of the project,

then the project fails, otherwise it succeeds. The investors decide sequentially about the speed of

the investment and the optimal path of staged investments. We derive the dynamically optimal

funding policy in response to the arrival of information during the development of the venture.

We develop three types of predictions from our theoretical model and test these predictions in

a large sample of venture capital investments in the U.S. for the period of 1987-2002.

First, the investment �ow starts low if the failure risk is high and accelerates as the projects

mature. Second, the investment �ow reacts positively to information that arrives while the

project is developed. We �nd that the investment decisions are more sensitive to the information

received during the development than to the information held prior to the project launch. Third,

investors distribute their investments over more funding rounds if the failure risk is larger.
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1 Introduction

1.1 Motivation

An innovative project typically has to go through many stages of exploration and development

that all require capital outlays before it is completed. Moreover, it carries a substantial failure risk

and it is di¢ cult to predict at which point in time evidence might emerge that would lead to its

abandonment. While the optimal investment policy depends on the current information available,

the progress of research uncovers new information about the project and reduces uncertainty that

in turn will in�uence the optimal continuation strategy. The venture capital industry is a powerful

example of the importance of these feedback e¤ects in the �nancing of innovation. But similar

issues also arise for innovative projects within large organizations or in publicly funded research.

The purpose of this paper is to understand the relationship between project-related information

and the sequentially optimal investment decisions. We develop a theory that analyzes how investors

- venture capitalists or other sponsors that provide the �nancing and help shepherding a project to

success - make optimal dynamic investment decisions as a function of their information about failure

risk and potential �nal value. In our theoretical model, we distinguish between information that

investors have before the funding decision and information they receive as the project advances.

We analyze the relative impact of ex ante information and interim information, respectively, on

subsequent investment decisions.

We then put the predictions of our model to an empirical test. We use a comprehensive sample

of the US venture capital data to examine whether we �nd support for our predicted relationships.

Our empirical �ndings lend support to the main predictions of our model: First, investors proceed

cautiously if the failure risk is high, and they accelerate investment, in spite of the cost of doing so,

as projects mature. They also invest faster if they hold favorable information about the project.

Second, the investment �ow reacts positively to information that arrives during the development

of the project, and interim learning seems to be more important for the determination of the

investment path and a better predictor of the �nal outcome than ex ante information. Third, if

the failure risk is large then investors tend to adopt a more hands-on approach by adjusting their

investment strategy more frequently.

We consider a continuous-time model representing the complete investment cycle of an innov-

ative project under uncertainty, characterized by: (i) uncertainty about the likelihood of success;

(ii) uncertainty about the arrival of the failure event; and (iii) interim information about the
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failure risk and the �nal value of the project. Our model depicts the progress of the project as

a continuous process of development and research. At each point in time, information that the

project should be abandoned may arrive. Thus, the model incorporates a simple stopping problem.

The signal that the project should be abandoned arises with a given probability, derived from the

Pareto distribution with parameter �. The family of Pareto distributions has the property that the

conditional probability of failure is decreasing over time.

In our stylized model, we focus on two essential dimensions of the sequential investment de-

cisions. The �rst dimension is that investors determine the speed with which the project is un-

dertaken, or the optimal capital �ow. The decision about the optimal speed of investment is

characterized by the following trade-o¤: a larger investment �ow into the project promises faster

success, but is likely to reduce the e¢ ciency of the investment. The investors control the optimal

investment �ow at every point in time and decide (i) on the speed with which they want to develop

a project, (ii) on the change in the investment pace as the project progresses, and (iii) on the

adjustment in the �nancing speed if new information arises that changes the expectation of key

parameters, notably failure risk and �nal value in the event of success.

The second dimension that we take into account is the optimal degree of investor involvement.

Venture capitalists typically provide �nancing in infrequent �nancing rounds or stages, lasting from

a few months to over a year or more. They also de�ne milestones that must be met before a certain

fraction of the funds is released. Each �nancing round necessitates a thorough review and valuation

exercise, it typically involves several parties (venture �nancing is often syndicated among several

funds and the managers are involved as well) and a multilateral negotiation process. With these

resource constraints and transaction costs in mind, it is then optimal to review the project only at

certain intervals, even if this implies a temporarily suboptimal investment path.

We add these considerations to our continuous-time model. Our goal is to speci�cally under-

stand the intertemporal pattern of stage �nancing and its interaction with the available information.

Critically, the determination of the �nancing rounds, their expected duration and the associated

investment �ow and the intermediate milestones are endogenous in our model. In this analysis,

investors make lumpy investment decisions that are optimized as a function of the expected value

and the probability of failure. We model the cost of each investment decision as a loss that is

proportional to the current value of the project. With this analysis, we add the following questions

to our investigation: (iv) How do transaction costs and the need for lumpy investment decisions

a¤ect the optimal investment path? (v) What is the optimal sequence of stage �nancing?
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The contributions of our theoretical analysis fall into three groups. First, we show that as

a project advances and the probability of eventual success increases, investment �ows should be

optimally increasing. For the same reason, a project with a higher estimated �nal value or a

higher anticipated chance to succeed is also allocated a larger investment �ow throughout. With

an increase in the probability to succeed, accelerating becomes a more valuable option, even if it

makes the investment more costly. In fact, our model shows that the investment �ow should be

increasing over time as a pure informational e¤ect as the risk of failure recedes. Our model predicts

that the observable returns are decreasing even though the increasing investment �ows imply an

acceleration in the discovery process. Second, we show that the optimal staging sequence depends

on the value of the real option to abandon. The higher the estimated �nal value of the project

is, and the larger the estimated success probability, the fewer rounds will be used. Also, echoing

our result on the optimal investment path for continuous decisions, the investment �ow increases

from one round to the next. Third, we show that learning about the expected �nal value or the

failure probability is incorporated in all subsequent investment decisions. If there is a positive news

update then the value of the project increases as well as the investment �ow. At the same time,

the number of subsequent investment rounds decreases, and the capital allocation for each of these

rounds increases.

We should emphasize that in contrast to most of the preceding theoretical work on venture

capital, including Bergemann and Hege (1998), (2005), our model does not focus on the agency

costs but rather is concerned with convex investment costs. An advantage of the current model

is that it permits explicit solutions which allow us a variety of comparative static results that are

central for the empirical analysis. In the concluding section, we discuss at some length a variation

of the current model that considers an agency con�ict where the manager can divert the investment

�ow to private consumption. We show that the resulting optimal incentive contract would lead to

similar theoretical predictions as the convex cost model. Overall, our analysis demonstrates that

other e¤ects besides agency, notably the gradual unraveling of uncertainty, can provide a robust

alternative explanation for stylized facts in venture �nancing.

We take the theoretical predictions to a large sample of more than 47,000 venture capital

investments in the U.S. for the period 1987-2002, covering an overwhelming majority of all recorded

venture investments in the U.S. over that period1. The venture capital data are attractive for three

1We have compared our sample to the data of the National Venture Capital Association (NVCA (2008)) and the

PwC/Moneytree/Thomson Reuters survey data available from Thomson Reuters.
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reasons: �rst, they allow us to study these e¤ects in a broad sample of projects across di¤erent

industries. Second, because of the staged nature of venture �nancing, interim valuation data are

available that contain the estimates regarding the prospects of a particular project. We can use these

values and in particular changes in the valuations to extract information about what investors have

learnt since the last capital infusion. Third, the fact that venture-backed projects are independent

companies makes it possible to track the timing of the stopping decisions or the feedback between

information arrival and sequential investment decisions more accurately than, say, for research

projects launched within organizations in which there is more discretion for window-dressing and

the investment information is more opaque.

The results of our empirical investigation lend support to our theoretical predictions as follows.

First, we document empirically that as a project advances and the probability of eventual success

increases, investment �ows are increasing. We show that at the same time, the returns of the

projects are decreasing over the investment cycle. Taken together, these two observations imply

that learning about the eventual prospect of a project are largely concentrated at the beginning

of the investment cycle. Second, our evidence shows that initially, investors seem to have little

screening ability about the eventual probability of success, but they seem to hold some information

about the �nal value of the project in the event of a successful completion. We show that as the

project advances, in many cases investors get information that leads to a change in the estimated

failure risk or exit value of the project, as inferred from the dynamics of the project valuation.

Moreover, such information updates lead investors to adjust the investment path optimally: the

subsequent investment �ow as well as the size of each round and the number of subsequent rounds

react in the way predicted by our model. Consistent with our model, we �nd that investors receive

updates over the course of the investment cycle that allow them to better estimate the �nal value.

These updates again give rise to a change in the investment �ow and the number and size of

subsequent rounds that is consistent with the pattern predicted by our model. Third, we show that

the design of �nancing rounds follows the optimal pattern predicted by our model: the investment

size and the investment �ow is increasing from one round to the next, and projects with a high

initial estimate of the �nal value or an optimistic appraisal of the probability to succeed will use

less rounds than less valuable or more risky projects.
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1.2 Related Literature

Our paper is related to three di¤erent strands of the literature. First, there is a literature on the role

of learning in the �nancing of innovation. Sorensen (2008) analyzes the decisions of venture capital

funds into which industry they invest. Using similar data to ours, he �nds evidence that learning

and forward-looking expectations drive the investment decisions of the venture capital funds. In

Sorensen (2008), each fund makes many investment decisions across many industries. The past

investment experience in a given industry allows the venture capital fund to make inferences about

future ventures in this industry. The venture capital fund invests into a particular �rm only once,

and the focus is on the informational externality across ventures. In contrast, we analyze the entire

investment cycle of every venture and follow the various funding decisions related to the project

over time. The focus of our theoretical and empirical investigation is about how information arrival

impacts the sequential funding policy within a venture whereas Sorensen (2008) analyze the funding

policy across ventures. Hochberg, Ljungqvist, and Vissing-Jorgensen (2008) discuss the learning

impact of a venture capital�s past investments on the size and the direction of follow-up funds by the

same venture capital �rm. They �nd a positive feedback e¤ect between fund performance and the

size of follow-on funds. In contrast, we consider the interaction between learning and investment

within a single portfolio �rm. Several papers discuss the optimal stopping decision in an investment

model with learning. Bergemann and Hege (2005) consider a project with a given failure risk in

which the arrival time of the �nal discovery, and hence the total cost to deliver it, are uncertain.

Second, there is a literature on the optimal dynamic pattern of investments in the presence of

a real option to abandon. Berk, Green, and Naik (2004) focus on the evolution of the risk pro�le

that are due to changes from a purely technical risk in the early stages to more diverse sources

of risk in later stages. The theoretical literature on stage �nancing in venture �nance has mostly

focused on the use of stage �nancing as a tool to alleviate agency problems. Cornelli and Yosha

(2003) show that stage �nancing can mitigate the problem of an entrepreneur manipulating short-

term results for purposes of �window-dressing�. Fluck, Garrison, and Myers (2007) highlight the

role of stage �nancing as a real option instrument. Neher (1999) addresses the possibility that an

entrepreneur strategically repudiates contractual obligations; in his model, stage �nancing limits

the entrepreneur�s bargaining power in each round and hence alleviates �nancing constraints, but

it is costly as it delays the project. Neher (1999) appears to be the only paper prior to ours that

endogenizes the number of rounds and their investment volume. In contrast to our paper, Neher�s
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model considers an investment without failure risk. A second essential assumption in Neher�s model

is that all investments in past rounds lead to an increase in the liquidation value, whereas we allow

for the possibility that past investments are sunk and no value can be retrieved if the project is

abandoned before completion.

Our paper also bears some relationship to the recent continuous-time models of �nancial con-

tracting where the cash �ows are privately observed. DeMarzo and Sannikov (2006), Biais, Mariotti,

Plantin, and Rochet (2007) and DeMarzo and Fishman (2007) show that the optimal security de-

sign in this context involves a securities mix of debt held by the �nancier, of equity held by the

entrepreneur, and liquidation threats. Most interestingly for the context here, they show that the

contracts are non-stationary because of the need for a cushion to prevent ine¢ cient liquidation:

in Biais, Mariotti, Plantin, and Rochet (2007), cash is accumulated initially as a cash reserve;

DeMarzo and Sannikov (2006) introduce an initial credit line that is gradually paid down. Albu-

querque and Hopenhayn (2004) introduce a continuous working capital investment similar to our

paper, and �nd that the investment �ow is limited in the beginning because of constraints on the

maximum outside �nancing that are imposed by incentive compatibility. All of these contributions

assume a continuous stream of uncertain cash �ow, whereas we assume a single cash �ow coupled

with failure risk. In spite of this di¤erence, we also �nd that the funding limits are most severe at

the beginning of the project. While in the dynamic contracting papers, this e¤ect arises by initial

cash shortages, in our model it is driven by the compounded uncertainty about eventual success.

The di¤erence is highlighted by a moral hazard variation of our model that we discuss in the �nal

section; it is close in spirit to the dynamic contracting papers but also di¤ers from them with its

focus on a continuous adjustment of the investment �ow.

There is a substantial empirical literature on stage �nancing, starting with the seminal analysis

of Gompers (1995) who explores the evolution and determinants of round investment �ows, of

round investment volume, and of round durations. His key result is that duration and investment

volume per round relate to industry ratios, which he uses to measure agency and monitoring costs.

Our descriptive statistics con�rm many of the staging patterns documented by Gompers (1995).

However, Gompers (1995) does not study the relationship between �rm-level information arrival

and investment behavior, which is the central theme of our study, in particular how information

and learning a¤ects investment dynamics from round to round and round durations. Subsequent

work analyzes the contingent contract clauses that are either explicit or implied by staging in more

detail (see e.g. Kaplan and Stromberg (2003); Bienz and Hirsch (2007)). In contrast to our work,
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none of these earlier papers attempts to infer information about the learning that occurred since

the last �nancing round (abnormal returns).

Finally, there is an extensive literature on the valuation and the returns in venture capital

which analyzes venture capital as an asset class and studies the returns of venture capital from a

performance-based perspective of a diversi�ed investor. In this literature, notably Woodward and

Hall (2003) and Cochrane (2005), the round-level performance is determined as well, but with the

di¤erent objective of reducing selection bias problems. In contrast, we focus on the interaction

between information-driven returns and investments, and look at interim results and sequential

investments at the portfolio-company level.

The remainder of the paper is organized as follows. Section 2 introduces the model of investment

under uncertainty and describes the intertemporal payo¤s. Section 3 analyzes the optimal invest-

ment policies in the basic model. Section 4 augments the analysis in the baseline model to allow

for staging decisions and for additional uncertainty about the failure risk of the project. Section 5

develops the hypothesis for the empirical results given the theoretical predictions obtained in the

earlier sections. Section 6 describes the dataset and presents some summary statics of the dataset.

Section 7 reports the empirical results. Section 8 discusses some open issues and concludes. The

Appendix collects the proofs of all propositions in the main body of the text.

2 Model

The development of a new venture is described as a sequential investment model under uncertainty.

The true value of the venture or project is assumed to be initially unknown to the entrepreneur

and the investors. The true value of venture is either 0 or Y > 0. The uncertainty about the true

value of the venture is resolved over time.

We model the development of the venture as an investment process in continuous time t 2 [0;1).
The initial development of the project is given by state k0, with k0 > 0, and the development state

of the project at time t is denoted by kt. The venture is successful if it reaches a �nal state K, with

k0 < K. If the venture reaches the state K then it generates a value Y . The role of the investment

at time t is to increase the state kt and bring the venture closer to a successful realization. Each

venture has a critical, but initially unknown, threshold k� beyond which it cannot progress. If the

critical threshold k� � K, then the project stalls as the current state kt reaches the threshold k�,
or kt = k�. In this case, the venture fails and the true value of the venture is determined to be 0.
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If on the other hand, the critical threshold k� is beyond the �nal state K, or k� > K, then the

venture is developed successfully and generates the positive value Y .

The location of the critical threshold k�, i.e. the breakdown point of the venture, is uncertain

and given by a prior distribution F (k�). The venture has an ex ante chance of success if the

prior probability that the breakdown point k� is smaller than K has probability less than one,

or F (K) < 1. Conversely, if 1 � F (K) > 0, then the probability that the critical threshold is

beyond K, and hence occurs after the realization of the value Y , is positive. For the remainder of

the analysis we shall assume that the probability of a successful realization is positive, and hence

F (K) < 1. For the analysis, we shall restrict our attention to prior distributions which are in the

class of Pareto distributions.

F (k; k0; �) , 1�
�
k0
k

��
.

The class of Pareto distributions is parameterized by two variables, k0 and �. The initial state

of the project k0 is a strictly positive lower bound, and � > 0 identi�es the skewness of the

distribution. For notational ease, we shall suppress the dependence on k0 and � and simply write

F (k) , F (k; k0; �). The prior probability of success, starting at k0 is now given by:

1� F (K) =
�
k0
K

��
.

Conversely, the prior probability that the project will fail during the development phase is given

by F (K). The conditional probability of failure at kt, in other words the failure hazard rate h (kt),

is given by:

h (kt) ,
f (kt)

1� F (kt)
=
�

kt
.

The conditional failure rate is decreasing in the state of the project and a project with a larger �

has a uniformly higher rate of failure and consequently a lower prior (and posterior) probability

at every kt that it reaches the �nal state K. With slight abuse of notation we frequently refer to

� as the failure rate of the venture. We postpone a detailed discussion of the speci�c role that

the Pareto distribution has for the results until immediately after the statement of the results.

It su¢ ces for the moment to say that the monotonicity and comparative static properties of the

optimal investment policy are independent of the parametrization of the failure risk. The properties

of the Pareto distribution are used only for the characterization of the intertemporal pro�le of the

observable returns. With respect to the speci�c class of distribution for the theoretical model, we

chose the Pareto distribution over the exponential distribution as the summary statistics of the
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venture suggested a decreasing rather than constant failure probability, as would be implied by the

class of exponential distributions.

The investment �ow it at time t controls the rate at which the state of the development kt is

moving forward, through the law of motion:

dkt = 
p
itdt. (1)

The current investment �ow it increases the speed at which the project progresses in a concave

manner - or to put it di¤erently, increasing the speed increases the total cost of investment in

a convex manner. The concavity of the rate of progress dkt in the investment �ow it acts like

a convex adjustment cost. It represents the presence of a critical resource, such as research or

management. The decision about the optimal speed of investment is therefore characterized by the

following trade-o¤: a larger investment �ow into the project promises faster success, but reduces

the e¢ ciency of the investment. The parameter  > 0 describes the marginal e¤ect of investment

on the speed of development and a larger value of  represents a project that is easier to develop.

The instantaneous failure probability, given the current investment �ow it, is given by:

h (kt) � dkt =
f (kt)

1� F (kt)
� 
p
itdt =

�

kt
� 
p
itdt.

A venture capital project is now described by (Y; k0;K; ; �). The value Y is the value of the

successfully developed project. The initial state k0 and �nal state K describe the length of the

development process, K�k0, until the venture can go public or be sold. The parameter � describes
the failure rate of the project and  identi�es the marginal productivity of the monetary funds to

develop the project.

The value of the venture depends on the investment policy (it)
T
t=0. From an ex ante point of

view, the project is expected to reveal itself to be either a success or a failure. If the project is a

success then the payo¤ Y will be realized at some future time T which depends on the pro�le of

the investment �ow (it)
T
t=0. Along the way, the project requires investments which represent the

development cost. If, on the other hand, the project is a failure, and hence the critical threshold k�

lies below K, or k� < K, then the investment �ow halts as soon as current state reaches kt = k�.

In this case the project incurs development costs until the moment of failure and does not generate

any positive returns at all. Conditional on a given investment policy (it)
T
t=0, we associate to every

time t a position kt which is reached at time t, provided that the project did not come to halt

before kt. The ex ante expected net present value from an investment policy (it)
T
t=0 at time t = 0
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is given by:

(1� F (K)) e�rTY �
Z T

0
it (1� F (kt)) e�rtdt. (2)

The �rst term represents the expected discounted gross return of the project. The ex ante proba-

bility of success is 1� F (K) and as the value Y is only realized at time T , the value is discounted

at the rate r until time T . The second term accounts for the expected cost of the investment policy

(it)
T
t=0 during the lifetime of the project. The investment it in state kt at time t occurs if and only if

the project has a critical threshold k� beyond the current state kt which has an ex ante probability

1 � F (kt) : The total expected cost of the project is the integral over the investment �ows until
time T .

3 Sequential Investment

In this section we characterize the optimal investment policy for the project under uncertainty.

The optimal investment policy describes the �rst best solution to the investment problem under

uncertainty. In consequence, at this stage, we are not concerned with possible agency con�icts that

might arise between the investors and the entrepreneur. The focus of our analysis is to investigate

how the funding policy for the venture should optimally respond to the �ow of information which

arises during the development of the venture. We analyze the role of the agency con�ict on the

funding policy in the next section, where the agency con�ict introduces a friction into the provision

of the funds.

The �rst-best policy under uncertainty can be analyzed as a dynamic programming problem

under uncertainty. The natural state variable of the dynamic program is the state kt which describes

the progress of the project. At every point in time, the investment �ow carries a cost equal to the

investment, �it, and generates one of two possible outcomes. The project may either fail at the
current position kt or it will pass successfully through the current position kt. In the event of

a failure, which occurs at the rate 
p
it � (�=kt), the value of the project drops from the current

value, denoted by V (kt), to 0. In the event of a successful passage the state increases at the rate

dkt = 
p
it and the value of the venture increase by V 0 (kt). The dynamic programming equation

for the optimal investment policy in continuous time is now given by:

rV (kt) = max
it2R

�
�it � 

p
it
�

kt
V (kt) + 

p
itV

0 (kt)

�
. (3)

The value of the project depends on the �ow of investment it in period t through three channels:
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(i) the direct cost of the investment it, (ii) the failure rate 
p
it � �=kt, and (iii) the rate of change


p
it in the position of the project.

The rate of change 
p
it in the position kt is a concave function of the current investment it.

The optimal investment policy, therefore, is the result of an optimal trade-o¤ between the speed of

investment and the cost of building up the asset. The optimal investment at point kt is determined

by the �rst order conditions of the dynamic programming equation (3):

�1� 1
2

p
it

�
�

kt
V (kt)� V 0 (kt)

�
= 0,

The optimal investment problem is hence the solution to a linear-quadratic problem and the optimal

investment i�t is given by:

i�t =

�


2

�
V 0 (kt)�

�

kt
V (kt)

��2
. (4)

We can insert the optimal investment �ow i�t into the value function (3) and obtain an ordinary

di¤erential equation for the evolution of the value of the venture:

rV (kt) =

�


2

�
V 0 (kt)�

�

kt
V (kt)

��2
: (5)

We observe from (4) and (5) that the optimal investment i�t is linear in the �ow value of the venture

at time t :

i�t = rV (kt) . (6)

We can rewrite the di¤erential equation (5) in its canonical form as:

V 0 (kt) =
�

kt
V (kt) +

2



p
rV (kt): (7)

With a change of variable given by W (kt) ,
p
V (kt), we can transform the above di¤erential

equation into a nonlinear �rst order di¤erential equation which we can solve explicitly by variation

of parameters. The explicit solution of the value function is given in the Appendix and we derive

the properties of the optimal investment policy i� = (i�t )
T
t=0 on the basis of this solution.

Proposition 1 (Investment Policy)

1. The optimal investment policy i� is increasing and convex in the state kt.

2. The optimal investment policy i� is decreasing and concave in the failure rate �.

3. The optimal investment policy i� is increasing and convex in the �nal value Y .
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The intuition of Proposition 1 is that the value of the project increases with the gradual resolu-

tion of uncertainty about its �nal success. As the project proceeds, the likelihood that the critical

threshold k� is reached before K diminishes and it becomes increasingly likely that the project

will reach the �nal position K. As the current valuation of the venture increases, it is optimal to

increase the speed of development to reach the �nal position K earlier because of the opportunity

cost of discounting. This increase in the funding occurs in spite of the associated convex increase

in the cost of investment. We noted earlier that the above monotonicity results are independent of

speci�c distributional assumptions about the failure risk. The curvature properties of the optimal

policies can be veri�ed to hold for other distributions, such as the class of exponential distribu-

tions as well. However, if the failure rate is strongly non-monotone in the state kt, then the above

curvature properties may fail to hold.

We note that our model is built on a central premise: from the perspective of a risk-neutral

investor, the expected return of the investor is constant over time and given by

R , 1 + r.

In our model, the failure event is characterized by a fall of the value to zero. In the absence of a

failure event, we observe a change in the position kt given by:

dkt = 
p
itdt.

The constant return R can therefore be decomposed into a return in the event of a failure, which is

given by 0, and the return in the event of a successful continuation, the surviving return, denoted

by Rt. We therefore have

R = Pr(failuret) � 0 + Pr(survivalt) � Rt.

Given that the instantaneous failure probability at time t is given by


p
it
�

kt
,

the surviving return Rt in period t is de�ned by the complementary survival probability:

R =

�
1� 

p
it
�

kt

�
�Rt,

and can hence be explicitly expressed as:

Rt =
R

1� 
p
it
�
kt

. (8)
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Alternatively, we can express the surviving return Rt using the value function given in (3) and

describe the surviving return in terms of the net change in the continuation value _Vt � it relative
to the value Vt of the project:

Rt =
_Vt � it
Vt

: (9)

We can infer from (8) that the surviving return Rt is controlled by the product of the conditional

failure probability �=kt and the investment intensity 
p
it. As the conditional failure probability

is declining in kt and kt is increasing over time, it follows that the conditional failure probability

is declining over time as well. This contributes to a decline in the surviving returns over time.

On the other hand, the investment intensity 
p
it is increasing over time. As we saw above, the

venture becomes more valuable as the successful completion of the project becomes more likely. The

intertemporal pro�le of the surviving return is then determined by the trade-o¤s between failure

rate and optimal responsiveness of the investment to the arrival of new information.

Proposition 2 (Surviving Returns)

1. The surviving returns Rt are decreasing over time if the failure rate � and the �nal state K

are not too large.

2. The surviving returns Rt are increasing over time if the failure rate � and the �nal state K

are too large.

The above characterization exhaustively describes the possible return pro�les of the venture

project. The surviving returns are either always decreasing or always increasing. The surviving

returns are increasing only if the failure rate and the �nal state K are too large. In this situation,

the investment pro�le over time is exceedingly convex with very low investment �ows until close

to the completion of the project. In this case the decreasing conditional failure probability is

overwhelmed by the rapid increase in the investment �ow as a function of the state kt.

4 Staging and Learning

The objective of this section is to enrich the analysis of the basic sequential investment problem

to account for important aspects in the provision of venture capital funding. Speci�cally, we (i)

introduce frictions that lead to a role for staging in the provision of the funds and (ii) analyze the

role of uncertainty about the true failure rate of the project.
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4.1 Contracting Frictions and Staging

In the basic investment model, the �ow of funds into the project was continuously adjusted in

response to the arrival of information. This suggests an ongoing and continuous involvement of the

investors during the development of the venture. In reality, the funding decisions and the associated

negotiations over the valuation of the venture only occur infrequently. Presumably, the transaction

costs brought about by multi-party bargaining, contracting and the valuation of the project leads

to a discrete number of funding decisions and funding rounds.

We represent the friction associated with the contracting and the agency relationship as a cost

proportional to the current project value. We assume that the negotiation for each new funding

round is successfully concluded with a probability p strictly less than one. With the complementary

probability, 1�p; an agreement fails to to be completed and the project is abandoned. Alternatively,
the probability 1� p can be viewed as a transaction cost due to a delay in the continuation of the
project. In this case, 1� p is the fraction of the value that is lost to discounting due to the delay
which comes with the (re-)negotiation of the funding terms.

While our model abstracts from explicit moral hazard considerations, the analysis of the staging

decision, or on the optimal degree of investor involvement, could be extended to address agency

problems in more detail. For example, we could assume that each time the investor advances

money to the manager of the venture, the amount transferred is fully handed over to the manager

and cannot be retrieved by current or future investors. E¤ectively, this adds a rich real options

dimension to the staging decision, in that the investor knows that the longer are individual stages,

the larger is the risk that a substantial amount of cash will be lost if a failure signal arrives in the

midst of a round. This extension would reinforce the downside of keeping individual stages too

long, which is currently represented by the impossibility to adjusting the funding speed within a

single round. However, this extension would not alter the trade-o¤ surrounding the staging decision

qualitatively. We therefore focus for simplicity only on the impossibility to adjust the investment

speed which is su¢ cient to generate the basic trade-o¤.

With this friction in the negotiation process, a continuous involvement in the investment process

becomes too costly for the investors. In fact, we show below that it becomes optimal to reevaluate

the investment policy only infrequently. In this world with friction, the optimal funding policy now

determines the funding volume over a time interval rather than a funding �ow at every instant.

A decision about the funding volume therefore determines the constant �ow i of the investment
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during the round and the length of the funding round.

Thus, we depict the staging decision as the result of a trade-o¤ between the transaction costs

of a new funding round versus the �exibility to adjust the speed of investment. The objective of

the subsequent analysis is to understand the optimal structure of stage �nancing based on this

trade-o¤. Importantly, the staging decision is fully endogenous in the sense that both the number

of stages as well as their duration are chosen by investors in reaction to their information at the

beginning of each round. Consequently, we denote by il;m the optimal investment �ow in stage

l if the entire project is �nanced in m stages, with l � m. Similarly, we denote by Vl;m (kt) the

value function of the project in stage l and state kt conditionally on funding the entire project in

m stages.

If the project is funded in a single stage, i.e. it is funded in the initial state k0 with the objective

of maintaining a given investment level i1;1 until the positive or negative termination of the object,

then the value function is given by the unique solution of the �rst order di¤erential equation:

rV1;1 (kt) = �i1;1 + 
p
i1;1

�
V 01;1 (kt)�

�

kt
V1;1 (kt)

�
, (10)

subject to the boundary condition V1;1 (K) = Y . The value function can be explicitly solved:

V1;1 (kt) =

�
kt
K

��
e
kt�Kp
i1;1

r
 Y �

p
i1;1

(�� 1) 

 
kt �K

�
kt
K

��
e
kt�Kp
i1;1

r


!
. (11)

The optimal investment policy given the initial state k0 can be obtained implicitly by the �rst order

condition of V1;1 (k0) with respect to i1;1. The terms on the rhs of the equation represent the bene�t

and the cost of pursuing the project at a �xed intensity level i1;1. The �rst term represent the time

discounted probability that the project is successfully realized. The second term represents the

expected cost of developing the project.

We now consider the optimal determination of stage �nancing. The value function V1;1 (kt) is

determined by the optimal investment funding to complete the venture in a single round starting

at kt. The cost of the stage funding is given by the commitment to a speci�c investment �ow

over the round horizon. If the project is developing well, then the investors will react with the

infusion of new funds and a new, and presumably higher, investment �ow. Given that a renewal

of the funding is not certain, but might lead to a failure of the project with probability 1� p, the
question then becomes, at which level of development kt does it become optimal to complete the

development of the venture in multiple rather than in a single stage of funding.
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Next, if the project is to be funded in two stages, then the optimal funding policy starting

at the initial position k0 has to make three distinct choices: (i) it has to determine the initial

funding level i1;2, (ii) the continued funding level i2;2 and (iii) the state k1 in which the funding

is supposed to be renewed. We can solve this problem recursively and for given state k1 determine

the optimal funding speed i2;2 to complete the project. The solution to this problem gives us

the value function V2;2 (k1) in state k1. We observe that the value function V2;2 (k1) shares the

functional form with V1;1 (k0) in (11). The only di¤erence between these two value functions is that

the associated investment level i1;1 is determined earlier at k0 rather than i2;2 at k1. But in either

case, the optimal investment choice provides the necessary funds in a single round until the project

is completed.

Given the optimal continuation value V2;2 (k1), we can recursively determine the funding level

i1;2 and the state k1 in which the funding will be reviewed. The joint decision about the funding

intensity i1;2 and the length of the funding period k1 is then given as the solution to the following

dynamic programming problem.

V1;2 (k0) = max
i1;2;k1

(
p

�
k0
k1

��
e
k0�k1p
i1;2

r
 V2;2 (k1)�

p
i1;2

(�� 1) 

 
k0 � k1

�
k0
k1

��
e
k0�k1p
i1;2

r


!)
: (12)

We observe that the functional form of the dynamic programming equation is again similar

to (11). The di¤erence is that the expected gain from the investment �ow i1;2 is the discounted

probability that the next funding round is reached in state k1, which is represented by V2;2 (k1).

Similarly, the investment costs are now accumulated between k0 and k1 at the rate of i1;2 rather

than between k0 and K at the rate of i1;1.

The optimal investment decision in each round is a joint optimal control and stopping problem.

The control problem is the determination of the investment �ow il;m and the stopping problem is the

decision about the state kl at which a new funding decision should be made. As we are interested in

the interaction between the staging decision, the investment decisions, and the information arrival,

we seek to determine the optimal staging decision as a function of the current state kt and the

�nal state K. In particular, we would like to know whether at a given position kt, it is optimal to

undertake the remaining investment for the interval K � kt in a single round or split it over two
rounds? In other words, we seek to determine how the length of the remaining task, identi�ed by

K � kt, determines the staging decision. The comparative statics of this decision with respect to
K, gives us the required hypotheses for our empirical investigation.

We restrict our analysis here to the optimal determination of funding and renewal with two
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stages. Yet, due to the recursive structure of the funding problem, the optimality conditions and

the qualitative properties of the optimal funding decision extend naturally from two to �nitely

many funding stages.

Proposition 3 (Optimality of Staging)

1. For a given �nal state K, and for a given number of stages, m = 1 or m = 2, the respective

investment �ows satisfy i1;2 < i1;1 < i2;2, i.e. the investment �ow of the best one-round policy

is larger than the �rst round and smaller than the second round investment �ow of the best

two-round policy.

2. The number of optimal funding rounds is increasing in the length of interval of states of

development, K � k0.

The �rst part of the above results demonstrates that the length of the development determines

the number of �nancing rounds. In particular, as the length of the development process increases

the investors ultimately �nd it in their interest to spread the funding decision over several rounds.

The second part of the result considers the structure of the funding conditional on either funding

the project in one or in two stages. Clearly, except for a critical value of the �nal state K, either

one of the two staging policies will be optimal and dominate the other one. The result is meant

to illustrate the level of the funding policies across di¤erent staging policies. The outer inequality,

namely i1;2 < i2;2, re�ects the monotonicity in the funding policy which we established earlier for

the continuous control problem in Proposition 1. The inner inequalities, i1;2 < i1;1 < i2;2, re�ect the

�exibility o¤ered by multiple stages. The investors can adjust the investment �ow upwards as the

prospects of the project improve, whereas in a single stage they loose the �exibility of the upward

adjustment and choose an investment �ow which is in between the investment �ows with multiple

stages. The relationship between the staging decision and the investment decision is depicted in

Figure 1 and Figure 2.

Insert Figure 1 and Figure 2 Here

If the project is funded in a single stage, then the value function V1;1 is continuously increasing

until it reaches the terminal value Y . If on the other hand, the project is funded in two stages, then
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the increase in value is initially smaller as the initial investment is smaller and the project has still

to secure the second funding round. If at the stopping point k1, the funding for a second round

can be secured, then the associated value observes an upward jump from V1;2 (k1) to V2;2 (k1),

where the value before the jump, V1;2 (k1) ; and the value after the jump, V2;2 (k1) satisfy the

following relationship: V1;2 (k1) = pV2;2 (k1). Given the optimality of staging, we now investigate

the temporal structure of the staging. In particular, we are interested in the length of each staging

round as we come closer to a successful completion of the venture. Speci�cally, we show that as the

length of the interval of the development states K � k0 increases then it is eventually optimal to
switch from a single stage funding to a multiple stage funding policy. As Figure 2 illustrates, the

advantage of the multiple stage funding policy is that it allows the investment �ow to be adjusted

upwards as the project moves closer to completion.

Proposition 4 (Structure of Staging)

1. The number of funding stages is decreasing in Y and increasing in �.

2. The length of the �rst stage is increasing in the funding probability p.

3. For a given number of funding stages, the investment �ow is increasing in Y in all funding

stages.

An implication of Proposition 3 is that a project with a larger return Y will see fewer rounds

of funding, as the delay or impasse resulting from a renewal of the funding leads to a higher

opportunity cost for a project with a larger possible return Y .

4.2 Learning

So far, we analyzed the dynamic development of the venture with an essentially binary information

structure. Either the project progresses and in consequence its prospect improve, or the venture

fails and the funding is terminated. In this �nal extension we accommodate interim learning

while the project is developed. In particular, we consider learning during the project in the sense

that the progress of the project uncovers information that may change the expectation about the

future failure probabilities (or equivalently about the �nal value in the event of success). The

interim arrival of information is interesting as the current development may give rise to additional

information about the expected future risk and value of the project. Consequently, we shall extend

18



the basic model to accommodate the arrival of new information about the likelihood of success.

More speci�cally, we assume that the venture starts with a given failure rate � > 0. At a random

time, the current failure rate � is replaced by a new failure rate, which can be either lower or higher

than the current failure rate �, wit �l < � < �h.2 We shall assume that the expected true failure

rate is equal to the current failure rate, or

� = ��h + (1� �)�l.

The failure rate � can therefore be interpreted as the current estimate of the true, but currently

unknown failure rate which is given by �h with probability � and �l with probability 1 � �. We
observe that a jump to lower failure rate �l represents a positive shock from the point of view of

the investors, and conversely an upwards jump to �h represents a negative shock as it lowers the

expected value of the venture. The new information about the failure rate is assumed to arrive

with a constant rate �. The dynamic investment problem can is represented by the usual dynamic

programming equation:

rV (kt) = max
it

�
�it +

p
it

�
V 0 (kt)�

�

kt
V (kt) + � ((1� �)Vl (kt) + �Vh (kt)� V (kt))

��
. (13)

The investment problem represented by (13) is similar to the earlier model, with the exception of

the additional jump terms Vl (kt) and Vh (kt). The value functions represent the continuation value

of the venture conditional on knowing that the true failure rate is either �l or �h, respectively.

While the continuation values, Vl (kt) and Vh (kt), have the same form as the value function in the

basic model, the value function before the resolution of uncertainty about the true failure rate, �l or

�h, does not permit an explicit solution as it contains the possibility of a jump to a di¤erent failure

rate. Nonetheless, the implicit solution allows us to obtain a number of important comparative

static results.

Proposition 5 (Survival Probability and Investment)

A positive shock at kt that reduces the expected failure rate � to a lower failure rate �l leads to:

1. an increase in the probability of eventual success, 1� F (K; kt); and

2. an upward jump in the investment �ow, it, that persists until the project is either completed

or abandoned.
2The focus on learning about � will be motivated below in the empirical discussion.
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A decrease in the failure risk leads to a higher probability of success. As this leads to an upward

jump in the value of the venture, the optimal investment policy is adjusted as well. As we saw

earlier that the investment policy is a linear function of the value of the venture, the decrease in

the failure probability leads to an upward jump in the investment �ow.

5 Hypothesis Development

In this section, we summarize the hypotheses of our theoretical model in order to confront them

with venture capital evidence.

Valuation, Time of Information Arrival, and Return Dynamics We can use our model

to explore typical patterns of learning in venture-backed investment projects. Prior to launching

a project, investors hold beliefs about the prospects (e.g. �nal value at exit) and the risks of

the project, but they may also receive information after the project is launched. We distinguish

between three hypotheses regarding the arrival of information: (i) in the uninformed investor

hypothesis, the investors cannot discriminate between the prospects of individual projects and

use the expected values for failure risk and the value of success; (ii) in the ex ante information

hypothesis, the investors can discriminate between the prospects of individual �rms and the bulk

of the information is available at the project launch; (iii) in the interim information hypothesis,

the investors obtain valuable information on the project terminal value and failure risk over the

course of the investment cycle.

We distinguish between these hypotheses by using the initial valuations and the evolution of the

valuations over the venture capital investment cycle. We start from the premise that, at the time of

inception, the value of innovative projects consists essentially of the expectation of the future value

of the project in the event of success. They typically have little or no assets. Therefore, variations

in the present value of the project are mainly explained by di¤erences in the expected �nal value

at exit if the venture is successful, or the estimated probability of success.

Hypothesis 1A: If the uninformed investor hypothesis holds, the initial project value should show

no relation with the ultimate success probability and the �nal value. There should also be no relation

between value increases during the investment cycle (high abnormal returns) and the ultimate success

probability or the �nal value.
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Hypothesis 1B: If the ex ante information hypothesis holds, the initial project value should be

positively correlated with the ultimate success probability and the �nal value.

Hypothesis 1C: If the interim information hypothesis holds, the initial value of the �rm and the

ultimate success should be uncorrelated, and there should be no correlation between initial and �nal

value. On the other hand, projects with a large value increase during the investment cycle (high

abnormal returns) should be more likely to succeed and be linked to higher exit values.

The logic is that if the investor has ex ante information on the failure risk or �nal value, this

should be impounded in the initial project valuation. If the essential part of the information on

failure risk or �nal value is only learnt once the project is under way, it should lead to higher

valuations during the project development, and hence to abnormal returns. We can investigate this

hypothesis by analyzing the correlations suggested in our hypotheses. Thus, we can discriminate

between the uninformed investor and the interim information hypothesis by analyzing the relation-

ship between ex ante valuations, interim valuations and ultimate success, i.e. by comparing the

predictive power of initial and interim valuations relative to �nal outcomes. The same is true for

the relationship between investment behavior (e.g. investment �ow following the �rst round) and

�nal outcome (e.g. IPO, M&A, or failure).

Our model also allows us to analyze the dynamics of the failure risk over the investment cycle.

Our model is based on the premise of a risk-neutral investor which implies constant expected returns

over the lifetime of the project. That is, in a risk-neutral setting the value increase in each round

is just an adequate compensation for the failure risk, and hence should decrease as the project is

developed to maturity.3 Following Proposition 2, we can write:

Hypothesis 2: If the conditional hazard rate at which venture projects are expected to be abandoned

falls at a su¢ ciently high rate, then the survival probabilities increase and the surviving returns

decrease over time; and vice versa if the hazard rate is constant or falling at a low rate.

This hypothesis is interesting because it allows us to back out an original inference on the time

pattern of the information �ow in a typical venture. For the sake of the argument and in contrast

3 If the investors were risk-averse, then the expected or unconditional returns should be decreasing as the project

matures, given that the failure risk decreases. The magnitude of this e¤ect may not be large for moderate levels of

risk aversion. This appears to be roughly consistent with our �nding of decreasing means in the expected returns.

Our (weak) result of increasing medians contradicts the hypothesis that investors are risk-averse.
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to our assumption, suppose for a moment that the hazard rate of the critical threshold k� at which

the project fails is constant. With the increase in investment �ows, this would imply an increasing

speed in the discovery process over time and hence an increase in the surviving returns of the

project, since the return is just an adequate compensation for the dynamics of the failure risk. This

thought experiment underlines the strong implications contained in the following two elements of

our empirical analysis: (i) the investment �ows are increasing over time and (ii) the surviving

returns generally decrease from one round to the next. We conclude that these two observations

can only be reconciled if there is a su¢ ciently steep decline of the conditional hazard rate of failure,

a condition that is satis�ed in our model with a su¢ ciently large value of the Pareto distribution

parameter � (Proposition 2).

Investment Flow Our model shows that investments optimally react to the �ow of information,

and that investment �ows will increase if there is less uncertainty about the project outcome. In

particular, our model explains that as a venture project matures, it should exhibit larger invest-

ments, and higher outlays over any given period of time. Section 4 extends our model to allow for

the interim information hypothesis, exploring the possibility that there is interim learning about

the failure risk � of the project. A lower � means an increase in the current value of the project Vt,

and hence a positive abnormal return at the time the good news is received. Following Proposition

5, if the �rm learns positive news about �, then the investment �ow should optimally increase

thereafter, and the project be completed faster. The inverse relationship holds if the �rm receives

bad news about �. Thus, the relevant prediction of our model is:

Hypothesis 3: There should be a positive relationship between project valuation and investment

�ow throughout the investment cycle; all subsequent investment �ows should increase after a positive

abnormal return.

The �rst relation holds whether the �rm�s value is high because the �nal value Y is high or

because the failure rate � is low, or both. The reason is that both a higher �nal value and a lower

failure risk translate into a larger present value of the project, and the model shows that a project�s

investment �ow is closely linked to the current project valuation. Therefore, we expect to �nd that

the investment �ow is increasing both in measures of the expected �nal value and the expected

failure risk.

Concerning interim information, the same argument would hold if there were interim learning
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about the �nal value of the project Y . Good news about Y translates into an increase in the current

value and hence a positive abnormal return, and at the same time leads to an upwards adjustment

in the optimal investment �ow.

Staging Frequency Section 4 explicitly considers that funding may be provided in lumpy

amounts even though investments are made continuously. The renewal of the funding decision

enhances the value of the real option to abandon the project. Our analysis shows that shorter

�nancing rounds will occur if the information that investing produces is more valuable for the

abandonment decision. In particular, the model explains that the staging frequency should be

lower for projects with a higher success probability.

Contracting costs in our model are proportional to the current project value. The analysis shows

that the staging frequency should be lower for projects with a high expected exit value. The reason

is that the expected loss of adding one round increases in the expected �nal value, whereas the

potential savings if there is early abandonment are constant. Considering interim learning about

the project�s failure risk, a reduction in the estimated failure probability � means, �rst, an increase

in the current project value and and hence in the abnormal return. At the same time, in reaction

to an increase of the value of the �rm, the subsequent �nancing will be undertaken in fewer rounds.

Thus, we expect:

Hypothesis 4: The number of rounds is expected to decrease in the initial value of the project, and

the number of subsequent rounds until successful completion to decrease after a positive abnormal

return.

Size and Duration of Financing Rounds and Projects A separate set of predictions ad-

dresses the duration and capital raised in each �nancing round. The real option of abandonment

is most valuable when the uncertainty about ultimate success is high. As shown in Section 4, as

the project advances and investors become more con�dent about ultimate success, they are willing

to travel a longer distance [kl; kl+1) in a single �nancing round l. Moreover, our model predicts

that the capital raised in a round is a decreasing function of the failure rate �, and an increasing

function of the expected �nal value Y and the transaction costs of an additional round, 1� p. At
the same time, the investment �ow increases in Y and decreases in �. Therefore, the model predicts

that the investment size increases in Y and decreases in �. At the same time, the impact on round

duration is ambiguous. If the investment �ow were constant, then the round duration would also be
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increasing. However, as Proposition 5 shows, the optimal funding �ow/intensity also increases from

one round to the next. Therefore, the overall impact on round durations is ambiguous, and they

could increase as well as decrease as the project advances. Thus, the model leads to the following

prediction:

Hypothesis 5: The size or the volume of the investment rounds should be increasing from one

round to the next. The investment volume also should increase in the initial value of the project,

and it should increase after a positive shock. By contrast, the dynamic pattern of round durations,

and the relation between round durations and initial values after positive shocks are indeterminate.

Our model also implies that projects with an above-average initial valuation have consistently

higher investment �ows. Therefore, the model predicts that they are completed faster.

6 Data Description and Empirical Methodology

Our data of venture capital investments are provided by Sand Hill Econometrics (SHE) and contain

the majority of US investments in the period from January 1987 to March 2002. SHE combines

and extends two databases, VentureXpert (formerly Venture Economics) and Venture One, which

are extensively used in the venture capital literature. According to Gompers and Lerner (1999)

and Kaplan, Stromberg, and Sensoy (2002), the VentureXpert data contain the majority of the

investments. SHE has spent substantial time and e¤ort to ensure the accuracy of the data. This

includes removing investment rounds that did not actually occur, adding investment rounds that

were not in the original data, and consolidating rounds, so that each round corresponds to a

single actual investment by one or more venture capitalists. Cochrane (2005), Sorensen (2008) and

Korteweg and Sorensen (2008) use di¤erent versions of this data set. The data in Cochrane (2005)

end in June 2000 and the data in Korteweg and Sorensen (2008) and Sorensen (2008) end in 2005.

The data contains �rm level information and venture capital investment round level information.

At the �rm level, we focus on the following variables: a unique �rm ID, industry category (health

care, IT, retail, or others), and the exit type (IPO, merger & acquisition, out of business, restart or

unknown). A �rm with unknown exit may be alive at the end of the sample period or exited at a

unknown time point before March 2002. The round observations are linked to �rms via the unique

�rm IDs. At the round level, we use the following variables for each round: the date stamp of the

round, the business status of the �rm during the current round (start up, in development, beta-
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testing, in clinical trails, shipping, pro�table, restart, or unknown), the amount (million dollars)

raised in the current round, post money valuation of the �rm and an exit dummy that equals one if

the current round is an exit round. We also use the round status (seed, �rst, early, late, mezzanine,

restart, IPO, acquisition, busted round, or unknown). While round status classi�cations are

frequently tricky to make, all that matters for our purposes is that they correctly indicate the

sequence of investments. Therefore, we verify manually that no round status classi�cations is

erroneous - that is, rounds labeled as �seed� or ��rst� always precede �early� rounds, �early�

rounds precede �late�rounds, etc.

We �lter the data by keeping �rms that have at least one round before the exiting round,

removing �rms that exit as a restart or have restart rounds. We further aggregate the business

status information by combining in development, beta-testing, and in clinical trails as one status

called �in development�, and combining shipping, pro�table as �in production�.

An important issue is that only accurate valuation data allow us to estimate error-free returns.

It is well-known that valuation data for venture capital su¤er from a variety of errors. For example,

these data typically do not take into account covenants and contingent contract provisions which

can dramatically a¤ect the valuation levels (Kaplan, Stromberg, and Sensoy (2002) and Metrick

(2007)). Moreover, intermediate �nancing rounds are often missing or investments are reported

without a valuation, or the exit status is missing or wrongly reported (Kaplan, Stromberg, and

Sensoy (2002)). While Sandhill Econometrics has undertaken a considerable amount of e¤ort to

remedy these problems and our data presumably fare better in this respect than data bases such

as Venture One or VentureXpert, it is likely that our data are still a¤ected by these issues and,

therefore, must be considered as noisy. However, the only assumption that we really need for the

validity of our �ndings is that any noise in valuation data is uncorrelated with the variation in

the data that is driven by venture characteristics explained in our model. In addition, the size

and representativeness of our sample makes us con�dent that our main �ndings are not driven by

measurement problems or missing data issues.

Finally, it is well known that venture capital valuations are subject to large �uctuations over

time and across industries (Gompers and Lerner (2000); Gompers, Kovner, Lerner, and Scharfstein

(2008); Ljungqvist, Richardson, and Wolfenzon (2007)). Market �uctuations can also lead to large

di¤erences in values between the time a venture capitalist starts exiting from a venture (e.g., in an

IPO) and the time when the last part of the investment is sold. For these reasons, we consider only

the abnormal returns that are not explained by the typical value gains of comparable ventures at
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the same time, thus controlling for cyclical and industry-speci�c valuation e¤ects (see Section 7 for

details).

Table 1 reports summary statistics for the �rms in the data. Panel A reports the break-down

of the �rms according to industries and exits. It shows the typical composition of venture capital

samples, with more than half of the companies in IT-related activities, 15% in health care and 9%

in retail. Around 70% of the companies have unknown exits, and 25% exited via either IPO or a

trade sale. Panels B and C report average round frequencies and round durations, respectively, for

the same breakdown.

While some of the �rms with unknown exits might be alive at the end of the sample period,

many others might have already been liquidated by then. Failures are incompletely documented in

the data because liquidation is less visible than IPOs or trade sales. If �rms with unknown exits

are more likely to be already liquidated than alive, excluding all �rms with unknown exits from our

analysis would lead to a biased sample of venture capital backed �rms that overrepresents successful

ventures. Further, if the �rms with a documented failure systematically di¤er from �rms that have

been liquidated but do not have a documented failure, excluding all �rms with unknown exits would

lead to biased results, particularly concerning the analysis of the determinants of exit types and

�nal values of venture capital backed �rms. To mitigate the possible sample selection bias, we

distinguish �zombies�- �rms that were liquidated before March 2002 but have no documented exit

in the data set - from �rms with unknown exits. Speci�cally, for each �rm with unknown exit,

we estimate the length of the period (in months) for which the capital raised in the last recorded

round would keep a �rm alive. If the duration between the last recorded round and March 2002 is

longer than this �survival time�, we assume the �rm went down at the end of the �survival time�.

Otherwise, we assume that the �rm is alive at the end of the sample period. The empirical analysis

in this paper uses not only �rms with documented exits but also �rms with estimated exits.

We use the following procedure to estimate the �survival time�after the last recorded round for

�rms with unknown exits. First, we estimate the amount of capital consumed per month after the

last recorded round for each �rm. Second, we divide the raised amount in the last recorded round

with the estimated monthly capital consumption, and obtain the �survival time�in months. In the

�rst step, we run a round level regression of monthly capital consumption (raised capital divided

by the number of months between the current and next rounds, in log) for all rounds except the

last recorded rounds, on the amount of capital raised (in log), the post money valuation (in log),

industry dummies, business status dummies, and dummies for future exit types. The rationale is
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that the amount of capital consumed per month by a �rm is determined by the amount of capital

raised, the size of the �rm, the industry and business status of the �rm, and the quality of the �rm

(proxied by the �nal exit type). The R2 of the regression is 0.75, which seems to indicate that

the monthly capital consumption is explained reasonably well by this regression. The regression

results suggest that the amount of capital raised and the post money valuation are positive and

signi�cant at the 1% level, which indicates that larger �rms consume more capital per month and

�rms with more capital raised consume more capital per month. In addition, retail �rms consume

more capital per month than �rms in other industries, which is signi�cant also at the 1% level.

Firms �in development� and �in production� consume less capital than start up �rms, which is

signi�cant at the 1% level. Moreover, exit type dummies also have signi�cant coe¢ cients. We run

another regression with the post money valuation excluded, and obtain similar results and a R2 of

0.74. After running these two regressions, we estimate the amount of capital consumed per month

after the last recorded rounds for �rms with unknown exits, using estimated coe¢ cients from the

regressions and the explanatory variables for the last recorded rounds. We use the coe¢ cients from

the �rst regression for the last recorded rounds with post money valuations observed, and use the

coe¢ cients from the second regression for rounds with unobserved post money valuations. We set

the exit dummies to 0, assuming that the �rms�exits would follow the same distribution of exits

as the exited �rms. In the second step, we divide the raised amount with the estimated capital

consumption per month, and obtain the �survival time.�If the survival time is long enough to go

beyond the end of the sample period, we assume that the �rm is alive. If the survival time ends

before the end of the sample period, we add an exit round for the �rm, assuming that this �rm

raised $0 in the exit round, and went down with $1 post money valuation.

The results of this reclassi�cation procedure are recorded in the two lines (in italics) at the

bottom of each of the Panels A, B and C of Table 1. These lines report the same data as in the two

preceding lines (�Down�and �Unknown�) of each panel, but use the procedure discussed above to

classify �rms with exit status �Unknown�as either �Down�or �Alive�. As expected, the number

of liquidated �rms (reported and estimated �Downs�) increases dramatically - from 938 in Table

1 to 10,857, bringing the total of failed �rms to 57.3%. 17.9% of �rms are now estimated to be

still active or alive, and in 10.6% of �rms the venture capitalists exited with an IPO, in 14.5%

with a trade sale. The summary statistics for pre-exit rounds and duration before exits also show

comparable di¤erences that make them more sensible compared with the raw data (for instance,

�Down��rms no longer exhibit a longer duration and more rounds).
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Starting with Table 2, all the tables and analysis are based on �rms with estimated exits

whenever the exits are unknown. Table 2 reports summary statistics for venture capital investment

rounds prior to �rms�exits. Panel A reports the number of rounds for �rms with di¤erent exit types

in di¤erent industries. Panels B, C, and D report the means and standard deviations, which are

calculated using rounds with corresponding information available, of pre-�nancing duration (the

number of months between the previous round and the current round), investment amount (million

dollars), and the ratio of investment amount to post-money valuation. The table shows that the

pre-�nancing duration, investment amount, and the ratio of investment amount to post-money

valuation are similar across industries and di¤erent exit types.

7 Empirical Results

Initial Valuation, Time of Information Arrival, and Return Dynamics We begin by

exploring our alternative hypotheses concerning the typical arrival time of information that are

summarized in our Hypothesis 1. Table 3 reports evidence from a comparison of successful projects

(�rms exiting via IPO or M&A) and unsuccessful ones (�rms that are going down). Under the

ex ante information hypothesis, valuable information about the prospects of a particular project

is mostly known ex ante. If the information were about the success probability, then we would

expect projects with higher initial values to succeed more often. As Table 3 shows, this is not

the case: successful projects actually have lower initial values compared with unsuccessful ones.

Moreover, when we look at investment behavior we also �nd evidence that is inconsistent with the

ex ante information hypothesis. Table 3 shows that there is no signi�cant di¤erence in investment

behavior between failed and successful projects. First-round investments and the ratio of �rst-round

investment to initial value are fairly constant across projects, regardless of their ultimate outcome.

Further, under the ex ante information hypothesis, the �rst round investment �ow, which re�ects

investors�ex ante belief of the �nal exits, should help predict the prospect of the project: a larger

investment �ow indicates a higher probability of success. Table 3 shows the opposite: IPO/M&A

�rms have smaller �rst round investment �ows than �rms that went down.

Additional evidence is provided by Table 4, which presents results of probit regressions on

whether �rms exit successfully (IPO or M&A) or exit as failures (including estimated failures). The

initial value is not signi�cant or - in one regression - is weakly signi�cant but with the wrong sign

according to the ex ante information hypothesis. Thus, the results about initial valuation and initial
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investment behavior resolutely reject the hypothesis that investors have ex ante discriminatory

capabilities about the estimated success probability of a project.

We can also test whether investors hold relevant ex ante information about the expected �nal

value in the case of success. Indeed, initial values and �nal values are correlated, and Table 5 shows

that the initial value has clear predictive power for the exit value (signi�cant at the 1% level) in

the event of success. Hence we can conclude that investors have some ex ante information about

potential �nal values, but not about the chances to succeed.

According to the interim information hypothesis formulated in Hypothesis 1C, the estimates

about the ultimate success probability and/or the exit value of the project evolve with the progress

of the project. In many of our tests of the interim information hypothesis, we focus on the infor-

mation content in the �rst round for which we have the most observations. From now on, we use

the abnormal return from one round to the next to measure the information content of that round.

We de�ne the abnormal return as the component of the raw return that is orthogonal to the in-

formation already known by investors before the round, including the industry and business status

of the project and the status of the round, and the common return of the whole venture capital

asset class. The common return is assumed to be driven by the �nancial market instead of the

speci�c prospect of the underlying project. As a result, the abnormal return captures information

regarding the speci�c project that is unknown before the round.

We estimate abnormal returns as:

log(
Vi;tk+1 � Ii;tk+1

Vi;tk
) = (tk+1 � tk)�0Industryi + (tk+1 � tk)�0Businessi +

tk+1P
s=tk+1

(log(Rm;s)) + "i;k+1.

The subscript i; tk+1 denotes the month in which round k + 1 is raised for �rm i; Ii;tk+1 is the

amount of capital raised in round k+1; Vi;tk+1 is the post money value for round k+1; Industryi is

a 3� 1 vector of dummies corresponding to health care, IT, and retail �rms; Businessi is a (3� 1)
vector of dummies corresponding to start up, in development, and in production; log(Rm;s) is the

log venture capital market returns, which is assumed to be a¤ected by a vector of unknown market

factors that vary over time and factor loadings that are constant for all venture capital investments;

"i;k is the portion of the log return that is not explained by market factors or information already

known by investors, and thus is the �abnormal return�. Note that in the regression, log(Rm;s) is

essentially the coe¢ cient of a dummy variable for month s. The regression is similar to the repeat

sales regression for the construction of real estate price indexes.4 We pool all rounds in the data

4See Bailey, Muth, and Nourseerk (1963) for the original regression and Goetzmann and Peng (2006), among
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set without missing variables and run the above regression. The monthly abnormal log return

for �rm i from round k � 1 to round k, which is denoted by ARi;k, is constructed from regression

residuals as follows:

ARi;k =
c"i;k

tk � tk�1
.

As Table 3 shows, one of the most powerful results of our study is that projects that ultimately

succeed are likely to receive a positive news update during the initial �nancing round. The ab-

normal return following the �rst round is strongly positive for projects that exit successfully, and

signi�cantly negative for all other �rms (t-value for the di¤erence: 25.335). The probit analysis

in Table 4 con�rms this e¤ect when including other explanatory variables with a comparable level

of signi�cance. In addition, consistent with the hypothesis that interim information also updates

the belief about the �nal value, Table 5 shows that the abnormal return following the �rst round

is positively related to the exit value. Taken together, these results provide solid support for the

interim information hypothesis.

We conclude that investors learn during the �rst investment round about the failure probability.

In fact, information arrival after the launch of a project, more precisely during the �rst round, is a

strong predictor of ultimate success, as opposed to ex ante information (initial valuations or �rst-

round investment behavior). In addition, investors also learn about the �nal value, but parts of

their expectation of exit values seems to be ex ante knowledge. The last regression in Table 5 shows

that in fact both ex ante information (contained in the initial value) as well as interim information

(contained in ARi;2) explain the �nal value. In other words, the �nal value of a project seems to

be partially contained in the ex ante information, and partially to be the result of interim learning

as expressed in the abnormal returns over the project�s investment cycle.

We turn to the exploration of the dynamics of risk and return for which the theoretical pre-

dictions are expressed in Hypothesis 2. Our basic model assumes that, conditional on survival,

the risk of failure is decreasing, as captured by the parameter � of the Pareto distribution.5 Panel

A of Table 6 appears to lend some support to the assumption of decreasing failure risk since it

shows that the survival probability is increasing over time. To test formally whether later rounds

others, for an application to real-estate markets.
5 It is interesting to compare these �ndings to earlier studies that have looked at the cross-sectional distribution

of payo¤s derived from patent grants. Scherer and Harho¤ (2000) found that they are poorly described by a Pareto

distribution. Since we are looking exclusively at the distribution of failure risk of ventures over time, there is no

contradiction between our evidence on the longitudinal distribution and the cross-sectional results by Scherer and

Harho¤ (2000).
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have higher survival probabilities, we employ round level probit analyses, using a binary depen-

dent variable that equals 1 for surviving rounds and 0 for failing rounds. The main coe¢ cients

are reported in Panel B of Table 6, showing that early and late rounds (second and third rounds)

have signi�cantly higher survival probabilities than �rst/seed rounds (�rst rounds), and late rounds

(third rounds) have signi�cantly higher probabilities than all other rounds, including early rounds

(second rounds).6

Note that while information content in a round is better measured by abnormal returns, raw

returns seem a more appropriate measure for the total failure risk, including the expected and

not expected (learned) components. Our learning model implies that round returns for surviving

companies should show a decreasing trend as the failure risk subsides. This is indeed the case, as

Table 6 shows. In other words, our empirical investigation reveals that venture capital practitioner

are right when they use higher discount rates in ��rst�and �seed�rounds, in order to compensate

for a perceived larger risk. The results in Table 6 are in fact even more supportive of our model

than these numbers suggest: the probabilities express the average fraction of surviving projects in

each round. Our model, however, predicts the survival probability in terms of units of the [0;K]-

investment cycle, which is the survival probability per invested dollar. Table 7 lends support to our

premise of risk-neutral investors, which implies that unconditional expected returns are constant.

We �nd that the means of the unconditional returns are increasing over time whereas the median

returns are decreasing. Therefore, we conclude that it is di¢ cult to reject the hypothesis of constant

expected returns on which our risk-neutral model is based.7

Investment Flows We turn to our predictions on investment �ow (investment spending per

month) that are compiled in Hypothesis 3. Our model leads to the prediction that investment

�ows are inversely related to a project�s estimated failure risk �. We do not observe estimated or

actual failure risk � directly, but can approximate them in two ways. First, we observe the ultimate

project outcome, which is determined by the actual failure risk. Note that the ex ante information

hypothesis indicates that investors�estimated failure risk should correlate with the actual failure

risk. If the ex ante information hypothesis is correct, we should expect ultimately successful exits

6The main explanatory variables are dummies that equal 1 for all early and late rounds (left column) or all second

and third rounds (right column), respectively dummies that equal 1 for all late rounds (left column) or all third

rounds (right column). We also include industry dummies and dummies for the months when the rounds were raised.
7This is certainly not a conclusive test on the question whether venture investors are indeed risk-neutral (see e.g.

Gompers (1996) for a discussion), but it lends support to our simplifying model assumption of risk-neutral investors.
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(via IPO or trade sale) to be more likely for projects with an above-average investment �ow. As

the �rst three regressions in Table 4 show, there is no evidence for this e¤ect. A possible indirect

measure of the estimated failure risk � is the ratio of �nal value to initial value. Should the ex

ante information hypothesis be true, then the higher the ratio, the larger would be the expected

cumulative failure probability and hence �. Again, our regression results are not signi�cant (and

thus not reported in our tables). Therefore, consistent with our earlier results, Table 4 provides

strong evidence that investors have no ex ante information regarding the chance of success.

According to Hypothesis 3, the investment �ow should also increase with the expected �nal

value of the project. Assuming that the investors hold ex ante information regarding the �nal

values, a test is only possible for successfully completed projects, using their actually realized exit

values as a proxy for expected �nal values. Regression 3 in Table 5 presents the results for this

test, which seem to support our hypothesis: the coe¢ cient of the �rst round investment �ow is

signi�cant at the 1% level. We conclude that investors seem to have some ex ante information

regarding the expected exit values.

In our model, the investment �ow reacts to uncertainty, and it will optimally increase if there

is less uncertainty about the ultimate project outcome. Table 8 provides strong support for this

hypothesis (at the 1% level for both means and medians). Consistent with Hypothesis 3, investment

�ows are increasing over time. Table 8 also shows that venture projects exhibit larger investment

volumes as they advance from one round to the next (at 1% level for both means and medians).

Additional predictions on the investment �ow which imply multivariate relationships are tested

using OLS regressions; the evidence is provided in Tables 9 and 10. First, the model predicts that the

investment �ow increases in the valuation of the project, and implies that this positive relationship

holds for the �rst as well as later rounds of the investment process. In Table 9, regressions for all

�rms (unconditional) and IPO and M&A �rms substantiate this positive relationship for the �rst

round. Further, since investors have ex ante information about the �nal value of the project, which

is supported by our earlier results in Table 5, �nal values should positively correlate with the initial

investment �ow. This is indeed the case, as the conditional regressions in Table 9 show. Table 10

provides evidence that the positive correlation between project valuation and investment �ow holds

throughout the investment process. In Table 10, regressions 2 and 5 show strong evidence for this

e¤ect (signi�cant at 1% level). It is useful to note that we use the pre-money company value at the

beginning of each round. Regressions 3 and 5 in Table 10 show that the optimal investment �ows

are autocorrelated and thus persistent throughout the project investment cycle (signi�cant at 1%
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level). This is consistent with our model which predicts the persistence of the autocorrelation as a

mirror image of the evolution of project valuation over time. We observe that the regressions 4 and

5 control for the sunk cost (the total investment amount raised before) of investors in �rms, which

would be signi�cant if investors are not willing to realize losses and tend to continue �nancing bad

projects. While the sunk cost is signi�cant in regression 4, it is not signi�cant in regression 5,

which includes the lagged �rm value, the lagged investment �ow, and the lagged abnormal return.

Note that, in Table 10, we use dummies to control for mezzanine rounds because they are likely

bridge �nancing rounds prior to successful exits, and may not re�ect the learning phase of the

project.

Hypothesis 3 also summarizes the predictions about the investment �ows stemming from the

interim information hypothesis for which we already presented supportive evidence. If this hy-

pothesis is true then it has clear implications for investment behavior that can easily be tested:

investment �ow should be increasing in the most recent abnormal return in each round that we use

as a proxy for interim information. If the last observed abnormal return ARi;k is higher, then the

project should have received a more positive information update. All regressions in Table 10 sup-

port this prediction, and show strong evidence consistent with the interim information hypothesis.

The e¤ect seems to have a concave shape as the quadratic term for the abnormal return is negative

and highly signi�cant as well.

Staging Frequency Our predictions on the determinants of the round frequency are compiled in

Hypothesis 4. Our model implies that larger �nancing rounds will occur if there is less uncertainty

resolved for every dollar of investment. It predicts that the staging frequency should be lower for

projects with a high success probability.

To test this hypothesis, we need to turn to regressions for completed projects that explain the

number of rounds over the entire investment cycle. Since we do not observe the risk variable �

directly, we use the ratio of exit value to initial value for completed projects as a proxy, and assume

that investors have ex ante information regarding �nal values, which is supported by our earlier

evidence. The �rst line in Table 11 shows the results, with the total number of �nancing rounds

as a dependent variable. In all regressions in Table 11, there is a positive and highly signi�cant

sign (at 1% level) for our proxy for �. Moreover, our theoretical results imply a negative sign when

we regress the number of rounds on the �nal value. Regressions 3 and 4 of Table 11 show indeed

strong evidence (signi�cant at 1% level) in favor of this hypothesis.
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Considering interim learning about the project�s failure risk or �nal value, we predict that

a positive information release that makes the project more valuable or less risky leads to less

subsequent �nancing rounds. As regressions 2 and 4 in Table 11 show, this is indeed the case. The

relationship is again nonlinear, as witnessed by the quadratic terms of ARi;2.

Size and Duration of Financing Rounds Our model leads to very clear predictions on the

investment size (capital raised) of each �nancing round as summarized in Hypothesis 5. The

model predicts that it is increasing from one round to the next. This is indeed the case for the

means and the medians of the investment volume, as Panel B of Table 8 shows. By contrast,

Hypothesis 5 discusses that the predictions on round duration (in months) of each �nancing round

are ambiguous, since increasing investment volume (the dollar amount provided in a given round)

and investment �ow have countervailing e¤ects on the round duration. Interestingly, we do not

�nd any clear patterns for round durations (not reported in tables), consistent with our model�s

ambiguous predictions for round duration.

As expressed in Hypothesis 5, a higher project valuation, re�ecting either a high expected �nal

value or a low expected failure probability, should translate into a larger investment volume in every

round. The result of our regression analysis are presented in Table 12. We �nd strong evidence

in favor of this hypothesis as regressions 2 and 5 show. Also, an above-average investment size

in round k � 1, explained by a high exit value, low failure probability or high contracting cost,

should translate into an above-average investment volume in round k. This is indeed the case, as

the positive and signi�cant signs for variable log(investmenti;k�1) in Table 12 (regressions 3 and

5) shows. Note that we control for the sunk cost and mezzanine rounds in this table as well.

We also explore the implications of the interim information hypothesis for investment volume.

The model implies that positive interim information releases should lead to an increase in the

capital raised in each subsequent round. This is indeed the case as the highly signi�cant and

positive coe¢ cient on the interim learning variable ARi;2 shows in Table 13, which again exhibits

a nonlinear e¤ect.

Finally, in the closing paragraph of our hypothesis section (Section 5) we discuss that projects

with an above-average initial valuation should be completed faster according to our model, as

they bene�t from a persistently higher investment �ow. We �nd clear evidence in support of this

prediction in Table 13. Table 13 further substantiates that favorable information updates, which

are proxied by abnormal returns, and lower failure risk, which is proxied by the reciprocal of
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log(exitvaluei=valuei;1), increase investment �ows and thus help projects to be completed faster.

8 Discussion and Conclusion

We brie�y discuss a possible variation of our model that explicitly incorporates agency costs, before

turning to concluding remarks.

8.1 Agency Costs

In contrast to most of the preceding theoretical work on venture capital, including Bergemann and

Hege (1998), (2005), we did not focus on the agency costs but rather considered a convex cost of

investment to model the intertemporal investment �ow. We now brie�y discuss how an agency

model would lead to similar theoretical predictions as the convex cost model.

Consider the following variation of the model with an agency con�ict. The agency con�ict arises

because the project is now run by a manager (or entrepreneur) who can divert the capital �ow it

(or a part of it) for the purposes of consumption, and derive a utility of �it of the diverted capital

�ow, where � � 1. If the capital is diverted rather than invested, the project makes no progress

and the position kt does not change. If the manager diverts funds in period t, he is detected

instantaneously with probability q; a deviation in t will not be detected at any point after t. If

detected, the manager can be �red and replaced by an identical manager. For simplicity, there is

no cost to �ring and replacement. To study the role of agency in isolation, we also assume linear,

rather than convex, investment costs, dkt = itdt.

The information structure is as follows. We assume that the signal indicating that the unknown

critical threshold k� was hit is public, observable to �nancier and manager. However, only the

manager observes whether the investment funds it are invested or diverted. In consequence, the

�nancier cannot distinguish whether the project progresses according to plan and is so far successful,

or whether the manager has diverted the capital.

To solve the agency con�ict and to prevent diversion, the �nancier has to provide incentives

to the manager. In this environment, the optimal incentive contract is a payment contingent on

�nal success, denoted by w. We assume that the �nancier can commit to a �xed payment w in

the event of a successful completion of the project. Consider now an equilibrium in which the

manager has the proper incentives to invest, so that the �nancier�s equilibrium beliefs are that

the position kt moves according to the equilibrium investment �ow it. In this equilibrium, the
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�nancier will provide just enough �nancing so that the point K can be reached if no capital is ever

diverted. If the manager diverts capital, irrespective whether he does so just for an instant or for

an extended period, the �nancier still beliefs that investment has been done according to plan. As

a consequence, the �nancier and the manager�s beliefs on the position kt diverge, with only the

manager observing the true position. Therefore, if the manager deviates at some point and diverts

capital, he will �run out of money�, i.e. get no new capital before reaching K. At this point at the

latest, the deviation is detected, and since replacement is costless, the manager will be replaced

and lose any claim to the wage w.

It follows that, if the manager diverts in t, his best continuation policy is to continue to divert

all money until he is either detected or has run out of money. We can, therefore, restrict attention

to deviations that follow a maximum diversion policy ; i.e. the manager will continue diverting all

capital until detected or funding stops. With the linear investment cost, the optimal investment

�ow is now the maximal incentive compatible investment �ow possible at any given time t. The

manager�s expected utility derived from the contingent compensation w at time t is:

Wt =

�
kt
K

��
e�r(T�t)w;

whereas the expected utility derived from a maximum diversion policy is:

It = �

Z T

�=t
i�e

�(r+q)�d�:

The incentive compatibility condition then requires that, at any t 2 (0; T ),

It �Wt.

The funding in period t is now unconstrained until It =Wt and in equilibrium the funding intensity

is uniquely determined by this equality. The recursive solution for the path of maximal investments

and the optimal level of w characterizes the optimal investment path. It can be shown that the

optimal it will be strictly increasing over time.8 The intuition is that the manager�s expected

utility derived from the contingent compensation w is always increasing over time. By contrast the

present value of the diversion bene�t, which is a fraction � of the expected value of investments,

will only increase over time if it (and subsequent funds) are large enough to tempt the manager

into diverting the funds.

8The analysis of this moral hazard problem uses insights from Bergemann and Hege (2005) and is avalaible from

the authors upon request.
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The main prediction of Proposition 1 could thus be derived just as well in a model with agency

costs rather than convex investment costs. The intuition is that the more uncertain it is that the

project will ultimately reach position K, the more costly it is to provide incentives. Slowing down

helps to optimally control these costs. One important lesson of our analysis is then that the real

option character of sequential investments, and the gradual resolution of uncertainty they imply,

gives rise to this conclusion even before agency con�icts - intensively investigated elsewhere - are

taken into account.

8.2 Concluding Remarks

We propose a dynamic model to analyze how investors make optimal investment decisions in an

innovative project as a function of their information about failure risk and potential �nal value. We

consider the complete investment cycle and assume that information leading to the failure of the

project may arise at any time, but at a decreasing probability. The investors choose the optimal

speed and staging of the investments.

Our theoretical analysis shows that investment �ows should be optimally increasing as the

project advances, and our empirical analysis con�rms this hypothesis. We also �nd empirically

that surviving returns are decreasing, which is interesting in the context of our model as it implies

that the failure risk must decrease over time at a su¢ ciently high rate. Our model also shows that

the optimal staging sequence depends on the value of the real option to abandon. We �nd in our

data that the design of the �nancing rounds follows the optimal pattern predicted by our model:

the investment size and the investment �ow is increasing from one round to the next, and projects

with a high initial estimate of the �nal value or an optimistic appraisal are likely to succeed with

fewer rounds than less valuable or more risky projects. We show that information updates about

the expected �nal value or the failure probability are incorporated in all subsequent investment

decisions. The subsequent investment �ows increase, and the number of subsequent investment

rounds decrease, if the project�s valuation is marked up. Our evidence shows that initially, investors

seem to have little ability to predict the eventual probability of success, but have some forecasting

ability about the �nal project value conditional on success. As the project advances, investors

appear to get more accurate information. We �nd that the subsequent investment �ow as well as

the size of each round and the number of subsequent rounds react in the way predicted by our

model.

Several possible extensions could be considered. In our analysis, we focus exclusively on in-
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formation arrival about the failure rate � and the subsequent empirical analysis underlines the

importance of this type of interim learning. However, it is possible that the investors also learn

about the expected �nal value Y of venture projects. Changes in the expectations about future

values could further address the phenomenon of �uctuations in the �rms� values, a well-known

phenomenon in venture �nancing (for example, acquisition values as well as IPO values �uctuate

substantially according to market conditions). Finally, throughout the analysis we have assumed

that the venture realizes a terminal value Y in a given terminal state K. But clearly, the timing

of the exit and the associated value of the venture at the exit time are important decisions for the

investors. Interesting additional predictions could be derived from such extensions that we leave

for future research.
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9 Appendix

The appendix contains the proofs of all propositions in the main body of the text.

Proof of Proposition 1. We consider the dynamic investment problem with uncertainty. We

showed in the main body of the text that the ordinary di¤erential equation resulting from the

optimal investment policy can be represented in its canonical form:

V 0 (kt) =
�

kt
V (kt) +

2



p
rV (kt): (14)

With a change of variable given by W (kt) ,
p
V (kt), we can transform the above nonlinear

di¤erential equation into a linear �rst order di¤erential equation. We observe that

W 0 (kt) =
1

2

V 0 (kt)p
V (kt)

; (15)

and hence V 0 (kt) = 2W (kt)W
0 (kt). Replacing V (kt) and V 0 (kt) by W (kt) and W 0 (kt) in (14)

we get:

W 0 (kt) =

p
r


+
�

2kt
W (kt) : (16)

The unique solution of the di¤erential equation (16) subject to the boundary condition:

W (K) =
p
Y ;

is given by:

W (kt) =
p
Y

�
kt
K

� 1
2
�

� 2
p
r

 (2� �)

 
K

�
kt
K

� 1
2
�

� kt

!
: (17)

For the failure rate � = 2, the value function is linear in kt and given by:

W (kt) =
p
Y
kt
K
� 2

p
r


:

Consequently, the value function V (kt), based on the solution ofW (kt) in (17) is given by V (kt) =

(W (kt))
2. We can immediately establish the properties (1)-(3) of the optimal investment i�t by

using the linear relationship (6). We can explicitly express the optimal investment in terms of the

primitives of the model:

i� (kt; Y; �) , r
 
p
Y

�
kt
K

� 1
2
�

� 2
p
r

 (2� �)

 
K

�
kt
K

� 1
2
�

� kt

!!2
:

(1.) We obtain by elementary calculus that @i�=@k > 0 and @i�2=@2k > 0.
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(2.) We obtain by elementary calculus that @i�=@� < 0 and @i�2=@2� < 0.

(3.) We obtain by elementary calculus that @i�=@Y > 0 and @i�2=@2Y > 0.�

Proof of Proposition 2. The surviving return Rt , R (kt) = 1 + r (kt) is given, using (9) by:

1 + r (kt) =
�it +

p
itV

0 (kt)

V (kt)
:

Using the characterization of the optimal investment given by (6), we get

r (kt) =
�rV (kt) +

p
rV (kt)V

0 (kt)

V (kt)
= �r +

p
rV 0 (kt)p
V (kt)

:

Using the same change of variable as in Proposition 1, we �nd that

r (kt) = �r + 2
p
rW 0 (kt) .

Using (16) to replace W 0 (kt) we have:

r (kt) = �r + 2
p
r

�
�

2k
W (kt) +

p
r



�
;

and we now ask whether r0 (kt) is positive or negative:

r0 (kt) = 2
p
r

�
� �

2k2t
W (kt) +

�

2kt
W 0 (kt)

�
;

and using (16) again to replace W 0 (kt) we get:

r0 (kt) = 2
p
r

�
� �

2k2t
W (kt) +

�

2kt

�
�

2kt
W (kt) +

p
r



��
= 2

p
r

�
� �

2k2
W (kt)

�
1� �

2

�
+
�

2kt

p
r



�
=

p
r�

kt

�
� 1
kt
W (kt)

�
1� �

2

�
+

p
r



�
: (18)

We use the solution for the value functionW (kt) from Proposition 1 to insert it into (18). It su¢ ces

to determine the sign of �
�1
k
W (kt)

�
1� �

2

�
+

p
r



�
;

and inserting W (kt) we get 
� 1
kt

 
p
Y

�
1

K

� 1
2
�

� 2
p
r

2 � �

 �
kt
K

� 1
2
��1

� 1
!!�

1� �
2

�
+

p
r



!
;
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or  
�
 
p
Y

�
1

K

� 1
2
�

� 2
p
r

 (2� �)

 �
kt
K

� 1
2
��1
!!�

1� �
2

�!
:

The second term is negative for � > 2. To sign the �rst term, we simplify to:

�
 
p
Y
1

kt

�
kt
K

� 1
2
�

� 2
p
r

 (2� �)

�
kt
K

� 1
2
��1
!
;

or

�
�p

Y � 2K
p
r

 (2� �)

��
kt
K

� 1
2
� 1

kt
: (19)

Thus if K is not too large and � is su¢ ciently below 2, then the surviving returns are declining

everywhere. Conversely if K is large or � above or just below 2, then the surviving returns are

increasing in kt, and hence in time, everywhere. �

Proof of Proposition 3. The optimal investment policy i1;1 given the initial state k0 can be

obtained (implicitly) by the �rst order condition of V1;1 (k0), given by (11) with respect to i1;1, or

dV1;1 (k0)

di1;1
=

�
K

k0

�1��
�
  �

k0
K

��
�
�
K

k0

�1��! r


! 
Y (�� 1) 

i21;1
+
K

i1;1

!
� e

K�k0
i1;1

r
 = 0, (20)

Based on (20), the solution to the optimal investment policy i�1;1 for a single stage investment can

be shown to be strictly increasing in Y and k0 and strictly decreasing in �.

If, in contrast, the project is funded in two stages, then the optimal funding policy starting at

the initial position k0 has to make three distinct choices: it has to determine the initial funding

level i1;2, the continued funding level i2;2 and the funding renewal state k1. Conditional on the

optimal funding level given the renewal stage k1, the value function in the initial state k0 is given

as the solution to the optimization problem (12):

V1;2 (k0) = max
i1;2;k1

 p
i1;2

(�� 1) 

 
k0 � k1

�
k0
k1

��
e
k0�k1p
i1;2

r


!
+ p

�
k0
k1

��
e
k0�k1p
i1;2

r
 V2;2 (k1)

!
: (21)

We can insert (11) into (12) to get:

V1;2 (k0) = max
fi1;2;i2;2;k1g

8>>><>>>:
p
i1;2k1

(��1)

�
k0
k1
�
�
k0
k1

��
e
k0�k1p
i1;2

r


�
+ p

�
k0
K

��
Y e

�
k0�k1p
i1;2

+
k1�Kp
i2;2

�
r


+pe
k0�k1p
i1;2

r


p
i2;2K

(��1)

��
k0
K

��
e
k1�Kp
i2;2

r
 � k1

K

�
k0
k1

���
9>>>=>>>; :

We now establish the results of this proposition.
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1. We �rst observe that i2;2 > i1;1 by the comparative static property of the optimal investment

policy i�1;1 obtained above for the single stage funding policy. After all, the funding policy i2;2 of the

project conditional on renewing the project is like a single stage funding, but at a higher level of

the state kt. Given a �nal state K, we denote by k�0 an initial state at which the value conditional

on an optimal single stage funding policy equals the value conditional on an optimal two stage

funding policy, and hence V1;1 (k�0) = V1;2 (k
�
0). We show that i1;2 < i1;1. In the two stage funding

policy, the optimal renewal occurs at k1 and conditional on renewal, we have a value function

V2;2 (k1). By construction, we have V2;2 (k1) > V1;1 (k1). We now show that it follows from here

that pV2;2 (k1) � V1;1 (k1). The proof is by contradiction. If pV2;2 (k1) > V1;1 (k1), then starting at
k�0, and having the advantage of determining the investment level to optimally arrive at k1, the two

stage funding policy does at least as well as the one stage funding policy which runs through the

state k1 with intensity i1;1. As the initial funding policy in the two stage funding seeks to determine

the optimal intensity to arrive at a stopping point k1 with a value pV2;2 (k1) � V1;1 (k1), it follows
that it will choose a strictly lower investment policy i1;2 than i1;1. Notice that i1;1 was determined

to optimally reach the higher value V1;1 (K) rather than V1;1 (k1).

2. We �rst establish the uniqueness of k�0 for a given �nal state K by a single crossing argument.

The uniqueness result of k�0 given K then translates directly into a uniqueness result about K�

given k0, where K� is the unique �nal state at which the value from an optimal one-stage and

two-stage policy, respectively, coincide when starting at k0. We observe that the value functions

V1;1 (kt) and V1;2 (kt) are continuous and di¤erentiable in kt. We next show that if

V1;1 (k
�
0) = V1;2 (k

�
0) , (22)

then V 01;1(k
�
0) > V

0
1;2 (k

�
0). We note that the value functions of each program, V1;1 (k

�
0) and V1;2 (k

�
0),

respectively, satisfy:

rV1;1 (k
�
0) =

�
�i1;1 + �

p
i1;1

�
V 01;1 (k

�
0)�

�

k�
V1;1 (k

�
0)

��
,

and

rV1;2 (k
�
0) =

�
�i1;2 + �

p
i1;2

�
V 01;2 (k

�
0)�

�

k�
V1;2 (k

�
0)

��
.

Next we express the value function Vl;m (k�) in terms of the investment level il;m and the �rst

derivative of the value function V 0l;m (k
�
0) and get

Vl;m (k
�
0) =

p
il;m�V

0
l;m (k

�
0)� il;m

r +

p
il;m
k �2

: (23)
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We determine the sign of V 01;1(k
�
0) � V 01;2 (k�0) by analyzing how V 01;1(k�0) and V 01;2 (k�0) di¤er given

the di¤erent investment intensities: i1;2 < i1;1, established in part 1 of this proposition while

maintaining the hypothesis of equal values given by (22). We determine how V 0 (k�0) changes as

we change the investment level i from i1;2 to i1;1. For the purpose of this argument, we omit the

subscripts l;m and write the value function V (k�0; i) to depend on k
�
0 and i. Consequently, we rewrite

(23) as :

V (k�0; i) ,
p
i�
@V (k�0 ;i)
@k�0

� i

r +
p
i
k �

2
: (24)

As we increase i from i1;2 to i1;1, the value V (k�0) is constant by construction. We rewrite (24) to

obtain:

�
@V (k�0; i)

@k�0
=
p
i+

rV (k�0; i)p
i

+ V (k�0; i)
�2

k�0
. (25)

We establish the sign of @2V (k�0; i) =@k
�
0@i by di¤erentiating (25) with respect to i:

�
@2V (k�0; i)

@k�0@i
=

�
1� rV (k

�
0; i)

i

�
1

2
p
i
,

since by construction @V (k�0; i) =@i = 0; hence:

�
@2V (k�0; i)

@k�0@i
> 0 , i� rV (k�0; i) > 0. (26)

We complete the argument by establishing that the second inequality in (26) holds. We observe

that if the investors were allowed to determine the investment �ow optimally in every instant, then

we would have, as established in Proposition 1:

i =
2

4

�
@V (k�0; i)

@k�0
� �

k�0
V (k�0; i)

�
,

or

i = rV (k�0; i) .

But in fact, as we consider the optimal investment decision subject to staging, the optimal invest-

ment i1;m is determined with respect to some average valuation over the course of the investment

round, and thus as the value is increasing in the current position kt, we �nd that at the beginning

of the funding round the investment �ow i1;m displays

i >
2

4

�
@V (k�0; i)

@k�0
� �

k�0
V (k�0; i)

�
,

which establishes (26). �

43



Proof of Proposition 4. 1. The investment decisions i1;1 and i1;2 represent solutions to similar

problems. The sole di¤erence is that the terminal value of the investment problem of i1;1 is given

by Y whereas the terminal value of the investment problem of i1;2 is given by some fraction of Y ,

say q �Y , with q 2 (0; 1). The optimal investment i1;2 is taking the solution to the optimal stopping
problem at k1 as given. Hence the smaller bene�t, q � Y is reached at an earlier stage, namely,

k = k1. It follows that we can represent the investment decisions i1;1 and i1;2 as:

i1;1 2 argmax
i2R+

fpK (i) � Y � cK (i)g ;

and

i1;2 2 argmax
i2R+

fpk1 (i) � q � Y � ck1 (i)g ;

respectively. The term pk (i) represents the discounted probability that a positive terminal value

is realized in position k given an investment �ow i and the term ck (i) represents the associated

discounted cost to reach the position k with a constant investment �ow i. By hypothesis, the value

of these problems is equal at k�0, or

pK (i1;1) � Y � cK (i1;1) = pk1 (i1;2) � q � Y � ck1 (i1;2) . (27)

Since the cost of reaching K is strictly larger than reaching k1, we have

cK (i1;1) > ck1 (i1;2) ,

but this implies by (27) that

pK (i1;1) > pk1 (i1;2) � q. (28)

Hence it follows from the envelope theorem that a marginal increase in Y is more bene�cial to the

single round funding regime by (28), which establishes that k�0 is decreasing in Y .

The argument for an increase of k�0 in response to an increase in the failure � is similar to the

above argument regarding Y .

2. The marginal bene�t of extending k1 is increased by an increase in p and hence it leads to an

increase in k1 despite the increase in the marginal cost.

3. This follows immediately from the Proposition 3.1. �

Proof of Proposition 5. 1. The probability of success given a constant failure probability � at

kt is given by

P (kt) , 1� F (kt) =
�
kt
K

��
. (29)
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The probability P (kt) before the resolution of uncertainty about the failure rate is given by:

0 = P 0 (kt)�
�

kt
P (kt) + � ((1� �)Pl (kt) + �Ph (kt)� P (kt)) , (30)

and inserting Pl (kt) and Ph (kt) from (29) we get:

0 = P 0 (kt)�
�

kt
P (kt) + �

 
(1� �)

�
kt
K

��l
+ �

�
kt
K

��h
� P (kt)

!
.

By (30), the probability P (kt) is an average of Pl (kt) and Ph (kt) and the result follows from

Pl (kt) > P (kt) > Ph (kt).

2. The optimal investment policy before the resolution of uncertainty about the failure rate is given

as the solution to the dynamic programming equation:

rV (kt) = max
it

�
�it +

p
it

�
V 0 (kt)�

�

k
V (kt) + � ((1� �)Vl (kt) + �Vh (kt)� V (kt))

��
,

with the solution given by:

it =
2

4

�
V 0 (kt)�

�

k
V (kt) + � ((1� �)Vl (kt) + �Vh (kt)� V (kt))

�2
,

and hence the value function is given by

rV (kt) =
2

4

�
V 0 (kt)�

�

k
V (kt) + � ((1� �)Vl (kt) + �Vh (kt)� V (kt))

�2
;

and so:

it = rV (kt) .

But as Vh (kt) < V (kt) < Vl (kt) ; it follows that it;h < it < it;l, which completes the proof.�
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Table 1 Summary of Firm Characteristics 
 
This table reports the number of firms (Panel A), means and standard deviations of pre-exit 
rounds per firm (Panel B) and the duration (months) from the first round to the exit round for 
firms (Panel C). The five top lines in Panel A contain the raw data, in which exits are documented 
as either IPO, M&A, Down (= out of business) and Unknown.  In Panel B and C, the four top 
lines report the raw data.  The two bottom lines of each panel A (in italics) report the number of 
firms with exit Unknown that we reclassify as either Down or Alive, according to the estimation 
procedure based on round duration laid out in Section 6.  
 

Industry Health care IT Retail Others Total 
 

Panel A: # of firms 
IPO 541 1,039 213 227 2,020 

M&A 451 1,654 248 312 2,665 
Down 137 556 200 45 938 

Unknown 1,757 7,326 1,042 3,187 13,312 
Total 2,886 10,575 1,703 3,771 18,935 
Down 1,352 5,892 1,087 2,526 10,857 
Alive 542 1,990 155 706 3,393 

 
Panel B: Pre-exit rounds per firm: average [standard deviation] 

IPO 3.89 [2.46] 3.43 [2.26] 3.18 [1.92] 2.29 [2.01] 3.40 [2.30] 
M&A 3.38 [2.46] 2.93 [2.29] 3.10 [2.65] 2.19 [1.96] 2.94 [2.34] 
Down 3.72 [3.02] 3.15 [2.29] 3.02 [1.84] 2.51 [1.94] 3.17 [2.32] 

All 3.66 [2.54] 3.13 [2.29] 3.10 [2.20] 2.25 [1.98] 3.14 [2.33] 
Down 2.78 [2.23] 2.20 [1.77] 2.87 [1.78] 1.74 [1.42] 2.23 [1.80] 

All 3.15 [2.38] 2.49 [2.00] 2.95 [1.96] 1.83 [1.55] 2.50 [2.02] 
 

Panel C: Duration (months) before exit: average [standard deviation] 
IPO 45.83 [26.90] 43.45 [28.40] 34.80 [26.27] 36.57 [28.28] 42.41 [28.00] 

M&A 49.19 [32.06] 40.74 [32.16] 37.65 [29.70] 45.15 [35.43] 42.40 [32.50] 
Down 74.10 [34.70] 59.46 [41.84] 45.05 [34.58] 49.89 [34.77] 58.07 [40.01] 

All 50.61 [31.31] 44.81 [33.60] 38.97 [30.49] 42.19 [33.05] 45.02 [32.90] 
Down 34.11 [29.68] 23.55 [24.53] 29.97 [25.84] 18.70 [19.77] 24.38 [29.81] 

All 39.72 [30.27] 29.27 [27.96] 31.86 [26.71] 22.71 [24.23] 29.81 [27.96] 
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Table 2 Summary of Pre-exit Round Characteristics 
 
This table reports the number of pre-exit rounds, as well as means and standard deviations of 
duration prior to each round (months), investment volume per round (million $), and the ratios of 
investment volume to post-money valuations, for firms in healthcare, IT, retail and other 
industries.  Firms are classified into the exit types IPO, M&A, Down (out of business) or Alive 
(not yet exited) according to both documented and estimated exits. 
 

Industry Health care IT Retail Others Total 
 

Panel A: # of Pre-exit Rounds 
Exit: IPO 2,103 3,563 678 519 6,863 

Exit: M&A 1,525 4,844 770 684 7,823 
Exit: Down 3,752 12,969 3,122 4,401 24.244 

Alive 1,629 5,248 650 1,078 8,605 
Total 9,009 26,624 5,220 6,682 47,535 

 
Panel B: Pre-financing duration (months): average [standard deviation] 

Exit: IPO 10.77 [9.47] 11.16 [10.09] 10.28 [9.84] 10.80 [10.13] 10.93 [9.87] 
Exit: M&A 10.96 [9.70] 10.35 [10.30] 8.80 [7.52] 11.69 [9.85] 10.42 [9.92] 
Exit: Down 11.88 [10.39] 10.38 [9.79] 9.61 [9.19] 12.34 [14.25] 10.81 [10.59] 

Alive 11.83 [9.93] 10.53 [8.78] 9.93 [8.29] 14.41 [18.10] 11.00 [9.99] 
Total 11.43 [9.97] 10.53 [9.75] 9.58 [8.93] 12.36 [13.99] 10.79 [10.24] 

 
Panel C: Investment volume (million $): average [standard deviation]  

Exit: IPO 5.72 [9.28] 7.16 [12.70] 11.35 [20.45] 14.13 [46.66] 7.65 [17.83] 
Exit: M&A 3.78 [5.20] 4.93 [11.07] 7.06 [13.23] 7.28 [48.71] 5.12 [17.50] 
Exit: Down 4.93 [11.93] 8.10 [16.96] 8.87 [14.19] 6.37 [19.50] 7.46 [27.96] 

Alive 7.36 [10.48] 9.77 [17.59] 8.36 [12.41] 10.08 [27.53] 9.19 [17.15] 
Total 5.33 [10.25] 7.69 [15.69] 8.88 [14.91] 7.46 [27.96] 7.34 [17.02] 

 
Panel D: Ratio of investment to post-money valuation: average [standard deviation] 

Exit: IPO 0.30 [0.21] 0.25 [0.18] 0.25 [0.17] 0.31 [0.23] 0.27 [0.19] 
Exit: M&A 0.34 [0.20] 0.27 [0.17] 0.30 [0.18] 0.30 [0.20] 0.29 [0.18] 
Exit: Down 0.32 [0.19] 0.28 [0.17] 0.30 [0.17] 0.28 [0.23] 0.29 [0.18] 

Alive 0.33 [0.20] 0.30 [0.18] 0.29 [0.17] 0.26 [0.22] 0.31 [0.19] 
Total 0.32 [0.20] 0.28 [0.18] 0.29 [0.17] 0.28 [0.22] 0.29 [0.18] 
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Table 3 Firm Characteristics: IPO/M&A vs Down Firms 
 
This table summarizes the post-money valuation (million $ in log) of the first round , the 
investment volume (million $ in log) in the first round  , the ratio of investment volume to post-
money valuation in the first round (in log) ) ⁄ , the ratio of investment volume in the first 
round to the duration between first and the second round (in log) ⁄ , and the abnormal return 
per month (gross return in log) from the first round to the second round , for IPO/M&A firms 
and Down firms. Down firms are firms with documented and estimated exits being Down. The 
reported numbers are means, standard deviations (in parenthesis) and the number of observations 
used to calculate the means and standard deviations (in brackets).  This table also reports the t-
statistics and corresponding p-values for testing the hypotheses of identical means between 
IPO/M&A and Down firms. 
 

  
IPO/M&A firms 

 

 
Down firms 

 
Difference t-tests 

 2.289 
(1.176) 
[1,432] 

2.485 
(1.172) 
[2,142] 

T statistic: -4.887 
P value: 0.000 

 0.725 
(1.465) 
[4,457] 

0.772 
(1.624) 

[10,650] 

T statistic: -1.764 
P value: 0.078 

⁄  -1.239 
(0.796) 
[1,430] 

-1.265 
(0.828) 
[2,140] 

T statistic: 0.963 
P value: 0.336 

⁄  -1.637 
(1.764) 
[4.457] 

-1.423 
(1.741) 

[10.650] 

T statistic: -6.824 
P value: 0.000 

 0.287 
(0.386) 
[891] 

-0.339 
(0.828) 
[1,551] 

T statistic: 25.335 
P value: 0.000 
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Table 4 Probit Analysis of Firm Exits 
 
This table reports the results of a probit analysis regarding the determinants of the exit types of VC-backed firms.  For firm , ,  is the post-
money valuation at round 1, ,  is the average monthly abnormal return (gross return in log) between round 1 and 2, ,  is the investment 
flow for round 1 (investment volume in round 1 divided by the number of months between round 1 and round 2).  Exit classifications are as in 
Table 2. The regressions also include a vector of dummies for the business status (start up, in development, and shipping and profitable) at the time 
of its first financing round, and for the industry (IT, health, and retail) of the firm. Heteroskedasticity-robust standard deviations are in parentheses. 
*** denotes significance at the 1% level, ** at the 5% level, and * at 10% level.  
 

 IPO and M&A (1) 
Vs 

Down (0) 

IPO (1) 
Vs 

Down (0) 

M&A (1) 
Vs 

Down (0) 

IPO (1) 
Vs 

M&A (0) 
,  -0.012 

(0.030) 
0.024 

(0.032) 
**-0.127 
(0.052) 

**0.129 
(0.055) 

,  ***0.809 
(0.049) 

***0.778 
(0.050) 

***0.610 
(0.068) 

0.240 
(0.149) 

,  -0.011 
(0.016) 

-0.008 
(0.016) 

*-0.101 
(0.056) 

0.034 
(0.049) 

Sample size 
 

2,440 890 1,771 2,219 
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Table 5 Determinants of Exit Values of Successful Firms 
 
This table reports the regression results regarding the determinants of the exit values for IPO and M&A firms. 

. , , ,  
In the above equation, for firm , .  is the exit value (IPO market value minus capital raised from IPO or post M&A value minus capital 
infused), ,  is the post-money valuation at round 1, ,  is the average monthly abnormal return (gross return in log) between round 1 and 
2, ,  is the investment flow for round 1 (investment volume in round 1 divided by the number of months between round 1 and round 2). The 
vector  contains dummies for the business status (start up, in development, and shipping and profitable) at the time of its first financing 
round, and for the industry (IT, health, and retail) of the firm. Heteroskedasticity-robust standard deviations are in parentheses. *** denotes 
significance at the 1% level, ** at the 5% level, and * at 10% level. 
 

 Regression 1 
 

Regression 2 Regression 3 Regression 4 

,  ***0.200 
(0.038) 

  ***0.190 
(0.044) 

,   ***0.660 
(0.114) 

 ***0.699 
(0.115) 

,    ***0.037 
(0.006) 

0.009 
(0.017) 

Sample Size 807 
 

658 1,817 657 

R2 0.12 
 

0.15 0.08 0.18 
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Table 6 Tests on Pareto Distribution of Failure Risk 
 
Panel A of this table reports the number of all pre-exit non mezzanine rounds that lead to another 
round or an exit, the number of them that lead to another round or a successful exit (surviving 
rounds), and the survival probability (surviving rounds divided by all pre-exit rounds) for 
different round types.  Round types are determined according to the round status reported in the 
data (left column) and according to their sequence number in the round sequence of each 
company (right column).  Panel A also reports the means and medians of post-financing gross 
returns per month (in log) for surviving rounds (surviving returns) and for all non-exit rounds 
(unconditional returns).  Panel B reports results of probit analyses regarding the determinants of 
survivals.  In the analyses, the dependant binary variable equals 1 for surviving rounds and 0 for 
failing rounds.  Explanatory variables are a dummy that equals 1 for all early and late rounds (left 
column) or all 2nd and 3rd rounds (right column), a dummy that equals 1 for all late rounds (left 
column) or all 3rd rounds (right column), industry dummies, and dummies for the months when 
the rounds were raised.  *** denotes significance at the 1% level, ** at the 5% level, and * at 10% 
level. 
 

 
Panel A: Survival summary 

Variables Round Status Round Sequence 
 First/Seed Early Late 1st 2nd 3rd 

Total rounds 
 

16,665 16,488 10,611 17,488 10,180 6,424 

Surviving 
rounds 

11,852 12,542 8,547 12,224 7,786 5,104 

Survival 
probability 

0.711 0.761 0.805 0.699 0.764 0.795 

Surviving 
return mean 

0.086 0.062 0.057 17,488 10,180 6,424 

Surviving 
return median 

0.056 0.039 0.028 12,224 7,786 5,104 

Unconditional 
return mean 

-0.459 -0.413 -0.315 0.699 0.764 0.795 

Unconditional 
return median 

0.022 0.015 0.015 0.699 0.764 0.795 

 
Panel B: Probit analysis of survivals 

Variables Dummy for early 
and late 

Dummy for late Dummy for 2nd 
and 3rd 

Dummy for 3rd 

Coefficient ***0.208 
(0.016) 

***0.136 
(0.019) 

***0.256 
(0.018) 

***0.128 
(0.024) 
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Table 7 Tests on Risk Neutrality (Constant Expected Returns) 
 
Panel A of this table reports the t-statistics and corresponding p-values (in parentheses) for the 
equality of means of unconditional gross returns (post-financing gross returns for all non-exit 
rounds) per month (in log) between rounds.  Panel B reports the results for Wilcoxon signed-rank 
tests for the equality of the medians of unconditional gross returns.  Both tests use all return 
observations for each type of round.  The return observations are not in pairs, and the numbers of 
return observations from different types of rounds are not necessarily equal.  Negative t-statistics 
indicate that earlier rounds have lower means. *** denotes significance at the 1% level, ** at the 
5% level, and * at 10% level. 
 

 
Panel A. Mean equality tests for unconditional returns 

 Early Late  2nd Round 3rd Round 
First/Seed **-2.015 

(0.044) 
**-2.027 
(0.043) 

1st Round ***-4.831 
(0.000) 

***-6.120 
(0.000) 

Early - -1.388 
(0.165) 

2nd Round - **-2.026 
(0.043) 

 
Panel B. Median equality tests for unconditional returns 

 Early Late  2nd Round 3rd Round 
First/Seed *0.0555 

 
0.399 1st Round **0.021 ***0.004 

Early - 
 

**0.045 2nd Round - 0.504 
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Table 8 Firm-matched Investment Volume, Investment Flow across Rounds 
 
Panel A reports the means, medians and standard deviations of investment volume (million $) and 
investment flow (million $ per month) for individual rounds according to round types. This table 
only includes rounds from firms that have all three round statuses (left column) or at least three 
rounds (right column) before exit. Round types are determined according to round status (left 
column) and round sequence (right column) as in Table 7.  Panel B reports tests for the equality 
of the means and medians for investment volume and flow across rounds for the firms.  We first 
subtract the tested variable for later rounds from earlier rounds, and then use t-tests to test the null 
hypothesis that the means of the differences are positive (Wilcoxon signed-rank tests to test the 
null hypothesis that the medians of the differences are positive).  Negative t-statistics indicate that 
earlier rounds have lower means. The reported numbers for the mean equality tests are t-statistics, 
and the reported numbers for the median equality tests are p-values. *** denotes significance at 
the 1% level, ** at the 5% level, and * at 10% level. 
 

 
Panel A Summary statistics 

Round Status Round Order 
Variables First 

 
Early Late Variables 1st 

Round 
2nd 

Round 
3rd 

Round 
Investment volume 

# of firms 3,336 # of firms 6,464 
mean 4.745 7.746 10.040 mean 4.751 6.653 8.806 

median 2.195 4.000 4.815 median 2.000 3.000 3.750 
Std. dev. 15.778 13.239 15.832 Std. dev. 15.217 15.251 16.936 

Investment flow 
# of firms 3,049 # of firms 6,103 

mean 0.759 1.279 1.928 mean 0.802 1.059 1.452 
median 0.242 0.444 0.603 median 0.227 0.333 0.404 

Std. dev. 2.418 3.860 8.395 Std. dev. 3.292 2.893 4.921 
 

Panel B. Equality tests 
Investment volume mean tests 

 Early Late  2nd Round 3rd Round 
First/Seed ***-10.713 ***-8.335 1st Round ***-8.764 ***-9.552 

Early - ***-15.202 2nd Round - ***-15.560 
Investment volume median tests 

 Early Late  2nd Round 3rd Round 
First/Seed ***0 ***0 1st Round ***0 ***0 

Early - ***0 2nd Round - ***0 
Investment flow mean tests 

 Early Late  2nd Round 3rd Round 
First/Seed ***-7.218 ***-4.001 1st Round ***-5.202 ***-5.840 

Early - ***-7.499 2nd Round - ***-9.105 
Investment flow median tests 

 Early Late  2nd Round 3rd Round 
First/Seed ***0 ***0 1st Round ***0 ***0 

Early - ***0 2nd Round - ***0 
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Table 9 Determinants of Firms’ First Round Investment Flow 
 
This table reports the regression results regarding the determinants of firms’ first round investment flow.  

, , .  
In the above equation, for firm , ,  is the investment flow for round 1 (investment volume in round 1 divided by the number of months 
between round 1 and round 2), ,  is the post-money valuation of the firm at round 1, .  is the exit value of the firm (IPO market 
value minus capital raised from IPO, or post M&A value minus capital infused, or $1 for firms going out of business).  The vector  
contains dummies for the business status (start up, in development, and in production) at the time of the first financing round, and for the industry 
(IT, health, and retail) of the firm.  Heteroskedasticity-robust standard deviations are in parentheses. *** denotes significance at the 1% level, ** at 
the 5% level, and * at 10% level. 
 
 Unconditional regressions (all firms) 

 
Conditional on successful exits (IPO and M&A firms) 
 

 Regression 1 
 

Regression 2 Regression 3 Regression 1 Regression 2 Regression 3 

,  ***0.855 
(0.014) 

 ***0.840 
(0.016) 

***0.801 
(0.027) 

 ***0.752 
(0.0350 

.   -0.001 
(0.002) 

-0.003 
(0.002) 

 ***0.330 
(0.030) 

***0.136 
(0.032) 

Sample size 4,122 
 

12,467 2,946 1,429 1,817 806 

R2 0.51 
 

0.04 0.52 0.43 0.11 0.47 
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Table 10 Determinants of Round Investment Flow 
 
This table reports the regression results regarding the determinants of the investment flow (investment volume divided by the duration between 
current and next rounds) for all non-exit rounds. 

, , , , ,  
, , ,  

In the above equation, for firm , ,  is the investment flow for round  (investment volume in round  divided by the number of months 
between round  and round 1), ,  is the average monthly abnormal return (gross return in log) between round   1 and , ,  is the 
post-money valuation of the firm (million $) at round 1, ,  is the sum of all investment volume (million $) from the first round to 
round 1. The vector ,  contains dummies for the business status (start up, in development, and in production) at the time of the first 
financing round, for mezzanine rounds, and for the industry (IT, health, and retail) of the firm. Heteroskedasticity-robust standard deviations are in 
parentheses. *** denotes significance at the 1% level, ** at the 5% level, and * at 10% level. 
 

 Regression 1 
 

Regression 2 Regression 3 Regression 4 Regression 5 

,  ***0.953 
(0.096) 

***0.868 
(0.085) 

***0.242 
(0.088) 

***0.769 
(0.086) 

**0.531 
(0.088) 

,  ***-0.264 
(0.044) 

***-0.279 
(0.039) 

***-0.181 
(0.039) 

***-0.234 
(0.039) 

**-0.225 
(0.038) 

,   ***0.571 
(0.017) 

  ***0.253 
(0.027) 

,    ***0.525 
(0.015) 

 ***0.258 
(0.025) 

,     ***0.547 
(0.016) 

0.144 
(0.031) 

Sample size 
 

4,408 4,408 4,406 4,334 4,334 

R2 
 

0.07 0.27 0.27 0.27 0.31 
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Table 11 Determinants of Pre-exit Rounds for Successful Firms 
 
This table reports the regression results regarding the determinants of the number of rounds before exit for all IPO and M&A firms. 

.
,

, , .  

In the above equation, for firm ,  is the number of financing rounds before exit, .  is the exit value (IPO market value minus 
capital raised from IPO or post M&A value minus capital infused), ,  is the post-money valuation at round 1, ,  is the average monthly 
abnormal return (gross return in log) between round 1 and 2. The vector  contains dummies for the business status (start up, in 
development, and in production) at the time of the first financing round, and for the industry (IT, health, and retail) of the firm. Heteroskedasticity-
robust standard deviations are in parentheses. *** denotes significance at the 1% level, ** at the 5% level, and * at 10% level. 
 
 Regression 1 

 
Regression 2 Regression 3 Regression 4 

.
,

 
***0.360 
(0.046) 

***0.455 
(0.048) 

***0.525 
(0.061) 

***0.626 
(0.063) 

,   ***-0.985 
(0.325) 

 ***-0.899 
(0.321) 

,   **0.302 
(0.120) 

 **0.287 
(0.119) 

.    ***-0.302 
(0.076) 

***-0.325 
(0.079) 

Sample size 807 
 

658 807 658 

R2 0.21 
 

0.24 0.22 0.25 
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Table 12 Determinants of Round Investment Volume 
 
This table reports the regression results regarding the determinants of the investment volume for all non-exit rounds. 

, , , , ,  
, , ,  

In the above equation, for firm , ,  is the investment volume (raised capital in million $) in round , ,  is the average monthly 
abnormal return (gross return in log) between round   1 and , ,  is the post-money valuation of the firm (million $) at round 1, 

,  is the sum of all investment volume (million $) from the first round to round 1. The vector ,  contains dummies for the 
business status (start up, in development, and in production) at the time of the first financing round, for mezzanine rounds, and for the industry (IT, 
health, and retail) of the firm. Heteroskedasticity-robust standard deviations are in parentheses. *** denotes significance at the 1% level, ** at the 
5% level, and * at 10% level. 
 

 Regression 1 
 

Regression 2 Regression 3 Regression 4 Regression 5 

,  ***0.556 
(0.080) 

***0.433 
(0.071) 

***0.314 
(0.069) 

**0.335 
(0.072) 

***0.340 
(0.069) 

,  ***-0.179 
(0.035) 

***-0.172 
(0.031) 

***-0.111 
(0.030) 

***-0.132 
(0.031) 

***-0.123 
(0.030) 

,   ***0.486 
(0.015) 

  ***0.217 
(0.023) 

,    ***0.539 
(0.014) 

 ***0.443 
(0.025) 

,     ***0.462 
(0.014) 

**-0.059 
(0.029) 

Sample size 
 

4,962 4,602 4,599 4,518 4,518 

R2 
 

0.04 0.23 0.28 0.23 0.33 
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Table 13 Determinants of Pre-exit Duration for Successful Firms 
 
This table reports the regression results regarding the determinants of the duration from the first round to exit for IPO and M&A firms. 

, , ,
,

,

.
,

 

In the above equation, for firm ,  is the number of months from the first round to the exit, ,  is the average monthly abnormal return 
(gross return in log) between round 1 and 2, ,  is the post-money valuation at round 1, ,  is the investment volume (million $) 
in round 1, .  is the exit value (IPO market value minus capital raised from IPO or post M&A value minus capital infused). The vector 

 contains dummies for the business status (start up, in development, and in production) at the time of the first financing round, and for the 
industry (IT, health, and retail) of the firm. Heteroskedasticity-robust standard deviations are in parentheses. *** denotes significance at the 1% 
level, ** at the 5% level, and * at 10% level. 
 

 Regression 1 
 

Regression 2 Regression 3 Regression 4 Regression 5 

,  ***-1.061 
(0.099) 

***-1.150 
(0.088) 

***-1.067 
(0.098) 

***-1.500 
(0.111) 

***-1.429 
(0.103) 

,  ***0.271 
(0.040) 

***0.287 
(0.036) 

***0.274 
(0.040) 

***0.372 
(0.041) 

***0.360 
(0.038) 

,   ***-0.284 
(0.018) 

  ***-0.260 
(0.027) 

,

,
 

  ***0.083 
(0.031) 

 -0.015 
(0.031) 

.
,

 
   ***0.188 

(0.017) 
***0.067 
(0.019) 

Sample size 890 
 

890 889 658 657 

R2 0.25 
 

0.41 0.25 0.040 0.49 
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